
Laser-Driven Electron Acceleration in Infinite
Vacuum

by

Liang Jie Wong
B.S. Electrical Engineering and Computer Science

University of California, Berkeley, 2008

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUN 17 2011

LIBRARIES

ARCHIVES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2011

@ Massachusetts Institute of Technology 2011. All rights reserved.

A uthor.......................... '. . '..... '...................................................... . .
Department of Electrical Engineering and Computer Science

May 20, 2011

Certified by s.... ................ . . .........
Franz X. Kartner

Adjunct Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by ................ .........

1 Leslie A. Kolodziej ski
Chairman, Department Committee on Graduate Students



Laser-Driven Electron Acceleration in Infinite Vacuum

by

Liang Jie Wong

B.S. Electrical Engineering and Computer Science

University of California, Berkeley, 2008

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2011, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

I first review basic models for laser-plasma interaction that explain electron acceleration
and beam confinement in plasma. Next, I discuss ponderomotive electron acceleration in
infinite vacuum, showing that the transverse scattering angle of the accelerated electron
may be kept small with a proper choice of parameters. I then analyze the direct (a.k.a.
linear) acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser
beam, consequently demonstrating the possibility of accelerating an initially-relativistic
electron in vacuum without the use of ponderomotive forces or any optical devices to
terminate the laser field.

As the Lawson-Woodward theorem has sometimes been cited to discount the possibility
of net energy transfer from a laser pulse to a relativistic particle via linear acceleration in
unbounded vacuum, I derive an analytical expression (which I verify with numerical
simulation results) defining the regime where the Lawson-Woodward theorem in fact
allows for this. Finally, I propose a two-color laser-driven direct acceleration scheme in
vacuum that can achieve electron acceleration exceeding 90% of the one-color theoretical
energy gain limit, over twice of what is possible with a one-color pulsed beam of equal
total energy and pulse duration.

Thesis Supervisor: Franz X. Kartner
Title: Adjunct Professor of Electrical Engineering and Computer Science
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1. Introduction

Electron acceleration is a rapidly-advancing field of scientific research that has

widespread applications in industry and medicine [1,2]. With the invention of chirped

pulse amplification [3], by which lasers with petawatt peak powers [4] and ultrahigh

intensities [5] have been realized, there has been growing interest in laser-driven electron

acceleration schemes due to their potential to offer compact and low-cost setups through

high accelerator gradients that surpass those of conventional rf linear accelerators by

several orders of magnitude [1,6,7].

The use of a plasma medium is one attractive way of achieving laser-driven electron

acceleration [6]. Laser-driven plasma-based electron acceleration was demonstrated in

the laboratory as early as 1995 (e.g.: [8]), but until 2004, accelerated bunches were

characterized by an exponential energy distribution (and hence poor beam quality), with

the most energetic electrons at the distribution's tail. In 2004, three groups ([9-11])

managed to produce electron bunches with an energy spread of a few percent and low

divergence of several milliradians. This success in the electron acceleration mechanism

called laser wakefield acceleration was attributed to the matching of the acceleration

length to the dephasing length. Since then, many methods to obtain greater stability,

reproducibility and higher electron energies in electron acceleration experiments have

been proposed and demonstrated (see references in [6]). These include controlled

injection of electrons with colliding laser pulses, the use of negative plasma density

gradients and the use of plasma-channel-guided lasers.

A major challenge in laser-driven plasma-based electron acceleration is the existence

of laser-plasma instabilities, which limit the laser propagation distance and degrades



accelerator performance [6]. The sources of these instabilities include stimulated forward

and backward Raman scattering, self-modulation and parametric coupling to ion modes.

The effort to circumvent these problems has led scientists to explore the alternative of

laser-driven electron acceleration in vacuum.

Laser-driven electron acceleration in vacuum takes place primarily through either the

ponderomotive force associated with the laser's transverse electric and magnetic field

components (ponderomotive acceleration) [11-23], or the force exerted by the laser's

longitudinal electric field component (direct acceleration) [24-32]. Direct acceleration of

electrons in infinite vacuum by a radially-polarized laser is particularly attractive because

such a scheme benefits from the low radiative losses of direct acceleration [31], the

absence of limits on laser field intensity and electron confinement to the vicinity of the

beam axis, which favors the production of mono-energetic and well-collimated electron

beams [27, 32]. This scheme thus has major advantages that favor its application in the

production of x-rays via inverse Compton Scattering [33].

In Chapter 2, I will review the theory of laser wakefield acceleration and self-

focusing of the driver beam in the plasma. In Chapter 3, I will treat ponderomotive

acceleration in infinite vacuum, examining first the case of an incident plane wave for

analytical insight before simulating the more realistic case of a pulsed linearly-polarized

Gaussian beam. In the course of this I will show that the transverse scattering angle of the

accelerated electron may be kept small with a proper choice of parameters. In Chapter 4,

I will analyze the direct acceleration of an electron in infinite vacuum by a pulsed

radially-polarized laser beam, consequently demonstrating the possibility of accelerating

an initially-relativistic electron in vacuum without the use of ponderomotive forces or any



optical devices to terminate the laser field. The Lawson-Woodward theorem has often

been cited to discount such a possibility (e.g.: [15,23,24]). Therefore, in Chapter 5, I will

reconcile the phenomenon of direct acceleration of a relativistic electron in infinite

vacuum with the Lawson-Woodward theorem by showing how the space of laser and

electron parameters contains a regime where the Lawson-Woodward theorem allows the

electron to gain net energy. In Chapter 6, I will propose and analyze a direct electron

acceleration scheme that uses a superposition of two pulsed radially-polarized laser

beams an octave apart in carrier frequency. This two-color scheme exploits the Gouy

phase shift to achieve electron acceleration exceeding 90% of the one-color theoretical

energy gain limit, over twice of what is possible with a one-color pulsed beam of equal

total energy and pulse duration.



2. Laser Wakefield Acceleration and Beam Guiding in Plasma

In this chapter, I study models of laser-plasma interaction to understand the electron-

acceleration and beam confinement properties of plasma. Although the subject of this

thesis is laser-driven electron acceleration in vacuum, one is motivated by the

experimental successes of plasma-based electron acceleration [9-11] to obtain intuition

about laser-driven electron acceleration by understanding the factors that enable it in

plasma-based schemes.

In laser wakefield acceleration (LWFA), a short (sub-picosecond) high-intensity pulse

moves through a plasma with a certain ambient electron density. Interactions between the

laser pulse and the electrons causes the electron density to vary from its ambient value.

The moving electrons and changing charge distribution may give rise to large amplitude

longitudinal electric field oscillations that can persist in the plasma even after the laser

pulse has traveled on. The short, high-intensity laser pulse thus drives a plasma wave in

its wake, which may be used to accelerate electrons in the plasma or injected particles to

very high energies.

There are, however, several challenges associated with LWFA. One of them is the

need to create a guiding channel for the laser beam to overcome beam diffraction. One

method is by using preformed plasma-density channels (e.g. [34]). However, it turns out

that at laser powers above a certain critical value, it may be possible to guide the laser

pulse over several Rayleigh lengths without the use of a density channel due to a

combination of relativistic self-focusing and ponderomotive self-channeling. This is what

happens in the "blow-out" (or "bubble") regime [35], a regime in which the recent

experimental successes [9-11] have been realized. In this regime, the radial



ponderomotive force of a laser pulse propagating in an initially uniform plasma expels

electrons from the axis, creating a density channel. When the laser intensity is high

enough, a complete absence of electrons, called an electron cavity, develops around the

axis [36,37]. This can enhance the effects of relativistic self-focusing, which is critical to

the guiding of the laser pulse and hence to electron acceleration.

In Section 2.1, I introduce the physics of LWFA, following the steps of [38]. In

Section 2.2, I will derive the theory of electron cavitation and self-focusing in a plasma

with a ultrashort, high-intensity pulse traveling through it, following the steps of [36]. In

addition, I will show that the theory of [36] also predicts the existence of higher-order

plasma modes, an observation which was not made in [36]. Higher order modes have

been found useful in increasing the matched electron beam radius in wakefield

acceleration, leading to increased charge and efficiency while maintaining low bunch

emittance [39].

2.1 Laser Wakefield Acceleration

Maxwell's equations, expressed in terms of the retarded potentials in the Coulomb

gauge, together with the Newton-Lorentz equation give the following set of coupled

equations in a cold plasma (where collisions and thermal effects are ignored):

V2 A-- - -- V-,uO, (2.1.la)
c2 at 2  c2 at

v2p = -1,(2.1.1b)
0

dp --g + i tx(Vx , (2.1.1 c)
dt at



+ V -(ni)= (02
at

where A and # are the field potentials corresponding to the Coulomb gauge condition

V -Z=0, p = -e(n - n), e is the absolute value of an electron's charge, n the electron

density, n,a the ambient electron density, J = -eni the current density, i7 the electron

velocity, P = niT the electron momentum, y = (1 - i 2 /c 2 )-12 = (I+ p2/m2c2)1/2 the

Lorentz factor, m the electron rest mass, c the speed of light in vacuum. The plasma

frequency is c,, - ne2/mo . The Coulomb gauge has been used because it very

conveniently allows us to associate the plasma wakefield with # and the driving laser

pulse with A.

Applying the normalizations d = eA/mc , q = e#/mc2 , i = n/n, , T - ct and using

k, =- o, /c , we transform equations (2.1.1 a-d) to

V 2- __
V25i ---- i

aT 2

d(y3-d)=

dT

-3T (2.1.2a)

(2.1.2b)

(2.1.2c)V Y - -
ax ay ) az

(2.1.2d)

where we have rearranged (2.1.1c) using the identity i x (V x Z)= VA (i - (iT. v);. if

we consider only variations in z and T , assuming transversal spatial variations to be 0

for all variables, we can simplify (2.1.2a-d) to give

(2. 1. 1d)

aii+ V -(0j)= 0,
aT



---- =-V+k , (2.1.3a)
az2  aT 2  JT

= k 2(i 1), (2.1.3b)
Jz2

d(y2-d) = I - 35
dT z -z / - i, (2.1.3c)

dT z K az)

i +0V-0)= 0,(2.1.3d)
aT

Equating transverse components of (2.1.3c) gives us (allowing subscript t to denote

transversal components and subscript 0 to denote initial time) yfi, - a, = YOO - ao. If

we assume the plasma is stationary and the field is absent at initial time, we have

, = a (2.1.4)

We also assume that d has no longitudinal component. Equating the longitudinal

components of (2.1.3c) gives

= -A p - = - - - - (2.1.5)
dT -z 'az az 2raz

where we have applied (2.1.4) in the rightmost equality. Note that the first and second

terms in the rightmost expression correspond to acceleration by the plasma wakefield and

by the ponderomotive force, which results directly from the transverse electromagnetic

field components of the laser itself, respectively. Next, we likewise equate the transverse

and longitudinal components of (2.1.3a) separately. The longitudinal part gives us a

redundant equation. The transverse part gives

J2a~ 32 a~
E 2a - 2 = t1k ae p t (2.1.6)

Equations (2.1.4), (2.1.5) and (2.1.6) may be used to replace (2.1.3c) and (2.1.3a).



Now we transform the basis of our coordinates, defining {= z - T , from (z, T) to

(4, T), we find that our set of coupled differential equations may be written in the form

2 a _ a = k 2 at (2.1.7a)
d T aT 2  r

= k 2(i 1) (2.1.7b)

a(y(1 -8#))- v)= a (ypi) (2.1.7c)

( O(1( - $8z))= (2.1.7d)

The reason for our change of reference frame is so that we may make a distinction

between variations in T and variations in . We assume variations in T to be much

smaller than all other variations in what is called the quasi-static approximation.

Applying the quasi-static approximation, then, we set the right-hand-sides of (2.1.7c) and

(2.1.7d) to 0 and obtain

y(1- $ - = 1 (2.1.8)

q(1 -'8$)= 1 (2.1.9)

where ii0 = 1, #lo = 0, qO = 0 at first (i.e.: the plasma is initially stationary and uniformly

at its ambient density, and there is, of course, no wakefield). Noting that we can also

write y= (1+ a2)/(1-# ), we use (2.1.8) and (2.1.9) in (2.1.7b) to obtain

d 2 k2"+ 2 "

k t1+a2  
(2.1.10)

d 2 2 s(1 +P)2



(2.1.10) may be solved numerically given a, (f). The remaining unknowns may then

be computed as

1 1+a 2_1

=1+- r -1 (2.1.11)
2 (1+P)2

1 (1+) (2.1.12)
2(1 +

_ 1(2.1.13)
1+at (1+qg) 2

Note that we have not yet made use of (2.1.7a). (2.1.7a), which describes the

evolution of a,, is important in determining a pulse envelope that preserves the validity

of the quasistatic approximation. Suppose that the beam envelope of a, (without the

pulse but including the carrier) varies at a rate of 1/T, in T and of k = aW/c in J. For the

quasistatic approximation to hold, the variation in T of a, must be small compared to its

variation in . Ignoring the pulse envelope, we see that (2.1.7a) becomes

2k 1 2k k 2 i 2kp -=>- 2+i (2.1.14)
TT,2 T, y k

where we used the fact that 2k >> 1/T, . Hence, we are justified in using the quasistatic

approximation as long as we choose the pulse duration TL to be such that TL << T, . The

narrow pulse envelope ensures that the variation in T of the beam envelope seen within

the pulse envelope will always be negligible.
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Fig.2. 1.1: Density variation and longitudinal electric field component for aLO =0.5.

Notice that the period of oscillation for this slightly nonlinear case is close to plasma
period 2, = L = 0.03cm .

Distance

Fig.2.1.2: Density variation and longitudinal electric field component for aLO = 2. Notice

that the period of oscillation for this highly nonlinear case is almost 0.04cm,
significantly greater than plasma period AP = L = 0.03cm .
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r: 0.5-
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Fig.2.1.3: Field potential V for a LO = 2. Notice that even where n/n a fluctuates rapidly,
p is predominantly slowly varying within the laser pulse.
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To illustrate the effect on the plasma of an incident laser pulse under the

quasistatic approximation, let us use a pulse of a form

= are sin L cosC +z

0
(2.1.15)

otherwise

Figures 2.1.1 and 2.1.2 show the plasma density variation n/na -1 and the

longitudinal electric field Ez = -a#/az for a laser pulse envelope given by (2.1.15).

L =2, = 0.03cm, A=1Opm , aLO =0.5 in Fig. 2.1. 1, corresponding to a slightly

nonlinear case, whereas aLO = 2 in Fig. 2.1.2, corresponding to a highly nonlinear case.

The term "nonlinear" used here refers to the behavior of differential equation (2.1.10),

which, though apparently nonlinear, approximates a linear differential equation for small

aLO . To see this, note that for small a, and V (2.1.10) becomes

kL ((1 +a )(1 - 2op) - 1)
2

2(a2
2

- 2V) (2.1.16)

Note that the equation is already a linear (inhomogeneous) differential equation in the

second line of (2.1.16). In the third line we let a, = 0 to look at the wakefield region

S< -L that the pulse has already passed over. Clearly, the solutions to the third line of

(2.1.16) are sinusoids of period A,. Therefore, we expect p to oscillate sinusoidally in

the wake of the pulse with a period of about A, when a, and p are small.

d 2



The steepening of the longitudinal electric wakefield and the increase in the period of the

field and charge density variation behind the pulse as aL0 increases is evident from Figs.

2.1.1 and 2.1.2. The period of oscillation increases from approximately A, = 0.03cm

(which the analytical approximations in (2.1.16) predicts) for a - 0.5 in Fig. 2.3.1 to

almost 0.04cm for aL0 = 2 in Fig. 2.1.2. The density oscillations also become highly

peaked. Fig. 2.1.3 shows that the field potential qp corresponding to the plasma charge

separation is mainly slowly varying within the laser pulse even though the charge density

varies rapidly (Fig. 2.1.2). The figure also shows that (p can be negative behind the laser

pulse. As mentioned before, Laser Wakefield Acceleration exploits the large amplitude

longitudinal electric field associated with the plasma waves in the laser pulse's wake to

accelerate an injected beam of electrons to high energies. Further work in [41] has shown

that the energy gain of a trapped electron scales as 22 E2 in the large wave amplitude

limit, where 7, is the Lorentz factor associated with the plasma wave phase velocity and

EZ is the electric field amplitude of the nonlinear plasma wave.

2.2 Electron cavitation and self-focusing of short intense pulses in plasmas

As in the previous section, we begin with an intense laser beam in a cold plasma where

ions are assumed to be fixed and uniformly distributed. The equations that govern the

interaction between the laser's electromagnetic field and the plasma's electrons are:

V2A_1- = -po . ,90 (2.2. 1a)
C at

2  (2.2.1 b)
C2 t2 0



VA-1#= 0, (2.2.1c)
c 2 at

dp= -e -A - V#+f x(V xA1 (2.2. 1d)
dt at

n+ V -(n)= 0 , (2.2.le)
at

where all variables are as defined before. (2.2.1) are the same set of equations as (2.1.1)

except that here we employ the Lorentz gauge instead, after the fashion of [36]. For

convenience, we introduce normalizations and make substitutions such that P/mc -> P,

eA/mc -+ A, e#/mc 2 -> g , awt -> t (ca being the angular frequency of the laser),

as/c -+ 7 (i being the position vector) and nlna -> n. This gives us:

--A a2 AV2A v= ,2ni, (2.2.2a)
at

2

V20 a 2 2(n -1) (2.2.2b)
at

V-A+ -=0, (2.2.2c)
at

d )=Vg-x Y.- -9Z- - - (2.2.2d)
dt ax , ay az

D+ V - (nV) = 0 , (2.2.2e)at

where i7=1p/y, y= 1 + , e = o,/), co, = na e2/eom is the natural plasma

frequency.

We assume an underdense plasma, for which e << 1, and that our laser beam satisfies

the slowly varying envelope approximation. This allows us to use the multiple scale



method and expand all physical quantities as G(r, t) = GO (, xI, y1I, z2 )+ G (, x1I, y1I, z2 ),

where 4 = z-at, (xI,y)= E(x,y), z2 = E 2 z and a = a/kc = v,, /c is the normalized

phase velocity in the z direction vph of any function of . We assume that this phase

velocity is approximately c so that (a -1) -E2 , which implies a, (a2 _ 2

The multiple scale analysis assumes that for each physical quantity, the variation in 5

is larger by a factor of el than the variation in (x, y), and larger by a factor of e-2 than

the variation in z. In other words, for each physical quantity, variations in , x1, y, and

Z2 are of the same order of magnitude. All physical quantities may also contain a

perturbation (i.e. G1) that is smaller than the lowest order part (i.e. GO) by a factor of

approximately e- (and so Go and G, are of the same order of magnitude).

We let a/z --> aaz + /a, a/at -> -aaal/, a
2 /at 2 -> a 2 

a2/ g2

a2/-z2 _ 2/z 2 +2d 2/adz +3 2/ 2 and V2 -+V7 +a2 /Z2 +232/aaZ +2 2

where V is the transverse Laplacian, in equations (2.2.2). This gives us, considering

just the lowest order terms:

V2 _a2 2 a_2

i +2 - a 2 A 0no, (2.2.3a)

Vi +2 -a, # =n - (2.2.3b)

(vs3.z2 - g2 100 02-d

a(~ -a0)=0, (2.2.3c)

(v,-a) p- Z = 00 " o , (2.2.3d)



%i'"0"Oz '' 0. (2.2.3e)

To proceed, we use the ansatz Ao(, t) = 0.5(x+ i)Ao(p, z)e'a + c.c.] for a circularly-

polarized laser beam with an axisymmetric amplitude Ao, p being the radial coordinate

of the cylindrical coordinate system. Note that Zo =iAo 1 does not contain e 2 " terms

by virtue of the fact that Ao is circularly polarized. Also, ei " is simply ei(kz-ox) in un-

normalized variables. From (2.2.3c) and (2.2.3d) we see that (using subscript t to indicate

transverse component)

aN(pot -Z= =0.

Furthermore, equations (2.2.3) allow us to self-consistently set

aOz - aOz

P0 = Ao. (2.2.4)

Physically, (2.2.4) means that the plasma electrons move circularly about the axis in

planes transverse to the axis. Equating the terms of the next highest order in (2.2.2d),

bearing (2.2.4) in mind, gives us

vo- + Vo - xv
-v0

ax, ay,

which becomes, upon self-consistently setting a(p, - A, )/ag = 0, noting that to first

order the Lorentz factor yo = 1+JZA = 1+A02 and i7 = P./yo = Z0/yo, and

equating transverse components on both sides of the equation,

g.= poz =voZ = 0,

(voZ - cc) '(P1 -A,)= 2~ g



Vtpo = Vtyo ,

which represents the balance between the electrostatic and ponderomotive forces on the

electrons. We substitute (2.2.5) and previous relations into (2.2.3a) and (2.2.3b) to obtain

- 2 a o
= no

7o
(2.2.6)

(2.2.7)no =+ Viyo.

Since the operators acting on A0 on either side of (2.2.6) are real, AO may be replaced by

any complex expression the real part of which gives the actual (real-valued) Ao. We may

thus set Ao = (x+ ij,)Aoe ida in (2.2.6), bearing in mind that the actual value for the field

quantity is proportional to ReAO }, so that (2.2.6) becomes

ti a aZ A Yo (2.2.8)

where a= (a2 _ 2a2

Equation (2.2.7) is valid only for non-negative values of no, because a negative

electron density is physically unrealistic. To make (2.2.7) valid for all situations we set

no = 0 whenever no falls below zero. To find the field and electron distribution in a

plasma, we thus solve the two equations

V 2 + 2i-+a A=n -
t az 1 2' (2.2.9)

(2.2.10)n = (1+ Vy),

where for convenience we have dropped the subscripts. (2.2.9) is simply (2.2.8) with a

set to its lowest order value of 1 and 6 is the ramp function such that 9(x) = x, x > 0;

(2.2.5)

V2 +2 a
VtI + 2



O(x) =0, x <0 . As we will see later, large ponderomotive forces that arise when the laser

intensity is high enough may push all the electrons out of some region, leading to a

complete absence of electrons in a phenomenon that has been dubbed "electron

cavitation" [36].

To find the stationary states of (2.2.9) and (2.2.10) , we assume an ansatz

.S
A(p, z) = A, (p)e 2 (2.2.11)

where S is a real constant and A, is real. Without loss of generality, however, we may

set S =0 by absorbing it into Combining (2.2.9) and (2.2.10) we have

1 d dA 1d dyA
~p J+ A9 L-+_ 1+- -= 0.

pdp dp p dp ,dpy
(2.2.12)

Note that yV= 1+ A2 . We first consider the case where cavitation does not occur.

Noting that dy/dp = (A/y)dA/dp and that

1 d ( dyr 1 A d ( dA"'1 dA d (A)]
p dp dp) p y dp dp dp dp y_

we may recast (2.2.12) as

1 d (pdA
py dp y dp)

~2A=0.

We require that A(p -> oo) -+0 and that A must be evanescent at large p

(2.2.13)

Setting

p >> 1, (2.2.13) becomes

IdP( +(u-1)A =0.
p dp dp

(2.2.14)

The condition of evanescence places a restriction on a. This may be seen by recognizing

(2.2.14) as a zeroth-order Bessel differential equation. For evanescence we must have



2 (2.2.15)

This gives us in the limit ip >> 1, using C. to denote an arbitrary constant,

A ~ C.1|/pe - . (2.2.16)

In the regions, if any, where cavitation occurs, we obtain from (2.2.12)

d A
p- + A =0 .

dp,
(2.2.17)

(2.2.17) is a zeroth-order Bessel differential equation, which solution is, assuming a > 0,

A = A(O)JO (U112p). (2.2.18)

We may now solve for A by numerically solving (2.2.13) in regions of no cavitation, and

using (2.2.18) in regions of cavitation. We require continuity and smoothness in our

solution, so for transitions between (2.2.18) and (2.2.13) we impose the boundary

conditions

A(n )=A(n ) dA(p+)- _dA(p_-. (2.2.19)
dp dp

where p, and p_ indicate positions on either side of the cavitation boundary. If

cavitation never occurs, enforcing smoothness given the axisymmetric nature of the

solution requires

d=A(O 0 . (2.2.20)

We perform our simulations using the shooting method employed by [36]. For each value

of a in the parameter space studied, we integrate (2.2.13) from an arbitrarily large p to

p =0. If at any point 1+V, l1+A2J <0, we use (2.2.18), matching boundary

conditions with (2.2.19). If cavitation never occurs we integrate all the way to p = 0,



where (2.2.20) should hold for the solution to be valid. We specify initial conditions with

(2.2.16), varying C. until (2.2.19) and (2.2.20) are valid. As evident from its definition

in (2.2.16), the value of a controls the dispersion relation in the plasma:

a 2 =k 2 c2 +aa, (2.2.21)

Since we require 0 < a < 1 and focus on the case where wc/a >> 1, we see that varying

a corresponds to a translation of the vacuum dispersion relation 01 = k2c2 by a very

small amount. We define the power of the beam as P = fA(p)|pdp.
We repeat the simulations of [36] to obtain Fig. 2.2.1, from which it is evident that in

this range of a, decreasing the value of a -- which implies, by (2.2.21), selecting a

value of phase velocity vph > c closer to c -- leads to a more tightly focused laser beam

in the plasma, since the beam radius and the magnitude of the on-axis field A()

increases. As a decreases (and A(0) increases), the on-axis electron density n(0)

decreases toward 0 until n(0) = 0, i.e. cavitation occurs. Further decreases in a lead to a

widening of the electron cavity, as can be observed going from Fig. 2.2.1(c) to Fig.

2.2.1(d).
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Fig. 2.2.1 Plots of normalized field amplitude A and normalized electron
(a) a = 0.999, (b) a = 0.95, (c) a = 0.8778 and (d) a = 0.7.

An asymptotic limit for po may be obtained in the limit that the beam power goes

to infinity, where po denotes the value of p at which cavitation occurs. To obtain this

note that by definition

density n for



n(po)=+ip -1+ =0 (2.2.22)
p dp dp ),_O

For large A (which occurs when a -+ 0 ), (2.2.22) simplifies to

n(po~ p A(p) =0 (2.2.23)
p dp dp )=PO

With (2.2.18), this gives us

J (p 12) = 0 (2.2.24)

So we may conclude that as a -> 0, poo 1 2 -+ 2.4048, the first zero of the zeroth-order

Bessel function, which the plot in Fig.2.2.2 confirms.
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100 10 102 103
P

Fig. 2.2.2. Value of po-f0 vs. power

The studies of [36] only discuss the lowest order stationary states for various ca. In

fact, the theory developed in [36] (which we have reviewed above) also predicts the

existence of higher-order stationary states in the plasma. These higher-order stationary

states may be shown to exist by noting that for a given a, the shooting method of the

previous section gives multiple solutions of C., with larger values of C. being

associated with higher orders of solutions.



Fig. 2.2.3 shows how the field pattern and electron density of the fundamental mode

studied in Fig. 2.2.1. We see that the field pattern indeed agrees with the plots in Fig.

2.2.1 (although the cases in Fig. 2.2.3 are at much higher powers), and that regardless of

power it is made up of a single peak that decays as distance from the axis increases. In

Fig. 2.2.4, we show the field patterns and electron densities of the second-order stationary

states. The field patterns are now made up of two peaks: one at the axis and a smaller one

off-axis. As expected, the field patterns of the third-order stationary states shown in Fig.

2.2.5 are made up of three peaks, the largest of which is on-axis and the smallest of which

is the one farthest from the axis. Fig. 2.2.3-2.2.5 also show that the electron cavity for

higher-order modes is larger. To find out how the size of the cavity scales with different

orders of field patterns, we plot po vs. power, as we did for the fundamental mode in

Fig. 2.2.2, for the second and third order modes in Fig. 2.2.6.

From Fig. 2.2.6, we see that the value of p0 'v" for each order approaches an

asymptotic value as power increases. Since (2.2.22)-(2.2.24) apply just as well to higher

order beams, we may conclude that the asymptotic value for each higher order is simply

given the next zero of the zeroth-order Bessel function JO(paU112) as one moves from the

origin in the positive direction. Hence, as a -+ 0, pa1/2 -> 2.4048, 5.5201, 8.6537 for

the fundamental, second-order and third-order modes respectively, which we easily verify

by studying Figs. 2.2.2 and 2.2.6. It is thus straightforward to see for each value of a, an

infinite number of solutions for A(p) and n(p) exist, each one corresponding to a

particular zero of JO (p cr12).
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The sum of what the above analyses tell us is that an incident pulsed wave with

certain combinations of peak power and transverse field pattern can propagate through

initially uniform plasma with very little beam divergence, and with a phase velocity
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determined by the value of a to which the field pattern and peak power correspond. Self-

focusing without any prior plasma channel-shaping may thus be achieved through the

interaction between the driving laser beam and plasma that causes a redistribution of the

electron density. Beyond a certain peak intensity of the driving beam, all electrons are

expelled from the axis and electron cavitation occurs. We have shown that the theory of

[36] also predicts the ability of the plasma to sustain higher-order beam modes. Higher-

order modes are useful because they can increase the matched electron beam radius in

wakefield acceleration, leading to increased charge and efficiency while maintaining low

emittance of accelerated electron bunches [39].



3. Ponderomotive Acceleration of an Electron in Infinite Vacuum

In ponderomotive acceleration, electrons in vacuum gain energy (primarily) by the

ponderomotive force, which is a longitudinally-directed force resulting from the

combined effect of the transverse electric and magnetic fields on the electron. Among the

variety of ponderomotive acceleration schemes conceived are inverse free electron laser

(IFEL) acceleration [12, 13]; vacuum beat wave acceleration [15], in which the wiggler

field of the IFEL is simply replaced by a second laser; high-intensity ponderomotive

scattering [16-18], in which the electron is scattered away from the laser focus with a

high escape energy; the capture and acceleration scenario [20], in which relativistic

electrons are injected at an angle into the laser focus; and ionization of highly-charged

ions near the laser pulse peak [22]. Experiments [13, 18, 23] have demonstrated that

ponderomotive acceleration may be achieved in reality.

In this chapter, I study the ponderomotive acceleration of an electron in infinite

vacuum by a pulsed linearly-polarized fundamental Gaussian beam, analyzing the case of

an incident plane wave first for analytical insight (where I roughly follow the procedure

of Hartemann et. al. [16]), before proceeding to model the Gaussian beam.

3.1 Electrodynamics of a single electron in a pulsed plane wave

Assuming that the effects of radiation reaction are negligible, the dynamics of the

electron is governed by the Lorentz force equation:

dp= (3.1.1)
dt



where m is the rest mass of the electron, e the absolute value of its charge, p =n

its momentum, iT its velocity and y 1 -$2 = (l + (y'8 )2 + (y, / 1- g2)

- 1+ (y) 2 is the Lorentz factor, with $ 6 and #6 i/c. E is the electric field

intensity and 5 the magnetic flux density. The total energy and kinetic energy of the

electron are given by G, = ync2 and GK = (7- l)mc 2 respectively. Using the retarded

potentials, we substitute 5= -V#0 - a/t and B = V x A, and apply vector identities to

obtain from (3.1.1) (with subscripts x, y and z denoting components along the

Cartesian coordinates)

d -eA)-e(-V#+vVA,+v ,VA, +vVAz)
dt

=-e -V#+v--+v- - +v-Z (3.1.2)
ax ay az ,

Taking the dot product of both sides of (3.1.1) with i, we also have

. = dG = d (nc2)=-eiT-E (3.1.3)
dt dt dt

Since we consider an incident plane wave, let A= Ax ( ), a - kz, c6 being the

radian frequency and k - a/c, and a, = eA,/mc. We then have from (3.1.2) and (3.1.3)

d (7#i, - aj)= 0 (3.1.4a)
dt

d (7$,)= 0 (3.1.4b)
dt

d -c3xa
d(Y$ (3.1.4c)
dt az



dy ax (3.1.4d)
dt x at

Noting that (-1/k)aaaz = (1/ m)aa 3t =aal / >a,/ z = (-1c)aa,/lt,we

combine (3.1.4c) and (3.1.4d) to obtain d (y(1 - # ))/dt =0, which gives us the invariant

y(1-# ) = 7o (1 -,#z )(3.1.5)

where an additional subscript 0 denotes the value of the variable at initial time. Solving

(3.1.4a) gives us y#i = r#,8o + ax . (3.1.4c) may thus also be written as

(y# )= -c rOfixoa ax = -c 0a (3.1.6)
dt r az y) az 2 az

where the term containing aa /az is proportional to the magnitude of the laser's intensity

gradient and is referred to as the "ponderomotive force" or "nonlinear force", since the

force depends nonlinearly on the electric field. This ponderomotive force is precisely the

mechanism by which transverse components of an electromagnetic field accelerate

electrons in the longitudinal direction in vacuum.

To summarize the solutions obtained from (3.1.4) and (3.1.5),

r( )fl, 0 = yoflo + a,() (3.1.7a)

7( ),8, ( )= yo8, o (3.1.7b)

7()$fl= 7 - rO- yo (l - zo) (3.1.7c)

(r= 7o 1+ 2ax( )76xo +a ( (3.1.7d)
2702( 6zx

where we have included the functional dependence for clarity. To solve for the particle's

position F as a function of , we note that dF/dt = (dF/df)(df/dt) = 4(1 - #z )(di/df),



where ri = xi + yy + z. Hence, d(ki)/d4: = y({)#({)/(yo(1 -,zo)), which can be solved

numerically for k once initial conditions and ax (4) have been specified.

If we let ax(4)= ao cos(f)sec h( /:) and set 4O =14, yo =10 , $#O =#yo =0,

ao - 2, we get the plots for ax(f), kx(4) and kz(4) and y(4) in Fig. 3.1.1. As a guide

to what fields and intensities are involved here, one should note that 1) for A = 0.8pm,

ao =1 corresponds to a transverse electric field amplitude of EO = 4x 1012 V/m and a

root-mean-squared intensity of Sr, = E/2 2x10 W/cm 2 (qO is the vacuum wave

impedance), and 2) E0 oc ao /2, S., < (aO /A)2. Note that time increases linearly with 4,

the carrier phase at which the electron is located.
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Fig. 3.1.1: Plots of a) normalized field amplitude, b) normalized transverse displacement,
c) normalized longitudinal displacement and d) normalized electron energy vs. 4 for an

incident plane wave with 4O =14, yo =10, f$,O =, 0 =0, ao = 2.

In Fig. 3.1. ld, we see that the energy of the electron infinitely far in the past and

infinitely far in the future are equal. The electron is thus not able to gain net energy from

a pulsed plane wave. With a pulsed Gaussian beam, however, we will see in the next

........... ....... -- --- .. ..................... ...... - -=t-



section that the position-dependent spatial envelope of the beam allows the electron to

gain significant energy from the laser-electron interaction.

Fig.3.1.1b shows that the pulse's oscillating field (Fig. 3.1.la) causes the electron to

oscillate similarly in the transverse direction as the pulse passes over the electron. The

electron's "quiver amplitude", which is the maximum amplitude of its transverse motion,

can be a source of concern in the production of well-collimated electron beams. This is

because one would expect the electron to be expelled at a large angle with respect to the

beam axis if the quiver amplitude becomes comparable to or greater than the laser beam

radius. According to this argument, we may estimate the threshold for wide-angle

scattering by equating maximum quiver amplitude x0 and beam waist radius w0 . For the

case ,o =#8,(, =0, x0 = a0ro(1 +,# 0)/k . This corresponds to a threshold amplitude ah of

ath o (for 8xo =68, 0 =0) (3.1.8)
yo,(1 +$80) 2yr,

where the rightmost equality in ah applies for #lO =1. Note that [16] mistakenly argues

that (3.1.8) gives the threshold for net electron acceleration. We see in the next section

that significant net electron acceleration may be obtained with ao < ah, which is in fact

desirable because it favors a small scattering angle for the accelerated electron.

3.2 Ponderomotive acceleration of an electron in infinite vacuum by a pulsed

linearly-polarized Gaussian beam

A pulsed linearly-polarized Gaussian beam is given in the Lorentz gauge by the

complex vector potential A= eA2fe ej +sech(( +kzj )/#), where x, y, z are the

Cartesian coordinates and X^, j, - the corresponding unit vectors; j VIT; p r



r x2 +2 ; ij. ) is the Rayleigh range; wo is

the beam waist radius; A is the carrier wavelength (i.e. the central wavelength of the

pulse); k - 2ff/; o = kc is the angular carrier frequency; z, is the pulse's initial

position; oy is the carrier phase constant; 0 is a parameter related to the pulse duration.

One may easily verify that A satisfies the paraxial wave approximation as long as w0 and

0 are large enough [38]. In the y = 0 plane, one finds corresponding electromagnetic

fields of the approximate form:

E - 2 qP e
wO sin(v)sech

By=~-x c

E = 210P L

f(w /r)2 zo
WO cos V+tan-1 sech

zo )

with all other components negligible. 70 ~120z Q is the vacuum wave impedance, c the

speed of light in vacuum, P the peak pulse power, V a + tan

L 1/(1+ (z/z )2). From (3.1.1) and (3.1.3) we obtain:

d(fix) e EX(1-'Qz)
dt mc

d (7l) e (E/+JE,)
dt mc

dt mc (fxEx + QzE,
dt mc

-L-- L + and
zo Wo zo

(3.2.2a)

(3.2.2b)

(3.2.2c)

(3.2.la)

(3.2. 1b)

(3.2.lc)



where the variation in 7#, is 0. Combining (3.2.2b) and (3.2.2c) we find

dy(l -#3) _ e EZI(1-,) (3.2.3)
dt mc

(3.2.3) tells us that unlike the plane wave case in section 3.1, the Gaussian beam case

does not conserve y(l -,) due to the presence of the longitudinal component of the

electric field, which in turn arises from focusing (i.e. Gauss's law, VT - =- E /3z,

requires a non-zero EZ due to the non-zero transverse divergence of the transverse

electric field). We may substitute (3.2.1) into (3.2.2), introducing normalizations X kx,

Z = kz ( Zi = kzi ), ed=2 / 0Wo and T = ca to obtain

d(7#,) = -Voe2X(1 - #,6)J. sin(V)sech + Z1  (3.2.4a)
dT lo

d(7# _=-Voe X Lcos(yV)+ 5VLsin(Y) sech + (3.2.4b)

where y + tan- (eZ/2)- (edX/2)2 L(edZ/2)+ V, V'Z y, + tan- (e2Z/2),

a T - Z, Va 40 P/e /2mc2 , L ±1(1 (e Z/2))y. Together with the ordinary

differential equations dX/dT = /, and dZ/dT = #z , (3.2.4) may be solved for Yi7 , 7#,

X and Z as a function of time after specifying laser parameters fe, P, ed, y and

electron parameters X (0), Z(0), A (0), $z (0). We have not included Zi as a degree of

freedom because we always effectively set Z, -- -oo (i.e. the electron begins in field-free

vacuum). The simulation is terminated only after the electron is again effectively in field-

free vacuum. A schematic of the simulation is shown in Fig. 3.2.1.
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Fig. 3.2.1: Simulation schematic for electron acceleration by a pulsed linearly-polarized
Gaussian beam.

Instead of specifying (Z(o), X (0)), it is convenient to specify (D,, Dx), which we call

the "protracted collision position" and define as the (normalized) position where the

electron's z-position would coincide with that of the pulse peak if the electron were to

always travel at its initial velocity (vz (0), vx (0)). For values of (D,, D,) far enough from

the laser focus such that the electron always experiences a negligibly small electric field

(resulting in little change in the electron's velocity from its initial value), (Dz, D)

approximates the actual position where electron and pulse peak coincide, hence our name

for it. We thus have the relations

Z = I (Z(0) - DZ(1 -$z(0))) (3.2.5a)
$ (0)

X (0) = D , - 8x (0) (Dz - Z,) (3.2.5b)

Note that our problem is independent of carrier wavelength A and so the solutions

may be scaled to any 2. As an alternative to specifying (,6(0),,(0)), we may specify

0 = tan-($ (0)/, (0)) and y(O) = yo . We also define a = lim tan-1(,/,Z) to be the

electron's final scattering angle, defined as the angle the electron makes with the beam

axis after the pulse has passed over the electron completely. The relationship between

pulse energy Epuse and peak pulse power P may be computed as



Eulse dt dxf dyZ(x,y,z =0,t)Xb(x,y,z =0,t) -Z
l

P 2o (3.2.6)
CO

where po is the permeability of free space. Following the convention of [29], we define

pulse duration r as

Ir = sech-1(exp(- 1)) (3.2.7)

Note that by this definition, r also approximates the full-width half maximum intensity

pulse duration of the pulse.

We now run a simulation under the conditions of Fig. 3.1.1 ( o =14, y(O) = 10,

$ (0) = $,y (0) =0, ao = 2) to make a comparison with the plane wave case. Here,

ao = eV4q 0P /( iwo /mc), so to obtain Fig. 3.1.1's conditions for A = 0.8pm, we can

choose P = 84.2TW and wo = 25um for a pulse energy Epuse = 1J. The simulation

results are shown in Fig. 3.2.2.

2 3 4 5 6 -2 -1 0 1 2
T x 104 Z x 104

Fig. 3.2.2: Plots of a) normalized electron energy vs. normalized time, b) normalized

transverse displacement vs. normalized longitudinal displacement for %o =14, yo = 10,

$, (0)= $,i(0)= 0, ao = 2, as in Fig. 3.1.1. We have chosen A = 0.8pm, P = 84.2TW,

wo = 25pm, D, = D, =0, y/0 =-r/2 .



Fig. 3.2.2a is reminiscent of Fig. 3.1. id, except the spatial dependence of the focused

beam introduces an asymmetry that results in a non-zero net transfer of energy from laser

pulse to electron. Fig. 3.2.2b shows that after some wiggling, the electron departs at an

angle to the beam axis. Our computations give us a = 1.3450 . That a is relatively small

here is not surprising, since by (3.1.8), the threshold for wide-angle scattering is

ah = 9.82> a0 . Note that (3.1.8) may be cast for a Gaussian beam as

5 O25 wo 4 2 0.21 (w W4

1th 2 + 2I#Z-2 TW
y02 e ()

where the rightmost expression applies for the case # (0) =1.

We may increase ao for fixed laser peak power, pulse duration and p

decreasing wo (focusing

by different amounts are
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From Fig. 3.2.3, we see that under the given conditions, focusing more and more

tightly causes the net energy gained to increase and a to increase only gradually until

about ao/ah = 1, when a increases drastically and the net energy gained decreases with

further focusing. The phase dependence of the final energy gain also seems more phase-

sensitive for ao /ath > 1. For maximum net energy transfer and a relatively small

scattering angle, the condition

a~o_ 2re j4roP -1 (3.2.9)
ah m 2c ) i

appears to be desirable in the case studied here. This suggests that to keep the final

scattering angle small, an increase in P or yo requires a corresponding increase in Ed

(i.e. a decrease in focusing), at least for the D, = Dz = 0, $,(0)= $,(0)= 0 case. In the

next chapter, we study an electron acceleration scheme in vacuum where electrons on the

beam axis are not scattered at an angle to the axis, and which thus appears to favor the

production of collimated electron beams.



4. Direct Acceleration of an Electron in Infinite Vacuum by a Radially-

Polarized Beam

4.1 Introduction

In this chapter, I study the direct acceleration of a free electron in infinite vacuum

along the axis of a pulsed radially-polarized laser beam. All optimizations are carried out

in view of maximizing net energy transfer from laser pulse to electron. I begin by

studying the initially stationary electron. There has been some interest [26-28,31,32] in

the scenario of electrons born (for instance, by ionization) in the path of the laser pulse,

and a recent study by Fortin et. al. [28] showed that an electron can reach the high-

intensity cycles of the pulse without having been released by photoionization near the

pulse peak. The study also concluded that the optimal beam waist at petawatt peak

powers lies well within the paraxial wave regime. The latter conclusion, however, is true

only for an initially stationary electron required to start at the laser focus. I show that

after including the electron's initial position in the optimization space, one in fact

achieves maximum acceleration with the most tightly-focused laser.

I also study the acceleration of electrons with non-zero initial velocities. These

electrons (which I call "pre-accelerated electrons") are injected into the laser beam ahead

of the pulse and may be the output of a preceding acceleration stage. I show that net

energy gain can be much greater for a pre-accelerated electron than for an initially

stationary one. In particular, the net energy gain of an initially relativistic electron may

exceed more than half the theoretical energy gain limit (derived in [28]), which is not

possible with an initially stationary electron in the parameter space studied. The de facto

energy gain limit (of half the theoretical energy gain limit) argued by Fortin et. al. [28]



for the initially stationary electron may thus be surpassed with the pre-accelerated

electron. Based on my simulation results, I also hypothesize that substantial electron

acceleration cannot be achieved if the electron's initial kinetic energy greatly exceeds the

laser's theoretical gain limit.

Prior to the study in [29], most studies focused on petawatt powers and beyond. By

extending our parameter space to include powers as low as 5 TW, I show that substantial

acceleration can already be achieved with laser peak powers of a few terawatts. In

particular, I give an example in which a 5 TW pulse, either 7.5 fs or 15 fs in pulse

duration, accelerates an electron from a kinetic energy of 10 MeV to a kinetic energy of

about 50 MeV; and another example in which a two-stage accelerator employing a 10

TW, 10 fs pulse in each stage accelerates an initially stationary electron to a final kinetic

energy of about 36 MeV. These electron energies are already sufficient for applications

like the production of hard X-rays via inverse Compton scattering [33].

This chapter is organized as follows: In Section 4.2, I discuss the theoretical and

technical aspects of our simulations; in Section 4.3, I study the acceleration of an initially

stationary electron; in Section 4.4, I study the acceleration of a pre-accelerated electron.

4.2 Theory of direct acceleration by a pulsed radially-polarized laser beam

The physical scenario we study is the following: A free electron, initially at rest or

moving in field-free vacuum, is overtaken by the pulse of a radially-polarized laser beam

that exchanges energy with the electron purely via the laser's on-axis, longitudinal

electric field (i.e. via direct acceleration). The pulse eventually overtakes the electron,

leaving the electron once again in field-free vacuum, with a velocity generally different

from what it had before. The free electron may have been introduced either by ionization



of a target in the path of the pulse, as in [32], or by a preceding acceleration stage. To

compute the net energy gain of the electron, we need a description of the laser pulse and

equations to model the electron's motion.

Using the method of [38], we may derive the electric field E and magnetic flux

density B for a pulsed radially-polarized laser beam in vacuum under the paraxial wave

approximation:

E(r, z, t) = Re E(r, z)e 'sech ( kz , (4.2.1)&(r, z, t)= 5(r, z, t) - r^,

where

E(r, z) f 2 pe- 2 -
)w 0

2'
kr

f- 2), (4.2.2)5i(r, z) 51E(r, z) -,

r, #, z are the cylindrical coordinates and r, ,2 the corresponding unit vectors; j .17;

f = j/(j+(z/zo)); p = r/wo ; =_6 -kz; zo= 7awo2 / is the Rayleigh range; wo is

the beam waist radius; A is the carrier wavelength (i.e. the central wavelength of the

pulse); k = 2c/l ; o = kc is the angular carrier frequency; qO ~ 120z 92 is the vacuum

wave impedance; c is the speed of light in vacuum; z, is the pulse's initial position; V/0

is the carrier phase constant; fO is a parameter related to the pulse duration; P is the

peak power of the pulse:

(4.2.3)P = I f dr2rr Re{E(r,O) x b * (r,0)
2po



where po is the permeability of free space. By choosing values of o such that the time

variation of the sech pulse envelope is large compared to the time variation of the carrier

and using Eq. (3), we may compute the pulse energy E pulse as

1 - -kz, 2__
Epuse = - dtJ dr2rrE(r,O, t) x B(r,O, t) P dtsech 2  = P (4.2.4)

po -- o -- C0O

We have chosen to model our pulse with a sech envelope because this allows Eq.

(4.2.1) to satisfy the Maxwell equations in the paraxial wave approximation for o >> 1.

As shown in [40], the same cannot be said for other choices of pulse shapes. In particular,

using a Gaussian pulse exp(- (f + kzi )2 /fo2 ), instead of sech((f + kz )/fo ), would cause

Eq. (1) to violate the Maxwell equations at large values of (f + kz,) (i.e. at the tails of the

pulse). However, as will be seen in the next section, we are able to reproduce the results

of [28] - which used a Gaussian pulse - with our model, showing that the former

approach does not suffer much in accuracy in the parameter space of [28]. This is because

the electrodynamics for most cases in [28] is primarily influenced by fields close to the

pulse peak, where both Gaussian and sech representations are accurate.

Following the convention of [28], we define the pulse duration r to be the single-

sided exp(-1) duration of the pulse:

r = LOsech -1(exp(-)). (4.2.5)

Eq. (4.2.1) thus uniquely defines a pulsed radially-polarized laser beam after we

specify six parameters: carrier wavelength A, carrier phase constant yo , beam waist

radius wo , initial pulse position zi, peak power P and pulse duration r . The pulse



and parameter 4e are then fixed

respectively.

The electrodynamics of an electron in an electromagnetic field, ignoring radiative

reaction, is described by the Newton-Lorentz equation of motion

(4.2.6)dp - d (tni) -- eg + x X )
dt dt

where r, #, z in the variables of Eq. (4.2.6) now denote the coordinates of the electron's

position, m is the rest mass of the electron, e the absolute value of its charge, P its

momentum, ij its velocity and y 1/ 1- $62 is the Lorentz factor, with #3 1 and

/ iIc. The total energy and kinetic energy of the electron are given by E, = ync 2 and

EK = (y - )mc 2 respectively.

-.. c

Pulse

t =0

z)
j z(O)

- Focusing Envelope

Electron v(O)

Fig. 4.2.1. Schematic of simulations at initial time. The electron begins in field-free
vacuum.

We consider an electron initially ( t = 0 ) on the beam axis ( r = 0 ) of the laser at

z = z(O) (Fig. 4.2.1), moving in the longitudinal direction with velocity i(0) = v(O). The

electron may be initially at rest (v(O)=0) or moving (v(O)>0; we do not consider

v(O) < 0). The former case is the subject of Section 4.2.3, whereas the latter is the subject

of Section 4.2.4. In all cases, we are interested in the net energy the electron extracts from

by equations (4.2.4) and (4.2.5)energy Ep,,,



the laser field as the pulse propagates from a position (effectively) infinitely far behind

the electron to a position (effectively) infinitely far in front of the electron. We do not

limit the interaction distance by use of any additional optics. We also confine our

attention to forward scattering cases (i.e. the electron's final velocity is in the direction of

pulse propagation + z).

Setting r = 0 in Eq. (1), we have E = E 2 and B = 0, where

E z sin -kz +2tan 1  -+ sechakzzi (4.2.7)
+(z/zo2 xo

Eq. (4.2.7) may be seen as the product of three parts: the field amplitude, given by the

square bracketed factor, which is a Lorentzian in z; the continuous wave (CW) carrier,

given by the sin(.) factor; and the pulse envelope, given by the sech(-) factor. The sign of

Ez is determined exclusively by that of the CW carrier. If the CW carrier is positive,

meaning its argument is between 0 and ;r radians, an electron traveling in the + z

direction is in a decelerating cycle and loses energy to the field. If the CW carrier is

negative, meaning its argument is between z and 2z radians, an electron traveling in

the + z direction is in an accelerating cycle and gains energy from the field. An on-axis

electron with no initial transverse velocity component is confined to move along the

beam axis (so ii(t) = v(t)2 Vt, r(t) =0 Vt). Simplifying (4.2.6), we obtain the equations

d l eE v cd. (4.2.8)
dt r 3mc dt

Eq. (4.2.8) may be solved numerically for the electron's speed, and hence its energy,

at any time. To do so, however, we must first specify the laser field (by specifying A,



/O, wO, zi, P and r ) as well as the electron's initial position z(O) and speed v(O). As

mentioned, we always set z, such that the pulse effectively begins infinitely far behind

the electron. In addition, we fix A =0.8pm throughout the paper, leaving us with a total

of six dimensions over which to study or optimize the problem. Although we fix 2, our

results may be readily scaled to obtain the results for any A by nature of Eqs. (4.2.7) and

(4.2.8), as we see in the next sub-section.

If we let T = ct, g = z / zo (with ;, = z, / zo ) and x =_kzo = 2(nw / A) 2 , and apply

Eq. (4.2.7), Eq. (4.2.8) may be cast in the form

dT6 e
dT 73 mc2

sin(T -- 1g + 2 tan (g)+ yo ech , - ;
1+;2 sx nx P: n (1 r

For given values of K and 0, Eq. (4.2.9) is completely independent of central

wavelength A . The results for any A may thus be obtained from the results for

A = 0.8wn by an appropriate scaling of beam waist wo and pulse duration 'r . Note that

K determines the ratio wo/A and ;0 determines the number of cycles in the pulse

envelope, regardless of 2. The scaling in t and z does not affect the maximum energy

gain, only the optimal z,.

By substituting Eqs. (4.2.1) and (4.2.2) into Eq. (4.2.6) and applying p = r / w along

with the previous normalizations, it is straightforward to generalize our conclusion and

see that for given values of K and ., the electrodynamic equations are independent of

2 even for the most general case where the electron is not necessarily on the beam axis.

The acceleration of an (on-axis or otherwise) electron in infinite vacuum by a pulsed

dTg
dT

(4.2.9)



radially-polarized laser beam thus depends on 2 only through K and f%. An important

consequence of this is that for a given peak power P, a larger pulse energy is required

for exactly the same maximum acceleration at a larger 2 if focusing (wo /2) remains

constant, because the number of carrier cycles in the pulse envelope must also remain

constant, leading to a longer pulse.

The Gouy phase shift term 2tan1 (z/zo) in the argument of the CW carrier in Eq.

(4.2.7) prevents any particle from remaining in a single cycle indefinitely. As a result, the

energy that an electron can gain from a pulsed radially-polarized laser beam has a

theoretical limit AEU that may be computed by considering an electron that

(unrealistically) remains at the pulse peak and in one accelerating cycle from the focus to

infinity (or from - z0 to z0 , which gives the same result, just with a different Y/0 ), as

was done in [28]:

e/z 8 inP 8a'9ZZ F70P PAEH = d z O si( 2 t [GeV] (4.2.10)
"" -1+ (z/zo) 2 F [PW

where P/[PW] refers to the laser peak power in petawatts. We will find it convenient to

normalize our energy gain results by AEs afterwards.

We solve Eq. (4.2.8) numerically via the Adams-Bashforth-Moulton method (ode]13

of Matlab). In every case, we ensure that the pulse begins so far behind the electron that

the latter is initially not affected by the laser field. By this we mean that any fluctuation in

the electron's energy is at first (for at least a few tens of picoseconds) below an arbitrarily

small value. We also terminate our simulations only after the electron's energy has



reached a steady state (equivalently, after electron position z has become so large that

the Lorentzian field amplitude of Eq. (4.2.7) is negligibly small).

As discussed, Eq. (4.2.1) satisfies the Maxwell equations only for sufficiently large

beam waists and pulse widths. To ensure the validity of our simulations, the smallest

waist and pulse duration we consider are respectively wo = 2pn and C = 7.5 fs , after the

fashion of Fortin et. al. [28] and based on findings by Varin et. al. [31] that corrections to

the paraxial radially-polarized laser beam are small or negligible for beam waists no

smaller than wo = 2pLm. For z > 7.5fs, g0 > 10, which at least approximately satisfies

the requirement that e >> 1.

4.3. Direct acceleration of an initially stationary electron

In [28], Fortin et. al. studied the case of a pulsed radially-polarized laser beam

incident on an electron that was initially stationary at the laser focus. The authors

concluded that, for the range of laser peak powers and pulse durations studied, the

optimal laser focusing is in general not the tightest. This conclusion, however, is true

only for electrons required to start at the laser focus (i.e. z(0) = 0 ). Given P , z and w0

in general, z(O) = 0 (or even slightly less than 0, as the authors suggest) is not the

optimal initial position. We find after optimizing over V/I - wo - z(O) space that the optimal

focusing is in fact the tightest.

In Fig. 4.3.1, we plot the maximum energy gain and optimal beam waist computed by

optimizing over V/0 - w0 space for z(0) = 0 (as in [28]). In Fig. 4.3.1(a), we also plot the

maximum energy gain computed by optimizing over V/0 - w - z(0) space for wo 2 tm

(giving optimal wo =2 ptm). Our results for z(0) = 0 are clearly in good agreement with



those in [28] (slight differences may be attributed to our use of a different pulse shape).

We see that a substantial increase in maximum energy gain occurs after including the

z(0) dimension in the optimization space. In fact, 15 fs and 20 fs pulses can

approximately give us the energy gain that for z(O) = 0 is achievable only with 7.5 fs and

10 fs pulses respectively.

20
Laser Peak Power [PW]

Fig. 4.3.1. (a)
power P from

Maximum
0.1 to 40

energy gain and (b)
PW for various r .

corresponding optimal beam waist vs.
All solid lines correspond to z(0) =0 .

Dashed lines correspond to optimal z(0) for wo =2 pm (optimal waist). All cases shown

correspond to forward scattering of the electron.
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Fig. 4.3.2. Maximum energy gain vs. normalized z(0) for P = 1 PW, r = 10 fs and

various w0 . All cases shown correspond to forward scattering of the electron.

To illustrate how z(0) = 0 is not optimal in general, the energy gain (maximized over

/O space) as a function of z(0) normalized by zo for a 1 PW, 10 fs pulse is plotted for

.............. ...-- ... .......... ...... ..... .... .........



various waists in Fig. 4.3.2. As can be seen, the optimal z(O) approaches the focus as wo

increases for given P and r , but in general may be quite a distance behind the focus.

E

(9

C:

0
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Laser Peak Power [PW]

102 101 100
Laser Peak Power [PW]

Fig. 4.3.3. (a) Normalized maximum energy gain and (b) corresponding normalized
optimal initial position vs. P from 5 TW to 40 PW for various wo and T . All cases shown

correspond to forward scattering of the electron. Cases of very non-relativistic final
kinetic energy are not plotted to reduce clutter.

We would like to evaluate the power scaling characteristics for various r and wo,

extending our region of study to include laser peak powers as low as 5 TW. The results of

optimization over y/O - z(0) space are shown in Fig. 4.3.3. To improve readability, we

.............. I ., ...................



have normalized the electron's maximum energy gain at each P by the gain limit AEsim

(Eq. (10)), and the electron's optimal initial position by the Rayleigh range zO. Note that

the wo =2 ptm plots in Fig. 4.3.3(a) are just normalized versions of the dashed lines in

Fig. 4.3.1(a). From Fig. 4.3.3, we observe the following trends:

a) Given r and w0 , a threshold power Ph exists such that negligible energy gain is

obtained for P < Ph * Ph is approximately independent of r and is approximated

by the condition used in [28] to find the threshold w0 for given P with z(0) = 0:

a0  e 8LOPh (4.2.11)
mcazo i

where ao is simply the normalized field amplitude of E at the focus. As

discussed in [28], Eq. (4.2.11) is motivated by the observation made in

ponderomotive acceleration studies (e.g. [17]) that ao >!1 is required to access the

relativistic regime of laser-electron interaction (except that for ponderomotive

acceleration, ao is computed with the transverse rather than longitudinal field

amplitude). For wo =2, 4, 6, 8, 10, 12 gim, Eq. (4.2.11) gives Ph =4.163x 10-3,

2 16.661x 10- , 3.372x 10- , 1.066, 2.602, 5.396 PW (4 sig. fig.) respectively, which

by Fig. 4.3.3(a) are estimates accurate to well within an order of magnitude.

b) Given r and wo , energy gain (whether in MeV or normalized by AEm )

increases with increasing P. That the normalized gain asymptotically approaches

a constant value tells us that at P >> Ph , the energy gain in MeV is approximately



proportional to -'5fP, a behavior that has been noted for the z(O) =0 case studied

in [28].

c) Given wo and P, energy gain increases with increasing r up to an optimal r

and decreases as r increases further. As the given P decreases toward Ph this

optimal r increases, showing that longer pulses are favored at lower powers. A

close-up of Fig. 4.3.3(a) with energy gain in MeV is shown in Fig. 4.3.4 to

illustrate this. The conclusion of [28] that a shorter pulse leads to greater net

acceleration is thus not generally true.

d) Given r and P , energy gain decreases with increasing wo . As far as we can

determine in the paraxial wave approximation, the optimal focusing for direct

electron acceleration is the tightest.

e) Given r and wo , the optimal initial position becomes more negative with

increasing P for the vast majority of cases, especially where P>> Ph, in Fig.

4.3.3(b). At P ~ Ph , the optimal initial position is close to the focus and may

even be slightly positive. For P >> Pth the optimal initial position is negative and

approximately proportional to 4P, as we have ascertained by curve-fitting.

f) Given wo and P , the optimal initial position becomes more negative with

increasing - for the vast majority of cases, especially where P >> Pth , in Fig.

4.3.3(b).

g) Given r and P , the optimal initial position normalized by z0 becomes more

negative with decreasing wo.
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Fig. 4.3.4. Close-up of plot of maximum energy gain vs. P for various w0 and r.

One may intuitively expect z(0) = 0 to be the optimal initial position in general

since, after all, the theoretical gain limit AE,1m was computed in Eq. (4.2.10) by assuming

an electron that enters an accelerating cycle at the laser focus and staying in that cycle

forever. However, an electron that starts at rest is bound to slip through a succession of

accelerating and decelerating cycles before entering what is effectively its final

accelerating cycle (that is, the final accelerating cycle that has any significant impact on

its energy) with a velocity that is in general quite different from its initial velocity, so the

relationship between z(O) and the electron's final energy gain is complicated. We also

note that although including the z(0) dimension in the optimization space significantly

increases the electron's energy gain over the z(0) = 0 case, the electron still extracts at

best less than AEUm /2 of energy from the pulse. In [28], it is argued that sub-cycle direct

acceleration can only take place from z > zo to oo, so the energy gain will always be less

than AEHm /2 for initially stationary electrons. We show in the next section that by using

a pre-accelerated electron, we can make the electron enter its final accelerating cycle at a

position z < z0 and extract more than AEbm /2 of energy from the pulse

... ................... ... . ......



4.4. Direct acceleration of a pre-accelerated electron

For convenience we introduce an artificial parameter D that we call the "protracted

collision position" and define as the position where the electron would coincide with the

pulse peak if the electron were to always travel at its initial speed v(O):

v(O) _ c -> D =_____ (4.4.1)

D - z(0) D - z 1 -1#(0)

For the initially stationary electron studied in the previous section, #(0) = 0 so D = z(O)

as expected. For values of D far enough from the laser focus such that the electron

always experiences a negligibly small electric field (resulting in little change in the

electron's velocity from its initial value), D approximates the actual position where

electron and pulse peak coincide, hence our name for it. In general, however, the position

where electron and pulse peak coincide may be very different from D. Although D may

not have much physical significance, it is useful as it allows us to control two variables,

z(0) and zi, simultaneously: After specifying D for a particular simulation, we use Eq.

(4.4.1) and our knowledge of the electric field profile to determine the set of values z(O)

and zi closest to the focus but such that the effect of the electric field on the electron is

initially below an arbitrarily small amount (i.e. the pulse effectively begins infinitely

behind the electron, so the electron effectively begins in field-free vacuum). Simply

setting z, to be an arbitrarily large negative number will of course also produce an

accurate simulation, but the simulation time will be unnecessarily long.

In Figs. 4.4.1 and 4.4.2, we plot the maximum energy gain (normalized by AE 1 ) and

the corresponding optimal D (normalized by zo) vs. P with wo and the electron's initial



kinetic energy EK(0) as parameters. Fig. 4.4.1 and Fig. 4.4.2 correspond to the case of

r =7.5 fs and r = 15 fs respectively. In Fig. 4.4.3, we plot the normalized maximum

energy gain vs. EK (0) with P and wo as parameters for r = 10 fs. The plots in Figs.

4.4.1-2 are obtained by optimizing over V/0 -D space. From these figures, we observe the

following trends:

a) Given r and w0 , Ph decreases with increasing EK (0). Given r and EK (0), Pth

increases with increasing wo. Ph is approximately independent of r , as in the

v(O) = 0 case.

b) Given r , w0 and P , there exists an initial kinetic energy threshold EKth such

that negligible energy gain is obtained for EK (0)< EKth . Given r and wo, EKth

decreases with increasing P. Given z and P, EKh increases with increasing wo.

EKth is approximately independent of r . Although some of these trends are

evident from Fig. 4.4.3, they may all be directly inferred from (a), which tells us

that P, is a strictly decreasing function of EK (0) (given r and wo within the

parameter space studied). Note also that if Pth is a strictly decreasing function of

EK (0), = th if and only if EK (0)= EKth'

c) Given r, w0 and P, energy gain increases with increasing EK(0) at least up to a

certain EK (0) . As can be seen from the wo = 2 pim plot in Fig. 4.4.3(a), the

energy gain starts to fall after a certain EK (0).
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Fig. 4.4.2. Normalized maximum energy gain and corresponding normalized optimal D
vs. P from 5 TW to 40 PW for various wo and EK(0): (a), (b) non-relativistic EK (0);
(c), (d) marginally-relativistic EK (0); and (e), (f) very relativistic EK (0). r=15 fs. All
cases shown correspond to forward scattering of the electron. Cases of very non-
relativistic final kinetic energy are not plotted to reduce clutter.

e) Given EK (0), r and P, energy gain decreases with increasing w0 . Once again,

the optimal focusing for direct electron acceleration is the tightest as far as we can

determine in the paraxial wave approximation.
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f) Given EK (0), r and wo, the energy gain in MeV increases with increasing P.

The energy gain normalized by AE1m also increases with increasing P at non-

relativistic EK (0) , but this is not true in general at relativistic EK (0) , as is

evident from Figs. 4.4.1(e) and 4.4.2(e). Fig 4.4.3 corroborates our conclusion by

showing that the normalized energy gain increases with increasing P for values

of EK (0) up to a few MeV, but ceases to always do so beyond this range. Hence,

although greater energy gain in MeV can always be achieved (for given EK (0),

r and wo ) by increasing P and optimizing parameters, the fraction of the

theoretical energy gain limit extracted may in fact become smaller if EK (0) is

relativistic.

g) At non-relativistic EK (0), D decreases from its value for the v(0) =0 case with

increasing EK (0) . That this decrease is small accords with physical intuition

because relative to the speed of the pulse (c), an electron with non-relativistic

EK (0) is practically stationary so one would expect the optimal D to be very

close to that for the v(O) =0 case. This reasoning, of course, no longer applies at

relativistic EK (0). It is evident from the plots of D in Fig. 4.4.3 that beyond a

certain EK (0) (around 1 MeV) for each plot, the slope of D with respect to

EK (0) is no longer always negative, and D itself may be located up to hundreds

of times the Rayleigh range beyond the laser focus.
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Fig. 4.4.4. Maximum energy gain vs. normalized D for r = 7.5 fs, wo = 2 pm and

EK (0) = 10 MeV for various P . All cases shown correspond to forward scattering of the
electron.
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Fig. 4.4.5. Electron kinetic energy vs. normalized position for P = 17.3 TW, wo =2 pm,

r =7.5 fs, EK (0) =10 MeV, and optimal y/0 and D. Inset "close-up 2" zooms into the

point at which the electron enters its effectively final accelerating cycle.

The discontinuities in Figs. 4.4.1(f) and 4.4.2(f) are due to the existence of multiple

energy gain local maxima in D for certain combinations of EK (0), r , P and wo . The

cause of the discontinuity around P = 0.15 PW for the wo =2 pm case of Fig. 4.4.1(f) is

illustrated in Fig. 4.4.4, which plots energy gain, maximized over V/0 space, as a function

of D. Although each local maxima varies continuously as P increases from 0.14 PW to

0.3 PW, the global maximum jumps at some point from one of the local maxima to the
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other, resulting in the discontinuity in Fig. 4.4.1(f). Similar situations are responsible for

the discontinuities in Fig. 4.4.2(f).

As we have noted, a pre-accelerated electron can gain more than half the theoretical

energy gain limit. It does so by entering its effectively final accelerating cycle within a

Rayleigh range after passing the laser focus. Fig. 4.4.5 shows a plot of kinetic energy vs.

displacement for one of the cases picked from the wo =2 pm, EK (0)= 10 MeV curve in

Fig. 4.4.1. As we can see, the electron coming in from the left enters its effectively final

accelerating cycle with a kinetic energy of a few tens of keV at a displacement of about

z = 0.633 zo < zo , and leaves the interaction region with a final kinetic energy of over 90

MeV. The energy gain of over 80 MeV is clearly more than half the theoretical gain limit,

which in this case (P = 17.3 TW) is about 129 MeV by Eq. (4.2.10).

To give an example of how relatively low-power lasers may be used in a direct

acceleration scheme, we see that for either z = 7.5 fs (Fig. 4.4.1(e)) or r =15 fs (Fig.

4.4.2(e)), a pulsed radially-polarized laser beam of wo = 2 pm and P= 5 TW can

accelerate an electron from an initial kinetic energy of 10 MeV to a final kinetic energy

of about 50 MeV. Eqs. (4.2.4) and (4.2.5) give us pulse energies of about 45 mJ and 90

mJ for the 7.5 fs and 15 fs pulse respectively. This shows that lasers can already be very

useful for electron acceleration at relatively low powers, just that the electrons must be

pre-accelerated (preferably to relativistic speeds) to extract substantial energy from the

laser pulse. Although it appears from our results that a smaller improvement in

normalized energy gain is obtained with a pre-accelerated electron at higher laser powers,

this does not discount the possibility of substantial improvements at these higher powers

if we increase EK (0) to values beyond the range studied.



As another example, we note from Figs. 4.2.5 and 4.4.3 that a two-stage laser

accelerator employing a pulsed radially-polarized laser beam of wo =2 pim, r = 10 fs and

P = 10 TW (giving a pulse energy of about 120 mJ) in each stage can accelerate an

initially stationary electron to a kinetic energy of about 6.3 MeV in the first stage, and

thence to a kinetic energy of about 36 MeV in the second stage. Note that the same pulse

may be used in both stages, since the pulse transfers a negligible fraction of its energy to

the electron in the first stage. Clearly, direct acceleration of electrons to substantial

energies in infinite vacuum can in principle be realized without the use of petawatt peak-

power laser technology. Lasers with peak powers of a few terawatts are already capable

of accelerating electrons to energies of tens of MeV, high enough for applications like the

production of hard X-rays via inverse Compton scattering [33]. In addition, recall that we

have limited our studies to wo 2 gm. If energy gain continues to increase with tighter

focusing for waist radii below 2 gm, it is likely that much more impressive results (at

least in terms of energy gain) may be obtained with lasers focused down to an order of a

wavelength.

Because the electron in Fig. 4.4.5 moves at a relativistic speed for most of its

trajectory, one may mistakenly expect its energy gain to be approximately 0. This is

supported by the egregious approximation that v(t) = c Vt, which enables an analytic

computation of energy gain as (allowing a to be some constant determined by the

particle's location relative to the center of the pulse envelope)

AE = f 'dz(eE,)=f dza e/zo (8r P sin(2 tan1(z/zo)+O )=0 (4.4.2)
-- -- 1+ (z/zo) )2



Our exact numerical simulations reveal that this is not the case. Although the electron is

relativistic for most of its trajectory, the few places at which it becomes non-relativistic

are sufficient to produce an asymmetry that prevents the actual integral of force over

distance from vanishing.

This observation also encourages the hypothesis that the highest EK (0) with which

an electron may be substantially accelerated by a pulsed radially-polarized laser beam is

on the order of the theoretical gain limit AEum , because AEum also represents the

maximum deceleration of a pre-accelerated electron. If EK (0) is relativistic and

EK (0)>> AEim, the laser field can never at any point decelerate the electron to non-

relativistic speeds so v(t) ~ c Vt would be true and Eq. (4.4.2) would hold. This

hypothesis may be extended to any other direct acceleration scheme if a corresponding

AEUM expression may be found for it. The electron's energy gain for a given laser should

thus decrease after some point as EK (0) continues to increase, and become negligible for

EK (0)>> AEuim* This implies that there exists a second set of power and initial kinetic

energy threshold values (i.e.: different from the Ph and EKh predicted by (4.2.11))

observable only at values of EK (0) beyond the range studied given our range of P. This

"second threshold" places an upper bound on EK (0) given P (and continues to place a

lower bound on P given EK (0)) for non-negligible acceleration. In the next chapter, we

see that our hypothesis is correct and that an analytical formula can be derived to

approximate the threshold for net acceleration of an on-axis electron in infinite vacuum

by a radially-polarized beam for any initial electron velocity.



5. Linear Acceleration of Relativistic Electrons In Infinite Vacuum

Under the Lawson-Woodward Theorem

The Lawson-Woodward theorem (see, for instance, [15]), which has caused some

controversy over vacuum electron acceleration schemes [42-47], has often been cited

(e.g.: [15,23,24,43]) to discount the possibility of accelerating relativistic particles by

direct-field interaction (i.e.: purely by a force linear in the electric field) in infinite

vacuum. Simulations [29], however, have shown that an initially-relativistic electron in

unbounded space may gain substantial net energy from its interaction with only the on-

axis longitudinal component of a pulsed radially-polarized beam (even without taking

radiation reaction into account). In this chapter, we derive an analytical expression for the

"direct acceleration boundary", the boundary with which the Lawson-Woodward theorem

divides the parameter space of direct electron acceleration in infinite vacuum into a

region of substantial net energy transfer and a region of negligible net energy transfer. In

the process, we shed light on the physics that enables the existence of the former region

under the Lawson-Woodward theorem, allowing for the possibility of creating laser-

driven particle accelerators that function primarily by linear accelerating forces without

requiring components to terminate the laser field close to the beam focus.

The Lawson-Woodward theorem states that under certain restrictive conditions, no

net electron energy gain is possible using laser fields. These conditions are [15]

1) The region of interaction is infinite,

2) The laser field is in vacuum with no walls or boundaries present,

3) The electron is highly relativistic along the acceleration path

4) No static electric or magnetic fields are present, and



5) Nonlinear effects like ponderomotive forces and radiation reaction forces are

neglected.

The simulations with initially-relativistic particles in Chapter 4 clearly satisfy every

one of these five conditions except for condition (3). If condition (3), too, were satisfied,

we see from (4.4.2) that we indeed have zero net acceleration, in perfect accordance with

the Lawson-Woodward theorem. Fig. 4.4.5, however, tells us that a relativistic particle

that experiencing an acceleration linear in the electric field does not necessarily remain

relativistic throughout its entire trajectory. This breaks the symmetry that causes (4.4.2)

to integrate to 0, allowing for net acceleration.

One would thus postulate that net electron acceleration (neglecting radiation reaction)

in a direct acceleration scheme is contingent upon the electron undergoing at least one

"quarter-cycle relativistic transition", by which we mean a change from a non-relativistic

speed to a relativistic speed or vice versa within one quarter of a cycle, in the course of its

interaction with the laser pulse. For an initially-relativistic particle to undergo net

acceleration, it would then have to decelerate at least once to non-relativistic speeds

before being re-accelerated up to a speed even more relativistic than what it started out

with. This is exactly what happens in Fig. 4.4.5, where the 10 MeV electron is

accelerated to a final energy of over 90 MeV.

We verify our postulate by using it to derive an equation for the boundary dividing

the parameter space of direct electron acceleration by a radially-polarized beam into a

region of substantial net acceleration and a region of insubstantial net acceleration. We

then verify this predicted boundary is correct by super-imposing it over the results of

exact numerical simulations.



In the frame of reference of the on-axis electron at initial time, we have the equation

d(7'#')_ e E,(x=0,y=0,z,t) (5.1)
dt' mc

where Ez (x, y, z, t) is the longitudinal component of the electric field in the laboratory

frame, and x, y, z, t are the coordinates of that frame. (5.1) holds for any electromagnetic

field that completely vanishes on axis except for its Ez component . Throughout this

section, we use primes to indicate variables in the electron's frame. Thus, the Lorentz

transform gives us the relations z = yO(z'+vt') and t = r (t+(v /c2)z'), where v0 = ,fc is

the initial speed of the electron in the +z direction and yo =1 1-#32 'in the laboratory

frame. Since we argue that a relativistic transition is necessary to give net acceleration

and we are interested in computing the threshold at which net acceleration occurs, we

may assume that the electron at this boundary is approximately unperturbed by the laser

field and set z'=0, giving z = rvot and t = yrt. Substituting into (5.1), we find

d(y'#') e 8 0P 1/zo 2sin (7 (1-R#)t'+2tan- 1  + (5.2)
dt' mc 1+(z/ze) 2  ( )+ z O)

where we have neglected the pulse envelope for simplicity (we will see, in fact that the

direct acceleration boundary is independent of pulse duration). Now let z = za be the

location along the beam axis where the particle is most likely to make a relativistic

transition. This would correspond to the location where the amplitude of the 7'#6'

oscillation in (5.2) is largest. We Taylor-expand (5.2) about z = z, to find

d y'#') e 8q0P 1/zo 2sin yO(1-#6 )+l 27ovo/zo 2+constant (5.3)
dt' mc Z 1+(Z /ZO) 2

I+ (Za/Zo) ) _



The oscillation amplitude of y'8' is thus given by

e 8FqP 1/zo 2 Ky(1 -,6)+ 27fv/zo1 (5.4)
mc r 1+(Za/Zo)2 _ 1+(Za/O) 2 _

By inspection, one sees that the oscillation amplitude is maximized at za =0 . Making

this substitution in (5.4) and setting the expression to I (because we can take Yf > 1 as

the definition of a relativistic particle and setting (5.4) to 1 would then correspond to the

smallest change in momentum that constitutes a relativistic transition in one quarter-cycle

of the laser field), we find ourselves with an expression for the threshold power Pth as a

function of the electron's initial speed

/ 2

Pih - 2 Yo-0 ij (5.5)
8%0 e e)

where ed A 7ao . Note that Ph is dependent only on focusing, which is measured by

ed , and the initial speed of the electron. P > Pth must hold for substantial net acceleration.

We now examine (5.5) in the limit $0 -+0, yo - 1, which corresponds to an initially

stationary or highly non-relativistic electron. Under these conditions (5.5) gives

2
=r 2mc 2 1

T 2h= (5.6)
8q0 eEd

which is simply the acceleration threshold for an initially stationary electron [28, 29]. In

the limit of an initially highly-relativistic electron, $0 - l, yo >> 1 and (5.5) becomes

22

Z 2mc r2 (5.7)
8q 0 e



This may simply be recast as e 8 r/P, /r /2 = yOmc 2 = 05AEum , where AEm is the

theoretical gain limit [28, 29] under highly idealized conditions and imposes a ceiling on

the amount of net energy an on-axis electron can possibly gain in a single pass through a

radially-polarized laser beam. (5.7) thus tells us that for an initially highly-relativistic

electron to gain substantial net energy via direct acceleration by a radially-polarized beam,

the initial energy of the electron must be less than a value on the order of the theoretical

gain limit, which makes intuitive sense. (5.7) also confirms the hypothesis made in

Chapter 4 and in [29] that substantial electron acceleration cannot be achieved if the

electron's initial kinetic energy greatly exceeds the laser's theoretical gain limit. Hence,

net acceleration of relativistic electrons by direct acceleration in infinite vacuum is

possible as long as the laser's peak pulse power is high enough relative to the energy of

the electron.

To verify the accuracy of (5.5), we compute the maximum energy gain in P - yo

space, optimizing over V/ - z(O) space at every point, for a given 'r and w0 . Our results

are shown in Fig. 5.1 for various values of w0 .
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Fig. 5.1. Surface plots of log 1 O(Net Energy Gain / Initial KE) for a) wo =8pm , b)

wo = 5gm and c) wo = 2pm. 2= 0.8gm and - = 10fs. Each point has been optimized for

energy gain over y 0 - z(0) space. "KE" stands for kinetic energy. Dash-dotted lines mark

the direct acceleration boundary described by (5.5).
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From Fig. 5.1, we see that (5.5) provides a very good approximation of the boundary

between substantial and negligible net acceleration in the parameter space. For every

value of initial electron energy, there exists a threshold peak laser power below which

negligible net acceleration is obtained. For every value of peak laser power, there exists a

finite range of initial electron energies within which substantial acceleration can occur.

At lower initial peak powers, there is both an upper and lower bound on the initial

electron energies. At higher initial peak powers, the lower bound disappears, allowing for

the acceleration of rest electrons to relativistic energies. With increased focusing, the

direct acceleration boundary expands to include more of the P - yo parameter space. Note

that the boundary at higher values of 7o does not change much with focusing. This is

predicted by (5.7), which is independent of ed (unlike (5.6)).

We may also simulate over P - w0 space for a given value of o to obtain Fig. 5.2.
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Fig. 5.2. Surface plot of log O(Net Energy Gain / Initial KE) . r = Ofs. Initial KE is 100

keV. Each point has been optimized for energy gain over V/0 - z(0) space. "KE" stands

for kinetic energy. Dash-dotted line marks the direct acceleration boundary described by
(5.5).

Fig. 5.2 verifies (5.5) and shows that for substantial acceleration, a low peak power

laser requires a tighter focusing. This makes sense since being able to achieve a quarter-
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cycle relativistic transition, which we have argued is necessary for substantial

acceleration, requires a certain minimum intensity at the laser focus.

To show that the direct acceleration boundary is relatively independent of pulse

duration, we may sweep over r - P space to obtain Fig. 5.3.
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Fig. 5.3. Surface plot of log 10(Net Energy Gain / Initial KE) . A = 0.8ptm and wo = 2m.

Initial KE is 100 keV. Each point has been optimized for energy gain over V/0 - z(0)

space. "KE" stands for kinetic energy. Dash-dotted line marks the direct acceleration
boundary described by (5.5).

Fig. 5.3 shows that the acceleration threshold is relatively independent of pulse

duration, although one can see that the energy gain at higher powers is better with smaller

pulse durations, while the non-relativistic energy gains at powers below the threshold

seem to be optimized at larger pulse durations (this agrees with observations made in

[29]).

We therefore see that the Lawson-Woodward theorem does not preclude substantial

net acceleration of an electron through linear interaction with an electromagnetic field in

unbounded space. There exists a subset of parameters in the parameter space where one

of the conditions of the theorem, namely that the electron remains highly-relativistic

... ......... ........... ........... ..... -



throughout its trajectory, can be broken by the electron undergoing a quarter-cycle

relativistic transition in the course of its interaction with the laser pulse, allowing for net

energy gain. For a radially-polarized laser beam, the boundary for direct on-axis electron

acceleration is given by (5.5). Our calculations, however, may be generalized to any

scheme in which an electron is linearly accelerated by a propagating electromagnetic

wave's longitudinal electric field component (with all other electromagnetic components

absent). Repeating our procedure for a general electrodynamic equation of the form

d (y' Q' )
d__ = A(z) sin(ax - kz + B(z)) (5.8)

dt'

one finds that the direct acceleration boundary is simply approximated by the formula

M ,eoai z =1 (5.9)
(0 (1- po )+ dB(z )/dz'

where the operation M (f (z), z) involves maximizing the function f (z) over z.



6. Two-Color Laser-Driven Direct Acceleration of an Electron in

Infinite Vacuum

In this chapter, we show that a two-color pulsed beam can accelerate an electron by

over 90% of the one-color beam's theoretical gain limit, for a given total energy and pulse

duration. The scheme exploits how the Gouy phase shift will vary the interference pattern

of the on-axis electric field with position along the beam axis. For most cases well above

the threshold power for electron acceleration, maximum acceleration is obtained with an

acceleration-favoring interference of fields only as the electron enters its effectively final

accelerating cycle.

The two-color pulsed beam is the sum of two co-propagating pulsed radially-

polarized laser beams, with central angular frequencies a and 2a), of equal pulse

duration, peak power and Rayleigh range. The electron begins at rest on the beam axis in

field-free vacuum (the pulse begins infinitely far away) and ends moving in field-free

vacuum after the pulse has completely overtaken it (the setup is identical to that in

Chapter 4, with the one-color beam replaced by a two-color beam). On the beam axis all

transverse fields vanish, leaving the longitudinal electric field E,, which is obtained by

summing the E components of two one-color beams:

E L /z0  410P][sin((# +Va+,,+ Yf + sin(2(h +a f + y eh + kzi
1+ (z/z0 )2  nf++0

(6.1)



where = a - kz ; z0 = w/2 /A is the Rayleigh range; k = 2r/A = )/c ; wo is the waist

radius of the fundamental harmonic beam; /g = 2 tan -'(z/z0 ) is the Gouy phase shift;

rq0 ~ 120c Q is the vacuum wave impedance; zi is the pulse's initial position (effectively

- oo ); c is the speed of light in vacuum; 0 Or/sech -'(exp(- 1)), where r is the pulse

duration; W/a and y/, are phase constants; P/2 is the peak power of each pulse; z(O) is

the initial electron position.

(a) yg = -1 (b) yg = n/2

-5 0 5 -5 0 5

(c) y = 0 (d) yg = /2

-5 0 5 -5 0 5

Fig. 6.1. Plots of h a65 [sin({+ yr)+ sin(24 + Vr, )] for various yg .

Our results should closely approximate those for the more general case of a slightly

off-axis, non-relativistic electron, due to the electron confinement property of the

transverse fields [26,27] and the fact that the laser pulse and phase move at or beyond the

speed of light.



Consider the function h - f5sin(# + Yg )+ sin(2 + fg )], to which Eq. (6.1) is

proportional except for a translation in and V/, , plotted in Fig 6.1. The phase YVb in

Eq. (6.1) controls the field pattern produced by interference at each position along the

beam axis. For instance, setting V'b = r would cause the field pattern to evolve, due to

the Gouy phase shift, in the order (c)-(d)-(a)-(b)-(c) as the laser pulse propagates from

z = -00 to - zO, 0, z0 and oo respectively. We also note that of all possible patterns, the

one in Fig 6.1(b) seems to favor electron acceleration most, since its ratio of most

negative to most positive value is largest in magnitude. The position where the Fig 6.1(b)

wave pattern occurs is given by Zb = -zo tan (z/4+y b/2).

We numerically solve the Newton-Lorentz equations of motion using the Adams-

Bashforth-Moulton method (ode]13 of Matlab). Although we set A = 0.8 pm here, our

results are readily scalable to any A since the electrodynamic equations are independent

of A under the normalizations T = aX , g = z / zo (with ; = zi / zo ) and

K = kz, = 2(rw0 /2)2 (as was explicitly shown for the one-color beam in Chapter 4). We

sweep over P -,r - w0 space and optimize over Wa - Vlb - z(0) space for electron energy

gain normalized by the one-color theoretical energy gain limit AEim given by (4.2.10).

As Fig 6.2(a) shows, the two-color beam with peak power P/2 in each beam, and

therefore the same total power as the one-color beam (A = 0.8) with peak power P, can

accelerate an electron by more than 90% of the one-color beam's theoretical gain limit,

whereas the one-color beam can manage less than 40% in the parameter space studied.



0.8---- ---------0.8-

E

8 0.6

0.4

0

0)-2 
0

10 10 10 10
Laser Peak Power [PWI

250

Pulse Duration -.-.--

20 - 075fs -

50 Two-Color One-Color

-- pm1 -m- -2-4 - - 4p

1501

10 10 0
Laser Peak Power [PW]

CC

0

0~

-221011 
01

0 -4-

a.

To -6
E

0

-8-

-10
0.01 0.1 1 10

Laser Peak Power [PW]

Fig. 6.2. Plots of (a) maximum normalized energy gain (b) corresponding optimal y/b (for

two-color case) and (c) corresponding optimal normalized z(O) vs. peak power.

Fig 6.2(b) shows that well above the threshold power, the optimal Y/b lies between

z/2 and 3)/2, i.e. the Fig 6.1(b) wave pattern occurs between z =0 and z = oo, with a
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tendency to be around r (the Fig 6.1(b) wave pattern occurs around z = zo ). This

accords with physical intuition because a) due to the Gouy phase shift the electron can

enter its effectively final accelerating cycle only after z =0 and b) when determining the

best position for the Fig 6.1(b) pattern, one must strike a compromise between the

Lorentzian decay (due to beam divergence) in Eq. (6.1) and the fact that the acceleration-

favoring Fig 6.1(b) pattern will be maintained over a greater distance the further from the

focus it occurs, due to the smaller rate of change with distance of the Gouy phase shift.

Fig 6.2(c) shows that the optimal initial position of the initially-stationary electron for the

two-color beam tends to be slightly more negative than that for the one-color beam with

the same peak power P, pulse duration r and waist radius wo.

We have omitted plots of optimal /, vs. P because they consist of points erratically

scattered between 0 and 2r radians, with no discernible pattern as a function of P. This

apparently erratic behavior arises from the fact that the optimal V, varies rapidly over a

small interval in P, and this rapidly-varying pattern can be captured only with

simulations of a very high density that are too expensive in terms of simulation time for

the method we use here. In practice, one will have to seek the optimal V, manually

during an experiment or run a simulation specially for that case, given all other optimal

conditions from our analysis.
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Fig. 6.3. Variation of kinetic energy with electron displacement of an electron hit by a

pulse. In each case, wo =2 p m and r = 10 fs, with all other parameters optimized.

Crosses on the solid curve indicate the positions where the Fig. 6.4 plots are generated.

Applying the same method by which AEm was formulated for the one-color

beam gives us a theoretical gain limit for the two-color beam: AEumTc = 21/2 AE1m (given

P ). This may lead one to expect a two-color beam of total power P and a one-color

beam of power 2P to be comparable in electron acceleration capability. However, the

former in fact significantly outperforms the latter for P well above the electron

acceleration threshold. As Fig 6.3 shows, an electron in a 0.1 PW one-color beam slips

through several accelerating and decelerating cycles, gaining and losing substantial

amounts of energy, before finally entering its effectively final accelerating cycle. When

the one-color beam is intensified to 0.2 PW (and optimum conditions re-computed), the

final electron energy increases, but so have the heights of the intermediate energy peaks,

which reduce net acceleration in this case by pushing back the position where the electron

enters its final accelerating cycle. The two-color beam scheme achieves smaller



intermediate peaks by varying the laser's interference pattern to increasingly favor

acceleration as the electron moves forward past the focus (Fig 6.4), adopting the

acceleration-favoring Fig 6.1(b) pattern only as the electron enters its effectively final

accelerating cycle, instead of maintaining the same peak accelerating field at every

position as the one-color beam does.
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Fig. 6.4. Ez profile of laser pulse at selected positions of the electron's trajectory for the

two-color P =0.1 PW case in Fig. 6.3. Circles at z = z, indicate the electron's position.

(a), (b), (c) and (d) correspond respectively to the crosses in Fig. 6.3 from left to right.

Note that our scheme is fundamentally different from vacuum beat wave acceleration

[14,15], which also uses a superposition of co-propagating laser beams, but which

accelerates electrons by the beat wave arising from the - ei x B (ponderomotive force)

term in the Lorentz force equation F = -e( + x B), whereas our scheme accelerates

electrons by the - eE term, using the Gouy phase shift to vary the overall interference

pattern with position along the axis.
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7. Conclusion

In this thesis, I have reviewed the theory of laser wakefield acceleration and self-

focusing of the driver beam in the plasma. In particular, I have shown that the theory of

[36] also predicts the existence of higher-order plasma modes, an observation which was

not made in [36]. I have studied ponderomotive acceleration in infinite vacuum and

shown that the transverse scattering angle of the accelerated electron may be kept small

with a proper choice of parameters. I have analyzed the direct acceleration of an electron

in infinite vacuum by a pulsed radially-polarized laser beam, consequently demonstrating

the possibility of accelerating an initially-relativistic electron in vacuum without the use

of ponderomotive forces or any optical devices to terminate the laser field. I have also

reconciled the phenomenon of direct acceleration of a relativistic electron in infinite

vacuum with the well-known Lawson-Woodward theorem by showing how the space of

laser and electron parameters contains a regime where the Lawson-Woodward theorem

allows the electron to gain net energy. I also derive an analytical formula for the

boundary of this regime. Finally, I have proposed and analyzed a direct electron

acceleration scheme that uses a superposition of two pulsed radially-polarized laser

beams an octave apart in carrier frequency. This two-color scheme exploits the Gouy

phase shift to achieve electron acceleration exceeding 90% of the one-color theoretical

energy gain limit, over twice of what is possible with a one-color pulsed beam of equal

total energy and pulse duration.

Because direct acceleration of electrons in infinite vacuum by a radially-polarized

laser beam benefits from the low radiative losses of direct acceleration, the absence of

limits on laser field intensity and electron confinement to the vicinity of the beam axis,



this scheme is a promising candidate for the efficient production of x-rays via inverse

Compton Scattering. Future work includes studies on electron beam emittance and energy

spread in the vacuum-based schemes explored in this thesis, optimization of accelerated

electron bunches for inverse Compton Scattering and the effect of radiation reaction on

electron beams accelerated by the linear and ponderomotive forces of laser pulses in

infinite vacuum.



Bibliography

1. V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc,

"Principles and applications of compact laser-plasma accelerators," Nat. Phys.

4(6), 447-453 (2008).

2. J. Badziak, "Laser-driven generation of fast particles," Opto-Electron. Rev. 15, 1-

12 (2007).

3. D. Strickland, and G. Mourou, "Compression of amplified chirped optical

pulses," Opt. Commun. 56(3), 219-221 (1985).

4. M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S.

Herman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V.

Yanovsky, "Petawatt laser pulses," Opt. Lett. 24(3), 160-162 (1999).

5. S. V. Bulanov, T. Esirkepov, and T. Tajima, "Light intensification towards the

Schwinger limit," Phys. Rev. Lett. 91(8), 085001 (2003).

6. E. Esarey, C. B. Schroeder, and W. P. Leemans, "Physics of laser-driven plasma-

based electron accelerators," Rev. Mod. Phys. 81(3), 1229-1285 (2009).

7. Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, "Relativistic high-

power laser-matter interactions," Phys. Rep. 427(2-3), 41-155 (2006).

8. A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C.Joshi,

V.Malka, C. B. Darrow, C.Danson, D. Neely & F. N. Walsh, " Electron

acceleration from the breaking of relativistic plasma waves", Nature 377, 606-608

(1995).

9. C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D.

Bruhwiler, C. Nieter, J. Cary and W. P. Leemans, "High-quality electron beams



from a laser wakefield accelerator using plasma-channel guiding," Nature 431,

538-541 (2004).

10. S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A.

E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A.

Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B.

R. Walton and K. Krushelnick, "Monoenergetic beams of relativistic electrons

from intense laser-plasma interactions," Nature 431, 535-538 (2004)

11. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P.

Rousseau, F. Burgy and V. Malka, "A laser-plasma accelerator producing

monoenergetic electron beams," Nature 431, 541-544 (2004).

12. E. D. Courant, C. Pellegrini and W. Zakowicz, "High-energy inverse free-

electron-laser accelerator," Phys. Rev. A 32, 2813-2823 (1985).

13. W. D. Kimura, A. van Steenbergen, M. Babzien, I. Ben-Zvi, L. P. Campbell, D. B.

Cline, C. E. Dilley, J. C. Gallardo, S. C. Gottschalk, P. He, K. P. Kusche, Y. Liu,

R. H. Pantell, I. V. Pogorelsky, D. C. Quimby, J. Skaritka, L. C. Steinhauer and V.

Yakimenko, "First Staging of Two Laser Accelerators," Phys. Rev. Lett. 86,

4041-4043 (2001).

14. H. Hora, "Particle acceleration by superposition of frequency-controlled laser

pulses," Nature 333, 337 (1988).

15. E. Esarey, P. Sprangle, and J. Krall, "Laser acceleration of electrons in vacuum,"

Phys. Rev. E 52, 5443 (1995).

16. F. V. Hartemann, S. N. Fochs, G. P. Le Sage, N. C. Luhmann Jr., J. G.

Woodworth, M. D. Perry, Y. J. Chen and A. K. Kerman, "Nonlinear



ponderomotive scattering of relativistic electrons by an intense laser field at

focus," Phys. Rev. E 51, 4833 (1995).

17. B. Quesnel and P. Mora, "Theory and simulation of the interaction of ultraintense

laser pulses with electrons in vacuum," Phys. Rev. E 58, 3719 (1998).

18. G. Malka, E. Lefebvre, and J. L. Miquel, "Experimental observation of electrons

accelerated in vacuum to relativistic energies by a high-intensity laser," Phys. Rev.

Lett. 78, 3314 (1997).

19. G. V. Stupakov and M. S. Zolotorev, "Ponderomotive laser acceleration and

focusing in vacuum for generation of attosecond electron bunches," Phys. Rev.

Lett 86, 5274-5277 (2001).

20. P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, N. Cao, A. M. Sessler, E. Esarey

and Y. Nishida, "Vacuum electron acceleration by an intense laser," Appl. Phys.

Lett. 78, 2253 (2001).

21. Y. I. Salamin and C. H. Keitel, "Electron acceleration by a tightly focused laser

beam," Phys. Rev. Lett. 88, 095005 (2002).

22. S. X. Hu and A. F. Starace, "GeV electrons from ultraintense laser interaction

with highly charged ions," Phys. Rev. Lett. 88, 245003 (2002).

23. T. Plettner, R. L. Byer, E. Colby, B. Cowan, C. M. S. Sears, J. E. Spencer and R.

H. Siemann, "Visible-laser acceleration of relativistic electrons in a semi-finite

vacuum," Phys. Rev. Lett. 95, 134801 (2005).

24. Y. C. Huang, D. Zheng, W. M. Tulloch and R. L. Byer, "Proposed structure for a

crossed-laser beam, GeV per meter gradient, vacuum electron linear accelerator,"

Appl. Phys. Lett. 68, 753-755 (1996).



25. M. 0. Scully and M. S. Zubairy, "Simple laser accelerator: Optics and particle

dynamics," Phys. Rev. A 44, 2656 (1991).

26. Y. I. Salamin, "Electron acceleration from rest in vacuum by an axicon Gaussian

laser beam," Phys. Rev. A 73, 043402 (2006).

27. Y. I. Salamin, "Mono-energetic GeV electrons from ionization in a radially-

polarized laser beam ," Opt. Lett. 32, 90-92 (2007).

28. P.-L. Fortin, M. Pich6, and C. Varin, "Direct-field electron acceleration with

ultrafast radially-polarized laser beams: Scaling laws and optimization," J. Phys.

B: At. Mol. Opt. Phys. 43 025401 (2010).

29. L.J. Wong and F. X. Kartner, "Direct acceleration of an electron in infinite

vacuum by a pulsed radially-polarized laser beam," Opt. Express 18, 25035-

25051 (2010).

30. L. J. Wong and F. X. Kartner, "Two-color-laser-driven direct electron

acceleration in infinite vacuum," Opt. Lett. 36, 957-959 (2011).

31. C. Varin, M. Pich6, and M. A. Porras, "Acceleration of electrons from rest to GeV

energies by ultrashort transverse magnetic laser pulses in free space," Phys. Rev.

E 71, 026603 (2005).

32. A. Karmakar and A. Pukhov, "Collimated attosecond GeV electron bunches from

ionization of high-Z material by radially polarized ultra-relativistic laser pulses,"

Laser Part. Beams 25, 371-377 (2007).

33. W. S. Graves, W. Brown, F. X. Kartner, D. E. Moncton, "MIT inverse Compton

source concept," Nucl. Instr. and Meth. A 608, S103-S105 (2009).



34. P. Sprangle, E. Esarey, J. Krall, and G. Joyce, "Propagation and guiding of intense

laser pulses in plasmas," Phys. Rev. Lett. 69, 2200-2203 (1992).

35. A. Pukhov and Meyer-ter-Vehn, J. "Laser wake field acceleration: the highly non-

linear broken-wave regime," Appl. Phys. B 74, 355-361 (2002)

36. G.-Z. Sun, E. Ott, Y. C. Lee and P. Guzdar, "Self-focusing of short intense pulses

in plasmas," Phys. Fluids 30, 526-532 (1986).

37. T. Kurki-Suonio, P. J. Morrison, and T. Tajima, " Self-focusing of an optical

beam in a plasma," Phys. Rev. A 40, 3230-3239 (1989)

38. P. Sprangle, E. Esarey and A. Ting, "Nonlinear interaction of intense laser pulses

in plasmas," Phys. Rev. A 41( 8), pp. 4463-69 (1990).

39. C. G. R. Geddes, E. Cormier-Michel, E. Esarey, C. B. Schroeder, P. Mullowney,

K. Paul, J. R. Cary, and W. P. Leemans, "Laser-Plasma Wakefield Acceleration

with Higher Order Laser Modes," AIP Conf. Proc. 1299, 197 (2010).

40. K. T. MacDonald, "Gaussian laser beams with radial polarization" (2000).

http://puhep1.princeton.edu/-mcdonald/examples/axicon.pdf

41. E, Esarey and M. Pilloff, "Trapping and acceleration in nonlinear plasma waves,"

Phys. Plasmas 2, 1432-1436 (1995).

42. C. M. Haaland, "Laser electron acceleration in vacuum," Opt. Comm. 114, 280-

284 (1995).

43. P Sprangle, E. Esarey, J. Krall and A. Ting, "Vacuum laser acceleration," Opt.

Comm. 124, 69-73 (1996).

44. C. M. Haaland, "Response to comments on laser electron acceleration in

vacuum," Opt. Comm. 124, 74-78 (1996).



45. A. L. Troha, J. R. Van Meter, E. C. Landahl, R. M. Alvis, Z. A. Unterberg, K. Li,

N. C. Luhmann, Jr., A. K. Kerman and F. V. Hartemann, "Vacuum electron

acceleration by coherent dipole radiation," Phys. Rev. E 60(1), 926-934 (1999).

46. J. X. Wang, W. Scheid, M. Hoelss and Y. K. Ho, "Comment on 'Vacuum electron

acceleration by coherent dipole radiation'," Phys. Rev. E 65, 028501 (2002).

47. A. L. Troha and F. V. Hartemann, "Reply to 'Comment on "Vacuum electron

acceleration by coherent dipole radiation"'," Phys. Rev. E 65, 028502 (2002).


