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ABSTRACT
This article compares multivariate and univariate Generalized Autore-
gressive Conditional Heteroskedasticity (GARCH) models to forecast
portfolio value-at-risk (VaR). We provide a comprehensive look at
the problem by considering realistic models and diversified portfolios
containing a large number of assets, using both simulated and real
data. Moreover, we rank the models by implementing statistical tests
of comparative predictive ability. We conclude that multivariate models
outperform their univariate counterparts on an out-of-sample basis.
In particular, among the models considered in this article, the dynamic
conditional correlation model with Student’s t errors seems to be the
most appropriate specification when implemented to estimate the VaR
of the real portfolios analyzed. ( JEL: C22, C53, G17)

KEYWORDS: backtesting, Basel Accords, market risk, composite likelihood,
risk management

Market risk management has been receiving increased attention in the past few
years due to the importance devoted by the Basel II and Basel III Accords to the
regulation of the financial system. These Accords explicitly recognize the role of
value-at-risk (VaR) that financial institutions must implement and report in order
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to monitor their financial risk and to determine the amount of capital subject to
regulatory control; see Berkowitz and O’Brien (2002). Consequently, VaR is now
established as one of the most popular risk measures designed to control and
manage market risk. The Basel Accords also establish penalties for inadequate
models and, consequently, there are incentives to pursue accurate VaR estimates.
A myriad of procedures are currently available for predicting the VaR, but no
consensus has been reached on which procedure is best.

The first decision one has to make when trying to predict the VaR of a portfolio
is whether to use a multivariate model for the system of individual asset returns
or, alternatively, to use a univariate procedure for the portfolio returns. In this
article, we assume known portfolio weights so that our focus is on whether the
additional information incorporated in multivariate GARCH models compensate
the additional uncertainty due to the large number of parameters to be estimated.
One can possibly argue that modeling the joint dynamics of the assets contained
in the portfolio via a multivariate model can lead to forecast improvements due
to the use of more information. However, as the dimension of the portfolio
increases, the usually large number of parameters involved renders the estimation
of multivariate models more complicated, possibly compromising their predictive
ability. Consequently, many authors conclude that it is probably better to adopt
univariate models to estimate the VaR of a portfolio; see, for example, Berkowitz
and O’Brien (2002), Brooks and Persand (2003), Bauwens, Laurent, and Rombouts
(2006), Christoffersen (2009) and McAleer (2009). Recently, McAleer and da Veiga
(2008) found mixed evidence about the comparative performance of univariate and
multivariate models. However, the conclusions of these works are limited in several
ways. First, they are based on portfolios composed of very few assets (usually three
or four), while in real-world situations, financial institutions are usually faced with
much larger portfolios. Second, they compare univariate and multivariate VaRs by
using the backtesting tests based on coverage/independence criteria proposed by
Kupiec (1995) and Christoffersen (1998). These tests, though appropriate to evaluate
the accuracy of a single model, can provide an ambiguous decision about which
candidate model is better. Therefore, it is interesting to enhance the backtesting
analysis by using statistical tests designed to evaluate the comparative predictive
performance among candidate models as, for example, the comparative predictive
ability (CPA) test proposed by Giacomini and White (2006). Third, some of the works
mentioned above only consider multivariate models with constant conditional
correlations; see Brooks and Persand (2003) and McAleer and da Veiga (2008).
There is, however, large evidence that, in practice, conditional correlations evolve
over time and exhibit asymmetric effects; see, for example, Engle (2002), Tse and
Tsui (2002) and Cappiello, Engle, and Sheppard (2006), among many others.

The goal of this article is to compare the performance of univariate and
multivariate GARCH models when implemented to forecast the VaR of large
portfolios. The comparison among the alternative models considered is done not
only by using backtesting but also the CPA test. We also extend previous studies
by considering multivariate models with asymmetric time-varying correlations
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and alternative distributions for the innovations. Our conclusions are based on the
results of Monte Carlo experiments using several alternative specifications for the
data-generating process (DGP) and on empirical evidence obtained by estimating
the portfolio VaR of three real market portfolios containing a large number of assets.
We show that even in large systems, it could be worth to predict the VaR of a portfolio
by fitting multivariate models.

This article is organized as follows. Section 1 provides a brief description of the
multivariate and univariate VaR models considered in this article. In Section 2, we
compare both approaches using simulated data, while Section 3 is devoted to the
comparison based on real portfolios. Section 4 concludes.

1 UNIVARIATE AND MULTIVARIATE VAR MODELS

In this section, we describe several alternative procedures to obtain portfolio VaR
forecasts using univariate and multivariate procedures. Throughout the article,
we focus on the portfolio VaR for a long position in which traders have bought
the assets and wish to measure the risk associated to a decrease in their prices.
Moreover, we consider an equally weighted portfolio, which has been extensively
used in the empirical literature; see, for instance, Zaffaroni (2007) and DeMiguel,
Garlappi, and Uppal (2009).

1.1 VaR estimation

Denote by Yt= (y1t,...,yNt)′ the vector of returns of the N assets contained in the
portfolio at time t and by yp,t=W ′t−1Yt the portfolio return, where Wt−1 is the vector
of portfolio weights, which is assumed to be known at time t−1. The portfolio VaR
for a long position is defined as the ϑ-quantile of the conditional distribution of the
portfolio return yp,t. This means that, with probability ϑ , the portfolio return will
be smaller than the VaR. Therefore, the VaR is defined as:

VaRϑ
t =sup

[
r | P(yp,t≤r

)≤ϑ
]

(1)

where the probability P is taken with respect to the distribution function of the
portfolio returns conditional on the information available at time t−1.

Throughout the article we consider ϑ=1% which is the level that financial
institutions must report as required by the Basel Accords. Additionally, in the
simulations, we also consider ϑ=5% as this is the probability often considered
in other related papers.

Next, we describe the alternative univariate and multivariate procedures
considered in this article to estimate the VaR. First, the VaR can be estimated
by implementing the univariate conditional autoregressive VaR (CAViaR) model
proposed by Engle and Manganelli (2004), which specifies directly the dynamic
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evolution of the ϑ-quantile rather than the distribution of the portfolio returns.
The indirect GARCH specification of the CAViaR model is given by

VaRϑ
t =

[
ω+αy2

p,t−1+β
(
VaRϑ

t−1
)2]1/2

. (2)

Alternatively, when assuming a particular specification for the conditional
mean and variance, the portfolio VaR is given by

VaRϑ
t =μp,t+σp,t qϑ , (3)

where μp,t and σp,t are the portfolio conditional mean and standard deviation at
time t, respectively, and qϑ is the ϑ-quantile of the distribution of the centered
and standardized returns, εp,t= (yp,t−μp,t)/σp,t. Therefore, to compute the VaR
in (3), one needs to estimate qϑ , μp,t, and σp,t. These estimates can be obtained
by considering two alternative conditioning sets available at time t−1. First, one
can consider the distribution of portfolio returns conditional on past portfolio
returns, i.e., the distribution of yp,t conditional on a linear combination of past
asset returns, yp,t−h=W ′t−h−1Yt−h. Alternatively, one can consider the distribution
of yp,t conditional on the whole vector of past asset returns, Yt−h. The former case
leads to a univariate model for the portfolio returns while the latter leads to a
multivariate model.

Consider first the computation of the quantile qϑ in (3). In the univariate case,
two alternative conditional distributions are usually assumed: the Gaussian and the
Student’s t distribution with v degrees of freedom. Note that, when considering a

Student’s t distribution, the ϑ− quantile in (3) is given by qϑ=
√

v−2
v q̃ϑ , where q̃ϑ is

the ϑ− quantile of a Student’s t distribution with v degrees of freedom; see Pesaran,
Schleicher, and Zaffaroni (2009).

In the multivariate case, assuming a given multivariate distribution of returns,
the corresponding conditional distribution of εp,t is, in general, unknown. It only
takes a tractable form when the distribution of returns is closed under linear
transformations, i.e. when, for example, all linear combinations of Yt have the same
distribution equal to the marginal distribution of returns. This is the case of the
standardized multivariate Normal and Student’s t distributions; see Christoffersen
(2009) and Pesaran, Schleicher, and Zaffaroni (2009). Therefore, in this article,
we consider these two alternative multivariate specifications for the conditional
distribution.

Finally, rather than assuming a particular distribution for εp,t, qϑ can be
estimated as the ϑ-quantile of its empirical distribution. This procedure, known
as Filtered Historical Simulation (FHS) can be applied both to univariate and mul-
tivariate models; see Barone-Adesi, Bourgoin, and Giannopoulos (1998), Boudoukh,
Richardson, and Whitelaw (1998), Hull and White (1998), and Christoffersen (2009)
for a description.

Consider now the estimation of the conditional mean, μp,t in (3), which is
assumed to be constant over time. In practice, the dynamic dependence in the
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conditional means of portfolio returns, when present, is very weak. Consequently,
assuming a constant mean is not going to affect the results on the VaR estimation.
Hence, throughout the article, we assume μp=E

[
yp,t| yp,1,...,yp,t−1

]
and μ=

E(Yt| Y1,...,Yt−1), for all t. Note that μp=W ′t−1μ.
Finally, the parametric specification of the VaR in (3) requires the estimation

of the conditional variance of the portfolio. The specification of σ 2
p,t depends on

whether we consider a univariate or a multivariate model when conditioning on
the past. When computing the VaR using a univariate model, σ 2

p,t is given by the
variance of portfolio returns conditional on past portfolio returns, i.e.,

σ 2
p,t=E

[
(yp,t−μp)2| yp,1,...,yp,t−1

]
. (4)

In this case, four different univariate specifications for the conditional variance
in (4) are considered: the GARCH model of Bollerslev (1986), the Glosten-
Jagannathan-Runkle (GJR) model of Glosten, Jagannathan, and Runkle (1993),
the exponential GARCH (EGARCH) model of Nelson (1991), and the asymmetric
power ARCH (APARCH) model of Ding, Granger, and Engle (1993). All models
are specified with their simplest forms, i.e., the variance only depends on one lag
of past returns and past conditional variances, as they have shown to be the most
relevant in empirical applications. Consequently, the GARCH model is given by:

σ 2
p,t=ω+αy2

p,t−1+βσ 2
p,t−1 (5)

where ω>0, β,α≥0 and α+β <1 to guarantee the positivity of conditional
variances and the stationarity of returns. The GJR model is given by:

σ 2
p,t=ω+αy2

p,t−1+βσ 2
p,t−1+δI(εp,t−1 <0)y2

p,t−1 (6)

where I(·) is the indicator function that takes value 1 when the argument is true.
The GJR model incorporates the asymmetric response of volatility to positive and
negative returns, known as leverage effect. The restriction to ensure positivity of σ 2

p,t
is ω>0, α,β,δ≥0. The model is stationary if δ<2(1−α−β); see Hentschel (1995).
The EGARCH model also incorporates the leverage effect and it is given by:

ln(σ 2
p,t)=ω+α

(∣∣εp,t−1
∣∣−E|εp,t−1|

)+δεp,t−1+β ln(σ 2
p,t−1). (7)

Rather than specifying the variance directly, the EGARCH model specifies
the natural logarithm of the variance and, consequently, the parameters are not
restricted to ensure the positivity of the conditional variance. The stationarity
condition is |β|<1 if εp,t is Gaussian; see Straumann and Mikosch (2006) for
a general condition. Note that the value of E

∣∣εp,t−1
∣∣ depends on the assumed

distribution of ε. For the standard Gaussian distribution, E
∣∣εp,t−1

∣∣=√2/π whereas
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for the Student’s t distribution, E
∣∣εp,t−1

∣∣=2
√

v−2
((v+1)/2)/(v−1)(
(v/2)) where

(·) is the gamma function. Finally, the APARCH model is given by:

σλ
p,t=ω+α

(∣∣εp,t−1
∣∣+δεp,t−1

)λ+βσλ
p,t−1. (8)

The APARCH model differs from the previous asymmetric specifications by directly
parameterizing the nonlinearity in the conditional variance via the parameter λ. To
ensure that σλ

p,t is nonnegative, it is necessary that ω≥0, α≥0 and −1≤δ≤1; see
Ding, Granger, and Engle (1993) for stationarity conditions.

On the other hand, when computing the VaR using a multivariate model, σ 2
p,t

is given by the variance of the portfolio returns conditional on past returns, i.e.,

σ 2
p,t=E

[
(yp,t−μp)2| Y1,...,Yt−1

]
=W ′t−1HtWt−1, (9)

where Ht=E[(Yt−μ)(Yt−μ)′| Y1,...,Yt−1] is the positive-definite conditional
covariance matrix of Yt.

To describe the dynamics of the conditional covariance matrix, Ht, we consider
models based on the decomposition of the conditional covariance matrix into
conditional standard deviations and correlations as follows:

Ht=DtRtDt (10)

where Dt=diag
(

h1/2
1t ...h1/2

Nt

)
with diag(·) being the operator that transforms a N×1

vector into a N×N diagonal matrix, and hjt is the conditional variance of the j-th
return which can be specified by one of the parametric univariate models described
above. The N×N matrix, Rt, is a symmetric positive-definite conditional correlation
matrix with elements ρij,t, where ρii,t=1. We consider three different specifications
for Rt: the constant conditional correlation (CCC) model of Bollerslev (1990), the
dynamic conditional correlation (DCC) model of Engle (2002), and the asymmetric
DCC (AsyDCC) model of Cappiello, Engle, and Sheppard (2006).

The CCC model assumes that the conditional correlation matrix Rt is constant
over time. In the DCC model, the conditional correlation matrix Rt is given by:

Rt=diag(Q−1/2
t ) Qt diag(Q−1/2

t ) (11)

where diag(Qt) is a diagonal matrix containing the diagonal elements of the N×N
positive-definite matrix Qt given by

Qt=(1−α−β)Q̄+αεt−1ε
′
t−1+βQt−1 (12)

where Q̄ is the N×N unconditional covariance matrix of εt=H−1/2
t (Yt−μ), and

α and β are nonnegative scalar parameters. The model is covariance-stationary if
α+β <1. Moreover, Qt is guaranteed to be positive definite if (1−α−β)Q̄ and Q0
are themselves positive definite.
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Finally, the AsyDCC model incorporates the leverage effect into the conditional
correlations. It is given by:

Qt=(1−α−β)Q̄−δ
̄+αεt−1ε
′
t−1+βQt−1+δnt−1n′t−1 (13)

where nt= I(εt <0)�εt and 
̄=E
[
ntn′t

]
. A necessary condition for Qt to be

covariance-stationary and positive definite is that (1−α−β)Q̄−δ
̄ and Q0 are
positive definite and α+β+λδ<1, where λ is the maximum eigenvalue of
Q̄−1/2
̄Q̄−1/2.

As noted above, the multivariate models are implemented using alternative
specifications for the univariate conditional variances. To facilitate the exposition
of the results, we denote by CCC–GARCH, CCC–GJR, CCC–EGARCH, and
CCC–APARCH the CCC model implemented with GARCH, GJR, EGARCH, and
APARCH univariate conditional variances, respectively. The same notation applies
to the DCC and AsyDCC models. This flexible modeling strategy allows the
estimation of twelve alternative multivariate models.

Finally, it is worth to wonder whether the multivariate conditional het-
eroskedasticity in the vector Yt, measured by Ht, is related with the univariate
conditional heteroskedasticity of the portfolio return, yp,t, given in expression
(4). Note that the latter is obtained after contemporaneous aggregation of the
returns in the portfolio. When the multivariate conditional covariance matrix, Ht, is
represented by a GARCH model, the results of Nijman and Sentana (1996), derived
for a bivariate portfolio, explain why conditional heteroskedasticity can also be
found in the univariate portfolio returns. However, in this article, we are interested
in large portfolios. In this sense, Zaffaroni (2007) has extended the results in Nijman
and Sentana (1996) by considering the limiting behavior of linear combinations of
returns. He shows that dynamic conditional heteroskedasticity is only preserved
when the individual returns are sufficiently cross-correlated. However, unlike the
finite N case of Nijman and Sentana (1996), the linear combination of infinite assets
is not a weak GARCH model although it displays dynamic univariate conditional
heteroskedasticity.

1.2 Forecast evaluation of VaR models

The forecast evaluation of VaR models is usually done by backtesting using the
unconditional and conditional coverage and independence tests proposed by
Kupiec (1995) and Christoffersen (1998). However, as mentioned earlier, these tests
are not appropriate for ranking alternative estimates of the VaR. Consequently, on
top of evaluating whether each of the estimated VaRs are adequate, we also compare
and rank them by implementing the CPA test of Giacomini and White (2006), which
can be applied to the comparison between nested and nonnested models and among
several alternative estimation procedures. The CPA test is implemented using the
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following asymmetric linear (tick) loss function of order ϑ :

Lϑ (et)=(ϑ−I(et <0))et (14)

where et=yp,t−VaRϑ
t . The loss function in (14) is the implicit loss function whenever

the object of interest is a forecast of a particular ϑ-quantile; see Giacomini and
Komunjer (2005).1 Consequently, finding the model that minimizes (14) is an
intuitive and appealing criterion to compare predictive ability.

A Wald-type test is conducted as follows:

CPAϑ=T

(
T−1

T−1∑
t=1

It LDϑ
t+1

)′
�̂−1

(
T−1

T−1∑
t=1

It LDϑ
t+1

)
(15)

where T is the sample size, LDϑ
t is the loss difference between the two models,

and �̂ is a matrix that consistently estimates the variance of It LDϑ
t+1. Following

Giacomini and White (2006), we assume It= (1, LDϑ
t ). The null hypothesis of

equal predictive ability is rejected for a size ξ when CPAϑ >χ2
T,1−ξ

.

2 MONTE CARLO EVIDENCE

In this section, we perform Monte Carlo experiments in order to compare the in-
sample and out-of-sample performances of multivariate versus univariate models.
A major concern when performing this kind of experiments is the choice of the
DGP. Consequently, we consider three alternative DGPs different from any of the
models implemented for the estimation of the VaR. In this way, we do not favor any
particular multivariate specification.

First, we generate data by the orthogonal GARCH (O-GARCH) model of
Alexander and Chibumba (1997) and Alexander (2001), extended to incorporate
leverage effects in the dynamics of the common factors. The second DGP considered
is a multivariate autoregressive stochastic volatility (MARSV) model; see Harvey,
Ruiz, and Shephard (1994) and Asai, McAleer, and Yu (2006). Finally, we simulate an
asymmetric version of the diagonal VEC (ASYDVEC) model of Bollerslev, Engle,
and Woodridge (1988) proposed by Engle and Sheppard (2008). In all cases, we
consider a Gaussian distribution for the conditional distribution of the simulated

1To see how the tick loss function works in practice, consider a simple example involving two different
VaR models. Suppose that the portfolio return in day t is −4% and that the VaR in day t (forecasted
in t−1) obtained from the two models are −2% and −6%, respectively. Obviously, for the first model,
there is a VaR violation whereas for the second there is not. For the first model, the value of the tick loss
function in (14) is (0.01−1)(−2)∼=2 whereas for the second model the value is (0.01−0)2=0.02. (Recall
that, since we are considering only a long position in the portfolio, the VaR will be always a negative
number). Therefore, according to the tick loss function, a model is more penalized when a VaR violation
is observed. Moreover, the greater is the magnitude of the violation the greater is the penalization.
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returns. The details about the parametrization of the three DGPs considered are
given in the Appendix.

Our Monte Carlo experiments are as follows. For each of the three DGPs
considered, we generate 100 systems of N=10 asset returns, each with a sample size
of T=5000 observations. Then, the first 2500 observations are used to estimate the
parameters of each of the univariate and multivariate models described in Section 1
and the corresponding VaR for ϑ=5% and ϑ=1%.

The univariate GARCH, GJR, EGARCH, and APARCH models are estimated
by quasi maximum likelihood (QML) using the Oxford MFE Matlab Toolbox by
Kevin Sheppard2, restricting the parameters to satisfy the positivity and stationarity
conditions when appropriate; see Straumann and Mikosch (2006) and Francq and
Zakoian (2009) for the asymptotic distribution of these estimators. The parameters
of the CAViaR model in (2) are estimated using regression quantiles as in Engle
and Manganelli (2004) and Koenker (2005). The VaR estimated by FHS is based on
the GARCH specification of the conditional variance.

The CCC model is estimated in two steps. First, univariate models are fitted
to estimate the conditional variances of each return in the system and then,
the correlation matrix is estimated using the sample correlations among the
standardized returns. The multivariate DCC models are estimated by the composite
likelihood (CL) estimator proposed by Engle, Shephard, and Sheppard (2008) that
considers all contiguous pairs of data3. Engle, Shephard, and Sheppard (2008)
also provide asymptotic properties of the CL estimator. All models are estimated
assuming Gaussian errors. Similarly, the quantile qϑ in (3) is obtained assuming a
Normal distribution when necessary.

For the VaR computed by each of the univariate and multivariate procedures,
we compute the average coverage and perform the unconditional coverage,
independence, and conditional coverage tests both in-sample and out-of-sample.
Consider first the in-sample results. For each of the three DGPs, the top panels of
Tables 1–3 report, respectively, the in-sample Monte Carlo averages and standard
deviations of the empirical coverages together with the number of rejections of the
null hypothesis mentioned above when the nominal size is 10%. Consider first the
results of the empirical coverages. Tables 1–3 show that, regardless of the DGP and
the VaR level, the average empirical coverages are very close to the nominal level for
all the procedures implemented to estimate the VaR. The only remarkable difference
among procedures appears when looking at the Monte Carlo standard deviations
of the CAViaR and FHS estimators. In the former case, the standard deviation is
clearly smaller (around ten times) than the others while in the latter, we observe
larger deviations (around twice). Therefore, attending to the empirical coverage
results, it seems that the univariate CAViaR model perform the best among the
procedures considered to estimate the VaR, while the FHS performs the worst.

2http://www.kevinsheppard.com/wiki/MFE_Toolbox
3In this case, we have developed our own implementation in Matlab.
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The bad performance of the FHS procedure is also clear when analyzing the
number of rejections of the unconditional and conditional coverage tests, which
are larger (around twice) than for the other procedures implemented, and clearly
larger than the nominal size of 10%. When looking at the number of rejections
of the independence, unconditional and conditional coverage tests for all the
other procedures, we observe they are either smaller or close to the nominal
size. Therefore, from these tests we cannot conclude about different performances
among the in-sample VaR estimates.

As mentioned above, these tests are not useful to compare procedures.
Consequently, for each of the DGPs considered, the top panels of Tables 4–6
report, respectively, the in-sample number of times the CPA test prefers one of
the two models being compared. Specifically, in each entry of these tables, the first
number corresponds to the number of times the univariate model in the column
outperforms the multivariate model in the row. The second number corresponds
to the number of times the multivariate model outperforms the univariate model.
In the remaining cases, the test is indifferent between both models. The results
of this test are not completely conclusive and depend on the particular DGP
considered. For instance, when considering the O-GARCH model as DGP, the
top panel of Table 4 shows that the test is indifferent between the univariate and
multivariate specifications in approximately 60% of the simulations. However,
if ϑ=5% and the CPA test prefers one model, this model corresponds always
to a multivariate specification. If ϑ=1%, the test prefers more the multivariate
specifications (around 40% of the time) although the univariate ones are chosen a
few times (less than 10% of the time). However, the results are different when we
consider the MARSV as DGP. From the top panel of Table 5, we can observe that the
CPA test is indifferent in approximately 80% of the simulations. Furthermore, when
one procedure is preferred, it is more often an univariate specification rather than
a multivariate one. Only the FHS procedure is never chosen, in concordance with
the results commented above on the empirical coverages. Finally, when the DGP is
the ASYDVEC model, there is also a large number of times, between 70% and 80%,
in which the CPA test is indifferent. In this case, when one of the models is chosen,
the test prefers roughly the same number of times a univariate or a multivariate
procedure.

Therefore, the in-sample comparison between univariate and multivariate
procedures to estimate the VaR has mixed results depending on the DGP
considered. The only procedure that seems to be clearly rejected is the FHS one.
To better appreciate the differences, we also carry out an out-of-sample VaR
comparison where the parameters are estimated using the first 2500 observations
and the remaining 2500 observations are used to compute one-step-ahead VaR
forecasts. As with the in-sample comparison, the bottom panels of Tables 1–3 report
the corresponding Monte Carlo averages and standard deviations of the empirical
coverages together with the number of rejections of the null hypothesis for the
independent, unconditional coverage and conditional coverage tests. Observing
the average empirical coverages, the conclusions are similar to those obtained in
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the in-sample analysis, as these coverages are very close to the nominal VaR levels.
However, when the DGP is the O-GARCH model, the standard deviations of the
empirical coverages of the univariate procedures are clearly larger (around twice)
than those of the multivariate ones. For the other two DGPs, the standard deviations
are roughly similar regardless of the procedure implemented to estimate the VaR.

When analyzing the rejections of the independence, unconditional and
conditional coverage tests, we can observe that, for the latter two tests, the rejections
are larger than the nominal size of 10%, while for the former one they are
usually smaller. In any case, there are not relevant differences between the results
corresponding to univariate and multivariate procedures. Therefore, as with the in-
sample analysis, when analyzing the empirical coverages and the backtesting tests
there is not a clear conclusion about which procedure could be more appropriate.

Consider now the results of the CPA test implemented to compare the out-
of-sample VaR estimates reported in the bottom panels of Tables 4–6 for each of
the three DGPs considered, respectively. Regarding the results when the systems
are generated by the O-GARCH model, we can observe that the number of times
when the CPA test is indifferent is now smaller than in the in-sample comparison,
being around 40%. Furthermore, the multivariate procedures are clearly preferred
when compared with the univariate ones. Finally, the results for the MARSV and
ASYDVEC processes are similar. The CPA test is indifferent in approximately 75% of
the cases. However, when looking at the results for the ϑ=1% VaR level required by
the Basel Accord, it is clear that if a model is chosen, then it is usually a multivariate
model.

Therefore, we can summarize the Monte Carlo results by noting that the
usual backtesting procedures give mixed results when comparing univariate and
multivariate procedures to estimate the VaR regardless of whether the comparison
is made in- or out-of-sample. In this sense, the results are in concordance with those
obtained by McAleer and da Veiga (2008). However, when implementing the CPA
test, we observe that it is indifferent in many cases but, when it chooses a model,
most of the time this model has a multivariate specification. The preference of the
CPA test for multivariate specifications is clearer out-of-sample.

The Monte Carlo results suggest that multivariate and univariate models
deliver different estimates of the portfolio conditional variance and, consequently,
different estimates of the portfolio VaR. Furthermore, the results are in favor of the
multivariate approach. This difference can be explained by the fact that univariate
models impose parameter restrictions that limits the dynamics represented by the
multivariate models. The added flexibility of multivariate models translates into to
more accurate estimates of the portfolio VaR. Therefore, if parameters are known,
this additional flexibility allows us to explain why multivariate models work better.
In practice, parameters need to be estimated, which ends up adding additional
uncertainty to multivariate models in comparison to the their less parameterized
univariate counterparts. According to our results, this uncertainty due to a larger
number of estimated parameters does not compensate the gains coming from a
better representation of the volatility dynamics in multivariate models.
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3 EMPIRICAL EVALUATION WITH REAL MARKET DATA

In this section, we compare empirically the multivariate and univariate models
described above by implementing them to forecast the one-day-ahead VaR of a
long position in equally weighted diversified portfolios with a very large number
of assets. This is a realistic situation faced in most financial institutions. Moreover,
we focus on the estimation of the portfolio 1%-VaR, which is the relevant level for
risk financial institutions which must report this level to measure their market risk
exposure in accordance to the Basel Accords.

We analyze three real market portfolios of daily returns observed from
January 3, 2000 to June 30, 2010, with T=2639. The first 1639 observations
correspond to the in-sample period whereas the remaining 1000 observations
correspond to the out-of-sample period. The first portfolio analyzed is composed
of returns of forty-eight US industry portfolios.4 The second portfolio is composed
of returns on twenty-five portfolios of stocks formed on the basis of size and book-
to-market. These two data sets were downloaded from the web page of Kenneth
French.5 Finally, the third portfolio considered is composed of returns of all stocks
belonging to the S&P100 index with common available observations during the
sample period. This yields a total of seventy-seven stocks. This third portfolio was
downloaded from the Reuters Ecowin database.

The top panel of Table 7 reports, for each of the three data sets and across the
assets composing each of them, the average mean return (in %), maximum and
minimum return (in %), standard deviation (in %), skewness, and kurtosis, using
data corresponding to the in-sample (first 1639 observations, from January 3, 2000 to
July 11, 2006) and out-of-sample periods (last 1000 observations, from July 12, 2006 to
June 30, 2010). We can observe that the mean return of the three portfolios is smaller
in the out-of-sample period, which covers the financial crisis. On the other hand, the
standard deviations are larger in the out-of-sample period. In all cases, the kurtosis
are clearly greater than 3. Finally, with the exception of the industry portfolio, the
skewness coefficients are negative and larger (in size) in the out-of-sample period.

In the same way, the lower panel of Table 7 reports a summary of the sample
moments of the univariate portfolio returns corresponding to the equally weighted
portfolio for each of the three data sets. Because this is a well-diversified portfolio,
the realized returns are less extreme and hence, the standard deviations (for each

4The industry sectors included in the portfolio are: agriculture, food products, candy and soda, beer and
liquor, tobacco products, recreation, entertainment, printing and publishing, consumer goods, apparel,
healthcare, medical equipment, pharmaceutical products, chemicals, rubber and plastic products,
textiles, construction materials, construction, steel, fabricated products, machinery, electrical equipment,
automobiles and trucks, aircraft, shipbuilding and railroad equipment, defense, precious metals,
non metallic and industrial metal mining, coal, petroleum and natural gas, utilities, communication,
personal services, business services, computers, electronic equipment, measuring and control equipment,
business supplies, shipping containers, transportation, wholesale, retail, restaurants/hotels/motels,
banking, insurance, real estate, trading, and other (sanitary services, steam, air-conditioning supplies,
irrigation systems, and cogeneration).

5http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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Table 7 Descriptive statistics for the three portfolios

Industry portfolios S&P100 stocks Size-B/M portfolios

Multivariate data

In sample
Mean return(%) 0.095 0.013 0.043
Max. mean return (%) 0.218 0.120 0.083
Min. mean return (%) −0.006 −0.104 −0.011
Mean std. dev. (%) 1.299 2.159 1.204
Max. std. dev. (%) 3.173 5.135 1.646
Min. std. dev. (%) 0.546 1.394 0.892
Mean kurtosis 12.599 18.822 5.330
Max. kurtosis 228.841 262.114 8.431
Min. kurtosis 3.834 3.998 3.414
Mean skewness 0.413 −0.568 −0.089
Max. skewness 9.158 0.684 0.330
Min. skewness −0.794 −10.136 −0.526

Out of sample
Mean return (%) 0.048 −0.022 0.010
Max. mean return (%) 0.092 0.065 0.046
Min. mean return (%) −0.007 −0.258 −0.023
Mean std. dev. (%) 2.069 2.536 1.884
Max. std. dev. (%) 4.305 5.567 2.417
Min. std. dev. (%) 1.104 1.206 1.478
Mean kurtosis 8.354 14.684 7.767
Max. kurtosis 41.319 288.199 12.953
Min. kurtosis 5.266 5.373 5.726
Mean skewness 0.128 −0.231 −0.120
Max. skewness 2.840 1.560 0.306
Min. skewness −0.500 −12.294 −0.345

Univariate data (equally weighted)

In sample
Mean return (%) 0.095 0.013 0.043
Max. return (%) 3.818 5.623 4.876
Min. return (%) −4.923 −5.168 −5.862
Std. dev. (%) 0.857 1.050 1.075
Kurtosis 4.638 6.051 4.463
Skewness −0.253 0.004 −0.102

Out of sample
Mean return (%) 0.048 −0.022 0.010
Max. return (%) 9.829 11.805 9.796
Min. return (%) −9.255 −9.925 −9.843
Std. dev. (%) 1.768 1.779 1.811
Kurtosis 7.260 10.657 7.343
Skewness −0.203 −0.212 −0.192
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data set) are smaller than the corresponding mean standard deviations reported
in the top panel of the table, both in the in- and out-of-sample periods. The same
happens for the skewness and kurtosis measures. The skewness coefficients for
equally weighted portfolios are negative and larger (in size) in the out-of-sample
period, and the kurtosis are also larger than 3.

For each of the data sets and using the first 1639 observations, we estimate all
univariate and multivariate models by QML as explained in Section 3, but now
maximizing both the Gaussian and the Student’s t log-likelihood functions. In the
second case, we denote the model by adding a “t” to the corresponding acronyms.
The only exception is the GARCH-FHS approach that is based on the estimation
of the GARCH model assuming Gaussian errors.6 Table 8 reports the estimated
parameters of all models for each of the three portfolios considered, along with
their asymptotic standard deviations computed using numerical derivatives7. The
estimates have been restricted to satisfy the positivity and stationarity conditions.
The parameter estimates are significant and similar to those found in previous
works by other authors. For instance, the values of the DCC and AsyDCC
parameters are similar to those reported in Cappiello, Engle, and Sheppard (2006),
whereas the values of the CAViaR-estimated parameters are similar to those
reported in Engle and Manganelli (2004). As in Engle and Sheppard (2001), we
observe that the estimated news parameter, α, in the DCC models are significant
in all cases. Furthermore, the parameter δ associated to the asymmetric term
in the AsyDCC model in the industry and size-B/M portfolios is positive and
significant when considering Gaussian error distributions, and the associated
estimated values are close to those reported in Cappiello, Engle, and Sheppard
(2006). When considering the Student’s t as the error distribution, we find that
the asymmetry parameter in the AsyDCC model is positive and significant for the
S&P100 stocks and nearly zero and nonsignificant for the remaining instances.

For the univariate models, we find that the parameter δ associated to the
asymmetric term is significant in all cases. Finally, we observe that, in general,
the estimates of the degrees of freedom, v, in the GARCH-t, GJR-t, EGARCH-t,
and APARCH-t models are very large, suggesting that the univariate standardized
returns can be adequately represented by the Gaussian distribution when these
models are fitted to represent the evolution of their conditional variances. For
the Industry and Size-B/M portfolios, the estimated degrees of freedom for the
univariate models are larger than 45 in all specifications. For the S&P100 data set,
the estimated values are larger than 15. For the multivariate models, however, we
find that the estimated degrees of freedom are lower than 7 in all specifications

6We also consider a CCC model in which the unconditional correlation matrix of standardized returns
is given by the identity matrix, which implies that all cross-correlations are assumed to be zero.
Moreover, we consider the multivariate FHS procedure suggested by Christoffersen (2009). These models,
however, perform very poorly in comparison to the multivariate specifications considered in this article.
Consequently, we do not report the corresponding results.

7Note that we have not included parameter estimates of the multivariate CCC models because they do not
present dynamics in the conditional correlations.
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and in all data sets. These findings are consistent with those obtained by Pesaran
and Pesaran (2010). Given that the parameter estimates of the univariate Gaussian
and Student’s t models are very similar in all data sets, we focus solely on the
performance of univariate Gaussian models.

After estimating the parameters, we obtain out-of-sample forecasts of the
VaR using two alternative strategies. First, out-of-sample forecasts are obtained
using a fixed estimation window as in the Monte Carlo simulations. In this case,
the out-of-sample VaRs are computed with the parameters reported in Table 8
that are kept fixed during the out-of-sample period. The main advantage of this
procedure is that it entails less computational effort since all models are estimated
only once. However, parameter estimates may become outdated and possibly
harm the predictive accuracy. Our second strategy is to obtain out-of-sample
forecasts using rolling estimation windows of T−1000 observations, in which the
parameters are reestimated 1000 times in order to provide one-step-ahead forecasts.
Obviously, although this strategy implies a huge computational effort, the resulting
out-of-sample forecasts tend to gain accuracy.

3.1 Results using fixed estimation window

Table 9 reports the backtesting results for the three portfolios considered based on
out-of-sample 1%-VaR estimates obtained with a fixed estimation window. For each
portfolio, Table 9 reports the empirical coverage of each model and the p-values of
the independence, unconditional, and conditional coverage tests, respectively. We
can observe that, for the three portfolios and all VaR estimation procedures, the
empirical coverages of all models tend to fall far beyond their expected nominal
level of 1%. This result is likely to be related to the financial crisis that started
in 2007–2008 and was also found by Pesaran and Pesaran (2010). This is also
confirmed in Table 7, where we observe that out-of-sample unconditional moments
are different with respect to in-sample moments, with average returns becoming
lower and average standard deviation becoming higher in the out-of-sample period.
Following a period of calm in financial markets, the VaR estimates can decline to
low levels, but they might underestimate risk during a period of stress that lies
ahead, resulting in an increase in the number of violations.

We can also observe in Table 9, except for the CCC model, that multivariate Stu-
dent’s t models deliver always a lower number of violations in comparison to their
Gaussian counterparts, resulting in empirical coverages closer to the nominal levels
of 1%. For the industry portfolios and size-B/M portfolios, the best performance
in terms of empirical coverage was achieved by the DCC–GJR-t (2.2% and 1.5%,
respectively), whereas for the S&P100 stocks the best performance was achieved
by the univariate CAViaR model (2.1%). Finally, the comparison among alternative
multivariate models indicated that DCC and AsyDCC models perform better than
CCC models, suggesting that, in fact, conditional correlations tend to be dynamic
rather than constant. When looking at the p-values of the backtests, we can also

26



Ta
bl

e
9

O
ut

-o
f-

sa
m

pl
e

ba
ck

te
st

in
g

re
su

lt
s

fo
r

th
e

th
re

e
po

rt
fo

lio
s

(fi
xe

d
es

ti
m

at
io

n
w

in
do

w
)

In
du

st
ry

po
rt

fo
lio

s
S&

P1
00

st
oc

ks
Si

ze
-B

/M
po

rt
fo

lio
s

C
ov

er
ag

e
(%

)
In

de
p.

U
C

C
C

C
ov

er
ag

e
(%

)
In

de
p.

U
C

C
C

C
ov

er
ag

e
(%

)
In

de
p.

U
C

C
C

M
ul

ti
va

ri
at

e
m

od
el

s
D

C
C

–G
A

R
C

H
4.

0
0.

07
1

0.
00

0
0.

00
0

2.
9

0.
19

5
0.

00
0

0.
00

0
3.

1
0.

16
5

0.
00

0
0.

00
0

D
C

C
–G

A
R

C
H

-t
2.

4
0.

28
7

0.
00

0
0.

00
0

3.
4

0.
12

7
0.

00
0

0.
00

0
1.

9
0.

40
3

0.
01

1
0.

02
7

D
C

C
–G

JR
3.

8
0.

08
7

0.
00

0
0.

00
0

3.
0

0.
18

0
0.

00
0

0.
00

0
2.

4
0.

28
7

0.
00

0
0.

00
0

D
C

C
–G

JR
-t

2.
2

0.
33

1
0.

00
1

0.
00

3
3.

3
0.

13
9

0.
00

0
0.

00
0

1.
5

0.
51

3
0.

13
8

0.
26

9
D

C
C

–E
G

A
R

C
H

4.
6

0.
03

7
0.

00
0

0.
00

0
3.

5
0.

11
6

0.
00

0
0.

00
0

3.
7

0.
09

6
0.

00
0

0.
00

0
D

C
C

–E
G

A
R

C
H

-t
2.

9
0.

19
5

0.
00

0
0.

00
0

3.
3

0.
13

9
0.

00
0

0.
00

0
2.

1
0.

35
4

0.
00

2
0.

00
6

D
C

C
–A

PA
R

C
H

3.
8

0.
08

7
0.

00
0

0.
00

0
3.

4
0.

12
7

0.
00

0
0.

00
0

3.
5

0.
11

6
0.

00
0

0.
00

0
D

C
C

–A
PA

R
C

H
-t

2.
4

0.
28

7
0.

00
0

0.
00

0
3.

1
0.

16
5

0.
00

0
0.

00
0

2.
1

0.
35

4
0.

00
2

0.
00

6
A

sy
D

C
C

–G
A

R
C

H
6.

8
0.

38
9

0.
00

0
0.

00
0

7.
3

0.
87

5
0.

00
0

0.
00

0
6.

0
0.

33
1

0.
00

0
0.

00
0

A
sy

D
C

C
–G

A
R

C
H

-t
2.

4
0.

28
7

0.
00

0
0.

00
0

2.
6

0.
24

7
0.

00
0

0.
00

0
1.

9
0.

40
3

0.
01

1
0.

02
7

A
sy

D
C

C
–G

JR
6.

4
0.

54
4

0.
00

0
0.

00
0

7.
4

0.
82

2
0.

00
0

0.
00

0
5.

4
0.

17
5

0.
00

0
0.

00
0

A
sy

D
C

C
–G

JR
-t

2.
2

0.
33

1
0.

00
1

0.
00

3
2.

5
0.

26
7

0.
00

0
0.

00
0

1.
5

0.
51

3
0.

13
8

0.
26

9
A

sy
D

C
C

–E
G

A
R

C
H

6.
9

0.
35

5
0.

00
0

0.
00

0
7.

6
0.

72
0

0.
00

0
0.

00
0

6.
0

0.
72

8
0.

00
0

0.
00

0
A

sy
D

C
C

–E
G

A
R

C
H

-t
2.

9
0.

19
5

0.
00

0
0.

00
0

2.
7

0.
22

9
0.

00
0

0.
00

0
2.

1
0.

35
4

0.
00

2
0.

00
6

A
sy

D
C

C
–A

PA
R

C
H

6.
5

0.
50

3
0.

00
0

0.
00

0
7.

5
0.

77
0

0.
00

0
0.

00
0

5.
8

0.
39

6
0.

00
0

0.
00

0
A

sy
D

C
C

–A
PA

R
C

H
-t

2.
4

0.
28

7
0.

00
0

0.
00

0
2.

3
0.

30
8

0.
00

0
0.

00
1

2.
1

0.
35

4
0.

00
2

0.
00

6
C

C
C

–G
A

R
C

H
6.

0
0.

33
1

0.
00

0
0.

00
0

5.
2

0.
63

6
0.

00
0

0.
00

0
3.

4
0.

12
7

0.
00

0
0.

00
0

C
C

C
–G

A
R

C
H

-t
6.

0
0.

33
1

0.
00

0
0.

00
0

4.
7

0.
34

2
0.

00
0

0.
00

0
3.

3
0.

13
9

0.
00

0
0.

00
0

C
C

C
–G

JR
5.

8
0.

11
3

0.
00

0
0.

00
0

5.
1

0.
23

6
0.

00
0

0.
00

0
3.

2
0.

15
2

0.
00

0
0.

00
0

C
C

C
–G

JR
-t

5.
8

0.
11

3
0.

00
0

0.
00

0
4.

6
0.

37
3

0.
00

0
0.

00
0

3.
1

0.
16

5
0.

00
0

0.
00

0
C

C
C

–E
G

A
R

C
H

6.
3

0.
24

8
0.

00
0

0.
00

0
5.

8
0.

39
6

0.
00

0
0.

00
0

4.
2

0.
05

8
0.

00
0

0.
00

0
C

C
C

–E
G

A
R

C
H

-t
6.

2
0.

27
4

0.
00

0
0.

00
0

5.
0

0.
26

0
0.

00
0

0.
00

0
4.

2
0.

05
8

0.
00

0
0.

00
0

C
C

C
–A

PA
R

C
H

5.
8

0.
11

3
0.

00
0

0.
00

0
5.

5
0.

15
7

0.
00

0
0.

00
0

4.
2

0.
05

8
0.

00
0

0.
00

0
C

C
C

–A
PA

R
C

H
-t

5.
9

0.
10

0
0.

00
0

0.
00

0
4.

9
0.

28
6

0.
00

0
0.

00
0

4.
1

0.
06

4
0.

00
0

0.
00

0
U

ni
va

ri
at

e
m

od
el

s
G

A
R

C
H

3.
9

0.
07

9
0.

00
0

0.
00

0
3.

2
0.

98
0

0.
00

0
0.

00
0

3.
1

0.
16

5
0.

00
0

0.
00

0
G

JR
3.

4
0.

12
7

0.
00

0
0.

00
0

2.
8

0.
21

2
0.

00
0

0.
00

0
2.

8
0.

21
2

0.
00

0
0.

00
0

EG
A

R
C

H
4.

2
0.

05
8

0.
00

0
0.

00
0

4.
5

0.
40

6
0.

00
0

0.
00

0
4.

0
0.

07
1

0.
00

0
0.

00
0

A
PA

R
C

H
4.

8
0.

02
9

0.
00

0
0.

00
0

4.
1

0.
55

5
0.

00
0

0.
00

0
3.

9
0.

07
9

0.
00

0
0.

00
0

G
A

R
C

H
–F

H
S

4.
1

0.
06

4
0.

00
0

0.
00

0
3.

5
0.

82
7

0.
00

0
0.

00
0

3.
4

0.
12

7
0.

00
0

0.
00

0
C

A
V

ia
R

3.
5

0.
11

6
0.

00
0

0.
00

0
2.

1
0.

35
4

0.
00

2
0.

00
6

3.
9

0.
07

9
0.

00
0

0.
00

0

27



observe that in the industry portfolios and S&P100 stocks data sets, all models
reject the null hypothesis of independence and correct conditional coverage. On
the other hand, the backtesting results for the size-B/M portfolios indicate that
the DCC–GJR-t model achieves a remarkable performance as it is the only model
that passes all tests.

Tables 10–12 report the results for pairwise comparisons among all candidate
models according to the CPA test for each of the three data sets considered, respec-
tively. In these tables, after each CPA coefficient, a left (up) arrow means that the
univariate model in the row outperforms (underperforms) the univariate model in
the column. The associated p-values appear in parentheses. The results corroborates
the evidence from the backtests discussed before, as they indicate that multivariate
models outperform their univariate counterparts in most cases. For the industry
and size-B/M portfolios, Tables 10 and 12 show that all DCC-t and AsyDCC-t
specifications outperformed all univariate models. For the S&P100 stocks, however,
Table 11 reveals that the univariate GJR and CAViaR models outperforms all
multivariate models. Finally, we observe that multivariate models with constant
conditional correlations usually underperform, thus corroborating the evidence
that assuming conditional correlations to be time-varying rather than constant leads
to improvements in the VaR forecasts. Finally, it is important to point out that when
estimating multivariate models with Gaussian errors the results are mixed.

The backtesting results obtained with fixed estimation window discussed
above leave room for discussion. Even though multivariate models outperform
their univariate counterparts when implemented to forecast the portfolio 1%-VaR
for two portfolios considered in this article, the majority of both specifications fails
to pass the backtests in most of the cases. One possible explanation for this result
could be the fact that the parameters estimated in the in-sample period are kept
fixed in the out-of-sample period. Therefore, considering that the out-of-sample
unconditional moments reported in Table 7 are very much different with respect
to in-sample moments, one can suspect that the out-of-sample VaR forecasts will
yield much higher empirical coverage rates and, consequently, failing to pass the
backtests. In fact, the results reported in Table 9 confirm this idea. Obviously,
multivariate models with Student’s t innovations tend to be less affected by this
problem since some of the individual assets already exhibit in the in-sample period
high standard deviation and kurtosis, which tends to make the estimated degrees
of freedom small and consequently leads to better empirical coverage rates in the
out-of-sample period.

3.2 Results using rolling estimation window

To circumvent the limitations imposed by the fixed estimation window, we consider
an alternative estimation strategy in which parameters are reestimated using a
rolling window of T−1000 observations. Starting from the first observation, we
estimate the parameters and obtain a one-step-ahead forecast. We repeat this
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Table 10 Results of CPA test with p-values in parentheses

GARCH GJR EGARCH APARCH GARCH–FHS CAViaR

DCC–GARCH 8.718↑ 18.493↑ 7.799← 12.642← 12.979← 9.533↑
(0.012) (0.000) (0.020) (0.001) (0.001) (0.008)

DCC–GARCH-t 15.393← 7.031← 11.120← 15.369← 20.872← 19.737←
(0.000) (0.029) (0.003) (0.000) (0.000) (0.000)

DCC–GJR 15.418← 8.573← 11.021← 17.754← 25.482← 7.286←
(0.000) (0.013) (0.004) (0.000) (0.000) (0.026)

DCC–GJR-t 22.339← 10.663← 13.999← 19.223← 25.942← 14.560←
(0.000) (0.004) (0.000) (0.000) (0.000) (0.000)

DCC–EGARCH 7.078↑ 13.083↑ 16.316← 24.223← 6.479↑ 8.302↑
(0.029) (0.001) (0.000) (0.000) (0.039) (0.015)

DCC–EGARCH-t 19.420← 8.314← 19.489← 30.864← 27.048← 12.495←
(0.000) (0.015) (0.000) (0.000) (0.000) (0.001)

DCC–APARCH 10.037← 9.809↑ 10.647← 18.352← 17.798← 7.070↑
(0.006) (0.007) (0.004) (0.000) (0.000) (0.029)

DCC–APARCH-t 22.350← 16.532← 14.313← 20.280← 24.375← 13.138←
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

AsyDCC–GARCH 19.649↑ 20.810↑ 22.831↑ 19.491↑ 19.614↑ 20.209↑
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

AsyDCC–GARCH-t 15.393← 7.031← 11.120← 15.369← 20.873← 19.738←
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

AsyDCC–GJR 18.448↑ 20.175↑ 22.888↑ 18.885↑ 18.370↑ 19.066↑
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

AsyDCC–GJR-t 22.339← 10.663← 13.999← 19.223← 25.942← 14.560←
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

AsyDCC–EGARCH 20.440↑ 22.079↑ 25.151↑ 21.566↑ 20.421↑ 21.000↑
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

AsyDCC–EGARCH-t 19.417← 8.315← 19.488← 30.857← 27.040← 12.495←
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

AsyDCC–APARCH 18.700↑ 20.392↑ 23.108↑ 19.372↑ 18.616↑ 19.300↑
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

AsyDCC–APARCH-t 22.351← 16.532← 14.313← 20.280← 24.375← 13.138←
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

CCC–GARCH 17.510↑ 16.866↑ 10.161↑ 8.741↑ 17.470↑ 18.140↑
(0.000) (0.000) (0.006) (0.012) (0.000) (0.000)

CCC–GARCH-t 16.781↑ 15.919↑ 8.468↑ 7.390↑ 16.574↑ 17.431↑
(0.000) (0.000) (0.014) (0.024) (0.000) (0.000)

CCC–GJR 13.232↑ 17.165↑ 12.088↑ 8.272↑ 12.744↑ 14.244↑
(0.001) (0.000) (0.002) (0.015) (0.001) (0.000)

CCC–GJR-t 12.968↑ 18.398↑ 11.868↑ 6.959↑ 12.325↑ 14.340↑
(0.001) (0.000) (0.002) (0.030) (0.002) (0.000)

CCC–EGARCH 16.556↑ 18.886↑ 23.875↑ 18.293↑ 16.416↑ 17.231↑
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

CCC–EGARCH-t 16.333↑ 18.767↑ 23.448↑ 17.964↑ 16.148↑ 17.013↑
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

CCC–APARCH 14.457↑ 17.433↑ 17.514↑ 13.734↑ 14.024↑ 15.222↑
(0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

CCC–APARCH-t 15.043↑ 18.359↑ 18.517↑ 14.991↑ 14.632↑ 15.790↑
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Data set: industry portfolios.
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Table 11 Results of CPA test with p-values in parentheses

GARCH GJR EGARCH APARCH GARCH–FHS CAViaR

DCC–GARCH 7.076↑ 9.492↑ 4.734← 3.235← 3.723↑ 10.209↑
(0.029) (0.008) (0.093) (0.198) (0.155) (0.006)

DCC–GARCH-t 10.225↑ 11.717↑ 7.295↑ 4.955↑ 9.918↑ 11.420↑
(0.006) (0.002) (0.026) (0.083) (0.007) (0.003)

DCC–GJR 3.267← 11.138↑ 8.764← 11.279← 2.504← 9.515↑
(0.195) (0.003) (0.012) (0.003) (0.285) (0.008)

DCC–GJR-t 10.082↑ 11.918↑ 6.808← 2.841← 9.4753↑ 11.136↑
(0.006) (0.002) (0.033) (0.241) (0.008) (0.003)

DCC–EGARCH 6.880↑ 11.585↑ 2.961← 0.948← 5.634↑ 9.888↑
(0.032) (0.003) (0.227) (0.622) (0.059) (0.007)

DCC–EGARCH-t 9.202↑ 11.951↑ 8.571↑ 6.197↑ 8.759↑ 10.607↑
(0.010) (0.002) (0.014) (0.044) (0.012) (0.005)

DCC–APARCH 8.503↑ 12.289↑ 6.477← 7.200← 5.232← 12.147↑
(0.014) (0.002) (0.039) (0.027) (0.073) (0.002)

DCC–APARCH-t 9.832↑ 11.792↑ 8.676← 4.291← 9.434↑ 10.774↑
(0.007) (0.002) (0.013) (0.116) (0.008) (0.004)

AsyDCC–GARCH 24.568↑ 24.866↑ 25.287↑ 23.681↑ 24.526↑ 25.029↑
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

AsyDCC–GARCH-t 9.713↑ 9.179↑ 6.022← 3.100← 9.129↑ 10.104↑
(0.007) (0.010) (0.049) (0.212) (0.010) (0.006)

AsyDCC–GJR 24.095↑ 24.427↑ 24.916↑ 23.245↑ 24.046↑ 24.565↑
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

AsyDCC–GJR-t 10.467↑ 10.764↑ 6.714← 5.088← 8.537← 10.858↑
(0.005) (0.004) (0.034) (0.078) (0.014) (0.004)

AsyDCC–EGARCH 24.607↑ 24.935↑ 25.496↑ 23.831↑ 24.564↑ 25.061↑
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

AsyDCC–EGARCH-t 8.700↑ 9.730↑ 6.655← 3.599← 8.320↑ 9.098↑
(0.012) (0.007) (0.035) (0.165) (0.015) (0.010)

AsyDCC–APARCH 24.151↑ 24.492↑ 25.017↑ 23.352↑ 24.105↑ 24.614↑
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

AsyDCC–APARCH-t 10.061↑ 10.170↑ 7.268← 5.322← 8.591← 10.102↑
(0.006) (0.006) (0.026) (0.069) (0.013) (0.006)

CCC–GARCH 14.641↑ 16.343↑ 12.970↑ 12.287↑ 14.276↑ 16.064↑
(0.000) (0.000) (0.001) (0.002) (0.000) (0.000)

CCC–GARCH-t 13.866↑ 17.073↑ 14.560↑ 14.221↑ 13.383↑ 15.375↑
(0.000) (0.000) (0.000) (0.000) (0.001) (0.000)

CCC–GJR 16.557↑ 20.258↑ 19.635↑ 17.645↑ 16.103↑ 18.121↑
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

CCC–GJR-t 11.827↑ 15.219↑ 13.217↑ 11.937↑ 11.290↑ 13.482↑
(0.002) (0.000) (0.001) (0.002) (0.003) (0.001)

CCC–EGARCH 15.447↑ 17.660↑ 15.178↑ 14.007↑ 15.058↑ 16.950↑
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

CCC–EGARCH-t 14.528↑ 17.733↑ 15.899↑ 14.947↑ 14.080↑ 15.974↑
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

CCC–APARCH 16.998↑ 20.376↑ 19.425↑ 17.950↑ 16.638↑ 18.324↑
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

CCC–APARCH-t 12.365↑ 15.570↑ 13.015↑ 12.315↑ 11.879↑ 13.867↑
(0.002) (0.000) (0.001) (0.002) (0.002) (0.000)

Data set: S&P100 stocks.
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Table 12 Results of CPA test with p-values in parentheses

GARCH GJR EGARCH APARCH GARCH–FHS CAViaR

DCC–GARCH 5.723← 6.228↑ 5.179← 9.678← 11.964← 12.516←
(0.057) (0.044) (0.075) (0.007) (0.002) (0.001)

DCC–GARCH-t 11.722← 4.224← 6.500← 10.564← 14.102← 14.603←
(0.002) (0.120) (0.038) (0.005) (0.000) (0.000)

DCC–GJR 7.251← 2.598← 7.642← 14.347← 12.288← 16.504←
(0.026) (0.272) (0.021) (0.000) (0.002) (0.000)

DCC–GJR-t 12.671← 7.252← 8.4363← 13.567← 16.313← 17.993←
(0.001) (0.026) (0.014) (0.001) (0.000) (0.000)

DCC–EGARCH 5.157↑ 8.637↑ 7.993← 25.131← 9.276↑ 18.232←
(0.075) (0.013) (0.018) (0.000) (0.009) (0.000)

DCC–EGARCH-t 15.813← 4.825← 13.768← 30.931← 22.797← 21.516←
(0.000) (0.089) (0.000) (0.000) (0.000) (0.000)

DCC–APARCH 9.067↑ 8.809↑ 5.132← 14.018← 16.299← 17.414←
(0.010) (0.012) (0.076) (0.000) (0.000) (0.000)

DCC–APARCH-t 11.345← 4.737← 8.614← 16.141← 14.508← 16.442←
(0.003) (0.093) (0.013) (0.000) (0.000) (0.000)

AsyDCC–GARCH 15.948↑ 15.993↑ 16.060↑ 13.757↑ 15.462↑ 14.134↑
(0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

AsyDCC–GARCH-t 11.722← 4.220← 6.500← 10.564← 14.102← 14.603←
(0.002) (0.120) (0.038) (0.005) (0.000) (0.000)

AsyDCC–GJR 14.922↑ 15.389↑ 15.793↑ 13.218↑ 14.326↑ 12.941↑
(0.000) (0.000) (0.000) (0.001) (0.000) (0.001)

AsyDCC–GJR-t 12.671← 7.257← 8.436← 13.567← 16.313← 17.993←
(0.001) (0.026) (0.014) (0.001) (0.000) (0.000)

AsyDCC–EGARCH 17.448↑ 17.893↑ 19.086↑ 16.666↑ 16.987↑ 15.851↑
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

AsyDCC–EGARCH-t 15.828← 4.836← 13.838← 31.029← 22.789← 21.548←
(0.000) (0.089) (0.000) (0.000) (0.000) (0.000)

AsyDCC–APARCH 16.893↑ 17.318↑ 18.429↑ 16.004↑ 16.420↑ 15.214↑
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

AsyDCC–APARCH-t 11.345← 4.738← 8.614← 16.141← 14.508← 16.442←
(0.003) (0.093) (0.013) (0.000) (0.000) (0.000)

CCC–GARCH 12.715↑ 11.717↑ 7.550← 13.762← 12.531↑ 7.448←
(0.001) (0.002) (0.022) (0.001) (0.001) (0.024)

CCC–GARCH-t 12.090↑ 10.952↑ 7.311← 13.244← 12.066← 7.139←
(0.002) (0.004) (0.025) (0.001) (0.002) (0.028)

CCC–GJR 6.839↑ 11.333↑ 6.989← 15.946← 9.011← 12.622←
(0.032) (0.003) (0.030) (0.000) (0.011) (0.001)

CCC–GJR-t 7.307↑ 10.851↑ 6.956← 15.855← 9.285← 12.469←
(0.025) (0.004) (0.030) (0.000) (0.009) (0.001)

CCC–EGARCH 8.006↑ 13.717↑ 11.847↑ 10.273↑ 7.128↑ 9.194↑
(0.018) (0.001) (0.002) (0.005) (0.028) (0.010)

CCC–EGARCH-t 7.999↑ 13.711↑ 11.897↑ 10.143↑ 7.165↑ 9.468↑
(0.018) (0.001) (0.002) (0.006) (0.027) (0.008)

CCC–APARCH 9.948↑ 16.996↑ 9.110← 17.300← 11.658↑ 20.573↑
(0.006) (0.000) (0.010) (0.000) (0.002) (0.000)

CCC–APARCH-t 9.933↑ 16.822↑ 8.057← 16.967← 12.429↑ 22.023←
(0.006) (0.000) (0.017) (0.000) (0.001) (0.000)

Data set: size and book-to-market portfolios.
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Table 13 Out-of-sample backtesting results for the three portfolios (rolling estimation
window)

Industry portfolios

Coverage (%) Indep. UC CC

DCC–GJR-t 1.8 0.429 0.022 0.053
AsyDCC–GJR-t 1.8 0.429 0.022 0.053
GJR 3.2 0.152 0.000 0.000
CAViaR 2.4 0.287 0.000 0.000

S&P100 stocks

DCC–GJR-t 2.4 0.287 0.000 0.000
AsyDCC–GJR-t 1.9 0.403 0.011 0.027
GJR 3.2 0.152 0.000 0.000
CAViaR 1.7 0.456 0.043 0.097

Size-B/M portfolios

DCC–GJR-t 1.2 0.605 0.536 0.722
AsyDCC–GJR-t 1.2 0.605 0.536 0.722
GJR 2.6 0.247 0.000 0.000
CAViaR 2.9 0.195 0.000 0.000

process by discarding the oldest observation and including a new observation until
the end of the sample is reached. In the end, we have a series of 1000 one-step-ahead
out-of-sample forecasts. Note that this estimation strategy is very computationally
demanding as each model has to be reestimated 1000 times in each of the data sets.
Therefore, in order to alleviate the burden of the estimation process, we consider a
subset of the multivariate and univariate models considered above. In particular,
we pick the two best multivariate and the two best univariate models based on the
results reported in Tables 9–12; namely the DCC–GJR-t, AsyDCC–GJR-t, GJR, and
CAViaR models.

Table 13 reports the backtesting results for these four models and for the
three portfolios considered in this article. As expected, the results are better in
comparison to those obtained with a fixed estimation window. We can observe that
all models deliver empirical coverage rates closer to the expected nominal level.
For instance, the DCC–GJR-t model delivered an empirical coverage of 1.8% in the
case of the industry portfolios, whereas the same figure in Table 9 is 2.2%. The same
figures for the CAViaR model are 2.4% and 3.5%, respectively. More importantly, we
find that in two data sets (industry portfolios and size-B/M portfolios) multivariate
models deliver empirical coverage rates closer to the nominal level in comparison
to the univariate models. Moreover, for these two data sets the two multivariate
models pass all backtests, while the two univariate models fail to pass them. In the
case of the SP&P100 stocks, we can observe that the AsyDCC–GJR-t and CAViaR
models deliver similar coverage rates (1.9% and 1.7%, respectively).
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Table 14 Model chosen according to the CPA test using a rolling estimation window

Industry portfolios S&P100 stocks Size-B/M portfolios
Multivariate vs. univariate

DCC–GJR-t vs. GJR DCC–GJR-t** DCC–GJR-t* DCC–GJR-t**
DCC–GJR-t vs. CAViaR DCC–GJR-t** CAViaR** DCC–GJR-t**
AsyDCC–GJR-t vs. GJR AsyDCC–GJR-t** AsyDCC–GJR-t** AsyDCC–GJR-t**
AsyDCC–GJR-t vs. CAViaR AsyDCC–GJR-t** AsyDCC–GJR-t AsyDCC–GJR-t**

Multivariate vs. multivariate
DCC–GJR-t vs. AsyDCC–GJR-t AsyDCC–GJR-t AsyDCC–GJR-t*** DCC–GJR-t*

Univariate vs. univariate
GJR vs. CAViaR CAViaR CAViaR GJR*

***Significant at 1% **Significant at 5% *Significant at 10%

Finally, Table 14 reports the results for pairwise comparisons among the models
considered in the rolling window exercise according to the CPA test for each of
the three data sets considered. These results corroborate the previous backtesting
results in Table 13 and shows that multivariate models are strictly preferred to
univariate models in the case of the industry and size-B/M portfolios. For the
S&P100 stocks, we observe that the CAViaR model outperforms the DCC–GJR-t
model. In comparison to the AsyDCC–GJR-t model, however, the CAViaR model
underperforms, but the difference in performance between these two models is not
statistically significant. Among the multivariate models, the best models are either
the AsyDCC–GJR-t or the DCC–GJR-t (not a clear preference between them). A
similar finding arises when comparing the two univariate models.

Therefore, we can summarize the empirical results by noting that multivariate
models tend to outperform univariate ones when forecasting one day-ahead
portfolio 1%-VaR for the three large and diversified portfolios considered in
this article. The results are even more favorable when the VaR forecasts are
obtained with rolling estimation windows. In this case, we find the the empirical
coverage rates delivered by the multivariate models are closer to the expected
level. Moreover, in most situations multivariate models managed to pass all
backtesting tests while univariate models did not. These results are confirmed by
the CPA test, which shows that multivariate models with Student’s t innovations
tend to be the most appropriate specification for the problem of portfolio VaR
forecasting.

3.3 Robustness Check: is the 2007–2008 Financial Crisis Driving the
Results?

One possible concern to the results reported in Sections 3.1 and 3.2 is that they
can be affected by the financial turmoil of 2007–2008. During this period, losses in
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 Table 15 Descriptive statistics for the two out-of-sample subperiods

Industry portfolios S&P100 stocks Size-B/M portfolios

1st
subperiod

2nd
subperiod

1st
subperiod

2nd
subperiod

1st
subperiod

2nd
subperiod

N. of observations 500 500 500 500 500 500
Mean return (%) −0.006 0.102 0.001 −0.045 −0.001 0.022
Max. mean return (%) 0.172 0.191 0.196 0.163 0.038 0.082
Min. mean return (%) −0.114 −0.024 −0.221 −0.295 −0.035 −0.021
Mean std. dev. (%) 1.262 2.635 1.616 3.183 1.105 2.422
Max. std. dev. (%) 2.515 5.547 2.825 7.557 1.295 3.184
Min. std. dev. (%) 0.727 1.383 0.752 1.531 0.939 1.868
Mean kurtosis 4.600 6.053 7.714 10.582 3.967 5.548
Max. kurtosis 20.838 29.910 32.324 169.336 5.783 9.911
Min. kurtosis 2.946 4.064 3.136 4.669 3.443 3.808
Mean skewness −0.152 0.089 −0.291 −0.126 −0.155 −0.109
Max. skewness 0.401 2.573 0.842 1.312 0.093 0.347
Min. skewness −0.942 −0.426 −2.371 −9.795 −0.427 −0.294

most banks’ trading books have been substantially larger than the VaR estimates
based on internal models. Therefore, in order to evaluate the impact of stressed
market conditions on the performance of multivariate and univariate VaR models,
we split the out-of-sample period into two subperiods with 500 observations each:
from July 12, 2006 to June 23, 2008, and from June 24, 2008 to June 30, 2010. Table 15
reports the average sample moments across assets in each of the two subperiods
and shows that the 2007–2008 financial crisis tends to be mostly concentrated in the
second subperiod, since this period is substantially more volatile and has larger
excess kurtosis than the first subperiod.

Tables 16 and 17 report the backtesting results for the multivariate and
univariate models considered in Section 3.2 in each of the two subperiods
considering a fixed and a rolling estimation strategy, respectively. The results
corroborate our previous findings as they indicate that multivariate models
outperform their univariate counterparts in the majority of the cases. Moreover,
the use of a rolling estimation window usually results in empirical coverages closer
to the expected nominal level of 1%. During the less volatile period, Table 17 shows
that the AsyDCC–GJR-t model passed the conditional coverage backtest in the three
data sets. As for the univariate models, we find that both models failed to pass the
backtests for the industry portfolios. Nevertheless, the CAViaR and GJR models
passed the backtests for the S&P100 stocks and the size-B/M portfolios, respectively.
During the more volatile period, the CAViaR model passed the backtests only in
the case of the S&P100 stocks. On the other hand, we find that the AsyDCCGJR-t
model also passed the conditional coverage backtest in all the data sets. This result
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suggests that the multivariate specification can yield accurate VaR estimates even 

in times of high volatility such as during the 2007–2008 financial crisis.

4 CONCLUSIONS

Obtaining accurate risk measures can be seen as an important issue in risk
management. This article addresses the question of whether multivariate or
univariate models are most appropriate for the problem of portfolio VaR
forecasting. We compare both types of models in the context of large and diversified
portfolios, considering complex dynamics of variances and covariances with
asymmetries and dynamic correlations and using both simulated and real data.
The models are compared by implementing not only backtesting tests but also the
CPA test that helps ranking the models according to their performance to forecast
the one-step-ahead VaR. The results of the comparative predictive performance
obtained in this article indicate that, although in some cases there exists no
preference between univariate and multivariate models, when this preference exists
it is in favor of multivariate models. This preference is clearer on an out-of-sample
basis and when Student’s t innovations are considered.

The findings of this article have several important implications from both
academic and practitioner points of view. Unlike previous empirical evidence,
the results suggest that when large portfolios are considered there may exist
differences in modeling multivariate and univariate conditional variances. When
the objective is to measure and to forecast the VaR associated to a linear combination
of the individual assets in the portfolio, it could be worth modeling the joint
dynamics of those assets by fitting a multivariate model. Moreover, considering
that any underestimation in the risk of a portfolio can have tremendous effects
for a financial institution and for the aggregated financial system, our results
show that the difference in performance with respect to univariate models is not
only statistically but also economically significant. Finally, the results suggest that
assuming conditional correlations to be time-varying rather than constant and
exhibiting asymmetric effects can lead to VaR forecast improvements.

APPENDIX: PARAMETRIZATION OF THE DATA-GENERATING
PROCESSES USED TO SIMULATE DATA FOR THE MONTE CARLO
EXPERIMENTS

The O-GARCH model implemented to generate systems of N=10 returns
specifies the conditional covariance matrix as follows

Yt=H1/2
t εt (A1)

Ht=V1/2VtV1/2 (A2)
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where εt is a multivariate Gaussian white noise process with covariance matrix �

given by

�=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.000
−0.099 1.000
−0.052 0.213 1.000
−0.122 −0.131 −0.124 1.000
−0.184 −0.221 0.041 −0.221 1.000
0.026 0.195 0.059 0.026 −0.088 1.000
0.070 −0.067 0.018 0.062 0.232 0.173 1.000
−0.039 −0.084 −0.036 0.257 −0.059 −0.162 0.268 1.000
0.089 −0.299 −0.086 0.063 0.030 −0.085 −0.031 −0.090 1.000
−0.010 −0.347 −0.091 0.172 0.085 0.012 0.117 0.067 0.244 1.000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

V−1/2εt=�ft,
Vt=��t�

′

�t=diag
(

h2
1,t,h

2
2,t,h

2
3,t

)
h2

1,t=0.01+0.10f 2
1,t−1+0.85h2

1,t−1+0.05I(f1,t−1 <0)f 2
1,t−1

h2
2,t=0.01+0.17f 2

2,t−1+0.80h2
2,t−1+0.02I(f2,t−1 <0)f 2

2,t−1
h2

3,t=0.01+0.05f 2
3,t−1+0.90h2

3,t−1+0.07I(f3,t−1 <0)f 2
3,t−1

�=P diag
(

l1/2
1 l1/2

2 l1/2
3

)
(A3)

where V=diag(v1,v2,...,vN), with vi being the marginal variance of εit, l1≥ l2≥ l3≥0
being the three largest eigenvalues of the population correlation matrix of V−1/2εt.
Finally, P is the N×3 matrix of associated mutually orthogonal eigenvectors.

The MARSV model considered as the second DGP is given by:

Ht=C+A�Ht−1+�t
�t∼Wish(v,�)

(A4)

where C and A are squared parameter matrices given by

C=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.000
−0.099 1.000
−0.052 0.213 1.000
−0.122 −0.131 −0.124 1.000
−0.184 −0.221 0.041 −0.221 1.000
0.026 0.195 0.059 0.026 −0.088 1.000
0.070 −0.067 0.018 0.062 0.232 0.173 1.000
−0.039 −0.084 −0.036 0.257 −0.059 −0.162 0.268 1.000
0.089 −0.299 −0.086 0.063 0.030 −0.085 −0.031 −0.090 1.000
−0.010 −0.347 −0.091 0.172 0.085 0.012 0.117 0.067 0.244 1.000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.648
0.796 0.979
0.735 0.904 0.835
0.685 0.843 0.778 0.725
0.671 0.825 0.761 0.710 0.694
0.715 0.879 0.812 0.756 0.740 0.789
0.673 0.827 0.764 0.712 0.697 0.742 0.699
0.655 0.806 0.744 0.693 0.679 0.723 0.681 0.663
0.705 0.866 0.800 0.746 0.730 0.778 0.732 0.713 0.767
0.716 0.881 0.813 0.758 0.742 0.790 0.744 0.725 0.779 0.792

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and �t is a random matrix drawn from a Wishart distribution Wish(v,�) with v=10
degrees of freedom and the following positive-definite scale matrix

�=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.034
0.016 0.033
0.013 0.002 0.025
−0.008 −0.001 0.015 0.043
0.017 0.001 0.021 0.011 0.043
−0.001 −0.002 −0.012 −0.017 −0.024 0.028
−0.021 −0.019 −0.010 0.008 −0.014 −0.002 0.048
0.003 0.001 −0.016 −0.008 −0.013 0.019 0.001 0.035
0.010 0.010 0.010 0.018 0.021 −0.017 −0.002 −0.009 0.031
−0.002 −0.002 0.012 0.017 0.023 −0.015 −0.005 −0.005 0.007 0.035

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The last DGP considered is given by the following ASYDVEC model:

Ht=C+A�Yt−1Y′t−1+B�Ht−1+G�ηt−1η
′
t−1 (A5)

where A, B, and G are positive-definite matrices given by

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.141
0.147 0.203
0.087 0.113 0.086
0.105 0.151 0.086 0.130
0.104 0.151 0.068 0.106 0.145
0.094 0.094 0.053 0.069 0.082 0.102
0.059 0.087 0.059 0.061 0.064 0.043 0.054
0.083 0.127 0.072 0.082 0.103 0.047 0.060 0.101
0.119 0.152 0.083 0.126 0.103 0.077 0.056 0.081 0.162
0.090 0.126 0.081 0.093 0.092 0.058 0.061 0.085 0.090 0.089

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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B=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.754
0.743 0.738
0.755 0.747 0.761
0.752 0.745 0.756 0.755
0.750 0.741 0.752 0.750 0.750
0.744 0.737 0.747 0.744 0.744 0.740
0.741 0.732 0.744 0.741 0.739 0.733 0.731
0.777 0.770 0.780 0.777 0.776 0.771 0.766 0.805
0.773 0.764 0.777 0.773 0.772 0.766 0.761 0.800 0.797
0.745 0.736 0.749 0.745 0.742 0.737 0.734 0.769 0.766 0.739

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

G=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.91×10−5

3.99×10−5 5.00×10−5

3.69×10−5 4.57×10−5 4.48×10−5

4.17×10−5 4.94×10−5 4.36×10−5 5.55×10−5

3.32×10−5 4.00×10−5 3.68×10−5 4.04×10−5 3.49×10−5

3.22×10−5 4.11×10−5 3.91×10−5 3.89×10−5 3.28×10−5 3.71×10−5

3.71×10−5 4.47×10−5 4.16×10−5 4.17×10−5 3.67×10−5 3.87×10−5 4.40×10−5

3.53×10−5 4.02×10−5 3.83×10−5 4.02×10−5 3.13×10−5 3.21×10−5 3.54×10−5 3.65×10−5

3.78×10−5 4.39×10−5 3.81×10−5 4.70×10−5 3.72×10−5 3.59×10−5 4.09×10−5 3.38×10−5 4.53×10−5

3.92×10−5 4.76×10−5 4.26×10−5 5.09×10−5 3.75×10−5 3.83×10−5 4.21×10−5 3.93×10−5 4.47×10−5 4.98×10−5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and ηt= I(Yt <0)�Yt , where � denotes the Hadamard (elementwise) product.
By taking expectations, the matrix C can be rewritten as H̄�(ιι′−A−B)−N̄�G,

where ι is a vector of ones, and N̄=E[ηtη
′
t]where H̄ is the unconditional covariance

matrix.
Then, the matrix C is

C=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.018
0.005 0.055
−0.006 0.038 0.053
0.002 −0.001 0.011 0.023
−0.012 0.022 0.033 0.004 0.027
−0.005 0.007 0.021 0.014 0.010 0.045
0.002 −0.015 −0.021 0.002 −0.017 −0.004 0.044
0.011 −0.022 −0.012 0.012 −0.017 0.013 0.011 0.043
−0.008 0.011 0.011 −0.011 0.013 0.000 −0.007 −0.022 0.032
0.006 0.015 0.012 −0.001 0.003 −0.007 −0.008 0.002 −0.006 0.015

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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