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Abstract

Fixed effects in discrete choice models has been a challenge to econometricians
from its existence. These unobservable heterogeneities are so important since
their impacts can be seen clearly from the behavior of agents being studied. This
has been consolidated by lots of studies and simulations including mine. However
their existence prevent us from identifying models without restrictive assump-
tions about them. It is also hard to get rid of fixed effects since they enter the
model not in a linear additive way and the outcomes are not continuous, there-
fore extant difference methods do not apply to discrete choice models with fixed
effects. To have flexible specification on the fixed effects, it seems that partial iden-
tification is more practicable. There do exists some idea about set identification
for discrete choice models and even some estimation methods were proposed for
logistic-alike discrete choice models, whose key feature is that all model deduced
conditional choice probabilities are well formulated in closed form expressions.

For reasons people may want to have discrete choice models with disturbance
other than extreme type I distributed one to overcome some of its implications,
e.g the property of independence with irrelevant alternatives among others. The
challenge to meet such requirement is that the key feature of closed form expres-
sions does not hold anymore, and techniques like simulation should be used. My
PhD thesis provides the foundation and framework on how to practice the simula-
tion based estimation for discrete choice models with rather flexible fixed effects.
This framework is both theoretical and practical, I show how to construct the sim-
ulation based estimation and study conditions about both the property of model
and practice of simulation under which the estimator is consistent. This object
is achieved in two steps. I first develop the theory for static discrete choice mod-
els where outcomes of behavior does not depend on previous outcomes. In this
case specification of disturbance could be rather free and even serial correlation
could be included. Later on, I extend the framework to dynamic discrete choice
models, where current behavior depends on some state variables which depend
on previous behavior in turn. In dynamic models, specification for disturbance is
still free except that serial correlation could not be allowed. These two steps con-
sist of the first and second chapters, in both chapter a numeric example is given
which shows how well the simulation based estimator works. In the last chapter
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I turn to the real data and apply my method to the problem of career decision of
young men. Essentially this is a typical application of dynamic programming dis-
crete choice model, which means individual’s object function is the lifetime utility
and it depends on both previous behavior and future states and what individual
should decide is not only the current behavior but also future actions. By intro-
ducing a reduced form of the future utility I succeed in fitting this problem into
the framework of dynamic discrete choice model with fixed effects.
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Chapter 1

Simulation Based Estimation of
Multinomial Discrete Choice Model
with Fixed Effects
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Abstract

Multinomial discrete choice model, including binary choice model, is a class of
widely used nonlinear models. Including unobservable heterogeneity in such
models is necessary in many applications due to the unobserved variations in indi-
vidual’s preference, attributes or technology in use. Unfortunately this will cause
problem for their point identification. I study the estimation of a multinomial dis-
crete choice model in panel data with potentially multidimensional fixed effects
that can be set identified on its parameters and conditional average partial effects
for the outcome and choice probability. The model I study in this paper is general
in the sense that it allows components without closed form, and its conditional
probabilities for each alternatives and partial effects can be gotten through Monte
Carlo simulation. For this model I propose a simulation based estimator for all the
set identified quantities and I show that this estimator is consistent under general
conditions and a perturbed bootstrap method can be used to implement its infer-
ence. A numeric example with simulated data is given to show the behavior of
the estimator and I find that the estimated bounds of partial effects contain their
true effects.



1.1 Introduction

Discrete choice model is a powerful tool for econometricians to quantify individ-
ual’s choice behavior, where individual can be a single consumer, a household, a
company or even an organization or government. It can be generally any entity
that needs to make a choice out of its available options. Technically, discrete choice
models are generally non-separable in the sense that unobserved variations or er-
ror terms in its utility expression do not enter the choice function in an additive
way as a simple linear regression do. Specifically, since the seminal paper on qual-
itative choice behavior by D. McFadden 1973, the random utility model (RUM) has
become the cornerstone of discrete choice models. Following this practice, even
if it is customary to set a linear utility for individuals under investigation, their
discrete choice behavior is given by indicator functions instead of linear functions.
The nonlinearity of indicator functions makes discrete choice model intrinsically
non-additive separable in its error term or other unobserved variations of the util-
ity. In this case if any part of the error term is correlated with one of the other
explanatory variables in the utilities, a leading example is the fixed effect which I
am working with in this paper, it will be hard to get rid of the endogeneity. This
property makes the identification and estimation of discrete choice models with
fixed effects a big challenge.

Maximum likelihood method can not give a consistent estimation if we just
ignore the fixed effects and treat all the explanatory variables as exogenous. Al-
ternatively, if we take the fixed effects as individual specific parameters to be es-
timated together with other parameters, Neyman and Scott 1948 showed that the
maximum likelihood estimator does not consistently estimate the true parameters
because the number of “nuisance parameters1” grows with the sample size and
this fact violates one of the conditions for the consistency of MLE.

A further alternative method instead of fixed effects is the random effects ap-
proach. This method asks you to specify the conditional distribution of the unob-
servable individual specific attributes given other endogenous explanatory vari-
ables and the most prevalent practice is to assume the independence. But for dy-
namic models2 random effects approach encounters the initial conditions problem
pointed out by Heckman 1981 if your observations can not cover the process from
its inception. Even if you use the likelihood conditional on the initial observed de-
pendent variables, random effects approach may still be problematic in internal

1Many literatures are devoted to the nuisance or incidental parameter problem, Lancaster 2000
gives a review on this topic.

2In the context of discrete choice model with unobservable individual effects, dynamic mod-
els indicate models with lagged dependent variables as their explanatory variables. We do not
consider those forward looking dynamic discrete choice models in this paper.
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consistency across different numbers of periods3.
Still another well known solution is the BLP method4, it is named after a series

of papers by S. T. Berry 1994, S. Berry, Levinsohn, and Pakes 1995. BLP method
decomposes the unobserved utility variation into two parts, of which one is the
fixed effects and the other part is independent of all other parts of the model. To
avoid the nuisance parameter problem, they do not allow the fixed effects to vary
over individuals but only over different choices and markets. The numbers of
choices and markets are fixed while the number of individuals increases, therefore
the number of fixed effects doesn’t increase with the sample size such that they
can treat the fixed effects as parameters to be estimated. BLP method actually
avoids the nuisance parameter problem by assuming some homogeneity across
individuals and limiting the number of heterogeneities.

Browning and Carro 2013 and Browning and Carro 2014 studied the number of
heterogeneous types that can be identified in a first order dynamic binary outcome
model with maximal heterogeneity. Since the complete heterogeneity causes the
nuisance parameter problem and prevents the identification, a restricted maximal
number of heterogeneous types can help to point identify the model. They found
that as the number of panels increases, the identified number of heterogeneous
types also increases.

All the methods aforementioned have to impose some restrictions on the con-
ditional distribution of individual specific heterogeneities in terms of either the
functional form or a maximal types of heterogeneity. For BLP method this condi-
tional distribution even degenerates to market or choice specific nonrandom pa-
rameters. If we would like to have more flexibility in its conditional distribution,
Honoré and Tamer 2006 showed that even for simple models point identification
often fails. They also provided an idea of set identification as well as three prin-
ciples to characterize the identified set. In this paper I study a ready to extend
static model5, where their result of a lack of point identification still apply, and
their idea of set identification has been developed by Chernozhukov et al. 2013a
in a similar framework.

In this paper I further develop the method by Chernozhukov et al. 2013a. I
notice that their method of set identification is general for multinomial discrete
choice models, but their estimation can be only applied to situations where all
the model components have closed forms. Note that there are situations where
some model components have no closed forms, i.e. the choice probability and
partial effects in some multinomial discrete choice models with more than two

3See Wooldridge 2005 and Honoré 2002 for a discussion.
4Nevo 2000 gives a precise but still pellucid explanation of the BLP model.
5This idea can be applied to dynamic models, but to keep the notation and assumption consis-

tent and simple, I consider only static models in this paper.
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they observe some attributes of the alternatives and the decision makers. Label
these attributes in period t as xita for any alternative a and individual i, then a
utility function Vita that relates these observed attributes to the decision maker’s
utility can be specified as Vita = V(xita), and this is called the representative utility
by Kenneth E. Train 2009 or strict utility by D. McFadden 1977. This definition
for representative utility doesn’t consider the fixed effects, αi, and it can be gen-
eralized as a function that also includes the fixed effects, i.e. Vita = V(xita, αia).
In this paper I focus on parametric specifications on Vita, and it generally has the
form Vita = V(xita, αia, β). There are some comments on its specification before I
continue.

First of all, should it be possible allowing observable attributes of alternatives
entering the representative utility is useful. It turns out an efficient way to include
alternatives in the utility function. Without xita being varied over alternatives a, an
alternative method that allows a flexible substitution pattern between alternatives
is to use dummy variables for each alternative and let part of the parameters β to
be alternative specific. One drawback of this method is that it introduces a lot of
alternative specific parameters into the model if there are a host of alternatives
for each decision maker10. D. McFadden 1973 solved this problem by projecting
alternatives onto their characteristics. In other words, we can use a finite common
vector of characteristics to distinguish different alternatives and it is possible to
represent alternative specific parameters as functions of common parameters and
alternative’s attributes such that the number of β can be suppressed as the number
of alternatives increases. This method has been followed by many papers that
analyze demands for differentiated products11 and my paper is not an exception.

Secondly, letting xita to change over i is a similar way to capture idiosyncratic
preference of individuals without letting β to be specific to i. A borrowed example
of car market from Kenneth E. Train 2009 is helpful to clarify this idea. Suppose
that the only two attributes of cars that can be observed by the researchers are the
purchase price, PRta, for car a in period t and inches of shoulder room, SRa, which
is a measure of the interior size of the car a. The value that households place on
these two attributes varies over households, therefore the representative utility is

(1.2.1) Vita = βit1SRa + βit2PRta,

where βit are parameters specific to household i and period t. This variation in
taste can be modeled in the following way. Suppose the value on shoulder room

10See Nevo 2000 for more discussions.
11Some examples include: Bresnahan 1987, S. T. Berry 1994, S. Berry, Levinsohn, and Pakes 1995,

S. Berry, Levinsohn, and Pakes 2004 and S. T. Berry and Haile 2010.

14



varies only with the number of members in the household, Mit, as

βit1 = ρMit,

where ρ is positive such that the value on shoulder room, βit1, increase as Mit

increases. Similarly, suppose the importance of purchase price is inversely related
to income, Iit, so that low-income households place more importance on purchase
price as

βit2 = θ/Iit.

Substituting these relations into (1.2.1) produces

Vita = ρ(MitSRa) + θ(PRta/Iit),

where the product MitSRa and the quotient PRta/Iit vary over i, t and a and this
is exactly covered by the model of general specification.

Furthermore, fixed effects can be included naturally. Suppose that the value
of shoulder room varies with household size plus some other factors12 that are
unobserved by the researcher. For example

βit1 = ρMit + µi,

where µi is random but constant over t. Similarly, the importance of purchase
price consists of its observed and unobserved components as

βit2 = θ/Iit + ηi.

Substituting into (1.2.1) produces

Vita = ρ(MitSRa) + θ(PRta/Iit) + µiSRa + ηiPRta,

where the term µiSRa + ηiPRta is unobservable because µi and ηi are unobserv-
able. This example shows how the fixed effects come out and what is more, if you
would like to keep the structure of µiSRa + ηiPRta, this is also a model with fixed
effects of dimension two, where αia = (µiSRa, ηi) and V(xita, αia, β) = ρ(MitSRa)+

θ(PRta/Iit) + µiSRa + ηiPRta.
Last but not least, xita can contain element that only varies with t and keeps

constant over i and a, therefore the model has the capacity of dealing with time
effect. Furthermore this model can even deal with dynamic choice over periods,
e.g. you can let one element of xita to be the dummy variable 1(yi(t 1) = a), where

12e.g., sizes of the family members, or frequency with which the household travel together.
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ỹit(xa

t ) ỹit(xb
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Ŝ

Ξ = }P : Aβ � B G k(β, P) ∀= ∅, ∃k = 1,×××, K| .

Ŝ
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effects:

1. For the first subgroup

(a) Partial effect on choosing a larger car if only the number of family mem-
bers increases from 2 to 3 while the family income is 20.

(b) Partial effect on choosing a larger car if only the family income increases
from 10 to 20 while the number of family members is 1.

(c) Partial effect on choosing a larger car if only the price for two seats cars
increases from 10 to 12 while number of family member is 1 and family
income is 10.

2. For the second subgroup

(a) Partial effect on choosing a larger car if only the number of family mem-
bers increases from 2 to 3 while the family income is 20.

(b) Partial effect on choosing a larger car if only the family income increases
from 10 to 20 while the number of family members is 2.

(c) Partial effect on choosing a larger car if only the price for two seats cars
increases from 10 to 12 while number of family member is 2 and family
income is 10.

3. For the third subgroup

(a) Partial effect on choosing a larger car if only the number of family mem-
bers decreases from 2 to 1 while the family income is 10.

(b) Partial effect on choosing a larger car if only the family income increases
from 10 to 20 while the number of family members is 2.

(c) Partial effect on choosing a larger car if only the price for two seats cars
increases from 10 to 12 while number of family member is 2 and family
income is 10.

4. For the fourth subgroup

(a) Partial effect on choosing a larger car if only the number of family mem-
bers increases from 2 to 3 while the family income is 20.

(b) Partial effect on choosing a larger car if only the family income increases
from 10 to 20 while the number of family members is 2.

(c) Partial effect on choosing a larger car if only the price for two seats cars
increases from 10 to 12 while number of family member is 2 and family
income is 10.
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Out of all the treatment effects listed above, only the second treatment effect
for the fourth subgroup can be identified, while all other partial effects are only
set identified. Since I know the true DGP in this example, I can simulate all the
partial effects and compare them with these set identification estimations. As
the estimator is simulation based, it contains variations from simulation as well
as variations from the randomness of the data. Without considering estimator’s
variance, the true effect are not guaranteed to be inside the estimated intervals.
Instead of reporting the result from only one estimation, I run the data generation
and estimation 100 times and report the averages. This also gives the empirical
distribution of them. I illuminate these distributions by a set of boxplots starting
from figure 1.1 to figure 1.4. In those boxplots, three horizontal lines are added to
facilitate the comparison of upper bound, lower bound and the true effects, where
a purple line indicates the mean of upper bounds, a red line indicates the mean
of true effects and a blue line indicates the mean of lower bounds.

I also summarize findings under different DGP in from table 1.1 to table 1.4.
Out of all the bounds for 12 effects, most of the effects are included in the bounds
while others are quite close to the bounds. Except for the finite sample properties,
another reason for the non-inclusion is because of the challenge of searching for
all the conditional distribution of the fixed effects and β in the identified set. In
practice I use a simpler search that can be implemented by linear programmings
which were also used by Chernozhukov et al. 2013a. Theoretically these bounds
I report here are actually subsets of their identified sets respectively. Of course
because of the simulations, my algorithm costs more time for the computation28

than CFHN’s algorithm without simulation.

1.6 Conclusion

This paper generalizes the estimation approach for a set identified semiparamet-
ric discrete choice model with fixed effect proposed by Chernozhukov et al. 2013a.
The idea of this estimation method is to use distribution assumption of the error
term together with the simulation of individual’s behavior to overcome the dis-
advantage of CFHN’s, which is incapable of handling models with components
having no closed form expressions, such that this simulation based method can
be applied to a wider range of applications, i.e. a general multi-choice model
allowing error term’s serial dependence. One important feature of this method
inherited from CFHN is that it allows multi-dimensional fixed effects in the rep-

28It takes more than one hour to finish the data generation and treatment effects bounds estima-
tion on a 2011 intel I5 desktop computer, and my code is written in R and C++. C++ code is to
implement the simulation and improve the efficiency.
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resentative utility, and it could be non-separable with other covariates. But I do
assume that the error term should be additively separable from other components
in the representative utility and also be independent of them.

I also note that the advantage comes with extra cost. For example, we need
more computation resource to simulate the choice probability as well as any other
components which have no closed form expressions either. For quantities like ξn,
η, λn and r, their rates of convergence should depend on each others’ and they
are controlled by assumption 1.4.3 (iv). Perturbed bootstrap can be used to give
valid inference on parameters of interest. In the last section a numeric example
based on the simulated data is given, and I give estimator’s distribution by simu-
lation instead of perturbed bootstrap29. It can be seen the estimators for bounds
include the real treatment effects and for this specific example these bounds are
quite narrow.

All the models I mentioned in this paper, including binary logit and probit
with fixed effects, assume that the distribution of ϵi is known completely. I conjec-
ture it is possible to joint identify parameters β and some parameters from H(ϵ)

under some extra assumptions. Of course challenges come after this idea, I will
study this case in another paper.

29Since this is a numeric example, data are generated such that the simulation is possible and
preferred than bootstrap. For application with field data, perturbed bootstrap is your friend.
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1.7 Tables and Figures

Table 1.1: Partial effects on choosing a larger car (independendt
αi with serial correlation)

Group 1 Effect a Effect b Effect c

Upper bound 0.05927 0.42861 0.30907
Lower bound 0.05808 0.41071 0.28743
True effect 0.05909* (95) 0.42553* (97) 0.30485* (95)

Group 2 Effect a Effect b Effect c

Upper bound 0.05896 0.44602 0.39802
Lower bound 0.05296 0.43922 0.38660
True effect 0.05909 (95) 0.44037* (97) 0.39088* (97)

Group 3 Effect a Effect b Effect c

Upper bound -0.42127 0.44811 0.39946
Lower bound -0.43307 0.44035 0.38926
True effect -0.42556* (100) 0.44037* (97) 0.39088* (97)

Group 4 Effect a Effect b Effect c

Upper bound 0.05851 0.44233 0.39137
Lower bound 0.05768 0.43997 0.38701
True effect 0.05909 (95) 0.44037* (97) 0.39088* (96)

1 * indicates the value is included by our estimated upper and
lower bounds, where all values are the averages over the 100
simulations.

2 αi is independent with households’ attributes and follows an
uniform distribution over [0.6, 1].

3 ρ = 0.7 and cov(µita1 , µita2) = 0.6, var(µita1) = var(µita2) = 1.
4 Effects a, b and c are defined in previous paragraphs, and they

may be different for different groups.
5 Numbers in parentheses are frequencies of containing the true

effect in the 95% confidence intervals out of 100 simulations.
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Table 1.2: Partial effects on choosing a larger car (independent
αi without serial correlation)

Group 1 Effect a Effect b Effect c

Upper bound 0.01686 0.48451 0.32556
Lower bound 0.01632 0.45558 0.29300
True effect 0.01658* (100) 0.46981* (99) 0.30879* (98)

Group 2 Effect a Effect b Effect c

Upper bound 0.02293 0.48710 0.46373
Lower bound 0.01142 0.47454 0.43240
True effect 0.01658* (99) 0.48355* (97) 0.45235* (100)

Group 3 Effect a Effect b Effect c

Upper bound -0.46560 0.48502 0.45540
Lower bound -0.47298 0.48086 0.44870
True effect -0.46988* (94) 0.48355* (96) 0.45235* (97)

Group 4 Effect a Effect b Effect c

Upper bound 0.01636 0.48441 0.45449
Lower bound 0.01557 0.48149 0.45087
True effect 0.01658 (95) 0.48355* (96) 0.45235* (97)

1 * indicates the value is included by our estimated upper and
lower bounds, where all values are the averages over the 100
simulations.

2 αi is independent with households’ attributes and follows an
uniform distribution over [0.6, 1].

3 ρ = 0.0 and cov(µita1 , µita2) = 0.6, var(µita1) = var(µita2) = 1.
4 Effects a, b and c are defined in previous paragraphs, and they

may be different for different groups.
5 Numbers in parentheses are frequencies of containing the true

effect in the 95% confidence intervals out of 100 simulations.
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Table 1.3: Partial effects on choosing a larger car (dependent
αi with serial correlation)

Group 1 Effect a Effect b Effect c

Upper bound 0.03783 0.45568 0.34519
Lower bound 0.03706 0.44772 0.33519
True effect 0.03693 (94) 0.45668 (97) 0.34660 (96)

Group 2 Effect a Effect b Effect c

Upper bound 0.08800 0.56930 0.49611
Lower bound 0.08092 0.56168 0.48143
True effect 0.08120* (96) 0.56851* (95) 0.49906 (94)

Group 3 Effect a Effect b Effect c

Upper bound -0.31739 0.57670 0.50822
Lower bound -0.32351 0.56853 0.49753
True effect -0.32283* (96) 0.56851 (98) 0.49906* (97)

Group 4 Effect a Effect b Effect c

Upper bound 0.08187 0.56685 0.49406
Lower bound 0.08103 0.56481 0.48916
True effect 0.08120* (96) 0.56851 (95) 0.49906 (93)

1 * indicates the value is included by our estimated upper and
lower bounds, where all values are the averages over the 100
simulations.

2 For households with income per capital in the first period less
than 10, αi follows an uniform distribution over [0.8, 1], and
For households with income per capital in the first period
more than or equal to 10, αi follows an uniform distribution
over [0.6, 0.8].

3 ρ = 0.7 and cov(µita1 , µita2) = 0.6, var(µita1) = var(µita2) = 1.
4 Effects a, b and c are defined in previous paragraphs, and they

may be different for different groups.
5 Numbers in parentheses are frequencies of containing the

true effect in the 95% confidence intervals out of 100 simu-
lations.
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Table 1.4: Partial effects on choosing a larger car (dependent
αi without serial correlation)

Group 1 Effect a Effect b Effect c

Upper bound 0.00673 0.56155 0.40990
Lower bound 0.00649 0.55005 0.39632
True effect 0.00649* (98) 0.55308* (97) 0.40084* (98)

Group 2 Effect a Effect b Effect c

Upper bound 0.03722 0.67936 0.63342
Lower bound 0.02331 0.66478 0.59605
True effect 0.02678* (98) 0.67551* (97) 0.62532* (99)

Group 3 Effect a Effect b Effect c

Upper bound -0.29060 0.67953 0.63156
Lower bound -0.29249 0.67687 0.62691
True effect -0.29381 (96) 0.67551 (95) 0.62532 (95)

Group 4 Effect a Effect b Effect c

Upper bound 0.02694 0.67717 0.62637
Lower bound 0.02632 0.67521 0.62380
True effect 0.02677* (98) 0.67551* (96) 0.62532* (97)

1 * indicates the value is included by our estimated upper and
lower bounds, where all values are the averages over the 100
simulations.

2 For households with income per capital in the first period
less than 10, αi follows an uniform distribution over [0.8, 1],
and For households with income per capital in the first pe-
riod more than or equal to 10, αi follows an uniform distribu-
tion over [0.6, 0.8].

3 ρ = 0.0 and cov(µita1 , µita2) = 0.6, var(µita1) = var(µita2) =
1.

4 Effects a, b and c are defined in previous paragraphs, and
they may be different for different groups.

5 Numbers in parentheses are frequencies of containing the
true effect in the 95% confidence intervals out of 100 simu-
lations.
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Chapter 2

Set Identified Dynamic Multinomial
Discrete Choice Model with Fixed
Effects and Simulation
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Abstract

The idea of set identification by matching choice probabilities is general for dis-
crete choice models with fixed effects in the sense that it can be easily applied to
both static and dynamic models if all the model components have closed form
expressions. Huang 2015b considered the set identification and estimation of
fixed effects models without close form probabilities, such as multinomial discrete
choice models and nonlinear models with serially correlated errors. However, it
was assumed that all the explanatory variables are strictly exogenous, ruling out
dynamic models. In this paper I prove that Huang 2015b’s simulated estimator
is still consistent in dynamic models should we give up the serial correlation in
between error terms.
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4. NSt0 = 2, NFt1 = 2, FIt1 = 10, NFt2 = 2, FIt2 = 20.

They are evenly distributed in the population, and my simulated data has a sample
of 8000 individuals, that is 2000 for each type. There are many partial effects that
can be studied for each period, and the same partial effects can also be studied in
all periods. It is impossible to study all of them, therefore I make a short list of
them and show my study results. In the following list, there are 16 partial effects
on choosing a four-seats car and 4 effects for each type of family.

1. For the first group:

(a) Partial effect on choosing a larger car if only the number of family mem-
bers increases from 1 to 2 in the first period.

(b) Partial effect on choosing a larger car if only the family income increases
from 20 to 30 in the second period given that a two-seats car was pur-
chased in the first period4.

(c) Partial effect on choosing a larger car if only the price of 4-seats car
increases from 15 to 18 in the first period.

(d) Partial effect on choosing a larger car in the second period only because
of buying a 2-seats car instead of buying no car in the first period.

2. For the second group:

(a) Partial effect on choosing a larger car if only the number of family mem-
bers increases from 2 to 3 in the first period.

(b) Partial effect on choosing a larger car if only the family income increases
from 20 to 30 in the second period given that no car was purchased in
the first period.

(c) Partial effect on choosing a larger car if only the price of 4-seats car
increases from 15 to 18 in the first period.

(d) Partial effect on choosing a larger car in the second period only because
of buying a 2-seats car instead of buying no car in the first period.

3. For the third group:

(a) Partial effect on choosing a larger car if only the number of family mem-
bers increases from 2 to 3 in the first period.

4Especially note that this partial effect is for a general family from the first group. It is not
specific to families of the first group who purchased a two-seats car in the first period.
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(b) Partial effect on choosing a larger car if only the family income increases
from 20 to 30 in the second period given that no car was purchased in
the first period.

(c) Partial effect on choosing a larger car if only the price of 4-seats car
increases from 15 to 18 in the first period.

(d) Partial effect on choosing a larger car in the second period only because
of buying a 2-seats car instead of buying no car in the first period.

4. For the fourth group:

(a) Partial effect on choosing a larger car if only the number of family mem-
bers increases from 2 to 3 in the first period.

(b) Partial effect on choosing a larger car if only the family income increases
from 20 to 30 in the second period given that no car was purchased in
the first period.

(c) Partial effect on choosing a larger car if only the price of 4-seats car
increases from 15 to 18 in the first period.

(d) Partial effect on choosing a larger car in the second period only because
of buying a 2-seats car instead of buying no car in the first period.

A monte carlo study of 100 replications has been undertaken, and the average
information about true values of these 16 partial effects and their estimated lower
and upper bounds are reported in tables 2.1 and 2.2. Further information about
their distribution can be seen from these boxplots in figures 2.1 and 2.2, where the
16 partial effects for all the four types of families are orderly named as from effect1
to effect16. Since the bounds of identified partial effects ask to find extreme values
out of a set whose structure is complicated and less known, in practice approxi-
mations and compromise are made in finding them. Thus I do not report the true
bounds of partial effects, instead the true partial effects are reported since they
are easy to calculate by simulation. You can not see how close this estimator is to
the true bounds in the monte carlo study, but the good news is that the estimated
bounds cover true values quite well.

2.6 Conclusion

This paper gives parallel results of Huang 2015b’s under a set of assumptions with
minor distinctions for a class of dynamic discrete choice models. In both papers,
the complete knowledge of the distribution of errors play a key role in the sim-
ulation method. In the static case, since all the covariates are strictly exogenous
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αi

αi
[0.6, 1]

cov(εita1 , εita2) = 0.6 var(εita0) = var(εita1) = var(εita2) = 1

εit

yi t

εit‖αi, zi, yi t ⊂ Ht(ε)

εi



Table 2.2: Partial effects on choosing a larger car (dependent αi)

Group 1 Effect a Effect b Effect c Effect d

Upper bound 0.06247 0.09086 -0.03897 0.06100
Lower bound 0.05490 0.06766 -0.04846 0.02249
True effect 0.06259 (100) 0.07762* (100) -0.04686* (99) 0.03918* (100)

Group 2 Effect a Effect b Effect c Effect d

Upper bound 0.08236 0.10991 -0.04701 -0.05492
Lower bound 0.06206 0.08585 -0.05610 -0.07528
True effect 0.07187* (100) 0.09746* (100) -0.05067* (100) -0.06605* (100)

Group 3 Effect a Effect b Effect c Effect d

Upper bound 0.04499 0.08094 -0.04957 -0.00340
Lower bound 0.03542 0.06635 -0.06193 -0.00737
True effect 0.04248* (100) 0.07449* (100) -0.05693* (100) -0.00610* (100)

Group 4 Effect a Effect b Effect c Effect d

Upper bound 0.08453 0.10798 -0.04897 -0.03506
Lower bound 0.06004 0.08322 -0.05589 -0.05135
True effect 0.07189* (100) 0.09537* (100) -0.05067* (99) -0.04355* (100)

1 * indicates the value is included by our estimated upper and lower bounds, where
all values are the averages over the 100 simulations.

2 αi is dependent with households’ attributes, it is uniformly distributed over [0.6, 0.8]
if family’s first period income per capita is more than or equal to 10 or uniformly
distributed over [0.8, 1] if family’s first period income per capita is less than 10.

3 cov(ϵita1 , ϵita2) = 0.6, var(ϵita0) = var(ϵita1) = var(ϵita2) = 1.
4 Effects a, b, c and d are defined in previous paragraphs, and they may be different

for different groups.
5 Numbers in parentheses are frequencies of containing the true effect in the 95%

confidence intervals out of 100 simulations.

are to the true bounds.

67



2.7 Figures

Figure 2.1: Effects on Choosing A Larger Car (Independent αi)
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Figure 2.2: Effects on Choosing A Larger Car (Dependent αi)
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Chapter 3

The Career Decisions of Young Men
Revised with Fixed Effects Approach
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Abstract

Keane and Wolpin 1997 studied the career decisions of young men using a single-
agent dynamic programming discrete choice model. Their model is a breakthrough
in the development of dynamic programming discrete choice models since their
model specification deviates from Rust’s model in several aspects. One of these im-
provements is to allow unobservable individual effects that is time invariant. A
well-known issue relating to individual effects is the model identification. Their
practice is assuming that unobservable individual effects can be captured by a
finite number of types and the number of types is known by researchers. And
most applications have considered a small number of types due to the reason of
identification. Actually, should we give up the point identification a more flexible
specification of the individual effects is possible (see Chernozhukov et al. 2013a;
Huang 2015b and Huang 2015a). In this paper I restudy the career decision model
of young men using a more flexible specification of the individual effects. I am
interested in the set identified structural parameters of the model and bounds of
partial effects of various choice probabilities.



3.1 Introduction - Fixed Effects and Dynamic Program-
ming Discrete Choice Model

There are various reasons to include unobservable individual effects in an econo-
metric model. For most of the structure model this practice leads to a challenge of
model identification since structure model tends to make individual effects non-
separable and one can not get rid of them by primitive transformation like the first
difference. Bonhomme 2012 provides an idea of functional form difference dealing
with non-separable individual effects, however this idea does not apply to discrete
choice models. It seems that giving up the point identification is an alternative for
discrete choice models. Following Honoré and Tamer 2006 and Chernozhukov et
al. 2013a, Huang 2015b and Huang 2015a developed the estimation methods for
set identified static and dynamic discrete choice models respectively. This devel-
opment allows non-closed-form components of model by using Monte Carlo sim-
ulation, thus it makes the idea of set identification more applicable at the cost of
some extra computation and it may become an impediment for some complicated
applications.

One such example is the class of dynamic programming discrete choice mod-
els1. This class of dynamic discrete choice models are forward looking models
wherein individual’s behavior is not only determined by the current period util-
ity but also the discounted expectation of all future utilities. To practice the iden-
tification and calculate choice probabilities, it involves the solution of a dynamic
programming problem for each trail of parameters. This is also computation in-
tensive and maybe it is because of this problem, most of the dynamic discrete
choice models focusing on the fixed effects do not consider individual’s forward
looking behavior explicitly or structurally.

To study young men’s career decisions as shown by Keane and Wolpin 1997,
both individual effects and forward looking behavior are important. Combining
both challenges together is not a wise practice. Keane and Wolpin 1997 avoid
the fixed effects and identification issue by assuming a known small number of
types of the unobservable individual effects and using a mixture likelihood. In
this paper I relax this assumption and follow the fixed effects approach making
no restrictions on conditional distributions of individual effects2. As a cost of this
practice one important compromise I make is to use an reduced form expression
for the expectation of all future utilities. Due to this compromise, the model I pro-
pose is not a fully structural model but partial structural. Although this is a com-
promise in technique, there are some interpretations that consolidate its practice.

1See Aguirregabiria and Mira 2010 for a great survey of this class of models.
2One exception is that individual effects’ support should be compact.
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Ū(hi16, yi t = a t, αat , β) + z∈itθat + εitat � Ū(hi16, yi t = a t, αa∈t , β) + z∈itθa∈t + εita∈t
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were age 16 or less as of the round of 1979 survey.
Schooling data is the highest grade attended and completed at the end of June.

I got the data by using two revised main variables recording the enrollment sta-
tus as of May 1 survey year, and highest grade completed as of May 1 survey
year. Only respondents who reported as enrolled and got a higher grade in the
next survey year are coded as attending school in period from October 1 to June
30. This period is also used to code the choices between the three occupations,
blue-collar, white-collar and military. NLSY79 has the starting and ending date
information for at most 5 civilian jobs for each respondent for each survey years.
I count the total working dates of these jobs and consider the one as an active
worker if she/he worked more than half of the 9 months, and his/her main occu-
pation is the most worked one. While there is no created NLSY79 variable that
identifies members of the active military forces, a simple method of identifying
these individuals through 1993 is to check whether they valid skipped the first
CPS question7. Only if respondents are of neither of the above categories, they
are classified as being home.

Since the gauge used in my data cleaning is not exactly the same as Keane and
Wolpin 1997’s. I use table 3.1 to check whether my data cleaning release the same
style as theirs did. The comparison shows that although the levels of numbers
and percentages are not exactly the same, they are quite close for the most part.
What is important is that this table shares the same style of distribution as theirs.
For example, as age increases the number of school decrease gradually and the
numbers of white-collar and blue-collar increase. The number of military has a
single peak at age 21 while it is at age 20 in Keane and Wolpin 1997’s.

Since the identification idea depends on choice probabilities conditional on the
initial level of schooling, h16. Its marginal distribution is given by table 3.2. Initial
schooling concentrates on three values, which are 8, 9 and 10 years and takes up
96.58% of the observations. Therefore I classify the initial level of schooling into
only three groups, where group 1 is 4 ⩽ hi16 ⩽ 8, group 2 is hi16 = 9 and groups
3 is 10 ⩽ hi16 ⩽ 12, and assume that the conditional distribution of αi does not
change within each group such that I explicitly consider only three conditional
distributions of fixed effects instead of nine distributions.

3.4.1 Simplify the Output of Choice Combinations

As for the number of combinations of choices over the 10 years of those young
men’s early career, there are 817 distinct combinations and most of them has only

7This is the recommend identification method in http://nlsinfo.org/content/cohorts/nlsy79/topical-
guide/employment/military
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Table 3.1: Choice Distribution: White Males Aged 16-25

Choice
Age School Home White-Collar Blue-Collar Military Total

16 1,009 90 4 38 0 1141
(88.43) (7.89) (0.35) (3.33) (0.00) (100%)

17 937 127 5 69 3 1141
(82.12) (11.13) (0.44) (6.05) (0.26) (100%)

18 608 205 52 241 35 1141
(53.29) (17.97) (4.56) (21.12) (3.07) (100%)

19 360 253 96 363 69 1141
(31.55) (22.17) (8.41) (31.81) (6.05) (100%)

20 283 235 124 419 80 1141
(24.80) (20.60) (10.87) (36.72) (7.01) (100%)

21 246 234 137 440 84 1141
(21.56) (20.51) (12.01) (38.56) (7.36) (100%)

22 185 203 172 504 77 1141
(16.21) (17.79) (15.07) (44.17) (6.75) (100%)

23 117 201 251 509 63 1141
(10.25) (17.62) (22.00) (44.61) (5.52) (100%)

24 82 179 316 509 55 1141
(7.19) (15.69) (27.70) (44.61) (4.82) (100%)

25 54 154 338 541 54 1141
(4.73) (13.50) (29.62) (47.41) (4.73) (100%)

1 Note. - Number of observations and percentages.

Table 3.2: Initial Distribution of Schooling

School in years
Age 4 5 6 7 8 9 10 11 12 Total
16 2 1 8 16 112 435 555 9 3 1,141

0.18 0.09 0.70 1.40 9.82 38.12 48.64 0.79 0.26 100%
1 Note. - Number of observations and percentages.

one realization. This is a huge impediment to the methodology I proposed pre-
viously. Fortunately many combinations differ only in few periods and actually
share some common trends. Push this idea further, I classify all the combinations
into much fewer types. These types are constructed as follows8

1. Divide the ten years into two periods, the early five years and the late five
years.

2. Choose a representative action for each periods. i.e a = 4 for more than 3
8The following rules only give a general guidance, for more details of the classification please

check my code for this application.
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year implies 4 is a representative action. In case a = 1, 2, 3 for more than 3
years, then any 1, 2, 3 dominating in the 3 or more years is a representative
action.

3. Use the simplified choice outcomes in the two five years periods as the final
outcomes, then there are at most 25 outcomes and J ⩽ 25. Actually in the
data there are 22 outcomes.

3.5 Empirical Study Result

There are many partial effects can be studied by applying (3.2.10), As a pedagogic
example, in this section I am interested in partial effects of a complete high school
education on the choice probability of being a white collar at the year of high
school graduation. For group 1 with 4 ⩽ hi16 ⩽ 8, the mode of initial schooling
is 8 years. Therefore I choose a representative individual from this group the one
with initial schooling of 8 years at age 16. For group 2, a reasonable representative
individual is the one with initial schooling of 9 years at age 16. For group 3 with
10 ⩽ hi16 ⩽ 12, the mode of initial schooling is 10 years, thus a representative
individual is the one with initial schooling of 10 years. I exhibit the treatment of
a complete high school for them in table 3.3.

Table 3.3: Typical Individuals and Their Treatments 1

Age
Init. Sch 16 17 18 19 20 21 22 23 24 25
8 years . . . . . . . . . .
( 8 years 5 5 5 5 . . . . . . )
( 8 years 4 4 4 4 . . . . . . )
9 years . . . . . . . . . .
( 8 years 5 5 5 . . . . . . . )
( 9 years 4 4 4 . . . . . . . )
10 years . . . . . . . . . .
( 8 years 5 5 . . . . . . . . )
( 10 years 4 4 . . . . . . . . )

1 Note. - The first line in the parenthesis presents a
potential state of having not any high school educa-
tion for the typical individual of each types. The sec-
ond line in the parenthesis presents another poten-
tial state of having a complete high school education
for the same typical individual of each types.

For the first group, the age of high school graduation is 20, and for the second
group it is age 19 and for the last group it is age 18. I name the complete high
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school effects on white collar jobs for these three representative individuals as
Effect One, Effect Two and Effect Three, and exhibit my findings on their bounds in
table 3.4.

Table 3.4: Bounds of Treatment Effects
1 for Typical Individuals

Effects Lower Bound Upper Bound
One -2.776% 4.480%
Two -3.606% 17.144%
Three -5.040% 15.109%

1 Note. - The treatment effect is the
change of probability of choosing a
white collar job due to a complete
high school education and the alter-
native choices are staying home for
4 years.

The findings are interesting. For average individuals who had finished 9 years
of schooling at their age 16, a complete high school education seems help most.
Contrarily, it helps only a little for those who had less than 9 years schooling at
the same age. For people who exceeded the average initial schooling high school
education helps but not as much as the average. Due to the reason of set identifi-
cation, all the three effects could be negative in their worst cases.

One may consider another possibility of choosing a blue collar job instead of
staying home while not taking the high school education. Since four year of blue
collar job experience accumulates job-specific human capital, economics theory
predicts even larger partial effects since a more experienced blue collar worker is
less likely hunting a white collar occupation. To check the intuition, I consider the
new treatments as listed in table 3.5, and table 3.6 shows the findings.

To my surprise, only the optimal effect of the first individual conforms the
intuition, and larger negative effects in the worst situations may suggest early blue
collar career experience have a more important positive effect on becoming a white
collar later on than the complete high school education. To make this idea more
clear, I further study the pure effects of early blue collar effect compared with
staying home on becoming white collar as declared in table 3.7.

Findings on these new treatments are listed in table 3.8. It consolidates the
previous finding. Generally blue collar experience has a larger positive effect on
the probability of becoming a withe collar than a complete high school education.
As a result a direct comparison of high school education and a blue collar experi-
ence at the same period as described in table 3.5 and 3.6 shows generally negative
effects. To understand this unusual finding, it is helpful to review the utility form
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Table 3.5: Typical Individuals and Their Treatments 2

Age
Init. Sch 16 17 18 19 20 21 22 23 24 25
8 years . . . . . . . . . .
( 8 years 1 1 1 1 . . . . . . )
( 8 years 4 4 4 4 . . . . . . )
9 years . . . . . . . . . .
( 8 years 1 1 1 . . . . . . . )
( 9 years 4 4 4 . . . . . . . )
10 years . . . . . . . . . .
( 8 years 1 1 . . . . . . . . )
( 10 years 4 4 . . . . . . . . )

1 Note. - The first line in the parenthesis presents a
potential state (as blue collar worker) of having not
any high school education for the typical individ-
ual of each types. The second line in the parenthe-
sis presents another potential state of having a com-
plete high school education for the same typical in-
dividual of each types.

Table 3.6: Bounds of Treatment Effects
2 for Typical Individuals

Effects Lower Bound Upper Bound
One -29.609% 8.032%
Two -34.765% 11.901%
Three -23.360% 12.593%

1 Note. - The treatment effect is the
change of probability of choosing a
white collar job due to a complete
high school education and the alter-
native choices are working as blue
collar workers.

for a = 1, 2, 3 in (3.2.1). Note that a quadratic term of occupation-specific work-
ing experience following Mincer 1958 is included in the skill production function,
therefore it is possible that the quadratic term makes the effect of four years blue
collar experience negative for some parameters. It is clear that the data I use could
not exclude there parameters according to the idea of set identification. Therefore
it is superficial to say that blue collar experience helps to increase the possibility
of being a white collar. Instead it is more precise to say that in some cases indi-
vidual’s blue collar experience fails to build up his skill as expected. Unless it is
strongly believed that more experience can never reduce its output of skill, the
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Table 3.7: Typical Individuals and Their Treatments 3

Age
Init. Sch 16 17 18 19 20 21 22 23 24 25
8 years . . . . . . . . . .
( 8 years 5 5 5 5 . . . . . . )
( 8 years 1 1 1 1 . . . . . . )
9 years . . . . . . . . . .
( 8 years 5 5 5 . . . . . . . )
( 8 years 1 1 1 . . . . . . . )
10 years . . . . . . . . . .
( 8 years 5 5 . . . . . . . . )
( 8 years 1 1 . . . . . . . . )

1 Note. - In this table the states before treatments are
from the pre-treatment states of table 3.3, and the
states after treatments are from the pre-treatment
states of table 3.5.

quadratic term should be included in our model specification9.
Another interesting finding is that while blue collar experience helps10 indi-

vidual with average initial schooling the most, it also help people with less initial
schooling a lot.

Table 3.8: Bounds of Treatment Effects
3 for Typical Individuals

Effects Lower Bound Upper Bound
One -10.234% 27.994%
Two -6.821% 32.727%
Three -4.549% 21.367%

1 Note. - The treatment effect is the
change of probability of choosing a
white collar job due to a blue collar
experience instead of staying home.

Another finding is that the ranges of effects are quite large. They cover some
negative effects while the majorities are positive. This is implied by the set identi-
fication, but there are some other reasons. For example, assumption 4.3 in Huang
2015b guarantees the consistency of the estimator but there are still a lot of free-
dom in choosing the values of ξn, λn and M given the sample size, it is still un-
known what is the most efficient practice. Another reason is I use a method to

9Another result without the quadratic term will be reported soon.
10This is only a convenient phrase. Keep in mind the real reason why blue collar experience

sometimes increase the probability of being a white collar.
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simplify the output of choice combinations as I declare in section 3.4.1. This sim-
plification is a double-edged sword. While it decrease the variation of frequencies
and reduce the burden of calculation largely, it also throws away some data infor-
mation. An improvement is to find a better balance in between data information
and burden of calculation. For example it could be tried to have a division of
three periods instead of two in the process of output simplification, and in this
case there are no more than 125 possible combination of outcomes instead of only
25. Given more computation resource and time, a better estimated range could be
achieved.

Although the estimation could be improved somehow, my result suggests that
allowing for heterogeneity in a flexible way is important. For example, in this
application the partial effect of being a white collar by blue collar experience could
be positive largely because of the partial identification of parameters, which in
turn invokes us to think about whether a quadratic term of experience should be
included.

3.6 Conclusion

This paper is the first application of the simulation based method proposed by
Huang 2015b and Huang 2015a. It bridges the single agent dynamic program-
ming discrete choice model with discrete choice model with fixed effects. Instead
of point identification, the simulation based method follows the idea of set identi-
fication. To handle the complexity caused by fixed effects I use a reduced form for
agent’s expectation over future utility, and this practice avoids the solution of the
dynamic programming problem for every trail of parameters. I also gave reasons
on why this reduced form practice is reasonable except for the reason of being
practical. This application bases itself on the work of Keane and Wolpin 1997. To
study the ten years of white young men’s career choices with the set identified
idea, a two five-years periods simplification is introduced. It reduces the number
of distinct histories of choice thus avoids imprecisions of a lot of small sample fre-
quencies and it also reduces the burden of calculation asked by the method. It also
has its own drawbacks and the most serious one is the data information throwing
away, which is a reason for the wide bounds of estimation. One needs to find a
good balance between its advantages and drawbacks.

Besides the demonstration of the new method, the main finding are also very
interesting. I use the change of probability of having a white collar position at the
age of high school graduation as the measure of those young men’s effects of pre-
vious behaviors. I find that both high school education and blue collar experience
help them to increase the probability of becoming white collars. Generally the
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effect of blue collar experience is larger than high school education, and their dis-
tributions over initial schooling levels are quite different. While both high school
education and blue collar experience help individual with average initial school-
ing level the most, high school education seems fail to help individuals with less
than average initial schooling and blue collar experience helps them a lot. High
school education does help individuals with higher initial schooling but not as
much as it does for the averages. Blue collar experience also helps individuals
with higher initial schooling, but can not be compared with it effects on other two
types.

The same method can be used to study effects on other sex or racial groups,
such that comparison across sexes and races can be made.
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: ᾱ � ΥM

(
P̃k(ᾱ, β)
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l )M 1�l�J+1,k

}
d
)

αk
l , ᾱm(αk
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