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Resumen

Con la creciente relevancia de la visualización como mecanismo para el análisis y 

exploración de grandes y complejos volúmenes de datos, la investigación en 

visualización ha puesto de manifiesto la necesidad de reutilizar conocimiento previo de 

diseño en lugar de comenzar desde cero.  Esta necesidad es especialmente importante 

en el diseño de sistemas de control, en los cuales las visualizaciones de alarmas se han 

convertido en artefactos clave para los operadores humanos a la hora de adquirir una 

consciencia del estado del proceso controlado. En este contexto, los diseñadores de 

visualizaciones de alarmas tienen que hacer frente a dos desafíos de diseño recurrentes 

y fundamentales relacionados con cuestiones de escalabilidad visual y el proceso de dar 

sentido a la información. En particular, enfrentarse a tales desafíos por parte de estos 

diseñadores requiere poseer conocimiento de diseño relacionado con diversas áreas de 

conocimiento tales como la Gestión de Alarmas, Factores Humanos y el Diseño de 

Visualización. Sin embargo, es difícil que un diseñador sea un experto en cada una de 

las áreas de conocimiento involucradas en un problema de diseño, lo cuál requiere años 

de experiencia. Ante esta situación, un enfoque adecuado a seguir es la reutilización de 

conocimiento de diseño previo, lo cual posibilita la amplificación de las capacidades de 

los diseñadores a la hora de generar diseños. No obstante, los actuales mecanismos 

existentes para la reutilización de conocimiento previo de diseño de visualizaciones de 

alarmas son demasiado abstractos, no son lo suficientemente exhaustivos en la 

cobertura de factores claves para el diseño de visualizaciones de alarmas, ni se 

encuentran adecuadamente acoplados, lo cual dificulta su utilización por parte de 

diseñadores no experimentados.  



 

En este trabajo de investigación, tales limitaciones han sido cubiertas mediante el 

desarrollo de un lenguaje de patrones de diseño para visualizaciones de alarmas. Un 

lenguaje de patrones de diseño puede caracterizarse como un enfoque adecuado de 

reutilización de conocimiento de diseño previo que facilita su diseminación a diseñadores 

no experimentados. Derivado de una revisión de modelos descriptivos y reglas de diseño 

para la Gestión de Alarmas, Factores Humanos y el Diseño de Visualización, así como 

de la realización de dos casos de estudio enmarcados en el contexto de dos proyectos 

de investigación, Energos  y Emercien, el presente trabajo de investigación describe el 

espacio de diseño de visualizaciones de alarmas. A continuación, guíado por dicha 

caracterización del espacio de diseño y como resultado de una revisión extensiva de 

recursos relevantes pertenecientes a las anteriormente mencionadas áreas de 

conocimiento, este trabajo de investigación sistematiza el conocimiento de diseño 

reutilizable para el diseño de visualizaciones de alarmas a través de la definición del 

lenguaje de patrones de diseño.  

La estructura del lenguaje de patrones de diseño ha sido analizada de manera analítica y 

sus elementos constitutivos, los patrones de diseño, han sido evaluados por diseñadores 

expertos. Asimismo, este lenguaje de patrones se ha aplicado en diferentes contextos, lo 

cuál demuestra su factibilidad de uso para crear visualizaciones de alarmas en diversos 

dominios. Finalmente, este lenguaje de patrones ha sido utilizado por diseñadores no 

experimentados. Su utilización por parte de los mismos demuestra la utilidad del lenguaje 

de patrones para proveer un acceso sencillo al cuerpo de conocimiento de diseño 

existente sobre visualizaciones de alarmas y abre futuras líneas de investigación de 

interés. 



 

 

Abstract

With the growing emphasis on visualization as a mechanism for analysing and exploring 

large and complex data sets, visualization research has recognized the need of reusing 

prior design knowledge instead of starting from scratch. This fact is especially relevant in 

designing control systems in which alarm visualizations are key artefacts for human 

operators to maintain an awareness of the state of the process under control. In this 

context, designers are required to face two fundamental recurrent design challenges 

related to visual scalability and sense making issues, which involve having design 

knowledge from different knowledge areas including Alarm Management, Human Factors, 

and Visualization Design. Nevertheless, no single designer can be an expert in every 

relevant knowledge area, and becoming proficient may require years of experience. One 

relevant approach to assist in such multi-dimensional design process is to reuse prior 

design knowledge, which supports and amplifies designers’ abilities of design generation. 

However, existing design knowledge reuse approaches for alarm visualization design can 

be too abstract, not comprehensive enough, and loosely coupled, being difficult to be 

applied by non-experienced designers. In this research work, such limitations are 

addressed by developing a design pattern language as a fitting design knowledge reuse 

approach to disseminate reusable alarm visualization design knowledge. Derived from 

both a review of descriptive models and design rules for Alarm Management, Human 

Factors, and Visualization Design and two case studies framed within the context of two 

different projects, Energos and Emercien, this research work describes the design space 

for alarm visualization design. Then, taking such characterization of the design space into 

account and after an extensive review of relevant sources in the aforementioned 

knowledge areas, this research work systematizes reusable design knowledge for alarm 

visualization design through the definition of the design pattern language.  



 

The structure and elements of this design pattern language have been, respectively, 

analytically analized and evaluated by expert designers. This design pattern language 

has been also applied in different contexts. It demonstrates the feasibility of this design 

pattern language to be used across application domains. Finally, it has been sucessfully 

used by non-experienced designers. It demonstrates the utility of the design pattern 

language to provide non-experienced designers with an easy access to the existing body 

of knowledge of recognized alarm visualization design solutions for operating control 

systems and open up interesting lines for future research. 
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Chapter 1. Introduction 

There is not such thing as information overload. There is only a bad design. 

- Edward Tufte, American statistician 

A control system is defined as “a device, or set of devices, that manages, commands, 

directs or regulates the behaviour of other device(s) or system(s)” [119]. Control systems 

have been used over time to solve problems of practical importance with enormous 

impact on society. As a consequence, control systems have proliferated enormously. 

They can be found within a range of industrial domains, including electric power grids, 

transportation networks, or water management systems. Lately, the intensive use of 

information technologies has resulted in a proliferation of these control systems in other 

domains such as emergency response [82][81]; in particular, in case of natural disasters 

including earthquakes or floods. In current control systems, equipment is separated in 

functional areas and is installed in different work areas of a controlled process. The 

human operator monitors and manipulates the set points of the process parameter from a 

central control room. In particular, he/she visualizes the process information transmitted 

from the process area and displayed on the computer terminal through information 

displays. Computer-based information displays provide the capability to human operators 

to process data of controlled processes through the use of representation methods, such 

as graphics and integrated displays. With the help of computer-based information 

displays, human operators decide on the actions required for controlling the process.  

The design of computer-based information displays determines what should be 

displayed, how it should be displayed, and how to interact with these displays. The way 

the information is displayed may result from the consideration of both the physical 

surroundings in which the operator is required to work, a control room, and the nature of 

human operator tasks. Owing to the high complexity of current control systems, where 

many parameters on many different locations need to be supervised and controlled, the 

execution of human operator tasks can be characterized under the “operation-by 

exception” approach. In keeping with the research literature on process control, human 
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operators can perform their tasks according to either the management-by-awareness 

approach [75] or the operation-by exception approach [31][149]. The management-by-

awareness approach characterizes the human operators’ activity as a continuous 

monitoring of the system to try to anticipate and avoid problems’ occurrence. On the 

contrary, the operator-by-exception approach describes the human operators’ activity as 

triggered into action by an upcoming cue or alarm [31], instead of focusing on monitoring 

any feature or parameter of the system; this approach has been more specifically 

conceptualized under the notion of “alarm-initiated activities” [125]. This notion 

characterizes human operator tasks as focused on the use of alarms. Aiming at 

supporting human operators to maintain an awareness of the state of the controlled 

process, alarm visualizations have become key computer-based information displays for 

operating control systems [87][112]. Alarm visualization refers to as “the visual method(s) 

by which alarm coding and messages are presented to control room operators” [64]. The 

design of alarm visualizations is not a trivial process.  

Designing alarm visualizations for operating control systems requires designers to 

face multiple times two fundamental design challenges: (1) how to display large volumes 

of alarms with multiple attributes such as typology, priority or location, and (2) how to 

assist human operators in the process of making sense of these large volumes of alarm 

information in order to get to know the state of the process being controlled. These design 

challenges are related, respectively, to the concepts of visual scalability [41] and sense 

making [70], which involve understanding different factors affecting them related to 

specialized knowledge areas such as Alarm Management, Human Factors, and 

Visualization Design. Nevertheless, no single designer can be an expert in every relevant 

knowledge area, and becoming proficient may require years of experience [51]. Moreover, 

in today’s global and competitive business environment, designers are under increasing 

pressure to perform better in terms of low-time, high-quality and high value output that 

can provide competitive advantage for the organisation [84]. One relevant approach to 

assist in such design process is to reuse prior design knowledge, which supports and 

amplifies designers’ abilities of design generation. Prior design knowledge is defined as 

“the conceptual ideas, lessons, and representations captured in the design artifacts 

created or collected when solving a design problem” [84]. This definition characterizes the 

design process as an activity that generates knowledge, and implicitly this knowledge can 

be reused. In alarm visualization design, assisting designers in the process of reusing 
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prior design knowledge versus starting from scratch can help to improve both the 

efficiency and effectiveness of the design process.  

1.1 Research Problem 
Alarm visualization design can be defined as “the process of creating the visual 

representations by which alarm coding and messages are presented to control room 

operators”. In order to support the reuse of prior design knowledge, there exists different 

design rules, including design principles, guidelines, standards, and visual languages 

from different knowledge areas including Alarm Management, Human Factors, and 

Visualization Design, which document the expectations and best practices for effective 

alarm visualization design.  

In particular, within the Alarm Management area, several industrial manufacturers, 

and vendors from worldwide have defined a number of guidelines [16] and standards 

[40][64] to facilitate the design of alarm visualizations based on several studies conducted 

with operators. What these design rules highly recommend to designers is the 

achievement of a balance between the need for content and simplicity of presentation. 

However, they describe just the minimum acceptable for achieving this balance. They 

focus on what to do rather than how to do it. It is designers’ task therefore to establish 

how these rules are applied to the design of alarm visualizations. Moreover, it is also 

designers’ task to ascertain how these rules should be combined in order to generate a 

complete alarm visualization design. 

Similarly, within the Human Factors area, a set of design principles for designing 

alarm visualizations for Situation Awareness (SA) [44] has been defined. SA can be 

characterized as the most relevant goal for human operators in handling alarm 

information [44]. It refers to knowing what is happening around the operation and what the 

information means at this moment and in the future. According to that, these design 

principles are based on the Endsley’s conceptualization of SA as a knowledge state. They 

provide a guidance to make a design of alarm visualizations that makes it possible to 

achieve a knowledge state. However, they leave aside the support to the process of 

achieving this knowledge state, which have been conceptualized as the sense-making 

process. This process can be characterized as a key design factor while designing control 

systems across application domains [55]. Moreover, as in the case of the design rules 
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from the Alarm Management area, these design principles are too abstract and their 

specific implementation will depend on the circumstances and the designer’s creativity.  

Within the Visualization area, diverse design principles [94][135] and visual 

languages [83][144] from diverse fields such as cognitive science and cartography have 

been defined. These design rules, respectively, allow designers to understand how 

visualization means enable human cognition and to identify the basic units of a 

visualization. Nevertheless, most of them do not take into account the support of 

visualizations to specific data types, volumes of information, display sizes, and tasks 

performed by the user. They assume an absolute validity across design situations while 

usually they lack describing them. A potential result of that may be bad design choices to 

the data types and tasks at hand or misinterpretations by designers. 

In summary, existing design rules for alarm visualization design show some 

limitations to be applied by non-experienced designers, who lack professional or 

specialized knowledge in the domain. In particular, there are three main problems: (1) 

these design rules are not comprehensive enough: they provide a partial consideration 

of the required design factors for alarm visualization design; (2) these design rules are 

too abstract: they provide a too high-level description of the important features of alarm 

visualizations, but they do not express how to achieve them; (3) these design rules are 
loosely coupled: rhey do not provide any description of how these design rules should 

be combined together in order to generate alarm visualizations. 

1.2 Research Aim & Objectives 
In order to address the research problem as stated above, this research work is aimed at 
assisting non-experienced designers in the process of reusing previous design 
knowledge for designing alarm visualizations for operating control systems. The 

approach of this work then is to assist such reuse process by addressing three main 

objectives (O): 

• O1. Capturing reusable design knowledge from different knowledge areas related 

to recurrent design challenges for alarm visualization design. 

• O2. Providing multiple ways to organize such reusable design knowledge in order 

to assist designers along different stages of the design process. 
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• O3. Combining such reusable design knowledge in a cohesive way to assist non-

experienced designers. 

These objectives are taken as the input for the design and development of a 

suitable solution. In particular, each objective represents a specific aspect that the 

proposed solution satisfies. 

1.3 Research Questions 
According to the research aim and objectives of this research work, the following research 

questions (RQ) have been formulated: 

• RQ 1. What is the design space for alarm visualization design? This research 

question addresses the characterization of recurrent design challenges for 

alarm visualization design in terms of factors affecting them and knowledge 

areas involved. 

• RQ 2. How to support non-experienced designers in the process of reuse 

previous design knowledge for designing alarm visualizations? This research 

question addresses not only the selection of an appropriate design knowledge 

reuse approach for alarm visualization design but also the collection, the 

organization in different forms and the combination of reusable design 

knowledge for alarm visualization design in a more cohesive way in order to 

assist non-experienced designers. 

1.4 Research Methodology 
The visualization design discipline, a sub-discipline of Human-Computer Interaction (HCI), 

has a strong tradition of design-oriented research, where the design guidance for 

visualization environments, the presentation of a designed system to illustrate some new 

technique or visualization capability, or the evaluation of such visualization capability are 

considered a meaningful and important scholarly contribution [100]. Following this 

tradition, this research work particularly contributes to the design guidance of alarm 

visualizations for operating control systems. To achieve that, it applies the research 

methodology proposed by Offerman et al. [96] for conducting design science research in 

the area of Information Systems (IS). This methodology is an integration of previous 

works in this area such as the framework defined by Hevner et al. [59] and the process 

model defined by Peffers et al. [97]. The result of this integration is a process model 
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In the context of this work, this stage involved both a literature review and two 

case studies. The performance of this review was based on the systematic literature 

review process proposed by Kitchenham [69] in the area of software engineering. This 

review was conducted to characterize both key factors affecting design challenges in 

alarm visualization design and existing design knowledge reuse approaches that guide 

the design of alarm visualizations. The two case studies framed within the context of two 

projects, Energos and Emercien, allowed illustrating how such design factors 

operationalizes in practice. The purpose of Energos was to develop information and 

communication technologies that support new operational and organizational challenges 

caused by the Smart Grid.  The goal of Emercien was to deploy sociotechnical platforms 

that promote effective and reliable collaboration in emergency management among 

different stakeholders, including first responders, decision and policy makers, volunteers 

and citizens. Once a relevant problem is identified, a pre-evaluation on the relevance has 

to be conducted at this phase. This pre-evaluation firstly includes creating a general 

research hypothesis, postulating a link between the problem space and the solution 

space. Second, this hypothesis should be evaluated by asking several practitioners if they 

agree with the hypothesis. The general research hypothesis formed during this phase 

was: “If appropriate reusable items of design knowledge for alarm visualization design are 

used, it is possible to compensate the lack of design experience”. In this work, a pre-

evaluation wasn’t necessary due to the numerous examples of design knowledge reuse 

across different application domains.   

Phase 2. Solution Design. This phase involves the proposal of a solution to be 

evaluated. It is divided into two steps, including supporting literature research and artifact 

design. To propose a solution, existing solutions and state-of-the-art have to be taken into 

account to ensure research rigour [59].  

In this work, literature research involved a review of the existing types of 

approaches for reusing design knowledge. This review resulted on the selection of a 

design pattern language as a fitting approach for addressing and representing reusable 

alarm visualization design knowledge. Existing pattern languages for other purposes such 

as the design of visualization-based computational tools for complex cognitive activities 

[115], object-oriented software [51], user interfaces [136], interaction design [137], 

security systems [56], and hypermedia systems [88] were also taken into account. In 

order to define the design pattern language, design decisions were based on both an 
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extensive literature review from different areas, including Alarm Management, Human 

Factors, and Visualization Design and a formative evaluation with expert designers. The 

purpose of this evaluation was twofold. On the one hand, identifying misunderstandings, 

or ambiguous terminology in order to refine the design pattern language. On the other 

hand, validating the descriptions provided by the design patterns according to the 

agreement of expert designers over its quality. 

Stage 3. Evaluation. This phase should include both the demonstration of the use 

of the created artifacts to solve the research problem and the observation and 

measurement of how well they support the solution to this problem. With these purposes, 

this phase is divided into the refinement of the prior research hypothesis and conducting 

the evaluation of the created artifacts.  

In accordance to Venable et al. [138], created artifacts in the field of design 

science research can be evaluated in terms of two specific dimensions such as the quality 

and utility. Accordingly, the prior hypothesis was split into smaller hypotheses that were 

simpler to evaluate. The following hypotheses were developed: (1) “The design pattern 

language is well defined”; and (2) “This design pattern language is useful for non-

experienced designers”. To support the first hypothesis, diverse methods were utilized:  

• (1.a) an expert-based evaluation. This evaluation sought to obtain feedback from 

expert designers regarding both the terminology and quality of the design patterns. 

• (1.b) an analytical evaluation. This evaluation performed a prospective review of 

the context of the design pattern language to determine its quality.  

To support the second hypothesis, two different evaluation methods were used: 

•  (2.a) a descriptive evaluation to validate the capability of the design pattern 

language of being used to create alarm visualizations in two different application 

domains. 

• (2.b) an experimental evaluation with two iterations in order to evaluate the 

usability and efficacy of the design pattern language to allow non-experienced 

designers to reuse previous design knowledge. 
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design space for alarm visualization design. Then, it characterizes the limitations of 

existing design knowledge reuse approaches to assist non-experienced designers when 

designing alarm visualizations.  

Chapter 4. A Design Pattern Language for Alarm Visualization Design. This 

chapter describes the proposed solution to the problem identified. The proposed solution 

is a design pattern language that captures, organizes, and combines reusable design 

knowledge for designing alarm visualizations in a more cohesive way to assist non-

experienced designers.  

Chapter 5. Evaluation. This chapter describes the evaluation process of the 

proposed solution. This evaluation assesses the quality and utility of the proposed design 

pattern language. 

Chapter 6. Conclusions. This chapter presents the conclusions drawn from this 

work and discusses other application areas of the propose design pattern language. It 

also provides an outlook on future research and desribes some limitations of this research 

work.  



 

 29 

Chapter 2. Background Research 

Our Age of Anxiety is, in great part, the result of trying to do today’s jobs with 

yesterday tools 

- Marshall McLuhan, Canadian Philosopher 

Adapting the previous definition of alarm visualization, in this research work alarm 

visualization design is defined as: 

Definit ion 1. Alarm visual izat ion design.  “The process of creating the visual 

representations by which alarm coding and messages are presented to control room 

operators”.  

This design process requires designers to face multiple times two fundamental 

design challenges, including how to display large volumes of alarms with multiple 

attributes such as typology, priority or location and how to assist human operators in the 

process of making sense of these large volumes of alarm information in order to get to 

know the state of the process being controlled. These two design challenges involves 

understanding different factors affecting them related to specialized knowledge areas 

such as Alarm Management, Human Factors, and Visualization Design. However, no 

single designer can be an expert in every relevant area, and becoming proficient may 

require years of experience [51]. One relevant approach to assist designers in such 

design process is to reuse prior design knowledge instead of starting from scratch. 

This chapter firstly presents a review of diverse descriptive models within the 

areas of Alarm Management, Human Factors, and Visualization Design in order to 

provide descriptions of the factors to consider when designing visualizations. Likewise, it 

examines the state of the art of design material that supports designers in the design of 

alarm visualizations. Secondly, this chapter discusses the notion of design knowledge 
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reuse. A description of what is and why is needed in design is provided. It then leads to a 

discussion about its value within the context of visualization design.  

2.1 Alarm Management 
ANSI/ISA 8.2-2009 [64], one of the de facto standards for alarm management established 

by the International Society of Automation (ISA), defines an alarm as “an announcement 

to the operator initiated by a process variable passing a defined limit as it approaches an 

undesirable or unsafe value”. According to this definition, alarms are regarded as 

significant attractors of attention for human operators. Based on this idea, alarm 

management is primarily referred to as “the process of understanding, designing, 

implementing, and operating an effective alerting capability for human operators” [14]. In 

this way, the role of the human operator handling alarms may be firstly examined to 

determine how to design alarm visualizations. To this purpose, the next section reviews 

different models of human operators in response to alarms. Afterwards, a review of 

existing design rules in this context is provided. As a design rule is considered “a rule that 

a designer can follow to provide direction for the design process” [4]. 

2.1.1 Models of Alarm-Initiated Activities (AIA) 
The notion of alarm-initiated activities refers to as “the ensuing behaviours triggered by 

the presence of alarms” [125]. Based on this notion, a variety of descriptive models have 

been proposed. These models may be split into two types: those models that don’t 

distinguish operators’ activities among operation situations and those that do. 

Under the first distinction, most authors have agreed about characterizing alarm-

initiated activities as a process comprising three-level activity stages. For example, Lees’ 

model [79] comprises: (i) detection (detecting the fault); (ii) diagnosis (identifying the 

cause of the fault); and (iii) correction (dealing with the fault). Similarly, Rouse’s model 

[108] establishes: (i) detection (the process of deciding that an event has occurred); (ii) 

diagnosis (the process of identifying the cause of an event); and (iii) compensation (the 

process of sustaining system operation). These models thus emphasize the role of the 

human operator as a problem solver when faults arise. However, they describe such role 

as static across different operation situations, without considering the diverse range of 

controlled process states and different operation goals. It means that these models 

conceive that human operators react in the same way and require the same pieces of 
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information across operation situations. Nevertheless, in real work settings, human 

operators are dependent on the information provided by the alarm visualization, which 

can vary in number and priority according to the status of the controlled process. Alarm 

information has different priorities according to the severity of consequences that could be 

prevented by taking corrective action. Moreover, there exist different operation goals 

according to such status. According to Mattiason in his study on alarm systems from the 

operator’s perspective [85], during normal operation the goal is to optimize, pushing 

towards constraints with a minimum of product quality giveaway. When a minor upset 

occurs, human operators’ job is to bring the process back to normal operation. During a 

major upset she/he is expected to bring the process to the nearest safe state, and if 

disaster threatens, shut it down, and try to limit the consequences. 

Under the second distinction, Stanton [125] has proposed the most complete and 

well-known descriptive model of alarm-initiated activities. In contrast to the previous 

models, this model distinguishes alarm-initiated activities between two operating 

situations: routine events involving alarms and critical events involving alarms. During 

critical events, even minor disturbances, the alarm systems will generate a huge, 

unmanageable amount of alarms [85]. For routine events, as shown in Fig. 2.1-1, this 

model is composed by a sequence of six generic activity stages: (i) observe (initial 

detection of abnormal conditions); (ii) accept (the acceptance of an alarm or receipt); (iii) 

analyse (the assessment of the alarm within the context of the task that is to be performed 

and the dynamics of the system); (iv) correct (to adjust so as to meet the required 

conditions of the system); (v) monitor (the assessment of the outcome of one’s actions); 

and (vi) reset (to restore to normal operating conditions). For critical events, this model 

adds one activity stage to this sequence; investigate, which is depicted as “seeking to 

discover the underlying cause of the alarm with the intention of dealing with the fault”. 

This model therefore not only establishes the distinction of alarm-initiated activities among 

operating situations but also emphasizes the need of an investigation process to diagnose 

the fault during critical events. During critical events, the cause of the failure can be not so 

clear. For this reason, it can be necessary to explore through different types and volumes 

of information in order to diagnose its cause. Moreover, human operators should be able 

to distinguish among several information sources such as direct telemetry from large-

scale, distributed control systems or environmental data covering factors such as weather 

status or lightning strikes. 



Chapter 2. Background Research 

 32 

 

Fig. 2.1-1 Model of alarm-initiated activities proposed by Stanton [125] 

From the point of view of alarm visualization design, this distinction of alarm-

initiated activities between operation situations involves the necessity of presenting the 

information in a manner that always aids to the human operator [125]. Firstly, it is required 

to design alarm visualizations that effectively make a distinction of volumes of alarms 

among operation situations, in terms of either the number or the dimension of alarm 

information. Secondly, it is needed to present the alarm information in a form that 

matches with different operation goals. 

2.1.2 Designing for Alarm-Initiated Activities (AIA) 
The critical nature of alarm visualizations is highlighted by the fact that a high proportion 

of incidents are caused by operators’ errors [55]. Several industrial manufacturers, and 

vendors from worldwide have defined a set of design guidelines and standards that 
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document what are considered the expectations and best practices for designing effective 

alarm visualizations. Similar understandings, philosophical underpinnings, and end effects 

drive these works.  

For the first type of design rule, the Abnormal Situation Management (ASM) 

Consortium defines a collection of guidelines for effective operator display design [16]. 

This consortium is a group of leading companies and universities involved with process 

industries that have jointly invested in research and development to create knowledge, 

tools and products designed to prevent, detect, and mitigate abnormal situations that 

affect process safety in operation environments. These guidelines are neither a standard 

nor a regulation. They just promote best practices that facilitate the design of alarm 

visualizations based on several studies conducted with operators. Similarly, EEMUA 191 

[40] can be characterized as a design guide. However, it has served as the de facto 

standard for designing alarm systems until 2009, with the appearance of the ANSI/ISA 

18.2-2009 [64]. It mainly raises a number of alternatives from which practitioners must 

select the most appropriate for their process. The Engineering Equipment and Materials 

Users’ Association (EEMUA), based in the United Kingdom, produce it. This association 

develops standards for organizations in the United Kingdom that operates process and 

power plants, utilities and other industrial facilities.  

For the second type of design rule, more recently, the International Society of 

Automation (ISA) has defined a comprehensive standard to improve safety, the ANSI/ISA 

18.2-2009 [64], built on the recommendations of EEMUA 19. The key difference with the 

previous works is that the ANSI/ISA 18.2-2009 is a standard, not a guideline or a 

recommended practice, and it was developed in accordance with stringent ANSI 

methodologies. As such, it is regarded as a recognized and generally accepted good 

engineering practice by regulatory agencies. However, it is in the process of being 

adopted as an international standard.  

As a result of the review of these design rules, it is possible to induce a list of key 

points in common for guiding the design of alarm visualizations. These key points are 

listed in what follows:  

• Human factors and limitations. The design of alarm visualizations should 

ensure that the alarm system remains usable in all process conditions, by 

ensuring that unacceptable demands are not placed on operators by 

exceeding their perceptual and cognitive capabilites.  
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• Multiple visual displays formats. To support the different functions of an 

alarm system, multiple visual display formats may be required. It refers to a 

combination of separate displays such as alarm tiles and integrated 

displays such as alarms integrated into process displays. 

• Display hierarchy. Alarm visualizations should provide different levels of 

details and be arranged to allow the operator to drill-down to increased 

levels. 

• Navigation. The navigation through these visualizations should facilitate 

quick, direct access to primary visualizations and minimal keystrokes to 

secondary and associated visualizations. 

• Window management. It is recommended to define a limit for the 

maximum number of simultaneous overlap windows.  

• Priority information. Alarm information should be presented in a priority 

layer where any changes are brought immediately to the operator’s 

attention.  

• Colour coding. Use a minimum of colour codes across display hierarchy 

levels. Consistent, distinguishable colour codes allow operators to learn 

the codes and the meaning behind them.  

o Embedded trends. It is recommended to display embedded trends in 

order to draw attention to abnormalities and deviations. Alarm 

visualizations should make a distinction between changing values that take 

exact readings and general alarm trends.   

In summary, what these rules highly recommend to designers is the achievement of a 

balance between the need for content and simplicity of presentation. This balance must 

result in intuitive and flexible presentation means to accessing the required alarm 

information by human operators. However, they describe just the minimum acceptable for 

achieving this balance. By design, they focus on what to do rather than how to do it. It is 

designers’ task therefore to establish how these rules are applied to the design of alarm 

visualizations. Moreover, it is also designers’ task to ascertain how these rules should be 

combined in order to generate a complete alarm visualization design. 
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2.2 Human Factors 
In consistence with the previous characterization of alarm-initiated activities, the human 

factors and ergonomics field recognizes the need of designing alarm visualizations with all 

the human operator’s capabilities, goals and needs in mind [107][44]. In handling alarm 

information, Situation Awareness (SA) can be characterized as the most relevant goal for 

human operators. In particular, SA can be defined informally as “being aware of what is 

happening around you and understanding what that information means to you now and in 

the future” [260]. However, building and maintaining this SA can be a difficult process 

when people supervise complex and dynamic processes. As an example, in real-time 

operations, the analyses of recent operating problems have shown that the ability of 

human operators for acquiring SA is one of the major factors that affects the propagation 

of failures [55].  

With the purpose of designing effective alarm visualizations, it is firstly required to 

look more closely at the meaning of this concept. There is a large body of literature in SA, 

and this continues to be an active area of research. In particular, reviews of definitions 

and theories from varied sources [109][55] provide a clear indication of the variety of 

approaches about SA. Thus, the focus of the next section is on to provide a review of 

these SA approaches in order to characterize those to be principally considered for 

designing alarm visualizations. Afterwards, a review of the most applied design rules for 

designing for SA is conferred. 

2.2.1 Models of Situation Awareness (SA) 
As Rousseau, Tremblay and Breton [109] firstly observed, there exists a generally 

accepted duality of SA as a state or a process. Under the first conceptualization, Micah 

Endsley has provided the most highly recognized descriptive model of SA. Endsley’s well-

known SA definition [44] describes SA as “the perception of the elements in the 

environment within a volume of time and space, the comprehension of their meaning and 

the projection of their status in the near future”.  Thus, Endsley uses the term to define a 

state of knowledge and she describes the associated process as situation assessment. In 

particular, Endsley’s model (see Fig. 2.2-1) includes two parts: a core SA model, and a 

set of factors affecting SA. The core SA model is the basis for much of the current 

thinking about SA. It is a three level model comprising Level 1, perception of the elements 

in the environment; Level 2, comprehension of the current situation; and Level 3, 
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projection of future states. In what follows, a brief description of the relevant aspects of 

each level is provided. 

 

Fig. 2.2-1 Model of situation awareness in dynamic decision-making [44] 

 

The Perception level. This level is the first step in achieving SA. It is referred to 

perceive the status, attributes, and dynamics of the relevant information elements in the 

environment. Perception may come through visual, auditory, tactile, taste, olfactory 

senses, or a combination. In cognitive terms, it involves interaction with long-term memory 

(comparing the information elements with what is already known); it is under attentional 

selection (modulated by the operator’s selective attention processes as determined by 

task requirements); and the information content is held in active working memory.  

The Comprehension level. The second step in achieving SA is defined as 

understanding what the data and cues perceived mean in relation to relevant goals and 

objectives. Consequently, comprehension is based on a synthesis of disjointed Level 1 

elements, and a comparison of that information to one’s goals. In cognitive terms, mental 

models stored in long-term memory provide a basis for Level 2 SA.  
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The Projection level. Once the person knows what the information elements are 

and what they mean in relation to the current goal, this level is described as the ability to 

predict about the states of the environment in the near future. A person can only achieve 

Level 3 SA by having a good understanding of the situation (Level 2 SA) and the 

functioning and dynamics of the system they are working with. This projection allows 

people to be proactive in making decisions, avoiding many undesirable situations, and 

also very fast to respond when various events do occur. 

In this view of SA, thus, information elements are processed to yield meaning. 

Accordingly, Endsley suggests that a common solution to human information processing 

limitations is to design methods to facilitate processing of more information through limited 

processing channels. 

Under the second conceptualization of SA, several authors have agreed about 

considering SA as a label for a range of cognitive processes or processing activities.  For 

example, Dekker and Lutzhoft [33] describe the concept of SA as “an intrinsic feature of 

the functional relationship between the environment and the person”. This empiricist view 

of SA breaks down the process into perception of information elements and is highly 

consistent with current ideas about sense making as an active strategy for dealing with a 

complex world. Klein et al. [70] define the sense-making concept as “the ability or attempt 

to make sense of an ambiguous situation. It is the process of creating situational 

awareness and understanding to support decision-making under uncertainty. It is an effort 

to understand connections among people, places, and events in order to anticipate their 

trajectories and act effectively”. In this conceptualization of sense making, Klein et al. 

establish that when people try to make sense of events, they begin with some 

perspective, viewpoint or framework, which he calls frame. This frame can include stories, 

maps, organizational diagrams, or scripts, and it can be used in subsequent and parallel 

processes. In particular, this frame defines what count as data, as well as shape the data. 

Furthermore, the frame changes as people acquire data. Accordingly, he defines the 

Data/Frame theory of sense making (see Fig. 2.2-2) that posits a closed-loop transition 

sequence between: (i) mental model formation (which is backward looking and 

explanatory), and (ii) mental simulation (which is forward looking and anticipatory).  



Chapter 2. Background Research 

 38 

 

Fig. 2.2-2 The Data/Frame theory of sense making [71] 

Therefore, while the sense-making perspective on SA may acknowledge the existence of 

elements, its focus is on the role they play constructing a plausible story of what is going 

on, not for building an accurate mental model of an external world. Dekker and Lutzhoft 

also observe that few theories of SA acknowledge this, instead directing their attention to 

the creation of meaning from information elements and the future projection of that 

meaning. Thus, in studying SA, rather than examining the lack of correspondence 

between actual and experienced worlds, they recommend examining the decisions 

makers unfolding experience of the situation in which they found themselves. This 

approach is related to the study on how problem solving is achieved in complex and 

uncertain real world situations, which has become known as Naturalistic Decision Making 

(NDM). NDM contrasts with previous theories and establishes that features of the 

situation and the decision maker such as the level of expertise dictate the form of 

decision-making processes adopted, thus, understanding the context surrounding the 

decision process is essential [80].  

More recently, Guttromson et al. [55] have extended this SA duality to two new 

different points of view. In particular, they consider that there is still not a clean separation 

between the conceptualizations of SA as a state versus a process. As an evidence of 
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that, they point out Klein’s work, which indicates that situation assessment is a very broad 

concept that covers situation awareness content (as defined by Endsley) as well as 

actions (process). As a possible source of confusion, they suggest that these different 

points of view reflect two different basic approaches to the question of SA. One point of 

view is operator-focused and it concerns the properties and mechanisms of the operator 

as they determine SA. The other point of view, is situation-focused, holds that SA is 

determined by the environment or situation in which the operator works. In what follows, 

these different points of view are briefly reviewed. 

The operator-focused approach is concerned with the set of cognitive processes 

supporting the production of mental representations corresponding to the SA state. Such 

processes are by definition a property of the human operator. This approach follows an 

information-processing framework that considers a mental representation of the world to 

be based on processing with specific functions such as perception, comprehension, and 

projection (as defined by Endsley); or information extraction, information integration, 

mental picture formation, and projection or anticipation. However, most of the process-

based definitions do not follow generally accepted human information processing models 

that identify a network of processes like perception, attention, and memory.  

The situation-focused approach is concerned with mapping relevant information in 

the situation onto a mental representation of that information within the operator. State-

oriented definitions limit the description of processes involved in SA, in line with Gibson’s 

fundamental concept of direct perception [52] that involve such principles as: (i) all 

information necessary for perception is contained in the environment; and (ii) perception 

is immediate and spontaneous. This implies that in order to understand perception, the 

priority must be on understanding the environment (independent of underlying 

processes). The situation-focused approach provides a basis on which to define SA as a 

state, defining a situation in terms of events, objects, systems, other persons, and their 

mutual interactions. This is domain-dependent. Thus, it is much more than awareness of 

the distribution in space of objects within a contextual environment. It has to include task 

goals, criteria of performance, and cues in the environment.  

The above review shows thus the complexities and divergent concepts that can be 

encompassed by the concept of SA in general. However, delving more specifically into SA 

while designing for supervision of complex and dynamic processes reveals that the 

sense-making perspective of SA has been introduced as a process that should be widely 
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considered [55]. In contrast to the traditional view of SA proposed by Endsley, this 

perspective describes the process of how SA is achieved when the available information 

is uncertain or conflicting, and maintained or recovered after surprising events, which are 

typical situations that a human operator has to deal with. Furthermore, according to Flach, 

Mulder, and van Paasen [47], a poor SA in this context reflects the lack of a basis for 

decomposing complex information or data into coherent chunks. Therefore, it is 

suggested that supporting SA in this context is not about providing more information, but 

rather about providing priorities and clarity about preferences to help the operator 

understand what matters. 

2.2.2 Designing for Situation Awareness (SA) 
Rather than displaying information that is centred on the sensors and technologies that 

produce it, computer-based information displays such as alarm visualizations should 

present this information in ways that fit the goals, activities, and needs of the operators 

[44]. Aiming at addressing these issues, Endsley has defined the most complete and 

applied design rules for designing for SA [45][67]. In particular, she defines fifty design 

principles. These principles are based on a model of human cognition involving dynamic 

switching between goal-driven and data-driven processing, and feature support for limited 

operator resources. These design principles underpin not only computer-based 

information display design issues, but also how to design automated systems, dealing 

with complexity or uncertainty. However, the focus of this section is on those eight 

principles about displaying information:  

• Organize information around goals. Information should be organized in 

terms of the operator’s major goals, rather than presenting it in a way that 

is technology-oriented (displayed based on the sensors or systems which 

created the information). 

• Present Level 2 information directly. As attention and working memory 

are limited, the degree to which displays provide information that is 

processed and integrated in terms of Level 2 SA requirements will 

positively impact. 

• Provide assistance for Level 3 SA projections. One of the most difficult 

parts of SA is the projection of future states of the system. Projection 

requires a fairly well developed mental model. Therefore, displays that 
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allow operators to anticipate possible occurrences should be provided. 

They should provide sufficient resolution in time to ensure that rapidly 

changing variables can be observed and interpreted. 

• Support global SA. Global SA is defined as “a high level overview of the 

situation across operator goals”. Consequently, displays that provide the 

operator with global SA should be provided.  

• Support trade-offs between goal-driven and data-driven processing. 
Designs need to take into consideration both top-down and bottom-up 

processing. The design of the system around operator goals (Principle 1) 

will support goal-directed processing. The big picture display that supports 

global SA (Principle 4) will support data-driven processing by directed the 

operator as to where to focus attention to achieve high priority goals. The 

key is to ensure that these two approaches complement each other. 

• Make critical cues for schema activation salient. In that mental models 

and schemata are hypothesized to be key features used for achieving the 

higher levels of SA in complex systems, the critical cues used for activating 

these mechanisms need to be determined and made salient in the 

interface design. 

• Take advantage of parallel processing capabilities. The ability to share 

attention between multiple tasks and sources of information is important in 

any complex system. System designs that support parallel processing of 

information by the operator should directly benefit SA. While people can 

only visually take in so much information at one time, they are more able to 

process visual information and auditory information simultaneously. 

• Use information filtering carefully. Presenting information in a clear and 

easy to process manner, with the operators in charge of determining what 

they will look at when, is far better than computer-driven strategies for 

providing only subsets of information. 

These design principles are based on the Endsley’s conceptualization of SA as a 

knowledge state. They provide therefore guidance to the design of alarm visualizations 

that allow achieving a knowledge state, which can be referred to as either knowledge of 

current data elements, or inferences drawn from these data, or predictions that can be 
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made using these inferences. However, they leave aside the support to the process of 

achieving these kinds of outcomes, the strategies and the barriers encountered, which 

have been conceptualized as the sense-making process. As it was characterized before, 

this sense-making process should be considered while designing alarm visualizations for 

control systems. Similarly, as the design rules from the Alarm Management field, these 

principles are too abstract and their specific implementation will depend on the 

circumstance and the designer’s creativity. 

2.3 Visualization Design 
The consideration of the sense-making perspective of SA while designing alarm 

visualizations is consistent with current ideas about sense making as the main purpose of 

visualization. As a result, visualization can be portrayed as a suitable tool to support the 

operator’s SA while designing alarm visualizations. According to Card et al. [20], until 

recently, the term visualization meant “constructing a visual image in the mind”. However, 

the most common understanding of visualization has changed over time and is now 

mostly referred as “the use of computer-supported, interactive visual representations of 

data to amplify cognition”. Thus, from being an internal construct of the mind, a 

visualization has become an external artifact to amplify cognition [141]; understanding 

cognition as the mental processes of knowing, including awareness, perception, 

reasoning, and judgment. In particular, visualization has three major goals: (i) 

Presentation. It refers to an efficient and effective communication of facts that are fixed a 

priori; (ii) Confirmatory analysis. It can be described as a goal-oriented examination of 

existing hypotheses with the aim of confirming or rejecting them; and (iii) Exploratory 

analysis. It is a typically undirected search for new information like structures and trends 

without initial hypothesis. However, with the rise of computers, the movement from static 

images to interactive visualizations has turned exploratory analysis into the most relevant 

goal of visualization. Moreover, according to Munzner [90], visualization should be 

especially applied when the goal is to augment human capabilities in situations where the 

problem is not sufficiently well defined for a computer to handle algorithmically. In the 

case of alarm-initiated activities, it requires human judgment to make the best possible 

evaluation of overwhelming amounts of incomplete, inconsistent, and potentially 

deceptive alarm information in the face of rapidly changing situations. During these 

situations, visualization can provide an ability to comprehend huge amounts of information 

and allows the perception of emergent properties that were not anticipated [141]. 
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Similarly, it can facilitate understanding of both large-scale and small-scale features of the 

information [132]. These capabilities are related to the concept of visual scalability, which 

is defined as “the capability of visualizations to effectively display large data sets, in terms 

of either the number or the dimension of individual data elements” [41]. To this purpose, 

diverse relevant factors including human perception, display size, and visual metaphors 

need to be considered.  

The next section firstly reviews descriptive models of visualization. These 

descriptive models provide descriptions of the elements that compose a visualization. 

Secondly, the visualization design process is reviewed. It describes the steps that 

designers use in creating visualizations. Finally, relevant design rules are depicted. These 

design rules can be used to provide direction for the visualization design process.  

2.3.1 Visualization Models 
Despite their variability, visualizations can be systematically analysed. In particular, as 

Card et al. [20] states, a visualization can be described as “the mapping of data to visual 

form that supports human interaction in a workplace for visual sense making”. In 

accordance to that, different models of visualization have been proposed, which have 

agreed about characterizing a visualization as consisting of a set of mappings, combined 

in a number of feedback loops. 

According to the model proposed by Ware [141], a visualization includes four basic 

stages (see Fig. 2.3-1). The four stages consist of: (i) the collection and storage of data; 

(ii) a pre-processing stage designed to transform the data into something that is easier to 

manipulate; (iii) mapping from the selected data to a visual representation, which 

accomplished through computer algorithms that produce an image on the screen; and (iv) 

the human perceptual and cognitive system. The longest feedback loop in this model 

involves gathering data. A user may choose to gather more data to follow up on an 

interesting lead. Both the physical environment and the social environment are involved in 

this loop. Another loop controls the computational pre-processing that takes place prior to 

visualization.  
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Fig. 2.3-1 Model of visualization proposed by Ware [141] 

Similarly, Card et al. [20] has proposed the most well known model of 

visualization, which is, in fact, referred to as “the visualization reference model” (see Fig. 

2.3-2). This model defines three main stages: (i) data transformations (raw data, which is 

defined as data in some idiosyncratic form, is transformed into data tables, which are 

described as canonical descriptions of data in a variables x cases format extended to 

include metadata); (ii) visual mappings (data tables are transformed to visual structures, 

which are defined as structures that combine values and available vocabulary of visual 

elements); (iii) view transformations (visual structures can be further transformed by view 

transformations, until it finally forms a view that can be perceived by human users). In this 

model, there is a flow back from the human into the transformation themselves, indicating 

the adjustment of these transformations by user-operated controls.  

 

Fig. 2.3-2 The visualization reference model proposed by Card et al. [20] 
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Both models highlight thus that visualization is not simply about presenting 

information. Rather, it is more of a dialogue between the user and the data, where the 

visual representation is simply the interface or view into the data. In this dialogue, the user 

observes the current data representation, interprets and makes sense of what he or she 

sees, and then thinks of the next question to ask, essentially formulating a strategy for 

how to proceed [124][20]. Accordingly, visualizations should be designed to support this 

human-information discourse. To achieve that, the data types and tasks performed by the 

user, as well as his physical and the social environment should be considered by the 

designer [132].  

2.3.2 Design Process 
Visualization design can be defined as “the process of designing information to match the 

processing characteristics of the human visual system” [147]. With this mission, this 

process carries out the previous mappings through two main approaches that are different 

yet complementary: the data-oriented design approach and the human-centred design 

approach.  

Under the data-oriented design approach, the accomplishment of these mappings 

is mainly driven by data attributed characteristics. For this reason, most previous relevant 

work has been focused on guiding the visualization design by providing taxonomies of 

visualization techniques using a data-centric point of view. As an example, Card and 

Mackinlay [19] started constructing a data-oriented taxonomy, which was subsequently 

expanded in [20]. This taxonomy divides the field of visualization into several 

subcategories: Scientific Visualization, Geographical Information Systems (GIS), Multi-

dimensional Plots, Multi-dimensional Tables, Information Landscapes, and Spaces, Node 

and Link, Trees and Text Transforms. Similarly, Shneiderman [120] defined the well-

known task-by-data type taxonomy according to eight visual data types: temporal, 1-

dimensional (1D), 2-dimensional (2D), 3-dimensional (3D), multi-dimensional (multiD), 

tree, network, and workspace. These taxonomies thus emphasize the relevance of the 

type of data that it is needed to look at in the visualization design. However, they describe 

such relevance as static across different tasks and environments, without considering the 

specific needs and limitations of some intended users. 

Under the human-centred design approach, these mappings are not only driven by 

data characteristics but also by the user’s tasks and the environment. Over the last 
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decade, applying this approach has led to the definition of the concept of human-centred 

visualization design, the general idea of which is that visualization design should take into 

account user’s needs, skills, and limitations, due to its own definition. Based on this 

ground, and trying to provide some guidance to visualization designers, several authors 

such as Munzner [91], Wassink et al. [142], Kerren et al. [68] or Zhang et al. [147] have 

proposed models and design frameworks that describe the structure of tasks, users, and 

functions. Although these models have clear differences among them, they concur in 

highlighting the characterization of the user’s tasks at different levels of abstractions as 

the decomposition factor required for making visual encoding and interaction decisions in 

visualization design.  

2.3.3 Design Rules for Visualization Design 
According to Ware [141], previously to create effective computer-mediated visualizations, 

it is required to understand how they enable cognition as a basis for design decisions. 

The subjects related with aids to cognition are one of the main focuses of cognitive 

science. Accordingly, cognitive scientists have studied visual representations and the 

larger class of external aids to cognition. As a result of these studies, some basic design 

principles for developing effective depictions have been defined. As an example, Norman 

[94] defines three basic principles: (i) Appropriateness Principle - The visual 

representation should provide neither more nor less information than that needed for the 

task at hand. Additional information may be distracting and makes the task more difficult; 

(ii) Naturalness Principle - Experiential cognition is most effective when the properties of 

the visual representation most closely match the information being represented; and (iii) 

Matching Principle - Representations of information are most effective when they match 

the task to be performed by the user. Effective visual representations should present 

affordances suggestive of the appropriate action. Another prominent cognitive scientist, 

Tversky et al. [135] has suggested the following two basic principles: (i) Principle of 

Congruence - The structure and content of a visualization should correspond to the 

structure and content of the desired mental representation. In other words, the visual 

representation should represent the important concepts in the domain of interest; and (ii) 

Principle of Apprehension - The structure and content of a visualization should be readily 

and accurately perceived and comprehended. These principles firstly underlie the 

importance of research in perception. In accordance to that, Gestalt theories [131] have 

been widely applied (see Fig. 2.3-3).  
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Fig. 2.3-3 Application examples of Gestalt theories [131] 

These theories define the rules according to which human perception tends to 

organize visual elements into a unified whole, also referred to as groups. Secondly, these 

principles underscore that the biggest challenge in choosing a visual representation is to 

find the right one, not just any one, for the task at hand. Consequently, the next step to 

take in developing effective visualizations has been established as the formal definition of 

the different types of visualizations [132]. 

With the purpose of addressing this challenge, the cartographer Bertin [10] has 

provided the most applied approach to communicate information by visual means. In this 

approach, mainly based on his own judgment, Bertin considers the space of possible 

visual representations as a visual language. The spatial and visual attributes of the 

representation encode the information using the rules of the language. In particular, he 

describes marks as the basic units of a visual representation. These marks can be: (i) 

Points (dimensionless locations on the plane, represented by signs that obviously need to 

have some size, shape or colour for visualization); (ii) Lines (they represent information 

with a certain length, but no area and therefore no width); (iii) Areas (they have a length 

and a width and therefore a two-dimensional size); (iv) Surfaces (they are areas in a 

three-dimensional space, but with no thickness; and (v) Volumes (they have a length, a 

width, and a depth. They are thus truly three-dimensional). Similarly, he also defines a 

given number of methods through which these units can be modified. These predefined 

modifications are called visual variables. In particular, Bertin defines seven visual 
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variables (see Fig. 2.3-4) classified under two different categories: (1) Planar variables 

(defined as visual variables related to the x and y position on the map. Position is the only 

visual variable that belongs to this category); and (2) Retinal variables (defined as visual 

variables that can be processed automatically by the human eye. These retinal variables 

are highly related with the preattentive variables defined later by Ware [141]. In particular, 

these retinal variables are orientation, shape, colour hue, texture, colour value, and size). 

 

Fig. 2.3-4 Summary table of the seven visual variables proposed by Bertin [10] 

Likewise, he defines different visual variable characteristics. These visual 

characteristics are: (i) Selective. A visual variable is said to be selective if a mark changed 

in this variable alone makes it easier to select that changed mark from all the other marks. 

This task is about the selection of an individual mark as distinct from other marks); (ii) 

Associative. A visual variable is said to be associative if marks that are like in other ways 

can be grouped according to a change in this visual variable. This means that several 

marks can be grouped across changes in other visual variables); (ii) Quantitative. A visual 

variable is said to be quantitative if the relationship between two marks differing in this 

visual variable can be seen as numerical. These are not necessarily precise numerical 

readings but are often read as ratios of one mark to another); (iv) Ordered. A visual 

variable is said to be ordered if changes in this visual variable support ordered readings. 

That is a change in an ordered visual variable will automatically be read as either more or 

less); (v) Length. Length is a slightly different kind of characteristic. The length of a visual 

variable is the number of changes that can be used and still retain in the task supporting 
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characteristics that are usually associated with this visual variable. Thus, the choice of the 

most appropriate visual variable to represent each aspect of information depends on their 

characteristics. In particular, according to Bertin, shape and orientation variables are not 

selective. Conversely, only the visual variables size and colour value are said to have 

perceptual dissociative characteristics. With dissociative visual variables, it is easier to 

detect visual variations among the signs themselves, than to visually form groups of 

similar symbols across other visual variables. Furthermore, Bertin ranks these visual 

variables in an explicit sequence. In particular, he ranks the size as a higher order 

variable, which posses a greater number of perceptual characteristics. On the contrary, 

visual variables such as orientation are ranked as lower order variables that may only 

have associative characteristics. More recently, the visualization community has 

attempted to systematically apply this visual language to the automatic generation of 

visualizations. The most relevant example of that is the Automated Presentation Tool 

(APT) developed by Mackinlay [83]. This tool automatically designs representations 

based on Bertin’s ideas. In particular, APT searches over a space of possible visual 

representations, evaluates them based on expressiveness and effectiveness criteria, and 

choses the best one.  The expressiveness criterion states “a visualization is expressive if 

it encodes all relevant information and only that information”. That means that the scientist 

may see all information he wants to examine. In like manner, the effectiveness criterion 

states “a visualization is effective if it presents all the information clearly”. This excludes 

cluttered visualizations. 

The above review shows thus the multidisciplinary nature of the visualization 

design, including design principles and visual languages from a number of fields such as 

cognitive science and cartography. These design principles and visual languages, 

respectively, allow designers to understand how visualization enables human cognition 

and identifying the basic units of a visualization.  Nevertheless, most of them do not 

suggest how to apply them to define specific visualization designs. They assume an 

absolute validity across design situations while usually they lack describing them. A result 

of that are bad design choices or misinterpretations by designers. 

2.4 Design Knowledge Reuse  
Knowledge plays an important role in design and managing this knowledge is a concern 

[3]. All use of knowledge could be qualified “reuse” in the sense that knowledge is based 
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on the processing of previously encountered data, experience, and representations 

constructed in the past [140]. However, trying to clarify the notion of knowledge, a number 

of commonly used classifications in the fields of design and engineering [24][84] can be 

distinguished: tacit knowledge, implicit knowledge, and explicit knowledge; product 

knowledge vs. process knowledge; and compiled knowledge vs. dynamic knowledge. In 

what follows, a brief description of each classification of knowledge is provided. 

Tacit knowledge is that knowledge that resides in people’s heads and may be 

destined to remain there. It is tied to experiences, intuition, unarticulated models or 

implicit rules of thumb. It is generally gained over a long period of time with learning and 

experience, is difficult to express, and can only be transferred by the willingness of people 

to share their experiences. On the contrary, explicit knowledge is that knowledge that has 

at minimum been captured and articulated and has ideally been codified, that is, 

documented, structured and disseminated. This knowledge creates the intellectual 

platform necessary to build and manufacture a design product. The laws of physics used 

for calculations are an example of explicit knowledge. A third category is implicit 

knowledge, which is not easily articulated by the person possessing it, but can be elicited 

and articulated by others. An example of implicit knowledge is the strategy adopted by an 

experienced designer to undertake a particular task in the design process.  

Product knowledge includes various pieces of information and knowledge 

associated with the evolution of a product throughout its lifecycle. This includes 

requirements, various kinds of relationships between parts and assemblies, geometry, 

functions, behaviour, various constraints associated with products, and design rationale. 

On the other hand, process knowledge is concerned with the activity of designing itself. 

Process knowledge can be in turn classified into design process knowledge, 

manufacturing process knowledge, and business process knowledge. Design process 

knowledge, which can be encoded as methods in a product representation, provides 

mechanisms for realizing design details at various stages of the product lifecycle. 

Manufacturing process knowledge is mainly concerned with activities associated with the 

manufacturing floor. Finally, business process knowledge includes all processes 

associated with marketing, strategic planning, and other associated functions. While 

product and process knowledge are not independent of each other, they refer to distinct 

aspects of the knowledge dimension, and hence merit separate consideration.  
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Compiled knowledge is essentially knowledge gained from experience that can be 

compiled into rules, plans or scripts, cases of previously solved problems, etc. In compiled 

knowledge the solutions are explicit. Dynamic knowledge encodes knowledge that can be 

used to generate additional knowledge structures, not covered by compiled knowledge. In 

dynamic knowledge the solutions are implicit.  

Bringing knowledge forward and making it explicit and formal is the principle 

output of the design process, which can be referred as design knowledge. Design 

knowledge is defined as “the conceptual ideas, lessons, and representations captured in 

the design artifacts created or collected when solving a design problem” [84]. This 

definition characterizes the design process as an activity that generates knowledge, and 

implicitly this knowledge can be reused. For instance, design solutions from prior 

problems can provide useful starting points for new problems, serve as references for 

comparing or explaining new ideas, and provide access to relevant design discussions 

[118]. Reuse can also improve design efficiency and lead to higher quality outcomes [49] 

[118]. However, how well the benefits of reuse can be realized depends on how well prior 

design knowledge can be stored, accessed, and retrieved. Much of this research has 

been conducted within software engineering, leading to a classification of design 

knowledge reuse approaches, divided into two broad categories [8]: code reuse and 

knowledge reuse. 

Code reuse includes different approaches to organize actual code and incorporate 

it into software such as libraries of modules, code fragments, or classes and the use of 

off-the-shelf software. Code repositories can be considered design knowledge bases. 

However, though it is argued that the best mechanism to communicate design is the code 

itself, sharing design is not the same as sharing design knowledge. It is limited to 

programming and its complexity often encapsulates complex logic that would take years 

to develop from scratch. More recently, a distinction was made between the traditional 

view of code reuse and an emerging trend [103]. White-box reuse involves searching for 

code components, modifying them for use, and then depositing the component for others 

for use. This type of reuse involves the use of reuse repositories, an area for which many 

strategies and searching methods are researched. Black-box reuse, on the other hand, is 

a new trend that involves using components without modifications. Although black-box 

reuse requires that developers know the functionality of the component and how to 

interface with it, it reduces the need to search for and modify components.  
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Knowledge reuse refers to approaches to organizing and applying knowledge 

about software solutions, not to organizing the solutions themselves. It mostly 

distinguishes between three basic methods: principles, processes, and patterns. 

Principles are high-level concepts that guide the entire design process. For example, as it 

has been defined by Card et al. [20], “visualizations should provide neither more nor less 

information than that needed for solving the problem”. Processes are how designers put 

the principles into practice such as guidelines that explains how to conduct a focus group, 

how to run a survey, etc. Patterns are a language, a common vocabulary that allows 

designers to represent and articulate recurring design problems. For instance, the Action 

Button pattern [136], which has been widely applied to design user interfaces, solves a 

common problem about letting know the user what element on the interface can and 

cannot be clicked on. However, the most successful attempt to codify software design 

knowledge is the patterns approach. Originally proposed by Alexander et al. [6] for the 

design of buildings and towns, patterns are reusable components encapsulating design 

knowledge. They include information such as context of use, conflicting forces, and 

potential solutions. Patterns were adopted by the software engineers and developed a 

following over the years largely due to Gamma et al. [51], who proposed the reuse of 

patterns for software development.  

Research on design knowledge reuse in HCI is has been also done, but the topic 

does not have the large following software engineering community has to date. The 

benefits of reuse on usability have been demonstrated. There are a number of authors 

that looked at the reuse of patterns for HCI. Borchers [12] argued for the use of design 

patterns to capture HCI knowledge. He mentioned the need for the encapsulation of the 

designers’ experiences, methods, and values into patterns. Some have created patterns 

for specific domains. For example, Landay and Borriello [78] created patterns for 

ubiquitous computing. Their goal was to apply them within a field by documenting lessons 

learned and passing them on to new designs. Such research efforts into the reuse of 

patterns provide impetus behind the argument to consider other forms of reusable design 

knowledge to benefit HCI. Claims are a form for recording knowledge proposed by Carroll 

and Kellog [21]. Claims were even included as a part of a design pattern structure by 

Hughes [61]. Similarly, Sutcliffe [128] proposed and spearheaded efforts to make claims 

into reusable design knowledge components, lasting well beyond the designs they were 

initially created for. An extensive structure for claims and the idea of storing claims in a 

library was presented [129][128]. 
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The above review shows thus that there is great diversity of design knowledge 

reuse approaches across fields to promote the level of reusing the accumulated design 

knowledge. However, according to Krueger’s dimensions for characterizing reuse 

approaches [76], it is possible to distinguish them in terms of its reusable components and 

the way these components are abstracted, selected, specialized, and integrated into the 

design process. In particular, abstraction is the essential feature in any reuse approach. 

Without abstractions, designers would be forced to sift through a collection of reusable 

components trying to figure out what each component did, when it could be reused, and 

how to reuse it. Similarly, selection is a required feature to guide designers as they search 

for components during a design process. After selecting a reusable component, the 

designer specializes it through parameters, transformations, constraints, or some other 

form of refinement. Finally, a designer combines the collection of selected and specialized 

components into a complete design artifact. In keeping with such dimensions, design 

patterns can be characterized as to be one of the most useful means of helping designers 

locate, compare, and select time-tested design solutions across fields. 

2.5 Design Knowledge Reuse for Visualization Design 
Visualization design can be defined as “the process of defining a visual representation 

that can be processed by efficient human visual mechanisms” [147]. With the growing 

emphasis on visualization as a mechanism for analysing and exploring large and complex 

data sets, visualization research recognizes the need to improve the efficiency and 

effectiveness of the visualization design process [25][132][26]. It acknowledges the need 

of reusing prior design knowledge versus the execution of a simply creative design 

process. Aiming at addressing this need, a number of design knowledge reuse 

approaches have been applied.  

Some researchers as Mackinlay [83] have used formal graphical specifications, 

including visual languages and composition rules, to automate the construction of 

visualizations more efficiently and systematically. Similarly, Wilkinson [144] has proposed 

a language to construct statistical graphs using graph algebra. Although these 

approaches are very promising, they are too abstract. They depict the important 

characteristics of visualizations but they do not support the how, which must rely on 

designer’s experience. Moreover, they have not been targeted at visual representations in 
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support of exploratory processes such sense making. On the contrary, they are oriented 

to guide the design of visual representations that communicate facts that are fixed a priori.  

Several others have mostly agreed about the benefit gained from incorporating 

design patterns into the design process [57][145]. Moreover, in Thomas and Cook’s 

research agenda for visual analytics [132], they call for conducting research to formally 

define design spaces that capture different classes of visualizations. They further state 

“one potential approach is to develop a library of common visualization design patterns 

from which developers could draw to build new visualizations”. For instance, Stolte et al. 

[127] introduces design patterns to describe different forms of zooming within multi-scale 

visualizations. Chen [25] suggests high-level visualization patterns to address general 

visualization concerns. Sedig and Parsons [115] propose a catalogue of design patterns 

that support the design of visualization-based computational tools for complex cognitive 

activities. All of them conclude that, properly used, design patterns help designers make 

their design simpler, more flexible, modular, reusable, and understandable. Nevertheless, 

most of them are too tailored to specific visualizations, and therefore are not as effective 

when applied to other type of visualizations.  
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Chapter 3. Problem Identification 

If you don’t make mistakes, you are not working on hard enough problems. And 

that is a big mistake 

- Frank Wilczek, Nobel Prize for Physics 

The previous chapter provided a review of both descriptive models and existing design 

material for alarm visualization design. Such review identifies factors affecting recurrent 

design challenges for alarm visualization design related to different knowledge areas, 

including Alarm Management, Human Factors, and Visualization Design. However, as 

aforementioned, no single designer can be an expert in every relevant knowledge area, 

and becoming proficient may require years of experience. To overcome this situation, 

research literature on design across application domains proposes to reuse prior design 

knowledge, which can provide useful starting points for recurrent design problems, serve 

as references for comparing or explaining new ideas, and provide access to relevant 

design discussions. 

This chapter is divided into two main sections. The first section frames the design 

space for alarm visualization design by characterizing recurrent design challenges for 

designing alarm visualizations that have been dereived from the literature research. Then, 

it describes two different case studies that both explore relevant aspects of this design 

space and serve to illustrate how such design space operationalizes in practice. This 

characterized design space will guide the construction of the proposed solution. The 

second section discusses the application of design knowledge reuse in alarm visualization 

design. As shown in the previous chapter, design rules in the form of design principles, 

guidelines, and standards for alarm visualization design are used. These design rules can 

be too abstract, not comprehensive enough, and loosely coupled, being difficult to be 

interpreted and applied by non-experienced designers. Therefore, a more comprehensive, 

generative, and cohesive artifact is required. 
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3.1 Framing the Design Space 

3.1.1 Design Challenges in Alarm Visualization Design 
Alarm visualizations for operating control systems are a rich source of information for 

human operators to maintain the awareness of the state of the process being controlled 

[93]. This relevance of alarm visualizations poses various recurrent design challenges to 

designers who need to create effective alarm visualizations with all human operator’s 

activities, capabilities, goals, and needs in mind. Displaying large volumes of alarms with 

different attributes such as typology, priority, or location, and assisting the human 

operators’ processes of sense making of these alarms in order to understand the state of 

the process being controlled are some of the design challenges for alarm visualization 

designers. These fundamental and recurrent design challenges that affect the creation of 

alarm visualizations are motivated below and discussed in further detail. Table 3.1-1 

summarizes these design challenges and the  factors affecting them. It also relates these 

factors to the knowledge area(s) involved. 

• Visual scalability. One of the biggest challenges in alarm visualization design is 

how to design alarm visualizations that display large volumes of multi-dimensional 

alarms. This design challenge is related to the previously reviewed concept of 

visual scalability, which has been widely defined as “the capability of visualizations 

to effectively display large data sets, in terms of either the number or either the 

attributes of individual data elements” [41]. Four relevant factors affect visual 

scalability are four: 

o Operation situation. During critical events, even minor disturbances, the 

alarm systems might generate a huge, unmanageable amount of alarms. 

As different studies on alarm systems from the human operator’s 

perspective have pointed out  [85,107,125], during routine events, the 

operator workload is manageable but during critical events the situation is 

the reversed. The alarm system is producing lots and lots of alarms, and 

the human operator’s is overloaded. Aiming at overcoming this situation, 

alarm visualizations should be able to scale in order to be able to handle 

alarm data sets with hundreds to thousands of elements (both for routine 

events and critical events involving alarms).  
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o Human performance. Human capabilities to detect and identify alarms are 

limited. The perception of information requires a certain amount of time, 

and humans can only hold about 7± 2 units of information at the same time 

as the different guidelines and standards for alarm visualization design 

remind us [16, 40, 64]. Because of this, it is important that the designer 

keep in mind that the total number of alarms and their maximum rate of 

presentation does not overload the human operator. Designers also need 

to make sure that alarm visualizations address the Naturalness Principle 

proposed by Norman [94] to design effective visualizations. This design 

principle states that experiential cognition is most effective when a visual 

representation closely matches the information being presented.  

o Display size. As Thomas and Cook [132] already pointed out in their 

research agenda for visual analytics, most existing visualization techniques 

are designed for one size display, generally a desktop display. They set as 

a design challenge the need of creating new visualization methods to allow 

the analysts to make effective decisions in time-critical situations. In alarm 

visualization design, the increase in the range of display sizes, from mobile 

devices for personnel-in-field to high-resolution displays like wall-sized 

displays in control rooms, poses designers the need of design alarm 

visualizations that make effective use of different display devices 

understanding the possibilities and limitations of each kind of display.  

o Visual metaphors. According to the literature in visualization design [20, 

141], visual metaphors are the means by which data characteristics are 

encoded for visual display. This involves not only selection of a metaphor, 

such as a bar chart, but also both mapping of data attributes onto visual 

characteristics of the chosen metaphor, such as bar size and colour. Visual 

metaphors have to be carefully designed to meet information-processing 

goals of the human operator. With this aim, basic design principles [94, 

135] and theories for visualization design such as Gestalt theories [131]   

or the seven visual variables proposed by Bertin [10] should be also 

considered.  

• Sense making. Making sense of alarm information by human operators when this 

information is massive or uncertain can be a complex process. Another key design 
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challenge in alarm visualization design, which is intrinsically related to the visual 

scalability design challenge, is therefore how to assist human operators in the 

process of sense making of such large volumes of alarm information. According to 

the previous review, this design challenge is related to the sense making 

conceptualization of SA, which has been formally defined as “the ability or attempt 

to make sense of an ambiguous situation. It is the process of creating situational 

awareness and understanding to support decision-making under uncertainty. It is 

an effort to understand connections among people, places, and events in order to 

anticipate their trajectories and act effectively” [70]. Factors affecting sense 

making are six: 

o Operation goal. Mattiason’s study [85] identified different operation goals 

according to the status of the process being controlled. In particular, he 

identified that during routine events the goal is to optimize and operate the 

process being controlled in a safe manner. When a minor upset occurs, 

human operators’ job is to bring the process back to normal operation. 

During a critical event or a major upset she/he is expected to bring the 

process to the nearest safe state and if disaster threatens, shut it down, 

and try to limit the consequences. According to the design principles 

proposed by Endsley for SA [44], alarm information should be organized in 

terms of the operator’s major goals, rather than presenting it in a way that 

is technology-oriented. Design guidelines and standards for alarm 

visualization design [16, 40, 64]  also  recommend that alarm information 

should be presented in a priority layer where any changes are brought 

immediately to the operator’s attention. In this way, alarm visualizations 

should be able to help the operator to decide which alarms to deal with 

when several occur at the same time in a disturbance, and to show 

especially urgent alarms to the operator. 

o Source of information. Operators have to gather information from a wide 

variety of sources to build SA. The collected information is used for 

building a mental model of the situation, a concept referred to by Endsley 

[44] as SA. Aiming at supporting human operators to build SA, alarm 

visualizations should be able to distinguish among several information 

sources such as direct telemetry from large-scale, distributed control 
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systems or environmental data covering factors such as weather status or 

lightning strikes. 

o Level of expertise. According to the Naturalistic Decision Making (NDM) 

model [80] on how problem solving is achieved in complex and uncertain 

real world situations, human operators’ performance and formulation of 

goals are also highly dependent on the human operators’ level of 

expertise. Designers need to design  alarm visualizations that distinguish 

human operators’ processing information capabilities according to their 

level of expertise. 

o Environment. In keeping with the theories of sense-making for complex 

and dynamic contexts [47,55], designers should be able to design alarm 

visualizations that help to human operators not only to understand the 

distribution in space of objects within a contextual environment but also the 

interactions among people and events in such environment. 

o Update rate. The status of the process being controlled can change and, 

in consequence, alarm information should be updated to reflect such 

change. Standards and guidelines [16, 40, 64] for alarm visualization 

design, as well as the design principles proposed by Endsley [44] for SA 

suggest that alarm visualizations should be able to display trends of 

changing alarm data values in a readable way for human operators. They 

should make a distinction between changing values that take exact 

readings and general alarm trends.   

o Time history. In relation with the update rate of alarm information, 

standards and guidelines [16, 40, 64] for alarm visualization design, as well 

as the design principles proposed by Endsley [44] also suggest that an 

embedded trend in computer-based information displays should cover 

enough time and be accurate enough to depict the development of 

situations that vary from preceding operation situations. In keeping with 

that, embedded trends in alarm visualizations should be displayed with 

sufficient resolution in time to ensure that rapidly changing variables can 

be observed and interpreted.  
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a general motivation and overview is presented, followed by discussion of the main 

insights, as well as how they relates to the previous theoretical formulations. 

CASE STUDY 1: ALARM VISUALIZATION DESIGN FOR THE ELECTRIC POWER GRID OPERATION

This case study was motivated by the participation of the author of this research work in 

the Energos project [46], funded by Spanish CENIT Program 2009. The main goal of this 

project was to develop information and communication technologies that support new 

operational and organizational challenges caused by the Smart Grid. One of the main 

activities of the project was concerned with the operation of the Smart Grid within control 

rooms. The continuous sensing of the grid state, the increasing interconnectivity and 

complexity of the infrastructure, and the rising amount of operational information to 

manage require new visual displays that support new operational models, based not only 

on identifying breakdowns but also on anticipating and diagnosing them. Fig. 3.1-1 shows 

an example of a visual display from a real control system used for operating the current 

electric power grid. It clearly shows that an increasing amount of operational information 

could affect not only its visual scalability but also the process of making sense of such 

volume of operational information. In particular, achieving an appropriate Situation 

Awareness (SA) level by control room operator was establised as an essential factor. 

 

Fig. 3.1-1 Visual display from a real control system used for operating the electric power grid 
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It has been widely argued that designing visual displays for SA requires that 

designers understand how human operators acquire and interpret information as well as 

identify such factors that underlie this process. Hence, in order to design new visual 

displays for the Smart Grid operation, a study on the operation of the current grid was 

firstly carried out, whose results are summarized in [106]. Based on this study, one of the 

main findings was the characterization of the current grid operation as based on 

managing alarms. Human operators supervise the performance of planned operations on 

the grid infrastructure such as discharges in power transformers and detect potential 

incidents on relevant electrical assets based on the managing of alarms. The control 

system gives human operators various types of alarms registered by multiple devices and 

sensors through desktop-sized displays, being the responsibility of the human operator to 

decide on real time their priority and relevance in order to know the state of the grid. Thus, 

when a severe disturbance occurs in the grid such as a power outage, there can be many 

alarms displayed on the desktop displays such that the operators may be overwhelmed 

and the most important alarms are difficult to locate by them. In contrast to normal 

operation of the grid, when the goal is to optimize the performance of planned operations, 

during these situations, the goal is to bring the grid back to a safe manner and to ensure 

an uninterrupted supply of electricity to critical customers such as data centres or 

hospitals.  

This case study illustrates thus in a real-world context various relevant factors 

affecting visual scalability and sense making design challenges for designing alarm 

visualizations. Regarding visual scalability, two factors are specifically illustrated, 

including the operation situation and the human performance in response to alarms. 

During severe disturbances in the grid, even during planned operations, the alarm 

systems might generate a huge amount of alarms that human operators may not be able 

to manage in order to know the state of the grid infrastructure. Regarding sense making, 

this case study describes two main factors, including the operation goal and the source of 

information. Human operators have different operation goals according to the state of the 

grid infrastructure. In order to know such state, they have to gather alarm information 

registered from multiple devices and sensors distributed along the grid. 

CASE STUDY 2: ALARM VISUALIZATION DESIGN FOR EMERGENCY RESPONSE

This second case study was motivated by the participation of the author of this research 

work in the Emercien (Emergency management and civic engagement) project. Emercien 
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is a basic research project funded by the Spanish Ministry of Economy and 

Competitiveness that aims at deploying sociotechnical platforms that promote effective 

and reliable collaboration in emergency management among different stakeholders, 

including first responders, decision and policy makers, volunteers and citizens. One of the 

main activities of this project was concerned with the participation of emergency 

communities of volunteers during emergency situations. Emergency communities of 

volunteers are groups of individuals who altruistically collaborate with official emergency 

organisms and corps due to their accredited skills and valuable knowledge in specific 

situations. They make up a monitoring network that tracks emergency alarms related to 

emergency situations such as a heavy rain emergency alarm declared by emergency 

managers in an early stage. Volunteers act then as “human sensors”, collecting and 

sharing information about their evolution. Further details about the characterization of 

emergency communities of volunteers are described in [58]. 

In this context, the purpose was to improve the capacity of emergency volunteers 

to respond to unexpected events through visualization mechanisms that go beyond the 

current state of research on public participation tools and related technologies. As it was 

stated in [58], in order to achieve that purpose, these visualization mechanisms should 

enable collaborative reflection, promote mutual visibility of volunteers’ efforts and sustain 

a shared view of the community. Similarly, they should facilitate sense making of large, 

simultaneous and distributed pieces of heterogeneous emergency alarms not only 

provided by emergency corps or other volunteers but also by common citizens with 

different levels of credibility and priority. For example, the information coming from social 

networks is less structured and reliable that the information coming from official 

emergency organisms and corps. Focused specifically on addressing sense-making 

issues through visualization mechanisms, different design challenges were identified. The 

first one was related to the volume of emergency alarms to display. These alarms can 

vary across emergency situations and be provided from multiple sources such as social 

networks or mobile devices. Similarly, people with diverse skills and capabilities compose 

the crowd of citizens who can provide different types of alarms about the emergency 

situations with different level of credibility. Finally, volunteers also need to track 

emergency alarms and foresee their evolution across both time and geographical 

locations in order to support a better response to an emergency situation.  
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In contrast to the previous one, this case study illustrates diverse relevant factors 

affecting visual scalability and sense making design challenges in an emerging context for 

alarm visualization design. In particular, this case study describes the operation situation 

factor affecting visual scalability. The volume of emergency alarms varies across 

emergency situations. Regarding sense making, it describes three different factors, 

including the source of information, the environment, and the time history. Emergency 

alarms can be provided from different technological platforms such as mobile devices and 

social networks. Similarly, in order to understand the evolution of an emergency situation, 

volunteers may require understanding other volunteers’ contribution regarding the 

emergency situation. Finally, this understanding needs to be enriched with assistance for 

foreseeing the temporal evolution of this emergency situation in order to support a better 

response.  

3.1.3 Synthesis 
Throughout sections 3.1.1 Design Challenges in Alarm Visualization Design and 3.1.2 

Case Studies, this research work has described the design space for alarm visualization 

design. It characterizes fundamental and recurrent design challenges that designers need 

to face when designing alarm visualizations across application domains. From this 

characterization, it emerges that addressing visual scalability and sense making when 

designing alarm visualizations requires taking into consideration the role of human 

operator in response to alarms and the nature of those alarms. It refers to consider 

human operators’ activity as triggered into action by an upcoming alarm. Similarly, alarm 

visualization designers should recognize the human operator’s capabilities, goals and 

needs. Finally, they should understand the attributes of such alarms and how to support 

human operators in understanding them through visualization means. Accordingly, alarm 

visualization design involves having design knowledge from three different knowledge 

areas, including Alarm Management, Human Factors, and Visualization Design. However, 

it is difficult for non-experienced designers to understand the constraints and rules that 

guide the human operator’s activities in response to alarms. It is often even more difficult 

to them to understand the human operator’s goals, capabilities, and needs and how to 

support them through visualization means. One relevant approach to assist designers in 

such design process is to reuse prior design knowledge for designing alarm visualizations 

instead of starting from scratch. 
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3.2 Design Knowledge Reuse for Alarm Visualization 
Design 

As shown in the previous chapter, in the context of alarm visualization design, reusing 

prior design knowledge mostly includes approaches such as design principles, guidelines, 

standards, and visual languages, which document what are considered the expectations 

and best practices for designing effective alarm visualizations. The set of existing design 

design knowledge reuse approaches for alarm visualization design are displayed using a 

coloured Venn diagram, in Fig 3.2-1. This diagram also encodes the knowledge areas 

involved in alarm visualization design as coloured circles, including Alarm Management in 

turqoise, Visualization Design in light blue, and Human Factors in orange; the variety of 

descriptive models and perspectives within these areas as lined circles; and existing 

design rules as rhombuses located according to the perspectives adopted within these 

areas. In what follows, three fundamental limitations identified for existing design 

knowledge reuse approaches for alarm visualization design are described: 

• They are not comprehensive enough. As Fig 3.2-1 shows, there are not design 

rules that consider all required factors for alarm visualization design, which 

correspond to the area where the three circles overlap. In particular, the design 

principles for SA proposed by Endsley can be characterized as the most 

comprehensive design rules, considering a more extensive range of key design 

factors than other existing design knowledge reuse approaches for alarm 

visualization design. However, these design principles do not provide any 

discussion about how to support human operators in the process of sense making 

of alarm information, which must depend on designer’s experience and 

circumstances. 

• They are too abstract. For an abstraction of a reusable design component to be 

effective, it must express all of the information that is needed by the designer who 

uses it [76]. This may include space and time characteristics, precision statistics, 

or scalability limits. In the case of the existing design knowledge approaches for 

alarm visualization design, they provide a too high-level description of the 

important characteristics of alarm visualizations and when to use them, but they 

do not express the how, which must rely again on designer’s experience.  

• They are loosely coupled. To integrate a reusable component into a system 

effectively, the designer must clearly understand the component’s interface; it 
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means those properties of the component that interact with other components [76]. 

However, these rules are independent resources that do not provide any 

description of how they can be combined together in order to generate an alarm 

visualization. It is a designer’s task to understand how to combine them, which 

may lead not only to an expensive and time-consuming design process but also to 

create alarm visualizations without sound reasoning and therefore ineffective for 

supporting human operator’s tasks. 

In light of these limitations, a new design knowledge reuse approach for alarm 

visualization design that assists non-experienced designers is required. To this purpose, 

design patterns have been characterized as the most successful approach to encapsulate 

reusable design knowledge. Compared to other design knowledge reuse approaches 

such as design principles or guidelines, design patterns describe proven solution 

approaches or ways to a solution that, by being applied to different applications and 

specific contexts of use, lead to new and different solutions. However, they neither offer 

standardised solutions that can always be used in the same form again nor do they offer 

new solutions. In other words, a design pattern reflects an abstract solution approach that 

includes the unchanging components of all solutions that successfully deal with a specific 

design challenge. The integrated examples of how the solution approach can be applied 

add clarity and are a help to non-experienced designers in interpreting the guidance. 

Accordingly, next chapter presents a new approach for reusing previous alarm 

visualization design knowledge based on the use of design patterns.  
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Chapter 4. A Design Pattern Language 
for Alarm Visualization Design  

There is nothing new under the sun, but there are lots of old things we don’t know 

yet 

- Ambrose Bierce, American Writer 

The previous chapter characterized two fundamental and recurrent design challenges in 

alarm visualization design, visual scalability and sense making, and described the 

limitations of existing design knowledge reuse approaches to be applied by non-

experienced designers. These design challenges involve designers having a multi-

dimensional knowledge in different knowledge areas including Alarm Management, 

Human Factors, and Visualization Design. Nevertheless, as previously reported, 

designers cannot be experts in all areas and becoming proficient may require years of 

experience [51]. Aiming at overcoming this situation, this research work proposes the use 

of design patterns as suitable artifacts to facilitate the process of reusing previous design 

knowledge for alarm visualization design. Compared to other efforts to reuse previous 

design knowledge, design patterns capture design practice, facilitate multiple levels of 

abstraction, include the statement of a problem that recurs repeatedly, and deliberately 

scope their context of application. However, taken in isolation, design patterns are, as 

Dearden and Finlay [32] firstly stated, “at best, unrelated good ideas”. They need to be 

organized in a meaningful way in order to provide coherent support for design generation.  

There are two different levels of organisation for design patterns. On a first level, 

the design patterns can be organized into collections according to pre-defined criteria. On 

a second level, a collection of design patterns can evolve and form a language, where 

each pattern contains backward references to patterns that set its context and forward 

references to patterns that can be used to help realise the current pattern. A key concept 

in distinguishing pattern collections from pattern languages is the idea of generativity. It 

means a design pattern language allows designers to generate designs by implicit 
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sequencing of decisions, derived by traversing the network of links between the individual 

patterns. It provides a more cohesive structure, with higher-level patterns yielding 

contexts, which are resolved by more detailed patterns. In keeping with these features, 

this research work specifically proposes a design pattern language as a fitting approach 

for facilitating the process of reusing previous alarm visualization design knowledge. 

A pattern language can be referred to as “a collection of patterns which at every 

level of scale, work together to resolve a complex problem into an orderly solution 

according to a predefined goal” [9]. The intention of a pattern language, as described by 

Alexander [6], is to represent design problems, which makes the problems easier to solve 

by reducing the gap between the designer’s knowledge and the design task. Moreover, 

Alexander proposes that anyone, not only designers, can use a pattern language as a 

common language, or a lingua franca. He suggests a pattern language may serve also as 

a type of boundary object, which may enable communication among people from different 

disciplines.  

This chapter describes the proposed design pattern language in more detail. 

Firstly, it explains the rationale of the selection of a design pattern language as a fitting 

design knowledge reuse approach for alarm visualization design. Secondly, the elements 

of the design pattern language and the design pattern language itself are further 

described. Finally, its process of usage is depicted.  

4.1 The Rationale of the Solution 
The design of alarm visualizations defines the way in which the alarm information is 

presented to human operators, as well as the means by which operators provide inputs to 

an alarm visualization, receive information from it, and manage the tasks with access and 

control of alarm information. During this design process, there is a large body of design 

knowledge that designers call upon and use to match the ever-increasing complexity of 

design problems. Design knowledge can be generated by observing and experiencing, by 

interpreting information and data or through reasoning and combining pieces of 

knowledge [3]. However, not all of these types of design knowledge can be reused. As it 

was described before, while explicit knowledge can be articulated and more easily 

transmitted across designers and organizations, tacit knowledge resides within particular 

individuals in ways that make their actions and decisions difficult to replicate. A third type 

of knowledge to take into consideration is implicit knowledge, which although is not easily 



Chapter 4. A Design Pattern Language for Alarm Visualization Design 

 70 

articulated by designers, it can be elicited and articulated by others. Once articulated, 

explicit and implicit knowledge can be represented as information and thus reused in a 

consistent and repeatable manner [3]. Other researchers have extended this first 

distinction of design knowledge according to the focus of concern: process and product 

knowledge. In the first one, design knowledge is concerned with the activity of designing 

itself and is both closely tied to the designer who developed it and shared mainly through 

person-to-person contacts. On the contrary, the product knowledge is concerned with the 

artifact to be designed. This includes requirements, various kinds of relationships between 

parts and assemblies, geometry, functions, behaviour, various constraints associated with 

products, and design rationale. In this way, product knowledge can be characterized as 

more reusable than process knowledge. Aiming at both representing and articulating 

design knowledge that can be reused for designing alarm visualizations, this research 

work is particularly focused on both explicit and implicit product design knowledge. It 

includes existing alarm visualization designs in terms of visual features, visual structures 

and view transformations. To this end, it uses a design pattern language approach, which 

has been considered to be especially well suited for the reuse of design knowledge in a 

variety of design situations.  

A design pattern language provides a framework upon which any design can be 

anchored [111]. It means that the language does not determine the design. It allows both 

capturing the essential bits of a problem-solution couple in a specific context, and 

representing it in a way, design patterns, so that it can be applied and adapted in different 

situations by non-expert practitioners, and even users [6]. Design patterns are not created 

or invented; they are built via an invariant principle of good design as manifest across 

different contexts [111]. In particular, they represent the how and why to solve the design 

rationale. Design patterns make easier to reuse successful designs and more accessible 

to designers of new systems. They may already be very valuable for representing design 

knowledge but when patterns are related to each other, it is when they can reach 

potentially a far more valuable thing. Such a set of connected patterns is called a design 

pattern language. By imposing constraints, a design pattern language articulates a large 

number of possibilities while still allowing an infinite number of possible designs [111]. In 

this case, the remaining choices are precisely those that connect human beings either 

visually, emotionally, functionally, or by facilitating their interactions and activities.  
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4.2 The Design Pattern Language 
Defining a design pattern language places a number of challenges. It is firstly required to 

establish the elements of a design pattern language. Previous work related to the 

definition of design pattern languages for other purposes such as the design of 

visualization-based computational tools for complex cognitive activities [115], object-

oriented software [51], user interfaces [136], interaction design [137], security systems 

[56], and hypermedia systems [88] has been considered. However, due to both the 

completeness and detailed structure, the approach to define the elements of this design 

pattern language is an integration of the two latter ones. As a result, this design pattern 

language is composed by the following elements: (i) a catalogue of design patterns that 

captures design practice and embodies knowledge about successful solutions for alarm 

visualization design; (ii) a classification scheme that organizes the collection of design 

patterns according to different criteria; and (iii) a design pattern language as a result of 

organizing the interrelationships between these designs patterns. 

In second place, it is required to identify the adequate source material for the 

definition of a pattern language. Trying to address the previous characterized design 

problems in alarm visualization design, this design pattern language results from both an 

extensive review of design principles, standards and guidelines, controls systems reports, 

and visualization and interaction techniques from Alarm Management, Human Factors, 

and Visualization Design, and an evaluation with designers. In particular, card-sorting 

exercises [18] with designers were conducted. Direct feedback from them was also 

elicited using a mix-questionnaire. The evaluation outcomes helped to both identify 

misunderstandings, or ambiguous terminology in order to refine the preliminary design 

pattern language (see further details of the evaluation in Section 5.3.1 Expert-based 

Evaluation). Therefore, this language does not have the bias of one person or a group. It 

spans both the alarm visualization design practice and literature.  

Finally, it is needed to determine an appropriate mechanism to document pattern 

languages. According to Hafiz et al. [56], the relationships between patterns are described 

through diagrams. In particular, two types of diagrams are mainly used to document 

pattern languages, including Alexandrian-style diagrams and text-annotated diagrams. In 

the Alexandrian style, the patterns are organized in a directed acyclic graph (DAG), from 

most general to most concrete; an arrow from one pattern to another represents a 

structural or temporal refinement. This style therefore relies on hierarchy and makes it 
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easy for the reader to identify which patterns to consider at any point in the pattern 

language. The text-annotated diagrams include textual annotations on the connections 

between patterns. They pack more information and give the reader a much quicker 

overview, but they lack standard meanings or reusable vocabulary for annotations and 

they trade off the ability to follow patters in a sequence [56]. Considering the lack of 

reusability of the text-annotated diagrams, this research work applies the Alexandrian 

style to document this design pattern language for alarm visualization design. The 

following sections describe all these aspects in more detail. 

4.2.1 Building the Catalogue of Design Patterns 
Cataloguing is a key step of growing a pattern language in a specific domain [56]. It 

consists of the selection and classification of a set of suitable design patterns for the 

purpose at hand. Nevertheless, in keeping with the research literature on pattern 

languages, there exists different interpretations of what is and isn’t a pattern and its 

abstraction level. There is no objective metric indicating the abstraction level of the 

problem addressed by patterns [77]. One person’s pattern can be another person’s 

primitive building block. According to Seeman [116], design patterns that are abstract are 

usually ideal for reuse purposes. The more specialized a design pattern gets the more 

difficult to reuse it. In this work, adapting the widely used definition proposed by Gamma 

et al. [51] in software engineering, design patterns are referred to as: 

Definit ion 2. Design Patterns.  “Descriptions of features, visual structures, 

and view transformations to define computer-based interactive visual representations of 

alarm information”.  

This catalogue of design patterns results from an extensive literature review of 

relevant sources from  different areas such as Alarm Management, Human Factors, and 

Visualization Design. In particular, the literature reviewed can be classified into two broad 

categories: (i) grey literature - informally published written material such as reports on 

control systems, standards and design principles that may be difficult to trace via 

conventional channels such as published journals and monographs because it is not 

published commercially or is not widely accessible; and (ii) peer-reviewed literature 

articles and books on visualization and interaction techniques that have been evaluated 





Chapter 4. A Design Pattern Language for Alarm Visualization Design 

 74 

Fig. 4.2-1 Different implementations of the Details hierarchy pattern. On the left side, this design pattern is 
applied to a control system interface for power plants. On the right side, this pattern is applied to the SIMATIC 

PCS 7 control system developed by Siemens [121] 

4.2.2 Describing Design Patterns 
Each design pattern is divided into eight descriptive blocks that provide textual information 

about several aspects of a design pattern. Specifically, the description of every design 

pattern follows an adaptation of the format proposed by Alexander et al. [6]. This template 

lends a uniform structure to the information, making design patterns easier to learn, 

compare, and use [51]. The meaning of each block is described as follows: 

• Pattern identifier and name. An alphanumeric identifier is assigned to each 

design pattern. An order number in addition to both the first letter of its 

purpose category and the first letter of its scope category composes it. For 

example, a design pattern classified under the Presentation category with 

Feature level of abstraction is identified as PF(X). Design Pattern name. 

Afterwards, a pattern’s name is also assigned to each pattern.  

• Classification. The pattern’s classification reflects the scheme introduced in 

Section 4.2.3 Defining a Classification Scheme. 

• Context. This block describes the design context in which this pattern should 

be considered. Different solutions can arise from the same design problem 

occurring in different contexts. Accordingly, this block outlines the set of 

situations in which the pattern is effective in responding to what the human 
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operator needs. It also describes any other design patterns that lead to this 

design pattern.  

• Problem. This block provides a brief description of the design problem that 

trigger the usage of the pattern in question. It is an expression of what the 

human operator needs to do, perceive, or understand. 

• Solution. This descriptive block outlines the crucial characteristics of the 

solution that address the problem identified. It captures details of how the 

solution can be executed, as well as further clarifying scope and context.  

• Known uses. This block features two different graphic examples that 

demonstrate the essential characteristics of the design pattern visually. 

• Rationale. This block delivers an argumentation for the usage of a pattern. 

This argumentation is mostly based on theoretical grounds related to Alarm 

Management, Human Factors, and Visualization that justify the use of the 

pattern.  

• Relations. While most patterns can be used as individual entities to perform a 

certain task autonomously, the basic idea of a pattern language is to connect 

several modules with each other based on a concrete application context. 

Following the connective rules for pattern languages proposed by Salingaros 

[110], the collection of patterns presented in this work uses five types of 

relations: (1) a pattern is called the specialization of another pattern when it 

shares the same functionality but possesses more specialized characteristics 

or features; (2) the logical consequence of the specialization pattern is its 

inversion: the generalization. As the name implies, this pattern has rather 

generic features to serve a more universal purpose; (3) for some design 

purposes, there is more than one possible solution available. The alternative 

relation makes allowance for these use cases signalling the designer that he 

can choose from several options that lead, more or less, to the same result; (4) 

the combination relation is an alliance of patterns to be applied together in 

order to address a specific human operator task; and (5) the composition 

relation indicates that a pattern is composed of one or more other patterns.  

4.2.3 Defining a Classification Scheme 
Design patterns are numerous and have common properties. Because there are many 

design patterns for alarm visualization design, it is needed a way to organize them. A 
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The second criterion, called level of abstraction, specifies whether the design 

pattern reflects visual features that an alarm visualization should support, thus, the design 

pattern is very general, or depicts how these features should be supported. Alarm 

visualization design literature includes different levels of abstraction. Feature level 

patterns are the more general patterns. They describe visual features that the alarm 

visualization should support. A feature in this work is a grouping of visual capabilities that 

provides value to the user. Mechanism level patterns are of a detailed nature depicting 

how the visual features of an alarm visualization should be addressed. In particular, they 

describe different visual mechanisms such as visual structures and view transformations 

that should be applied to support such visual features. Visual structures are defined as 

marks and graphics properties to encode information [20]. View transformations are 

defined as graphical parameters that interactively modify and augment visual structures 

[20].  

Note, as it shown in Fig. 4.2-2, that the two criteria of this classification scheme 

can be assumed as orthogonal. Orthogonality means that any of the design patterns 

classified by purpose may be classified as well by level of abstraction. This classification 

scheme forms the basis for growing the pattern language. Table 4.2-2 lists all 29 design 

patterns using this classification scheme. 
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The design patterns classified by Presentation purpose with Feature level of 

abstraction are related to both structuring the alarm information into several detailed 

levels (PF(1) Details hierarchy, PF(3) Primary level of detail, and PF(4) Secondary level of 

detail); and presenting the most relevant alarms visible all the time (PF(2) Spatial 

dedication and continuous visibility). Consequently, the design patterns classified by 

Presentation purpose with Mechanism level of abstraction specialize these design 

patterns and specify the arrangement of both these detailed levels (PM(5) Overview and 

detail) and the most relevant alarms (PM(6) Tiled layout) on the alarm visualization 

interface.  

The Representation design patterns with Feature level of abstraction are about 

providing distinctive encodings of relevant alarm information (RF(1) Highlighting); 

providing different visual properties to support the distinction of categories of alarms 

(RF(2) Visual coding schema); integrating alarm information into process displays to 

represent causal relationships between alarms (RF(3) Integrated displays); displaying 

trends to support the projection of future states of the controlled process (RF(4) Trend 

displays); and displaying the chronological order of alarms (RF(5) Lists). In this way, 

Representation patterns with Mechanism level of abstraction specialize these patterns 

and propose specific visual mechanisms for both relevant information (RM(6) Brightness 

and RM(7) Flashing) and categories of alarms (RM(8) Colour). They also describe 

specific integrated displays for representing both geographical (RM(9) Maps) and 

functional relationships between alarms (RM(10) Diagrams). Similarly, they describe 

specific trend displays, including RM(11) Bar charts, RM(12) Histograms, RM(13) Pie 

charts, and RM(14) Linear charts.  

Finally, the design patterns classified under the Interaction purpose with Feature 

level of abstraction are about allowing the operator to manipulate alarm information on the 

interface, using actions that correspond at least loosely to manipulation of physical 

objects (IF(1) Direct manipulation); and manage the display space (IF(2) Display 

resolution management). Consequently, the design patterns classified by Interaction 

purpose with Mechanism level of abstraction specialize these design patterns and specify 

both the actions (IM(2) Dynamic queries and IM(3) Brushing and linking) and view 

transformations to deal with a limited display space (IM(5) Zooming, IM(6) Panning, IM(7) 

Scrolling, IM(8) Paging, and IM(9) Distortion).  
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According to these connections, three small pattern languages have been created, 

one for each cluster of patterns corresponding to the purpose categories. In each 

grouping, the patterns were ordered in the typical order they would be applied in practice. 

Then, these small diagrams were combined into one large diagram, adding some inter-

group relationships. The details of this process, and the resulting design pattern language 

diagram are described in what follows. 

Six patterns are listed in the Presentation category in Table 4.2-2. Four out of six 

are patterns classified under Feature level of abstraction. Accordingly, the relations 

between them were firstly reviewed. Naturally, it was started with the structure of the 

alarm visualization interface (PF(1) Details hierarchy). In practice, a designer defines the 

structure of the interface and compartmentalizes it. This structure can be described as a 

composition of different levels of detail of alarm information (PF(3) Primary level of detail 

and PF(4) Secondary level of detail). PF(3) Primary level of detail describes the need of 

presenting a first level of detail or overview of the alarm information. PF(4) Secondary 

level of detail refers to provide a secondary level of detail that presents all the alarm 

information regarding key elements of the controlled process. Therefore, different 

composition arrows related PF(1) Details hierarchy with both PF(3) Primary level of detail 

and PF(4) Secondary level of detail. To these different levels of detail of alarm 

information, a designer should add the presentation of the most relevant alarms that will 

remain manageable under all controlled process conditions (PF(2) Spatial dedication and 

continuous visibility). PF(2) Spatial dedication and continuous visibility describes the need 

of presenting the most important alarms, always visible, in a spatially dedicated position. 

As a consequence, a combination arrow related these two patterns.  

After relating these Feature level patterns, connections with and between 

Mechanisms level patterns were secondly identified. A way of presenting the different 

levels of detail of alarm information on the interface is by using PM(5) Overview and detail 

pattern. PM(5) Overview and detail refers to simultaneous display of both an overview 

and detailed views of the alarm information, each in a distinct presentation space. 

Accordingly, a specialization arrow from PF(1) Details hierarchy to PM(5) Overview and 

detail was added. Similarly, PM(6) Tiled layout specializes PF(2) Spatial dedication and 

continuous visibility. PM (6) Tiled layout recommends using a tiled structure to present a 

summary of the most relevant alarms. Thus, a specialization arrow from PF(2) Spatial 
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dedication and continuous visibility to PM (6) Tiled layout was also added. Fig. 4.2-3 

shows the resulting pattern language. 

 

Fig. 4.2-3 Pattern language of Presentation design patterns 

Fourteen patterns are listed in the Representation category in in Table 4.2-2. Five 

out of fourteen are patterns classified under Feature level of abstraction. Accordingly, the 

relations between them were explored in first place. In practice, after defining the 

structure of the alarm visualization interface, a designer defines the visual displays 

formats that make up an alarm visualization interface, the roles played by these displays, 

and their building blocks. The main visual displays formats can be RF(3) Integrated 

displays, RF(4) Trend displays, and RF(5) Lists. RF(3) Integrated displays show alarms in 

a consistent way across controlled process information. They should ensure that most 

important alarms are easily distinguishable (RF(1) Highlighting and RF(2) Visual 

distinction). Therefore, different combination arrows related these five patterns. Similarly, 

they should also provide both interaction mechanisms (IM(3) Dynamic queries) and 

display resolution mechanisms to ensure human operator’s tasks  (IM(5) Zooming, IM(6) 

Panning, and IM(9) Distortion). It was also found that PF(3) Primary level of detail can 

incorporate a combination of separate alarm visual displays formats (RF(5) Lists) and 

integrated displays (RF(3) Integrated displays). However, these inter-group relationships 

between design patterns were not considered until the construction of the final design 

pattern language diagram. RF(4) Trend displays show trend data to ensure that rapidly 
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changing variables in the controlled process can be interpreted. They can be part of both 

primary (PF(3) Primary level of detail) and secondary levels of detail of alarm information 

(PF(4) Secondary level of detail). These inter-group relationships were added to the final 

design pattern language diagram. Finally, RF(5) Lists shows alarm information arranged 

in a chronological order. As RF(3) Integrated displays, they should provide both 

interaction (IM(4) Brushing and linking) and display resolution mechanisms (IM(7) 

Scrolling and IM(8) Paging) to ensure human operator’s tasks. Nevertheless, as above, 

these inter-group relationships were only considered at the final design pattern language 

diagram.  

Based on the relationships identified between Feature level patterns, connections 

with and between Mechanism level patterns were reviewed in second place. Two types of 

integrated displays can be distinguished, including RM(9) Maps and RM(10) Diagrams. 

RM(9) Maps pattern displays geographical relationships between alarms. RM(10) 

Diagrams pattern displays functional relationships between alarms. Therefore, a 

specialization arrow from RF(3) Integrated displays to both RM(9) Maps and RM(10) 

Diagrams related these design patterns. Likewise, there exists different types of trend 

displays such as RM(11) Bar charts, RM(12) Histograms, RM(13) Pie charts, and RM(14) 

Linear charts. RM(11) Bar charts pattern presents a display in which numeric quantities 

are represented by the linear extent of parallel lines, either horizontally or vertically. 

RM(12) Histograms pattern describes a type of bar chart used to depict the frequency 

distribution for a continuous variable. Therefore, a specialization arrow from RM(11) Bar 

charts to RM(12) Histograms was added. RM(13) Pie charts pattern presents a circular 

chart that represents magnitude or frequencies. RM(14) Linear charts pattern represents 

relationships between two or more continuous variable. As a result, a specialization arrow 

from RF(4) Trend displays to RM(11) Bar charts, RM(12) Histograms, RM(13) Pie charts, 

and RF(14) Line charts was added. Similarly, two alternative techniques to highlight 

critical information can be used, including RM(6) Brightness and RF(7) Flashing. RM(6) 

Brightness highlights relevance by making an object appear brighter than others. RM(7) 

Flashing increases salience by increasing and decreasing in alteration the brightness of 

an object or its background. An alternative arrow was added thus to represent the 

alternative relation between these two patterns. To support the distinction of alarms 

(RF(2) Visual distinction), colour coding can be used to code categories of alarms (RM(8) 

Colour). Therefore, a specialization arrow from RF(2) Visual distinction to RM (8) Colour 

was added. Moreover, RM(6) Brightness is a colour feature. Consequently, a 
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specialization arrow from RM(8) Colour to RM(6) Brightness related these two patterns. 

Fig. 4.2-4 shows the resulting pattern language.  

 

Fig. 4.2-4 Pattern language of Representation design patterns 

Nine patterns are listed in the Interaction category in Table 4.2-2. The 

relationships between them were explored together. Firstly, designing the interaction 

features for an alarm visualization involves defining the type of dialogue through which the 

operator and the system interact and the type of actions that the operator can perform on 

a display. Particularly, it was identified that this dialogue should allow operators to act on 

visible objects to accomplish tasks (IF(1) Direct manipulation). Two different 

implementations of this dialogue are IM(3) Dynamic queries and IM(4) Brushing and 

linking. IM(3) Dynamic queries allow operators explore different subsets of the alarm 

information by manipulating selectors. IM(3) Dynamic queries is mostly combined with 

RF(3) Integrated displays. IM(4) Brushing and linking creates a tightly coordination 

between alarm visual displays under the selection of specific items in a display or set of 

displays. Therefore, IM(4) Brushing and linking can be combined with different alarm 

visual displays formats (PM(5) Overview and detail). However, due to the inter-group 

nature of these relationships between patterns, only a specialization arrow from IF(1) 

Direct manipulation to IM(3) Dynamic queries and IM(4) Brushing and linking was added. 

Secondly, designing the interaction features for an alarm visualization also involves 

considering the display space issues when alarm information is too large to be displayed 

all at once with a level of resolution adequate for operators’ tasks (IF(2) Display resolution 

management). IF(2) Display resolution management describes the need of using 
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mechanisms that allow the operator specifying a different degree of interest in different 

parts of information. There exist different specific mechanisms to deal with this lack of 

display space, including IM(5) Zooming; IM(6) Panning; IM(7) Scrolling; IM(8) Paging; and 

IM(9) Distortion. IM(5) Zooming and IM(9) Distortion can be characterized as alternative 

mechanisms to allow an operator to obtain details of a selected portion of a large visual 

display. IM(6) Panning allows moving a viewing frame over a display space of greater 

size. It was found that these mechanisms are particularly combined with visual display 

formats that integrate alarm information into process displays (RF(3) Integrated displays). 

However, this inter-group relationship between design patterns was not considered until 

the construction of the final design pattern language diagram. IM(7) Scrolling, and IM(8) 

Paging patterns are alternative solutions to allow the operator to move across alarm 

information that does not fit the display. These techniques were also found particularly 

suited to different visual display formats, including RF(5) Lists. However, as in the 

previous case, these inter-group relationships between design patterns were not 

considered until the construction of the final design pattern language diagram. In this way, 

only alternative arrows between these design patterns were included. Fig. 4.2-5 shows 

the resulting design pattern language. 

 

Fig. 4.2-5 Pattern language of Interaction design patterns 

Previous pattern languages shown in Fig. 4.2-3, Fig. 4.2-4, and Fig. 4.2-5 are 

relatively self-contained, because they describe solutions for different classes of alarm 



Chapter 4. A Design Pattern Language for Alarm Visualization Design 

 86 

visualization design problems. However, different inter-group relationships were identified 

during the construction of these pattern languages. Hence, in order to create the final 

diagram, shown in Fig. 4.2-6, these additional relationships have been added. Here are 

the main additional connections made for this diagram: 

• Providing a first level of detail of alarm information (PF(3) Primary level of detail) 

combines RF(3) Integrated displays, RF(4) Trend displays and RF(5) Lists. 

• Providing a secondary level of detail of alarm information (PF(4) Secondary level 

of detail) requires the use of RF(4) Trend displays. 

• Interacting with alarm information that does not fit the display space involves 

combining IM(5) Zooming, IM(6) Panning, and ID(9) Distortion with RF(3) 

Integrated displays. Similarly, RF(5) Lists should be combined with ID(7)Scrolling, 

and ID(8) Paging. 
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4.3 Using the Design Pattern Language 
This design pattern language represents the essential design knowledge for designing 

alarm visualizations. It seeks to facilitate the design tasks by complementing existing 

design methods and processes with descriptions of recognized alarm visualization design 

solutions that have developed and evolved over time. As it has been already defined, the 

visualization design process can be thought of as adjustable mappings from data to visual 

form to the human perceiver. However, the most important mappings in this process are 

both the transformation from data tables to visual abstractions and the transformation 

from visual abstractions to views [20]. Visual abstractions are defined as “structures that 

combine values and available vocabulary of visual elements” [20]. Visual abstractions can 

be further transformed by view transformations by adding controls for interaction. 

Under the human-centred visualization design approach, these mappings are not 

only driven by data characteristics but also by the domain problem characterization. In 

particular, it is required the characterization of the user’s tasks at different levels of 

abstraction for making visual encoding and interaction decisions (see Fig. 4.3-1). 

 

Fig. 4.3-1 Integration of the human-centred visualization design approach into the visualization reference 
model 

It is at this step in which design patterns become relevant design tools to inform 

the transition between these structures (see Fig. 4.3-2). They take into account human 

operator tasks and supply visualization and interaction design solutions that support these 

tasks.  
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Fig. 4.3-2 Integration of the design patterns into the visualization design process 

Following a similar approach than in the process flow diagram proposed by [88], 

Fig. 4.3-3 shows a process flow diagram that depicts the integration of the design patterns 

into the alarm visualization design process. Following, each of the steps of this process is 

further described. 

Step 1. At this first step, a designer must elicit a set of design requirements in terms of 

both human operator tasks and information requirements in a target environment. 

Interviews and other ethnographic methods can be used to achieve this purpose. 

Step 2. This second step consists of mapping the design requirements elicited from the 

vocabulary of the environment into a more abstract and generic description that is the 

vocabulary provided by the design patterns. To achieve that, the catalogue of design 

patterns defined in Section 4.2.1 Building the Catalogue of Design Patterns) supports the 

designer. The classification of design patterns by purpose and scope supports this 

mapping. 

 Step 2.1. Eliciting requirements is not easy, even when a designer has access to 

target users [265]. There can be situations in which the previous mapping cannot be 

performed due to an incomplete or too general requirement characterization. Similarly, the 

designer can also make a mistake in this mapping process. In both cases, it is necessary 

to return to the Step 1.  

Step 3. The third step is the process of refining the previous requirements mapping, 

taking into account the existing relationships between design patterns defined in the 

design pattern language diagram (see Fig. 4.2-6). This refinement can be seen as an 

iterative process to which the design pattern language provides a framework upon which 

the design solution can be anchored. 
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Step 3.1. Based on the content of the “Relations” field of a design pattern, 

it is required to follow the “composition relationships” of a design pattern in 

question. It means that others patterns compose a design pattern, which 

should be included for completeness.  

Step 3.2. It is also required to consider all those design patterns that 

establish a “combination relationship” with the pattern at hand. They can be 

applied together in order to address a specific requirement. 

Step 3.3. Similarly, it is needed to consider all those design patterns that 

establish an “alternative relationship” with the pattern at hand as a potential 

design alternative. 

Step 3.4. Finally, regarding “specialization relationships”, it is needed to 

consider if the design pattern in question should be replaced. In that case, 

it is necessary to return to the Step 3. 

Step 4. The fourth step aims at organizing the previous mappings according to the 

corresponding purpose, including presentation, representation, and interaction. Each 

design pattern in turn may have different level of abstraction, categorized into Feature, 

and Mechanism. 

Step 5. Finally, the solution should be created. Previous design patterns should be 

instantiated considering the particularities of the application domain. As a result, an alarm 

visualization design should be generated. 
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Chapter 5. Evaluation 

Everything that can be counted does not necessarily count; everything that counts 

cannot necessarily be counted 

- Albert Einstein, German Physicist 

Evaluation is a crucial component of the research process [59]. It is focused on assessing 

that a proposed solution meets the requirements identified in a research work.  Evaluation 

requires the definition of goals, the definition of appropriate metrics based on such goals, 

and the gathering and analysis of appropriate data to validate their achievement. As a 

consequence, each evaluation is quite specific to the artifact being evaluated, its purpose, 

and the goals of evaluation. In design science research in the area of Information 

Systems (IS), evaluation is particularly concerned with examining design science 

research outputs, including design artifacts and design theories [138]. It provides 

evidence that a new designed artifact achieves the purpose for which it was designed. 

Without evaluation, outcomes are unsubstantiated assertions that the designed artifacts, if 

implemented and deployed in practice, will achieve their purpose. Rigorous, scientific 

research requires evidence.  

This chapter presents the evaluation process of the design pattern language for 

alarm visualization design and its results. In particular, it firstly describes the evaluation 

plan for successfully conducting the evaluation of the proposed solution in reference to 

the goals of this research work. In second place, it explains the evaluation conducted, 

emphasizing both the type of evaluation methods utilized and the results obtained. Finally, 

it discusses the analyses of such results.   

5.1 Evaluation in Research 
Evaluation is defined as “the systematic determination of merit, worth, and significance of 

something or someone” [59]. Evaluation theory has its roots in social inquiry and the 

desire for accountability and control. Depending upon the objectives of the evaluation, 
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different methods and strategies are used to guide inquiry. The methods and strategies 

are selected, in turn, based on the type of evaluation required. Particularly, evaluation 

falls into three main types, those oriented toward the construction of knowledge, those 

oriented toward placing value, and those oriented toward how an artifact is used [7]. 

Evaluation can be further broken into two distinct categories, formative and summative 

[114]. Formative evaluation focuses on processes and summative evaluation focuses on 

outcomes. Based on such distinctions, next section depicts a set of common steps that 

characterizes every evaluation process. Afterwards, it depicts the goals of this evaluation. 

Finally, the description of the evaluation methods used is provided.  

5.1.1 The Evaluation Process 
Irrespective of when, where, and how an evaluation is done, all evaluation studies have 

certain structure in common. That structure is described in what follows: 

• To position the evaluation. Positioning the evaluation involves determining the 

boundaries of the evaluation, and defining the set of objectives that will be 

assessed. Objectives guide the evaluation by helping to determine its scope.  

• To plan the evaluation. Having identified the objectives of the evaluation, the next 

step is to choose what data is needed to answer the evaluation questions, how the 

data will be analysed, which evaluation methods will be used and how the results 

will be presented. This latter choice depends on what data is needed to answer 

the questions and which theories are appropriate to the context.  

• To collect data. The data collection task mostly consists of gathering data, which 

has three main parts, including determining the source of information, developing 

data collection instruments such as interview guides and questionnaires and 

collecting the information.  

• To analyse and synthesize data. Analysing and synthesizing data provide ways of 

discerning, examining, comparing and contrasting, and interpreting meaningful 

patterns or themes. Meaningfulness is determined by the particular objectives of 

the research work at hand; the same data can be analysed and synthesized from 

multiple angles depending on the particular research or evaluation questions being 

addressed.  
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• To communicate evaluation findings. In the final stage of an evaluation, it is 

required to communicate to the appropriate parties the findings that are based on 

the previous syntheses.  

5.1.2 The Goals of the Evaluation 
Following Hevner et al. [59] many researchers in the field of design science research 

have argued for quality and utility of design artifacts. Researchers state that design 

artifacts can be evaluated in terms of functionality, completeness, consistency, accuracy, 

performance, reliability, usability, fit with the organization, and other relevant quality 

attributes, whereas utility is often the defining characteristics of artifact evaluation. As a 

consequence, and according to Gamble and Goble [50], it is possible to differentiate 

between quality and utility in the form of dependent and independent evaluation 

respectively: (i) quality – a function of the artifact or process assessed against a quality 

specification to provide a specific, objective measure of quality; and (ii) utility – a function 

of the artifact and user to assess whether the output fits the purpose and meet the needs. 

The interpretation of these evaluation parameters within the context of this research work 

is further described in what follows and summarized in Table 5.1-1 and Table 5.1-2. 

Quality. In keeping with the research literature on pattern languages, when 

discussing the quality of a pattern language, different parameters related to both the 

language and the design patterns need to be considered. In particular, internal 

connectivity [110] is identified as a desirable attribute of a pattern language. Generativity, 

descriptive, recurrence, and explicative refer solely to design patterns [86]. The internal 

connectivity of a pattern language is concerned with its integrity and maturity. The 

integrity of a design pattern language can be defined as the organization of patterns into a 

hierarchy where the higher-level patterns provide a conceptual description but also 

provide the context in which the lower level patterns could be used. Links within levels 

indicate that a language is developing maturity as readers can better understand a 

language if it has organization at different levels. Similarly, several attributes can affect 

the quality of the resulting collection of patterns. Generativity refers to how well the 

patterns teach to build their manifestations. Descriptive is concerned with the capability of 

patterns of describing the nature of the solution proposed. Recurrence refers to the 

reappearance of the design pattern in different situations. Finally, explicative is related to 

how well the design pattern arguments the reasons for its application.  







     Chapter 5. Evaluation 

 97 

5.1.3 The Evaluation Methods 
The selection of evaluation methods must be matched appropriately with the kind of 

designed artifact being evaluated and the selected evaluation goals [59]. In accordance to 

that, previously to select the evaluation methods to be used in this research work, it is 

required to review the nature of the evaluand and the evaluation goals identified. 

Regarding the nature of the evaluand, based on the literature, Venable et al. [138] 

distinguishes two different classification of designed artifacts: (1) product artifacts from 

process artifacts; and (2) technical artifacts and socio-technical artifacts. Product artifacts 

are technologies such as tools, diagrams, or software that people use to accomplish 

some task. Process artifacts are methods, and procedures that guide someone or tell 

them what to do to accomplish some task. Technical artifacts are those that do not require 

human use once instantiated. Socio-technical artifacts are ones with which humans must 

interact to provide their utility. This research work proposes a design pattern language as 

a process artifact that guide non-experienced designers in the design of alarm 

visualizations. It can be also characterized as a socio-technical artifact since designers 

must interact with it in order to solve their design problems.  

Regarding the evaluation goals, as it was depicted in Section 5.2.2 The Goals of 

the Evaluation, the evaluation of this design pattern language is focused on 

demonstrating its quality and utility to allow non-experienced designers to reuse previous 

alarm visualization design knowledge. In particular, to demonstrate the quality of the 

design pattern language, a set of different dimensions related to both the pattern 

language and the design patterns need to be evaluated. Similarly, to demonstrate the 

utility of the design pattern language, its operational feasibility, usability, and efficacy need 

to be assessed. By considering these aspects, it is possible to identify a set of possible 

evaluation methods that fit the nature of the design pattern language and the evaluation 

goals. In what follows, the selected evaluation methods are described.  

• Expert-based evaluation. An expert-based evaluation utilizes the 

knowledge of professionals in a specific area to evaluate a designed 

artifact. The purpose of the expert-based evaluation of the design pattern 

language is twofold. On the one hand, it uses the knowledge of designers 

to identify misunderstandings, or ambiguous terminology in order to refine 

the definition of the design pattern language. On the other hand, it allows 

validating the design patterns according to the agreement of designers 
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Fig. 5.2-1 Expert-based evaluation: participant sorting textual cards of pattern descriptions.  

Each textual card contained a pattern name, pattern problem description and 

pattern solution description. An overview of the meaning of the pre-defined categories 

was provided. Once the cards were sorted into groups, the participant was asked to look 

at each card and mark its quality of fit in the category he/she selected for it: poor, fair or 

perfect. The participant could also propose new categories labels that make more sense 

to them if required. Therefore, a combined card sorting method was used. This 

combination helped to see both how well the pre-defined categories labels worked and 

how designers grouped the design patterns. This step typically took around 35 minutes.  

In the second step, a mix-questionnaire including three open-ended questions and 

two closed-ended questions was given to the participants. These questions (see Table 

5.2-2) were related to both the terminology used to refer and categorize design patterns 

and the quality of design patterns descriptions throughout the language. A four-value 

Likert scale was used to collect the opinion of designers in closed-ended questions: 

strongly agree (4), agree (3), disagree (2), and strongly disagree (1). This scale was 

chosen to avoid neutral responses.  
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nature seems to be more relevant for designers to identify these design patterns than the 

need of handling limited display spaces. 

 

Fig. 5.2-2 Expert-based evaluation: Item dendogram card sorting results 

The pairs map (shown in Fig. 5.2-3) also supported this result. This map shows 

the frequency with which every possible pair of items appeared together in the same 

groups. The map uses colour saturation to display this so that a white cell shows a pairing 

that did not occur while a dark cell shows a pairing that was made by most participants. 

For instance, Trend displays pattern and Diagrams pattern tended to be sorted together 

by most participants. As expert data is used in this analysis, the central portion of each 

cell indicates the expert pairings and alignment. An example of that is the pair of patterns 

Primary level and Secondary level. The bottom row shows relative alignment. In this row, 

darker cells represent items that were consistently grouped while lighter cells indicate less 

agreement between participants. Considering the results supported by these two 

diagrams, a refinement of the preliminary version of the catalogue of design patterns was 

carried out. This refinement consisted of the movement of Direct manipulation, Zooming, 



     Chapter 5. Evaluation 

 104 

Scrolling, Paging, Panning, and Distortion patterns from the Presentation category to the 

Interaction category. 

 

Fig. 5.2-3 Expert-based evaluation: Pairs map card-sorting results 

Finally, the participants’ responses to the mix-questionnaire were analysed. The 

set of participants’ responses to the open-ended questions is gathered in Table 5.2-3. 

These responses suggested that some dimensions of the classification scheme were 

ambiguous or misleading. For instance, Principles and Techniques categories were 

considered difficult to distinguish. Therefore, some changes and additions in the 

preliminary version of the classification scheme were conducted, such as the replacement 

of Principles and Techniques categories for Feature-level and Mechanism-level 

categories. The final version of the elements of the design pattern language is shown on 

the Chapter 4. A Design Pattern Language for Alarm Visualization Design. 
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Patterns for Alarm Visualization Design context and reference links are 

identified in the “Relations” block of each design pattern. 

• Test 2. Does the context map match the reference map? Using the results of 

the previous test, this question refers to the creation of both a context map and 

a reference map. A comparison of these two maps should show if they match. 

• Test 3. Can the map be ordered into a hierarchy of levels? This question is 

related to the possibility of organizing design patterns in a hierarchy in which 

higher-level patterns provide a conceptual description of an alarm visualization 

system as well as a definition of the context in which lower-level design 

patterns should be applied.  

• Test 4. Can the levels be used to describe an alarm visualization system at 

different degrees of granularity? This question is related to the semantic 

granularity provided by the design pattern language. Semantic granularity 

addresses the different levels of specification of an entity in the real world.  

• Test 5. How rich are the links within each level of the hierarchy? This question 

refers to the definition of the number of links between nodes at each level in 

the hierarchy of design patterns. To that end, the six-point scale defined in 

[133]  is applied: (none) no observed intra level links in any level of the 

hierarchies identified; (unknown) so many links the user becomes confused; 

(minimal) less than 10% of the links are intra level links; (developed in one 

level) at least a third of the reference links within only one level are intra level 

links; (developing) more than 10% of the links are intra level links and occur in 

more than half of levels below the root; and (rich) more than 30% of the links 

are intra level links and occur in more than half of the levels below the root. 

• Test 6. Can the patterns be organised by different classification systems 

thereby providing alternative viewpoints? It refers to the existence of different 

classification criteria for the same collection of design patterns. The 

classification schema applied for this design pattern language is described in 

Section 4.2.3 Defining a Classification Scheme 

In what follows, the application of these tests to the design pattern language 

proposed is described.   

As it is shown in Fig. 4.2-6, a language map was created from the links mentioned 

in the “Relations” block of each design pattern. Following the notion of a pattern language 
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proposed by Borchers [12], this map represents this language as a directed acyclic graph 

(DAG), where nodes are patterns and edges describe references and context from a 

pattern to another. In particular, the set of edges leaving a node is called its references. 

The set of edges entering it is called its context. The design pattern language passes 

therefore Test 1. To evaluate if the context map matches the reference map, another 

language map showing context and reference links was constructed. To construct this 

map, context and reference links were distinguished as follows: 

• Context links are shown as dotted lines with arrows. 

• Reference links are shown as dashed-lines with arrows.  

• Links identified in both patterns are shown as solid-lines with arrows. 

In Fig. 5.2-4 due to the context and reference map matched solid lines represent 

all links. Therefore, the design pattern language passes Test 2. 
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Examining this language map indicates that there is a pattern, PF(1) Details 

hierarchy, which acts as a root node for a hierarchical structure. In particular, it can be 

characterized as a three-level hierarchy. The first level of the hierarchy (shaded in grey 

in Fig. 5.2-4) describes the need of structuring the alarm information into several 

detailed levels, which can be subdivided into more specific design purposes. The 

second level of the hierarchy (shaded in blue in Fig. 5.2-4) describes the set of basic 

representation required to assign graphic properties to alarm information attributes. 

Finally, the third level of the hierarchy (shade in green in Fig. 5.2-4) describes the set 

of basic interaction techniques needed to allow the operator to manipulate alarm 

information on the interface.  Consequently, this collection of patterns passes Test 3. 
This design pattern language is also appropriate to pass Test 4. This design pattern 

language provides design patterns with different levels of abstraction as it is described 

in Section 4.2.3 Defining a Classification Scheme. According to Todd et al. [133], these 

four passed tests confer to this collection of design patterns the status of design 
pattern language. 

The links between patterns within the levels of the hierarchy were also 

examined. According to Salingaros [110], a pattern language’s maturity, is determined 

by both inter and intra-level links. To that end, a language map was created from the 

intra-level links mentioned in the “Relations” block of each design pattern. As it shown 

in shown in Fig. 5.2-5, 26 out of 35 of these links are intra-level links. As a result, 

based on the six-point scale previously described for Test 5, this design pattern 

language can be defined as ‘rich’. Finally, although only one hierarchy can be traced 

through the patterns of the patterns collection, two classification criteria have been 

proposed (see Section 4.2.3 Defining a Classification Scheme), by purpose and by 

level of abstraction. Consequently, this language passes Test 6. According to Todd et 

al. [133], these two passed tests confer this language the status of a mature 
language. However, as is expected in such a young discipline as visualization design, 

this language can’t be described as complete. Over time this design pattern language 

should include new design patterns for alarm visualization design.
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Fig. 5.2-5 Analytical evaluation: Language map showing intra-level links 
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5.2.3 Descriptive Evaluation 
The purpose of a descriptive evaluation is to support or refute parts of a designed artifact 

by means of borrowing the form of design narratives [59]. In this case, the scenario 

method is used to construct a detailed argumentation around the operation feasibility of 

the design pattern language. In particular, two different scenarios have been defined 

within the context of the two case studies presented in 3.1.2 Case Studies. These 

scenarios are framed then within two different application domains of alarm visualization 

design, including the electric power grid operation and the emergency response. In this 

way, these scenarios span, respectively, classic and emerging domains where alarm 

visualizations are used. By applying the design pattern language to these two different 

contexts; it is possible to ascertain that it can be used to design alarm visualizations for 

operating control systems across application domains. In what follows, these scenarios 

are described in further detail. They are described following each of the steps defined in 

the integration process of the design pattern language (see Section 4.3 Using the Design 

Pattern Language). 

SCENARIO 1: DESIGNING ALARM VISUALIZATIONS FOR THE ELECTRIC POWER GRID

OPERATION

This first scenario is framed within the context of the Smart Grid operation. It 

describes the application of the design pattern language to an operational user interface 

based on managing alarms for the Smart Grid. This interface was developed as a part of 

the Energos project, already described in 3.1.2 Case Studies. 

As a result of Step 1 (Requirements elicitation), the requirement characterization 

outlined below is taken and adapted from [106]. This operational user interface seeks to 

support the most significant operating tasks such as monitoring and controlling the grid. 

Monitoring tasks refer to review the status of the grid in order to detect and register 

potential incidents. Controlling tasks are focused on supervising the performance of 

planned operations and managing both events and incidents. This interface gives various 

types of alarms generated by a variety of devices about the status of the grid, being the 

responsibility of the human operator to decide on real time their priority and relevance. 

Focusing on the representation of these alarms generated, a set of main design 

requirements were identified: 
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• RQ1. When a severe disturbance occurs, control room operators need to be able 

to trade with huge pieces of alarm information, which are collected from different 

devices and with different levels of priority and relevance. 

• RQ2. Control room operators need to make sense of alarm information in relation 

to the grid connectivity and geographical position. 

• RQ3. They also need to get an overview of incidents and critical events grouped 

by time, type and devices. 

• RQ4. Control room operators require organizing and searching alarm information 

depending on the operating situation. 

Based on this requirements characterization, Step 2 (Requirements mapping) 
consists of mapping these requirements into a more abstract and generic description that 

is the vocabulary provided by the design patterns. The use of the catalogue of design 

patterns defined in Section 4.2.1 Building the Catalogue of Design Patterns facilitates this 

process. Table 5.2-5 shows the resulting mapping.   
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SCENARIO 2: DESIGNING ALARM VISUALIZATIONS FOR EMERGENCY RESPONSE

As a result of the Step 1 (Requirements elicitation), the requirement 

characterization outlined below is taken and adapted from the research work described 

in [58]. This research work was developed within the context of the Emercien project 

(Emergency management and civic engagement). The Emercien project has been 

already described in 3.1.2 Case Studies. Focusing on the representation of these 

alarms, a set of design requirements has been identified: 

• RQ1. The volume of alarms generated can vary across emergency situations. 

Accordingly, an emergency volunteer needs to be able to explore different 

volumes of alarms without loosing the track of the overall emergency situation. 

• RQ2. Community volunteers need to track emergency warnings declared by 

official emergency organisms and corps and foresee their evolution across both 

time and geographical locations in order to support a better response to a 

situation.  

• RQ3. People with diverse skills and capabilities compose the crowd of 

volunteers and citizens who can provide different types of alarms with different 

levels of priority through different technological platforms. Thus, an emergency 

volunteer needs to distinguish different levels of alarm priority and diverse alarm 

sources. Particularly, it is needed to allow the distinction of three different levels 

of priority, including high-priority level, middle-priority level, and low-priority 

level; and two main alarm sources, including volunteer-generated alarms and 

citizen-generated alarms. This latter source of alarms can be subdivided in turn 

into alarms reported by citizens from social networks and citizen alarms from 

mobile applications. 

• RQ4. Not all emergencies require the same degree of response or attention, 

and each incident should be evaluated on a case-by-case basis. Therefore, it is 

required to provide flexible navigation and interaction to emergency volunteers 

across alarm information. 

Based on this requirements characterization, Step 2 (Requirements mapping) 
consists of mapping these requirements into a more abstract and generic description 

that is the vocabulary provided by the design patterns. The use of the catalogue of 

design patterns defined in Section 4.2.1 Building the Catalogue of Design Patterns 

facilitates this process. Table 5.2-7 shows the resulting mapping. 
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Fig. 5.2-9 Descriptive evaluation: Solution instantiation in the second scenario 
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Step 5 (Solution instantiation) is related to the definition of the final design 

solution dependent of the application domain. Accordingly, Fig. 5.2-9 shows how these 

design patterns were instantiated to develop the final design solution. Further details 

about this final design solution are described in [58].   

5.2.4 Experimental Evaluation 
The purpose of an experimental evaluation is to assess a designed artifact within 

controlled settings. In this work, this experimental evaluation assesses the design pattern 

language within controlled settings based on the use of the controlled experiment method. 

This method studies the designed artifact in order to determine a set of qualities. In this 

case, this evaluation attempts to assess the design pattern language’s usability and 

efficacy by setting up an experiment with two rounds based on an assignment given to 

undergraduate students.  

In the first round of the evaluation, two groups of participants, wherein one group 

used a paper version of the design pattern language and the other didn’t, were requested 

to deliver an alarm visualization system sketch. This approach was used to measure 

differences in pattern language applicability based on the design material provided. In the 

second round of the evaluation, a new group of participants were requested to deliver an 

alarm visualization system sketch using an interactive version of the design pattern 

language. Taking into account the usability issues of the design pattern language reported 

by most participants in the first round of the evaluation, this approach was used to 

measure the usability of the design pattern language based on the use of an interactive 

graph-based version of the design pattern language. Further details about this evaluation 

are described in what follows. 

FIRST ROUND OF THE EVALUATION

Experimental set-up 

The first round of the evaluation was carried out within the context of a course titled 

“Designing Interactive Systems”. The course is offered at the Spanish modality of the 

undergraduate program of the Computer Science and Engineering Department at the 

University Carlos III de Madrid, Spain. In total, 21 students attended to the course during 

the academic year 2014-2015. They on average had the same level of familiarity with 

design patterns based on the courses that the students had attended in previous 
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semesters. They were given extra credit in coursework as an incentive to participate in 

this evaluation. All participants received the same preparatory material at the start of the 

evaluation. The design pattern language was delivered as oral introduction during a 

session of this course. The experiment was conducted during a second session by 

requesting the students an assignment on the design of an alarm visualization system 

paper sketch using a paper version of the design pattern language (see Fig. 5.2-10). The 

rationale for this was to try to avoid any electronic devices so that the tools themselves 

would not become a barrier to trying to sketch out ideas. They were divided into two 

groups, one group used the design pattern language and the other didn’t. Within each 

group, students worked in an individual mode. From the 21 undergraduate students 

attending to the course on “Designing Interactive Systems”, three students did not attend 

to the second session of the evaluation and did not deliver the assignment. Therefore, the 

total of participants in the experiment was 18, divided in groups of 9 participants each. 

 

Fig. 5.2-10 First round of the Experimental evaluation: participants designing a sketch of the user interface of 
an alarm visualization system for emergency response 
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Procedure 

The assignment requested to the students was framed within a crisis scenario for 

emergency response triggered by an earthquake. Earthquakes are one of the most 

challenging crisis situations that human operators within an emergency operation centre 

have to deal with. The description of this crisis scenario is provided in what follows: 

“The 2011 Lorca earthquake was a moderate magnitude 5.1 earthquake 

that caused significant localized damage in the Region of Murcia, Spain. Centred 

at a very shallow depth of 1 km near the town of Lorca, a ninety-thousand-

population city, it occurred on 11 May 2011, causing panic among locals and 

displacing many from their homes. A falling cornice killed three people. A total of 

nine deaths were confirmed, while dozens were reported injured. The situation 

was not re-established until three days later.  

From the 112 emergency operations centre of the Region of Murcia point of 

view, the earthquake started around 17:35 on 11 May 2011. During the next fifteen 

minutes, the alarm system registered a set of alarms from electromagnetics 

sensors with high priority and the calling centre received thousands of citizen 

callings related to seismic activity in the regions of Murcia, Albacete and Almería. 

This first activity was preceded by a magnitude 4.5 foreshock at 18:50, which 

resulted in an increasing registration of high-priority alarms located around the 

southeast of the Region of Murcia.  

Simultaneously, the population of Lorca started crowdsourcing about the 

developing situation, providing textual and graphical information through social 

networks. This kind of informal information helped human operators at the 112 

emergency operations centre of the Region of Murcia to have a large picture of the 

situation: which areas were more affected, who needed helped, which kind of 

damages were produced” 

Based on this scenario, a set of design requirements was provided to the students 

(see Table 5.2-9). The deliverable of the assignment was a paper sketch of the user 

interface of an alarm visualization system for emergency response. This sketch should 

address the set of design requirements. It also should be documented by discussing 

design decisions made for each requirement as well as by describing the use of 

appropriate design patterns in the case of the group using them. The time given to finish 
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pattern language can be characterized as useful to assist non-experienced designers to 

both relate design requirements and find appropriate visual solutions to the requirements 

at hand. However, they also suggest that the design pattern language doesn’t provide a 

significant advantage over understanding design requirements without it, which it is highly 

dependent on both the level of abstraction of the design requirement and the designer’s 

interpretation. As previous research on visualization design has already pointed out [91], 

high-level descriptions of design requirements are difficult to be input to the abstraction 

stage from the vocabulary of the specific domain into a more abstract and generic 

description that is in the vocabulary of visualization. It is for this abstraction process in 

which the proposed design pattern language seems to acquire more value for the 

participants. 

 

Fig. 5.2-11 First round of the Experimental evaluation: Results of participants. responses to the closed-ended 
questions with general purpose; for questions see Table 5.2-10 

These general conclusions on the usability of the design pattern language were 

also supported by the results of the analysis of the participant’s responses for each of the 

five design requirements to address in the sketch (see Fig. 5.2-12). These results shows 

that the group using the design pattern language found slightly more difficulties (coloured 

in red) than the group not using it to understand some specific design requirements such 

as DR2 (“The human operator should be able to characterize the source of alarms, 

typology, and priority”) or DR5 (“The human operator should be able to compare the 

distribution of alarms across sources, typologies, and priorities”). However, it also displays 

that was easier for the group using the design pattern language to find visual solutions to 

the most design requirements.  
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Fig. 5.2-13 First round of the Experimental evaluation: Results on the design patterns applied by the group of 
participants using the design pattern language; for patterns’ names use Table 5.2-12 

In order to know the participants’ opinion about specific elements provided by the 

design pattern language, the participants’ responses to the open-ended questions were 

analysed. In general, participants reported that they perceive as more difficult to 

understand the links between design patterns specified in the “Relations” block of each 

pattern, a result that has also been obtained in similar studies [36]. They needed to read a 

lot while starting to be aware about the design patterns and relate their mental design 

patterns to the patterns suggested by the language. As a positive feedback, it was 

obtained that they were satisfied with the resulting design and said that the design pattern 

language suggests strategies and considerations that otherwise they would not have 

included. 

To conclude this evaluation, following a similar strategy to studies on the use of 

design patterns for other purposes [73,74,27], the judge of an researcher with experience 

on User Interface (UI) design evaluated, on a scale of three values ranging from excellent 

to poor, both the adherence of the paper sketches to a set of recognized design principles 

for alarm visualization design (see Table 5.2-13) and the number of design requirements 

(see Table 5.2-9) accomplished when using patterns versus non-pattern approaches. A 

three-value scale was used to collect the expert designer’s scores per sketch: excellent 

(3), acceptable (2), and poor (1).  
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Fig. 5.2-14 First round of the Experimental evaluation: Results of the expert designer’s ratings on the quality 
of the sketches on a scale 1-3 (3=excellent); for design principles use Table 5.2-13 

Concerning to the coverage of design requirements when using patterns versus 

non-pattern approaches, Fig. 5.2-15 shows that the sketches that had design patterns 

were rated higher in 4 out of 5 design requirements. Particularly, it is important to highlight 

the good results obtained for requirements DR3 (“The human operator should understand 

the chronological order of alarms”), DR4 (“The human operator should be able to 

establish spatial relationships among alarms in order to identify damaged areas by the 

earthquake”), and DR5 (“The human operator should be able to compare the distribution 

of alarms across sources, typologies, and priorities”). Following the SA perspective 

proposed by Endsley, if a human operator is not able to comprehend the evolution of 

alarms over time, their spatial location, and their relevance, he/she won’t be able to 

project ahead in order to avoid many undesirable situations. The ability to predict what 

relevant elements in the environment will do in the future allows human operators to be 

more proactive, and also very fast to respond when various critical events do occur. 

According to that, these results seem to suggest not only a better coverage of design 

requirements by the sketches that had design patterns but also a better coverage of 

relevant design requirements for supporting human operators’ tasks. 
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Fig. 5.2-15 First round of the Experimental evaluation: Results of the expert designer’s ratings on the 
completeness of the sketches on a scale 1-3 (3=excellent); for design requirements use Table 5.2-9 

SECOND ROUND OF THE EVALUATION

This second round of the experimental evaluation was motivated by the usability issues 

reported by most of participants on the difficulties to understand the links between design 

patterns through the use of a paper version of the design pattern language. Accordingly, 

this second round was focused on measure the usability of the design pattern language 

based on the use of a different representation method. This second round of the 

evaluation tried to reproduce the evaluation settings of the first round by selecting 

participants with a similar profile and level of familiarity with design patterns. They were 

requested to carry out the same assignment than in the first round of the evaluation.  

Experimental set-up 

Volunteers were recruited via email and oral advertisement. A total of 9 participants took 

part in this second round of the evaluation. The participants were again undergraduate 

students enrolled in the undergraduate program of the Computer Science and 

Engineering Department at the University Carlos III de Madrid, Spain. All participants on 

average had the same level of familiarity with design patterns based on the courses that 

the students had attended in previous semesters. All participants received the same 

preparatory material at the beginning of the session. In particular, the design pattern 

language was delivered as an oral introduction during the first 15 minutes of the session. 
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Fig. 5.2-15 First round of the Experimental evaluation: Results of the expert designer’s ratings on the 
completeness of the sketches on a scale 1-3 (3=excellent); for design requirements use Table 5.2-9 
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This second round of the experimental evaluation was motivated by the usability issues 

reported by most of participants on the difficulties to understand the links between design 

patterns through the use of a paper version of the design pattern language. Accordingly, 

this second round was focused on measure the usability of the design pattern language 

based on the use of a different representation method. This second round of the 

evaluation tried to reproduce the evaluation settings of the first round by selecting 

participants with a similar profile and level of familiarity with design patterns. They were 

requested to carry out the same assignment than in the first round of the evaluation.  

Experimental set-up 

Volunteers were recruited via email and oral advertisement. A total of 9 participants took 

part in this second round of the evaluation. The participants were again undergraduate 

students enrolled in the undergraduate program of the Computer Science and 

Engineering Department at the University Carlos III de Madrid, Spain. All participants on 

average had the same level of familiarity with design patterns based on the courses that 

the students had attended in previous semesters. All participants received the same 

preparatory material at the beginning of the session. In particular, the design pattern 

language was delivered as an oral introduction during the first 15 minutes of the session. 
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This second round of the experimental evaluation was motivated by the usability issues 

reported by most of participants on the difficulties to understand the links between design 

patterns through the use of a paper version of the design pattern language. Accordingly, 

this second round was focused on measure the usability of the design pattern language 

based on the use of a different representation method. This second round of the 

evaluation tried to reproduce the evaluation settings of the first round by selecting 

participants with a similar profile and level of familiarity with design patterns. They were 

requested to carry out the same assignment than in the first round of the evaluation.  

Experimental set-up 

Volunteers were recruited via email and oral advertisement. A total of 9 participants took 

part in this second round of the evaluation. The participants were again undergraduate 

students enrolled in the undergraduate program of the Computer Science and 

Engineering Department at the University Carlos III de Madrid, Spain. All participants on 

average had the same level of familiarity with design patterns based on the courses that 

the students had attended in previous semesters. All participants received the same 

preparatory material at the beginning of the session. In particular, the design pattern 

language was delivered as an oral introduction during the first 15 minutes of the session. 
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 The experiment was conducted by requesting the students the same assignment 

provided to participants in the first round of the evaluation on the design of an alarm 

visualization system paper sketch. However, this time, participants were asked to interact 

with a graph-based version of the design pattern language (see Annex D - Interactive 

Version of the Design Pattern Language) implemented using the Vis JavaScript library 

[139]. In this graph-based version of the design pattern language, categories of design 

patterns are illustrated using colored labels and relations between design patterns are 

illustrated by edges with different formats pointing to the design patterns. Clickable labels 

allow users to visualize known uses of design patterns (see Fig. 5.2-16) and get access to 

detailed descriptions of design patterns. In addition, the graph-based version is also 

customizable and filterable. Users can customize the visualization by setting the graph 

orientation, edges types, and separation between nodes. A clickable legend allows users 

to click a legend entry to toggle design pattern categories (see Fig. 5.2-17). The first click 

highlights all the colored labels belonging to the selected category and fades out the rest 

of them. The second click toggles the colored labels for the rest of design patterns back to 

visible.  Each participant worked in an individual mode. 

 

Fig. 5.2-16 Second round of the Experimental evaluation: Using the graph-based version of the design 
pattern language to display known uses of a specific design pattern 
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Fig. 5.2-17 Second round of the Experimental evaluation: Using the graph-based version of the design 
pattern language to toggle design patterns categories 

Procedure  

Using the same scenario than in the first round of evaluation, participants were requested 

to deliver a paper sketch of the user interface of an alarm visualization system for 

emergency response. This sketch should address the same set of design requirements 

proposed in Table 5.2-9. It also should be documented by discussing design decisions 

made for each requirement as well as by describing the use of design patterns. As in the 

first round of the evaluation, the time given to finish the deliverable of the assignment was 

one hour and a half. One researcher directed this session and assisted the students 

throughout. 

To conclude the experiment, a set of questions was asked to the students about 

the usability of the design pattern language. They were divided into closed-ended 

questions related to the ease of use and learnability of the design pattern language and 

closed-ended questions regarding to the elements of the language used to create a 

design solution (see Table 5.2-14). These closed-ended questions were complemented 

with two open-ended questions (see Table 5.2-15). For closed-ended questions, a four-

value Likert scale was used to collect the opinion of participants: strongly agree (4), agree 

(3), disagree (2), and strongly disagree (1). This step typically took about 15 minutes, 

making the complete experiment ranges from one hour and forty-five minutes to two 

hours.  
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Concerning to the usage of elements of the design pattern language, Fig. 5.2-18 

shows the mean of participants’ responses to the closed-ended questions. It displays that 

participants found the design pattern language as useful to create the proposed solution 

to the given design scenario. In particular, the highest agreement (coloured in green) with 

the question at hand, was obtained by Q7 (“The design pattern language guided me to 

design the proposed solution”) and the lowest scores, which reflects a strongly 

disagreement with the question at hand, were obtained by both Q1 (“Given the design 

scenario, the selection of design patterns was based on my intuition”) and Q8 (“After 

selecting a design pattern, looking for new design solutions was based on my intuition”). 

These results suggest that the design pattern language addresses the lack of experience 

of non-experienced designers in alarm visualization design by both providing them design 

solutions to design problems they have been requested to face and guiding them to 

connected design ideas to the problems at hand. 

 

Fig. 5.2-18 Second round of the experimental evaluation: Results of the efficacy questions on a scale 1-4 
(4=strongly agree); for questions use Table 5.2-14 

To argument these promising conclusions about the usability of the design pattern 

language, the usage of design patterns in the sketches and the participants’ responses to 

the open-ended questions displayed in Table 5.2-15 were analysed. Concerning to the 

usage of design patterns in the sketches, the analysis of the results followed the same 

strategy than in the first round of the evaluation. Although these results displayed in Fig. 

5.2-19 are quite similar to those obtained in the first round of the evaluation (see Fig. 
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5.2-13), two main differences should be underlined. The first one is related to the absence 

of design patterns applied incorrectly. The second one is related to the increasing 

application of all strongly recommended design patterns such as the case of IM(8) 

Paging.  

 

Fig. 5.2-19 Second round of the Experimental evaluation: Results on the design patterns used; for patterns’ 
names use Table 5.2-12 

The analysis of the results obtained from the participants’ responses to the open-

ended questions helped to clarify these two main differences. To these questions, most of 

participants not only reported about the utility of some elements of design patterns such 

as the design problems descriptions, the visual examples, and the relations between 

design patterns to create a design solution but also about the capabilities provided by the 

interactive version of the pattern language. In particular, all participants appreciated the 

interactive capabilities provided by such interactive version such as filtering and hovering 

on a specific design pattern in order to navigate more easily through the design pattern 

language. They found particularly useful the capability of quickly consulting visual 

examples of the proposed solution by hovering on each design pattern. In this way, these 

results seem to suggest that, in contrast to the previous experience of participants using a 

paper version of the pattern language, in this second round of the evaluation participants 

were able to spend more time understanding the descriptions of both the design problems 

and solutions proposed by design patterns instead of having to understand the structure 
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of the design pattern language. In other words, using this interactive graph-based version 

of the pattern language gave them more time to both understand how to apply design 

patterns in a correct way and considering the application of connected design patterns 

that otherwise they would have not considered.  

DISCUSSION

Generalizing from the two rounds of the evaluation, this experimental evaluation shows 

that this design pattern language can be characterized as useful to assist non-

experienced designers to both relate design requirements and find appropriate visual 

solutions to the requirements at hand. It also proves that this design pattern language 

adds some balance to the adherence to design principles across alarm visualization 

designs. Similarly, it demonstrates that the use of the design pattern language allows not 

only a better coverage of design requirements by alarm visualization designs in general 

but also a better coverage of relevant design requirements for supporting human 

operators’ tasks. 

At the final point, this experimental evaluation expresses the usability limitations of 

the design pattern language related to the representation method. In order to be more 

usable, it suggests the use of an interactive graph-based version of the pattern language, 

which seems to both ease the navigation through the design pattern language and make 

more explicit the relations between design patterns provided by the pattern language. 
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Chapter 6. Conclusions 

It’s more fun to arrive a conclusion than to justify it 

- Malcolm S. Forbes, American publisher 

This research work has addressed the reuse of previous design knowledge by non-

experienced designers for alarm visualization design. Designing alarm visualizations for 

operating control systems, as well as designing artifacts for other complex environments, 

requires the combination of design knowledge from different knowledge areas; in 

particular from Alarm Management, Human Factors, and Visualization Design. Since no 

single designer can be an expert in every relevant knowledge area, and becoming 

proficient may require years of experience, one relevant approach to assist in such design 

process is to reuse prior design knowledge. Reusing prior design knowledge can not only 

avoid repeated design effort but also help the designer adapt the original design to new 

situation for design innovation. However, existing design knowledge reuse approaches for 

alarm visualization design can be too abstract, not comprehensive enough, and loosely 

coupled, being difficult to be interpreted and applied by non-experienced designers. In 

keeping with that, this research work has presented a design pattern language to provide 

non-experienced designers with an easy access to the existing body of knowledge of 

alarm visualization design. The aim of a design pattern language is not to provide 

something that a designer must use; pattern languages are intended as tools that 

designers can use or not if they feel they have a better solution. 

In particular, the design pattern language proposed in this research work encodes 

reusable alarm visualization design knowledge related to two fundamental and recurrent 

design challenges in alarm visualization design, visual scalability and sense making, in 

the form of 29 design patterns. It organizes such design patterns according to two 

different criteria validated by expert designers, purpose and level of abstraction, in order 

to support multiple ways of access depending on the design stage in which designers are. 
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Finally, in order to provide a cohesive organization of these design patterns for non-

experienced designers, this design pattern language connects design patterns through 

five types of relations, including generalization, specialization, alternative, composition, 

and combination.  

In this research work, the quality and utility of the proposed pattern language has 

been validated through four main evaluation methods including, respectively, an analytical 

evaluation, an expert-based evaluation, a descriptive evaluation, and an experimental 

evaluation. In particular, the experimental evaluation conducted with non-experienced 

designers has shown the capability of this design pattern language to add some balance 

to the adherence to alarm visualization design principles across designs. Similarly, it has 

also demonstrated the capability of this pattern language to assist non-experienced 

designers in the design of better alarm visualizations in terms of coverage of design 

requirements for supporting relevant human operators’ tasks. However, such 

experimental evaluation has also uncovered some relevant considerations when 

displaying a design pattern language to non-experienced designers. In order to be more 

usable, it suggests the use of an interactive graph-based version of the pattern language, 

which seems to both ease the navigation through the design pattern language and make 

more explicit the relations between design patterns provided by the pattern language. 

This final chapter begins with a summary of the major contributions that this 

research work makes to research. It continues with a description of other possible areas 

of application of the proposed solution. Finally, it concludes with a discussion of the 

limitations associated to this research work and with an exploration of future directions for 

the research. 

6.1 Research Contributions 
In order to illustrate the main contributions of this research work, this section makes use 

of the conceptual framework developed by Hevner et al. [59] for conducting design 

science research in the area of Information Systems (IS). This conceptual framework 

forms the basis for the methodological approach followed in this research work proposed 

by Offerman et al. [96]. Particularly, this conceptual framework is composed of three main 

different components: 1) the environment that defines the problem space in which reside 

the phenomena of interest. For IS research, it is composed of people, organizations, and 

their existing or planned technologies. In it are the goals, tasks, problems and 
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opportunities that define business needs as they are perceived by people within the 

organization; 2) the IS research that is conducted. Given such problem space, IS 

research is conducted in two complementary phases, building and evaluation of artifacts 

designed to meet the identified need; and 3) the knowledge base that provides the raw 

materials from an through which IS research is accomplished. The knowledge base is 

composed of foundations and methodologies. According to this framework, the 

contributions of design science in IS research are assessed as they are applied to the 

business need in an appropriate environment and as they add to the content of the 

knowledge base for further research and practice. As Hevner et al. [59] states “a justified 

theory that is not useful for the environment contributes as little to the IS literature as an 

artifact that solves a non-existent problem”. How this research work applies this 

conceptual framework is further described below and shown in Fig. 6.1-1. 

 

Fig. 6.1-1 Illustration of the research contributions of this research work based on the conceptual framework 
proposed by Hevner et al. [59] 

As shown in the environment component of the framework (see Fig. 6.1-1), the 

research conducted in this work mainly addresses a specific group of people: designers of 
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alarm visualizations for operating control systems; in particular, non-experienced 

designers without professional or specialized knowledge in alarm visualization design. In 

order to design effective alarm visualizations for operating control systems, designers 

need to face two recurrent design challenges, visual scalability and sense making, which 

involve having design knowledge from different knowledge areas that may take years of 

experience to acquire. Moreover, existing design material for alarm visualization design 

can be too abstract, not comprehensive enough, and loosely coupled, being difficult to 

apply by non-experienced designers. The main contribution to the environment of this 

research work is a design artifact, a design pattern language, which non-experienced 

designers can use to reuse previous design knowledge on designing alarm visualizations 

(Contribution 1). This design pattern language not only contributes to provide useful 

starting points to recurrent design challenges for non-experienced designers but also may 

be used by more experienced designers of alarm visualizations to compare or explain 

new ideas, and to access to relevant alarm visualization design discussions.  

As previously stated, the main design artifact built during IS research is the design 

pattern language itself, which can be used by non-experienced designers to reuse 

previous design knowledge for designing alarm visualizations. It has been analytically 

evaluated by examining the defined connections between design patterns. Similarly, it has 

been empirically evaluated in both expert-based evaluations and user studies. In addition, 

it has been applied to two different contexts and projects, including the design of alarm 

visualizations for the electric power grid operation and the design of alarm visualizations 

for emergency response. 

Finally, regarding the knowledge base of this research work, it is possible to 

distinguish between foundations and methodologies. The foundations consists of 

descriptive models of alarm-initiated activities, Situation Awareness (SA), and 

Visualization Design that need to be carefully reviewed in order to characterize relevant 

factors affecting recurrent design challenges in alarm visualization design. Accordingly, a 

first contribution to the knowledge base of this research work comes from the results of 

such review. Such results extend the body of knowledge on designing alarm 

visualizations by framing the design space of alarm visualizations (Contribution 2). 
Likewise, the concept of design knowledge reuse and existing design knowledge reuse 

approaches for alarm visualization design need to be reviewed in order to identify 

limitations and developing improvements. To build the proposed solution, a design pattern 
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language, it is required to both have knowledge on methodologies on the construction of 

design pattern languages and review relevant sources for designing alarm visualizations 

such as reports on control systems, standards and design principles, and articles and 

books on visualization and interaction techniques that have been evaluated by several 

researchers or subject specialist in the academic community prior to accepting it for 

publication. Consequently, a second contribution of this research work to the knowledge 

base is the systematization of design knowledge on design challenges for alarm 

visualization design (Contribution 3). Similarly, the results of the analytical and empirical 

studies on the use of the design pattern language by non-experienced designers extend 

the body of knowledge in different areas, including the design knowledge reuse 

community and alarm visualization design. Moreover, this evaluation uncovers some 

considerations about the representation method of design pattern languages that may 

inspire future work on visualizing design pattern languages. To conduct these evaluations, 

it is required having knowledge on methodologies on evaluation methods for design 

knowledge reuse approaches and user studies. 

According to this framework, the contributions of this research work are applied to 

an appropriate environment and they add to the content of the knowledge base for further 

research and practice. 

6.2 Other Examples of Application  
In order to illustrate other areas of application of the design pattern language, this section 

provides a description of its usage in heuristic evaluations. In keeping with the idea of 

using interaction design patterns in heuristic evaluation previously proposed by Botella et 

al. [13], other areas of application of this design pattern language may be specifically in 

heuristic evaluations on the usability of current alarm visualizations for operating control 

systems. In a heuristic evaluation, usability experts review the user interface of a specific 

system and compare it against accepted usability principles, so called the “heuristics” 

[92].  Additionally, designers can make use of these heuristics in order to assure to their 

applications the highest leve of usability as possible. However, the use of heuristics 

requires a rich expertise as the usability evaluation includes, not only negative aspects 

but also positive actions to improve the user interface. Accordingly, the idea described in 

this section is the use of the proposed design pattern language to help designers in the 

task of proposing improvements on current alarm visualizations for operating control 
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systems. To illustrate this idea, in what follows, the application of this design pattern 

language to a specific usability issue detected in a real control system for operating the 

electric power grid is described. Such usability issue was detected during a heuristic 

evaluation carried out within the context of the Energos project. When such heuristic 

evaluation was conducted, the Nielsen’s recommendations [92] were followed.  

Fig. 6.2-1 shows the user interface of the control system with such usability issue. 

This usability issue was related to the visual display of alarms; in particular, to the display 

of the status, typology, and priority of upcoming alarms registered by the control system. 

Through the list of alarms shown in Fig. 6.2-1 it is difficult to visually distinguish the status, 

typology, and priority of such registered alarms.  

 

Fig. 6.2-1 List of alarms registered by the control system 

In order to define how to solve this problem, the proposed solution is that the 

designer or usability expert uses the design pattern language and tries to find a design 

pattern or set of connected design patterns that can be used to fix the problem. In the 

case of this specific usability issue, adapting the process of use of the design pattern 

language defined in 4.3 Using the Design Pattern Language, the steps that a designer 

could follow in order to find an appropriate solution can be as follows: 

• The designer explores the design pattern language and selects design 

patterns with Representation purpose. These patterns are referred to the 

assignment of specific visual characteristics to alarm data attributes in 

order to facilitate visual sense making by human operators. 
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• The designer takes a look on Representation patterns and according to 

the “Context” and “Problem” sections of each design pattern (see Fig. 

6.2-2); he/she selects the “Visual Coding Schema” pattern. As shown in 

Fig. 6.2-3, this design pattern suggests the use of different visual 

properties to encode alarm information in a visual way in order evoke the 

human operator a ready understanding of alarm activations. However, in 

order to understand better how to implement such visual features, he/she 

follows the links established in the “Relations” section of the design 

pattern. 

 

Fig. 6.2-2 Descriptions of the “Context” and the “Problem” solved by the Visual coding schema design pattern 

 

Fig. 6.2-3 Descriptions of the “Solution” and “Known uses” of the Visual coding schema design pattern 
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• According to such relations provided by the design pattern language, the 

designer is able to propose the use of both the “Colour” pattern and the 

“Flashing” design pattern to support, respectively, the distinction of the 

typology and status of alarm information. In particular, the “Colour” pattern 

suggests the use of different colours to encode different types of alarms. 

The number of colours should be kept to seven or less, and be 

consistently applied. The “Flashing” pattern proposes to show new 

incoming alarms that require discrimination from others by using flashing. 

No more than two flash rates should be used. Finally, he/she also 

proposes the combination of such design patterns with the use of the 

“Integrated displays” pattern. Integrated displays are representations of 

the structure and relevant elements of a controlled process, in this case, 

the electric power grid. The set of alarms encoded using different colours 

and levels of brightness should be located close to the areas, 

components, or functions to which they are related. In this way, the human 

operator is assisted in the decision on the priority of these registered 

alarms. To see an example of the application of these design patterns see 

Fig. 6.2-4. It shows how some of these design patterns were instantiated 

to develop a final design solution in the context of the Energos project.  

 

Fig. 6.2-4 Example of instantiation of combining “Colour”, “Flashing”, and “Integrated displays” patterns 
developed in the Energos project 
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6.3 Research Limitations and Future Research 
As with any research, this research work has some limitations. Using this design pattern 

language to design alarm visualizations for operating control systems in other contexts 

and application domains may show both missing patterns and when descriptions of 

individual patterns are incomplete. These uses may in turn provide new interesting future 

research opportunities. In particular, one important future line of research can involve the 

investigation of how design patterns can help designers for different types of design 

situations and stages such as design evaluation. Like reusable components, design 

patterns develop in an iterative and evolving process through repeated reuse. Another 

related line of research involves investigating the appropriate diversity and redundancy of 

human operators’ tasks for different application domains. In other words, this line of 

research would be concerned with the number of features that alarm visualization should 

offer.  

Another possible area of research is conducting empirical studies to develop a 

more detailed understanding of the utility of design patterns. In a general sense, each 

design pattern can support a number of human operator’s tasks; however, the knowledge 

of what specific conditions each design pattern supports particular tasks is still far from 

complete. Finally, another potential research topic is the development of interactive 

pattern programming environments and tools for the use of alarm visualization design 

patterns. In this sense, a computational representation of the proposed pattern language 

should be developed. To achieve this computational representation of the pattern 

language, an ontology-based approach might be a fitting approach. The semantic 

characteristics facilitated by ontologies enable the definition of models containing the 

pattern information along with the relations connecting the patterns. This approach would 

allow to computationally supporting the pattern selection process guiding designers in the 

design of alarm visualizations. 

6.4 Related Publications 
Parts of this research work have already been disseminated in the form of conference 

papers and journal papers. Such publications are listed in the following: 

• Romero-Gómez, R. & Díaz, P. (2015). Towards a Design Pattern 

Language to Assist the Design of Alarm Visualizations for Operating 
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Control Systems. Paper presented at the 12th Conference of the Italian 

Chapter of AIS (ITAIS 2015) 

• Herranz, S., Romero-Gómez, R., Díaz, P., & Onorati, T. (2014). Multi-view 

visualizations for emergency communities of volunteers. Journal of Visual 

Languages & Computing 11/2014 (Impact Factor: 0.56) 

• Herranz, S., Romero-Gómez, R., & Díaz, P. (2014). Visualization 

techniques to empower communities of volunteers in emergency 

management. Proceedings of the Twentieth International Conference on 

Distributed Multimedia Systems, At Pittsburgh, Pensylvania DMS 2014. 

• Romero-Gómez, R., Tena, S., Díez, D., & Díaz, P. (2013). The Application 

of Situation Awareness-Oriented Design to the Smart Grid Domain. Actas 

del XIV Congreso Internacional de Interacción Persona-Ordenador 

INTERACCION 2013. 

• Romero-Gómez, R., Díez, D., & Aedo, I. (2013). Situation Awareness-

oriented Alarm Visualizations: A next step in HSC environments. Paper 

presented at the Proceedings of the 4th International Conference on 

Information Visualization Theory and Applications IVAPP 2013 
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Annex A - The Catalogue of Design Patterns 
for Alarm Visualization Design 

The following annex provides a detailed characterization of the 29 design patterns that 

capture reusable design knowledge for alarm visualization design. A design pattern, in 

this research work, consists of eight descriptive blocks that provide textual information 

about several aspects of a pattern. Specifically, the description of every design pattern 

follows an adaptation of the  format In a general sense, each design pattern can support a 

number of human operator’s tasks; however, the knowledge of how an under proposed by 

Alexander et al. [6]. The meaning of each block is described as follows: 

• Pattern identifier and name. An alphanumeric identifier is assigned to each 

design pattern. An order number in addition to both the first letter of its 

purpose category and the first letter of its scope category composes it. For 

example, a design pattern classified under the Presentation category with 

Feature level of abstraction is identified as PF(X). Design Pattern name. 

Afterwards, a pattern’s name is also assigned to each pattern.  

• Classification. The pattern’s classification reflects the scheme introduced in 

Section 4.2.3 Defining a Classification Scheme. 

• Context. This block describes the design context in which this pattern should 

be considered. Different solutions can arise from the same design problem 

occurring in different contexts. Accordingly, this block outlines the set of 

situations in which the pattern is effective in responding to what the human 

operator needs. It also describes any other design patterns that lead to this 

design pattern.  

• Problem. This block provides a brief description of the design problem that 

trigger the usage of the pattern in question. It is an expression of what the 

human operator needs to do, perceive, or understand. 
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• Solution. This descriptive block outlines the crucial characteristics of the 

solution that address the problem identified. It captures details of how the 

solution can be executed, as well as further clarifying scope and context. 

Accompanying the textual information, each descriptive block features a 

graphic example that demonstrates its essential characteristics visually. 

• Known uses. This block features two different graphic examples that 

demonstrate the essential characteristics of the design pattern visually. 

• Rationale. This block delivers an argumentation for the usage of a pattern. 

This argumentation is mostly based on theoretical grounds related to Alarm 

Management, Human Factors, and Visualization Design that justify the use of 

the pattern.  

• Relations. While most patterns can be used as individual entities to perform a 

certain task autonomously, the basic idea of a pattern language is to connect 

several modules with each other based on a concrete application context. 

Following the connective rules for pattern languages proposed by Salingaros 

[110], the collection of patterns presented in this work uses five types of 

relations: (1) a pattern is called the specialization of another pattern when it 

shares the same functionality but possesses more specialized characteristics 

or features; (2) the logical consequence of the specialization pattern is its 

inversion: the generalization. As the name implies, this pattern has rather 

generic features to serve a more universal purpose; (3) for some design 

purposes, there is more than one possible solution available. The alternative 

relation makes allowance for these use cases signalling the designer that he 

can choose from several options that lead, more or less, to the same result; (4) 

the combination relation is an alliance of patterns to be applied together in 

order to address a specific human operator task; and (5) the composition 

relation indicates that a pattern is composed of one or more other patterns, 

which can be characterized as components. 

Despite the fact it has been tried to devote the same amount of space of each 

design pattern, because some patterns have been previously more developed than 

others, it provides more references for some design patterns than others.  
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PRESENTATION PATTERNS

PF(1) DETAILS HIERARCHY

Classification. Purpose: Presentation. Level of abstraction: Feature. 

Context. Within his area of responsibility and authority, the human operator needs 

to comprehend sets of incoming alarms displayed by alarm displays. Based on these 

displays, he would like to explore the overall alarm information space according to 

different alarm dimensions such as typology, priority, or location.  

Problem. The human operator needs to explore the overall alarm information 

space according to different alarm dimensions in order to diagnose the cause of a failure 

in the controlled process.  

Solution. Use a standard display hierarchy to present the multi-level views 

necessary for exploring alarm information. These levels follow an expected progression 

from the general to the more detailed in order to aid the operator in performing different 

tasks. A single first level can be associated with several secondary levels. Each 

secondary level can only be associated therefore with a single first level.   

Known uses. 

 

Annex Fig. A-1 An implementation of the Details hierarchy pattern: Hierarchy of levels applied to a control 
system interface for a power plant [107] 
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Annex Fig. A-2 An implementation of the Details Hierarchy pattern: Hierarchy of levels applied to the 
SIMATIC PCS 7 process control system developed by Siemens [121] 

Rationale. A display hierarchy delivers a robust structure that encourages ready 

access to information while at the same time keeping important situation context and 

promoting efficient navigation to go deeper [107]. 

Relations.  

o Composition relationship: PF(3) Primary level of detail, PF(4) 

Secondary level of detail. 
o Specialization relationship: PM(5) Overview and detail 

PF(2) SPATIAL DEDICATION AND CONTINOUS VISIBILITY

Classification. Purpose: Presentation. Level of abstraction: Feature. 

Context. Under all controlled process conditions, even during minor disturbances, 

the human operator would like to know all key alarms that are directly safety related and 

important process alarms related to safety critical systems.   
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Rationale. A secondary level provides more detail to support what is already 

known or suspected from viewing the first level. If the overview looks normal, examining 

the secondary displays can be queried to verify this [107]. 

• Relations.  
o Composition relationship (Component): PF(1) Details hierarchy 

o Combination relationship: RF(4)Trend displays 

PM(5) OVERVIEW AND DETAIL

Classification. Purpose: Presentation. Level: Mechanism. 

Context. Within his area of responsibility and authority, the human operator needs 

to comprehend sets of incoming alarms displayed by alarm displays. Based on these 

displays, he would like to explore the overall alarm information space according to 

different alarm dimensions such as typology, priority, or location.  

Problem. The human operator needs to explore the overall alarm information 

space according to different alarm dimensions in order to diagnose the cause of a failure 

in the controlled process.  

Solution. Use a standard display hierarchy to present the multi-level views 

necessary for exploring alarm information. Display simultaneously the different levels of 

detail, each in a distinct presentation space. These different levels should be coordinated. 

It means that a selection of one alarm in a view should be highlighted in the other view to 

guide the operator to directly understand if the alarm is recurring or what the previous 

alarm from the same element was about. In any case, try to keep both levels visible for 

quick iteration.  
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Rationale. Trend displays allow operators to make decisions about the 

performance of a variable or variables over time [44]. 

Relations 

o Generalization relationship: RM(11) Bar charts, RM(13) Pie charts, 

RM(14) Linear charts 

o Combination relationship: PF(3) Primary level of detail, PF(4) 

Secondary level of detail 

RF(5) LISTS

Classification. Purpose: Representation. Level of abstraction: Feature. 

Context. A set of incoming alarms has been registered. The human operator 

would like to see the order in which alarms occurred, which is often useful for diagnosis of 

the underlying problem.  

Problem. The human operator needs to understand the chronological order of 

alarms.  

Solution. Show alarm information in lists and arranged it in a chronological order. 

A list is a display containing alphanumeric characters arranged by rows and columns. A 

list should be constructed so that row and column labels represent the information a user 

has prior to consulting the table. The left-most column should contain the labels for the 

row variables, and the top row should contain the labels for the column variables. When a 

list of alarms exceeds one display page, mechanisms to manage the display space 

should be provided.  

  













Annex A- The Catalogue of Design Patterns for Alarm Visualization Design 

 181 

Rationale. Coding based on the use of colour is an important means for 

representing categorical information in displays [124].  

Relations. 

o Generalization relationship: RM(6) Brightness 

o Specialization relationship: RF(2) Visual coding schema 

RM(9)MAPS

Classification. Purpose: Representation. Level of abstraction: Mechanism. 

Context.  A set of incoming alarms has been registered. The human operator 

would like to comprehend the spatial relationships between alarms and specific elements 

of the controlled process.  

Problem. The human operator needs to explore the spatial relationships between 

alarms and specific elements of the controlled process in order to establish the potential 

cause of a failure. 

Solution. Position alarms consistently in relation to spatial locations of the 

controlled process by using maps. A map is a visual display format medium that 

represents a spatial location and maps relevant elements of the controlled process to their 

geographical location. The choice about the detailed graphic specifications, such as size 

and resolution of the depicted area, level of detail, or the types of alarms included, varies 

depending on the specific application scenario. Significant features of a map should be 

labelled directly on the display unless cluttering or obscuring of other information would 

result. As a practical matter, map displays can get very crowded. Under these 

circumstances, some other approach to map labelling should be considered to avoid 

crowding.  
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Relations.  

o Generalization relationship: IM(5) Zooming, IM(6) Panning, IM(7) 

Scrolling, IM(8) Paging, and IM (9) Distortion. 

IM(3) DYNAMIC QUERIES

Classification. Purpose: Interaction. Level of abstraction: Mechanism. 

Context. Not all controlled process conditions require the same degree of 

response or attention by a human operator. Accordingly, the human operator would like 

accessing, manipulating and navigating alarm displays in order to access to the most 

relevant alarm information for the current status of the controlled process. 

Problem. The human operator needs to access only a certain part of the alarm 

information. 

Solution. Represent graphically the request of the human operator by using 

dynamic queries. Dynamic queries provide a graphical visualization of a database and 

searching results. Using a pointing device usually provides input by the human operator. 

They allow to clearly dividing the alarm information into distinct separated categories or 

layers, such as alarms placed on an integrated display. They work instantly within a few 

milliseconds as users adjusts sliders or select buttons to form simple queries. In this way, 

they let the user switch filters on and off by preference: if the operator wants to explore 

only a certain part of the alarm information belonging to one specific category, he can 

deselect all the other filters to clean up the display. 
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limited gradually, but this technique also helps to point out spelling mistakes and 

impossible criteria combinations from the outset. 

Relations.  

o Specialization relationship. IF(1) Direct manipulation 
o Combination relationship: RF(3) Integrated displays  

IM(4) BRUSHING AND LINKING

Classification. Purpose: Interaction. Level of abstraction: Mechanism. 

Context. Not all controlled process conditions require the same degree of 

response or attention by a human operator. Accordingly, the human operator would like 

accessing, manipulating and navigating alarm displays in order to access to the most 

relevant alarm information for the current status of the controlled process. 

Problem. The human operator needs to easily access to the most relevant alarm 

information for the current status of the controlled process. 

Solution. Create a tightly coordination between alarm displays at different levels 

of detail but also between displays at the same level of detail by applying brushing and 

linking. Brushing and linking refers to the connection of two or more views of the same 

information, such that a change to the representation in one view affects the 

representation in the other. Specifically, brushing refers to highlighting, for example 

selected data, in one view, in other connected data representations. Linking refers to a 

change of parameters in one data representation being reflected in other connected data 

representations.  

Known uses. 
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 Relations.  

o Specialization relationship. IF(1) Direct manipulation 
o Combination relationship: PM(5) Overview and detail 

 
IM(5) ZOOMING

Classification. Purpose: Presentation. Level of abstraction: Mechanism. 

Context. Display pages are sometimes too large to be viewed all at once from a 

single alarm display screen with a level of resolution adequate for operator’s tasks. 

Problem. The human operator needs to move rapidly and fluidly between levels of 

detail of alarm information. 

Solution. Support focused and contextual views based on zooming, which 

involves a temporal separation between these views. Zooming is based on a camera 

analogy; the action is analogous to changing the focal length of a camera lens. It is 

possible to magnify a decreasing fraction (or vice versa) of an element under the 

constraint of a viewing frame of constant size. Zoom-in is similar to moving closer to an 

object while zoom-out is similar to moving further away from it. Because the size of the 

display screen is fixed, the effect of zooming-in is to show a smaller area of the display 

page at a higher magnification; the effect of zooming-out is to show a larger area at lower 

magnification.  
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Rationale. Zooming facilitates two different cognitive tasks [124]. With zooming-in, 

extraneous information is removed from the visual field, perhaps resulting in a more 

manageable view, whereas zooming-out reveals hidden information, often context that is 

already known but perhaps cannot be recalled. It often allows a user to rediscover their 

location in an information space and to integrate a new context within a mental model. 

Relations 

o Specialization relationship: IF(2) Display resolution management 

o Alternative relationship: IM(9) Distortion 

o Combination relationship: RF(3) Integrated displays 

IM(6) PANNING

Classification. Purpose: Presentation. Level of abstraction: Mechanism. 

Context. Display pages are sometimes too large to be viewed all at once from a 

single alarm display screen with a level of resolution adequate for operator’s tasks. 

Problem. The human operator needs to navigate across alarm activations that do 

not fit the display as a whole. 

Solution. Change the section of the area to be displayed in the alarm display 

based on panning. Panning allows moving a viewing frame over a display space of 

greater size. However, there are several ways to let the operator pan the data space. The 

classic variation of it uses a set of arrow buttons that move the data space by a certain 

value to the left, right, top or bottom. Another variation has a small inset overview region, 

which includes an interactive rectangular sub-region, called pan window, which 

corresponds to the area shown in the detailed view. Often used as a redundant feature 

along with buttons is panning by drag and drop. When the mouse pointer moves into 

viewport, mark it as a dragging tool by changing its appearance from an arrow to an open 

hand. The distinction from scrolling is one of perspective; panning is the opposite of 

scrolling. When panning, the viewer perceives the displayed material as being stationary 

while the viewing area of the display screen moves across it. In applications where a user 

moves a cursor freely about a page of displayed data, panning should be adopted rather 

than scrolling as the conceptual basis of display framing.  

Known uses. 
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Rationale. Whether moving along incrementally by clicking arrow buttons, or 

dragging the content freely around, it forces to provide the user a way to move the content 

pane as it will not fit into the display space at once [124]. 

Relations. 

o Specialization relationship: IF(2) Display resolution management 

o Combination relationship: RF(3) Integrated displays 

IM(7) SCROLLING

Classification. Purpose: Presentation. Level of abstraction: Mechanism. 

Context. Display pages are sometimes too large to be viewed all at once from a 

single alarm display screen with a level of resolution adequate for operator’s tasks. 

Problem. The human operator needs to be able to navigate through a list of 

alarms. 

Solution. Slide elements vertically or horizontally based on scrolling. Scrolling is a 

display framing technique that allows the user to view a display as moving behind a fixed 

frame. A scroll bar, keyboard arrow keys might perform scrolling, and keystroke 

commands. The scrolling action is typically combined with alarm lists and causes the data 

displayed at one end of the screen to move across it, toward the opposite end. When the 

data reach the opposite edge to the screen they are removed. Thus, old data are 

removed from one end while new data are added at the other. This creates the 

impression of the display space being on an unwinding scroll, with only a limited portion 

being visible at any time from the screen. Displays may be scrolled in the top-bottom 

direction, the left-right direction, or both.  
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Relations.  

o Combination relationship: RF(3) Integrated displays 

o Specialization relationship: IF(2) Display resolution management 

o Alternative relationship: IM(5) Zooming
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Annex B - Collection of sketches (First round 
of the Experimental Evaluation) 
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Annex C - Collection of sketches (Second 
round of the Experimental Evaluation)  
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Annex D - Interactive Version of the Design 
Pattern Language  
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Annex E - List of Abbreviations 

AIA Alarm-Initiated Activities 

EEMUA 
Engineering Equipment and Materials Users’ 

Association 

HCi Human-Computer Interaction 

IF Interaction Feature 

IM Interaction Mechanism 

IS Information Systems 

ISA International Society of Automation 

PF  Presentation Feature 

PM Presentation Mechanism 

RF Representation Feature 

RM Representation Mechanism 

SA Situation Awareness 
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Concerning to the usage of elements of the design pattern language, Fig. 5.2-18 

shows the mean of participants’ responses to the closed-ended questions. It displays that 

participants found the design pattern language as useful to create the proposed solution 

to the given design scenario. In particular, the highest agreement (coloured in green) with 

the question at hand, was obtained by Q7 (“The design pattern language guided me to 

design the proposed solution”) and the lowest scores, which reflects a strongly 

disagreement with the question at hand, were obtained by both Q1 (“Given the design 

scenario, the selection of design patterns was based on my intuition”) and Q8 (“After 

selecting a design pattern, looking for new design solutions was based on my intuition”). 

These results suggest that the design pattern language addresses the lack of experience 

of non-experienced designers in alarm visualization design by both providing them design 

solutions to design problems they have been requested to face and guiding them to 

connected design ideas to the problems at hand. 

 

Fig. 5.2-18 Second round of the experimental evaluation: Results of the efficacy questions on a scale 1-4 
(4=strongly agree); for questions use Table 5.2-14 

To argument these promising conclusions about the usability of the design pattern 

language, the usage of design patterns in the sketches and the participants’ responses to 

the open-ended questions displayed in Table 5.2-15 were analysed. Concerning to the 

usage of design patterns in the sketches, the analysis of the results followed the same 

strategy than in the first round of the evaluation. Although these results displayed in Fig. 

5.2-19 are quite similar to those obtained in the first round of the evaluation (see Fig. 
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5.2-13), two main differences should be underlined. The first one is related to the absence 

of design patterns applied incorrectly. The second one is related to the increasing 

application of all strongly recommended design patterns such as the case of IM(8) 

Paging.  

 

Fig. 5.2-19 Second round of the Experimental evaluation: Results on the design patterns used; for patterns’ 
names use Table 5.2-12 

The analysis of the results obtained from the participants’ responses to the open-

ended questions helped to clarify these two main differences. To these questions, most of 

participants not only reported about the utility of some elements of design patterns such 

as the design problems descriptions, the visual examples, and the relations between 

design patterns to create a design solution but also about the capabilities provided by the 

interactive version of the pattern language. In particular, all participants appreciated the 

interactive capabilities provided by such interactive version such as filtering and hovering 

on a specific design pattern in order to navigate more easily through the design pattern 

language. They found particularly useful the capability of quickly consulting visual 

examples of the proposed solution by hovering on each design pattern. In this way, these 

results seem to suggest that, in contrast to the previous experience of participants using a 

paper version of the pattern language, in this second round of the evaluation participants 

were able to spend more time understanding the descriptions of both the design problems 

and solutions proposed by design patterns instead of having to understand the structure 
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Classification. Purpose: Presentation. Level of abstraction: Feature. 

Context. Within his area of responsibility and authority, the human operator needs 

to comprehend sets of incoming alarms displayed by alarm displays. Based on these 

displays, he would like to explore the overall alarm information space according to 

different alarm dimensions such as typology, priority, or location.  

Problem. The human operator needs to explore the overall alarm information 

space according to different alarm dimensions in order to diagnose the cause of a failure 

in the controlled process.  

Solution. Use a standard display hierarchy to present the multi-level views 

necessary for exploring alarm information. These levels follow an expected progression 

from the general to the more detailed in order to aid the operator in performing different 

tasks. A single first level can be associated with several secondary levels. Each 

secondary level can only be associated therefore with a single first level.   

Known uses. 

 

Annex Fig. A-1 An implementation of the Details hierarchy pattern: Hierarchy of levels applied to a control 
system interface for a power plant [107] 
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Annex Fig. A-2 An implementation of the Details Hierarchy pattern: Hierarchy of levels applied to the 
SIMATIC PCS 7 process control system developed by Siemens [121] 

Rationale. A display hierarchy delivers a robust structure that encourages ready 

access to information while at the same time keeping important situation context and 

promoting efficient navigation to go deeper [107]. 

Relations.  

o Composition relationship: PF(3) Primary level of detail, PF(4) 

Secondary level of detail. 
o Specialization relationship: PM(5) Overview and detail 
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Classification. Purpose: Presentation. Level of abstraction: Feature. 

Context. Under all controlled process conditions, even during minor disturbances, 

the human operator would like to know all key alarms that are directly safety related and 

important process alarms related to safety critical systems.   
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Concerning to the usage of elements of the design pattern language, Fig. 5.2-18 

shows the mean of participants’ responses to the closed-ended questions. It displays that 

participants found the design pattern language as useful to create the proposed solution 

to the given design scenario. In particular, the highest agreement (coloured in green) with 

the question at hand, was obtained by Q7 (“The design pattern language guided me to 

design the proposed solution”) and the lowest scores, which reflects a strongly 

disagreement with the question at hand, were obtained by both Q1 (“Given the design 

scenario, the selection of design patterns was based on my intuition”) and Q8 (“After 

selecting a design pattern, looking for new design solutions was based on my intuition”). 

These results suggest that the design pattern language addresses the lack of experience 

of non-experienced designers in alarm visualization design by both providing them design 

solutions to design problems they have been requested to face and guiding them to 

connected design ideas to the problems at hand. 

 

Fig. 5.2-18 Second round of the experimental evaluation: Results of the efficacy questions on a scale 1-4 
(4=strongly agree); for questions use Table 5.2-14 

To argument these promising conclusions about the usability of the design pattern 

language, the usage of design patterns in the sketches and the participants’ responses to 

the open-ended questions displayed in Table 5.2-15 were analysed. Concerning to the 

usage of design patterns in the sketches, the analysis of the results followed the same 

strategy than in the first round of the evaluation. Although these results displayed in Fig. 

5.2-19 are quite similar to those obtained in the first round of the evaluation (see Fig. 
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5.2-13), two main differences should be underlined. The first one is related to the absence 

of design patterns applied incorrectly. The second one is related to the increasing 

application of all strongly recommended design patterns such as the case of IM(8) 

Paging.  

 

Fig. 5.2-19 Second round of the Experimental evaluation: Results on the design patterns used; for patterns’ 
names use Table 5.2-12 

The analysis of the results obtained from the participants’ responses to the open-

ended questions helped to clarify these two main differences. To these questions, most of 

participants not only reported about the utility of some elements of design patterns such 

as the design problems descriptions, the visual examples, and the relations between 

design patterns to create a design solution but also about the capabilities provided by the 

interactive version of the pattern language. In particular, all participants appreciated the 

interactive capabilities provided by such interactive version such as filtering and hovering 

on a specific design pattern in order to navigate more easily through the design pattern 

language. They found particularly useful the capability of quickly consulting visual 

examples of the proposed solution by hovering on each design pattern. In this way, these 

results seem to suggest that, in contrast to the previous experience of participants using a 

paper version of the pattern language, in this second round of the evaluation participants 

were able to spend more time understanding the descriptions of both the design problems 

and solutions proposed by design patterns instead of having to understand the structure 
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Classification. Purpose: Presentation. Level of abstraction: Feature. 

Context. Within his area of responsibility and authority, the human operator needs 

to comprehend sets of incoming alarms displayed by alarm displays. Based on these 

displays, he would like to explore the overall alarm information space according to 

different alarm dimensions such as typology, priority, or location.  

Problem. The human operator needs to explore the overall alarm information 

space according to different alarm dimensions in order to diagnose the cause of a failure 

in the controlled process.  

Solution. Use a standard display hierarchy to present the multi-level views 

necessary for exploring alarm information. These levels follow an expected progression 

from the general to the more detailed in order to aid the operator in performing different 

tasks. A single first level can be associated with several secondary levels. Each 

secondary level can only be associated therefore with a single first level.   

Known uses. 

 

Annex Fig. A-1 An implementation of the Details hierarchy pattern: Hierarchy of levels applied to a control 
system interface for a power plant [107] 
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Annex Fig. A-2 An implementation of the Details Hierarchy pattern: Hierarchy of levels applied to the 
SIMATIC PCS 7 process control system developed by Siemens [121] 

Rationale. A display hierarchy delivers a robust structure that encourages ready 

access to information while at the same time keeping important situation context and 

promoting efficient navigation to go deeper [107]. 

Relations.  

q Composition relationship: PF(3) Primary level of detail, PF(4) 

Secondary level of detail. 
q Specialization relationship: PM(5) Overview and detail 
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Classification. Purpose: Presentation. Level of abstraction: Feature. 

Context. Under all controlled process conditions, even during minor disturbances, 

the human operator would like to know all key alarms that are directly safety related and 

important process alarms related to safety critical systems.   




