
A Real-Time Computer Vision Library for

Heterogeneous Processing Environment ASSACHUSETTS IN
OF TECHNOLOi

by JUN2 1 20
Tony J. Liu RIE

S.B., Computer Science and Engineering & S.B., Mathema ics

Massachusetts Institute of Technology (2010)
ARCHNES

Submitted to the
Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2011

@ Massachusetts Institute of Technology 2011. All rights reserved.

A uthor
Department of Electrical Engineering and Computer Science

May 18, 2011

Certified by.................
Dr. Christopher J. Terman

Senior Lecturer
Thesis Supervisor

Accepted by V --.
Dr. Christopher J. Terman

Chairman, Department Committee on Graduate Theses

A Real-Time Computer Vision Library for Heterogeneous

Processing Environments

by

Tony J. Liu

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2011, in partial fulfillment of the

requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

With a variety of processing technologies available today, using a combination of
different technologies often provides the best performance for a particular task. How-
ever, unifying multiple processors with different instruction sets can be a very ad hoc
and difficult process.

The Open Component Portability Infrastructure (OpenCPI) provides a platform
that simplifies programming heterogeneous processing applications requiring a mix
of processing technologies. These include central processing units (CPU), graphics
processing units (GPU), field-programmable gate arrays (FPGA), general-purpose
processors (GPP), digital signal processors (DSP), and high-speed switch fabrics.

This thesis presents the design and implementation of a computer vision library in
the OpenCPI framework, largely based on Open Source Computer Vision (OpenCV),
a widely used library of optimized software components for real-time computer vision.
The OpenCPI-OpenCV library consists of a collection of resource-constrained C lan-
guage (RCC) workers, along with applications demonstrating how these workers can
be combined to achieve the same functionality as various OpenCV library functions.

Compared with applications relying solely on OpenCV, analogous OpenCPI appli-
cations can be constructed from many workers, often resulting in greater paralleliza-
tion if run on multi-core platforms. Future OpenCPI computer vision applications
will be able to utilize these existing RCC workers, and a subset of these workers can
potentially be replaced with alternative implementations, e.g. on GPUs or FPGAs.

Thesis Supervisor: Dr. Christopher J. Terman
Title: Senior Lecturer

4

Acknowledgments

First and foremost, I would like to thank Professor Chris Terman for his supervision

and guidance on this project. Many of his suggestions have helped me focus my

efforts on the essential parts of the project and stay on track.

The project would not have been possible without the support from Jim Kulp and

Chuck Ketcham at Mercury Federal Systems. From getting me started with OpenCPI

development to troubleshooting issues throughout the year, Jim and Chuck have been

tremendously helpful.

I would also like to thank all of the folks at Aurora Flight Sciences, especially

Michael Price and Jim Paduano. Aside from generously providing me with a place

to work, Michael and Jim have given me a ton of perspective on using OpenCV,

showing me projects they've been working on and providing suggestions for useful

applications.

Finally, I would like to thank my parents for supporting me throughout my aca-

demic career.

Ii
6

Contents

1 Introduction 15

1.1 OpenCPI and OpenCV. 15

1.2 Thesis Structure. 16

2 Background 19

2.1 Heterogeneous Processing Environments 19

2.1.1 Open Computing Language 19

2.1.2 Compute Unified Device Architecture 20

2.1.3 DirectCompute . 20

2.1.4 Other Technologies . 20

2.2 Computer Vision . 21

2.3 Project Goals . 22

2.3.1 Goals for Mercury Federal Systems 23

2.3.2 Goals for Aurora Flight Sciences 23

3 OpenCPI 25

3.1 Overview of OpenCPI . 25

3.1.1 Components and Workers . 26

3.1.2 Authoring Models. 27

3.1.3 Applications and Containers 28

3.2 RCC W orkers . 28

3.2.1 Execution Model . 29

3.2.2 Worker Interface . 30

3.3 Example RCC Worker 32

3.4 Application Control Interface . 33

3.4.1 Containers and Applications 33

3.4.2 Workers 34

3.4.3 Ports . 34

3.4.4 Buffers . 35

3.5 Example OpenCPI Application . 36

4 OpenCV 39

4.1 Overview of OpenCV . 39

4.2 Module Summary . 39

4.3 Library Characteristics . 41

5 OpenCPI-OpenCV Library 43

5.1 Overview of Goals . 43

5.2 Design Methodology and Challenges 44

5.2.1 Division into Workers . 44

5.2.2 Representing Images . 45

5.2.3 Properties and Parameters . 45

5.2.4 Implementation Challenges . 46

5.3 Project Code . 46

6 Image Filtering in OpenCPI 47

6.1 Overview of Image Filtering . 47

6.2 sobel (RCC) . 47

6.3 scharr (RCC) . 48

6.4 laplace (RCC) .. 49

6.5 dilate (RCC) . 49

6.6 erode (RCC) .. 49

6.7 blur (RCC) . 50

6.8 median (RCC) . 50

6.9 gaussian-blur (RCC) . 50

6.10 Image Filtering Demo . 51

7 Feature Detection in OpenCPI 55

7.1 Overview of Feature Detection . 55

7.2 canny (RCC) . 55

7.3 canny-partial (RCC) . 56

7.4 cornereigenvals-vecs (RCC) . 57

7.5 min-eigen-val (RCC) . 57

7.6 good.features-to-track (RCC) . 58

7.7 Canny Edge Detection Demo . 58

7.8 Corner Tracking Demo . 59

8 Motion Tracking in OpenCPI 61

8.1 Overview of Motion Tracking . 61

8.2 optical-flow-pyr-lk (RCC) . 61

8.3 sobel_32f (RCC) . 63

8.4 Optical Flow Demo . 63

9 Conclusion 67

9.1 Future Work. 67

9.1.1 Additional RCC Workers . 67

9.1.2 Alternative Implementations 67

9.2 Summary . 68

10

List of Figures

3-1 Illustration of component-based systems and applications (from the

OpenCPI Technical Summary [6])

6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8

6-9

. 2 8

Original image of Boston

Sobel y-derivative

Scharr y-derivative

Laplacian

D ilate

Erode

B lur

M edian

Gaussian blur with o-x = oy = 0.8.

7-1 Canny schematic diagram with 3

7-2 Output of Canny edge detection

workers

.

7-3 Corner tracking schematic diagram with 3 workers

7-4 Image with strong corners marked

8-1 Optical flow schematic diagram for one level with 11 workers (8 shown)

8-2 Optical flow result on UAV pilot-view images (from test application)

.

.

12

List of Tables

3.1 RCCWorker Members 30

3.2 RCCResult Values 32

14

Chapter 1

Introduction

1.1 OpenCPI and OpenCV

As technology becomes increasingly powerful, the amount of computation we can do

in a real-time setting has also grown significantly. Although much of this growth has

been focused around central processing units (CPU) for modern computer systems, it

has also fueled the development of specialized processors, such as graphics processing

units (GPU), field-programmable gate arrays (FPGA), general-purpose processors

(GPP), digital signal processors (DSP), and high-speed switch fabrics.

The needs for high-performance computing have driven the advancement of many

of these technologies. In the past, most of these applications could run suitably on

computer systems, as huge improvements in technology and frequency scaling contin-

ually increased their performance. However, recent years have seen a higher demand

for heterogeneity in computer systems. For instance, as CPU speed improvements

continue to slow significantly, memory latency is expected to become the primary bot-

tleneck in computer performance. This has created the need for structural changes

or custom hardware in modern processors, if performance gains are to continue. [18]

Because of the existing technology already available, it is both impractical and

often infeasible to create custom hardware solutions for every high-performance com-

puting application. Heterogeneous computing systems must therefore utilize existing

processors and provide an interface to unite different instruction set architectures.

Unfortunately, this can sometimes be a very ad hoc and difficult process. The Open

Component Portability Infrastructure (OpenCPI) provides a platform that simpli-

fies programming heterogeneous processing applications requiring a mix of processing

technologies, including CPUs, GPUs, and FPGAs.

On the other hand, computer vision is a prime example of a field which can

take advantage of these high-performance computing systems. The primary goal of

this thesis is to present a computer vision library in the OpenCPI framework, largely

based on Open Source Computer Vision (OpenCV), a widely used library of optimized

software components for real-time computer vision. The OpenCPI-OpenCV library

consists of a collection of resource-constrained C language (RCC) workers, along with

applications demonstrating how these workers can be combined to achieve the same

functionality as many OpenCV library functions.

OpenCPI applications can be constructed from many workers, often resulting in

greater parallelization compared with similar OpenCV applications if run on multi-

core platforms. Future OpenCPI computer vision applications can build upon these

existing RCC workers, and a subset of these workers can potentially be replaced with

alternative implementations, e.g. on GPUs or FPGAs.

This work was done with the generous support from Mercury Federal Systems, the

creator of OpenCPI. Moreover, real-time computer vision is an essential component

of unmanned aircrafts and developing high-performance computer vision applications

could potentially be very useful for future projects at Aurora Flight Sciences.

1.2 Thesis Structure

The structure of the thesis is as follows.

Chapter 2 provides the background necessary for putting OpenCPI and OpenCV

in perspective. We begin with an overview of existing heterogeneous processing envi-

ronments, followed by a brief description of problems in computer vision that would

benefit from acceleration on a mix of processing technologies. We conclude the chap-

ter by outlining the goals of the project in more detail.

Chapter 3 begins with an overview of OpenCPI, namely the goals and potential

applications of the platform. We delve into the technical details of OpenCPI and

discuss the interfaces that are used for building OpenCPI applications. To best

illustrate these concepts, we walk through the process of writing a simple OpenCPI

application.

Chapter 4 gives a summary of OpenCV. We provide a bit of motivation and talk

about the history of the computer vision library. We then discuss a few of the essential

modules in OpenCV, taking note of certain features and characteristics we will need

to consider in porting parts of OpenCV to OpenCPI.

Chapter 5 starts by discussing the goals of a computer vision library in OpenCPI

based on OpenCV. We talk about the general approach taken to design this OpenCPI-

OpenCV library, as well as some of the challenges faced along the way.

Chapters 6, 7, and 8 provide documentation for the OpenCPI workers that can be

put together to perform many common tasks in computer vision. These cover image

filtering, feature detection, and motion tracking, respectively. In the three chapters,

we also put the OpenCPI workers together into a few applications. In particular, we

go over the implementation of an optical flow application using many of these workers

and compare this to the standalone OpenCV implementation.

Chapter 9 summarizes the work above and discusses possible avenues for future

work with OpenCPI and OpenCV.

18

Chapter 2

Background

2.1 Heterogeneous Processing Environments

Although OpenCPI offers a novel approach to working in heterogeneous processing

environments, there are quite a few existing technologies that serve a similar purpose.

We outline the features and limitations of a selection below. It is notable that there

seems to be a lack of support for FPGA environments, one shortcoming addressed by

OpenCPI.

2.1.1 Open Computing Language

Originally developed by Apple, Inc., Open Computing Language (OpenCL) [16] pro-

vides a programming environment for systems involving a mix of multi-core CPUs,

GPUs, Cell-type architectures, and other parallel processors such as DSPs. OpenCL

provides parallel computing using both task-based and data-based parallelism. The

main feature of OpenCL is giving the ability of any application to access the GPU for

non-graphical computing. Moreover, OpenCL is analogous to the industry standards:

Open Graphics Library (OpenGL) and Open Audio Library (OpenAL). OpenCL is

currently managed by the non-profit technology consortium Khronos Group.

Future versions of OpenCPI will use OpenCL for GPU support.

2.1.2 Compute Unified Device Architecture

Compute Unified Device Architecture (CUDA) [13] is a parallel computing archi-

tecture developed by NVIDIA. Developers can use the C programming language,

compiled through a PathScale Open64 C compiler, to run code on the GPU. Third

party wrappers are also available for a variety of other languages, including Python,

Fortran, Java, and MATLAB. However, unlike OpenCL, CUDA-enabled GPUs are

only available from NVIDIA.

2.1.3 DirectCompute

Microsoft DirectCompute [10] is an application programming interface (API) that

supports general-purpose computing on Microsoft Windows Vista and Windows 7.

Although it was released with the DirectX 11 API, it is compatible with both DirectX

10 and DirectX 11 GPUs. DirectCompute provides functionality on both NVIDIA's

CUDA architecture for GPUs and AMD's platforms, which support DirectX 11.

2.1.4 Other Technologies

The three technologies listed above are the main competitors for providing heteroge-

neous processing environments, but there are a few more worth mentioning.

* BrookGPU [15] is a compiler and runtime implementation of the Brook stream

programming language for use in modern graphics hardware, e.g. for non-

graphical, general purpose computations. It was developed by the Stanford

University Graphics group.

" Lib Sh [4] is a metaprogramming language for GPUs, although it is no longer

maintained. RapidMind, Inc. was formed to commercialize the research behind

Sh.

* AMD's Stream Computing Software Development Kit (SDK) [1] includes Brook+,

an AMD hardware optimized version of the Brook language. Formerly called

Close to Metal and initially developed by ATI Technologies, Inc., the AMD

Stream Computing SDK now includes AMD's Core Math Library (ACML) and

AMD's Performance Library (APL). The newest version of the ATI Stream

SDK also has support for OpenCL.

2.2 Computer Vision

As a technological discipline which greatly relies on the computing power of modern

processors, computer vision can be thought of as the transformation of images or

video to either a decision or a new representation. These transformations are usually

helpful for solving particular problems. For example, one might want to sharpen a

picture (image filtering), determine whether or not a photograph contains a vehicle

(feature detection), or follow the path of an aircraft in a video (motion tracking).

A few other applications are surveillance, biomedical analysis, and unmanned flying

vehicles. Military uses of computer vision are also abundant, including the detection

of enemy vehicles and missile guidance. [2]

Computer vision is closely related to (and shares many techniques with) a number

of fields, such as artificial intelligence, image processing, machine learning, optics,

signal processing, and mathematics. As highly visual creatures, we are easily deceived

into underestimating the difficulty of many tasks in computer vision. The process of

turning pixel data, represented as grids of numbers, into useful information, can be

challenging to formulate as algorithms. Other issues can include noise and camera

calibration. With a constantly expanding realm of real-world applications, computer

vision is rapidly growing field with a great need for high-performance computing

systems.

A brief overview of the many subfields of computer vision is given below.

9 Image filtering involves modifying an image based on a function of a local neigh-

borhood of each pixel. Examples include calculating gradients and smoothing

images. These are often building blocks for more complex tasks in computer

vision.

" Image restoration focuses removing noise. Sources of this noise include motion

blur and noise inherent in sensors. Many techniques from image filtering apply

here.

* Feature detection can be more generally thought of a problem in image recog-

nition. These tasks can include seeing if a given object is part of an image,

classifying the objects in an image, or scanning the image for a particular con-

dition. Examples include identifying fingerprints and analyzing abnormal cells

or tissues in medical images.

" Image segmentation is one way to make computer vision tasks more tractable,

by selecting regions of an image that are relevant for further processing. This

is closely related to feature extraction.

" Motion tracking involves many tasks related to estimating the velocity at points

in a sequence of frames. For instance, the tracking problem involves following

the movements of a set of interest objects; optical flow seeks to determine how a

set of points are moving relative to the image plane. These problems are highly

applicable to robot navigation, for instance.

Most of the existing algorithms for these tasks involve heavy matrix computations

and complex data structures. As such, there is a lot of room for potential acceleration

on heterogeneous processing environments.

2.3 Project Goals

The primary goal of this project is to port a subset of the OpenCV software compo-

nents to the OpenCPI framework. In completing the work described above, I hope

to align the goals of my project with the goals of both Mercury Federal Systems and

Aurora Flight Sciences.

2.3.1 Goals for Mercury Federal Systems

As a fairly new open-source technology, OpenCPI would benefit tremendously from

a larger user base. An important objective of this project is to have example imple-

mentations of OpenCV modules integrated through OpenCPI. The widespread use of

OpenCV could lead to increased awareness and use of OpenCPI, especially if there

is an enormous performance benefit for certain components. Because OpenCPI is

targeted at embedded systems, a computer vision library for OpenCPI could expand

the realm of processors used for computer vision, by simplifying the construction of

computer vision systems.

Another aspect of this project involves creating sample computer vision applica-

tions using OpenCPI. These will demonstrate how various OpenCPI workers can be

put together to accomplish various tasks in computer vision, including edge detection

and motion tracking. These programs will also complement the documentation for

the OpenCPI workers and will encourage collaboration between the OpenCV and

OpenCPI communities.

Furthermore, highlighting the defense applications of this project is another goal.

2.3.2 Goals for Aurora Flight Sciences

The successful implementation of various OpenCV modules on multiple types of hard-

ware could prove very useful for Aurora Flight Sciences. Aside from the potential

performance boost, using OpenCPI could allow certain tasks to be completed on

technologies other than a CPU. For instance, these could include technologies requir-

ing less power and of smaller size, as performance may not be the only consideration.

Ideally, this will increase the realm of feasible projects for Aurora Flight Sciences.

24

Chapter 3

OpenCPI

3.1 Overview of OpenCPI

Original developed by Mercury Federal Systems, the Open Component Portability

Infrastructure (OpenCPI) is an open-source software framework for building high-

performance applications running on systems containing a mix of processing tech-

nologies, e.g. CPUs, GPUs, FPGAs, GPPs, DSPs, and high-speed switch fabrics.

The goal of OpenCPI is to improve code portability, interoperability, and perfor-

mance in FPGA and DSP-based environments by providing well-defined waveform

component application programming interfaces (API) with a set of infrastructure

blocks that act as a hardware abstraction layer (HAL). OpenCPI is also appropriate

for the incorporation of GPU (in progress) and multi-core technologies.

The OpenCPI framework is built on the U.S. Government's Software Communi-

cations Architecture (SCA) standard. Moreover, OpenCPI extends component-based

architectures into FPGAs and DSPs to decrease development costs and time to mar-

ket with code portability, reuse, and ease of integration. Using an appropriate mix

of industry and government specifications, all interfaces are openly published and

non-proprietary.

One of the benefits of OpenCPI is that it allows users to outsource the technol-

ogy transition management job to others. Using the OpenCPI interfaces, developers

can protect their application development investment by cost-effectively moving their

applications to new generations of systems using the latest technologies. OpenCPI is

essentially a kit of necessary pieces to create an application platform for component-

based applications based on the SCA model extended to a heterogeneous mix of

computing, interconnect, and I/O resources.

To overcome the challenges of code portability in FPGA environments in partic-

ular, OpenCPI provides a pre-validated set of building blocks to interface the FPGA

waveform applications with high-performance switch fabrics, onboard memory, sys-

tem command and control, and wideband I/O. OpenCPI's non-proprietary interfaces

act as an abstraction layer to increase the portability of FPGA applications. A ver-

ification suite is also included to facilitate debugging and reduce development time.

[8]

More generally, OpenCPI provides an environment that uses the concepts of

component-based development (CBD) and component-based architectures (CBA).

These ideas were developed as early as the 1990's as an extension of object-oriented

concepts, although OpenCPI specifically targets embedded systems. We outline the

essential parts of OpenCPI below, in a bottom-up fashion. A more comprehensive

overview can be found in the OpenCPI Technical Summary and related documents.

[6, 5]

3.1.1 Components and Workers

An OpenCPI component is a building block for various applications. Components

include a functional and interface contract, configuration properties, and ports for

interacting with other components. The configuration properties are runtime scalar

parameters. The ports allow the components to access various input and output

buffers. Implementations of these components are referred to as workers and may take

a variety of forms, such as compiled binaries for different processors and operating

systems.

3.1.2 Authoring Models

Because OpenCPI workers may be written in different programming languages and

targeted for a variety of processors, there is usually no common API that can be

used. As a result, these component implementations are written in a variety of

OpenCPI authoring models, i.e. languages and APIs that provide a common ground

for OpenCPI workers. At the same time, these authoring models aim to achieve

efficiency comparable to their native languages and tool environments.

The primary specifications for an authoring model include how a worker is built

(compiled, synthesized, linked, etc) for execution in an application and an XML

document containing details of the worker schema (data passing interfaces, control

interfaces, etc).

The OpenCPI authoring models that are currently available are summarized in

the list below. These have been taken from the official OpenCPI Technical Summary.

[6]

e RCC (Resource Constrained C-language) for using the C language on software

systems ranging down to micro-controllers, DSPs, dedicated cores of a multi-

core, etc.

e HDL (Hardware Description Language) for components executing on FPGAs.

e XM (X-Midas) for wrapping X-Midas primitives to function as OpenCPI com-

ponents.

* OCL (OpenCL-based GPU targeted) for components executing on and written

for graphics processors (GPGPUs). This work is in progress.

o SCA components using C++, Portable Operating System Interface for UNIX

(POSIX), and Common Object Request Broker Architecture (CORBA) written

to be compliant with the Department of Defense's software-defined radio (SDR)

standard.

Figure 3-1: Illustration of component-based systems and applications (from the
OpenCPI Technical Summary [6])

3.1.3 Applications and Containers

An OpenCPI application is a composition of components, which as a whole, perform

some useful function. This process usually involves connecting the ports of the com-

ponents and providing an intial configuration of properties to each component. These

applications run inside an OpenCPI container, an execution environment such as a

process on a CPU or a platform set of gates on an FPGA. Although applications

can be standalone, note that we can have a master or control OpenCPI application

that combines multiple applications running in many containers. The interface for

launching and controlling OpenCPI applications is written in C++.

3.2 RCC Workers

We focus our attention on the Resource Constrained C-language (RCC) workers.

OpenCPI workers written under this model are written in the C language and are

primarily targeted for resource-constrained embedded systems. These are also written

to be compliant with the ISO C90 standard, though the integer types from stdint .h

of C99 are used. Any GPP with a C compiler can serve as an environment to run

RCC workers in theory; multi-core CPUs, DSPs, and microcontrollers are the natural

targets.

Next, we will review the RCC model details necessary for building our library

of computer vision workers. Further details can be found in the OpenCPI RCC

Reference document. [7]

3.2.1 Execution Model

Each RCC worker resides in a container, which supplies the execution thread(s).

Therefore, an RCC worker in the base profile does not need to create any threads;

workers also never block. The container will call a run method of the worker if certain

run conditions are true. These conditions mainly consist of a combination of input or

output ports being ready and can be defined for each worker. An input port is ready

if it is available to read data from, while an output port is ready if it is available to

write data to.

Before the run method returns, the worker can specify which ports advance, if

any. For input ports, this means releasing the buffer; for output ports, this means

sending the buffer. The next buffer is implicitly requested.

Because the decision of which buffers to keep or advance is left to the worker, this

model supports sliding window algorithms, which we will use frequently for image

filtering workers. Moreover, we can support the concept of "zero copy" by attaching

output ports of certain workers to input ports of others. This means that when

transferring data from one port to the another, we can avoid copying the data if it

resides in shared memory (and both workers reside in containers that have access to

it).

The rationale for this execution model is a combination of simplicity, efficiency,

and minimizing the amount of code in the worker.

3.2.2 Worker Interface

Each RCC worker has a required run method along with additional optional methods.

We focus on the run method here. This method requests that the worker perform its

normal computation. The method signature is given below.

RCCResult run(RCCWorker *self,

RCCBoolean timedout,

RCCBoolean *newRunCondit ion);

Here, the worker can use its private memory and the state of its ports to decide

what to do. The members of RCCWorker allow the run method to access the worker

properties, its ports, and a set of container functions. This is summarized in a partial

table of the members of RCCWorker; the full table is available in the OpenCPI RCC

Reference document. [7]

Table 3.1: RCCWorker Members

Member Name Member Data Type Written by
properties void * const container
ports RCCPort [] varies by member
container const RCCContainer container

The properties can be set in the container. The ports allow the workers to access

the buffers and the number of bytes to read or write, while the buffers themselves

each contain a pointer to the data and the maximum message length in bytes.

The container functions that are available to the worker (as a dispatch table)

can be very useful. These give us more fine-grained control over the buffers and are

necessary for implementing sliding window algorithms, for instance. We summarize

the essential container functions next, as described in the RCC Reference. [7]

* RCCBoolean request(RCCPort *port, uint32_t max);

Request a new buffer be made available as the current buffer on a port. An

optional (non-zero) length may be supplied. If the port already has a current

buffer, the request is considered satisfied. The return value indicates whether a

new current buffer is available. Non-blocking.

* void release(RCCBuffer *buffer);

Release a buffer for reuse. If the buffer is a current buffer for a port, it will

no longer be the current buffer. Buffer ownership passes back to the container.

Non- blocking. Must be done in the order obtained, per port.

" RCCBoolean advance(RCCPort *port, uint32_t max);

Release the current buffer and request that a new buffer be made available as the

current buffer on a port. An optional (non-zero) length may be supplied. This is

a convenience and efficiency combination of release-current-buffer request. The

return value indicates whether a new current buffer is available. Non-blocking.

" void send(RCCPort *port, RCCBuffer *buffer,

RCCOrdinal op, uint32_t length);

Send a buffer on an output port. If the buffer is a current buffer for a port,

this buffer will no longer be the port's current buffer. The op argument is an

operation or exception ordinal. Buffer ownership passes back to the container.

Non-blocking.

" void take(RCCPort *port, RCCBuffer *releaseBuffer,

RCCBuffer *takenBuffer);

Take the current buffer from a port, placing it at *takenBuf f er. If releaseBuf f er

!= NULL, first release that buffer. Non-blocking. Ownership is retained by the

worker. The current buffer taken is no longer the current buffer. Used when

the worker needs access to more than one buffer at a time from an input port.

The timedout and *newRunCondition parameters of the run method are not

necessary for our purposes. These allow the worker to run if a certain amount of time

has passed and change the run condition after executing, respectively.

Finally, we give an overview of the most common values for the return type

RCCResult in the following table.

Table 3.2: RCCResult Values

RCCResult Value Value Description

RCCOK worker operation succeeded without error
RCCDONE worker needs no more execution; a normal completion
RCCADVANCE worker is requesting that all ports be advanced

3.3 Example RCC Worker

In this section, we give an example of a simple copy RCC worker. This worker simply

has one input and one output port. These are defined in an XML specifications file,

as shown below.

<ComponentSpec Name="copy">

<DataInterfaceSpec Name="in"/>

<DataInterfaceSpec Name="out" Producer="true"/>

</ComponentSpec>

This allows the skeleton code to be generated for the copy RCC worker. On

calling run, the worker copies the data from the input buffer to the output buffer and

advances both ports.

static RCCResult run(RCCWorker *self,

RCCBoolean timedOut,

RCCBoolean *newRunCondition) {

(void) timedOut;

(void) newRunCondition;

RCCPort

*in = &self->ports[COPYIN],

*out = &self->ports [COPYOUT];

memcpy (out->current . data, in->current .data, in->input .length);

out->output.u.operation = in->input.u.operation;

out->output. length = in->input. length;

return RCCADVANCE;

}

The worker can be compiled into an object file, which an OpenCPI application

can link and execute.

3.4 Application Control Interface

The OpenCPI Application Control Interface (ACI) consists of a C++ interface for

controlling containers and applications, residing in the namespace OCPI. A typical

OpenCPI application will find containers suitable for executing our given workers,

then create an application within the container. Runtime instances of relevant workers

are then created and their ports are connected; this can be within the container,

between containers, or to the control application itself (via external ports). We give an

overview below. Complete documentation can be found in the OpenCPI Application

Control Interface reference. [5]

3.4.1 Containers and Applications

This OCPI: :Container class represents execution environments for workers.

" Application *Container: :createApplicationo;

This method returns a newly created application in the container and must be

deleted after it is no longer needed.

" Worker &Container: :Application: : createWorker (

const char *artifact,

PValue *artifactProperties,

const *implementation,

const *instance = NULL);

This method returns a reference to a worker. For RCC workers, the only ar-

guments needed are the artifact and implementation, typically pointing to a

shared object library.

3.4.2 Workers

The OCPI: :Worker class represent worker instances. They are destroyed only when

the application they reside in is destroyed.

" Port &getPort(const char *name);

This method gets a reference to one of the ports of the worker, with a given

name.

" void &setProperty(const char *name, const char *value);

This method sets a worker's property by name, giving the value in string form.

The available property types are bool, int8_t, double, float, int16_t,

int32_t, uint8_t , uint32-t, uint16_t, int64_t, uint64_t, const char *.

In OpenCPI, these are named Bool, Char, Double, Float, Short, Long,

UChar, ULong, UShort, LongLong, ULongLong, String, respectively, and ap-

pear in related methods along with the XML specifications.

3.4.3 Ports

The OCPI: :Port class represent the ports of the workers.

e void Port::connect(PValue *myProperties,

Port &otherPort,

PValue *otherProperties);

This method connects the ports of two workers, which could be in the same

or different containers. Note that the two ports connected must have different

roles and cannot both be input or output ports.

* ExternalPort& Port::connectExternal(PValue *myProperties,

const char *externalName,

PValue *externalProperties);

This method allows the control application to have ports that are connected to

the ports of certain workers. The role (producer or consumer) of this port is

the opposite of the worker port.

The OCPI::ExternalPort class allows communication between the workers and

the control application and they are owned by the workers.

" ExternalBuff er *ExternalPort: :getBuffer (uint8_t &data,

uint32_t &length,

uint8_t &opCode,

bool &endOfData);

" ExternalBuffer *ExternalPort: :getBuffer(uint8_t &data,

uint32_t &length);

These overloaded methods are used to retrieve the next available buffer on

an external port. The two versions correspond to input and output buffers,

respectively. The input version also returns the metadata via references.

3.4.4 Buffers

The OCPI: :ExternalBuffer class represents buffers owned by external ports, i.e.

usually ones in the control applicatoin.

* void ExternalBuffer::releaseo;

This method is used to discard an input buffer after it has been consumed by

the control application.

* void ExternalBuffer::put(uint8_t opCode,

uint32_t length,

bool endOfData);

This method sends an output buffer and associated metadata after it has been

filled by the control application.

3.5 Example OpenCPI Application

To put everything together, we describe the process of writing a simple "hello world"

OpenCPI application. Before creating the control application, the workers are com-

piled and the RCC workers are linked into a shared library, workers. so. The

OpenCPI control application creates a copy worker, an external port to send data

to the worker, an external port to received data from the worker, then sends a mes-

sage. The copy worker then fills its output buffer with the message and the control

application will receive this from its external port.

The following C++ code is reproduced from the OpenCPI Application Control

Interface document. [5]

namespace OCPI {

Container &c = ContainerManager::find(C'RCC'')

Application *app = c.createApplicationo;

Worker &w = app->createworker(' 'workers. so'', NULL, ''copy'');

Port

&win = w.getPort('in''),

&wout = w.getPort('out'');

ExternalPort

&myIn = win. connectExternal(''aci-out'') ,

&myOut = wout.connectExternal(' 'aci in'');

w.starto;

uint8_t opcode, *idata, *odata;

uint32_t ilength, olength;

bool end;

ExternalBuffer *myOutput = win.getBuffer(odata, olength);

assert(myOutput && olength >= strlen(''hello'') + 1);

strcpy(odata, ''hello'');

myoutput->put(O, strlen(''hello'') + 1, false);

ExternalBuffer *myInput =

wout.getBuffer(opcode, idata, ilength, end);

assert(myInput && opcode == 0 &&

ilength == strlen(''hello'') + 1 && !end &&

strcmp(idata, ''hello'');

delete app;

}

38

Chapter 4

OpenCV

4.1 Overview of OpenCV

The Open Computer Vision (OpenCV) library includes a range of real-time computer

vision algorithms, for applications ranging from interactive art to mine inspection.

[2] The library includes more than 500 optimized algorithms, and has garnered more

than 2 million downloads and over 40 thousand people in the user group. Moreover,

OpenCV is released under a BSD license; it is free for both academic and commercial

use. The library is available on Linux, Windows, and MacOS, with implementations

in C, C++, along with a Python wrapper.

Examples of particularly useful modules for include implementations of the Canny

algorithm [3] to find edges and the Lucas-Kanade [9] algorithm to compute optical

flow. These algorithms depend heavily on the matrix operations that make up the

core of OpenCV. We give a brief overview of the modules in OpenCV, followed by a

discussion of structure of the code. Specifically, we will focus on OpenCV 2.1.

4.2 Module Summary

The OpenCV 2.1 library for C/C++ is divided into a few areas:

9 core: The Core Functionality

e imgproc: Image Processing

" features2d: Feature Detection and Descriptor Extraction

* flann: Clustering and Search in Multi-Dimensional Spaces

* objdetect: Object Detection

* video: Video Analysis

" highgui: High-level GUI and Media I/O

" calib3d: Camera Calibration, Pose Estimation and Stereo

* ml: Machine Learning

To give an idea of the algorithms available in OpenCV, we list a core selection

below, broken into a few categories. These were gathered from combining the C/C++

references. [11]

" Image Filtering: Blur, Dilate, Erode, Laplace, MorphologyEx (transforma-

tions using erision and dilation as building blocks), PyrDown and PyrUp (down-

sampling and upsampling step of Gaussian pyramid decomposition), Smooth,

Sobel, Scharr, and applying arbitrary kernels

" Geometric Image Transformations: LogPolar, Remap, Resize, Rotate,

WarpAffine, WarpPerspective

" Miscellaneous Image Transformations: DistTransform (distance to clos-

est zero pixel), FloodFill, Inpaint, Integral, Threshold, PyrMeanShiftFiltering,

PyrSegmentation, WaterShed, GrabCut (last four are image segmentation al-

gorithms)

* Feature Detection: Canny, CornerHarris, ExtractSURF, FindCornerSubPix

(refines corners), GetStarKeypoints (the StarDetector algorithm), GoodFea-

turesToTrack (determines strong corners), HoughCircles and HoughLines (finds

circles and lines using a Hough transform), PreCornerDetect, SampleLine

" Object Detection: Haar Feature-Based Cascade Classifier, HaarDetectOb-

jects

* Motion Analysis and Object Tracking: CalcGlobalOrientation, CaleMo-

tionGradient, CalcOpticalFlow (many methods: block matching, Horn-Schunck,

Lucas-Kanade with and without pyramids), CamShift, KalmanCorrect, Kalman-

Predict, MeanShift, SegmentMotion, SnakeImage

4.3 Library Characteristics

In this section, we comment on general characteristics of the OpenCV code. These

observations will be essential in the design of the OpenCPI computer vision library.

" OpenCV Data Structures: For simpler code in many of the algorithms

described earlier, OpenCV uses its own data structures. Most of these reside in

the OpenCV core module, and include classes or structures for points, vectors,

images, matrices, and related operators (e.g. matrix inverse, singular value

decomposition, etc).

" Use of C++ Templates: OpenCV supports a variety of image types, i.e.

different numbers color channels and different pixel depths. Many of the algo-

rithms require that an image be converted into a specific type (e.g. grayscale

with 8-bit pixel depths), while others run specific, optimized code depending on

the image type. This is achieved by relying heavily on template classes.

" Use of C++ STL: Using built-in data structures and algorithms available in

the C++ Standard Template Library also simplifies the OpenCV code tremen-

dously. For instance, vectors are commonly used, as is sorting.

" Use of SSE Instructions: Because OpenCV is heavily optimized, there can

be a huge performance benefit to using Streaming SIMD Extensions (SSE)

instruction set. For instance, it is often possible to pack multiple pixels into

a single 128-bit register. This leads to loop unrolling as an optimization (e.g.

going down an image 2 or 4 lines at a time).

e Ad hoc Implementations: As OpenCV is open source, this also means that

there are many contributors to the library. One result is that most OpenCV

library functions are treated as a black box, without much in terms of shared

standards. Of course, the same data structures are used for representing images

and many lower-level algorithms are commonly reused as building blocks for

more complex routines.

Many of these characteristics will present challenges in constructing an OpenCV-

based computer vision library in OpenCPl.

Chapter 5

OpenCPI-OpenCV Library

5.1 Overview of Goals

This OpenCPI-OpenCV library will consist of a collection of RCC workers, along with

a couple OpenCPI applications combining them in interesting ways. The primary goal

of a computer vision library in OpenCPI is to provide much of the same functionality

as OpenCV, with the potential for acceleration using alternative hardware. The

structure of the library will therefore be a bit different. First, we outline the goals we

want this OpenCPI-OpenCV library to achieve.

* Consistency: For the OpenCV library functions we do implement, the goal is

to stick to the OpenCV interfaces as closely as possible.

e Simple Conversion: The process of converting an existing OpenCV applica-

tion to an OpenCPI application should be as straightforward as possible. This

goes hand in hand with the previous goal, as keeping the same (or very sim-

ilar) interfaces between the two libraries will facilitate the conversion process,

especially when the programming model is very different.

e Minimize Changes: We want to minimize the amount of code we need to

change from OpenCV. This will make it easier to adapt the OpenCPI computer

vision library to new releases of OpenCV.

" Good Granularity of Workers: For our OpenCPI workers in the library,

we want them to be fine-grained enough so that future implementations can be

swapped in and out with ease. On the other hand, having each worker perform a

greater amount of work reduces the complexity of OpenCPI vision applications.

We need a compromise between the two.

* Immediate Execution: The OpenCPI workers and applications should follow

an execution model that does as much as possible with the given data. For

instance, a worker couple take in an image line by line, or a video frame by frame.

The more we focus on achieving this, the more changes we will presumably have

to make to the existing OpenCV code.

Keeping these goals in mind, we wish to strike a balance in the design.

5.2 Design Methodology and Challenges

To achieve the goals stated above, we first need to identify an interesting subset of

functions in OpenCV to port to OpenCPI. I chose three broad areas to focus on. The

first is image filtering, which includes tasks such as calculating gradients and blurring

images. Second, the area of feature detection includes corner and edge detection.

Third, motion tracking encompasses algorithms such as those for calculating optical

flow.

The next couple tasks are to decide on a methodology for determining the gran-

ularity of a worker, decide how to represent images, find a substitute for function

parameters, and discuss a strategy for implementing the RCC workers.

5.2.1 Division into Workers

Although many OpenCV functions are fairly simple and would naturally fit the exe-

cution model of a worker, most high-level functions would be too complex to put into

a single worker. Many of these complex algorithms rely on other OpenCV functions.

However, creating a worker for each OpenCV function is excessive; the ideal balance

lies somewhere in between, and is best decided on a case-by-case basis. This is further

discussed in the documentation for the RCC workers.

5.2.2 Representing Images

Images will be represented as either grayscale or RGB with 8-bit pixel depths. The di-

mensions and number of color channels of an image will be put in a worker's properties

section, along with additional metadata (optional). An OpenCPI vision application

will need to pass this information to the workers when setting them up. The pixel

data will be contiguous in memory, though the OpenCPI workers may only need a

couple lines at a time. Video streams will be represented simply as a sequence of

images under these specifications.

On the other hand, loading data into OpenCPI applications will rely on OpenCV

functions. Because the images or videos used can come in many different digital

formats (e.g. JPEG, PNG, GIF, AVI, etc), we delegate this task to the OpenCV

functions where the conversion process is already implemented. These tasks may be

replaced by stream-based OpenCPI workers in the future.

5.2.3 Properties and Parameters

In addition to the image information, we can take advantage of a worker's properties

to essentially substitute for function parameters. However, this only provides a partial

solution. There are many OpenCV functions that take pointers to temporary buffers,

output buffers, etc, which are filled after the function call. The output can naturally

be put in a worker's output buffer, but this is not always so simple. Most OpenCV

image processing functions will produce a processed image of some sort, but some

can produce a list of feature locations, for instance. Therefore, we will need to make

slight changes to the OpenCV interface to port some functions to OpenCPI.

Nevertheless, we use one input and one output port for most workers, unless we

specify otherwise.

5.2.4 Implementation Challenges

The implementation details are quite important here. Unfortunately, there seems

to be no easy way to automate this process. The most reasonable solution was a

substantial rewrite of the OpenCV code in order to port the relevant functions to

OpenCPI. The primary reasons for this are given below.

9 RCC and C++ STL: Because the OpenCPI RCC workers are written in

pure C, we cannot rely on C++ STL as OpenCV does. This means essentially

reimplementing some of the STL functionality.

e Substitutions for OpenCV Core: Similar to the issue with STL, the RCC

workers in OpenCPI will not have access to the OpenCV header files. Thus, we

cannot take advantage of OpenCV's internal data structures and must either

re-implement these or use our own.

0 Avoiding C++ Templates: The template classes in OpenCV are primarily

used for converting between different pixel depths and color schemes. Fixing

the image types (grayscale and RGB with 8-bit pixel depths) allows us not to

worry about these in OpenCPI.

Though these realizations severely reduce the scope of the project, we focus on

porting a few commonly used algorithms in OpenCV. The documentation of the RCC

workers is covered in the next few chapters.

5.3 Project Code

The code for the RCC workers and demo applications is available on the web (under

the GNU General Public License, version 2) at:

https: //github. com/tonyliu-mit/opencpi-opencv

All work was done on a platform using 64-bit CentOS 5.3.

Chapter 6

Image Filtering in OpenCPI

6.1 Overview of Image Filtering

Here are brief descriptions and documentation for the basic image filtering RCC

workers. For all of these workers, I chose a fixed kernel size of 3 x 3, which seems

to be the most commonly used size. There are a couple other reasons for this. The

RCC workers have an XML spec file which includes the minimum number of buffers

it must have. This is easy to modify and it's best to not make this too much larger

than necessary. Moreover, this allows us to (slightly) optimize the RCC workers by

unrolling loops.

Each of these workers follows the same execution pattern. It keeps a buffer history

of 3 lines (including the current line). After receiving 2 lines, it will produce a row of

zeros, and thereafter produce another line for every line it receives.

We list each worker with its properties and types. This is followed by a brief

description of what it does and any additional notes. These workers can take images

up to 1MB. Moreover, every worker in this section has one input port and one output

port.

6.2 sobel (RCC)

9 height (ULong): image height in pixels (and equivalently, bytes)

. width (ULong): image width in pixels

* xderiv (Bool): calculate x-derivative if nonzero, otherwise calculate y-derivative

Either calculates the x-derivative, using the Sobel kernel:

-1 0 1

-2 0 2

-1 0 1

or the y-derivative using the Sobel kernel:

-1 -2 -1
0 0 0

1 2 1

6.3 scharr (RCC)

" height (ULong): image height in pixels

" width (ULong): image width in pixels

" xderiv (Bool): calculate x-derivative if nonzero, otherwise calculate y-derivative

Either calculates the x-derivative, using the Scharr kernel:

-3 0 3

-10 0 10

-3 0 3

or the y-derivative using the Scharr kernel:

-3 -10 -3

0 0 0

3 10 3

6.4 laplace (RCC)

" height (ULong): image height in pixels

* width (ULong): image width in pixels

Convolves the image with the following kernel:

0 1 0

1 -4 1

0 1 0

6.5 dilate (RCC)

" height (ULong): image height in pixels

" width (ULong): image width in pixels

The OpenCV function has an optional iterations argument, but this is rarely

greater than 1 and it is just as easy to loop in the OpenCPI application. The result

has

dst(x, y) = max src(x + x', y + y'),
(x' ,y')

where the maximum is taken over (x', y') {-1, 0, 1}2.

6.6 erode (RCC)

" height (ULong): image height in pixels

* width (ULong): image width in pixels

Similar to the above, but the result has

dst(x, y) = min src(x + x', y + y'),
(X',z')

where the minimum is taken over (x', y') E {-1, 0, 1}2.

6.7 blur (RCC)

" height (ULong): image height in pixels

* width (ULong): image width in pixels

" normalize (Bool): normalizes the result if nonzero

Convolves the image with the following kernel:

1 11

1 11

and scales (divides by 9) if necessary.

6.8 median (RCC)

* height (ULong): image height in pixels

* width (ULong): image width in pixels

Applies a median filter, with the result having

dst(x, y) = median src(x + x', y + y'),

taken over (X', y') E {-1, 0, 1}2.

6.9 gaussian-blur (RCC)

" height (ULong): image height in pixels

" width (ULong): image width in pixels

* sigmaX (Double): standard deviation for x direction

9 sigmaY (Double): standard deviation for y direction

If either sigmaX or sigmaY are less than 0, they are instead set to the default value of

0.8. Convolves the source image with a Gaussian kernel. This is the result of applying

two separable linear filters of the form

(i - 1)2
Gi = a - exp 2o.2)2

for i = 0, 1, 2 and a chosen such that E Gi = 1.

6.10 Image Filtering Demo

This demo application simply takes an image and worker name, then applies the

appropriate filter to the image. Note that for a couple of the workers, the properties

must be modified and the application must be rebuilt. The resulting image is both

displayed and saved as a file. The original image I used to test the workers is shown

below.

Figure 6-1: Original image of Boston

Here are the output images from each of the workers.

Figure 6-2: Sobel y-derivative

Figure 6-3: Scharr y-derivative

Figure 6-4: Laplacian

Figure 6-5: Dilate

Figure 6-6: Erode

Figure 6-7: Blur

Figure 6-8: Median

Figure 6-9: Gaussian blur with ax = ay = 0.8

Chapter 7

Feature Detection in OpenCPI

7.1 Overview of Feature Detection

The feature detection workers in this section can be combined to perform two primary

tasks. The first is edge detection using Canny's algorithm. This can be done in two

ways, using either the canny worker by itself, or a combination of two sobel workers

to calculate gradients combined with a canny-partial worker.

The second task is to determine strong corners on an image. Although this

could be implemented as a single worker, I chose to split it up into three sepa-

rate steps. Even though they are sequential, this division allows us the two workers

corner-eigen-vals-vecs and min-eigen-val to be reused for other purposes. More-

over, the features found by good-features.to.track can be used as input for more

complex routines.

As in the previous chapter, we list each worker with its properties and types.

This is followed by a brief description of what it does and any additional notes.

These workers can take images up to 1MB. Unless otherwise specified, a worker has

one input port and one output port.

7.2 canny (RCC)

. height (ULong): image height in pixels (and equivalently, bytes)

0 width (ULong): image width in pixels

" low-thresh (Double): value for edge linking

" high-thresh (Double): value for finding initial segments

This worker takes in an image and produces an output image using the Canny

algorithm. After calculating the x and y gradients, we perform a non-maxima sup-

pression step. This is followed by tracking edges, i.e. applying a hysteresis threshold

to the pixels. That is, everything above the higher threshold is accepted as an edge

pixel, and everything below the lower threshold is rejected. For the pixels in-between

the two thresholds, it is part of an edge if it is adjacent to a pixel that is already

marked.

7.3 canny-partial (RCC)

" height (ULong): image height in pixels (and equivalently, bytes)

* width (ULong): image width in pixels

* low-thresh (Double): value for edge linking

" high-thresh (Double): value for finding initial segments

This worker has two input ports: one for the x-derivative and one for the y-derivative.

These can be fed into the worker any number of lines at a time (as long as the number

of lines is the same between the x and y-derivatives). Given an input buffer of size

N, the worker processes [N/WJ lines, where W is the width of the image. The non-

maxima suppression step can be started, although we have to wait until the entire

image is available before tracking edges.

Given these gradients, the worker produces an output image using the Canny

algorithm, just like the canny worker.

7.4 corner-eigen-vals.vecs (RCC)

" height (ULong): image height in pixels

" width (ULong): image width in pixels

As a part of many corner detection algorithms, this worker is analogous to the

OpenCV function that calculates eigenvalues and eigenvectors of image blocks. It

takes in an image and produces an matrix of the same size, but with 3 channels and

floating point numbers. More specifically, for each pixel p, let S(p) be the 3 x 3

neighborhood surrounding the pixel. The 3 values

(:(dI/dx) 2, E (dI/dx - df/dy), (dI/dy)2,
S) S(P) S(p)

are stored as 32-bit floating point numbers. These are arranged in row-major order

in the output buffer.

7.5 min-eigen-val (RCC)

" height (ULong): image height in pixels

* width (ULong): image width in pixels

This worker takes the output of the worker corner-eigen-vals-vecs and uses the

gradients to find the smaller of two eigenvalues of the matrix

M [ES(p) (dI/dx)2 ES((dI/dx -dI/dy)

[ES(p) (dI/dx - dI/dy) ES(p) (dI/dy)2]
The result is a buffer with height x width 32-bit floating point numbers, representing

the minimal eigenvalue of the derivative covariation matrix for every pixel.

7.6 good-features -to-track (RCC)

" height (ULong): image height in pixels

" width (ULong): image width in pixels

" max-corners (ULong): maximum number of corners to find

" quality-level (Double): multiplier for the minimum eigenvalue; specifies the

minimal accepted quality of image corners

* min-distance (Double): limit specifying the minimum possible distance be-

tween the returned corners; Euclidean distance is used

The worker finds the strong corners with big eigenvalues in the image. The worker

takes in the minimal eigenvalue for every source image pixel. Then it performs non-

maxima suppression (only the local maxima in neighborhood are retained). The next

step rejects the corners with the minimal eigenvalue less than qualityJlevel times

the maximum eigenvalue over the entire image. Finally, the worker ensures that the

distance between any two corners is not smaller than min-distance. The weaker

corners (with a smaller min eigenvalue) that are too close to the stronger corners are

rejected.

This differs from the OpenCV function in a few ways. First, we use the minimum

eigenvalue operator always (omitting the parameters for the Harris operator). There

is no need to provide temporary buffers, as the worker can create and free those. We

fix the block size to be 3, as this is the default. Finally, the number of corners can be

gathered from the size of the output buffer.

In the end, this worker produces a buffer with at most max-corners pairs of 32-bit

floating point numbers (x, y). These are the locations of the corners on the image.

7.7 Canny Edge Detection Demo

This demo application strings together two sobel workers and the canny-partial

worker as shown in the schematic diagram below. These all reside in the same con-

tainer.

image lines dx image with

sobel (X) edges

L cannyyartial

sobel (Y)prta

image lines dy

Figure 7-1: Canny schematic diagram with 3 workers

The image is fed to both sobel workers line by line. At every step, calling dis-

patch on the container causes the sobel workers to produce the gradients and the

canny-partial worker to start the non-maxima suppression step. Once it has re-

ceived the entire image, it tracks edges and produces an output image with the edges

marked. The default thresholds of 10 (low) and 100 (high) are used. The result is

shown below, using the same sample input image as earlier.

Figure 7-2: Output of Canny edge detection

7.8 Corner Tracking Demo

Next, we present a demo application that finds strong corners on an image. This appli-

cation uses good.f eatures-totrack and the two other workers corner-eigen-vals-vecs

and min-eigen-val to produce the minimum eigenvalues. The connections are shown

in the schematic diagram.

image E corner-eigen vals vecs

covariation matrix

mn_eigenval

minimum eigenvalues

good features to track corner
locations

Figure 7-3: Corner tracking schematic diagram with 3 workers

We use the values of 50 for max-corners, 0.03 for quality-level, and 5 for

min-distance. The resulting image (with features marked as red circles) is shown

below.

Figure 7-4: Image with strong corners marked

Chapter 8

Motion Tracking in OpenCPI

8.1 Overview of Motion Tracking

The primary motion tracking worker in this section can be used to perform opti-

cal flow, computed using the Lucas-Kanade algorithm with pyramids. In order to

minimize the changes to the OpenCV code, we introduce a new worker, sobel-32f,

for producing gradients that are 32-bit floating point numbers. As this is consider-

ably more complex than our previous workers, we use the optical flow application to

demonstrate the features of OpenCPI.

As in the previous chapters, we list each worker with its properties and types.

This is followed by a brief description of what it does and any additional notes.

These workers can take images up to 1MB.

8.2 optical-flow-pyrdlk (RCC)

e height (ULong): image height in pixels

* width (ULong): image width in pixels

* win-height (ULong): height of search window at this pyramid level

* win-width (Ulong): width of search window at this pyramid level

e level (ULong): level of pyramid, zero-based (single level is 0)

" term-maxcount (ULong): termination iterations for the iterative search

algorithm

* term-epsilon (Double): termination epsilon (if search window moves less

than epsilon) for the iterative search algorithm

* deriv.lambda (Double): relative weight of the spatial image derivatives im-

pact to the optical flow algorithm (0 for only image intensity, 1 for only deriva-

tives, and anything inbetween corresponds to a weighted average)

This worker has 10 input ports and 3 output ports and encapsulates one level of

the Lucas-Kanade optical flow algorithm using pyramids. It essentially takes in two

images and feature locations in the first image, and produces new locations for the

features in the second image.

More specifically, the 10 input ports are divided as follows.

" The two images A and B: as 8-bit single-channel images.

" First-order gradients for both images: these four (dXA, dyA, dXB, dyB) are in-

stead stored as 32-bit floating point single-channel images.

" Second-order gradients for the first image: these three (dxdyA, PXA, d'yA) are

also stored as 32-bit floats.

* Feature locations on the first image: these are stored as pairs (x, y) of 32-bit

floats.

The 3 output ports as as follows.

* Feature locations: stored as pairs (x, y) of 32-bit floating point numbers.

" Statuses: boolean values indicating whether or not the corresponding features

have been found.

* Errors: differences between patches around the original and moved points,

stored as 32-bit floating point numbers.

Compared to the OpenCV implementation, we keep all of the parameters, except

an optional flags parameter. This allows us to use self-chosen initial estimations of

the features, but the default is just initializing these to the previous estimations (and

works well enough in practice).

8.3 sobeL32f (RCC)

" height (ULong): image height in pixels

* width (ULong): image width in pixels

* xderiv (Bool): calculate x-derivative if nonzero, otherwise calculate y-derivative

This works identically to the sobel worker, although there are two output ports:

one is the usual 8-bit pixel depth gradient and the other output produced is a 32-bit

floating point single-channel image. This is because the output of this worker might

need to feed into another sobel-32f worker, which accepts 8-bit pixel depth images.

The worker can also take multiple lines at a time; after receiving N bytes in the

buffer, it will process [N/WJ lines, where W is the width of the image.

Although this worker computes gradients using the Sobel operator, we put it in the

motion tracking section because of the floating point output. This can be useful for

image filtering, but we rarely need the full gradients (instead of rounding to [0, 255])

offered by floats in those scenarios. For motion tracking and optical flow in particular,

this is usually necessary for more accurate results.

8.4 Optical Flow Demo

Using the optical flow worker, we put together the necessary connections to demon-

strate one level of Lucas-Kanade optical flow using pyramids.

The parameters are set as 10 for win-height and winwidth, 0 for level, 30 for

termmax.count, 0.01 for term-epsilon, and 0.5 for derivlambda. We need a total

of 11 workers, the 3 for feature detection (as described in the previous chapter), along

with 8 others as shown below.

feature locations in image A

image A lines

se (X) I sobe

dx optical-fi (Zi IIJVd^2 x

sobel image B lines
dx dy

sbl(Y)lAoe Y
d^2 y F

sob e l (Y) I dy

it
dy

image A lines

feature locations in image B

Figure 8-1: Optical flow schematic diagram for one level with 11 workers (8 shown)

We can give the application a video stream or simply two images. After getting

the updated feature locations, we check the statuses and errors to see if the flow is

valid. If so, we can draw an arrow between the two point locations (from old to new)

in the original image.

Although the workers for this demo have been written and tested, the OpenCPI

control application is still in progress. We discuss a few issues that made the process

of constructing this demo application rather difficult.

First, creating our sobel_32f worker to have two output ports led to an unex-

pected result. In a few instances of these workers, the 8-bit output was unnecessary

(e.g. for the second worker in a sequence for calculating second-order gradients).

Figure 8-2: Optical flow result on UAV pilot-view images (from test application)

However, without connecting these ports to anything, the OpenCPI control appli-

cation could not run properly. This was easily fixed by connecting these ports to

dummy external ports.

On the other hand, it was attempted to connect one output port to multiple

input ports. As this failed, more instances of the sobel_32f workers and the feature

detection workers had to be created. For instance, the feature locations in the first

image had to go to both the optical flow worker and the control application, in order

for the resulting flow to be drawn in the image. This required two sets of the feature

detection workers.

After these were addressed, there seemed to be an issue with the workers not

dispatching or running properly (which unfortunately remains unresolved). Although

the optical-flow-pyr-lk worker is run only after all its input ports are ready, the

addition of this worker to the application prevented the other workers (e.g. Sobel

operators and feature detection) from running. The most likely cause is memory-

related, as decreasing the buffer sizes and number of workers in the application had

an effect on the outcome. It is hoped that this work will be continued and completed.

66

Chapter 9

Conclusion

9.1 Future Work

Continuation of work on this project can take one of two directions.

9.1.1 Additional RCC Workers

Writing more RCC workers based on OpenCV functions will expand the OpenCPI-

OpenCV library. Modules of particular interest include other feature detection algo-

rithms, such as the Harris corner detector, finding circles and lines using the Hough

transform, and calculating feature maps. Other implementations of optical flow, in-

cluding Gunnar Farneback's algorithm or dense varieties, would be useful as well. We

could also create workers for OpenCV functions in the geometric and miscellaneous

image transformation categories.

Although it is unlikely to offer a performance boost, having an expanded set of

workers will increase the realm of interesting OpenCPI computer vision applications.

9.1.2 Alternative Implementations

On the other hand, replacing existing workers with alternative implementations on

an FPGA or GPU, is another interesting direction to take. As writing these workers

becomes less ad hoc in OpenCPI, replacing highly-parallelizable RCC workers with

alternative implementations could potentially lead to a huge performance boost. For

instance, all of the image filtering workers could probably be implemented to run much

faster on an FPGA or GPU. OpenCV has already taken steps in this direction, as the

latest version 2.2 [12] has experimental GPU support using CUDA. Implementations

of optical flow on FPGAs [17] has also been explored.

9.2 Summary

The goal of this project was to port a subset of modules from OpenCV to OpenCPI.

The porting process turned out more difficult than expected, as much of it essentially

amounted to rewriting STL and template-ridden C++ code into C. Nevertheless, the

collection of RCC workers and OpenCPI computer vision applications implemented

for this project will serve as a solid base for future work using OpenCPI and OpenCV.

Moreover, it can serve as a set of rough guidelines for the division of OpenCV functions

into many composite workers.

As the FPGA and GPU portions of OpenCPI become more mature, this set of

workers will be a foundation for experimenting with alternative implementations.

This will hopefully facilitate hardware acceleration for interesting computer vision

applications using OpenCPI.

Bibliography

[1] AMD. ATI Stream Technology: GPU and CPU Technology for Accelerated Com-
puting. http: //www. amd. com/US/PRODUCTS/TECHNOLOGIES/STREAM-
TECHNOLOGY/Pages/stream-technology.aspx.

[2] G. Bradski. Learning OpenCV Computer Vision with the OpenCV Library.
O'Reilly Media, 2008.

[3] J. Canny. A Computational Approach To Edge Detection. IEEE Trans. Pattern
Analysis and Machine Intelligence, 8(6):679-698, 1986.

[4] Intel Corporation. Sh: a high-level metaprogramming language for modern GPUs.
http://www.libsh.org/.

[5] J. Kulp. OpenCPI Application Control Interface. Mercury Federal Systems, Inc.,
2010. http://www.opencpi. org/documentation.php.

[6] J. Kulp. OpenCPI Technical Summary. Mercury Federal Systems, Inc., 2010.
http://www.opencpi.org/documentation.php.

[7] J. Kulp and J. Miller. OpenCPI RCC Reference. Mercury Federal Systems, Inc.,
2010. http://www.opencpi. org/documentation.php.

[8] J. Kulp and S. Siegel. OpenCPI HDL Reference. Mercury Federal Systems, Inc.,
2010. http: //www. opencpi. org/documentation. php.

[9] B.D. Lucas and T. Kanade. An iterative image registration technique with an
application to stereo vision. Proceedings of Imaging understanding workshop,
1981: 121-130.

[10] Microsoft. DirectCompute Lecture Series Resources.
http://archive.msdn.microsoft . com/DirectComputeLecture.

[11] OpenCV. OpenCV 2.1 C/C++ References.
http://www.opencv.willowgarage. com/documentation/cpp/index.html
and http://www.opencv.willowgarage. com/documentation/c/index.html.

[12] OpenCV. OpenCVWiki: OpenCV-GPU.
http: //www. opencv. willowgarage. com/wiki/penCV_GPU.

[13] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley Professional, 2010.

[14] J. Shi and C. Tomasi. Good Features to Track. 9th IEEE Conference on Computer
Vision and Pattern Recognition. Springer, 1994.

[15] Stanford University Graphics Lab. BrookGPU.
http://graphics.stanford.edu/projects/brookgpu/.

[16] R. Tsuchiyama, T. Nakamura, T. Iizuka, A. Asahara, and S. Miki. The OpenCL
Programming Book. Fixstars Corporation, 2010.

[17] Z. Wei, D. Lee, and B.E. Nelson. FPGA-based Real-time Optical Flow Algorithm
Design and Implementation. Journal of Multimedia, Vol. 2, No. 5, 2007.

[18] W.A. Wulf and S.A. McKee. Hitting the memory wall: implications of the obvi-
ous. ACM SIGARCH Computer Architecture News, Vol. 23, Issue 1, 1995.

