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Abstract

A very common practice when extracting factors from non-stationary multivariate time

series is to differentiate each variable in the system. As a consequence, the ratio between

variances and the dynamic dependence of the common and idiosyncratic differentiated com-

ponents may change with respect to the original components. In this paper, we analyze the

effects of these changes on the finite sample properties of some popular procedures to deter-

mine the number of factors. In particular, we consider the information criteria of Bai and

Ng (2002), the edge distribution of Onatski (2010) and the ratios of eigenvalues proposed

by Ahn and Horenstein (2013). The performance of these procedures when implemented to

differentiated variables depends on both the ratios between variances and dependencies of

the differentiated factor and idiosyncratic noises. Furthermore, we also analyze the role of

the number of factors in the original non-stationary system as well as of its temporal and

cross-sectional dimensions.
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1 Introduction

In recent years, due to the availability of data on a vast number of macroeconomic and financial

variables, there has been an increasing interest in modeling large systems of economic time series.

In order to reduce the dimensionality and extract the underlying factors, one can use Dynamic

Factor Models (DFMs), originally introduced in economics by Geweke (1977) and Sargent and

Sims (1977). The aim of DFMs is to represent the dynamics of the system through a small

number of hidden common factors which are mainly used for forecasting and macroeconomic

policy-making; see Stock and Watson (2011) and Breitung and Choi (2013), for recent reviews

of the existing literature. Kajal Lahiri has contributed to the DFMs literature with several

empirical works. For example, Lahiri and Yao (2004) implement a DFM to analyze the business

cycle features of the transportation sector and Lahiri and Sheng (2010) to measure the forecast

uncertainty by disagreement. Lahiri et al. (2015) also implement a DFM to a real-time jagged-

edge data set of over 160 explanatory variables to re-examine the role of consumer confidence

surveys in forecasting personal consumption expenditure. The properties of many popular fac-

tor extraction procedures rely on the number of factors in the system being known. However,

in practice, the number of factors is unknown and needs to be determined. Among the most

popular procedures proposed with this purpose are the criteria proposed by Bai and Ng (2002),

which are now standard in the literature. These criteria are based on modifications of the Akaike

(AIC) and Bayesian (BIC) information criteria taking into account the cross-sectional and tem-

poral dimensions of the dataset as arguments of the function penalizing overparametrization.

Alternatively, Onatski (2010) proposes an estimator of the number of factors based on using

differences between adjacent eigenvalues of the sample covariance matrix of the variables con-

tained in the system, arranged in descending order while Ahn and Horenstein (2013) propose

two alternative estimators based on ratios of adjacent eigenvalues.

It is well known that macroeconomic time series are frequently non-stationary and possibly

cointegrated. Within the context of Principal Components (PC) factor extraction, and following

Stock and Watson (2002), the most popular way of dealing with large systems of non-stationary

macroeconomic variables is by differencing the variables in a univariate fashion; see, for example,

Breitung and Eickmeier (2011), Stock and Watson (2012a,b), Barhoumi et al. (2013), Buch et al.

(2014), Moench et al. (2013), Bräuning and Koopman (2014), Poncela et al. (2014) and Jung-

backer and Koopman (2015) for recent references. The theoretical justification of this extended

practice is analyzed in Bai and Ng (2004) who show that applying PC to first-differenced data

and recovering the original factors by “recumulating” is consistent regardless of whether the

factors and/or idiosyncratic errors are I(0) or I(1)1. However, their theory proceeds assuming

that the number of common factors in the system is known. On the other hand, as mentioned

above, macroeconomic variables are not only non-stationary but can also be cointegrated. Dif-

ferencing a cointegrated system may distort the determination of the number of factors due to

the introduction of non-invertible moving average (MA) components and/or the trade-off intro-

duced between the variances of the common and idiosyncratic components. Surprisingly, there

1Bai (2004) also has asymptotic results for the factors estimated from the original non-stationary data.
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has been little discussion in the literature on whether differencing in a univariate fashion affects

the correct determination of the number of factors. As far as we know, only Bai (2004) analyzes

the performance of the information criteria proposed by Bai and Ng (2002) when implemented

to differenced data. In his Monte Carlo experiments, carried out for a unique DFM with con-

temporaneously uncorrelated idiosyncratic noises following an ARMA model with AR and MA

parameters 0.5 and two random walk factors, he shows that the number of factor is correctly

determined.

The main objective of this paper is to fill this gap by analyzing the effects of univariate

stationary transformations of cointegrated systems when determining the number of factors

using the approaches proposed by Bai and Ng (2002), Onatski (2010) and Ahn and Horenstein

(2013). In the context of a DFM with mutually uncorrelated and homoscedastic idiosyncratic

noises, we first derive analytically the eigenvalues of the covariance matrix and show how they are

affected by univariate differentiation. We also carry out Monte Carlo experiments considering

several designs selected to represent different situations that can be potentially encountered

when dealing with the empirical analysis of real macroeconomic and financial variables. Finally,

we illustrate the results determining the number of factors in a system of prices of the euro area.

The rest of this paper is structured as follows. In section 2, we briefly describe the sta-

tionary DFM and the factor determination approaches considered. In section 3, we analyze the

effects of transforming non-stationary systems by univariate stationary transformations on these

procedures. In section 4, we report the results of the Monte Carlo experiments carried out to

illustrate their finite sample performance. In section 5, we carry out an empirical application.

Finally, we conclude in section 6.

2 The stationary Dynamic Factor Model

In this section, we introduce notation and the stationary DFM and describe the factor determi-

nation procedures considered.

2.1 The model

We consider a DFM with cross-sectional dimension N , where the unobserved r < N common

factors, Ft = (F1t, . . . , Frt)
′
, and the idiosyncratic noises, εt = (ε1t, . . . , εNt)

′
, follow VAR(1) pro-

cesses. The factors explain the common evolution of a vector of time series, Yt = (y1t, . . . , yNt)
′

observed from t = 1, . . . , T . The basic DFM considered is given by

Yt = PFt + εt, (1)

Ft = ΦFt−1 + ηt, (2)

εt = Γεt−1 + at, (3)

where the factor disturbances, ηt = (η1t, . . . , ηrt)
′
, are r × 1 vectors, distributed independently

from the idiosyncratic noises for all leads and lags. Furthermore, ηt and at, are Gaussian white
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noises with positive definite covariance matrices Ση and Σa, respectively, and P = (p
′
1, . . . , p

′
N )
′
,

is the N × r matrix of factor loadings, where, pi = (pi1, . . . , pir). Finally, Φ = diag(φ1, . . . , φr)

and Γ are r × r and N × N matrices containing the autoregressive parameters of the factors

and the idiosyncratic components, respectively. These autoregressive matrices satisfy the usual

stationarity assumptions. Furthermore, we assume that the structure of the idiosyncratic noises

is such that they are weakly correlated. Following Bai and Ng (2002), Onatski (2012, 2015) and

Ahn and Horenstein (2013), we consider the entries in P, Φ, Ση, Γ and Σa as fixed parameters.

Jungbacker and Koopman (2015) implement the DFM in equations (1) to (3) to the data set of

Stock and Watson (2005).

The DFM in equations (1) to (3) is not identified because, for any r× r nonsingular matrix

H, the system can be expressed in terms of a new loading matrix and a new set of common

factors. A normalization is necessary to solve this identification problem and uniquely define

the factors. In the context of PC factor extraction, it is common to impose the restriction

P
′
P/N = Ir and FF ′ being diagonal, where F = (F1, . . . , FT ) is a r × T matrix of common

factors; see Stock and Watson (2002), Bai and Ng (2002, 2008, 2013), Connor and Korajczyk

(2010) and Bai and Wang (2014) for papers dealing with identification issues. Note that these

are normalization restrictions, and they may not have an economic interpretation.

2.2 Determining the number of factors

The DFM described above assumes that the number of factors, r, is known. However, in practice,

it needs to be estimated. Obtaining the correct value of r is crucial for an adequate estimation of

the space spanned by the factors. There are several alternative procedures designed to determine

r in DFMs. In this paper, we consider the information criteria proposed by Bai and Ng (2002)

and the estimators proposed by Onatski (2010) and Ahn and Horenstein (2013)2.

2.2.1 The Bai and Ng (2002) information criteria

The most popular information criteria to select the number of factors in DFMs, proposed by

Bai and Ng (2002), are based on a consistent PC estimator of P and Ft which is given by the

solution to the following least squares problem

min
F1,...,FT ,P

Vr(P, F ) (4)

subject to P
′
P/N = Ir and FF

′
being diagonal,

where

Vr(P, F ) =
1

NT

T∑
t=1

(Yt − PFt)
′
(Yt − PFt) =

1

NT

T∑
t=1

N∑
i=1

ε2
it =

1

NT
tr(εε′), (5)

where ε = (ε1, . . . , εT ) has dimension N × T . The solution to (4) is obtained by setting P̂

equal to
√
N times the eigenvectors corresponding to the r largest eigenvalues of Y Y

′
where

2Alternatively, based on the estimator proposed by Hallin and Liska (2007), Alessi et al. (2010) propose a
refinement of Bai and Ng (2002) criteria based on multiplying the penalty function by a constant that tunes
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Y = (Y1, . . . , YT ). The corresponding PC estimator of F is given by

F̂ =
P̂
′
Y

N
. (6)

PC factor extraction separates the common component, PFt, from the idiosyncratic noises by

averaging cross-sectionally the variables within Yt such that when N and T tend simultaneously

to infinity, the weighted averages of the idiosyncratic noises converge to zero, remaining only the

linear combinations of the factors. Therefore, it requires that the cumulative effects of the com-

mon component increase proportionally with N , while the eigenvalues of Σε = E(εtε
′
t) remain

bounded; see the review of Breitung and Choi (2013) for a description of these conditions3. Bai

(2003) proves that the PC estimators of factors, factor loadings and common components are

asymptotically equivalent to the maximum likelihood estimators and, consequently, consistent.

Also, he derives the rate of convergence and their corresponding limiting distributions when N

and T tend simultaneously to infinity.

In order to determine r, Bai and Ng (2002) propose minimizing the following functions with

respect to k, for k = 0, . . . , rmax,

IC1(k) = lnVk(P̂ , F̂ ) + k
N + T

NT
ln

NT

N + T
, (7a)

IC2(k) = lnVk(P̂ , F̂ ) + k
N + T

NT
lnm, (7b)

IC3(k) = lnVk(P̂ , F̂ ) + k
lnm

m
, (7c)

where Vk(P̂ , F̂ ) is defined as in expression (5) with P and Ft substituted by their respective PC

estimates, m = min 〈N,T 〉 and rmax is a bounded integer such that r ≤ rmax. The Bai and Ng

(2002) criteria in (7) are quite sensitive to the choice of rmax; see the Monte Carlo results in

Ahn and Horenstein (2013). Bai and Ng (2002) use rmax = 8 in their Monte Carlo experiments.

On the other hand, in the context of first-differenced data, Bai and Ng (2004) use IC1(k), with

rmax = 6. Under appropriate assumptions, Bai and Ng (2002) prove the consistency of the

information criteria above to determine the number of common factors.

If ε̂t = Yt−P̂ F̂t are the residuals of the regression of the variables in Y on the r first principal

components of 1
NT Y Y

′

tr(ε̂ε̂′) = tr(Y Y ′)− tr(P̂ F̂ ′F̂ P̂ ′) = T

m∑
i=1

λ̂i − T
r∑
i=1

λ̂i = T

m∑
i=r+1

λ̂i,

where λ̂i, i = 1, . . . ,m are the eigenvalues of Σ̂Y = 1
T Y Y

′, arranged in descending order.

the penalizing power of the function itself and estimating the number of factors using different subsamples.
Also, Kapetanios (2010) proposes determining the number of factors using resampling to choose the normalizing
constants to be used in order to have an asymptotic distribution for the eigenvalues of the sample covariance
matrix of Y . Given that these procedures are very intensive computationally, we do not consider them further in
this paper.

3Onatski (2012) considers a DFM in which the explanatory power of the factors does not strongly dominate
the explanatory power of the idiosyncratic noises.

5



Therefore,

Vr(P̂ , F̂ ) =
1

N

m∑
i=r+1

λ̂i. (8)

Using the expression of Vk(P̂ , F̂ ) in (8), the functions in (7) can be written as

ICj(k) = log(
1

N

m∑
i=k+1

λ̂i) + kgj(N,T ), (9)

where gj(N,T ) is defined accordingly to the criteria in (7) for j = 1, 2 and 3.

2.2.2 Differenced eigenvalues

Onatski (2010) proposes an alternative procedure to select r, called edge distribution (ED), and

shows that it outperforms the criteria proposed by Bai and Ng (2002) when the proportion of

the variance attributed to the factors is small relative to the variance due to the idiosyncratic

noises or when these are substantially correlated. Furthermore, computationally, the procedure

proposed by Onatski (2010) allows the determination of the number of factors without previous

estimation of the common component. Finally, it relaxes the standard assumption of PC factor

extraction about the r eigenvalues of Σ̂Y growing proportionally to N . Instead of requiring

that the cumulative effect of factors grow as fast as N , Onatski (2010) imposes a structure on

the idiosyncratic noises. Under the assumption of Normality, both cross-sectional and temporal

dependence are allowed. This procedure is based on determining a sharp threshold, δ, which

consistently separates the bounded and diverging eigenvalues of Σ̂Y . For any j > r, the dif-

ferences λ̂j − λ̂j+1 converge to 0 while the difference λ̂r − λ̂r+1 diverges to infinity when both

N and T tend to infinity. Assuming that rmax/N → 0, Onatski (2010) proposes the following

algorithm in order to calibrate δ and determine the number of factors:

1. Obtain λ̂i, i = 1, ..., N and set j = rmax + 1.

2. Obtain β̂ as the ordinary least squares (OLS) estimator of the slope of a simple linear re-

gression with constant, where the observations of the dependent variable are
{
λ̂j , . . . , λ̂j+4

}
and the observations of the regressor variable are

{
(j − 1)2/3, . . . (j + 3)2/3

}
. Set δ̂= 2|β̂|.

3. Estimate r̂ = max{k ≤ rmax|λ̂k − λ̂k+1 ≥ δ̂} or r̂ = 0 if λ̂k − λ̂k+1 < δ̂.

4. Set j = r̂ + 1. Repeat steps 2 and 3 until r̂ converges.

Under suitable conditions, Onatski (2010) proves the consistency of r̂ for any fixed δ > 0.

He set the number of iterations to four although the convergence of the above algorithm is often

achieved at the second iteration. Additionally, he set rmax = 8 when r = 1, 2, 5 and rmax = 20

when r = 15.

2.2.3 Ratios of eigenvalues

Recently, Ahn and Horenstein (2013) propose two further estimators of the number of factors

based on the fact that the r largest eigenvalues of Σ̂Y grow unbounded as N increases, while
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the other eigenvalues remain bounded. They show that these estimators are less sensitive to the

choice of rmax than those based on the Bai and Ng (2002) information criteria. The two new

estimators are defined as the value of k, for k = 0, . . . , rmax, that maximizes the following ratios

ER(k) =
λ̂k

λ̂k+1

, (10)

GR(k) =
ln
[
Vk−1(P̂ , F̂ )/Vk(P̂ , F̂ )

]
ln
[
Vk(P̂ , F̂ )/Vk+1(P̂ , F̂ )

] =
ln(1 + λ̂∗k)

ln(1 + λ̂∗k+1)
, (11)

where λ̂0 = 1
m

∑m
k=1 λ̂k/ ln(m) and λ̂∗k = λ̂k/

∑m
j=k+1 λ̂j . The value of λ̂0 has been chosen

following the definition of Ahn and Horenstein (2013) according to which λ̂0 → 0 and mλ̂0 →∞
as m→∞.

Note that both the numerator and denominator of GR(k) are the growth rates of residual

variances computed with j and j+ 1 factors. Ahn and Horenstein (2013) show that, contrary to

the estimator proposed by Bai and Ng (2002), their estimators are not dependent on rmax and

suggest to chose it as min(r∗max, 0.1m) where r∗max = #
{
k | N−1λ̂k ≥ V0/m, k ≥ 1

}
. Under the

same assumptions of Bai and Ng (2006) and Onatski (2010), and allowing for some variables in Y

to be perfectly multicollinear or with zero idiosyncratic variances, they establish consistency of

the ER(k) and GR(k) estimators. The results obtained in their Monte Carlo analysis show that

the two estimators outperform the Bai and Ng (2002) information criteria and Onatski (2010)

estimator mainly when the idiosyncratic components are simultaneously cross-sectionally and

serially correlated. However, the estimator proposed by Onatski (2010) outperforms the ER(k)

and GR(k) ratios when the variance of the idiosyncratic component is larger than that of the

common component (weak factors).

2.3 A note on the convergence of eigenvalues

The procedures to determine the number of common factors described above are based on

the eigenvalues of the sample covariance matrix, Σ̂Y . One of the main contributions of Bai

and Ng (2002) is to show that the convergence of the eigenvalues of 1
TN Y Y

′ depends on m.

Later, Kapetanios (2010) reviews the available literature about the topic pointing out that the

distribution of the largest eigenvalue depends in complicated ways on the parameters of the

model. It seems that serial correlation affects both the parameters of the asymptotic limits and

their functional form. Furthermore, he shows that the first r eigenvalues of Σ̂Y increase at rate

N which follows from the fact that the r largest eigenvalues of F ′F will grow at rate N as long

as the loading matrix P is not sparse and suggests that it is reasonable to expect a similar

behavior from the eigenvalues of the sample covariance matrix.

More recently, Onatski (2012, 2015) develops new asymptotics for the eigenvalues of the sam-

ple covariance matrix by considering that both the weights and the factors are fixed parameters.
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3 Determining the number of factors after differencing

As mentioned in the Introduction, macroeconomic systems are often non-stationary. In this

section, we analyze the effects on the performance of the number of factors determination pro-

cedures described above of transforming the data in a univariate fashion in order to achieve

stationarity.

Consider the DFM given in equations (1) to (3) in which Φ and Γ are diagonal matrices

which may have 1’s in the main diagonal. Consequently, both the factors and the idiosyncratic

noises can be either stationary or non-stationary random walks. Under this specification, the

system of first-differenced data satisfies all conditions of Bai and Ng (2002), Onatski (2010) and

Ahn and Horenstein (2013). After differencing the data in a univariate fashion, the DFM takes

the following form

∆Yt = P∆Ft + ∆εt, (12)

∆Ft = (Φ− I)Ft−1 + ηt, (13)

∆εt = (Γ− I)εt−1 + at. (14)

Denote by φi the i-th element in the main diagonal of Φ. If |φi| < 1, then the variance of

the corresponding differenced factor is given by σ2
fi

= 2σ2
ηi/(1 + φi) where σ2

ηi is the variance

of ηi. When φi = 0.5, the difference between the variances of Ft and ∆Ft is zero. Therefore,

in this case, the variance of the factor is not changed after differencing the data. However, if

φi < 0.5, the variance of ∆Ft is larger than that of Ft while if φi > 0.5, it is smaller. The same

relation can be established for the variances of the elements in εt and ∆εt with respect to γi,

the i-th element in the main diagonal of Γ. Note that if εt is stationary, with autoregressive

parameters smaller than 0.5 while Ft is non-stationary, then overdifferencing the idiosyncratic

components may introduce distortions on the determination of the number of factors given that

the relation between the variances of the common and idiosyncratic components is modified

with the variances of ∆Ft being smaller and the variances of ∆εt being larger. The dynamic

dependence of the idiosyncratic noises of the differenced model are given by

Corr(∆εit,∆εit−h) = 0.5γh−1
i (γi − 1). (15)

Finally, note that differencing also affects the cross-correlations of the idiosyncratic noises.

Consider, for example, that the correlation between εit and εjt is given by ρ. If the idiosyncratic

noises are stationary, then

Corr(∆εit,∆εjt) = σ−1
∆εi

σ−1
∆εj

(2− γi − γj) ρσεiσεj =
(2− γi − γj) ρ

4(1− γi)(1− γj)
,

while the pairwise correlations between differenced random walk idiosyncratic noises is given by

Corr(∆εit,∆εjt) = ρ.

In order to simplify the analysis of the effects of univariate differentiation on the determina-
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tion of r, we consider Γ = γI and Σa = σ2
aI, so that the idiosyncratic noises are homoscedastic

and mutually uncorrelated and all of them are governed by the same autoregressive parameter.

Given that there is no correlation between the factors and the idiosyncratic components, the

covariance matrix of the first-differenced data is given by

Σ∆Y = PΣfP
′
+ σ2

eI, (16)

where Σf is the covariance matrix of ∆Ft and σ2
e = 2σ2

a/(1 + γ) is the variance of each element

in ∆εt. The ordered eigenvalues of Σ∆Y are equal to σ2
e + µi for i = 1, . . . , N , where µi is the

i-th largest eigenvalue of PΣfP
′
. Furthermore,

tr
(
PΣfP

′
)

= tr
(
P
′
PΣf

)
=

r∑
j=1

σ2
fj

N∑
i=1

p2
ij =

r∑
j=1

µj .

Therefore, the sum of the r largest eigenvalues of Σ∆Y is given by

r∑
i=1

λi = rσ2
e +

r∑
j=1

σ2
fj

N∑
i=1

p2
ij , (17)

while the rest N − r eigenvalues are given by

λi = σ2
e . (18)

Consider the particular case of a unique random walk factor, i.e. r = 1 and φ1 = 1. In this

case,

λ1 = σ2
η

N∑
i=1

p2
i1 + σ2

e , (19a)

λi = σ2
e , i = 2, . . . , N. (19b)

Consequently, the function to be minimized according to the Bai and Ng (2002) information

criteria, is given by

IC(k) =

 log
(
N−1σ2

η

∑N
i=1 p

2
i1 + σ2

e

)
, k = 0

log(N − k)− log(N) + log(σ2
e) + kg(N,T ), k ≥ 1.

The procedure proposed by Onatski (2010) is based on the differences between adjacent

eigenvalues. Note that for j = 2, . . . , N , λj − λj+1 = 0. Therefore, the procedure should work

as far as the difference between λ1 and λ2 is large. This difference is given by

λ1 − λ2 = σ2
η

N∑
i=1

p2
i1

and does not depend on the value of σ2
e . Therefore, for given weights and cross-sectional di-
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mension, the procedure should work better when σ2
η is large. Also, for a given value of σ2

η,

the procedure should work better as N increases. Note that in the first step of the algorithm

proposed by Onatski (2010), δ̂ = 0 because for j = rmax + 1 eigenvalues λj are always σ2
e .

Consider the ER(k) criterion of Ahn and Horenstein (2013) given in (10) which looks for a

large difference between the ratio of λ1 and λ2 with respect to the ratios between other adjacent

eigenvalues. Note that, in the particular case we are considering, if N < T , the mock eigenvalue

is given by

λ0 =
σ2
e +N−1σ2

η

∑N
i=1 p

2
i1

log(N)
,

and, consequently,

ER(k) =


1+N−1q

∑N
i=1 p

2
i1

log(N)(1+q
∑N
i=1 p

2
i1)
, k = 0

1 + q
∑N

i=1 p
2
i1, k = 1

1, k ≥ 2,

where q =
σ2
η(1+γ)

2σ2
a

. Note that if N is large enough, ER(0) should be close to 0. Therefore, for

given weights, the criteria should work better when q is larger.

Finally, consider the GR(k) criterion of Ahn and Horenstein (2013). In this case, note that

λ∗i =


(N log(N))−1, i = 0

(N − 1)−1(q
∑N

i=1 p
2
i1 + 1), i = 1

(N − i)−1, i ≥ 2.

Therefore,

log(1 + λ∗i )

log(1 + λ∗i+1)
=


log(N logN+1)−log(N logN)

log(N+
∑N
i=1 p

2
i1)−log(N−1)

, i = 0

log(N+
∑N
i=1 p

2
i1)−log(N−1)

log(N−1)−log(N−2) , i = 1
log(N+1−i)−log(N−i)
log(N−i)−log(N−i−1) , i ≥ 2.

4 Finite sample performance

The results in the previous section are based on population covariance matrices and their corre-

sponding eigenvalues. However, in practice, when determining the number of common factors in

empirical applications, one should estimate the covariance matrix by its sample version and ob-

tain the corresponding estimated eigenvalues. As mentioned above, the asymptotic distribution

of estimated eigenvalues is complicated and not always known. The finite sample properties of

the estimated eigenvalues depend on the temporal sample size used for their estimation, T , the

cross-sectional dimension, N , the ratio between the variances of the common and idiosyncratic

components and the structure of the temporal and cross-sectional dependencies of the idiosyn-

cratic noises. In this section, we carry out Monte Carlo experiments in order to analyze how the

determination of the number of factors is affected by univariate differentiation of non-stationary

data when implemented in finite samples.

The experiments are based on R = 500 replications generated by the DFM in equations
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(1) to (3) with T = (100, 500) and N = (12, 200)4. Our simulations are categorized into two

parts. The first part is designed to investigate how the alternative estimators considered behave

when detecting a unique random walk factor under different temporal and structures of the

idiosyncratic noises. The second part is designed to analyze models with more than one factor.

Consider first a DFM defined as in equations (1) to (3) with r = 1, Φ = 1 and σ2
η = 1.

The factor loadings are generated by pi1 ∼ U [0, 1] with
∑N

i=1 p
2
i1 = 5.59 and 65.56 for N = 12

and 200, respectively; Bai and Ng (2006) and Poncela and Ruiz (2016) also generate the factor

loadings by the same distribution. We consider several structures for the idiosyncratic noises.

First, the idiosyncratic noises are mutually uncorrelated and homoscedastic. In particular, the

autoregressive coefficient matrix of the idiosyncratic components is diagonal, Γ = γI, with

γ = (−0.8, 1) and Σa = σ2
aI with σ2

a = 1 so that σ2
e = 10 and 1 for the values of γ considered.

Note that, differently from simulations carried out in related works, we consider both positive

and negative values for the autoregressive parameter of the idiosyncratic noises; see, Pinheiro

et al. (2013) who estimate correlations for ∆εt between -0.6 and 0.9 when dealing with the

U.S. monthly macroeconomic data set of Stock and Watson (2005). In order to separate the

effects of the temporal dependence and the variance of the differenced idiosyncratic noises on

the results, we also consider the combinations γ = −0.8 and σ2
a = 0.1 (σ2

e = 1) and γ = 1 and

σ2
a = 10 (σ2

e = 10). We introduce contemporaneous correlations among the idiosyncratic noises.

Γ is generated with σ2
a = 0.1, 1 and 10 in the main diagonal and, following Onatski (2012),

a Toeplitz structure with parameter b = 0.5. Finally, we consider models with heteroscedastic

idiosyncratic noises. The variances are generated by σ2
ai ∼ U [0.5, 1.5] , σ2

ai ∼ U [0.05, 0.15] and

σ2
ai ∼ U [5, 15]; see Bai and Ng (2006) and Breitung and Eickmeier (2011) for the same design

to simulate heteroscedastic idiosyncratic noises. In these two latter cases, we consider γ = −0.8

and 1.

For each replica, we generate observations Yt and differentiate the data in a univariate fashion.

Then, the eigenvalues of the sample covariance matrix of 1
T−1(∆Y )(∆Y )′ are computed and r

is determined using each of the procedures described above with rmax = 4 and 13 when N = 12

and 200, respectively5. The number of factors determined using the three criteria proposed by

Bai and Ng (2002) are denoted by r̂IC1 , r̂IC2 , r̂IC3 , while the number of factors determined

implementing the procedure due to Onatski (2010) is denoted by r̂ED. Finally, the number of

factors estimated using the two ratios proposed by Ahn and Horenstein (2013) are denoted by

r̂ER and r̂GR.

Figure 1 plots, for N = 12 and T = 100, the Monte Carlo averages and 95% confidence

intervals, for homoscedastic and contemporaneously uncorrelated idiosyncratic noises6, of i) the

sample ordered eigenvalues (first column); ii) their differences (second column); and iii) their

4The time dimension of the multivariate system is generated with T ∗ = T + 100 observations. The factor
extraction is carried out after removing the first 100 observations.

5It is important to note that Ahn and Horenstein (2013) recomend double demeaned the data for their
estimators to have a better behaviour. However, in our Monte Carlo experiments, we observe a deterioration
of the performance of all criteria to determine the number of factors. Consequently, we compute the covariance
matrix using the original differenced observations.

6The effect of heteroscedasticity and weak cross-correlation on the estimated eigenvalues is negligible. The
results are available upon request.
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ratios (third column), together with the corresponding population quantities, when γ = −0.8

and σ2
a = 0.1 (first row), γ = 1 and σ2

a = 1 (second row), γ = −0.8 and σ2
a = 1 (third row)

and γ = 1 and σ2
a = 10 (fourth row). When the idiosyncratic noises are homoscedastic and

white noise, according to the results in previous section, the largest eigenvalue of the population

covariance matrix of ∆Y is given by λ1 = σ2
e +

∑N
i=1 p

2
i1 while all other eigenvalues are given

by σ2
e . Note that in the first two cases, σ2

e = 1 and the population eigenvalues are equal. In the

two latter cases, σ2
e = 10. Figure 1 shows that, regardless of the value of σ2

e , the eigenvalues are

better estimated when γ = 1 than when γ = −0.8, with smaller biases and standard deviations.

Obviously, given γ, the eigenvalues are better estimated when σ2
a is smaller. Therefore, in order

to estimate the eigenvalues of the covariance matrix of ∆Y, it is important not only the relative

variance of the differenced idiosyncratic noises but also their temporal dependence.

In order to analyze the separate effect of the cross-sectional and temporal dimensions of the

system on the estimation of the eigenvalues, Figure 2 plots the same quantities as in Figure 1

for γ = −0.8 and σ2
a = 1, when N = 12 and T = 100 (first row), N = 12 and T = 500 (second

row), N = 200 and T = 100 (third row) and N = 200 and T = 500 (fourth row). Note that

when N increases, the first eigenvalue of the population covariance matrix is different and is

estimated with larger biases and standard deviations. All other eigenvalues are also estimated

with larger biases and standard deviations. Therefore, given T , increasing N could lead to an

even worse performance of the sample eigenvalues. However, as expected, given N , an increase

in T leads to smaller biases and standard deviations of the estimated eigenvalues.

The finite sample properties of the estimated eigenvalues have effects on the properties of the

procedures to detect the number of factors. Figure 3 plots, for each of the procedures considered,

the percentage of replicates in which the estimated number of common factors is: i) r̂ = 0; ii)

r̂ = r; iii) r̂ = rmax; and iv) r̂ > r, when γ = −0.8 and σ2
a = 0.1 (σ2

e = 1). The first row plots the

percentages when N = 12 and T = 100; the second row corresponds to N = 12 and T = 500;

the third row corresponds to N = 200 and T = 100; finally, the fourth row plots the results for

N = 200 and T = 500. We consider idiosyncratic noises being homoscedastic and uncorrelated

(first column); heteroscedastic and uncorrelated (second column); and homoscedastic and cross-

sectionally correlated (third column). We can observe that, regardless of the structure of the

idiosyncratic noises and the cross-sectional dimension, when T = 100, the three information

estimators tend to overestimate r and in most of the replicates r̂IC = rmax. However, when

T = 500, the percentage of r̂IC = r is close to 100% if the idiosyncratic errors are homoscedastic

and cross-sectionally uncorrelated even if N = 12. However, if there is cross-sectional correlation

r̂IC = rmax. On the other hand, increasing N leads to a larger percentage of r̂IC > r. The

performance of the two estimators based on ratios of eigenvalues, r̂ER and r̂GR, is very similar and

always better than that of the estimator based on differenced eigenvalues, r̂ED. The percentages

of correct estimation of r when implementing the r̂ER and r̂GR estimators are close to 90%

when N = 12 and T = 100 and increase to 100% when increasing either N or T . The results

for heteroscedastic and cross-correlated idiosyncratic noises are very similar.

Figure 4 plots the same quantities as in Figure 3 when γ = 1 and σ2
a = 1. Note that

this case is comparable to that in Figure 3 in the sense that the variance of the differenced
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idiosyncratic noises is the same, σ2
e = 1, but the differentiated idiosyncratic noises are cross-

sectionally uncorrelated white noises. We can observe that the performance of the alternative

procedures to estimate r is rather different to that in Figure 3. All procedures have correct

estimations close to 100% except the information criteria when N = 12 and the idiosyncratic

errors are cross-correlated. In this latter case, r̂IC = rmax. Consequently, not only the variance

of the differenced idiosyncratic noises but also its dependence structure have effects on the

procedures to detect the number of factors. Only the r̂ER and r̂GR estimators seem to be robust

to them.

Finally, Figure 5 considers the case when γ = −0.8 and σ2
a = 1 with σ2

e = 10. In this

case, the information criteria behave very similarly than when σ2
a = 0.1 and T = 100 with

r̂IC = rmax. However, when N = 12 and T = 500, the information criteria procedures estimate

r̂IC = 0. Therefore, it seems that they are more affected by the temporal dependence of the

differenced idiosyncratic noises than by their variance. On the other hand, when looking at

the performance of r̂ER and r̂GR, we can observe that it clearly deteriorates when σ2
e = 10.

Therefore, their performance clearly depends on σ2
e . The behavior of r̂ED depends both on γ

and σ2
e with a rather large percentage of cases in which r̂IC = 0.

In the second part of the Monte Carlo experiments, we consider models in which r = 2.

First, we consider a second non-stationary common factor, i.e. Φ = I and Ση = I. Second, the

covariance matrix of the factor disturbances is given by

Ση =

(
1 0

0 5

)
.

Finally, the last model considered has a second stationary factor with Ση = I and

Φ =

(
1 0

0 0.5

)
.

For each of the three Data Generating Process (DGP) above, Figure 6 plots the percentages

of i) r̂ = 0; ii) r̂ = 1; iii) r̂ = r; iv) r̂ = rmax; and v) r̂ > r, when γ = −0.8 and σ2
a = 0.1

(σ2
e = 1) and for N = 12 with T = 100 and N = 200 with T = 500.7 First of all, observe that

when N = 12 and T = 100, the information criteria chose r̂ = rmax in all cases. Increasing

the dimensions of the system helps for r̂IC1 and r̂IC2 but not for r̂IC3. When looking at the

ED, ER and GR criteria, we can observe that, regardless of the structure of the two factors,

when N = 200 and T = 500, all of them have percentages of determination of the true number

of factors close to 100%. However, when N = 12 and T = 100, there is a large percentage of

replicates in which r̂ = 1. In this case, the ED procedure is better than the two procedures based

on ratios. When the two common random walks in the original data have different variances,

the ED procedure has an acceptable proportion of cases in which r̂ = r.

7Monte Carlo results on the estimated eigenvalues are available upon request. They are not included to save
space.
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5 Empirical analysis

In this section, we implement the procedures considered in this paper to determine the number

of common factors in a system of inflation rates in 15 euro area countries, namely, Austria

(AUT), Belgium (BEL), Denmark (DEN), Finland (FIN), France (FRA), Germany (GER),

Greece (GRE), Ireland (IRL), Italy (ITA), Luxemburg (LUX), Netherlands (NED), Portugal

(POR), Spain (SPA), Sweden (SWE) and United Kingdom (UK). Prices, observed monthly

from January 1996 to November 2015, Pit, have been obtained from the OCDE data base8

and transformed into annual inflation as yit = 100 × ∆12 log(Pit). When needed, the inflation

rates have been deseasonalized and corrected by outliers using the seasonal adjustment software

developed by the United States Census Bureau9. Following Stock and Watson (2005), outliers

are substituted by the median of the 5 previous observations.

Then, as in Reis and Watson (2010) and Altissimo et al. (2009), we carry out the determina-

tion of the number of factors using both the data in levels and after differencing. All procedures

are implemented with rmax = 5. Figure 7 displays the number of factors estimated. Note that,

when the procedures are implemented using the original inflation rates, the information criteria

estimate r̂ = rmax while r̂ED = 3 and r̂ER = r̂GR = 1. However, after differencing, all procedures

detect just one factor. According to our Monte Carlo experiments, if the number of true factors

is r ≥ 2, then the ED, ER and GR procedures tend to detect r̂ < r when implemented to

differentiated data. Therefore, we could expect the true number of factors to be larger than one.

Consequently, we extract the factors assuming both that r = 1 and r = 3.

Consider first the results when r = 1. The extracted factor and its corresponding weights are

plotted in Figure 8 for the original (first column) and differenced inflation rates (second column);

compare with the factor extracted by Delle Monache et al. (2016) using quarterly inflation for a

panel of 12 inflation rates from a sample of EMU countries. In Figure 8, there are not significant

differences between the factors estimated using the original and differenced inflation rates but

for the centering of the latter. This result could be expected since the autoregressive parameters

of all the idiosyncratic noises are close to one with rather small variances between 0.03 and 0.1.

Consequently, the differenced idiosyncratic noises are white noises with small variances.

Finally, Figure 9 plots the factors and weights estimated when r = 3. The second factor

heavily loads (with negative sign) on Ireland while the third one (with positive sign) loads on

Greece. This explains why the variances of the idiosyncratic noises associated to these two

countries considerably decrease with respect to the one-factor model.

6 Conclusions

Differencing non-stationary cointegrated systems have effects on the properties of factor deter-

mination procedures. We show that both the variance and the dependence structure of the

differenced idiosyncratic noises are important when measuring these effects. If r = 1, the ER

and GR procedures work well even in relatively small sizes under all the structures of the idiosyn-

8http://stats.oecd.org/index.aspx?queryid=221
9https://cran.r-project.org/web/packages/seasonal.pdf
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cratic noises considered in this paper. Only when the variance of the differenced idiosyncratic

noises is very large with respect to the variance of the differenced factor, the performance is worse

although better than the alternatives. However, the performance of all procedures deteriorates

when r = 2. In this case, the ED procedure seems to work better.
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Figure 1: Eigenvalues of DFM with N = 12, T = 100, r = 1, φ = 1, with γ = −0.8 and σ2
a = 0.1

(first row), γ = 1 and σ2
a = 1 (second row), γ = −0.8 and σ2

a = 1 (third row) and γ = 1 and
σ2
a = 10 (fourth row). The first column plots the eigenvalues while the second and third columns

plot their differences and ratios respectively. The population eigenvalues are plotted in red, the
Monte Carlo averages in black and the corresponding 95% intervals in blue.
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Figure 2: Eigenvalues of DFM with r = 1, φ = 1 and σ2
η = 1 when the idiosyncratic noises are

AR(1) process with γ = −0.8 and σ2
a = 1. The first column plots the eigenvalues while the second

and third column plot their differences and ratios respectively. The population eigenvalues are
plotted in red, the Monte Carlo averages in black and the corresponding 95% intervals in blue.
First row N = 12, T = 100, second row N = 12, T = 500, third row N = 200, T = 100 and
fourth row N = 200, T = 500.
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Figure 3: Percentage of r̂ = rmax (blue), rmax > r̂ > r (green), r̂ = 1 (red) and r̂ = 0 (black) in
a DFM with r = 1, φ = 1, ση = 1, γ = −0.8 and σ2

a = 0.1. First row N = 12, T = 100; second
row N = 12, T = 500; third row N = 200, T = 100; fourth row N = 200, T = 500. The first
column has homoscedastic and uncorrelated idiosyncratic noise; the second column the noises
are heteroscedastic while in the third column they are cross-sectionally correlated.
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Figure 4: Percentage of r̂ = rmax (blue), rmax > r̂ > r (green), r̂ = 1 (red) and r̂ = 0 (black)
in a DFM with r = 1, φ = 1, ση = 1, γ = 1 and σ2

a = 1. First row N = 12, T = 100; second
row N = 12, T = 500; third row N = 200, T = 100; fourth row N = 200, T = 500. The first
column has homoscedastic and uncorrelated idiosyncratic noise; the second column the noises
are heteroscedastic while in the third column they are cross-sectionally correlated.
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Figure 5: Percentage of r̂ = rmax (blue), rmax > r̂ > r (green), r̂ = 1 (red) and r̂ = 0 (black) in
a DFM with r = 1, φ = 1, ση = 1, γ = −0.8 and σ2

a = 1. First row N = 12, T = 100; second
row N = 12, T = 500; third row N = 200, T = 100; fourth row N = 200, T = 500. The first
column has homoscedastic and uncorrelated idiosyncratic noise; the second column the noises
are heteroscedastic while in the third column they are cross-sectionally correlated.
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Figure 6: Percentage of r̂ = rmax (blue), rmax > r̂ > r (green), r̂ = 2 (red), r̂ = 1 (gold) and
r̂ = 0 (black) in a DFM with r = 2, γ = −0.8 and σ2

a = 1. System dimensions N = 12, T = 100
(first column); N = 200, T = 500 (second column). The factors are two random walks with
variance σ2

η = 1 (first row); two random walks with variances ση1 = 1 and ση2 = 5 (second row)
and a random walk with variance ση1 = 1 and a stationary factor with ση2 = 1.
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Figure 7: Number of factors detected in the inflation rates system when the procedures are
implemented to the levels (red) and to differenced series (dark red).

Figure 8: PC estimated factor (first row) and factor weights (second row) obtained assuming
r = 1 and using original inflation rates (first column) and differenced rates (second column).
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Figure 9: PC estimated factors (first row) and corresponding factor weights (second row) ob-
tained assuming r = 3 and using original inflation rates (first column) and differenced rates
(second column).
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