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Abstract

We address the problem of weakly-supervised relation extraction in hospital discharge
summaries. Sentences with pre-identified concept types (for example: medication, test,
problem, symptom) are labeled with the relationship between the concepts. We present a

novel technique for weakly-supervised bootstrapping of a classifier for this task: Groundtruth
Budgeting. In the case of highly-overlapping, self-similar datasets as is the case with the

2010 i2b2/VA challenge corpus, the performance of classifiers on the minority classes is

often poor. To address this we set aside a random portion of the groundtruth at the be-
ginning of bootstrapping which will be gradually added as the classifier is bootstrapped.
The classifier chooses groundtruth samples to be added by measuring the confidence of its
predictions on them and choosing samples for which it has the least confident predictions.
By adding samples in this fashion, the classifier is able to increase its coverage of the deci-

sion space while not adding too many majority-class examples. We evaluate this approach
on the 2010 i2b2/VA challenge corpus containing of 477 patient discharge summaries and

show that with a training corpus of 349 discharge summaries, budgeting 10% of the corpus
achieves equivalent results to a bootstrapping classifier starting with the entire corpus.

We compare our results to those of other papers published in the proceedings of the 2010
Fourth i2b2/VA Shared-Task and Workshop.
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Chapter 1

Introduction

We address the problem of relation extraction in hospital discharge summaries. Sentences

with pre-identified concept types (for example: medication, test, problem, symptom) are

labeled with the relationship between the concepts. For example, there are five relations

between a treatment and problem:

1. Treatment administered for problem. (TrAP)

2. Treatment causes problem. (TrCP)

3. Treatment improves problem. (TrIP)

4. Treatment not administered because of problem. (TrNAP)

5. Treatment worsens the problem. (TrWP)

6. No relation. (NONE)

Using an NLP-based feature-set described in [23], we build on the work of a fully-

supervised classifier for relation extraction using the 2010 i2b2/VA challenge corpus in an

attempt to find effective weakly-supervised methods for accomplishing the task.

We present a technique for improving performance of weakly-supervised bootstrapping

using noisy and very self-similar datasets. We call our technique 'groundtruth budgeting'.

Groundtruth budgeting offers improved performance over bootstrapping by simulating the

circumstances of active learning. A small portion of the training seed is separated for use

as a budget of new training data annotations. After each round of bootstrapping, the



classifier can request samples from the budgeted group to be revealed based on those

about which it is least confident. This simulates the circumstances of active learning on a

reduced portion of the corpus. In some circumstances, groundtruth budgeting both offers

better performance than bootstrapping and requires a smaller training set.

1.1 Motivation

1.1.1 Annotation Cost

Sibanda [27 show that fully-supervised systems are capable of good performance at rela-

tion extraction on medical text. However, the cost of acquiring the training data for such

a system is quite high.

In the medical domain, training data comes at a serious premium because the only

qualified annotators are nurses and doctors. Deploying fully-supervised systems will not

scale, because the volume of annotations required is prohibitively expensive. We aim to

drastically reduce the implementation cost of relation extraction systems in the medical

domain by developing weakly-supervised or unsupervised approaches to the task.

Weakly-supervised systems make use of a small seed of human-annotated training data

and a broader corpus of un-annotated data to accomplish the learning task. Fortunately

an abundance of unlabeled patient discharge summaries - written records of patient inter-

actions with doctors - are available, as most digital medical records are simply digitally

transcribed versions of written discharge summaries.

1.1.2 Real World Applications

There are a number of real-world applications for a system that can extract relations

from medical data. Medical discharge summaries provide a motivating example of the

utility of such a system. A discharge summary is a written description of a patient's

interaction with doctors in a hospital. Each patient's medical record contains many of

these summaries collected over the patient's lifetime. An example of a sentence from such

a discharge summary appears in Figure 1-1.



A culture taken from the lumbar drain showed Staphylococcus aureus

resistant to the Nafcillin which he was receiving and he was therefore

placed on Vancomycin.

Figure 1-1: An example sentence taken from a discharge summary for a patient.

This sentence indicates that the patient had a Staphylococcus aureus infection, and

the doctor attempted to treat it unsuccessfully with Naf cillin. Finally, Vancomycin was

administered to treat the infection. Humans can easily understand the meaning behind

these summaries because they intuitively grasp the semantic role each word plays with

respect to the other words in the sentence. Relationship extraction is the task of extracting

these relationships that humans can understand intuitively. In this case, the relations that

a human can easily infer are that Naf cillin and Vancomycin are both drugs used to treat

Staphylococcus aureus infections. In this case, the infection had become resistant to

Naf cillin, so the treatment did not work. Furthermore, a lumbar drain is a test that

can be used to check for the presence of Staphylococcus aureus infections.

If a system were able to extract the meaning behind these interactions automatically,

then it would be possible to build a summarizer that could produce a succinct summary

of the various symptoms, problems, medications, and tests that a patient has exhibited,

received, or undergone. Doctors are busy, and are often unable to read a patient's entire

medical history because the salient facts are buried in the text of these dense medical

summaries. A summarizer would allow a doctor to quickly absorb an overview of the

information first, and then get specific details later.

Such a system for relationship extraction could also be used for medical research

purposes. Given patient discharge information from hospitals across the country, the

system could be used to research commonalities between patients afflicted by certain

conditions, to discover contraindications of drugs that were not previously known, or to

provide objective measures of a drug's performance nationwide.

To make such a system practical to implement, it is important to minimize the amount

of human annotation it requires. Groundtruth labels come at a premium in this domain

because the only qualified annotators are doctors and nurses. To this end, it is necessary

that we pursue weakly-supervised approaches to building these systems in order to make



them cost-effective.

1.2 Self-Similarity of Medical Language Corpora

The 2010 i2b2/VA challenge corpus is unique in that it contains mostly medical jargon

and is composed of very similar sentences. In fact, using our set of NLP features and con-

sidering the centroid of every relation cluster in feature space shows the relation clusters

are highly overlapped, with cosine similarities of over 0.9.

Given these similarities, it is difficult to build a model that can achieve good perfor-

mance on all of the classes. Models are often biased towards the majority class. Using

weakly-supervised approaches such as bootstrapping have not yielded significant improve-

ments, and often cause the classifier to quickly diverge in the accuracy of its predictions.

We believe the highly self-similar nature of our corpus to be contributory to this. In

comparison to the fully-supervised system, the performance is worse - particularly the

performance on the minority classes. Consequently the macro F1 score is not as high as

its fully-supervised counterpart.

1.3 Contributions

To address this lack of performance in the minority classes, we present a new tech-

nique called 'groundtruth budgeting'. With this technique, we set aside a portion of the

groundtruth at the beginning of bootstrapping and gradually add it in as the classifier is

bootstrapped. The samples our classifier chooses to be added are the samples on which

it has the lowest confidence in its predictions. Using this technique, we demonstrate

improvements over regular bootstrapping and fully-supervised models with equivalent

amounts of training data.

Additionally, we present the results of a variety of experiments we have conducted in

the exploration of this problem domain. In particular, we have found that our attempts

to diversify the seed of labeled data used in bootstrapping have not produced anything

better than the choice of a random seed. Finally, we compare our results to other recent



relation extraction results from the Proceedings of the 2010 Fourth i2b2/VA Shared-Task

and Workshop.

1.4 Thesis Structure

We begin in Chapter 2 with a description of the problem and the related work we reference.

We follow this in Chapter 3 with a description of the experimental infrastructure we have

designed. In Chapter 4 we describe our experimental methods, experiment parameters,

and our proposed technique, groundtruth budgeting. We present our results in Chapter

5. We follow this with a discussion of our results in Chapter 6, a set of next steps in

Chapter 7, and a summary of our contributions in Chapter 8.
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Chapter 2

Background and Related Work

2.1 Problem Overview

The learning task we address is relation extraction on medical language. The medical

documents we are focusing on are patient discharge summaries provided from two corpora.

A small subset of patient discharge summaries in these corpora have been annotated to

label every concept in the text with an appropriate medical concept.

For example, words that indicate a medication have the semantic concept med. Medical

problems in the text are all tagged problem. The task is to determine the relationship

between the concepts in the medical text.

The medical discharge summary given shown in Figure 1-1 has a number of medical

concepts contained within it. The same discharge summary with each of its concepts

labeled can be found in Figure 2-1.

A culture taken from the lumbar drain showed Staphylococcus aureus
test-1 med-2 prob-3

resistant to the Nafcillin which he was receiving and he was therefore

med-4

placed on Vancomycin.

med-5

Figure 2-1: An example of a sentence from a patient discharge summary with semantic
concepts labeled.

As discussed in @1.1.2, the concepts within Figure 1-1 have a number of relations



between them. The learning task is to build a model that can predict these relations

given a seed of human-annotated training data. The labels for the sentence in Figure 1-1

are listed in Table 2.1.

Relations
Treatment Addresses Problem (TAP) Staphylococcus aureus, Vancomycin

Treatment Does Not Address Problem (TNP) Staphylococcus aureus, Nafcillin
Treatment Addresses Problem (TAP) Staphylococcus aureus, lumbar drain

Test Reveals Problem (TRP) Staphylococcus aureus, culture

Table 2.1: Relations between concepts appearing in Figure 2-1

Our system is capable of taking sentences from discharge summaries and predicting

the relationships that occur between pairs of concepts within its sentences. For each

corpus of discharge summaries, we split each discharge summary into sentences and an-

notate the medical concepts occurring within each sentence. Since we aim to evaluate the

performance on relation extraction, we assume that the concepts are labeled with 100%

accuracy by humans.

2.1.1 The 2010 i2b2/VA Challenge Corpus

Our reference corpus, the 2010 i2b2/VA challenge corpus is a human-annotated corpus of

concept and relation annotations on medical discharge summaries taken from 3 different

hospitals: Beth Israel Deaconess Medical Center, Massachusetts General Hospital, and

the University of Pittsburgh Medical Center. The concept types are outlined in Table

2.1.1 and the relation groups with their corresponding relations are outlined in Table 2.1.1.

The relations and concepts from our training set are taken from a total of 349 hospital

discharge summaries and progress notes and comprise over 30673 lines and 3033 relation

Concept Type Count
Test 7365

Problem 11967
Treatment 8497

Table 2.2: Occurrences of concept types in the 2010 i2b2/VA challenge corpus



Relation Group J Relation Type Count

Problem - Treatment Treatment administered for problem (TrAP) 1423

Problem - Treatment Treatment causes problem (TrCP) 296

Problem - Treatment Treatment improves problem (TrIP) 107

Problem - Treatment Treatment not administered because of problem (TrNAP) 106

Problem - Treatment Treatment worsens problem (TrWP) 56

Problem - Test Test reveals problem (TeRP) 1734

Problem - Test Test causes problem (TeCP) 303

Problem -Problem Problem indicates problem (PIP) 11240

Table 2.3: A list of each relation group, their relations and occurrences in the 2010

i2b2/VA challenge corpus.

annotations. Our gold-standard test data set is taken from 477 discharge summaries and

is composed of 45053 lines with 5142 relations.

2.2 Related Work

Concept extraction in the domain of medical language has been explored by Sibanda et al.

in "Syntactically-Informed Semantic Category Recognizer for Discharge Summaries" [27].

Furthermore, there are production systems such as MedLEE[18] capable of concept ex-

traction within medical text such as these discharge summaries. Due to the significant

body of work in this area, we are not addressing the task of concept extraction in this

domain. Instead, we assume that the concept extraction task has succeeded perfectly on

our corpora and focus our attention on the problem of relation extraction.

There are two main examples of generalized relation extraction in the literature. In

[2], Agichtein and Gravano describe a novel technique for generating patterns in docu-

ments and a system for extracting relations from large collections of documents called

Snowball. Snowball is a weakly-supervised approach that takes a small number of

human-annotated examples and generates patterns based on those which are capable

of locating and extracting relations in a corpus of documents. They build upon the work

of Brin's Dual Iterative Pattern Relation Expansion (DIPRE). [10] While general-purpose,

both Snowball and DIPRE are vulnerable to the generation of invalid patterns, since both



automatically expand their database of patterns based on regular expressions. Zelenko,

et al. [33] explore kernel methods for relation extraction on person-af filiation and

organization-location relations.

The foremost examples of weakly-supervised relation extraction in the literature are

evaluated on the Automatic Content Extraction (ACE) program's Relation Detection and

Characterization (RDC) task. Relevant to our task, Zhang [34] presents multiple boot-

strapping classifiers for relation extraction, SelfBoot, BootBagging, and BootProject

evaluated on the ACE-2 RDC corpus. We use SelfBoot as the basic implementation

of our bootstrapping system. Additionally, the author proposed a maximum entropy-

based confidence metric for multi-class relation extraction. We have implemented this

and compare it to a number of other metrics in §4.4.3.

Others have addressed the task of relation extraction in the field of medical text. For

example, Abulaisha and Deyb[1] have built a relation extraction system for biological rela-

tions using abstracts from MEDLINE, an index of scientific journal articles. In the same

area, Bundschus, et al. [11] implement a relation extraction system using Conditional

Random Fields (CRF) which produces good performance on the extraction of semantic

relations between diseases and treatments in PubMed abstracts. While both of these sys-

tems deal with medical language, the language is well-formatted and grammatical since

it is taken from scientific paper abstracts.

There are few existing attempts to do relation extraction from text in medical discharge

summaries. Medical discharge summaries are often un-grammatical and jargon-rich, mak-

ing them especially hard to use with normal Natural Language Processing (NLP) tech-

niques. Following the 2010 Fourth i2b2/VA Shared-Task and Workshop, there are now

examples of relation extraction attempts on our corpus including a maximum entropy and

bootstrapping approach by de Bruijn, et al. [161. We compare their findings to ours in

Chapter 6.

We build on the work of Uzuner et al. [23] in which they present a semantic relation

(SR) classification system for medical discharge summaries. They show fully-supervised

macro-F scores of 74% to 95% on multiple corpora of pairs of concepts taken from sen-

tences in medical discharge summaries. We extend their work by presenting weakly-



supervised approaches to the same task, but with the 2010 i2b2/VA challenge corpus.

2.2.1 Bootstrapping

We use the bootstrapping method of incorporating a corpus of unlabeled data into a

model based on a small seed of training data. One of the earliest NLP papers to use

bootstrapping is Yarowsky's method [32] of weakly-supervised bootstrapping for word

sense disambiguation (WSD). Using an initial seed of information from the dictionary,

the algorithm records collocations of a word and words contained in each of its dictio-

nary definitions. Then, an unlabeled corpus is used to expand its measurements of the

occurrences of each sense of a word. A log-likelihood test can then be used to measure

the probability of a given sense of the word occurring in a given context.

Another paper we are inspired by is Blum and Mitchell's description of co-training.

[7] In co-training, two classifiers are trained on the same training set. Each classifier

has a different set of features which it extracts from examples. The classifier's feature

sets are formulated such that they offer a complementary picture of the data set. The

classifiers then bootstrap each other by iteratively making predictions on unseen examples

and passing those on to the other classifier. Since each classifier has a different 'view' on

the data in question, they are able to accomplish more than a single bootstrapper on its

own.

Gr and Bengio [19] propose a system for weakly-supervised learning using maximum-

entropy regularization, further motivating the use of max-entropy for the learning task.

Erkan et al. [17] have implemented a bootstrapping system with transductive SVM's

(TSVM) which makes use of both word vectors, edit distance, and cosine similarity in

feature space as features for learning. Others have attempted graph-based weighted, k-

Nearest-Neighbor (kNN), or label propagation (LP) approaches, as in Chen, et al.[12];

however, as we describe in §4.6.3, geometric approaches we attempted have all failed due

to the highly redundant nature of the medical language in our corpus. Finally, Chen, et

al. [13] demonstrate relation extraction using unsupervised clustering methods.



THIS PAGE INTENTIONALLY LEFT BLANK



Chapter 3

System Overview

We extend the work of Dr. Ozlem Uzuner and Tawanda Sibanda in "Semantic Relations

for Problem-Oriented Medical Records" [23]. They present a system that achieves F1 -

measures of 74% to 96%, depending on the relation group. The system makes use of a

variety of lexical, syntactic, and surface features of the training corpus to train a soft-

margin, fully-supervised SVM.

In [23], they present a system called the Category and Relationship Extractor (CARE).

To evaluate and experiment with our weakly-supervised approaches to the same learn-

ing task, we have re-implemented the relation-extraction portion of the CARE system in

Python, using the PyML [6] and libsvm [14] machine learning libraries. PyCARE is a flexible

and modular machine learning system that can be easily configured to evaluate relation-

extraction experiments on large corpora.

We run our system and all of our experiments using PyCARE on modern 64-bit x86 quad-

core machine with four 2.4 gigahertz cores running a GNU/Linux derivative operating

system.

3.1 PyCARE

The PyCARE library, our implementation of the relation-extraction parts of CARE using

Python, PyML, and libsvm, is a modular system made lip of the following components:



1. A number of parsing libraries for each specific corpus file format.

2. A number of tools for cleaning and pre-processing raw discharge summaries.

3. A processing pipeline for sending unlabeled data through knowledge sources such
as the Unified Medical Language System (UMLS).

4. A library of tools for extracting lexical and surface features from sentences in a given
discharge summary.

5. An interface for describing learning experiments to be run by defining the type of
learning tool to use, the corpus to train or test from, and the feature extraction
methods to use.

6. A set of tools for determining the outcomes and statistics of test results.

7. A set of tools for measuring the confidence of classifiers on unlabeled data for use
in bootstrapping.

8. A set of tools for measuring the changes to a corpus as data is added, e.g. semantic
drift tracking tools.

3.2 Pre-processing

For all of our experiments, both labeled and unlabeled corpora must be pre-processed in

order to prepare them for use by the lexical and semantic feature extractors in PyCARE.

The following steps are taken to pre-process our corpora:

OI Sentence-Breaking / Tokenization

l Stemming

O Part-of-Speech Tagging

l Link-Parsing

El UMLS CUI and Relation Identification

3.2.1 Sentence-Breaking / Tokenization

All of the discharge summaries in our corpus were sentence-broken and tokenized by

human annotators. We integrated MetaMap [5] for automated sentence breaking and tok-

enization; however, since our corpus has already been sentence-broken and tokenized, we
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Chest.n x-ray on Monday revealed.v pneumonia.n

Figure 3-1: An example of the output of Daniel Sleator's Link Grammar parser on the
sentence "Chest x-ray on Monday revealed pneumonia." The links indicate relationships
between the connected words in the parse tree.

chose to use the provided annotations in order to reduce noise that automated approaches

introduce.

3.2.2 Stemming

After sentence breaking, the stemmed version of every word in each sentence is fetched

using the National Library of Medicine's lexical toolkit LVG [22].

3.2.3 Part-of-Speech Tagging

The part of speech of every word is determined by using Eric Brill's part-of-speech tagger

[9].

3.2.4 Link Grammar Parsing

Many of our system features make use of Sleator, et al.'s Link Grammar parsing system

[28] for ascertaining a deep-parse of every sentence in our corpora. Therefore, we run the

Link Grammar parser on every sentence as a pre-processing step.

An example of a sentence parsed using the link grammar parser is shown in Figure

3-1. The Link Grammar parser often produces multiple parses for a given sentence. To

resolve these cases we simply take the first result returned by the parser.

3.2.5 UMLS CUI and Relation Identification

Since we have experimented with using Unified Medical Language System (UMLS) rela-

tions as features to our system, another pre-processing step is the determination of all



UMLS concept unique identifiers (CUIs) associated with each concept (e.g. medication,

problem, test) in our corpora. For this, we use MetaMap. Next, to find all the UMLS

relations between CUIs in our corpus, we use a batch Structured Query Language (SQL)

query using the 2010aa version of the UMLS.



Chapter 4

Methods

The main problem with the fully-supervised system presented in [23] is that it relies solely

on labeled data. Labels for medical data are expensive to produce. Unlabeled data, on

the other hand, is in abundance. Therefore a weakly-supervised approach to the task -

one that makes use of both labeled and unlabeled data - is ideal. In order to develop

a feasible approach using this model, we have evaluated a number of relation-extraction

experiments which make use of unlabeled data combined with a small kernel of labeled

data. The unlabeled data we use has 100% accurate concept labelings, since we aim to

isolate and study the performance of relation-extraction only.

4.1 Support Vector Machines

Our system makes heavy use of Vladimir Vapnik's Support Vector Machine (SVM) learn-

ing model. [30] We use the standard soft-margin, linear formulation of the SVM defined

by the following optimization problem:



minimize 1 ||2 C
2

i=1

subject to y(O 2 -i+6) >1- , i ={1,. . ., n}

i>0, i' = { 1, . .. ,n}

This soft-margin formulation of the SVM was given by Cortes and Vapnik in [15]. We

use a simple linear kernel with unity slack cost to avoid over-fit issues.

SVMs are traditionally binary classifiers. However, our system must classify multiple

relations at once. Duan and Keerthi [8] present an empirical study of the benefits and

disadvantages of various SVM multi-class classifier configurations. We use the One vs.

All (OVA) method of training our SVM first proposed by Vapnik in 1995 [30]. To produce

a single classifier for n different classes on a data set L, the OVA formulation of the SVM

trains n SVMs. For each SVM, L is partitioned into those examples that have label i, and

those that do not. SVM i is then trained on that partition of L. When all n SVMs are

trained, then to give a prediction for the OVA classifier, all n SVMs are used to predict the

labels for an unseen example. The example is labeled by the classifier that both positively

identifies the example and for whom the distance to the hyperplane for the example in

feature-space is maximized.

4.2 Lexical and Syntactic Features

The following are the lexical and syntactic features used by the fully-supervised system

described in [23] which we have re-implemented as part of PyCARE.

For any two candidate concepts in the text ci and c2, the following binary features are

applied:

" Existence of concepts occurring between ci and c2 in the text.

E The words occurring between ci and c2 in the text.



l The verbs occurring between ci and c2 in the text.

0 Left and right lexical trigrams of each concept.

l Verbs preceding each concept.

L Verbs following each concept.

l Syntactic paths between the concepts via the Link Grammar Parser. [28]

l Left and right syntactic bigrams connected to each concept via the Link Grammar
Parser.

Each feature that indicates the presence or absence of a word or group of words

augments the feature vector for the ci c2 pair by a number of binary features the size of

the word vocabulary. Any words that are indicated by the feature take a value of 1 in this

array. Since each one of these features expands the total feature space by a magnitude

at least equal to the vocabulary size, the combination of all of these features results in a

feature-space of over one million dimensions.

4.3 Bootstrapping

The core weakly-supervised technique we use is the bootstrapping method. We configure

PyCARE to train an SVM classifier S on a small seed of labeled data L. The size of this

seed is dynamically configurable, as described in §4.4.2. The kernel we use is described

in §4.4.1. Using S, we make predictions on unseen examples taken from a large, pre-

processed, corpus of unlabeled data, U.

In order to evaluate relation extraction on its own, we must have 100% accurate

concept annotations on our unlabeled data. This is not true of the unlabeled corpora

available to us, so in order to facilitate we split the entire corpus of labeled data available

to us into a training set L and an unlabeled (but concept-annotated) set, which we use

as U. All the known relation labels for U are erased prior to running the system. The

split size is a parameter to our system.

Each unlabeled example in U is labeled by S and ranked by S's confidence in the label

it assigns. Since S is a multi-class SVM, there are a variety of different ways to judge the



confidence of the classifier. We call this parameter the 'confidence metric', and detail the

various metrics we have implemented in §4.4.3.

After rating the examples by confidence, we then filter S's predictions on the unseen

examples by some function of their confidence score. The choice of function is a parameter,

and we call it the 'example filter metric'. We describe the various filter metrics we have

implemented in §4.4.4.

The examples remaining after filtering along with their predicted labels are then

merged with L into a new training corpus L'. A new classifier S' is trained on L' and

the performance of S' is evaluated by either 10-fold cross-validation or evaluation on a

held-out portion of the training data.

After each round of bootstrapping, various metrics are measured in order to deter-

mine when the bootstrapping process should cease. We call these 'stopping criteria', and

describe them in §4.4.5. Once a stopping criterion has decided the classifier will not ben-

efit from addition of more unlabeled data, the bootstrapping process halts and the final

classifiers S' is evaluated on the held-out test set. For our experiments, our held out test

set is the 2010 i2b2/VA challenge corpus gold-standard test set.

Using this setup, we are able to quickly prototype and execute a variety of bootstrap-

ping experiments.

4.4 System Parameters

4.4.1 Choice of Kernel

In our experiments, we seek to examine the effect of different classifier configurations on

weakly-supervised relation extraction from the text. Since searching for an optimal setting

of system parameters is combinatorial in the number of parameters, we seek to minimize

the number of parameters to our system. To help ease the combinatorial explosion of

parameters, we choose a fixed linear SVM kernel with unity slack cost. This has an added

benefit of allowing us to avoid the over-fit issues to which polynomial and radial-basis

function kernels are vulnerable. We use the same kernel parameters as those in [23]. We



Kernel Function (y - a' x v + coeff0)deOre*

degree 1

coeffO 1
Slack Cost (C) 1

Table 4.1: A summary of our kernel and its parameters used with libsvm

summarize these kernel parameters as the arguments we supply to libsvm in Table 4.1.

4.4.2 Seed Size

The seed-size parameter describes the amount of training data provided to a bootstrapping

classifier as a percentage of the initial training set. We represent this parameter as the

percentage of labels taken from a training corpus. Labels are selected from the training

corpus proportionally to their distribution within that corpus. This is accomplished for

each relation by setting a goal number of samples for the relation based on the relation's

presence in the initial training corpus, and then using reservoir sampling [20] to select the

samples at random from the corpus.

4.4.3 Confidence Metrics

Active learning, originally proposed by Angluin [3], is a technique founded on the key

realization that a machine learning model can use less training data and require fewer

training iterations if it is able to characterize the type of examples about which it needs

more information, and receive labels for those examples from an oracle. Thompson, et al.

[29] explore active learning in the context of natural language processing and information

extraction.

The most common method by which active learning is accomplished is the creation of

a confidence metric for the learning model to apply to unseen examples. In SVM's, this

is usually a function of the distance from the hyperplane in feature-space. For a binary

classifier, the closer an example is to the hyperplane in feature-space, the less confident

the classifier is about that example. Since we make extensive use of multi-class classifiers,



we must find a way to extend this to multiple relations. There is a lot less writing in the

literature about how to combine their parameters into a stable confidence metric. Vlachos

[31] presents a variety of confidence metrics for active learning with multi-class classifiers.

During bootstrapping, predictions of the classifier on unseen examples are ordered

by the classifier's 'confidence' in the label it has assigned to each example. All of our

relation classifiers are One vs. All classifiers [301, therefore each prediction on an example

is nothing more than n distances to the decision boundaries of each of the n relation

versus all sub-classifiers. The confidence metrics we have evaluated are all functions of

the distances of examples from these decision boundaries.

We have evaluated 9 different confidence metrics. Vlachos [31] proposes a number

of confidence metrics based on the n One vs. All distances-to-hyperplanes. They use

these confidence metrics for Active Learning with multi-class SVMs. We evaluated five of

these confidence metrics with our bootstrapping approach. Additionally, we evaluate two

other metrics from Zhang [34]: confidence based on the entropy of the label probability

distribution and a confidence score based on the cosine similarity of the example to other

labeled examples in feature space. The entropy of the label probability distribution,

as described in Zhang [34], is given for a sample x in terms of pi(x), or the estimated

probability that example x has label i.

C

H (x) =i - (x) log pi (x)

We describe each confidence method in detail in Table 4.2.

4.4.4 Example Filter Metrics

After the classifier has rated each unseen example with a label and confidence score, the

unseen examples must be filtered down to the set of examples that will be incorporated

into the training set. Since there are a number of ways to accomplish this, it is a parameter

of our system. Table 4.3 details the various filter metrics that are available to our system.



Name Description
random Confidence scores are chosen randomly in the range

[0.0, 1.0]. Used as a baseline.

hyperplane-min Confidence scores are the value of the minimum distance
to the decision-boundary for the n classifiers that com-
prise the One-Vs-All multi-class classifier.

hyperplane-max Confidence scores are the value of the maximum dis-
tance to the decision-boundary for the n classifiers that
comprise the One-Vs-All multi-class classifier.

hyperplane-sum Confidence scores are the sum of the distances to the
decision-boundary for the n classifiers that comprise the
One-Vs-All multi-class classifier.

hyperplane-product Confidence scores are the product of the distances to the
decision-boundary for the n classifiers that comprise the
One-Vs-All multi-class classifier.

hyperplane-difference Confidence scores are the difference between the maxi-
mum distance to the decision-boundary and the sum of
the other distances for the n classifiers that comprise the
One-Vs-All multi-class classifier.

label-entropy The confidence scores are the entropy of the label prob-
ability distribution as described in [34].

centroid-cosine The confidence scores are calculated by the cosine of the
feature vector for the unseen example with the centroid
in feature-space of every example with the given label.

Table 4.2: A breakdown of the different confidence metrics we have evaluated.

Top-N The top-n rated examples by confidence are incorpo-
rated into the training set

Ratio-N n examples are taken from the unseen examples, the
label composition of these n examples are selected to
match the distribution in the original training set

Random-N n examples are chosen uniformly at random from those
available.

Table 4.3: A list of the example filter metrics we have evaluated.



Potential Drift 0 < dist < min(rold, rneiv)
Drift min(r1od, rnew) < dist K max(rold, r'new)

Abrupt Drift dist > max(rozd, rete)

Table 4.4: A summary from [21] of the various types of semantic drift in bootstrapping
classifiers. Potential drift indicates the possibility of drift, drift indicates that there was
drift, and abrupt drift means that the drift was significant.

4.4.5 Stopping Criterion

While augmenting the training set with examples from the unlabeled corpus, there will be

examples that do not contribute to the performance of the system. We must determine

when to stop the bootstrapping process so that we do not incorporate these examples into

the training set. To this end we have examined a number of criteria by which we may

decide to stop the bootstrapping process. The first of these is the detection of classifier

'drift'. The general idea is that while adding unseen examples to the training data, the

meaning of the classifier labels may shift from what the ground-truth reflects.

Li, et al. [21] describe this by characterizing three forms of drift: 'potential drift',

'drift', and 'abrupt drift'. These 3 metrics are determined by treating the labeled examples

of a given label in the training corpus as a cluster, and by measuring the change in both

the cluster's centroid in feature-space and the distance to the example furthest from the

centroid. We consider the centroid and max-radius of each relation cluster before and

after each round of bootstrapping, and the distance between the old cluster centroid and

the new centroid. The three cases of drift are described in Table 4.4.

In addition to the techniques described by Li, we measure the relative change in

similarity between each label. We measure this by detecting overlapping radii of clusters in

feature-space, as well as by measuring the cosine similarity between the cluster centroids.

4.5 Seed Selection

We have evaluated a variety of techniques for diversifying the initial seed provided to a

weakly-supervised classifier. In systems such as Zhang's [341, the seed is naively calculated

by random sampling of the unlabeled set. Since a bootstrapping classifier will start with



drastically fewer training examples, it is crucial that these samples are selected in order

to maximize performance of our system. We have referred to a number of techniques in

the literature for inspiration in this area.

Qian, et al. 2009 [25] present a technique for splitting up their initial unlabeled set

into various strata using a stratification variable, such as the relation class, using the

label probability distribution as a prior probability of examples taking on each relation.

In Qian, et al. 2010 [241, they present a refined version of this technique which does not

rely on the label probability distribution, but instead determines the stratification using

various clustering methods.

Since weakly-supervised approaches to relation extraction use far less training data

than fully- supervised, it is crucial that we choose the most effective samples from the data

available to us to be labeled and used as the starting seed. We have experimented with

multiple different ways of composing a seed in search of a technique that produces results

better than randomly selecting it.

4.5.1 Maximal Cosine Diversity

One method we have developed is to maximize the diversity of samples added to the seed

in feature-space. As we select samples, we take their feature-space representation and

calculate the centroid of the entire seed. From this centroid, we select samples whose

similarity to the centroid is minimal. The similarity metric we use is the cosine between

the two vectors in feature space. By building a seed this way, we aim to build up a

collection of diverse examples so that our seed has good coverage of feature space.

4.5.2 Maximal Geometric Diversity

This approach is identical to the maximal cosine diversity approach except the similarity

metric we use is geometric distance in feature space.



4.5.3 Random Seed

As a baseline for comparison, we also built in the capability to select a seed fully at

random.

4.6 Parameter Tuning

To determine the optimal setting of the parameters described in Sections §4.4.2, §4.4.3,

§4.4.4, §4.5 and §4.4.5, we evaluate every possible setting of each feature while holding

all others constant. While we have often watched how parameters such as seed size and

confidence metric vary together, we have never evaluated every setting of each parameter,

because this would take a prohibitive amount of processing time for each experiment we

run. Instead, we identify overall winners among the confidence metrics, filter metrics, and

stopping criterion. We always examine the system at different seed sizes because this is

essential to ensure we understand how the system changes as we change the amount of

labeled and unlabeled examples fed to the system.

4.6.1 Confidence Metric

To determine the best confidence metric, we evaluated a plain bootstrapping model in

which all parameters were held equal except the confidence metrics. We tested every

confidence metric at varying seed sizes, and the hyperplane-dif ference metric produced

the best overall performance. In Figure 4-1, we plot the performance of bootstrapping

on a training corpus of 50% the size of the 2010 i2b2/VA challenge corpus, with a held

out set of 15% and an unlabeled set of 35%. The figure shows a significant spike in

the performance of hyperplane-difference as compared to the rest of the confidence

metrics. Additionally, in all of our other tests, hyperplane-dif f erence has generally

had even and positive performance. Accordingly, we will use hyperplane-difference

as the best setting for our confidence metric parameter. We find this metric to be a

straightforward generalization of the binary SVM case.



TrP MacroF

Figure 4-1: Plots of the micro F1 and macro F1 scores in the Treatment-Problem (TrP)

relation category versus the number of examples bootstrapped for each confidence metric

listed in Table 4.2.

TrAP 1.00 0.98 0.98 0.97 0.96
TrCP 0.98 1.00 0.97 0.96 0.96

TrNAP 0.98 0.97 1.00 0.96 0.95
TrWP 0.97 0.96 0.96 1.00 0.96
TrIP 0.96 0.95 0.95 0.96 1.00

Table 4.5: A table
relation clusters in

describing the cosine similarity in feature-space between each pair of

the Treatment-Problem (TrP) relation group.

4.6.2 Filter Metric

In our experiments, the most straightforward example filter metric, Top-N performed sig-

nificantly better than Random-N and Ratio-N by over .03. In Figure 4-2, we plot the

performance of bootstrapping on a training corpus 40% the size of the 2010 i2b2/VA

challenge corpus with a held out test set of 20% and an unlabeled set composed of the re-

maining 40%. The confidence metric employed in this comparison is the hyperplane-min

metric. Based on the results shown in Figure 4-2, we chose the Top-N metric as the best

setting for the filter metric parameter.

' P 'rA 'rW TI
TrAP
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TrCP TrNAP TrWP Trip
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Figure 4-2: Plots of the micro F1 and macro F1 scores in the Treatment-Problem (TrP)
relation category for the Top-N, Ratio-N, and Random-N versus the number of examples
bootstrapped.

4.6.3 Stopping Criterion

As we have mentioned in @1.2, the 2010 i2b2/VA challenge corpus is highly self-similar.

We did not realize the extreme nature of this until we began to look at how a stopping

criterion could be implemented to detect semantic drift of the classifier and halt it be-

fore performance degrades. In Table 4.5, we tabulate the pairwise feature-space cosine

similarity between each relation pair of relation clusters in our data.

Each value in Table 4.5 is calculated as follows: We measure the centroid of every

relation cluster by taking the vector sum of every example in feature space with each

label. Once we have the centroid of every relation cluster in feature space, we then take

the pairwise cosine by calculating the vector dot product of every pair of relations, and

divide by the magnitude of each vector. We use this value as the cosine similarity metric

between the two relation clusters.

Geometrically, the clusters fully overlap with each other in feature-space. Geomet-

ric approaches are not applicable in very high-dimensional spaces; however, the cosine

similarity metric is commonly accepted as a reasonable method to judge similarity in

high-dimensions. Every relation pair has a cosine similarity of 0.95 or greater. The

self-similarity of the 2010 i2b2/VA challenge corpus prevented us from implementing any



reasonable stopping criterion based on the drift of relation clusters. Because of this, in

every experiment we do not implement a stopping criterion. We run the experiment until

all of the unlabeled data is exhausted, recording the performance at each round of the

experiment.

4.6.4 Seed Selection

As described in §4.5, we implemented and evaluated a couple of techniques for diversifying

the initial seed chosen for bootstrapping. We implemented a seed generator which would

attempt to maximize diversity in feature-space by iteratively growing the seed, and at each

step choosing samples that will most increase the diversity. We tried to pick samples that

were the least similar to those already in the seed via cosine and geometric approaches.

In our testing, we found that a randomly generated seed always outperformed diverse

seeds that we attempted to construct. Qian et al. 2009 [25] and Qian et al. 2010 [24] both

show that diversifying the seed is a good way to improve bootstrapping performance. We

believe the discrepancy to be related to the self-similarity we demonstrated in Table 4.5.

If we are choosing samples with the smallest cosine similarity to the centroid of the seed,

and all of the examples are highly similar to the centroid of the seed, then the samples

chosen will not achieve the goal of diversity. This ultimately suggests a problem with our

feature-set and perhaps the learning model we have chosen. We describe this in more

detail in §6.3.

4.7 Groundtruth Budgeting

We present a new technique called 'Groundtruth Budgeting' which under certain con-

ditions can improve the performance of weakly-supervised bootstrapping by applying

techniques inspired from active learning.

Groundtruth budgeting is similar to straightforward bootstrapping, except we begin by

setting aside a portion B of our training set L to be 'budgeted'. During the bootstrapping

process, we proceed as described in §4.3. We iteratively train a model S on our training

set L. Using S, we make predictions on our unlabeled corpus U, and incorporate the most



confident examples into our training set L' as groundtruth. After making predictions on

samples taken from the unlabeled set, we then take a group of examples from our budget

set B, along with their groundtruth labels, and insert them into L' as well. The order

in which samples are chosen from B is also decided by the confidence metric, except the

most confident examples are chosen instead of the least confident. We then train a new

classifier S' on L', and the process continues.

The main difference between regular bootstrapping and groundtruth budgeting is that

in the budgeting case, groundtruth information about the corpus which is the least noisy

(as determined by the confidence metric) is added in with the predictions on the boot-

strapped data. This helps keep the classifier from diverging as the bootstrapping process

is prone to cause. The budgeting process omits uninformative or noisy groundtruth ex-

amples because they will not produce good confidence signals from the SVM and will thus

be left in the budget reservoir.

As mentioned in §4.6.3, we did not find a suitable stopping criterion. Of course, in both

the bootstrapping and budgeting case having an effective stopping criterion is important

to save on training time. Otherwise, we must evaluate the entire unlabeled corpus while

budgeting or bootstrapping and pick the resulting model which maximizes performance

on the held-out set.

4.8 Evaluation Metrics
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To evaluate our system, we measure the precision, recall, and F-measure for each label

i, as shown in Equations (4.1), (4.2), and (4.3) respectively. Since we are using multi-class

classifiers, each label's performance, characterized by Pi, Ri, and F1,j, must be combined

into an overall system performance metric. For this we follow [23] by using both the micro-

averaged F 1-measure and the macro-averaged F1-measure as given in Equations (4.6) and

(4.7). We use the macro-averaged F-measure to judge how well our system performs as

an average of the performance of every category, while the micro-averaged Fr-measure

allows us to judge how well our system performs as the average of every example.

4.8.1 Evaluation Strategy

In order to evaluate the performance of groundtruth budgeting, we designed the following

experiment. First, the full training corpus is partitioned into 3 non-overlapping pieces

- an initial training seed r, an unlabeled reservoir of samples with which to bootstrap

u, and a groundtruth budget reservoir g. We evaluate with the 2010 i2b2/VA challenge

corpus test set, e. Two systems are trained in parallel - one bootstrapping classifier and

a bootstrapping and budgeting classifier. The bootstrapping learner begins with training

set r + g, while the budgeting learner begins with r as its training data and a groundtruth

budget of g. Therefore, the bootstrapping learner starts with j more training data than

the budgeting learner.

Both learners bootstrap in rounds. In each round, both classifiers label X new exam-

ples from their unlabeled reservoir u and incorporate them as groundtruth. The examples

chosen are picked as those on which either learner is most confident. Additionally, the



budgeting learner takes Y examples from b, its groundtruth budget. The examples taken

from b are those on which the budgeter's label predictions are the least confident. The

budgeter then incorporates the Y examples with their groundtruth labels into its train-

ing set. At the end of each round, each learner retrains a new classifier based on its

new training set, and tests the classifier's performance on the held-out set. The process

continues until the entire unlabeled reservoir has been depleted. The ratio ' is thex+Y

fraction of examples in each round that are added from the groundtruth budget versus

the total examples added in each round.

This process allows us to accurately compare regular bootstrapping and groundtruth

budgeting side by side, since the only difference between the groundtruth budgeting sys-

tem and the bootstrapping system is that at each round, the budgeter incorporates more

ground-truth into its training set. Since the bootstrapping classifier starts out with r + g

as its training set, every example in the groundtruth reservoir g that the budgeting sys-

tem incorporates into its training set is already in the training set for the bootstrapping

classifier. Therefore, the test setup allows us to closely examine the effect on adding the

groundtruth budget before bootstrapping or during. By the end of the evaluation, both

classifiers will have an identical training set, except for the labels that they have chosen

for each unlabeled item that is bootstrapped.

Using groundtruth budgeting, we have achieved improvements of up to 2 percentage

points in the performance of our system as compared to a baseline bootstrapping sys-

tem operating with an equivalent amount of training data, and in some cases, operating

with even more training data than the budgeting system. We present and discuss these

improvements in Chapter 6.



Chapter 5

Results

To evaluate the performance of groundtruth budgeting, we show comparison between a

groundtruth budgeting classifier and a bootstrapping classifier for varying seed sizes with

the system parameters described in §4.4 all set to their optimal settings as listed in §4.6.

In Figures 5-1 through 5-8, we plot the results of our evaluation for a number of

different seed sizes. The figure title indicates that we are plotting the Treatment-Problem

(TrP) relation group, and the 3 percentages indicate the percentage split of the available

labeled data into training corpus, groundtruth budget, and unlabeled corpus, respectively.

In the y-axis, we show the F1 macro and micro scores, and in the x-axis, we show the

number of unlabeled examples bootstrapped by both systems at each round. The graph

shows the bootstrapping and budgeting process continuing until completion, so the final

data point listed in each graph is the total number of unlabeled examples that were

bootstrapped. The F1 macro and micro scores reported are obtained by evaluating the

resulting model on the 2010 i2b2/VA challenge corpus test set. The performance results

on the test set are not fed-back into the system with each round, they are simply logged

as an evaluation measure.

The results follow a pattern: For small training sets such as in Figure 5-1, the per-

formance of both the bootstrapping classifier and budgeting classifier diverge, and per-

formance throughout bootstrapping gets worse and worse. This happens because there is

not enough training data present at the beginning of bootstrapping for our classifier to

be accurate enough to increase its performance via bootstrapping.



For large initial training sets, such as in Figure 5-8, the benefits of groundtruth bud-

geting compared to bootstrapping are similarly diminished because with a large initial

training seeds, both models begin with very good initial performance, so there is not as

much room for improvement. Note that the variance between budgeting and bootstrap-

ping in the graph is on a very small performance scale.

However, in the middle ranges of initial seed size, we are able to see the benefits of

groundtruth budgeting. For example, in Figure 5-3. Initially, the performance of the

budgeter starts over 0.01 points below the performance of the bootstrapper. Since the

bootstrapper begins with 11% more training data than the budgeter, this is to be expected.

However, we see that the budgeter is able to quickly rise to levels higher than the

bootstrapper within the first 200 examples that are added to the system. This is surpris-

ing, since the budgeter achieves over .01 points higher performance than the bootstrapper

while it still has far fewer training examples in its training set than the bootstrapper.

In the case of Figure 5-3, the budgeter achieved performance levels that matched and

exceeded the bootstrapper with roughly 11% less training data in use.
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Figure 5-1: Plots of the micro F and macro F1 scores for bootstrapping and groundtruth
budgeting in the Treatment-Problem (TrP). The budgeter starts with 10% training data
and budgets 14%, while the bootstrapper starts with all 24%. Each use an unlabeled
corpus of 76%
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Figure 5-2: Plots of the micro F1 and macro F1 scores for bootstrapping and groundtruth
budgeting in the Treatment-Problem (TrP). The budgeter starts with 20% training data
and budgets 12%, while the bootstrapper starts with all 32%. Each use an unlabeled
corpus of 68%
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Figure 5-3: Plots of the micro F1 and macro F1 scores for bootstrapping and groundtruth
budgeting in the Treatment-Problem (TrP). The budgeter starts with 30% training data
and budgets 11%, while the bootstrapper starts with all 41%. Each use an unlabeled
corpus of 59%
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Figure 5-4: Plots of the micro F1 and macro F scores for bootstrapping and groundtruth
budgeting in the Treatment-Problem (TrP). The budgeter starts with 40% training data
and budgets 9%, while the bootstrapper starts with all 49%. Each use an unlabeled corpus
of 51%
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Figure 5-5: Plots of the micro F1 and macro F1 scores for bootstrapping and groundtruth
budgeting in the Treatment- Problem (TrP). The budgeter starts with 50% training data
and budgets 8%, while the bootstrapper starts with all 58%. Each use an unlabeled corpus
of 42%
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Figure 5-6: Plots of the micro F and macro F1 scores for bootstrapping and groundtruth
budgeting in the Treatment-Problem (TrP). The budgeter starts with 60% training data
and budgets 6%e, while the bootstrapper starts with all 66%. Each use an unlabeled corpus
of 34%
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Figure 5-7: Plots of the micro F1 and macro F1 scores for bootstrapping and groundtruth
budgeting in the Treatment-Problem (TrP). The budgeter starts with 70% training data
and budgets 5%, while the bootstrapper starts with all 75%. Each use an unlabeled corpus
of 25%
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Figure 5-8: Plots of the micro F1 and macro F1 scores for bootstrapping and groundtruth
budgeting in the Treatment-Problem (TrP). The budgeter starts with 80% training data
and budgets 3%, while the bootstrapper starts with all 83%. Each use an unlabeled corpus
of 17%

TrP 80%/3%/17% MicroF



Chapter 6

Discussion

6.1 UMLS Metathesaurus Performance

As described in §3.2.5, we experimented with a system feature that indicated whether

the two candidate concepts had any discernible relationship in the UMLS. Unfortunately,

the results of this evaluation were not valuable because the recall of concepts within our

corpus was too low to accurately evaluate the quality of the UMLS relations for relation

extraction. Our experiences in this regard are corroborated by other reports from the

2010 Fourth i2b2/VA Shared-Task and Workshop, such as in Anick et al. [4].

6.2 Corpus Similarity

As discussed in §4.6.3 and §4.6.4, the 2010 i2b2/VA challenge corpus is composed of terse

jargon and sentence structures which result in a high degree of self-similarity. Due to

these issues, we were unsuccessful in developing techniques for both diversifying the seed

selection process and finding useful stopping criteria.

We suspected that another potential cause for the similarity between relation clusters

is that sentences from the discharge summaries can have multiple relations per line. In

this case, pairs of concepts in the same sentence will have a large amount of redundant

context captured in both of their feature spaces. To evaluate this, we measured the

cosine similarity of relation clusters, like in Table 4.5, except with only one relation per



TrAP 1.00 0.97 0.95 0.97 0.96
TrCP 0.97 1.00 0.94 0.95 0.94

TrNAP 0.95 0.94 1.00 0.93 0.91
TrWP 0.97 0.95 0.93 1.00 0.95
TrIP 0.96 0.94 0.91 0.95 1.00

Table 6.1: A table describing the cosine similarity in feature-space between each pair
of relation clusters in the Treatment-Problem (TrP) relation group limited to only one
sentence per line.

line chosen. The results of this experiment are show in Table 6.1. The results of this

experiment show that while the similarity's are certainly lower, they still are all greater

than 0.9.

6.3 Model Selection

One major weakness in our analysis is that we have not done any model selection. We

have used a fixed linear, unity-slack SVM for everything. It is possible that there are other

models that could provide more competitive performance, or even yield a different set of

tuned parameters that would also not result in a classifier that is significantly over-fit to

the data. We were shortsighted in this regard and going forward would like to devote

time to this.

For example, de Bruijn, et al. [16] submitted a maximum-entropy based classifier to

the 2010 Fourth i2b2/VA Shared-Task and Workshop which achieves performance. Other

submissions used different SVM kernels, such as the radial basis function (RBF) kernel.

6.4 Seed Size

We evaluate each bootstrapping approach with a variety of seed sizes. In our experiences,

we have found that seed sizes of 20% of our corpus and below often produce divergent

bootstrapping behavior in which the classifier gets progressively worse and worse as boot-

strapping goes on. This is because the initial model is trained with too little data for

RAP RCP rNAP TrWP Trip



it to make accurate predictions. Since the predictions are wrong, a large number of the

bootstrapped examples are labeled incorrectly, and the performance of the classifier on

the groundtruth set worsens as the meaning of each relation in the classifier drifts.

We find that anywhere between 30% to 45% of our corpus produce positive groundtruth

budgeting results. These seed sizes were chosen empirically by comparing the results of

many different runs of bootstrapping and groundtruth budgeting.

6.5 Groundtruth Budgeting

Active learning systems are what inspired us to implement groundtruth budgeting. These

systems collaboratively interact with a human annotator to produce a model that rapidly

improves by pointing the annotator to examples that would be beneficial if the groundtruth

were known. The general justification of groundtruth budgeting is this parallel to active

learning: Our budget reservoir emulates the case in which a human annotator has anno-

tated a variety of examples, but is no longer available.

6.5.1 Analysis of our Results

In Figures 5-1 through 5-8., we plot the results of our evaluation for a number of different

seed sizes. From these plots, we conclude that within this seed range the budgeter is

able to add more informative samples to its training set than the bootstrapper due to its

dynamic choice of samples from the groundtruth budget via the confidence metric. Since

budgeting is an iterative process, the budgeter is able to adapt to what its model is least

confident about in each round, while the bootstrapper is stuck with the entire set g from

the beginning.

The literature and our intuition both suggest that there should be no penalty to an

SVM for starting with more data. On the contrary, it is generally accepted that the more

data an SVM can make use of, the better. However, this counter-intuitive penalty is what

we observed.

As discussed in @4.6.3, there are a number of properties of our data domain, medical

language, which we believe to be contributory to this surprising result. The 2010 i2b2/VA



challenge corpus appears to be highly self-similar in nature since it composed mostly

of medical jargon and terse domain-specific language. The labels themselves are not

incorrect, as our corpus was annotated at high cost by medical professionals; however, the

sentences to which the labels apply are often sufficiently self-similar to those of different

relation types that in the absence of a large corpus of training data, our classifiers are

not able to accurately discern between the minority classes and majority classes in our

corpus.

6.5.2 Error Analysis

To get a better sense of what examples are improved by groundtruth budgeting, we exam-

ine the system output for the following examples for both bootstrapping and budgeting.

We aim to show that the budgeter has improved over the bootstrapped in how well it can

recognize minority class examples. We closely examine the output for individual sentences

for the system run shown in Figure 5-3. After 240 examples have been bootstrapped and

budgeted, we examine the output on the 2010 i2b2/VA challenge corpus test set. In

particular, we focus on examples where the bootstrapper got the right answer and the

budgeter did not, and vice-versa.

In Figures 6.5.2 through 6.5.2 we present examples in which the budgeter got the

correct answer and the bootstrapper did not. In each of these examples, the true relation

is a minority class, e.g. TrIP, TrNAP, TrWP, and TrCP. The majority of the differences

between the bootstrapper and budgeter in this run are disagreements over the minority

classes. These examples would be fairly easy for a layman to discern on his or her own,

so it is not unreasonable to assume that the bootstrapper could infer the correct relation

from its training data. Why then does it classify them incorrectly?

However , <treatment-79> the thalidomide </treatment> was held for two

cycles secondary to <problem-80> atrial fibrillation </problem> .

Figure 6-1: An example of a case where the groundtruth budgeter is able to distinguish the
minority relationship where the bootstrapper cannot. The budgeter correctly claims the
relation for this sentence between concepts 79 and 80 is TrNAP, while the bootstrapper
claims it is TrAP.



We have increased his dose of <treatment-5387> Lantus </treatment> and

<treatment-5388> Humalog </treatment> , and the patient does not feel
<problem-5389> dizzy </problem> anymore .

Figure 6-2: An example of a case where the groundtruth budgeter is able to distinguish the
minority relationship where the bootstrapper cannot. The budgeter correctly claims the
relation for this sentence between concepts 5388 and 5389 is TrIP, while the bootstrapper
claims it is TrAP.

She has <problem-5728> allergies </problem> to <treatment-5729> Morphine
</treatment> , <treatment-5730> Percocet </treatment> , <treatment-5731>
Codeine </treatment> , <treatment-5732> Penicillin </treatment>
<treatment-5733> Xanax </treatment> and <treatment-5734> Toradol
</treatment> .

Figure 6-3: An example of a case where the groundtruth budgeter is able to distinguish the
minority relationship where the bootstrapper cannot. The budgeter correctly claims the
relation for this sentence between concepts 5730 and 5728 is TrCP, while the bootstrapper
claims it is TrAP.

We posit that the reason the bootstrapper cannot discern the correct relation in these

examples is because of the aforementioned bias the bootstrapper has towards its majority

classes. The same bias has been observed by multiple other entrants to the 2010 Fourth

i2b2/VA Shared-Task and Workshop, as we describe in 66.6. The cases in which the

budgeter gets the wrong answer and the bootstrapper gets the right answer, as in Figure

6.5.2, are also straightforward. It is unclear why the budgeter would get ones like this

wrong; however, the number of examples that the budgeter mis-predicts as non-TrAP are

far fewer than the minority class examples it gets right where the bootstrapper gets it

wrong. This is evident in Figure 5-3, as after only 200 examples are added, the Macro-

F1 measure, or a measure of the mean of F1 scores across each relation category, is

significantly boosted over the bootstrapping performance.

6.6 Comparison to other i2b2 Challenge Entrants

Many entrants to the 2010 Fourth i2b2/VA Shared-Task and Workshop submitted results

for systems designed to perform relation extraction on the 2010 i2b2/VA challenge corpus.

To get a sense for how well this system performs in the context of those submissions we now

compare our results to those. de Bruijn, et al. [16] submitted the overall best results to the



He was not a candidate f or <treatment-6798> subcutaneous heparin
</treatment> as we were concerned of <problem-6799> an intracranial

hemorrhage </problem> .

Figure 6-4: An example of a case where the groundtruth budgeter is able to distinguish
the minority relationship where the bootstrapper cannot. The budgeter correctly claims
the relation for this sentence between concepts 6798 and 6799 is TrNAP, while the boot-
strapper claims it is TrAP.

He demonstrated <problem-11271> several asymptomatic electrolyte
deficiecies </problem> ; these were likely due to <problem-11272>

inadequate absorption </problem> following <treatment-11273> his surgery

</treatment> and he responded well to <treatment-11274> repletion

</treatment> .

Figure 6-5: An example of a case where the groundtruth budgeter is able to distinguish
the minority relationship where the bootstrapper cannot. The budgeter correctly claims
the relation for this sentence between concepts 11271 and 11274 is TrIP, while the boot-
strapper claims it is TrAP.

relation challenge. They implemented a maximum-entropy based classifier and achieved

overall Micro-Fi performance scores of up to 0.77. They address the issue of imbalance

among the relation classes in the 2010 i2b2/VA challenge corpus by downsampling the

majority classes. Furthermore, they use MedLine abstracts as an external knowledge

source to assess the relationship between concepts using Pointwise Mutual Information

(PMI).

Another entrant to the challenge, Anick, et al. [4], show overall Micro-Fi results of

0.663. They made use of SVM's combined with some hand-crafted rules and a standard

set of NLP features to train a multi-class classifier. They report poor results from the

integration of UMLS for the concept-annotation task. This confirms our observations in

§6.1. Poor concept recall was the main reason we were unable to evaluate the improve-

ments that the UMLS pairwise relation database could offer to our classifier. Anick, et

al. [4] also resampled the training sets to avoid classifier bias due to the imbalance in the

distribution of labels.

Roberts, et al. [26] train a multi-class SVM with a standard NLP featureset including

tokens and bigrams between the concepts; however, they integrate features from external

knowledge sources such as Wikipedia. They report Micro-Fi scores of 73.7 on the relation



He still is <problem-18050> hypertensive </problem> and will likely need
<treatment-18051> better blood pressure control </treatment> .

Figure 6-6: An example of a case where the bootstrapper is able to distinguish the re-
lationship where the budgeter cannot. The budgeter incorrectly claims the relation for
this sentence between concepts 18050 and 18051 is TrCP, while the bootstrapper correctly
claims it is TrAP.

extraction task. They too relate that the UMLS features they employed were not helpful

for the relation extraction task.

Considering the various other entrants to the 2010 Fourth i2b2/VA Shared-Task and

Workshop, we find that the results of both our bootstrapping and groundtruth budgeting

classifiers are competitive. In particular, since we did not use the provided unlabeled set

and instead opted to segregate our labeled set into a training set and unlabeled set, we see

that our system produces roughly equivalent performance to the de Bruijn system while

only using 30% of the provided training data. Our system performance with 80% of the

training set exceeds their best reported result.
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Chapter 7

Next Steps

We have far from exhaustively explored the potential of relation extraction in this domain.

Our results suggest that the models produced by weakly-supervised SVMs in this problem

domain are heavily biased towards the majority class and tend to exhibit poor performance

on minority classes.

As discussed in @6.3, we are not satisfied with the extent to which we explored tuning

the basic parameters of our SVM - the kernel and its parameters. The use of a linear

SVM with unity slack cost may have resulted in sub-par performance. Furthermore, we

did not adequately explore feature-selection, since we simply replicated the feature set

used in [23]. Due to the severe overlap of all relation clusters in our feature-space, it is

possible that our feature-set is to blame for this issue.

We have presented a technique which improves the majority-class bias issues of weakly-

supervised SVMs in our problem domain. However, we believe that other techniques

should be explored, as our improvements were not enough to make systems like ours

useful in practice. In particular, we are attracted to applying the ideas of Blum and

Mitchell's co-training [7] to this domain. We built the functionality for this exploration

into PyCARE, however due to time constraints, were unable to explore the possibilities

co-training offered.
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Chapter 8

Contributions

We have demonstrated that given the properties of hospital discharge summaries, com-

mon machine learning and NLP techniques for multi-class, weakly-supervised relation

extraction are prone to certain weaknesses - in particular a reduction in performance on

classes that do not occur frequently in a corpus compared to the performance of the ma-

jority classes. We present a technique, 'groundtruth budgeting', which is able to expand

the coverage of the resulting SVM models and exhibit improved precision and recall on

minority classes during relation extraction.

Using a groundtruth budget while bootstrapping as described in §4.7 can produce bet-

ter results with less training data than a naive bootstrapper with equivalent amounts of

training data. We described our experimental setup for evaluating these results, and pre-

sented comparisons to other approaches to relation extraction on the same 2010 i2b2/VA

challenge corpus from the proceedings of the 2010 Fourth i2b2/VA Shared-Task and Work-

shop. Our system performance was competitive with the range of scores from the pro-

ceedings of the challenge.

8.1 Summary of our Contributions

1. Designed an efficient, maintainable software platform for rapidly describing and

developing weakly-supervised machine learning experiments called PyCARE.



2. Presented a new technique for improving precision and recall performance on mi-

nority classes in multi-class relation extraction called 'groundtruth budgeting'.

3. Evaluated a variety of different techniques for processes involved in the boot-

strapping of multi-class SVMs and shared our findings in comparison with other

competitive systems designed for the same purpose.
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