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Abstract

On-chip networks have emerged as a scalable and high-bandwidth communication
fabric in many-core processor chips. However, the energy consumption of these net-
works is becoming comparable to that of computation cores, making further scaling
of core counts difficult.

This thesis makes several contributions to low-swing signaling circuit design for
the energy efficient on-chip networks in two separate projects: on-chip networks opti-
mized for one-to-many multicasts and broadcasts, and link designs that allow on-chip
networks to approach an ideal interconnection fabric. A low-swing crossbar switch,
which is based on tri-state Reduced-Swing Drivers (RSDs), is presented for the first
project. Measurement results of its test chip fabricated in 45nm SOI CMOS show
that the tri-state RSD-based crossbar enables 55% power savings as compared to
an equivalent full-swing crossbar and link. Also, the measurement results show that
the proposed crossbar allows the broadcast-optimized on-chip networks using a sin-
gle pipeline stage for physical data transmission to operate at 21% higher data rate,
when compared with the full-swing networks. For the second project, two clockless
low-swing repeaters, a Self-Resetting Logic Repeater (SRLR) and a Voltage-Locked
Repeater (VLR), have been proposed and analyzed in simulation only. They both re-
quire no reference clock, differential signaling, and bias current. Such digital-intensive
properties enable them to approach energy and delay performance of a point-to-point
interconnect of variable lengths. Simulated in 45nm SOI CMOS, the 10mm SRLR
featured with high energy efficiency consumes 338fJ/b at 5.4Gb/s/ch while the 10mm
VLR raises its data rate up to 16.OGb/s/ch with 427fJ/b.
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Chapter 1

Introduction

1.1 Motivation

The ever-increasing energy consumption and shrinking returns of complex uniproces-

sor architectures have led to the advent of many-core processor chips. With a saving

in design and verification time enabled by the modular design of many-core chips,

this many-core architecture trend is becoming more popular [1]. Moreover, driven by

a growing number of transistors available at each new technology, current hardware

roadmaps call for doubling the number of on-chip computation cores approximately

every two years [2]. If this trend materializes, in at most a decade and a half, we may

reach one thousand on-chip cores.

As on-chip core counts increase, designing scalable on-chip interconnection fabrics

has been an essential research field. Recently, packet-switched on-chip networks are in

the spotlight as the solution of the scalable and high-bandwidth communication fabric,

replacing nonscalable buses and crossbar switches in many-core processors. MIT's

RAW [3], UT Austin's TRIP [4], Intel's TeraFLOPS [5], Tilera's TILE64 [6], and

Intel's 48-core IA-32 [7] have adopted these packet-switched on-chip networks. The

Intel's TeraFLOPS is shown in Figure 1-1 as an example of the many-core processor

that employs such on-chip networks.

Unfortunately, the power consumption of these on-chip networks becomes a major

concern in many-core processor design. For instance, 36% and 39% of total chip
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Figure 1-1: Intel 80-core TeraFLOP, 65mm CMOS, 5GHz

power are consumed by the network in MIT's Raw [3] and Intel's TeraFLOPS [5],

respectively. Therefore, for further scaling of on-chip core counts along with the

current processor design trend, more energy efficient on-chip networks will be required.

1.2 Packet-Switched On-Chip Networks

On-chip networks, as a subset of a broader class of interconnection networks, facili-

tate data communication between processor components such as a computation core,

cache, and memory controller. The best way to design such networks is the use of

dedicated wires. However, since it is impossible to have the vast amount of wiring

required to directly connect all components as the number of processor components

increase, many-core processors have to share and multiplex communications on wires.

Bus-based networks, which can be viewed as the simplest variation of on-chip

networks, scale only to a small number of processor components [1]. The limited

scalability is because bus traffic quickly reaches saturation as components counts

.... ...... .............. .... ....
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Figure 1-2: Packet-switched on-chip networks.

increase. Plus, the arbitration delay of the centralized arbiter increases as more

components are added to the bus. Even though crossbars alleviate the bandwidth

limit of the buses, they also suffer from poor scalability in terms of area and energy

consumption.

On the other hand, packet-switched on-chip networks provide scalable bandwidth

at relatively low latency overhead that correlates sub-linearly with the number of pro-

cessor components in the networks [1]. As a result, packet-switched on-chip networks

are fast replacing buses and crossbars in many-core processor chips. Such on-chip net-

works shown in Figure 1-2 have routers at every node, connected to neighbor nodes

with local on-chip wiring. The router is composed of four main blocks: buffers, allo-

cation logics, crossbar switches, and links. The buffers are responsible for storing flits

throughout their duration in the router. This is in contrast to a processor pipeline

that latches instructions in buffers between each pipeline stage. The allocation logic

determines which flits are selected to proceed to the next stage. The crossbar switches



physically move flits from the input port to the output port, while the links play a

role in the flits' physical transfer to the next router.

The primary contributors to power consumption of on-chip networks are links

(39% in RAW, 31% in TRIPS, 17% in TeraFLOPS), crossbar switches (30% in RAW,

33% in TRIPS, 15% in TeraFLOPS), and buffers (31% in RAW, 35% in TRIPS,

22% in TeraFLOPS) [3] [4] [5]. Since links and crossbar switches are responsible for

actual data transmission, they form the unavoidable component of network power.

Furthermore, this datapath power will increase in percentage relative to control and

storage circuitry power as process technology scales down [8]. Thus, it is necessary

to reduce power consumption of the links and crossbar switches for attaining energy

efficient on-chip networks.

1.3 Previous Work on Low-Swing Signaling

Low-swing signaling is now one well-known low-power design technique in both on-

chip and off-chip interface circuits. In on-chip domain, the low-swing signaling will

be considered as a natural choice for future on-chip communication fabrics since the

wire performance benefit from CMOS process scaling does not keep up with the gate

performance benefit.

The low-swing technique is based on the dependence of dynamic energy on swing

voltage. Reducing the voltage swing across data path leads to reduced charging

and discharging of the wire capacitance in comparison with the full-swing signaling,

thereby making on-chip communication fabrics more energy-efficient and faster. Par-

ticularly, under the circumstance where it is hardly possible to reduce length of wires

and their fanout by using advanced processes or architectures, the low-swing signaling

is the best design technique toward getting energy efficient on-chip networks. More

details of on-chip low-swing signaling are discussed in [8] [9].

Apart from conventional low-swing circuits which use a second lower supply volt-

age and inherent threshold voltage drop introduced in [8] [9], there have been a number

of more sophisticated circuits proposed, based on linear-mode drive transistors [10]



[11], charge sharing [12] [13] [14], cut-off drivers [8] [15] [16], and channel attenuation

[17] [18] [19].

Low-swing drivers exploiting the linear-mode drive transistors [10] [11] are com-

posed of PMOS pullups and pulldowns only (or NMOS pullups and pulldowns only)

to obtain lower linear drive resistance even at small Vds. Such designs provide much

shorter propagation delay as compared to the low-swing signaling which is generated

by simply lowering supply voltage, but they require an additional dedicated power

supply. Even though the charge sharing-based low-swing drivers [12] [13] [14] limit

voltage swing without the second power supply, they need some particular data pat-

terns for reliable operation. The voltage swing of low-swing signaling circuits based

on the cut-off drivers [8] [15] [16] is directly affected by threshold voltage variation of

drivers or sensing circuits, thereby making the receiver design harder. Along with the

inherent channel loss caused by RC-dominant on-chip wires, pre-emphasis techniques

such as equalization [17] [18] [19] can also be employed to generate low-swing sig-

naling. These circuits enable both higher bandwidth and lower energy consumption

especially in long wires, but it is practically impossible to utilize them as links in

the packet-switched on-chip networks due to their huge area overhead. For example,

the 10mm 1-bit driver of [19] occupies 1760um. Moreover, typical 2D-mesh on-chip

networks are likely to need parallel links covering just 1-2mm instead of direct 10mm

wiring links [5], thereby limiting their feasible applications in such on-chip networks.

1.4 Thesis Contributions

As discussed in the previous section, existing low-swing techniques are some distance

from the packet-switched on-chip networks which are increasingly prevalent in many-

core processor chips. In addition, in order to efficiently support state-of-the-art cache

coherence protocols and enable on-chip networks to approach ideal communication

fabrics, the network requirements are now changing. This thesis focuses on filling

such a gap between the architectural requirements of on-chip networks and low-swing

signaling circuit design. More specifically, this work explores low-swing signaling



circuits for two separate projects: on-chip networks optimized for one-to-many mul-

ticasts and broadcasts, and link designs that enable energy and delay performance of

a point-to-point interconnect of variable lengths.

Chapter 2 presents the broadcast-optimized, low-swing signaling-based on-chip

networks in response to the state-of-the-art cache coherence protocols which highly

depend on broadcasts and multicasts. A multicast buffer bypassing flow control

reduces buffer power along the control path while a broadcast-optimized low-swing

crossbar switch reduces interconnect energy in the data path. The multicast buffer

bypassing flow control design is done by Tushar Krishna. The energy efficiency of the

proposed low-swing data path is proven with measurement results of the test chip

fabricated in 45nm SOI CMOS.

In Chapter 3, two clockless low-swing repeaters, which exploit different mecha-

nisms to avoid Inter-Symbol Interference (ISI), are presented for the energy-efficient,

asynchronous link designs. With the aid of a multi-hop buffer bypassing flow con-

trol, the proposed low-swing repeaters will enable reconfigurable on-chip networks to

approach an ideal communication fabric. The concept and energy efficiency of the

clockless low-swing repeaters are analyzed and compared with other kinds of asyn-

chronous on-chip interconnects in 45nm SOI CMOS Process Design Kit (PDK).



Chapter 2

Low-Swing Broadcast-Optimized

On-Chip Networks

2.1 Broadcast-based Cache Coherence Protocols

From the perspective of computer architecture, designing on-chip networks optimized

for a cache coherence protocol is critical for many-core processors to achieve peak

efficiency in energy, latency, and throughput performance. The cache coherence pro-

tocol is a protocol which maintains the consistency between all the caches in a system

of distributed shared memory. An extreme case of such protocol designs is a full-bit

directory-based protocol where the data being shared is placed in a common directory

that maintains the coherence between caches. Such a protocol minimizes bandwidth

demand of the on-chip networks at the cost of substantial storage overhead per block

to manage many individual cores and caches. The other end of the spectrum belongs

to snooping protocols. These designs do not require any directory storage, but instead

broadcast all requests and invalidates, thus increasing substantial bandwidth demand

of the networks. Most of recently proposed cache coherence protocols [20] [21] [22]

[23] [24] [25] lie between such two extremes, to better balance the network bandwidth

and coherence state storage. These designs exploit coarser directory state than the

full-bit directory-based ones, and count on a combination of broadcasts, multicasts,

and direct requests to maintain cache coherence. Accordingly, it is essential to de-



sign on-chip networks that efficiently provide broadcasts and dense multicasts for the

support of such advanced cache coherence protocols.

2.2 Broadcast-optimized Router Microarchitecture

In response to demands for the efficient broadcast support discussed in the previous

section, this work presents low-swing signaling-based, broadcast-optimized on-chip

networks. The proposed on-chip networks features (1) multicast buffer bypassing

flow control, (2) a broadcast-optimized crossbar switch, and (3) low-swing signaling

in the data path. This section covers first two of them, and in the following section,

details of the last feature will be discussed.

2.2.1 Multicast Buffer Bypassing Flow Control

This work is done by T. Krishna and will be briefly discussed.

Each router in packet-switched on-chip networks has its own buffers to avoid

collision of flits wishing to use the same output links. The presence of such buffers,

however, makes the networks far away from an ideal communication fabric which

would incur only point-to-point wire delay and energy between source and destination

core. Even though previous studies tried to mitigate this problem with physical

express links [26] or flow control schemes [27] [28], they all work only for unicast flits.

To the best of my knowledge, the bypassing scheme presented here is the first flow

control that enables multicast flits to speculatively bypass the buffering pipeline stage

at routers.

The proposed flow control sends lookahead signals a cycle before actual data, to

pre-allocate a crossbar at intermediate routers like the unicast bypassing schemes [27]

[28]. However, the lookahead signals carry more information such as multiple output

port requests and multiple destinations than unicast flits do. Also, the multicast

bypassing flow control generate multiple lookahead signals, one corresponding to each

output port out of which the flit forks. To maximize bypassing efficiency, output

port requests of the incoming lookahead signals are prioritized over the requests of
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Figure 2-1: Proposed router microarchitecture.

other flits buffered at the same input port. When the lookahead wins all of its

output ports, the intermediate router sets up the bypass control signals that allow

the flit to connect directly to the crossbar and link, instead of getting buffered. Then,

the incoming flit forks out in a single cycle, using the broadcast-optimized crossbar

switch which will be described in the next subsection. The multicast bypassing flow

control also supports partially successful allocation by the lookahead, in which case

the incoming flit uses the bypass path and gets buffered simultaneously. The overall

router microarchitecture is shown in Figure 2-1.

2.2.2 Broadcast-optimized Crossbar Switch

Broadcast on-chip networks add the ability for routers to fork the same flit out of

multiple ports. Previous designs do this by reading the same flit out of the input

buffers one-by-one and sending it out of different output ports [29], or by circling flits

within a specific router and sending them one-by-one out of all requisite output ports



[30]. These approaches force broadcast/multicast flits to be queued up more in the

buffers since they go serially out of each of the ports. It increases occupancy time of

each buffer, which in turn increases the number of buffers required in the network to

achieve a target throughput. In addition, they suffer from multiple arbitration cycles

in sending out one particular flit.

These problems could be addressed by forking flits within a crossbar switch. Re-

cent works [31] [32] presumed forking within a crossbar, but but did not propose

how to realize such single-cycle multicast crossbars. Mux-based crossbars, which use

multiple stages of muxes throughout the area of the crossbar to realize all possible

input-to-output connections, has very high loading due to fan-out of each input to

muxes corresponding to each output, thus resulting in high power consumption. Tra-

ditional pass gate-based matrix crossbars also cannot support broadcasts unless huge

energy slack is available. This is because, for the broadcast flits, their input drivers

should be over-sized to drive one full horizontal and all vertical wires. A possible

solution to avoid such over-design is the use of adaptive input drivers. It could be

implemented by using a parallel set of minimum-sized drivers, each of which connects

to the input horizontal wire. M of the drivers are turned on when M-multicasts are

requested, thereby providing appropriate current. However, it has propagation delay

that increases with M. This latency degradation becomes worse as the crossbar size

gets bigger.

This thesis proposes a broadcast-optimized crossbar switch based on tri-state

drivers. In this design, input drivers only need to drive the horizontal wires. Each

vertical wire has its own tri-state switch and another driver, and thus it can sup-

port unicasts and all kinds of multicasts without any over kills. The latency of the

tri-state switch-based matrix crossbar is independent of M, and thus faster and more

robust design than the adaptive input driver-based crossbar. Even in terms of energy,

the proposed crossbar shows better performance than the adaptive input driver-based

crossbar, since the capacitances of wires (about 300fJ/mm with minimum width/pitch

in 45nm SOI CMOS) are an order of magnitude higher than those of the transistors

(about 10fJ in 45nm SOI CMOS).
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Figure 2-2: Proposed router pipeline.

Figure 2-2 describes router pipeline reduction effect achieved by the proposed

router microarchitecture. The broadcast-optimized crossbar switch enables 3-cycle

reduction when compared with the baselines [29] [30]. If bypass speculation also

succeeds, the 5-cycle roundtrip can be once more reduced to the 3-cycle roundtrip.

It is noted that this reduced router pipeline allows not only latency improvement

but also energy savings by skipping up to three switch allocation processes and one

buffering at each router.

2.3 Low-Swing Signaling in Data Path

To more aggressively increase energy efficiency of the broadcast-optimized on-chip

networks described as background in the previous section, a low-swing technique has

been applied to the networks. The proposed design employs reduced-swing voltage in

most of its data path, from cross points of a crossbar switch to link receivers (RXs).



Tri-state RSD

Figure 2-3: 64 bits 5x5 tri-state RSD-based crossbar switch.

2.3.1 Tri-state RSD-based Crossbar Switch

The proposed low-swing crossbar switch is shown in Figure 2-3. The tri-state switch

and vertical wire driver, which are discussed in the Section 2.2.2, have been combined

into one tri-state Reduced-Swing Driver (RSD) by stacking pass gates between VDD

and Low VDD power supply rails. At the cost of the extra supply voltage, this stacked

circuit design shown in Figure 2-4 has several benefits over the existing RSDs [8] [9]

[12] [13] [14] [15] [16] [17] [18] [19].

First, the stacked transistors reduce off-state leakage current that is one of the

major design concerns in an advanced CMOS process technology. Furthermore, when

the passgate transistors are replaced with high threshold voltage transistors, the tri-

state RSD includes an inherent power gating circuit. Spectre simulations in 45nm

SOI CMOS show that the tri-state RSD has 18.7x smaller off-state leakage current

when compared with a separate passgate switch and RSD.

Secondly, the proposed circuit, which can be viewed as the linear-mode drive

transistor-based RSD type categorized in the Section 1.3, provides much bigger charg-

ing and discharging current than other RSD types such as the charge sharing-based

RSDs [12] [13] [14] and cut-off drivers [8] [15] [16]. This property allows on-chip

--- - -_ -______ -_ ..... .. ........ ......
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Figure 2-4: Tri-state Reduced-Swing Driver (RSD).

networks to enjoy another benefit of low-swing signaling, latency performance im-

provement. The tri-state RSD substantially reduces interconnect wires' delay caused

by large load capacitance and resistance, enabling flits to traverse both the crossbar

switch and link within a single cycle even at an aggressive clock frequency. Therefore,

the 3-cycle roundtrip shown in Figure 2-2 has now been reduced to 2-cycle roundtrip.

The comparison with a synthesized full-swing data path and the maximum frequency

that allows the single cycle for both ST and LT will be presented later in the Sec-

tion 2.5.

Thirdly, the combined RSD allows voltage swing to be reduced from cross points

of the crossbar switch to link RXs, not from link TXs to link RXs, maximizing

benefits of low-swing signaling. When the area of a crossbar switch increases, or the

length of links decreases, this benefit gets larger. Consequently, the proposed design

that employs low-swing signaling from the cross points will reap more benefits in a

future CMOS process since the core-to-core distance in many-core processors becomes
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Figure 2-5: Tri-state RSD-based crossbar swtich waveforms.

shorter as the process scales down.

Fourth, this design allows single transistor passgates to operate normally in SOI

CMOS process where such passgates do not work due to the parasitic bipolar effect

[33]. This is because one end of the passgate is directly connected to the 1mm-long

wire that has large load capacitance. In such a design, the bipolar leakage exerts

little effect on link functionality. Figure 2-5, which is an example of the tri-state

RSD-based crossbar switch waveforms simulated with an extracted netlist in 45nm

SOI CMOS PDK, shows proper functionality of the single transistor passgates.

The last benefit I would like to emphasize is that its simpler design and more

reliable character than pre-emphasis drivers [17] [18] [19], which generate low-swing

signaling by channel attenuation, may allow it to be integrated into the CAD synthesis

flow, along with elaborate floor plan and routing. To explore such potential, a low-

swing crossbar synthesis project based on the tri-state RSDs is now being led by

another student, Chia-Hsin Owen Chen, as an extension of this work.

. ... .... ..........



2.3.2 Design Considerations

The main concern of designing low-swing signaling circuits is reduced noise margin.

According to [34], most of on-chip interconnect noise is generated by three sources:

(1) crosstalk coupling noise, (2) channel attenuation, and (3) RX offset.

The crosstalk coupling noise comes from neighbor full-swing aggressors such as

computation cores and router logics. The simplest way to reduce this coupling is the

use of shielding wires, and consequently, this work adopts such shielding means. The

physical layout of data and shielding wires will be described in the Section 2.4.

The channel attenuation is also becoming one of the major noise sources in on-chip

wires as CMOS process scales down. It is especially critical when driving long and

narrow wires due to their large parasitic resistance. Pre-emphasis techniques such

as equalization [17] [18] [19] have been proposed to cancel out the channel loss, but

they all suffer from huge area overhead and wire variation vulnerability. Fortunately,

since the length of links is just 1mm in this work, such channel attenuation is easily

compensated at the cost of a little over-sizing in RSD design. It is another merit

of 2D mesh topologies. Two eye diagrams shown in Figure 2-6 reveals the channel

attenuation noise caused by 1mm-wire resistance variation.

The last major noise source, RX offset, is the most crucial factor in the proposed

design. Monte-Carlo simulations in 45nm SOI CMOS and 90nm bulk CMOS show

that 3-sigma offset of traditional sense amplifiers [9] to be about 120mV and 90mV,

respectively. To lower these RX offset voltages, compensation techniques [35] [36] [37]

can be used at the expense of design complexity. However, this work employs con-

ventional sense amplifiers without such offset compensation techniques for simplicity.

Details of voltage swing decision for balance between energy efficiency and reliability

will be discussed with measurement results in Section 2.5.

Another design issue of the tri-state RSD is synchronization between an enable

signal and data signal. Even though these two signals are simultaneously generated

by router pipeline, the enable signal needs to pass through several big drivers while

the data signal arrives earlier. This is because, in matrix crossbar switches, the
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data signal drives only its corresponding 1-bit crossbar while the enable signal has to

drive all of 64 1-bit crossbars. This mismatch causes the imbalance between charging

and discharging time on link wires with some sequences such as data=010... and

enable=011..., thus increasing inter-symbol interference (ISI). To avoid such ISI, a

delay cell consisting of four minimum inverters has been added in the input signal

path. The effect of the delay cell is shown in Figure 2-7.

Apart from an extra supply voltage demand, the tri-state RSD-based crossbar

switch requires a relatively large area budget. As shown in Figure 2-8, the proposed

crossbar switch occupies 26% of overall router area while the SWIFT [38] crossbar

takes 20% of its router. This is because the tri-state RSD-based crossbar houses its

RSD at every cross point, whereas traditional passgate crossbars described in the

Section 2.2.2 have their drivers only at the link TXs. In the case of a 5x5 crossbar

without u-turn, the tri-state RSD-based crossbar has 20 RSDs, and on the other

hand, the passgate crossbars have 5 drivers. However, the passgate crossbars cannot

be directly applied to some advanced fabrication processes like SOI CMOS where

the single transistor passgate no longer works [331. Therefore, design decision of low-

swing crossbars should be made out of consideration for various design metrics such

as crossbar size (64bits or 128bits), input port counts (5x5 or 6x6), area budget, and

fabrication process.

2.4 Test Chip fabrication

To explore the energy efficiency and performance of the proposed on-chip networks,

a proof-of-concept chip has been fabricated in 45nm SOI CMOS. Figure 2-8 shows its

die photograph overlaid with a layout to outline the regions of each design blocks.

The test chip includes 16 routers on 4x4 mesh network topology. Each router has

its own Network Interface Circuit (NIC) that houses a traffic injector and a traffic

receiver. The traffic injector generates uniform random traffic by using a Pseudo

Random Bit Sequence (PRBS) and receives arbitrary injection rate information via

a scan chain from an off-chip interface. Data flits carry their generation time in the
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Figure 2-9: Differential signaling wire model with full shielding.
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data field for the latency calculation. The traffic receiver accepts incoming flits and

computes both the number of accepted packets and total packet latency.

In addition to the network, the test chip contains a stand-alone 64-bit crossbar

switch connected to 1mm-wire links and 2mm-wire links. Since the length of links

in the network is much shorter than 1mm due to area limitation, it is necessary to

test the stand-alone crossbar to explore the impact of low-swing signaling on actual

many-core processors whose core-to-core distance is 1mm or 2mm.

Figure 2-9 shows wire model diagram used as links in both the 4x4 networks and

stand-alone crossbar switch. As mentioned in the Section 2.3.2, this work employs

full shielding wires to minimize crosstalk coupling noise. To create RC-dominant wire

channel, the values of 0.15um and 0.30um are selected as the wire width and space,

respectively.

To reduce cost of high-speed I/Os, all configurations are setup by slow I/Os only

except the reference clock. Data read and write operations of the scan chain are done

through the slow I/Os. Also, an on-chip clock generator is implemented with a Voltage

Control Oscillator (VCO) in case the high-frequency external clock is contaminated

by parasitic inductance of bonding wires.

2.5 Measurement Results

This section proves the energy efficiency of the proposed low-swing data path with

experiment results. Figure 2-11 and Figure 2-12 show energy comparison between

full-swing and low-swing signaling on 1mm link and 2mm link, respectively. The low-

swing signaling was generated by the tri-state RSD described in Section 2.3.1 and

the equivalent full-swing driver was designed with the same maximum data rate as

the low-swing data path. Equation 2.3 shows the energy calculation equation used in

Figure 2-11 and Figure 2-12. In this equation, only two terms, IVDD and ILVDD, are

measured from the test chip. IVDD is the total current drawn from nominal power

supply (1.OV), and ILVDD is the current sinking to the second supply voltage (0.75V).

Figure 2-10 shows details of the power measurement circuit diagram.
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Etotai Efull-swing path+ Eiow-swing path (2.1)
1 1

Ifull-swing x VDD x - + Ilow-swing x (VDD - LVDD) x - (2.2)
f ~fI

= {(IVDD - ILVDD) x VDD + ILVDD X (VDD - LVDD)} x - (2.3)

The 1mm 250mV tri-state RSD-based link enables 58% - 64% energy reduction and

the 2mm link shows 66% - 71% energy savings when compared with their equivalent

1V full-swing links. The measured TX energy efficiency is almost the same (within

5%) as the simulated efficiency, but the measured RX energy efficiency is 7% - 15%

higher than the simulation results due to the nonideal clock duty ratio. Since energy

benefits of low-swing signaling come from reduction in dynamic power of link wires,

the 2mm low-swing link show higher energy efficiency than the 1mm low-swing link.

On the other hand, the 1mm link shows 1.9x higher bandwidth than the 2mm link with

the identical tri-state RSD design. This is because both wire parasitic capacitance

and resistance of 2mm wires are two times bigger than them of 1mm wires, resulting

in 4 times larger RC time constant. To increase the bandwidth of the 2mm link, a

bigger tri-state RSD will be required at the cost of energy and area.

Measurement results show that the tri-state RSD-based crossbar switch enables

51% - 58% energy savings as compared to an equivalent full-swing data path. Since

additional power is dissipated to drive gate capacitors of RSDs even in non-activated

cross points, the energy efficiency of the low-swing crossbar is about 10% lower than

the RSD-based links. It can be seen that such 10% energy overhead is the expense of

reduced latency in router data traversal pipeline stages. As discussed in Section 2.3,

the tri-state RSDs located at cross points allow low-swing data path to be longer than

the design where RSDs are housed at link TXs, thereby resulting in the combined

ST and LT at aggressive data rate. The test chip experiment shows the proposed

low-swing crossbar allows the combined ST and 1mm-LT to operate at 3.8GHz clock

frequency. This data rate is 21% higher than the 1V full-swing driver optimized for

energy-delay product.
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Figure 2-13: Tri-state RSD energy measurement with various voltage swings.

Figure 2-13 shows energy efficiency characteristics with variations of voltage swing.

It is noted that low-swing signaling energy benefits are not too high when the voltage

swing goes down to 160-24OmV level. This is because the fixed link RX energy

becomes dominant as the link TX energy gets smaller. Considering the voltage swing

which endures 3-o- sense amplifier offset is about 210mV, it is concluded that the

250mV voltage swing is the best design choice for balance between energy efficiency

and reliability.

Figure 2-14 shows power measurement results of the tri-state RSD-based 5x5 cross-

bar switch with changes in multicast counts: a unicast, 2 multicast, 3 multicast, and

broadcast. At 3.8GHz clock frequency, the crossbar sense amplifiers (RXs) consume

48uW regardless of multicast counts. On the other hand, the tri-state RSDs (TXs)

power dissipation linearly increases as the number of multicasts increases. Actually,

the slope of the TX power linear curve is much bigger than the measured slope. Due

to a design mistake on the test support circuit where other 4 input ports are in a

I



200 -

175 -

150 -

125-

100-

75-

50-

25-

0-

I II

RX Power
TX Power

1 2 3
Crossbar Multicast Counts

Figure 2-14: 3.8GHz ibit 5x5 crossbar switch energy measurement.

floating state, such high impedance inputs oscillate under the influence of coupling

with the activated input port. As a result, the measured TX power consumption

shows fixed offset regardless of multicast counts. Fortunately, this problem will not

appear at the 4x4 network side since all the input ports in the network are connected

to static flip-flops allowing the input ports to always stay in a low impedance state.
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Chapter 3

Clockless Low-Swing Repeaters

This chapter explores low-swing link designs that enable energy and delay perfor-

mance of a point-to-point interconnect of variable lengths. With the support of a

multiple-hop buffer bypassing flow control, such links will make on-chip networks

approach an ideal communication fabric.

3.1 Motivation for Clockless Low-Swing Signaling

An ideal communication fabric would incur only dynamic energy and delay of wires

between the source and destination core. But dedicated global point-to-point wires

between all nodes do not scale [39], and hence, the networks that multiplex and share

wires are widely accepted to be the way forward.

If existing low-swing signaling circuits [8] [9] [12] [13] [14] [15] [16], which employ

a reference clock to convert low-swing signal to full-swing signal at their receivers

(RXs), are applied to such networks, they cannot make the best use of low-swing

benefits on both energy and latency. This is because the intermediate routers, which

just play a role as a multiplexer, waste many clock cycles and energy to convert low-

swing signal to full-swing signal at all the data traversal pipeline stages. To easily

understand this disadvantage, consider an example of the 9x9 regular mesh on-chip

networks in Figure 3-1 (a) with the assumption that some flits travel only between

selected 11 nodes shown in Figure 3-1 (b). When the clocked low-swing circuits
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Figure 3-1: (a) 9x9 regular mesh on-chip network (b) 11-node irregular mesh on-chip
network.

are used for the flits that travel from node A to B, it takes 11 cycles, instead of

3, consuming unnecessary energy at every intermediate router. On the other hand,

clockless repeaters may take 3 cycles if the data transmission on the repeater scheme

is fast enough.

To eliminate such overhead and move toward to the ideal communication fabric, we

propose applying low-swing signaling to repeater insertion. Considering the built-in

shared wires and multiplexers for the packet-switched on-chip networks, the low-swing

application to the repeater system could be viewed as a natural choice. This is because

the pre-emphasis technique [17] [18] [19], an alternative to cancel out Low Pass Filter

(LPF) characteristic of the channel, requires different driver sizes, receiver designs,

and even bias current as wire length changes, thereby resulting in poor scalability.

However, it is unclear how to design such low-swing repeaters that can achieve

high energy efficiency and fast transmission without the reference clock, at a small

footprint. Channel attenuation caused by RC-dominant on-chip wires cannot be

directly used for generating low-swing signaling due to inter-symbol interference (ISI)

described in Figure 3-2. In order to avoid the ISI, the low-swing repeaters should

. ........................ ........... ... . .......... .
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Figure 3-2: Inter-Symbol Interference (ISI) caused by channel loss.

provide some mechanism to maintain the input voltage of the repeater cell within

a certain level. At the same time, such input voltage has to be energy-efficiently

repeated without a clock.

This thesis proposes two separate low-swing repeater designs that satisfy such

requirements of the clockless low-swing signaling. At the first design named Self-

Resetting Logic Repeater (SRLR), the input voltage of repeater cells is reset to zero

as soon as the repeaters cell recognize the input logic value. In other words, data

are transmitted by voltage-limited pulses. On the other hand, at the second design

named Voltage-Locked Repeater (VLR), the input voltage is maintained near the

RX threshold voltage by feedback circuits and keeper transistors. As shown in the

following sections, both of the proposed low-swing repeaters provide high speed on-

chip communication without a reference clock, achieving energy and delay of a single

point-to-point link of variable hop counts. Moreover, they feature digital-intensive

properties, requiring no differential signaling and bias current. This characteristic

provides higher wire density and potential for being integrated into the CAD synthesis

flow.
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Figure 3-3: Generic view of Self-Resetting Logic (SRL).

3.2 Self-Resetting Logic Repeater (SRLR)

3.2.1 Introduction to Self-Resetting Logic

Self-Resetting Logic (SRL) provides a design solution where clocking overhead is

minimized. Figure 3-3 shows a generic view of such a SRL gate. A pull-down network

receives n input data pulses, and an output provides a pulse if the pull-down logic

becomes TRUE. The reset signal is implemented as two separate pulses, Reset Low

(RL) and Reset High (RH). RL signal is used to reset the input stage, while RH is

used to reset the output stage after the output data has been propagated.

The basic operation of the SRL gate is as follows. The gate is initially in its

standby state where power consumption is zero. Upon receiving input data, some

switching occurs and an output pulse is generated. After the output pulse has reached

a defined width, and provided that the inputs become inactive, the gate will be reset,

going to its standby state again. Based on how the reset signals, Reset Low (RL) and

Reset High (RH), are generated and used, SRL circuits have been actively studied in

the context of SRAM designs with very short cycle times [40] [41] [42] [43]. However,
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Figure 3-4: Proposed SRLR design (not yet completed).

such SRL concepts have never been applied to the domain of on-chip interconnects

yet.

The best benefit of SRL circuits is zero static current. The SRL gates consume

power only when their output changes. Another benefit of SRL is that node X shown

in Figure 3-3 is a high impedance (floating) state in the standby mode. Indeed, this

property plays a critical role in generating low-swing signaling in repeater systems.

Details will be discussed in the following Section.

3.2.2 Process Variation Robust SRLR Design

Figure 3-4 shows the first phase of process variation robust SRLR design. The input

NMOS (NI) corresponds to the pull-down network in the general SRL gate block

diagram described in Figure 3-3, and Reset Low (RS) signal is locally generated,

requiring no additional control logics. When an pulse arrives at N1, the node X is

discharged and output voltage of the SRLR cell becomes high. The node X is again

charged when a reset signal comes back though a delay cell. Finally, the node X is

in a floating state, generating another pulse at the output. In order to provide an

adequate pulse width without an increase in latency, the delay cell is located in a

resetting feedback path. An example of SRLR waveforms is shown in Figure 3-5 to

. .... . .. ............ .....................
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Figure 3-5: Example of SRLR waveforms.

help such an operation. Since the proposed circuit works with pulses, extra effort

should be devoted to generating such pulses from synchronized data.

The high impedance node X in Figure 3-4 SRLR design is slowly discharged by

the leakage current of the receiver NMOS (NI). For receiver sensitivity, Ni size is

relatively large so that the leakage current of NI is bigger than that of the smallest

keeper PMOS. In other words, an off-state resistance of N1 is smaller than that of the

keeper PMOS. When the node X voltage goes down to the threshold voltage of the IX

inverter by NI leakage current, the SRLR generates a pulse even though there are no

input signals. As a result, SRLR will oscillate with unnecessary energy consumption.

To maintain the node X (or SRLR output) at logic high (or logic low) in the standby

mode, another NMOS (N2) has been added to the reset path. This modification is

shown in Figure 3-6. N2 keeps the node X voltage at VDD-Vth after output pulses

are generated, thereby preventing the node X voltage from being discharged by the

leakage current below the threshold voltage of IX inverter. It is noted that as long as

NI is turned off, the added NMOS (N2) does not cause any static currents. N2 just

provides the amount of charge loss caused by NI leakage current.

..........
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Figure 3-8: Alternatively repeated SRLR with two different pulse widths.

The NMOS keeper transistor (N2) holds the node X voltage at VDD-Vth, instead

of VDD, enabling standby voltage to be lower than the case of a PMOS keeper design.

Monte-Carlo simulations show that the process variation effect of N2 is negligible as

compared to that of NI whose size is much bigger than N2. Consequently, the NMOS

keeper design allows smaller discharging time than the PMOS keeper case with little

increase in process variation effect. To minimize contention with N1, N2 employs a

high threshold voltage transistor (hvt) along with the smallest size.

In order to be repeated with arbitrary hop counts in the on-chip network, every

pulse from different repeater cells should have same width. However, this is practically

impossible in the presence of process variation. An example of such shrinking pulses

is shown in Figure 3-7. Monte-Carlo simulations on a 6Gb/s/ch 10 times-repeated 10-

mm SRLR show this issue causes 22 failures in 273 on-die variation runs. Increasing

voltage swing can lower the failure probability, but it comes at the cost of energy

overhead.

Figure 3-8 describes how to reduce the number of failures without an increase

in voltage swing. Repeater cells with an 8-inverter delay increase their pulse width

while repeater cells with a 4-inverter delay decrease the pulse width. Such a pulse

alternatively repeated with two kinds of repeater cells becomes more stable in the

process variation environment. Monte-Carlo analysis with the same condition as the

circuit in Figure refsrlr2 shows that this simple modification significantly improves

process variation performance, from 22/273 to 5/273 failure probability.
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Figure 3-9: Error-free SRLR design in 3-sigma on-die variation.

The remaining 5 errors in on-die process variation comes from voltage swing de-

viation caused by mismatch between NMOS and PMOS at the final stage drivers

(DRIVER*). These failures occur even when these drivers are over-sized to endure

3-sigma high threshold voltage of the receiver NMOS (NI).

Figure 3-9 shows the completed SRLR circuit that has no failures in 273 on-die

variation runs. The inverter-based driver in the previous design shown in Figure 3-8 is

replaced by a NMOS driver which consists of two NMOS and one small inverter. Un-

like the inverter drivers that charge wire load capacitors with PMOS and discharge

with NMOS, the NMOS drivers charge and discharge the capacitors only through

NMOS. Intuitively, this NMOS driver-based SRLR seems to be more vulnerable to

process variation, since its voltage swing is changed with threshold variation of N3.

Monte-Carlo simulations, interestingly, reveal counter-intuitive results: the NMOS

driver-based SRLR with 290mV-swing brings about no failures in on-die 273 runs

while inverter driver-based SRLR with the same voltage swing causes 5 failures. It

seems to be because even though charging current is affected by N3 variation, dis-

charging current is also varied by N4 with the same tendency as charging current

deviation. Balance of the charging and discharging current is the most important

.. ................. . ...... ...... .. .. .. ........ .. .... . ............



when input data have consecutive ones (data = 1111111) and all the 5 errors come

from these consecutive l's cases. To sum up, when drivers are designed to endure 3-

sigma high threshold voltage of receiver NMOS (Ni), the NMOS driver-based SRLR

shows more stable performance than the inverter driver-based SRLR, resulting in no

errors in 273 on-die variation runs on the 6Gb/s/ch 10-mm wire channel.

However, the proposed SRLR design in Figure 3-9 still suffers from the die-to-die

variation. In general, two techniques have until now been employed to reduce such

die-to-die variation failures: an Adaptive Body Bias (ABB) and Adaptive Supply

Voltage (ASV).

ABB could be the best solution for the process variation robust SRLR design

since the process variation performance of SRLR is mostly limited by one transistor,

receiver NMOS (Ni). ABB can simply lower (or increase) threshold voltage of NI, to

restore functionality (or reduce voltage swing). However, the tuning range of ABB is

limited because of junction leakage current [44]. Above all things, ABB can be applied

only to some limited fabrication processes that provide triple n-wells. Unfortunately,

since this work is based on SOI CMOS process, ABB technique is not able to help

SRLR endure die-to-die variations.

On the other hand, ASV can be applied to almost any kind of fabrication pro-

cesses. The implementation of ASV, however, is more difficult than ABB. In ABB,

once a body voltage reaches the desire level, it experiences only small perturbation

from leakage current. Thus, the power supply for the body bias does not need to be

strong. In contrast, ASV needs to accommodate a large and sudden current with-

drawal from transistors. Hence, ASV usually requires on-chip voltage regulators.

Switched-capacitor DC/DC converters can be used for the energy-efficient on-chip

voltage regulators.

This thesis proposes another design technique to mitigate the die-to-die variation

impact, leaving ABB and ASV applications to SRLR as future work. Figure 3-10

shows the proposed self-calibrating SRLR with a threshold voltage monitor circuit.

In the threshold voltage monitor circuit which consists of current source [45] and the

same transistor as NI, its output voltage (Vref) decreases when threshold voltage
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Figure 3-10: Self-calibrating SRLR with a threshold voltage monitor circuit.



of NI increases. This output voltage is directly applied to a stacked PMOS (P1)

in the current-starved driver to adjust charging current. Even though the equation

of Vref described in [451 is not perfectly applied to SOI CMOS process, the inverse

tendency between threshold voltage of NI and Vref is still valid. Plus, since tail

current generated by the monitoring circuit is tolerant of its PVT variation even in

SOI CMOS, the Vref is stable with respect to PVT variation of the monitoring circuit

itself.

The self-calibrating SRLR can be considered as a background calibration circuit

that provides real-time monitoring ability. Accordingly, the proposed design auto-

matically adjusts voltage swing not only to initial process variation, but also to other

variations such as temperature or aging. More importantly, this self-calibrating SRLR

does not require any post-silicon test cost. On the other hand, this analog-controlled

scheme does not fully cover 3-sigma die-to-die variation due to lack of sensitivity.

Both die-to-die and on-die Monte-Carlo analysis reveals that there are still 4 failures

in 500 runs.

Instead of over-designing SRLR drivers, this work assumes that SRLR employs

Adaptive Supply Voltage (ASV) with a separate power supply rail for its NMOS

drivers to fully cover 3-sigma die-to-die process variation. The separate supply voltage

will be externally controlled by off-chip regulators in the test chip, to conveniently

explore the ASV impact on process variation.

3.3 Voltage-Locked Repeater (VLR)

As discussed in the previous section, a self-resetting technique provides an energy-

efficient means of on-chip communication, requiring no reference clock. Such a pulse-

based data transmission, however, limits its data rate since both charging and dis-

charging should be completed within a single cycle. Even though Spectre simulations

on 45nm SOI CMOS show the SRLR supports up to 6.4Gb/s/ch data rate, it will

decrease as the core-to-core distance gets larger than 1mm or interconnect wires be-

come more narrower in a future fabrication process. Or on-chip networks may need
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Figure 3-11: Proposed VLR without enable switches.

higher bandwidth and much lower latency links at fixed wire density for the Double

Date Rate (DDR) and reconfigurability. To achieve such link requirements on the

built-in shared wires and multiplexers in the packet-switched on-chip networks, this

section introduces another clockless low-swing repeater system named Voltage-Locked

Repeater (VLR). Figure 3-11 shows the proposed VLR circuit design.

Figure 3-12 describes how VLR generates low-swing signaling. To the best of my

knowledge, all the existing low-swing signaling circuits [8] [9] [12] [13] [14] [15] [16] [17]

[18] [19] limit the voltage swing at their TX. VLR, on the other hand, generates low-

swing signaling at RX through a highly-resistive channel. When the node X voltage

exceeds threshold voltage of the first inverter (iX), the logic High signal starts to

travel through the lower feedback path (3X and MN). After the returning signal

turns MN on, the node X is discharged and it is finally locked at some voltage level.

The specific voltage level is determined by wire resistance and on-state resistance of

MN. The logic Low (OV) operation is similar to the logic High (1V) operation. In

this case, the node X voltage is locked by the upper feedback path (3X and MP) and

its value is determined by wire resistance and on-state resistance of MP.

Figure 3-13 shows an example of VLR waveforms. Two keeper transistors, MP and

----___- ..... - - ' - __ __ -- __ __ __ ___7_ _
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Figure 3-12: VLR operation: (a) logic High low-swing generation (b) logic Low low-
swing generation.
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Figure 3-13: Example of VLR waveforms.

MN, allow voltage swing to remain near threshold voltage of the first inverter (iX),

minimizing Inter-Symbol Interference (ISI) caused by channel attenuation. Since both

charging and discharging currents are provided by linear mode transistors whose Vds

stays between 400mV and 600mV, VRL features higher data rate than cut-off drivers

[8] [15] [16] and other linear-mode drivers [10] [11]. Spectre simulations in 45nm SOI

CMOS show that VLR supports up to 15Gb/s/ch data rate on a 10-mm wire channel.

More importantly, VLR features better process variation robustness than SRLR.

Voltage overshoots observed at the low-swing signaling waveform (the second window)

in Figure 3-13 increase a noise margin of VLR. Since such overshoots are generated by

inherent delay to lock the node X voltage, VLR does not require any other additional

circuits to compensate process variation. Monte-Carlo analysis on a 10mm-wire chan-

nel proves that this simple VLR design shown in Figure 3-11 by itself causes no errors

in 273 runs (3-sigma) on-die variation.

However, the VLR-based links suffer from poor energy-efficiency when on-chip

networks' traffic is low. Even though its static current flows along with a very high

Repeater c~Ilp ipt1GbSI

V (1 et
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Repeater cells output without load wires
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Figure 3-14: Zero static current, process variation robust VLR design.

impedance DC path, which consists of highly-resistive channel and the smallest keeper

transistors shown in Figure 3-12, the static current is still 10 times bigger than its

leakage current. To disconnect the DC path when links are idle, activation switches

have been added to the original design. Figure 3-14 shows this modification. The

activation switches add an one-gate delay to each repeater cell, but such a delay will

be canceled out when the modified VLR is embedded into crossbar switches. In other

words, the VLR design shown in Figure 3-14 can be directly applied to low-swing

crossbar switches the way the tri-state RSD discussed in Chapter 2 does.

Finally, to cover on-die process variation, a delay cell has been added to the

feedback path. This increased delay causes bigger overshoots, thereby resulting in a

larger noise margin at the first inverter. It is noted that the increased noise margin

comes at the cost of energy overhead but it is smaller than the energy overhead of

over-sized drivers. This is because the delay cell does not affect the locked voltage

level, leaving static voltage swing unchanged.

The operation of the competed VLR design is shown in Figure 3-15. It is essentially

the same as that of the previous circuit. The only difference is the static DC path

which can be disconnected by two activation gates according to switch allocation

channel
attenuation

.. .... ........ ..
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Figure 3-15: Modified VLR operation: (a) logic High (b) logic Low.
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results. For an application to the packet-switched on-chip networks, it is assumed

that the EN signal comes from a switch allocator and such allocations will be done

before flits start to travel by a multiple-hop buffer bypassing flow control.

3.4 Test Chip Fabrication

To prove the concept of SRLR and VLR in an actual silicon environment, a test chip

has been fabricated in 45nm SOI CMOS process. Other kinds of asynchronous on-

chip interconnects such as full-swing repeaters (FSRs), a comparator-based low-swing

repeater (LSR) [11], and an equalized interconnect [17] are also implemented under

the identical conditions for a fair comparison. Figure 3-16 shows the test chip layout.

Many repeater optimizations have been investigated [46] [47] [48] [49], but they

are hardly practical in packet-switched on-chip networks. This is because the router-

to-router distance is determined not by such data path optimizations but by the size

of computation cores and caches in many-core processors. This work assumes that

the router-to-router distance is 1mm and all repeater systems only employ built-in

shared wires and multiplexers provided by the packet-switched on-chip networks. In

other words, resource-based optimization has been applied to all the repeaters. A

repeated-by-500um full-swing repeater (FSR) is included in the same die for a higher

data rate comparison between full-swing and low-swing signaling.

Figure 3-17 shows a single-ended signaling wire channel used in SRLR, VLR,

and two FSRs. The comparator-based LSR and the equalized interconnect employ

differential signaling as shown in Figure 2-9. To explore the performance of the on-

chip interconnects on a highly-resistive wire channel, the values of 0.14um and 0.16um

are selected as wire width and space, respectively. To the best of my knowledge, this

channel modeling has the highest coupling capacitance and wire resistance among

silicon-proven on-chip interconnect studies [17] [18] [19].



Figure 3-16: Test chip layout: various asynchronous on-chip interconnects.
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Figure 3-17: Single-ended signaling wire model with full shielding.

3.5 Extracted Simulation Results

This section presents simulation results based on extracted netlists of the fabricated

test chip. Energy efficiency numbers (J/bit) were obtained from 60 pseudo-random

inputs and normalized by data rate.

Figure 3-19 shows SRLR energy simulation results with other on-chip intercon-

nects. First, it is noted that the repeated-by-1mm FSR supports 3.6Gb/s/ch data

rate at most due to a highly-resistive wire channel. The comparator-based LSR pro-

vides a little higher data rate, 3.8Gb/s/ch, but its energy efficiency is almost similar

to that of the repeated-by-1mm FSR. In addition, energy becomes significantly larger

as data rate decreases because of the static DC current of the continuous compara-

tors. The proposed SRLR shows better energy efficiency than that of the equalized

interconnect. Such energy benefits come from the pulse-based data transmission and

single-ended signaling of SRLR.

Another merit of SRLR is its constant energy efficiency across a wide range of data

rate. While other kinds of on-chip interconnects reveal their energy optimum points,

SRLR energy numbers essentially stay unchanged. This is because SRLR consumes

energy only during its pulse transmission and the pulse width remains constant even

when data rate varies. As shown in Figure 3-18, both SRLR pulses generated at

5GHz and 1GHz clock frequency have the same width of 75ps, which is determined
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Figure 3-18: SRLR extracted simulation waveforms: (a) 5Gb/s/ch (b) 1Gb/s/ch.
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by a pulse generator regardless of data rate. It is also noted that even equalized

interconnects show a non-monotonic energy efficiency curve with data rate variation

since their pre-emphasis TX and clocked RX have different energy optimum points.

Extracted simulation results on the 10mm VLRs are shown in Figure 3-20. It

is noteworthy that VLR supports up to 16Gb/s/ch data rate on a highly-resistive

wire channel while the repeated-by-500um FSR provides 8.4Gb/s/ch at most. Even

considering nonidealities such as clock jitter, repeater jitter, and power supply fluctu-

ation, VLR will be able to support 10Gb/s/ch Double Date Rate (DDR) with 5GHz

clock by a wide margin. It is also an interesting observation for VLR to obtain the

highest energy efficiency at its maximum data rate. As discussed in Section 3.3,

most of VLR energy is consumed by the on-state DC path consisting of a highly-

resistive wire channel, a smaller keeper transistor, and a driver transistor, resulting

in relatively constant energy consumption. Consequently, the VLR energy numbers

normalized by data rate become smaller as data rate increases.

Other link metrics such as channel characteristic, BER-based functionality, and

eye sensitivity will be measured from the fabricated test chip due to accuracy and

simulation time issues.
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Chapter 4

Conclusion

4.1 Thesis Summary

This thesis concentrates on bridging the gap between architectural requirements of

packet-switched on-chip networks and low-swing signaling circuit design. To be spe-

cific, this work explores low-swing signaling circuits for broadcast-optimized on-chip

networks and link designs which enable energy and delay performance of a point-to-

point interconnect of variable lengths.

In Chapter 1, the packet-switched on-chip networks are briefly introduced and

their power consumption is analyzed to justify low-swing application to those on-

chip networks. Also, existing low-swing signaling circuits are classified into four

types: linear-mode RSDs, charging sharing-based RSDs, cut-off RSDs, and channel

attenuation-based RSDs.

Chapter 2 presents broadcast-optimized, low-swing signaling-based on-chip net-

works to efficiently support advanced cache coherence protocols. First, architectural

design of the proposed networks is introduced to closely explore their requirements.

In response to such requirements, tri-state RSD-based crossbar switch is proposed

and thoroughly investigated. The low-swing crossbar switch features (1) an inher-

ent power gating circuit, (2) higher bandwidth driven by linear-mode RSD, (3) a

longer low-swing signaling data path from crossbar's cross points to link RXs, (4)

SOI-friendly circuit design, and (5) potential to be integrated into the CAD synthesis



flow. Fabricated in 45nm SOI CMOS process, the RSD-based crossbar switch enables

55% power reduction as compared to a full-swing data path. Moreover, the proposed

crossbar allows the broadcast-optimized on-chip networks using a single pipeline stage

for physical data transmission to operate at 21% higher data rate, when compared

with equivalent full-swing networks.

In Chapter 3, an ideal communication fabric is first discussed and link design

requirements of such an interconnection fabric are explored. Based on those require-

ments, two clockless low-swing repeater systems, SRLR and VLR, are proposed and

analyzed. This thesis devotes significant emphasis on achieving process variation ro-

bust designs of SRLR and VLR. The pulse-based SRLR features very high energy

efficiency while the over-driven VLR shows higher data rate than SRLR. Simulated

in 45nm SOI CMOS, the 10mm SRLR consumes 338fJ/b at 5.4Gb/s/ch, whereas the

10mm VLR raises its data rate up to 16.OGb/s/ch with 427fJ/b.

4.2 Future Work

The tri-state RSD-based crossbar switch relies on the second supply voltage to main-

tain pullup and pulldown transistors in linear-mode. Accordingly, an on-chip DC-DC

converter capable of efficiently delivering power at the second supply voltage level will

be required to enable the proposed circuit to be a more integrated subsystem. Also,

since such on-chip power conversion provides digitally-controlled adaptive voltage

swing ability, it can be applied to process variation calibration circuit design.

Process variation aware link design is also an essential research topic. Even though

SRLR and VRL employ some ideas to compensate the variation effect, they are not

able to fully cover 3-sigma on-die and die-to-die process variation due to their single-

ended characteristic. To maintain benefits of the single-ended characteristic such as

higher energy efficiency or wire density, an on-die variation calibration technique will

be needed.

The best application of the clockless low-swing repeaters is reconfigurable on-

chip networks. In those kinds of on-chip networks, network connectivity is changed



according to the system requirements. Accordingly, links in the reconfigurable on-

chip networks should support asynchronous data transmission so that SRLR and

VLR can be directly applied to such networks. In order to reduce architectural

design complexity, the clockless low-swing repeaters will have fixed latency with PVT

variation. It will be another interesting research topic.
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