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Resumen en castellano

En las colonias hambrientas de myxobacteria aparecen patrones ondulatorios antes

de que las bacterias se agreguen para formar cuerpos fructíferos.

Estas ondas periódicas de densidad celular itinerante surgen como resultado de la

coordinación de las reversiones celulares, a causa de un reloj interno, y por el contacto

de señalización durante las colisiones bacterianas.

Nuestro principal interés en esta tesis es la aproximación numérica con alta pre-

cisión para las soluciones de los modelos matemáticos propuestos para la ondulación

de las myxobacterias.

Revisamos los estudios de Igoshin y coautores [Proc. Natl. Acad. Sci, EE.UU.

98, 14913 (2001) y Phys. Rev. E 70, 041911 (2004)], que describen los patrones

ondulatorios de myxobacterias como un sistema de leyes de conservación hiperbólica

(cuando la difusión es cero).

Teniendo en cuenta que las propiedades de la solución de sistemas de leyes de
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Resumen en castellano

conservación desarrollan discontinuidades de salto y fuertes gradientes en el tiempo

y el espacio, consideramos importante utilizar simuladores numéricos precisos con el

�n de explicar y predecir el proceso biológico natural, que es nuestro enfoque.

Anteriormente, las pautas de este modelo se obtuvieron solamente por métodos

numéricos de orden de precisión inferior y no fue posible encontrar su número de onda

de forma analítica.

El esquema de esta tesis es la siguiente.

En el capítulo 1 se realiza una descripción de los objetivos de la tesis y la estructura

de cada capitulo.

Capítulo 2 está dedicado a una revisión general del comportamiento biológico de

las myxobacterias y sobre los modelos matemáticos que han tratado hasta ahora este

tema.

En el capítulo 3 se describe en detalle el modelo matemático sobre los patrones

ondulatorios de myxobacterias, debido a Igoshin y coautores.

En el capítulo 4 se hace una descripción de los métodos numéricos de alta res-

olución empleados en este trabajo y una explicación detallada de los algoritmos que

hemos desarrollado y utilizado para las simulaciones numéricas.

También analizamos el comportamiento de las reconstrucciones hiperbólicas a

trozos esencialmente no oscilatorias para nuestro problema biológico, con diferentes
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condiciones iniciales y varios parámetros.

Con el �n de reducir la difusión numérica y reducir las oscilaciones espurias cerca

de las posibles discontinuidades de la solución de la ley de conservación hiperbólica

en el caso de myxobacterias, aplicamos una nueva clase de esquemas de captura de

ondas de choque de orden superior que se basan en una nueva clase de funciones

limitadoras, los métodos PowerPHM y WeightedPowerENO.

En el capítulo 5 se presentan varias simulaciones numéricas para modelos matemáti-

cos sobre el comportamiento ondulatorio de las myxobacterias. Demostramos que,

en ausencia de fuentes de ruido introducidas en el modelo original, el sistema de dos

ecuaciones diferenciales parciales acopladas puede reproducir el proceso de reversión.

Hemos utilizado herramientas numéricas de alta precisión con el �n de mantener la

amplitud de las ondas viajeras.

En el capítulo 6 se deriva una ecuación de evolución para la densidad de punto de

inversión que selecciona el número de onda patrón en el límite de señalización débil.

Mostramos la validez de la regla de selección resolviendo numéricamente las ecuaciones

del modelo y describimos otros patrones estables en el límite de la señalización fuerte.

El acoplamiento de campo medio no local tiende a perder la coherencia y a con�nar

los patrones. En circunstancias adecuadas, puede aniquilar los patrones dejando un

estado de densidad constante a través de una transición de fase no equilibrio que

recuerda a la destrucción de la sincronización en el modelo de Kuramoto.
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Finalmente, en el capitulo 7 se presentan las conclusiones del trabajo.
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Chapter 1. Introduction

Rippling patterns of myxobacteria appear in starving colonies before they aggre-

gate to form fruiting bodies. These periodic traveling cell density waves arise from

the coordination of individual cell reversals, resulting from an internal clock regulat-

ing them, and from contact signaling during bacterial collisions. Our main interest

in this research is the numerical approximation with high order accuracy in space of

the solutions of mathematical models proposed for myxobacteria rippling. We revisit

the studies of Igoshin et al [Proc. Natl. Acad. Sci, USA 98, 14913 (2001) and Phys.

Rev. E 70, 041911 (2004)] which describe the rippling phenomena of myxobacteria

as a system of hyperbolic conservation laws (when the di¤usion is zero). Since the

solution of systems of conservation laws develops jump discontinuities in time and

space, it is important to use accurate numerical simulators in order to explain and

predict the natural biological process, which is our approach. Previously, patterns for

this model were obtained only by numerical methods of low order of accuracy and it

was not possible to �nd their wavenumber analytically. The outline of this thesis is

the following.
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Chapter 1. Introduction

Chapter 2 is dedicated to an overview of biological background of myxobacteria

and of related mathematical models studied until now.

In Chapter 3 we describe in detail the mathematical model of rippling myxobac-

teria due to Igoshin et al.

In Chapter 4 we make a description of the high accuracy numerical methods

employed in this work and a detailed explanation of the algorithms that we have

developed and used for the numerical simulations. We analyze the behavior of the

piecewise hyperbolic schemes and weighted essentially non oscillatory reconstructions

for our biological problem, with di¤erent initial conditions and parameters. In order

to reduce the numerical di¤usion and avoid spurious oscillations near discontinuities

for the solution of myxobacteria hyperbolic conservation law, we apply a new class of

high order accurate shock capturing schemes that are based on a new class of limiter

functions, PowerPHM and WeightedPowerENO methods.

In Chapter 5 we present various numerical tests for mathematical models of

myxobacteria rippling formation. We show that in the absence of white noise sources

introduced in the original model, the hyperbolic system of two coupled partial dif-

ferential equations can reproduce the reversal process on a regular basis. We use

high-precision numerical tools in order to maintain the amplitude of the traveling

waves.

In Chapter 6 we derive an evolution equation for the reversal point density that

2



Chapter 1. Introduction

selects the pattern wavenumber in the weak signaling limit. We show the validity

of the selection rule by solving numerically the model equations and describe other

stable patterns in the strong signaling limit. The nonlocal mean-�eld coupling tends

to decohere and con�ne patterns. Under appropriate circumstances, it can annihilate

the patterns leaving a constant density state via a nonequilibrium phase transition

reminiscent of destruction of synchronization in the Kuramoto model.

In Chapter 7 we draw our conclusions.
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Chapter 2. Biological Background

2.1 Introduction

One of the most important roles of developmental biology is to understand the mech-

anisms that underlie the processes of morphogenesis (a biological process causing an

organism to develop its shape) and pattern formation [40], [52]. A pioneer spatial

model for these two processes was proposed by Alan Turing in 1952, entitled "The

chemical basis of morphogenesis" [66] and later con�rmed experimentally in living

systems.

In most of the cases of biological systems treated by the literature, the spatio-

temporal wave phenomena of pattern formation result from the initial uniform state

loss of stability, and are based on reaction-di¤usion equations [44]. A particular

case appears in bacterial colonies (e. g. Echerichia coli, Dictyostelium discoideum,

Salmonella thyphymurium) where we can observe self-organized pattern structures.

Two essential factors producing this cooperative behavior are chemotaxis (motion
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along the chemical gradient) and haptotaxis (motion along the mechanical stress

gradient) [48]. The most popular case of bacterial aggregation studies is the analysis

of D. discoideum colonies [20], [67], [58], [47].

Unlike the slime mold D. discoideum colonies, where the spatial patterns are

generated by intercellular communication based on di¤usion of the cAMP attractant

[6], the density waves observed inMyxoccocus xanthus (a class of myxobacteria family)

arise by direct cell contacts [22], [59]. The present study dedicates to the wave pattern

formation modeling of this last class of bacteria.

Myxobacteria presents a unique life cycle and this makes it an excellent and sim-

ple model to study the development and the morphogenesis of cellular organisms.

The speci�city of these bacteria is that, on one hand side, they can be viewed as

micropredators, because they are very e¢ cient in killing and decomposing other mi-

croorganisms. On the other hand, they do not completely rely on living organisms,

and from this point of view one can treat them as scavengers [49].

In general, the process of bacteria pattern formation is the result of the local

interaction and the environmental conditions. Bacteria are forming patterns through

chemotaxis, growth, and/or cells death.

However, in the case of myxobacteria, the pattern formation phenomenon arises

in a di¤erent manner. Under speci�c conditions (when nutrients are missing), it

starts the cell aggregation, transforming the surface in a pattern of bacteria density

5
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propagation, called ripples.

The rippling phenomenon is di¤erent from everything that has been encountered

until this point for the reaction-di¤usion systems in biology, chemistry or physics,

where the waves are destroyed when they are chocking [22].

This phenomenon is it interesting not just from the biological point of view, but

it acts as a pioneer problem for answering the question of how cells are interacting in

order to build very organized structures, as Stevens (2000) [65] noticed. Also, this is

relevant for the morphogenesis process, where the cells are cooperating and they are

di¤erentiating in order to form a new organism.

2.2 Myxobacteria: an Overview

As noticed by Shimkets et al (2006) [55], one can distinguish two metabolic groups of

myxobacteria: i) cellulolytic (decomposing cellulose), e.g. Sorangium cellulosum, and

the most frequent and also most studied category ii) proteolytic (hydrolyze proteins),

e.g. Myxococcus xanthus.

Myxobacteria (around 50 known species, divided into 17 genera) are rod-shaped

gram-negative bacteria, components of soil, that move by gliding in the direction of

their long axis on solid surfaces, as individuals or in swarms [19]. In its vegetative

state, myxobacteria are �exible cylinders 3-6�m long and 0.7 �m wide [55].

6



Chapter 2. Biological Background

Fig 2.1 : Schematic picture of the motility of myxobacteria from Kaiser (2003) [28]

Gliding speed of myxobacteria is around 1�13 �m � min�1 [30], [25], [71]. This

type of motility of M. xanthus cells is controlled by two di¤erent motors concentrated

at the cell poles: the A-motility system (adventurous), speci�c for individual cell

motion and the S-motility system (social), for group cell motion. The A-engine is a

�pusher�and works by secretion and hydration of slime, a polielectrolyte gel, whereas

the S-engine is a �puller�and operates through extension and retraction of type IV

pili [69] (see Figure 2.1).

The change in the gliding direction is realized through the switching of the po-

larity of its two motors, and this switching is possible due to the migration of a

motility protein (FrzS) across poles [43]. However, the gliding motility is it still a
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subject of debate, and the literature identi�es two new possible causes for it, the

focal adhesion mechanism and the helical rotor mechanism [5]. Due to their mix of

computational modeling, imaging, and force microscopy investigation, Balagam et al

(2014) [5] found evidence that the key ingredient of the focal adhesion mechanism is

the elastic coupling.

During vegetative growth, when nutrients are abundant, myxobacteria aggregate

into multicellular swarms and spread outwards the border of the colony where prey

other bacteria as a nutrient by lysing with secreted exoenzymes [50]. In response

to starvation conditions, cells stop swarming outwards and change their direction

through the center of the colony, beginning a developmental cycle which culminates

with the multicellular fruiting body formation with nonmotile spores. These spores

can survive for long periods of time and under the adequate conditions germinate

giving rise to motile vegetative cells [33]. Fruiting body is a multi-step process of

alignment, rippling, streaming, and aggregation. An experimental illustration of the

life cycle of the myxobacteria is shown in Figure 2.2.

In Figure 2.3, some cells have been marked with a �uorescent color, and even if

it seems that each cell was waving, it was only the cells density that was presenting

the wave propagation phenomenon [59].

The collective motion of myxobacteria during the biological morphogenesis having

the result the fruiting bodies formation acts as a relatively simple replica of multi-

cellular organization in higher organisms. Despite its simplicity, the formation of

8
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(a) Fruiting body with ripples (b) Fruiting body with streams

(c) Fruiting body with spores

Fig 2.3: A monolayer culture, where the individual cells are �uorescently tagged.

Stages of fruiting body myxobacteria development. (a) Fruiting body with ripples;

(b) Fruiting body with streams; (c) Fruiting body with spores. Reproduced with the

permission of O. Sliusarenko [60]
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(a) Before collision (b) During collision

Fig 2.4: Schematic picture of myxobacteria ripples in the monolayer culture from O.

Sliusarenko where the individual cells are �uorescently tagged: a) Before collision. b)

During collision. The waves oscillate back and forth in the directions marked by the

arrows. Reproduced with the permission of O. Sliusarenko [60]
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with the direction of ripples and move back and forth and exchange developmental

signals (C-signal) [34], [9], [26]. Most experimentally observed rippling patterns [51],

[68] can be characterized as counter-propagating traveling waves. Unlike any other

waves generated by di¤usion-reaction systems from biology, chemistry or physics, the

density waves observed in myxobacteria pattern formation are analogous to solitons

[22].

2.3 Theoretical Models

In order to qualitatively reproduce the myxobacteria morphogenesis mechanism, sev-

eral theoretical models have been developed based on di¤erent assumptions. There

are two types of mathematical models, namely the continuous and the discrete ones.

The continuous models are often treating the bacteria like a colony density mod-

eled with the aid of partial di¤erential or integro-di¤erential equations.

Continuous models, e.g. Igoshin et al (2001) [21], Igoshin et al (2004) [22],

Lutscher and Stevens (2002) [39], or more recently Harvey et al (2013) [16], study the

formation of the rippling patterns observed in myxobacteria populations.

The models of Igoshin et al [21], [22], which are the starting point of this research,

are formulated in terms of a continuous cell density function, that in turn depends on

three parameters: space, phase (the internal biochemical clock), and time. The main

12
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assumptions of this model are the fundamental role of C-signaling for the pattern

formation and the presence of the refractory period.

Lutscher and Stevens (2002) [39] model is based on a one-dimensional hyperbolic

system of Goldstein-Kac type with density-dependent coe¢ cients, where the turning

rates are described in terms of reaction kinetics. In this model it is not needed

the existence of a refractory period, but it requires the nonlinear dependence of C-

signaling on cell density like in the Igoshin et al (2001) [21].

A multiphase hydrodynamic continuum model proposed by Harvey et al (2013)

[16] is coupling the densities of oriented and isotropic phases of myxobacteria and

analyzes the instability leading to the spontaneous formation of moving cell clusters.

On the other hand side, other studies use models in which space, time or state may

be discrete (the discrete models). Two main categories of models are the lattice-based

ones and the o¤-lattice node-based Monte-Carlo models.

In lattice-based models, like Stevens (2000) [65], Alber et al (2004) [2], Sozinova

et al (2005) [62], Sozinova et al (2006) [63], the space is discrete and cells are situated

in �nite lattice sites according to local rules and undergo state changes when they

collide. These state changes can be stochastic or deterministic.

A simple stochastic cellular automaton model is described by Stevens (2000) [65],

where the cells move on a square grid with periodic boundary conditions and respond

to the four neighbors of their frontal cell poles through a chemoattractant and slime.

13



Chapter 2. Biological Background

The simulations reveal the experimentally observed aggregation.

Another discrete model highly studied is the Lattice Gas Cellular Automaton

(LGCA) model, where the space, time and state are discretized. Sozinova et al

(2005) [62] develop a 3D stochastic LGCA model where they simulate two stages of

cell aggregation, followed by another 3D LGCA model in [63], which reproduces all

the stages of the forming fruiting body in myxobacteria.

Börner et al (2002) [8] develop a discrete cellular automaton model where the

cells are represented as occupied nodes in a three-dimensional square lattice, and

they interact through collisions with neighboring cells. The refractory phase after

each cell reversal is necessary for the rippling process, and the duration of this phase

determines the wavelength and the period of the ripple patterns.

Later, Börner and Bär (2004) [7] use a generalized discrete model based on the

same assumptions as Igoshin et al (2001) [21] continuous model and Börner et al

(2002) [8]. They show that the rippling patterns can appear even in the absence of

the refractory phase, if the interaction strength and the degree of cooperativity are

large enough.

An individual-based model is developed by Anderson et al (2005) [3] with the

objective of reproducing the rippling patterns of myxobacteria. The cells are points

in a continuous space, each of them having an internal clock controlling its turning

behavior and the sensitivity to C-signal. They examine also the e¤ects of C-signal
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strength, sensitivity/refractoriness, and cell density for the formation and structure of

the rippling patterns. This model combines the advantages of the models of Igoshin

et al (2001) [21] and Börner et al (2002) [8], and the behavior of individual cells is

controlled by an internal clock.

In the cellular Potts model of Starrußet al (2007) [64], another lattice-based

model, the cells are distributed on a lattice and interact with the neighbors via an

interaction energy in the global Hamiltonian, the system�s free energy, taking into

account the cellular �exibility and cell con�gurations.

In the o¤-lattice node-based Monte-Carlo models the space is continuous and cells

are connected to nodes changing stochastically their position (e.g. Wu et al (2007)

[70], Hendrata et al (2011) [18]).

Wu et al (2007) [70] present a model based on the description of the bacterial

motility engines and their regulation. They �nd a strong correlation between the order

of collective motion and the swarming e¢ ciency, suporting the connection between

social interactions and population-level swarming behavior.

Hendrata et al (2011) [18] incorporate the Dynamic Energy Budget model into

their o¤-lattice model, in order to control cell growth and cell division for swarming.

Their A- and S-motility algorithms simulate the swarming patterns of A+S+, A+S-,

and A-S+ myxobacteria cells.

Zhang et al (2012) [72] have proposed a 2D agent based model (ABM) to simulate
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Chapter 2. Biological Background

rippling in M. xanthus. In this model, three ingredients are su¢ cient to generate the

rippling behavior: side-to-side signaling between two cells are causing one of the cells

to reverse, a minimal refractory period after each reversal is required, and physical

interactions are causing the cells aligning.
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Chapter 3. Myxobacteria Mathematical

Model

3.1 Introduction

When starving, myxobacteria aggregate and form a fruiting body with nonmotile

spores. Before aggregation begins, there appear periodic patterns of equally spaced

high density bands that move as traveling waves (ripples). These waves appear from

an initially homogeneous colony, re�ect the local bacterial density, and display various

properties [51], [68]:

-each myxobacterium cell oscillates back and forth and the wave crests move with

the same velocity as individual cells.

-in wave crests, the cell density is 3-8 times bigger than in the troughs. [51]

-during the collisions, the wave crests behave like soliton waves, without interfer-
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ing. [21]

-in rippling colonies, individual cells reverse periodically their direction by switch-

ing the pole ends. [68]

-as mentioned in Chapter 2, the rippling process requires two forms of motility:

A-motility (adventurous) and S-motility (social). Both, A- and S-motility motors are

located at the cell poles, and the reversal of direction implies switching of the motors

activity from one pole to another.

-the intercellular communication depends on a cell surface protein called C-signaling

and is required for rippling. The C-signals depend on end-to-end contacts and control

the frequency of reversals. [28]

These properties are taken into account for the mathematical model of myxobac-

teria patterns from the next section.

3.2 The Model for the Myxobacteria Rippling

In this chapter we analyze the one-dimensional (1D) model of ripples of Igoshin et al

[21], [22]. The model represents the internal biochemical cycle of the rippling phase

describing the motion of myxobacteria to produce a periodic pattern of traveling cell

density waves and is based on the following experimental observations:
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- Internal biochemical clock : cells are aligned parallel and glide along their long

axis in one direction during part of their internal period and glide in the opposite

direction during the other part of their period.

- Contact signaling: a cell collides with an oppositely moving cell and interchanges

a signal (a C-protein). As a result, both cells reverse their motion. The collision

frequency depends on the local cell density.

- Refractory period : after one collision there is a refractory period during which

the cell does not reverse its motion even if it collides again.

Let n(x; �; t) be the number density of bacteria per unit length x and per unit

internal phase �. Cells with 0 < � < � move to the right with velocity v and cells

with �� < � < 0 move to the left (velocity �v). Cell division and death are negligible

during the rippling phase. The governing equation is as follows:

@tn+ v(�)@xn�Dx@
2
xn+ @�J(x; �; t) = 0; (3.1)

v(�) = v sign�: (3.2)

Here Dx � 0 is a space di¤usivity, the density n(x; �; t) is a 2�-periodic function

of � and it satis�es periodic boundary conditions at x = �L or it decays to zero if

L =1. To model the angular �ux J(x; �; t), we make precise the above experimental

observations [22]. The cell velocity is given by (3.2) and reversals occur at � = 0;��.

The internal clock of a bacterium advances with constant angular velocity ! but when

the cell collides with another one moving in the opposite direction, both cells exchange
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a signal. The collision frequency, and therefore the signaling intensity, is proportional

to the local cell density. The cells may respond positively to this signal by accelerating

their angular speed from ! to ! + �!
(N�) (see below) depending on their internal

phase. The coe¢ cient � measures the relative change in angular velocity from that

during the refractory period, !, to the bacterium velocity during the signaling period,

thereby characterizing signaling strength. After each reversal (at � = 0;��), the cell

enters a refractory period during which does not respond to collision signaling and

does not reverse. If � > 0 is the angular duration of the refractory period, the angular

�ux is J = ! n(x; �; t) for 0 < � < � and for �� < � < ��+ � (0 � � � �). Overall

the angular �ux is [22]

J = ! n [1 + �
(N�(x; t))�[�;�](�) + �
(N+(x; t))�[��+�;0](�)]�D�@�n; (3.3)

�[A;B](�) =

8><>: 1; A < � < B;

0; otherwise;
(3.4)

where

N+(x; t) =

Z �

0

n(x; �; t) d�; N�(x; t) =

Z 0

��
n(x; �; t) d�; (3.5)

D� is a positive number and


(N) =
N r

N r +N r
cr

; (3.6)

with r > 0. We shall use r = 4 [22]. In [22], it is explained that both Dx and D� are

small. The total density of bacteria at point x and time t is N+(x; t) +N�(x; t) and

the density of time-reversal points (reversal point density) is

nRPD(x; t) = n(x; � = 0+; t) + n(x; � = ��+; t): (3.7)
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Here n(x; � = 0+; t) and n(x; � = ��+; t) are, respectively, the density of left-to-

right and of right-to-left reversal points in spacetime. Thus their sum, as in (3.7), is

the density of all reversal points in spacetime.

The total number of myxobacterium cells should be independent of time. This

means that dN=dt = 0 in (3.1), where

N =

Z L

�L

Z �

��
n(x; �; t) dxd�: (3.8)

In (3.1), n and @�n are continuous and 2�-periodic in �, so that N is independent of

time if and only ifZ L

�L

�
[J ]��+��=�� + [J ]

0
�=��+� + [J ]

�
�=0 + [J ]

�
�=�

�
dx = 0: (3.9)

Here we have used the boundary conditions at x = �L (including the case L = 1)

and the notations [f(x; �)]��+��=�� = f(x;��+�)�f(x;��) and so on. For the angular

�ux (3.3), (3.9) becomesZ L

�L
f
(N+) [n]0�=��+� + 
(N�) [n]��=�g dx = 0: (3.10)

If there is no refractory period so that � = 0, 2�-periodicity of n and @�n yieldsZ L

�L
[
(N+)� 
(N�)] [n]��=0 dx = 0; (3.11)

instead of (3.10).

It is convenient to render the equations of the model dimensionless. To this

purpose, we shall use the units [t] = 1=!, [x] = v=!, etc listed in Table 3.1. Let
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t x � n;N�

1
!

v
!

1 Ncr

Table 3.1 : Nondimensional units.

us de�ne dimensionless variables as t̂ = t=[t], x̂ = x=[x], and so on. Inserting these

de�nitions in (3.1), (3.3) and (3.8) and dropping hats in the results, we obtain the

following equations:

@tn+sign(�)@xn+@�n=�
�
Dx
2�
@2xn+

D�
2�
@2�n�@�([
(N�)�[�;�]+
(N+)�[��+�;0]]n)

�
;

(3.12)Z L

�L

Z �

��
n(x; �; t) dxd� =

Z L

�L
[N+(x; t) +N�(x; t)] dx = N̂ ; (3.13)

where (the dimensionless parameters are assumed to be of order unity):

Dx =
2�Dx!

�v2
; D� =

2�D�

�!
; L = !L

v
; N̂ � N

Ncr
; 
(y) =

yr

yr + 1
: (3.14)

For Dx = D� = 0, (3.12) resembles a hyperbolic equation (or a system of two

hyperbolic equations for oppositely moving bacteria). However, strictly speaking this

system is only hyperbolic in the spatial dimension. The phase �uxes (resulting from

the nonlinear interaction between oppositely moving bacteria) are nonlocal in the

clock angle: they are de�ned as integrals over the whole angular domain implying

that the resulting 2D system (in x and �) is integro-di¤erential. The role of the

nonlocal advection as generator of dissipation will be shown by solving (3.12) using
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high order accurate numerical methods in Chapter 5 and by the analysis of the weakly

nonlinear limit in Chapter 6.
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Chapter 4. High Order Accurate

Numerical Methods

4.1 Introduction

In order to be able to correctly predict the biological phenomena such as traveling

waves pattern of myxobacteria described in Chapter 3, we need to apply high accuracy

numerical methods.

More speci�c, we want to obtain high order numerical approximations to myxobac-

teria hyperbolic conservation law with nonlocal phase speed, applying shock capturing

reconstructions used in numerical resolution of conservation laws.

The hyperbolic conservation law solution may produce discontinuities in space,

and the approximation of this solution by traditional classical methods introduces

spurious oscillations around discontinuities. For this reason, these solutions should

be studied in a suitable weak formulation. Such a weak formulation is given by
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the so-called viscosity solutions. Weak solutions of nonlinear conservation laws are

piecewise smooth with jump discontinuities and can be approximated by monotone

schemes. A pioneer in this �eld is Godunov�s method [12]. His idea was to solve the

Riemann problem, de�ned at cell interfaces such as piecewise constant initial states,

and computing the numerical �uxes by integration of the conservation law in each

computational cell.

Although in practice (see [12], [37]) there are used numerical methods of order

one or two due to their simplicity and robustness, it is a better choice to use high

order methods, despite being more complicated to understand and to code, and costly

to run. Their advantage is that they are giving high accuracy on smooth regions of

the solution and they are reducing the numerical viscosity at discontinuities, reduc-

ing numerical di¤usion and avoiding spurious oscillations. The procedure to obtain

numerical methods of high accuracy is to divide the domain interval of the function

into subintervals, and approximate locally the original function using an elementary

function (e.g. polynomial, rational) for each subinterval.

Another way to eliminate the drawbacks of the methods of lower orders is to

apply power limiter functions. The numerical schemes that are using such limiter

functions are called shock capturing schemes. The �rst shock capturing method was

Lax-Wendro¤ scheme [36], a non-monotone second order method who generates spu-

rious oscillations near discontinuities. The simplest way to measure the oscillations

of a scheme is to control its total variation. Harten in [13] introduced the total vari-
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ation diminishing schemes to overcome the non-monotonicity for high order accurate

numerical methods. To continue in the area, Osher and Chakravarty designed TVD

schemes of any order of accuracy in [46]. The next step in the evolution of high

order accurate reconstruction methods is to use mean limiters (i.e., minmod limiter

from Van Leer method [37]) in order to avoid Gibbs�phenomena and oscillatory pat-

terns around discontinuities. Another examples of limiter functions (ENO, minmod,

harmonic) are based on a mean of a two nonnegative numbers. In [54], Serna and Mar-

quina de�ned a large class of averages, bounded by the arithmetic mean, expressed

by the relation

powerp (x; y) =
(x+y)
2

�
1�

���x�yx+y

���p�,
where x and y are positive, and p is a natural number. This new class of limiters are

called power limiters. From here it results a piecewise hyperbolic power (Power PHM)

method with no oscillations near discontinuities, eliminating the so-called smearing

e¤ect encountered in essentially non-oscillatory (ENO) methods. As we will see in

the next chapter, we use this reconstruction procedure for our numerical simulations.

Liu, Osher and Chan [38] have designed the weighted essentially non-oscillatory

(WENO) methods getting fourth order accuracy using a convex combination of the

ENO3 cell averaged parabolas. Based on the pointwise ENO3 parabolas, Jiang and

Shu developed in [27] the WENO5 method using a nonlinear convex combination of

all the candidate stencils each being assigned a nonlinear weight which depends on

the local smoothness of the numerical solution based on the stencil. WENO improves
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upon ENO in robustness, it has better smoothness of �uxes, better steady state

convergence and more e¢ ciency.

We use shock capturing methods, often employed in the computational �uid dy-

namics. Because the solutions of this type of equations can develop shocks, discon-

tinuities in time etc, it is important to use high order numerical schemes in order to

correctly predict the natural phenomena.

We apply two local third order accurate methods (PHM and Power PHM) by using

a piecewise hyperbolic reconstruction and another two �fth order methods (WENO5

and WenoPowerENO5) by using a piecewise parabolic reconstruction. In order to

show the e¢ ciency of the previously described methods and to apply them to our

problem, we will begin the numerical experiments by using the �rst order numerical

approximation, the upwind scheme, as we will see in Chapter 5.

On the following we write a brief review of these methods, beginning with the

basic notation of the nonlinear conservation law, then in Section 4.2 we describe the

hyperbolic reconstructions, followed by the parabolic ones in Section 4.3, and then

continue with our numerical results in the next chapters.

For a good understanding of the high order numerical methods that we use in our

experiments, we introduce some basic notation and computational framework for an

initial value problem

nt + f (n)x = 0 (4.1)
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n(x; t = 0) = n0 (x) (4.2)

where the piecewise initial function n0 (x) is periodic or compactly supported.

Next, we see how can we �nd the numerical approximation of the weak solution of

this IVP.

Let us de�ne the computational grid xi = ih with i integer and h the spatial

step, xi�1=2 < x < xi+1=2 where xi+1=2 = xi +
h
2
is the cell interface, m�t < t <

(m+ 1)�t time discretization with �t spatial step, and the computational cells are

Cmi =
�
xi�1=2; xi+1=2

�
� [tm; tm+1].

We want to �nd nmi =
1
h

xi+1=2Z
xi�1=2

n (x; tm) dx, a numerical approximation of the exact

solution n (x; tm) of the initial value problem, in conservation form

nm+1i = nmi � �
� bfi+1=2 � bfi�1=2� (4.3)

where � = �t
h
and the numerical �ux is a function of 2k variables

bfi+1=2 = bf �nmi�k+1; :::; nmi+k� (4.4)

and is consistent with the �ux (4.1),

bf (n; :::; n) = f (n) (4.5)

bf must be a Lipschitz continuous function.
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Having this basic formulation of the IVP, we can use high order reconstruction

procedures giving the approximation of the mean value of a piecewise smooth function

g (x)

nmi =
1

h

xi+1=2Z
xi�1=2

g (x; tm) dx (4.6)

associated to the grid data de�ned above.

Let Ri(x) be an elementary function de�ned on Ci such that, in each computa-

tional cell, Ri(x) reconstructs g(x) up to some order of accuracy.

nmi =
1

h

xi+1=2Z
xi�1=2

Ri (x; tm) dx (4.7)

When we refer to an order of accuracy reconstruction, we mean that every time

g(x) is smooth enough at x in Ci, then

g(x)�Ri(x) = O(hn) (4.8)

Our study refers to a �rst, a third and a �fth order of accuracy, and this means

that for each computational cell the truncation error will have the corresponding order

of accuracy.

The function g(x) is smooth enough at xi but at the interfaces it may have dis-

continuities, and as a consequence, Ri(x) may develop Gibbs phenomena or Runge

oscillatory patterns. This is one of the challenges of the numerical mathematics
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community, and it advocates for the necessity of the use of high order numerical

reconstructions algorithms for solving di¤erent application problems.

In our numerical approximations we refer to two classes of elementary functions:

1) hyperbolas of the form

ri (x) = ai +
�i

(x� xi) + ci
(4.9)

where ai, �i and ci are de�ned from the grid data

2) or parabolas of the form

pi (x) = ai + (x� xi)
h
bi +

ci
2
(x� xi)

i
(4.10)

where ai; bi and ci are determined from the grid data.

A numerical scheme in conservation form is called TVD (total variation diminish-

ing), if

TV (nm) =
X
i

��nmi+1 � nmi �� (4.11)

then

TV
�
nm+1

�
� TV (nm) (4.12)

for all m (for more details see Harten who introduces the notion of TVD in

reference [13]).
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In order to �nd numerical solutions of the conservation law, it is desirable to work

with the discrete conservation form of the equation (4.1). In this case, by integrat-

ing the conservation law we will obtain cell averages values of the function n. The

transformation of the reconstructed solution from cell averages into the reconstructed

�uxes from the cell interfaces, namely from the point values, is possible due to the

following lemma of Shu and Osher [57]:

LEMMA 1 If a function g(x) satis�es

f (n (x)) =
1

h

x+h
2Z

x�h
2

g (�) d� (4.13)

then

(n (x))x =
g
�
x+ h

2

�
� g

�
x� h

2

�
h

(4.14)

In order to implement a high order accurate numerical scheme, we start with a �rst

order monotone scheme based on a numerical �ux. Then, using the reconstruction

procedure, we approximate the numerical �uxes and variables solving the equation

(4.13) up to some degree of accuracy. By the reconstruction procedure we mean to

compute the numerical �uxes and variables at the cell interfaces. With this procedure

we use the discrete conservation form of the equation to evolve in time.

Having the approximated spatial �uxes, and in order to have the same order of
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accuracy for the time discretization, the entire equation is evolved in time with a

method of lines using the TVD Runge-Kutta method, developed by Shu and Osher

[57].

Thus, in our work, in order to solve the ordinary di¤erential equation

dn

dt
= L(n) (4.15)

with L(n) the spatial operator, we use the third-order TVD Runge-Kutta method:

n(1) = nm +�tL(nm)

n(2) = 3
4
nm + 1

4
n(1) + 1

4
�tL(n(1))

nm+1 = 1
3
nm + 2

3
n(2) + 2

3
�tL(n(2))

(4.16)

In the next sections we describe the hyperbolic and parabolic reconstructions,

with the adapted algorithms that we use in our numerical simulations.

4.2 Hyperbolic Reconstructions

4.2.1 Piecewise Hyperbolic Method

We use the piecewise hyperbolic method (PHM) proposed by Marquina in [41], a third

order accurate shock capturing method that is local in the sense that the numerical

�uxes are reconstructed from the data of four-point variables without the information
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of the smoothest neighboring cells. Thus, it gives better accuracy than TVDmethods.

The PHM upwind method is stable, not sensitive to the Courant-Friedrichs-Lewy

condition and it achieves third order accuracy in smooth regions except at local

extrema where it may degenerate to O(h
3
2 ), is stable in presence of discontinuities

and has less viscosity than ENO schemes of the same order.

In the PHM methods the local total variation of the reconstruction fRg is con-

trolled by using slope limiters, preprocessing the �rst order derivatives without loss

of accuracy (for details see [41]).

The idea is to ensure third order of accuracy in smooth regions with the elementary

function Ri, such that for each computational cell, it must be satis�ed the relation

(4.7) and the condition,

di+ 1
2
=
ni+1 � ni

h
(4.17)

where di+ 1
2
is given by the divided �rst-order di¤erences or by di+ 1

2
= R0

�
xi+1=2

�
.

If there are known the �rst order derivatives of g, the following de�nition (from

[41]) establishes the interpolating relation between the mentioned hyperbolas and the

conditions (4.7),

R0
�
xi+1=2

�
= g0

�
xi+1=2

�
, (4.18)

R0
�
xi�1=2

�
= g0

�
xi�1=2

�
, (4.19)
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ensuring third order accuracy in smooth regions.

De�nition 1. We say a method of reconstruction fRig of g (x) is local if for every

i the function Ri depends only on ni, di� 1
2
and di+ 1

2
.

As we saw before, at each time step, we need to control the change in total

variation of the reconstruction procedure. Following Marquina, we introduce the

next de�nition.

De�nition 2. A method of reconstruction is local total variation bounded (LTVB)

if there exists a constant M > 0, independent of h, such that

LTV Bi �Mh (4.20)

for all i.

From literature [53], we see that when discontinuities are present, hyperbolas are

much less oscillatory than parabolas.

As we have mentioned, the �rst two high order accurate numerical schemes applied

for obtaining the numerical solution of myxobacteria patterns are based on hyperbolic

reconstructions.

We applied the third order PHM method from Marquina�s study [41], where using

a three point stencil, we can obtain a piecewise hyperbolic reconstruction of type

(4.9).
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At i = 0, where the spatial numerical cell is
h
x� 1

2
; x 1

2

i
, we can �t a hyperbola

r0 (x) in terms of an nondimensional parameter � and of d0. The obtained hyperbola

(4.21) must satisfy the conservation law and the condition r00 (x) = d0

r0 (x) = n0 + d0h
1

h2

�
log

�
2� �
2 + �

�
� �h

� (x� x0)� h

�
(4.21)

with the following value at the central derivative

d0 =
2 � d� 1

2
� d 1

2

d� 1
2
+ d 1

2

(4.22)

Depending on the interpolation of the lateral derivatives, and for a value of d0,

there are two possible values for �:

(a) If d0 � d� 1
2
> 0 then � = 2

 r
d0
d� 1

2

� 1
!
if and only if d� 1

2
= r0

�
x0 � h

2

�

(b) If d0 � d 1
2
> 0 then � = 2

 
1�

r
d0
d 1
2

!
if and only if d 1

2
= r0

�
x0 � h

2

�
. [53]

The nonoscillatory property of the reconstruction function was achieved by using

the harmonic mean of the lateral derivatives, thus avoiding the enlargement of the

stencil. Thus, by the algorithm of LHHR (local hyperbolic harmonic reconstruction)

one can �nd, in each computational cell, a hyperbola ri that interpolates the lateral

derivative with the smallest absolute value; the central derivative (d0) is the harmonic

mean of lateral derivatives [41].

To ensure the LTVB property of LHHR method, the range of values of the nondi-
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mensional parameter � is

�2
�p
2� 1

�
< � < 2

�p
2� 1

�
(4.23)

In the following, we describe the algorithm for local piecewise hyperbolic recon-

struction that we use, who gives the piecewise hyperbolic method (PHM). We can

�nd a unique hyperbola ri in every cell Ci such that di� 1
2
� di+ 1

2
> 0 satisfying

ni =
1
h

xi+1=2Z
xi�1=2

ri (�) d� and di+ 1
2
= r0i

�
xi+ 1

2

�
. When di� 1

2
� di+ 1

2
� 0, Ci becomes a

transition cell.

The reconstruction procedure is for equation (4.3), and taking into account the

dynamics of the di¤erential equation, the numerical �uxes are reconstructed according

to the direction of the "wind" (from the upwind side).

Here, for simplicity, we sketch the algorithms for a simple case, a function with one

variable. However, in our numerical simulations, we �nd numerical �uxes of myxobac-

teria densities with the aid of algorithms of order three on both directions x and �.

For our full kinetic myxobacteria model, the 2D numerical �uxes are reconstructed

using a dimension-by-dimension procedure. We compute the term n(xi; �; t) using

one-dimensional procedure and freezing the other variable �, and in an analogous

way for the other dimension, by freezing the x variable.

Algorithm for PHM-LHHR

Step 1: Computation of Grid Data
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From nmi we compute the grid data by means of :

ni = f (n
m
i ) (4.24)

di+ 1
2
=
ni+1 � ni

h
(4.25)

Step 2: Local Preprocessing of Derivatives

Computation of d (i) and �i using LHHR for all i.

Local Hyperbolic Harmonic Reconstruction (LHHR)

tol = O(h2) is the tolerance for size of divided di¤erences

if (
���d� 1

2

��� 6 tol) and (���d 1
2

��� 6 tol) then
d = 0 and � = 0

else

if (
���d� 1

2

��� 6 tol) or �C0 is a transition cell with ���d 1
2

��� � ���d� 1
2

���� then
d = 2 � d 1

2
�
�

h2

1+h2

�
� = 2 �

�q
2

1+h2
� 1
�

else

if (
���d 1

2

��� 6 tol) or �C0 is a transition cell with ���d� 1
2

��� � ���d 1
2

���� then
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d = 2 � d� 1
2
�
�

h2

1+h2

�
� = �2 �

�q
2

1+h2
� 1
�

else

d =
2�d� 1

2
�d 1
2

d� 1
2
+d 1

2

if
���d� 1

2

��� � ���d 1
2

��� then
� = 2 �

 r
d

d� 1
2

� 1
!

else

� = 2 �
 
1�

r
d
d 1
2

!
With the values of d (i) and �i, one can obtain the expressions for the hyperbolas.

Step 3: for every i do

r

�
xi +

h

2

�
= ni + d (i) � h � � (�i) (4.26)

r

�
xi �

h

2

�
= ni � d (i) � h � � (��i) (4.27)

where the function � (�) is

� (�i) =
1

�2
�
�
log

�
2� �
2 + �

�
+
2 � �
2� �

�
(4.28)
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With these values of r
�
xi +

h
2

�
and r

�
xi � h

2

�
, which are the reconstructed point

values at the interfaces, one can approximate the �uxes bfi+1=2 and bfi�1=2.

4.2.2 Power Piecewise Hyperbolic Method

One way to get high-order accurate reconstruction methods without spurious oscilla-

tions near discontinuities is to control the behavior of the approximation near these

discontinuities using the limiter functions. A limiter function is de�ned as an average

of two or more nonnegative numbers.

As we mentioned, in order to improve the accuracy at local extrema in the LHHR

reconstruction from PHM methods, the PowerPHM method [53] applies the power

limiters instead of harmonic mean to construct a three point stencil piecewise hyper-

bolic method. In our simulations we use the Power3mean

Power3 (x; y) = min (x; y)
x2+y2+2(max(x;y))2

(x+y)2

Using the power3limiter, � will have a wide range of values �2� � � � 2� and
p
2� 1 � � < 1, with � positive. With this modi�cation, one can obtain more local

variation in each computational cell.

The reconstruction method is local total variation bounded (LTVB).

Next, we write the algorithm that we use in our simulations for PHM with the

local hyperbolic power reconstruction (LHPR), where powereno3 (x; y) limiter de�nes
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a new hyperbola in terms of d and �.

The steps of the algorithm PHM-LHPR are the same like in PHM-LHHR algo-

rithm with the di¤erence that the new values of d (i) and �i were obtained by:

Local Hyperbolic Power Reconstruction (LHPR)

Let de�ne tol = h2,

if (d� 1
2
� d 1

2
6 0) then

d = 0 and � = 0

else

if (
���d� 1

2

��� 6 tol) and (���d 1
2

��� 6 tol) then
d =

d� 1
2
+d 1

2

2
and � = 0

else

if
���d� 1

2

��� 6 tol then ���d� 1
2

��� = tol
if
���d 1

2

��� 6 tol then ���d 1
2

��� = tol
if
���d� 1

2

��� 6 ���d 1
2

��� then
dsize = 4

���d 1
2

��� ���d� 1
2

��� ����d 1
2

���2 + ���d� 1
2

���2� =����d 1
2

���+ ���d� 1
2

����3
if d� 1

2
< 0 then d = �dsize
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else d = dsize

� = 2

�r
dsize=

���d� 1
2

���� 1�
else

if d 1
2
< 0 then d = �dsize

else d = dsize

� = 2

�
1�

r
dsize=

���d 1
2

����

4.3 Parabolic Reconstructions

As we have mentioned before, parabolas are another elementary functions used to

approximate the piecewise smooth functions with jump discontinuities. Weighted

Essentially Non-Oscillatory method (WENO5) [27] and Weighted Power Essentially

Non-Oscillatory method (PowerWENO) [54] are high-order accurate reconstruction

procedures that are based on parabolas and we use them to approximate the weak so-

lutions of the nonlocal hyperbolic model of myxobacteria (see Chapter 5 for numerical

results). Those parabolas have the form

pi (x) = ai + (x� xi)
�
bi +

ci
2
(x� xi)

�
where ai, bi, ci are computed from the grid data.
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4.3.1 WENO5 Method

Using a nonlinear convex combination of three pointwise ENO3 parabolas, Jiang

and Shu developed in [27] the WENO5 method. WENO5 is a new way to measure

the smoothness, by employing the indicators of smoothness. It is a method of �fth

order of accuracy designed for problems with piecewise smooth solutions containing

discontinuities (or shocks).

Next, we explain the algorithm of the WENO5 reconstruction that we use in our

numerical simulations for myxobacteria density. From our results, we will see in the

next chapter the advantages of this method in comparison with the other of lowest

order of accuracy (upwind and PHM methods).

Algorithm for the WENO5 method

We compute numerical approximations at the interfaces xi� 1
2
and xi+ 1

2
. For our

bacterial problem, the numerical �uxes for the second variable were obtained in the

same way.

In our calculations we consider the following stencil points ni�2, ni�1, ni, ni+1 and

ni+2, to compute the lateral derivatives at xi+ 1
2
and xi� 1

2
.

At the right interface xi+ 1
2
, compute the indicators of smoothness IS0, IS1 and

IS2 using the following expressions:

IS0weno5 =
13
12
(ni�2 � 2ni�1 + ni)2 + 1

4
(ni�2 � 4ni�1 + 3ni)2
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IS1weno5 =
13
12
(ni�1 � 2ni + ni+1)2 + 1

4
(ni�1 � ni+1)2

IS2weno5 =
13
12
(ni � 2ni+1 + ni+2)2 + 1

4
(3ni � 4ni+1 + ni+2)2

Then, compute the nonlinear weights wi

a0 =
0:1

("+IS0weno5)2
; a1 = 0:6

("+IS1weno5)2
; a2 = 0:3

("+IS2weno5)2
;

!0 =
a0

a0+a1+a2
; !1 = a1

a0+a1+a2
; !2 = a2

a0+a1+a2
;

Then compute the right �ux given by a convex combination of the following

parabolas

!right = !0 � (13ni�2 �
7
6
ni�1 +

11
6
ni) + !1 � (�1

6
ni�1 +

5
6
ni +

1
3
ni+1) + !2 � (13ni +

5
6
ni+1 � 1

6
ni+2)

At the left interface xi� 1
2
, a similar formula is obtained using the following convex

combination

wleft = w0 � (�1
6
ni�2 +

5
6
ni�1 +

1
3
ni) + w1 � (13ni�1 +

5
6
ni � 1

6
ni+1) + w2 � (13ni+2 �

7
6
ni+1 +

11
6
ni)

where the optimal nonlinear weights are

a0 =
0:3

("+IS0weno5)2
; a1 = 0:6

("+IS1weno5)2
; a2 = 0:1

("+IS2weno5)2

and the indicators of smoothness

IS0weno5 =
13
12
(ni�2 � 2ni�1 + ni)2 + 1

4
(ni�2 � 4ni�1 + 3ni)2
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IS1weno5 =
13
12
(ni�1 � 2ni + ni+1)2 + 1

4
(ni�1 � ni+1)2

IS2weno5 =
13
12
(ni � 2ni+1 + ni+2)2 + 1

4
(3ni � 4ni+1 + ni+2)2.

4.3.2. Weighted PowerENO Method

The last method that we use for our numerical simulations is Weighted PowerENO

scheme [54]. This reconstruction have the same weighting strategy based on the

smoothness indicators and the same algorithm such as WENO5 scheme. The new idea

of this method is that it applies a class of limiters (powereno3 or powermod3 limiters

based on the mean power3 introduced above) computed at two neighboring second

order di¤erences in the classical third-order ENO reconstruction, improving in this

way the resolution near discontinuities of the solution.

We use the power3limiter of �rst and second order di¤erences

Power3 (x; y) = min (x; y)
x2+y2+2(max(x;y))2

(x+y)2
.

Algorithm for the Weighted PowerENO method

We consider the following stencil points ni�2, ni�1, ni, ni+1 and ni+2 in order to

compute the lateral derivatives at xi+ 1
2
and xi� 1

2
.

For the next calculations we use the following notations:

di+ 1
2
= ni+1 � ni
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di =
d
i+1

2
+d

i� 1
2

2

Di = di+ 1
2
� di� 1

2

Having these values, we compute

Pi�1=2 = power3eno (Di�1; Di)

Pi+1=2 = power3eno (Di; Di+1).

At the right interface xi+ 1
2
, compute the indicators of smoothness IS0, IS1 and

IS2 using the following expressions:

IS0 =
13
12
(Pi�1=2)

2 + 1
4
(2ni � 2ni�1 + Pi�1=2)2

IS1 =
13
12
(ni�1 � 2ni + ni+1)2 + 1

4
(1
2
(ni+1 � ni�1))2

IS2 =
13
12
(Pi+1=2)

2 + 1
4
(2(ni+1 � ni)� Pi+1=2)2.

Then, compute

a0 =
0:2

(10�6+IS0)2
; a1 = 0:2

(10�6+IS1)2
; a2 = 0:6

(10�6+IS2)2
;

w0 =
a0

a0+a1+a2
; w1 = a1

a0+a1+a2
; w2 = a2

a0+a1+a2
;

Considering the expressions for the above parabolas, the convex combination at

the right interface is:

wright = w0 � (ni + 1
2
(ni � ni�1) + 1

3
P
i�1=2) + w1 � (ni + 1

4
(ni+1 � ni�1) + 1

12
(ni+1 �

45



Chapter 4. High Order Accurate Numerical Methods

2ni + ni�1)) + w2 � (ni + 1
2
(ni+1 � ni)� 1

6
P
i+1=2

)

At the left interface xi� 1
2
, a similar formula is obtained using the following convex

combination:

wleft = w0 � (ni� 1
2
(ni�ni�1)� 1

6
P
i�1=2)+w1 � (ni� 1

4
(ni+1�ni�1)� 1

6
(ni+1�2ni+

ni�1)) + w2 � (ni � 1
2
(ni+1 � ni) + 1

3
P
i+1=2

)

where the optimal weights are

!0 =
a0

a0+a1+a2
; !1 = a1

a0+a1+a2
; !2 = a2

a0+a1+a2

with the corresponding values of

�0 =
0:6

(10�6+IS0)2
; �1 = 0:2

(10�6+IS1)2
; �2 = 0:2

(10�6+IS2)2

and the smoothness indicators

IS0 =
13
12
(Pi�1=2)

2 + 1
4
(2ni � 2ni�1 + Pi�1=2)2

IS1 =
13
12
(ni+1 � 2ni + ni�1)2 + 1

4
(1
2
(ni+1 � ni�1))2

IS2 =
13
12
(Pi+1=2)

2 + 1
4
(2ni+1 � 2ni � Pi+1=2)2

where Pi�1=2 and Pi+1=2 are power3eno limiters

Pi�1=2 = power3eno (ni � 2ni�1 + ni�2; ni+1 � 2ni + ni�1)

Pi+1=2 = power3eno (ni+1 � 2ni + ni�1; ni+2 � 2ni+1 + ni).
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Chapter 5. Numerical Experiments

5.1 Introduction

Our general goal in this chapter consists of applying high order accurate shock cap-

turing schemes, developed in Chapter 4, to approximate the solution of the nonlocal

hyperbolic model proposed by Igoshin et al (2004) [22] and described in Chapter 3,

with the purpose of coding a set of algorithms to perform numerical simulations for

the better understanding of the mechanism of periodic pattern formation in myxobac-

teria colonies. The proposed algorithms will allow to describe how the myxobacteria

cells can move on a line to the left or to the right and reverse their motion.

We show that in the absence of white noise sources introduced in the original

model, the hyperbolic system of two coupled partial di¤erential equations can repro-

duce the reversal process on a regular basis.

We construct the numerical solution using uniform grids for both spatial variable
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x and the phase variable � extended over their whole domains and assigning an

approximate value of the solution on every point of the 2D grid at every time step.

For the spatial �uxes (space and phase) we use as schemes upwind �nite di¤erence

schemes with di¤erent order of accuracy, and Euler explicit algorithm to evolve in

time.

The computation of the integral form of the �uxes for the internal clock variable

is performed through the trapezoidal rule of numerical integration extended over the

whole domain of the phase variable, using the approximated values of the solution at

the grid points.

Explicit upwind schemes require a Courant-Friedrichs-Levy (CFL) restriction on

the time step, �t, in terms of the maximum wave speed and the spatial stepsizes �x

and ��, of the form
�t

(�x2 +��2)1=2
� C

1 + (1 + �)
(5.1)

Here C is a positive constant such that C < 1 to ensure stability of the scheme.

We use C = 0:4 in all our computations.

Since the �rst order scheme introduces more dissipation than needed, we have

formulated high order accurate versions in space based on the third-order piecewise

hyperbolic reconstruction procedures (PHM and PowerPHM) and �fth-order weighted

essentially nonoscillatory reconstruction procedures (WENO5 andWPower3WENO5)

for the spatial variables. The third order Runge-Kutta method for the integration
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in time is the one proposed by Shu and Osher in [57] and allows the maximum time

stepsize dictated by the �rst order upwind scheme (see Chapter 4).

5.2 Numerical Implementation

For simplicity, we start writing the equations of the myxobacteria model from Chapter

3 with Dx = D� = 0, as:

@tn+ V (�)@xn+ @�(W (x; �; t)n) = 0 (5.2)

V (�) =

8><>: v; 0 < � < �

�v; �� < � < 0
(5.3)

W (x; �; t) =

8><>: 1 + �
(N�(x; t)); 0 < � < �

1 + �
(N+(x; t)); �� < � < 0
(5.4)

Let us discretize the domain by choosing an uniform mesh (xi; �j; tm) by xi = ih;

�j = jh; tm = mk with h = �x = �� a space interval and k = �t a time step.

We de�ne xi+ 1
2
= xi+

h
2
= (i+ 1

2
)h and �j+ 1

2
= �j+

h
2
= (j+ 1

2
)h, the cell interfaces

which separate the computational cells, and nmi;j � 1
h2

R x
i+1

2
x
i� 1

2

R �j+1
2

�
j� 1

2

n(x; �; tm)d�dx the

cell average of n(x; �; t) over the (i; j) computational cell
h
xi� 1

2
; xi+ 1

2

i
�
h
�j� 1

2
; �j+ 1

2

i
.
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As long as we are working with the space and phase variables, the numerical �uxes

are reconstructed using a dimension-by-dimension procedure.

We want to �nd the numerical approximation of the function n (x; �; tm). By using

the conservative discrete approximation of the spatial and phase derivatives, equation

(5.2) takes the form

nm+1i;j = nmi;j �
dt

h

h
V (�j)

�
�
ni+ 1

2
;j �

�
ni� 1

2
;j

�i
� dt
h

h
^W (x; �)nji;j+ 1

2
� ^W (x; �)nji;j� 1

2

i
(5.5)

where
�
ni+ 1

2
;j,

�
ni� 1

2
;j

^W (x; �)nji;j+ 1
2
, and ^W (x; �)nji;j� 1

2
are the interface �uxes.

5.2.1 Upwind Method

For the case of the upwind method of order one, where the interface �uxes are deter-

mined by the direction of wave propagation, we compute the interface �uxes in the

following way: if the characteristic speed is positive, backward di¤erences are used

(
�
ni+ 1

2
;j =

�
n
L

i+ 1
2
;j), otherwise forward di¤erences are used (

�
ni+ 1

2
;j =

�
n
R

i+ 1
2
;j).

For our problem, the �rst upwind procedure gives the following numerical �uxes:

- when V (�j) > 0; we de�ne 8><>:
�
ni+ 1

2
;j = n

m
i;j

�
ni� 1

2
;j = n

m
i�1;j

(5.6)
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- when V (�j) < 0; we de�ne 8><>:
�
ni+ 1

2
;j = n

m
i+1;j

�
ni� 1

2
;j = n

m
i;j

(5.7)

- because the phase velocity is always positive, we have8><>:
^W (x; �)nji;j+ 1

2
= W (xi; �j)n

m
i;j

^W (x; �)nji;j� 1
2
= W (xi; �j�1)n

m
i;j�1

(5.8)

5.2.2 Hyperbolic and Parabolic Reconstructions

For the numerical high accurate shock capturing schemes the most important step is

the reconstruction. We look for the reconstruction of the function n (xi; �j) up to the

third and �fth order of accuracy.

First, from nmi;j; we reconstruct the point values of the function n(x; �; tm) via a

suitable nonlinear piecewise polynomial interpolation Pi;j(x; �), taking into account

the conservation, accuracy and non-oscillatory requirements. For each cell we use

this polynomial to reconstruct the values of the function at cell interface. For the

reconstructions we use hyperbolic and parabolic procedures. As a result, at each cell

interface the reconstruction produces two di¤erent values of the function n(x; �; tm)

for each spatial direction.

Those values are:

�
n
L

i+ 1
2
;j = Pi;j(xi+ 1

2
; �j),

�
n
R

i+ 1
2
;j = Pi+1;j(xi+ 1

2
; �j)
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�
n
L

i;j+ 1
2
= Pi;j(xi; �j+ 1

2
),

�
n
R

i;j+ 1
2
= Pi;j+1(xi; �j+ 1

2
)

The hyperbolic and parabolic procedures give the following numerical �uxes:

- when V (�j) > 0; we de�ne

�
ni+ 1

2
;j = Pi;j

�
xi+ 1

2
; �j

�
(5.9)

- when V (�j) < 0; we de�ne

�
ni+ 1

2
;j = Pi+1;j

�
xi+ 1

2
; �j

�
(5.10)

- when (W (x; �; t) > 0), we de�ne

^W (x; �)nji;j+ 1
2
= Pi;jW (xi; �j+ 1

2
) (5.11)

With these reconstructed values of hyperbolas (for the PHM methods) or parabo-

las (for the WENO5 methods), we can approximate the �uxes
�
ni+ 1

2
;j, ^W (x; �)nji;j+ 1

2
.

Analogous, we can approximate the �uxes
�
ni� 1

2
;j, ^W (x; �)nji;j� 1

2
.

5.3 Numerical Solutions

We consider our hyperbolic problem with the initial condition a piecewise constant

signal, periodic in x and � for each of the areas where the dynamics is directly reverse

or refractory.
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We start with the function n(x; �; t = 0) = 1 + 0:1 sin(x) sin(�) on the interval

[��; �] � [��; �]. We use a grid of 100 � 100 points with a CFL number of 0:4 and

the time long enough to obtain one complete period. For the �rst experiments we

analyze the increasing of �. We compute the approximate solution for upwind, PHM,

WENO5 and WPower3ENO5 using � = �=10 and r = 4. The total density of bacteria

at point x and time t is N+(x; t) +N�(x; t).

When � = 0 the system of conservation laws (5.2)-(5.4) transforms in a system of

linear wave equations and as we can see, the numerical solution can be approximated

using upwind schemes of any order of accuracy in space. We observe, in Fig. 5.1,

that a numerical dissipation is introduced by the upwind method compared with

PHM, WENO5 and WPower3ENO5. By increasing the nonlinearity (the value of

�), reversals of bacteria occur earlier and a numerical dissipation appear even if we

use high order numerical schemes. This is explained by the presence of the nonlocal

nonlinearities of the �uxes which produce an analytic dissipation mechanism.

The density of time-reversal points (reversal point density) is represented as

RPD = nLR + nRL = n(x; � = 0+; t) + n(x; � = ��+; t) (5.12)

In Fig. 5.5 and Fig. 5.6 we show the plots of the RPD for the PHM scheme and

for PowerPHM scheme with � = �=10 and r = 4, as nonlinearity increases.

As we can see from the Fig. 5.5 (a), (b) and Fig. 5.6 (a), (b) a slight decrease of
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Fig 5.1: Grey scale plots of the total density N+(x; t)+N�(x; t) for � = �=10, r = 4,

and (a) � = 0, (b) � = 1:2, (c) � = 12 with the upwind method.
54



Chapter 5. Numerical Experiments

x

t

-3 -2 -1 0 1 2 3

5

10

15

20

25

6

6.1

6.2

6.3

6.4

6.5

(a) � = 0

x

t

-3 -2 -1 0 1 2 3

2

4

6

8

10

12

6.15

6.2

6.25

6.3

6.35

6.4

(b) � = 1:2

x

t

-3 -2 -1 0 1 2 3

1

2

3

4

5

6

6.2

6.22

6.24

6.26

6.28

6.3

6.32

6.34

6.36

(c) � = 12

Fig 5.2: Grey scale plots of the total density N+(x; t)+N�(x; t) for � = �=10, r = 4,

and (a) � = 0, (b) � = 1:2, (c) � = 12 with the PHM method.
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Fig 5.3: Grey scale plots of the total density N+(x; t)+N�(x; t) for � = �=10, r = 4,

and (a) � = 0, (b) � = 1:2, (c) � = 12 with the WENO5 method.
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Fig 5.4: Grey scale plots of the total density N+(x; t)+N�(x; t) for � = �=10, r = 4,

and (a) � = 0, (b) � = 1:2, (c) � = 12 with the WPower3ENO5 method.
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Fig 5.5: Plots of the RPD vs time for � = �=10, r = 4 and (a) � = 0, (b) � = 1:2, (c)

� = 12 with the PHM method.
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Fig 5.6: Plots of the RPD vs time for � = �=10, r = 4 and (a) � = 0, (b) � = 1:2, (c)

� = 12 with the PowerPHM method.
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Fig 5.7: Plots of the total density vs time for � = �=10, r = 4 and (a) � = 0, (b)

� = 1:2, (c) � = 12 with the upwind method.
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the maxima of the reversal point density is noticed due to numerical errors in case of

PHM method in comparison with the PowerPHM method. Also, from the Fig. 5.5

(c) and Fig. 5.6 (c), the evolution of the RPD towards a constant value is slow.

Next, we display the total density for � = �=10, r = 4 with upwind method.

Using the method of �rst order of accuracy in space, the plots of the total density

(Fig. 5.7) show a strong dissipation due to numerical noise and �nally, the patterns

disappear and converge to uniform stationary state, as shown in Fig. 5.7 (c).

Using these numerical approximations for the case when the signaling is strong,

we are able to analyze the parameters of the model to locate Hopf bifurcations. When

using the �rst-order numerical method the behavior is the following: the di¤usion is

present and the system tends to spread the Hopf bifurcations to states that are not

interesting from a biological standpoint. In the case of non-signaling state (� = 0), the

analytical solution is perfectly recovered and for the ultrastrong signaling (� = 12),

the rippling phenomenon doesn�t exist and the system goes to a stationary state.

For the second experiment we consider the case of a very large exponent of r

(r = 20). This is equivalent with a generic saturating function with a jump, instead

of the logistic one (r = 4).

In the following �gures we show the plots of total density and reversal point density

for r = 20.
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Fig 5.8 : Plots of the total density vs time with r = 20. Comparisons between upwind

(�b+�), WENO5 (�c^�) and WPower3ENO5 (�k-.�).

By increasing the parameter r in the function 
 (N), there are no modi�cations

for the patterns, the amplitude of the traveling waves has the same shape like in the

case when we use r = 4.

The other analysis consists of changing the parameter �. The numerical results

of the reversal point density are displayed in Fig. 5.10, where we use the WENO5

method for the simulations.

We can observe that as � decreases, the frequency of the traveling waves increases.

For the next numerical simulation we consider the following initial condition
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Fig 5.9 : Plots of the reversal point density vs time with r = 20. Comparisons between

upwind (�b+�), PHM (�g*�), Power3PHM (�r-�).

n(x; �; t = 0) = 1 + 0:1 sin (kx) sin (�) with a �xed � = �=5.

In Figure 5.11, we show the surface plots of the reversal point density with k = 2,

k = 4, and k = 6.

As we can see from the simulations, when k = 2 the periodic patterns are present.

Fig. 5.11 (b) shows a transient stage to the stationary solution (the case when k = 6).
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Fig 5.11: Contour plots of the RPD for r = 4, � = 1:2, time = 4�, � = �=5 and

wavenumber: (a) k = 2, (b) k = 4, (c) k = 6. The simulations were realized with

PHM method.
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Chapter 6. Wavelength Selection of

Rippling Patterns in Myxobacteria

6.1 Introduction

In this chapter, we consider Igoshin et al�s continuum one-dimensional (1D) model for

rippling [21,22] described in Chapter 3, solve it numerically and interpret the results

by a study of the small nonlinearity limit. An extension of this model to 2D can

be found in [23] and related agent-based models in [72]. Previous work has shown

that numerical solutions of the continuum model exhibit rippling [22]. Surprisingly,

the analysis of the small nonlinearity limit does not provide a selection rule for the

observed wavelength of ripples [22]. In contrast with these results, we show that the

small nonlinearity limit does provide a description of the rippling instability and it

supplies the critical wavenumber of the periodic patterns in terms of the refractory

period. In fact, careful consideration of �ux continuity at the di¤erent stages of one
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cycle of the internal clock of myxobacteria shows that the limiting equation for the

cell density is of Fokker-Planck type but it contains an additional source term. The

extra source term is the cell density times a nonlocal growth rate that vanishes as the

refractory period tends to zero. The source term is key new element in our analysis,

as it produces dissipation even in the absence of di¤usion. Thus the role of the

source term is similar to that of collision terms in the Boltzmann transport equation.

The balance between advection in space and time and dissipation due to the �collision

term�selects the wavelength of the rippling patterns that issue forth from the uniform

stationary state. These patterns are periodic in time and space. Numerical solutions

of the full model equations show that the pattern frequency decreases as the strength

of the nonlinearity increases.

It is interesting to contrast the behavior of the present myxobacteria model with

the well-known synchronization of globally coupled phase oscillators described by the

Kuramoto model [1, 35]. The Kuramoto oscillators move on a circle with their own

random natural frequency and their mutual interaction through a mean �eld tends

to synchronize them. Partial or complete synchronization is achieved for su¢ ciently

strong coupling through a nonequilibrium phase transition. Igoshin et al�s model de-

scribes phase oscillators with an internal clock whose angular speed changes according

to their interaction with oppositely moving oscillators. Since the Igoshin oscillators

move with a constant positive or negative velocity, patterns arising from appropriate

initial conditions persist in the absence of interaction. In this case, mean-�eld interac-

tion among oscillators may produce loss of rhythmicity resulting in the destruction of
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patterns. This change appears as a nonequilibrium phase transition at critical values

of parameters that has been explicitly shown in the weak coupling limit.

The rest of the chapter is as follows. The weakly nonlinear limit is examined

in Section 6.2, where the limiting Fokker-Planck type equation with source term is

derived. The linear stability of its uniform stationary solution is analyzed in Section

6.3. In the absence of di¤usion and for disturbances with frequency one (same as

that of the signaling solution without nonlinear terms), we �nd that rippling patterns

appear for disturbances with wavenumber less than one, whatever the refractory

period. Increasing the wavenumber k may result in the cancellation of patterns, as the

uniform stationary solution becomes linearly stable. Since di¤usion has a stabilizing

role for the uniform solution (producing a negative term proportional to k2 in the

real part of eigenvalues), unavoidable numerical noise should tend to annihilate the

periodic patterns and be more e¤ective as k increases. Section 6.4 contains the results

of numerical solutions of the full model equations. The �ndings of the linear stability

analysis and the wavenumber selection criteria are con�rmed. In addition, we observe

a rich variety of stable periodic patterns comprising standing and traveling waves as

numerical solutions of the model equations for moderate and strong signaling between

cells. Section 6.5 contrasts our �ndings with the behavior of the Kuramoto model for

the synchronization of phase oscillators. The last section contains our conclusions.
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6.2 Weak Signaling Limit

For � = 0, (3.12) becomes

@tn+ sign(�)@xn+ @�n = 0; (6.1)

whose solution is [22]

n =

8><>: f(x� �; t� �); 0 < � < �;

f(x+ �; t� �); �� < � < 0:
(6.2)

Here f(x; t) is an arbitrary function, 2�-periodic in its second argument. f(x; t) and

f(x � �; t + �) represent the densities of left-to-right and of right-to-left reversals,

respectively. Then, according to (3.7), nRPD(x; t) = f(x; t) + f(x � �; t + �) is the

reversal point density (RPD) in the weakly nonlinear limit and weak di¤usion limit

as �! 0+. This limit is also called the weak signaling limit [22]. In (6.2), n(x; t; �) is

continuous and 2�-periodic in �. The constant solution, f = N̂=(2�), is a particular

solution of (3.12).

Igoshin et al have derived a Fokker-Planck equation for f in the weakly nonlinear

limit as � ! 0 by using physical arguments and also by singular perturbation meth-

ods (see Appendix in [22]). Their derivation missed the collision-type source term

that we �nd in this chapter. Finding this term requires delving more deeply in the

perturbation method, therefore we describe this method from scratch. In the limit as
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�! 0, we seek a solution

n = n0(x; t; �; �) + � n1(x; t; �; �) +O(�2); � =
�t

2�
; (6.3)

n0(x; t; �; �) =

8><>: f(x� �; t� �; �); 0 < � < �;

f(x+ �; t� �; �); �� < � < 0;
(6.4)

so that n1 is 2�-periodic in �. Note that the function f in (6.4) has the form (6.2)

with an additional dependence upon the slow time � . The equation for n1 is

[@t + sign(�)@x + @�]n1 =
�
Dx@2x +D�@2� � 2�
��[�;�]@� � 2�
+�[��+�;0]@� � @�

�n0
2�
;

(6.5)

with

N+(x; t; �) =

Z �

0

f(x�  ; t�  ; �) d ;

N�(x; t; �) =

Z 0

��
f(x+  ; t�  ; �) d =

Z �

0

f(x�  ; t+  ; �) d ;


�(x; t; �) = 
(N�(x; t; �)); N�(x; t; �) =

Z �

0

f(x�  ; t�  ; �) d : (6.6)

Continuity of the �ux J = f1+�
��[�;�]+�
+�[��+�;0]gn�D�@�n=(2�), across angle

boundaries and (6.3) yield

[n1]�=0 � n1j�=0+ � n1j�=0� = 
+n0j�=0� +
D�
2�
[@�n0]j�=0; (6.7)

[n1]�=� � n1j�=�+ � n1j�=�� = �
�n0j�=�+ +
D�
2�
[@�n0]j�=�; (6.8)

[n1]�=��+� � n1j�=��+�+ � n1j�=��+�� = �
+n0j�=��+�+ +
D�
2�
[@�n0]j�=��+�;

(6.9)

[n1]�=� � n1j�=��+ � n1j�=�� = 
�n0j�=�� +
D�
2�
[@�n0]j�=�: (6.10)
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From (6.4) and (6.5), we obtain along the characteristics

x(�) = x0 + sign(�)�; t(�) = t0 + �; f(�) = f(x0; t0); (6.11)

the following equation for n1:

dn1
d�

=

8><>: fL+ + �[�;�](@x0 + @t0)
�(x0 + �; t0 + �)gf; 0 < � < �;

fL� � �[���;0](@x0 � @t0)
+(x0 � �; t0 + �)gf; �� < � < 0:
(6.12)

In (6.12) we have de�ned

L� =
1

2�
[Dx@2x0 +D�(@x0 � @t0)

2 � @� ]: (6.13)

Ignoring the initial condition for n1, the solution of (6.12) along the characteristics

(6.11) is

np1 =

8>>>>>>><>>>>>>>:

�L+f +
�
1� �

�

�

�(x0 + �; t0 + �; �) f; 0 < � < �

�L+f + (@x0 + @t0)f
R �
�

�d�+ C�; � < � < �;

�L�f + (@x0 � @t0)f
R 0
�

+d�+ C0; �� � < � < 0;

�L�f + C���; �� < � < �� �;

(6.14)

where f = f(x0; t0; �), the constants of integration Cj are independent of �, and8><>:
R �
�

�d� =

R �
�


�R �
0
f(x0 + �0 �  ; t0 + �0 +  ; �)d 

�
d�0;R 0

�

+d� =

R 0
�


�R �
0
f(x0 � �0 �  ; t0 + �0 �  ; �)d 

�
d�0:

(6.15)

To determine the constants Cj in (6.14), we impose the jump conditions (6.7)-(6.9).

Using (6.4), [@�n0]j�=� = [@�n0]j�=��+� = 0, [@�n0]j�=� = 2@xf(x0 � �; t0 + �; �),
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[@�n0]j�=0 = �2@xf(x0; t0; �), and we �nd

C� = �
�

�

�(x0 + �; t0 + �; �) f(x0; t0; �); (6.16)

C0 =
h�
1� �

�

�

�(x0 + �; t0 + �; �)� 
+(x0; t0)

i
f(x0; t0; �) +

D�
�
@xf(x0; t0; �);

(6.17)

C��� =
h

+(x0 � �+ �; t0 + �� �; �) +

�
1� �

�

�

�(x0 + �; t0 + �; �)� 
+(x0; t0)

i
� f(x0; t0; �) + (@x0 � @t0)

�
f(x0; t0; �)

Z 0

���

+d�

�
+
D�
�
@xf(x0; t0; �): (6.18)

The integral on the right hand side of (6.18) can be rewritten asZ 0

���

+d� =

Z 0

���



�Z �

0

f(x0 � ��  ; t0 + ��  ; �)d 

�
d�

=

Z �

�




�Z �

0

f(x0 + � � ��  ; t0 � � + ��  ; �)d 

�
d�

=

Z �

�




�Z �

0

f(x0 + � � ��  ; t0 + � + ��  ; �)d 

�
d�

=

Z �

�




�Z �

0

f(x0 � �+  ; t0 + �+  ; �)d 

�
d�: (6.19)

We have used that f(x; t; �) is 2�-periodic in t and the change of variable �� !  

to simplify the integral in (6.19). The �rst term in C��� can be similarly simpli�ed,

thereby producing

C��� =

�



�Z �

0

f(x0 � �+  ; t0 + �+  ; �)d 

�
� 


�Z �

0

f(x0 �  ; t0 �  ; �)d 

�
+
�
1� �

�

�



�Z �

0

f(x0 + ��  ; t0 + �+  ; �)d 

��
f

+ (@x0 � @t0)

�
f

Z �

�




�Z �

0

f(x0 � �+  ; t0 + �+  ; �)d 

�
d�

�
+
D�
�
@xf:

(6.20)
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The condition (6.10) ensuring 2�-periodicity in � provides the sought equation for

f :

@�f + @x(Uf) + @t(V f)� (Dx +D�)@2xf �D�@2t f = f Q[f ]

� D�
�
@x[f(x; t; �)� f(x� �; t+ �; �)]; (6.21)

U =

Z �

�

�



�Z �

0

f(x� �+  ; t+ �+  ; �)d 

�
� 


�Z �

0

f(x+ ��  ; t+ �+  ; �)d 

��
d�; (6.22)

V = �
Z �

�

�



�Z �

0

f(x� �+  ; t+ �+  ; �)d 

�
+ 


�Z �

0

f(x+ ��  ; t+ �+  ; �)d 

��
d�; (6.23)

Q[f ] = 


�Z �

0

f(x+  ; t�  ; �)d 

�
+ 


�Z �

0

f(x�  ; t�  ; �)d 

�
� 


�Z �

0

f(x+ ��  ; t+ �+  ; �)d 

�
� 


�Z �

0

f(x� �+  ; t+ �+  ; �)d 

�
: (6.24)

We have dropped the subscripts 0 in the variables x and t. Unimportant changes

in the notation aside (our � corresponds to Igoshin et al�s variable T , Dx = 2�D1,

D� = 2�D2), these equations are di¤erent from those derived by Igoshin et al [22]:

U and V in (6.21) are the same but Igoshin et al�s Fokker-Planck equation lacks the

source term fQ[f ]. The reason is that Igoshin et al do not impose consistently the

jump conditions (6.7)-(6.10) in their derivation; see their equations (A10)-(A.14) in

the Appendix of [22]. The terms in (6.24) do not appear in these equations.
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Equation (6.21) is a Fokker-Planck type equation with a source term fQ[f ] �
D�
�
@x[f(x; t; �) � f(x � �; t + �; �)]. Even in the absence of noise (Dx = D� = 0),

fQ[f ] acts as an e¤ective collision term that produces dissipation. As we shall see in

the next section, the source term provides a mechanism for wave number and speed

selection of the ripples. No such mechanism was found in [22].

6.3 Constant Solution in the Weak Signaling Limit

and its Linear Stability

The constant function f = N̂=(2�) is an exact solution of (6.21) that coincides with

the following exact piecewise constant solution of the full model (3.12):

ns(�) = p [�[0;�](�) + �[��;��+�](�)] + q [�[��+�;0](�) + �[�;�](�)]; (6.25)

p =
1 + �


�
N̂
2

�
� + ��


�
N̂
2

� N̂
2
; q =

N̂
2

� + ��

�
N̂
2

� (6.26)

when � = 0. In (6.25), p and q given by (6.26) have been calculated from N� =

�p+ (� � �)q = N̂=2 and from the condition that the �ux J = n[1 + �
(N�)�[�;�] +

�
(N+)�[��+�;0])] should be continuous. Note that substitution of f = N̂=(2�) in
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(6.14) yields

np1 =

8>>>>>>>><>>>>>>>>:

�
1� �

�

�


�
N̂
2

�
N̂
2�
; 0 < � < �

��
�


�
N̂
2

�
N̂
2�
; � < � < �;

��
�


�
N̂
2

�
N̂
2�
; �� � < � < 0;�

1� �
�

�


�
N̂
2

�
N̂
2�
; �� < � < �� �;

(6.27)

after using (6.16)-(6.18). Equation (6.27) agrees with (6.25)-(6.26) up to terms of

order �2.

Let us see what we �nd by a linear stability analysis of f = N̂=(2�) as a solution

of (6.21). Inserting f = N̂=(2�) + �(x; t; �) with � � 1 in (6.21) and keeping only

terms that are linear in �, we �nd"
@� � 2(� � �) 


 
N̂

2

!
@t � (Dx +D�)@2x �D�@2t

#
� =

N̂

2�

0

 
N̂

2

!

�
�
@t

Z �

�

Z �

0

[�(x� �+  ; t+ �+  ; �) + �(x+ ��  ; t+ �+  ; �)]d d�

� @x

Z �

�

Z �

0

[�(x� �+  ; t+ �+  ; �)� �(x+ ��  ; t+ �+  ; �)]d d�

+

Z �

0

[�(x+  ; t�  ; �) + �(x�  ; t�  ; �)� �(x+ ��  ; t+ �+  ; �)

� �(x� �+  ; t+ �+  ; �)] d g � D�
�
@x[�(x; t; �)� �(x� �; t+ �; �)]:

(6.28)
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Assuming � = eikx+ilt+�� , we obtain the following eigenvalues:

� = 2il(� � �) 


 
N̂

2

!
� (Dx +D�)k2 �D�l2 + i2N̂ 
0

 
N̂

2

!

�
�
ei�l
�
ei�L sin[(� � �)L]

sin(�K)

2�K
+ ei�K sin[(� � �)K]

sin(�L)

2�L

�
� ei�L sin(�L+ �K)

sin(�K)

2�K
� ei�K sin(�K + �L)

sin(�L)

2�L

�
� ikD�

�
(1� ei2�L);

(6.29)

where

K =
l + k

2
; L =

l � k

2
: (6.30)

For real k and l, the real and imaginary parts of (6.29) are

Re � = �(Dx +D�)k2 �D�l2 � N̂ 
0

 
N̂

2

!�
sin(�L+ �l) sin[(� � �)L]

sin(�K)

�K

+ sin(�K + �l) sin[(� � �)K]
sin(�L)

�L
� sin(�L) sin(�L+ �K)

sin(�K)

�K

� sin(�K) sin(�K + �L)
sin(�L)

�L

�
� kD�

�
sin(2�L); (6.31)

Im � = 2l(� � �) 


 
N̂

2

!
+ N̂ 
0

 
N̂

2

!�
cos(�L+ �l) sin[(� � �)L]

sin(�K)

�K

+ cos(�K + �l) sin[(� � �)K]
sin(�L)

�L
� cos(�L) sin(�L+ �K)

sin(�K)

�K

� cos(�K) sin(�K + �L)
sin(�L)

�L

�
� 2kD�

�
sin2(�L); (6.32)

respectively. Except for the last two terms in (6.31), this is the same as (57) in [22]

(with N̂ replaced by N̂=2) provided l is an integer. We have � = 0 for k = l =

0 indicating that we can shift the constant solution f = N̂=(2�) by an arbitrary

quantity. The integral condition (3.13) �xes the value of N̂ and therefore we have to

ignore the zero eigenvalue.
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Note that as r ! 1, 
0(N̂=2) ! 0 and the constant solution becomes stable

according to (6.31). At bifurcation points, Re � = 0, Im � 6= 0. This suggests

that a Hopf bifurcation occurs, which our numerical simulations support. Pattern

solutions that are periodic in the slow time issue forth from the constant solution

as supercritical Hopf bifurcations according to our numerical evidence. We have not

found examples of subcritical Hopf bifurcations and hysteresis.

As � ! 0, f(x; t; �) approaches (6.4), which is a 2�-periodic function of t. The

corresponding frequency is l = 1. Figure 6.1 shows the contour plot of the neutral

stability curve Re �(�; k; 1) = 0 in (6.31) for frequency l = 1 in the absence of

di¤usion, Dx = D� = 0. The real part of the eigenvalue (6.31), Re �(�; k; 1), is

positive at the middle region enclosing k = 0 in Fig. 6.1 and its sign changes each

time a line of the neutral stability curve is crossed. Thus, for unit frequency and

jkj � 1, we expect to see patterns in x and t provided there is no di¤usion. For any

value of the refractory period �, the constant solution is unstable for waves traveling

to the left (k = �1) and also for waves traveling to the right (k = 1). Let us assume

that the initial condition is a periodic pattern of wave number k > 0. Increasing the

wave number k or adding di¤usion (which may be the result of unavoidable numerical

errors) stabilize the constant solution and cause the patterns to disappear. For a

�xed value of the refractory period �, the neutral stability curve of Fig. 6.1 yields the

critical wave number below which patterns with that wave number appear. Similarly,

increasing the refractory period from � = 0 at a �xed wave number 1 < k < 3 should

produce patterns with wave number k once � surpasses the critical value given by the
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neutral stability curve.

For other values of the frequency, the neutral stability curve qualitatively changes.

For instance, let us consider wave trains traveling to the right, so that k = �l, L = l,

K = 0, as in [22]. (6.31) becomes

Re �= �(Dx + 2D�)l2 � N̂ 
0

 
N̂

2

!�
sin[(�+ �)l] sin[(� � �)l]� sin2(�l)

	
+
lD�
�
sin(2�l)

= �Dxl2 �
lD�
�
[2�l � sin(2�l)] + N̂ 
0

 
N̂

2

!
[2 sin2(�l)� sin2(�l)]; (6.33)

Im �=2l(� � �)


 
N̂

2

!
+ N̂
0

 
N̂

2

!�
cos[(� + �)l] sin[(� � �)l]� 1

2
sin(2�l)

� sin2(�l)

�l

�
+
2lD�
�

sin2(�l) = 2l(� � �) 


 
N̂

2

!
+
N̂

2

0

 
N̂

2

!
[sin(2�l)

� 2 sin2(�l)

�l
� 2 sin(2�l)

�
+
2lD�
�

sin2(�l): (6.34)

In absence of di¤usion, Dx = D� = 0, (6.33) shows that Re � = 0 for l = lc(�)

such that 2 sin2(�l) = sin2(�l). This lc(�) provides the wavelength of the observed

patterns. The contour plot of Re � = 0 in Fig. 6.2 shows that the function lc(�)

is multivalued and that its leftmost branch (corresponding to the lowest values of

l > 0) decreases from � = �=
p
2 at l = 0 to 0 at l = 1. For this parameter range,

the constant solution is linearly stable if l < lc(�) and unstable for l > lc(�) (but

smaller than values at the next branch of lc(�)). For su¢ ciently small l, � smaller

(larger) than a critical value corresponds to stable (unstable) constant solution. As
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equation (6.21) derived in the weak signaling limit. To visualize the results, we obtain

the total density, N+(x; t) + N�(x; t), and the RPD, nRPD(x; t), from the numerical

solution.

We construct the numerical solution using uniform grids for both the spatial vari-

able x and the phase variable � extended over their whole domains and assigning an

approximate value of the solution on every point of the two-dimensional grid at every

time step. In all our calculations in this chapter we use N = 100 subintervals in both

space and phase and set L = �, r = 4. Then we solve the noiseless nondimensional

equations, (3.12) (with Dx = D� = 0), using as basic scheme an upwind �nite dif-

ference scheme in conservation form for the spatial terms (space and phase) and the

Euler explicit algorithm to evolve in time. We have formulated a high order accurate

version in space and time based on the �fth-order weighted essentially nonoscilla-

tory reconstruction procedure (WENO5) for the spatial variables and a third-order

Runge-Kutta method to evolve in time.

The computation of the integral form of the �uxes for the internal clock variable

is performed through the trapezoidal rule of numerical integration extended over the

whole domain of the phase variable, using the approximated values of the solution at

the grid points. All these methods are explained in Chapters 4 and 5.

If � = 0 the hyperbolic system (3.1)-(3.6) becomes a system of linear wave equa-

tions and the numerical solution can be approximated using standard upwind schemes

of any order of accuracy in space and time. When nonlinearity is present, � > 0, the
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solution might present wave steepening but the non-locality of the �ux in Eq. (3.3)

introduces an analytic dissipation mechanism. Then even for zero-di¤usion, the so-

lution is well de�ned and plain upwind schemes converge stably to it. The jump

conditions (6.7)-(6.10) may enforce continuity at the boundaries � = ��, 0, �, ���,

but wave steepening can be generated in the spatial direction of the solution for short

periods of time. On the other hand, we do not have numerical evidence of shock

wave formation. The dissipation mechanism introduced by the non-local �uxes might

prevent the formation of shock waves. This issue will be examined in the near future.

Igoshin et al [21] use a heuristic argument to suggest that kc = 1 and estimate

� = 3, � = �=5 from their measurements. The values of � determine where the solution

is closed to the weak signaling limit: � = 0:1 corresponds to the weak signaling limit

and larger values, such as � = 3 [21], or � = 10, go beyond the Fokker-Planck type

description of Section 6.3. To check the stability results of that section, we �rst solve

the nondimensional equation (3.12) with the following initial condition that is periodic

in x and �: n(x; �; t = 0) = 1+0:1 sin(kx) sin(�) on the interval [��; �]� [��; �]. For

a �rst numerical simulation, we consider the case of � = 0:1 and a �xed � = �=2. In

Figure 6.3, we show the time-space surface plots of the total density with k = 1, k = 4,

and k = 6 from left to right. As expected from the neutral stability curve of Fig.

6.1, the simulations of Fig. 6.3 show that periodic patterns with angular frequency

l = 1 are found for k = 1, whereas the uniform stationary solution is linearly stable

if k = 4. Fig. 6.3(b) shows a transient stage towards this solution. At k = 6, the

uniform stationary solution is unstable to periodic patterns. However, simulations
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Fig 6.3: Contour plot of the total density N+(x; t) + N�(x; t) for � = �=2; � = 0:1

and wavenumber: (a) k = 1, (b) k = 4, (c) k = 6.
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show an even faster transient to the uniform stationary solution. According to (6.31),

noise has a strongly stabilizing e¤ect of this solution at high wavenumber so that

numerical noise might have obliterated the pattern solution at k = 6.

The RPD exhibits the same behavior as the total density and its contour plot

(not shown) is quite similar to it. In Figure 6.4, we depict the RPD at x = 0

for the same values of the parameters. For unit wavenumber, periodic patterns are

stable. The slight decrease of the maxima of the RPD observed in Fig. 6.4(a) is

due to unavoidable dissipation due to numerical errors. For k = 4, the uniform

stationary solution is stable according to the neutral stability curve of Fig. 6.1. Fig.

6.4(b) shows a pronounced evolution towards a constant. However, as we are not

far from the bifurcation point (critical wavenumbers bounding the stability region

for the uniform stationary solution are 3 and 5), the evolution of the RPD towards

a constant value is slow. For k = 6, neutral stability predicts periodic patterns.

However at such large wavenumber, the dissipation due to numerical noise is so large

that the pattern disappears and the uniform stationary solution becomes stable, as

shown in Fig. 6.4(c).

Other patterns appear for di¤erent initial conditions. For example, for an ini-

tial condition with constant density for all x except for two bumps near x = ��,

n(x; �; 0) = 1:5 + [H(x� � + a)�H(x� �)] + [H(x+ �)�H(x+ � � a)], a = �=10

[H(x) = 1 for x > 0, and H(x) = 0 otherwise], we obtain the standing wave patterns

shown in Fig. 6.5. Reversals get con�ned to regions near x = �� as the nonlinearity
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(c) k = 6

Fig 6.4: Plots of the RPD, nRPD(x = 0; t), vs. time for � = �=2, � = 0:1 and

wavenumber: (a) k = 1 (stable periodic pattern), (b) k = 4 (transient to constant

density), (c) k = 6 (faster transient to constant density).
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Fig 6.5: Contour plots of the RPD, nRPD(x; t), for � = �=5, initial condition

n(x; �; 0) = 1:5 +[H(x� � + a)�H(x� �)]+ [H(x+ �)�H(x+ � � a)], a = �=10,

and: (a) � = 0, (b) � = 0:1, (c) � = 3, (d) � = 12. As � (nonlinearity) increases, the

reversals occur closer to ��.
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strength � increases. For larger values of �, the weak signaling theory of Sections 6.2

and 6.3 does not apply.

If the two bumps are closer, then the standing waves generate local maxima as

in Fig. 6.6(a) and (b), for � = 0 and 1.2, respectively. As � (nonlinearity) increases,

the reversals occur in smaller regions about x = ��=2, as shown in Figs. 6.6(c) and

(d). Clearly, for bumps that are close enough, the waves they issue reinforce the

density at the points where they cross. In these points, fruiting bodies may form [21].

It is interesting to observe that breaking the symmetry in the initial condition may

weaken the resulting patterns. For example replacing the initial condition in Fig. 6.6

by n(x; �; 0) = 1:5+ [H(x� �=2+ a)�H(x� �=2)] + [H(x+ �=2)�H(x+ �=2� a)]

(closer and narrower bumps, with centers at �=2 � a=2 and ��=2 + a=2) results in

patterns with two close maxima appearing near t = n� (n = 1; 2; : : :) that undergo

noticeable dissipation.

For analyzing a nonsymmetrical case, we take the initial condition n(x; �; 0) =

1:5 + 0:1[H(�=2� x)�H(�=2 + �=5� x)] (see Fig. 6.7) with one bump with center

at �=2 + �=10. We can observe that, as !1 increases, the resulting patterns con�ne

at �=2 + �=10, where the reversals occur.

For an initial condition n(x; �; 0) = 1:5 + 0:1 sin[k(x� �)], � = �=5, the standing

wave patterns shown in Fig. 6.8(a) become the traveling wave time periodic patterns

of Figs. 6.8(b) and 6.8(c).
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Fig 6.6: Contour plots of the RPD, nRPD(x; t), for � = �=5, initial condition

n(x; �; 0) = 10 + 0:1[H(a � jx� �=2j) + H(a � jx+ �=2j)], a = �=10, and: (a)

� = 0, (b) � = 1:2, (c) � = 3, (d) � = 12. As � (nonlinearity) increases, the reversals

occur in smaller regions about x = ��=2.
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Fig 6.7: Contour plots of the RPD, nRPD(x; t), for � = �=5, initial condition

n(x; �; 0) = 1:5 + 0:1[H(�=2 � x) �H(�=2 + �=5 � x)], and: (a) � = 0, (b) � = 1:2,

(c) � = 3, (d) � = 12.
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Fig 6.8: Contour plots of the RPD, nRPD(x; t), for � = �=5, initial condition

n(x; �; 0) = 1:5+ 0:1 sin[k(x��)], � = 1:2, and: (a) k = 1, (b) k = 2, (c) k = 3. As k

(wavenumber) increases, standing-wave time-periodic patterns become traveling-wave

time-periodic patterns.
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Relation to patterns observed in experiments The Igoshin et al model we have

solved numerically is 1D whereas observed patterns are 2D. This said, the complete

patterns in panels (a) and (b) of Figures 6.5 and 6.6 are similar to those in Figure

3 of Welch and Kaiser�s experiments [68], whereas loss of coherence (panels (c) and

(d) of our Figures 6.5 and 6.6) is observed in Figures 3(a) and 4 of the same work.

Experiments also show more complex 2D patterns as in Figure 4 of [4] that are

reminiscent of our patterns in Fig. 6.8 although the 2D agent-based models the

authors of [4] introduce to explain the experiments are more sophisticated than the

1D model we study in this paper.

6.5 Pattern Decoherence and Relation to the Ku-

ramoto Model

The noiseless version of Igoshin et al�s model (3.1)-(3.6) describes the density of

myxobacteria with an internal clock in the limit as the number of bacteria N ! 1.

The bacteria themselves satisfy the following equations

_xj = v sign�j; (6.35)

_�j = ! + �!
(Nsign(��j)(xj; t))[�[�;�](�j) + �[��+�;0](�j)]; j = 1; : : : ;N ; (6.36)

N+(x; t) =
�s
N

NX
m=1

�(x� xm(t))H(�m(t)); N� =
�s
N

NX
m=1

�(x� xm(t))H(��m):

(6.37)
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Here xj(t) and �j(t) move on circles and can be considered to take values on the

intervals [�L;L] and [��; �], respectively, �s is a scaling parameter, and the delta

functions are regularized in an appropriate way. In the limit as we take away this

regularization andN !1, the densities (6.37) approach their continuum limits (3.5).

A typical bacterium xj(t)moves counterclockwise on a circle of length 2L if its internal

phase �j(t) 2 [��; �] is positive, and clockwise otherwise. Its internal phase can be

accelerated due to a mean-�eld interaction with opposite moving bacteria that collide

with it. Appropriate initial conditions produce periodic (rhythmic) spatiotemporal

patterns in the absence of interaction (� = 0). Interaction tends to con�ne rhythmicity

to parts of the circle (�L;L), as shown in Figures 6.5 and 6.8, or to destroy it. Loss

of rhythmicity may appear as a decoherence phase transition at critical values of the

refractory period � or the wavenumber of the initial condition, as shown in Figs. 6.3

and 6.4. The maxima of the time derivative of the reversal point density act as the

order parameter for this phase transition: it is zero for the constant density solution

and nonzero for the time-periodic patterns, see Fig. 6.4 (c).

The behavior of this model can be compared with the well-known Kuramoto model

of globally coupled phase oscillators [1, 35]. In the Kuramoto model, the phases of

free oscillators increase following their natural frequencies that are random (unsyn-

chronized or incoherent state). Mean-�eld coupling between the oscillators succeed

synchronizing them above a certain coupling strength and, typically, some oscillators

are synchronized while others continue rotating about the unit circle (partial synchro-

nization). In the Igoshin et al�s model, a pattern induced by an appropriate initial
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condition persists in the absence of coupling. Turning on the coupling may con�ne

the patterns to a part of the space interval [�L;L] (partial decoherence) or destroy

them completely (complete decoherence). Adding white noise sources, the Kuramoto

model is described by a nonlinear Fokker-Planck equation whereas the Igoshin et al�s

model contain extra mechanisms of dissipation, as it is apparent from the nonlinear

Fokker-Planck equation with an additional (collision) source term (6.21) obtained in

the weak signaling limit.

6.6 Conclusions

We have revisited the continuum model of rippling in myxobacteria proposed by

Igoshin et al [21, 22]. In the absence of noise, the model consists of two coupled hy-

perbolic equations (describing the densities of left and right moving bacteria) coupled

nonlinearly through a �ux in an angular variable that represents the bacteria internal

clock. This �ux is a nonlinear function of the overall density of left or right moving

bacteria. Depending on the values of the parameters, the model displays a variety of

space and time periodic patterns that have been scarcely analyzed.

In the limit of weak nonlinearity (weak signaling), we have found a Fokker-Planck

type equation for the reversal-point density that contains a source term, absent in

Igoshin et al�s analysis [22]. The reversal-point density can be used to reconstruct

the densities of left and right moving bacteria. We analyze the linear stability of a
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constant-density solution and �nd that its neutral stability curves provide selection

rules giving the wavenumber of the patterns issuing from the constant-density solu-

tion. These selection rules issue directly from the source term in the Fokker-Planck

equation. We have checked these results by direct numerical solution of the original

hyperbolic equations of the model. For small nonlinearities, we have checked the

wavenumber selection rule. Strengthening the nonlinearity tends to con�ne and de-

stroy the patterns through a nonequilibrium phase transition. For large nonlinearity,

we have found a variety of patterns including time-periodic standing and traveling

waves that attest the richness of Igoshin et al�s model.
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Chapter 7. Conclusions

We have revisited the continuum model of rippling in myxobacteria proposed by

Igoshin et al [21], [22].

In the absence of noise, the model consists of two coupled hyperbolic equations (de-

scribing the densities of left and right moving bacteria) coupled nonlinearly through

a �ux in an angular variable that represents the bacteria internal clock. The �ux is

a nonlinear function of the overall density of left or right moving bacteria. Depend-

ing on the values of the parameters, the model displays a variety of space and time

periodic patterns that have been analyzed.

We have solved numerically the model without di¤usion operator, and the role of

the nonlocal advection operator as generator of dissipation was shown by the analysis

of the weakly nonlinear limit and by solving the equation using a high order accurate

numerical schemes. We have used two hyperbolic reconstructions (piecewise hyper-

bolic method and power piecewise hyperbolic method) and another two parabolic

reconstructions (weighted essentially nonoscillatory method and weighted power es-
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sentially nonoscillatory method) in order to reproduce the pattern behavior from

myxobacteria rippling. With these high-precision numerical tools we can maintain

the amplitude of the traveling myxobacteria waves, and without adding analytical

dissipation, we were capable to reproduce the pattern of myxobacteria due to the

small numerical dissipation. Using these numerical approximations for the case when

the signaling is strong, we were able to analyze the parameters of the model to locate

Hopf bifurcations.

In the limit of weak signaling, we have found a Fokker-Planck type equation

for the reversal-point density that contains a source term, absent in Igoshin et al�s

analysis [22]. The reversal point density can be used to reconstruct the densities of

left and right moving bacteria. We analyzed the linear stability of a constant-density

solution and found that its neutral stability curves provide selection rules giving

the wavenumber of the patterns issuing from the constant-density solution. These

selection rules issue directly from the source term in the Fokker-Planck equation.

We have checked these results by direct numerical solution of the original hyperbolic

equations of the model. The behavior of this model can be compared with the well-

known Kuramoto model of globally coupled phase oscillators, but this prospective

research is expected to be developed in the near future.
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