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Abstract

Fixed effects in discrete choice models has been a challenge to econometricians
from its existence. These unobservable heterogeneities are so important since
their impacts can be seen clearly from the behavior of agents being studied. This
has been consolidated by lots of studies and simulations including mine. However
their existence prevent us from identifying models without restrictive assump-
tions about them. It is also hard to get rid of fixed effects since they enter the
model not in a linear additive way and the outcomes are not continuous, there-
fore extant difference methods do not apply to discrete choice models with fixed
effects. To have flexible specification on the fixed effects, it seems that partial iden-
tification is more practicable. There do exists some idea about set identification
for discrete choice models and even some estimation methods were proposed for
logistic-alike discrete choice models, whose key feature is that all model deduced
conditional choice probabilities are well formulated in closed form expressions.
For reasons people may want to have discrete choice models with disturbance
other than extreme type I distributed one to overcome some of its implications,
e.g the property of independence with irrelevant alternatives among others. The
challenge to meet such requirement is that the key feature of closed form expres-
sions does not hold anymore, and techniques like simulation should be used. My
PhD thesis provides the foundation and framework on how to practice the simula-
tion based estimation for discrete choice models with rather flexible fixed effects.
This framework is both theoretical and practical, I show how to construct the sim-
ulation based estimation and study conditions about both the property of model
and practice of simulation under which the estimator is consistent. This object
is achieved in two steps. I first develop the theory for static discrete choice mod-
els where outcomes of behavior does not depend on previous outcomes. In this
case specification of disturbance could be rather free and even serial correlation
could be included. Later on, I extend the framework to dynamic discrete choice
models, where current behavior depends on some state variables which depend
on previous behavior in turn. In dynamic models, specification for disturbance is
still free except that serial correlation could not be allowed. These two steps con-
sist of the first and second chapters, in both chapter a numeric example is given
which shows how well the simulation based estimator works. In the last chapter
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I turn to the real data and apply my method to the problem of career decision of
young men. Essentially this is a typical application of dynamic programming dis-
crete choice model, which means individual’s object function is the lifetime utility
and it depends on both previous behavior and future states and what individual
should decide is not only the current behavior but also future actions. By intro-
ducing a reduced form of the future utility I succeed in fitting this problem into
the framework of dynamic discrete choice model with fixed effects.
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Chapter 1

Simulation Based Estimation of
Multinomial Discrete Choice Model
with Fixed Effects



Abstract

Multinomial discrete choice model, including binary choice model, is a class of
widely used nonlinear models. Including unobservable heterogeneity in such
models is necessary in many applications due to the unobserved variations in indi-
vidual’s preference, attributes or technology in use. Unfortunately this will cause
problem for their point identification. I study the estimation of a multinomial dis-
crete choice model in panel data with potentially multidimensional fixed effects
that can be set identified on its parameters and conditional average partial effects
for the outcome and choice probability. The model I study in this paper is general
in the sense that it allows components without closed form, and its conditional
probabilities for each alternatives and partial effects can be gotten through Monte
Carlo simulation. For this model I propose a simulation based estimator for all the
set identified quantities and I show that this estimator is consistent under general
conditions and a perturbed bootstrap method can be used to implement its infer-
ence. A numeric example with simulated data is given to show the behavior of
the estimator and I find that the estimated bounds of partial effects contain their
true effects.



1.1 Introduction

Discrete choice model is a powerful tool for econometricians to quantify individ-
ual’s choice behavior, where individual can be a single consumer, a household, a
company or even an organization or government. It can be generally any entity
that needs to make a choice out of its available options. Technically, discrete choice
models are generally non-separable in the sense that unobserved variations or er-
ror terms in its utility expression do not enter the choice function in an additive
way as a simple linear regression do. Specifically, since the seminal paper on qual-
itative choice behavior by D. McFadden 1973, the random utility model (RUM) has
become the cornerstone of discrete choice models. Following this practice, even
if it is customary to set a linear utility for individuals under investigation, their
discrete choice behavior is given by indicator functions instead of linear functions.
The nonlinearity of indicator functions makes discrete choice model intrinsically
non-additive separable in its error term or other unobserved variations of the util-
ity. In this case if any part of the error term is correlated with one of the other
explanatory variables in the utilities, a leading example is the fixed effect which I
am working with in this paper, it will be hard to get rid of the endogeneity. This
property makes the identification and estimation of discrete choice models with
tixed effects a big challenge.

Maximum likelihood method can not give a consistent estimation if we just
ignore the fixed effects and treat all the explanatory variables as exogenous. Al-
ternatively, if we take the fixed effects as individual specific parameters to be es-
timated together with other parameters, Neyman and Scott 1948 showed that the
maximum likelihood estimator does not consistently estimate the true parameters
because the number of “nuisance parameters!” grows with the sample size and
this fact violates one of the conditions for the consistency of MLE.

A further alternative method instead of fixed effects is the random effects ap-
proach. This method asks you to specify the conditional distribution of the unob-
servable individual specific attributes given other endogenous explanatory vari-
ables and the most prevalent practice is to assume the independence. But for dy-
namic models” random effects approach encounters the initial conditions problem
pointed out by Heckman 1981 if your observations can not cover the process from
its inception. Even if you use the likelihood conditional on the initial observed de-
pendent variables, random effects approach may still be problematic in internal

IMany literatures are devoted to the nuisance or incidental parameter problem, Lancaster 2000
gives a review on this topic.

2In the context of discrete choice model with unobservable individual effects, dynamic mod-
els indicate models with lagged dependent variables as their explanatory variables. We do not
consider those forward looking dynamic discrete choice models in this paper.
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consistency across different numbers of periods®.

Still another well known solution is the BLP method?, it is named after a series
of papers by S. T. Berry 1994, S. Berry, Levinsohn, and Pakes 1995. BLP method
decomposes the unobserved utility variation into two parts, of which one is the
fixed effects and the other part is independent of all other parts of the model. To
avoid the nuisance parameter problem, they do not allow the fixed effects to vary
over individuals but only over different choices and markets. The numbers of
choices and markets are fixed while the number of individuals increases, therefore
the number of fixed effects doesn’t increase with the sample size such that they
can treat the fixed effects as parameters to be estimated. BLP method actually
avoids the nuisance parameter problem by assuming some homogeneity across
individuals and limiting the number of heterogeneities.

Browning and Carro 2013 and Browning and Carro 2014 studied the number of
heterogeneous types that can be identified in a first order dynamic binary outcome
model with maximal heterogeneity. Since the complete heterogeneity causes the
nuisance parameter problem and prevents the identification, a restricted maximal
number of heterogeneous types can help to point identify the model. They found
that as the number of panels increases, the identified number of heterogeneous
types also increases.

All the methods aforementioned have to impose some restrictions on the con-
ditional distribution of individual specific heterogeneities in terms of either the
functional form or a maximal types of heterogeneity. For BLP method this condi-
tional distribution even degenerates to market or choice specific nonrandom pa-
rameters. If we would like to have more flexibility in its conditional distribution,
Honoré and Tamer 2006 showed that even for simple models point identification
often fails. They also provided an idea of set identification as well as three prin-
ciples to characterize the identified set. In this paper I study a ready to extend
static model®, where their result of a lack of point identification still apply, and
their idea of set identification has been developed by Chernozhukov et al. 2013a
in a similar framework.

In this paper I further develop the method by Chernozhukov et al. 2013a. I
notice that their method of set identification is general for multinomial discrete
choice models, but their estimation can be only applied to situations where all
the model components have closed forms. Note that there are situations where
some model components have no closed forms, i.e. the choice probability and

partial effects in some multinomial discrete choice models with more than two

3See Wooldridge 2005 and Honoré 2002 for a discussion.

#Nevo 2000 gives a precise but still pellucid explanation of the BLP model.

SThis idea can be applied to dynamic models, but to keep the notation and assumption consis-
tent and simple, I consider only static models in this paper.
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alternatives and even binary choice models allowing serial correlation in error
terms. The main object of this paper is to complement this method by developing
solution to deal with models with non-closed-form components and to generalize
the analysis in average treatment effect for binary choice models to the average
partial effect on the choice probability for multinomial choice models.

To be specific, I first introduce models that fit Chernozhukov et al. 2013a and
henceforth CFHN with closed-form components. For example, the GEV (gener-
alized extreme value®) family discrete choice models with fixed effects. We can
derive closed-form choice probabilities from them because of their mathematic
tractability. This feature makes them immediate expansions of the binary logit
model from CFHN (2013). Then I will discuss specifications other than GEV mod-
els which usually do not have closed-form choice probability.

Now let us start our journey with a simple mixed logit model for only cross-
sectional data. Consider a general decision problem, the utility for a specific alter-
native a out of a choice set F is specified as

(1.1.1) Uig = BKia + i Zig + €4,

where Xj, and Z;, are vectors of observed variables relating to alternative a and
individual i, and S is a vector of coefficients which is constant over i which mea-
sures the homogeneous marginal utility with respect to X while «; is the random
marginal utility with respect to Z that is iid over individuals. The preference het-
erogeneity make the product term «;Z;; an error component. The mixed logit
method assumes that €;, is iid extreme value over both 2 and i. Given «;, the prob-

ability for individual i to take alternative a is

. . _ exp(BXiqs + «iZia)

The heterogeneous preference parameter «; is assumed to be independent of ex-
planatory variables X and Z and have a distribution f(«|p). Then the uncondi-
tional choice probability is the integration of (1.1.2) over a with respect to the
distribution f(«|p) as follows

{ exp(,BGXia + “iZia)

1.1.3 Pt =
(1.1.3) Yo Fexp(BXip + aiZip

1

)f(ﬂé\P)dw

It can be seen clearly that in (1.1.3), the mixed logit model actually follows the

®The unifying attribute of these models is that the unobserved portions of utility for all alterna-
tives are jointly distributed as a generalized extreme value such that the assumption of indepen-
dence from irrelevant alternatives (ILA) can be relaxed. See Chapter 4 in Kenneth E. Train 2009 for
further information.
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random effect method since «; is supposed to be independent of X and Z. In case
there is no information for this independence, CFNH’s method and my extension
developed later are more useful, where «; can be freely correlated with them. Ac-
tually I allow nonparametric dependence between «; and explanatory variables
X and Z. To complement this nonparametric specification I assume that all the
explanatory variables take discrete values or can be convincingly recoded into cat-
egory variables without seriously loss of information”. With this complement the
number of &;’s conditional distributions becomes finite and I can consider them
one by one. Furthermore, CFNH (2013) has proven that it is only those condi-
tional distributions of a; with finite support that are relevant if we are concerning
the choice probability and average treatment effect®. Therefore the arbitrary un-
certainty in «;’s conditional distributions can be handled in a finite dimension
space AL, where M is the cardinality of &;’s finite support and K is the number of
values taken by discrete explanatory variables, and AL, is the Cartesian product
of K unit simplexes of dimension M, known as &, for all conditional values. The
discrete explanatory variable assumption together with the finite dimension prop-
erty of multinomial choice model help us to reduce the dimension of the original

problem from infinity to a finite number.

As in the mixed logit model, we can integrate out the fixed effects a; using
conditional distributions drawn from A%, and get the unconditional choice prob-
ability for individuals from each subgroup’, wherein individuals have the same
observed attributes. The idea of set identification is to match the choice probabil-
ities derived from the model with the “real” probabilities. It turns out that only
a limited combinations of the parameters and a’s conditional distributions make
the match holds. This idea is general enough to be applied to any multinomial
choice models with fixed effects, however CFHN only showed how to estimate
the identified sets for binary logit and probit models, which have closed forms for
every components.

For models with non-closed form components, I propose the method of sim-
ulation. This also helps us to consider more realistic models than what is math-
ematical convenient. I show that a simple Accept-Reject (AR) simulator gives a

consistent estimation under some general assumptions.

70Of course whether this assumption is feasible depends on your purpose of research.

8See lemma 7 in Chernozhukov et al. 2013a. They stated this property as “A useful feature of
multinomial panel models is that they are finite dimensional, in spite of the presence of distribu-
tions.” Thanks to the clarification of Jestis M. Carro, this idea can be actually dated back to Ghosal
and Van Der Vaart 2001.

9 After integrating out «; actually we get a choice probability conditional on observed values of
the explanatory variables. Here we say it is unconditional is to emphasize that the probability is not
conditional on the unobservable fixed effects «;. In other words the probability is only conditional
on observable explanatory variables.
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The rest of the paper is organized as follows. I derive the semiparametric multi-
nomial discrete choice model with fixed effects in panel data under the frame-
work of random utility model in section 1.2. Then I present how to set identify
this model by restrictions in choice probability and study how to estimate models
with non-closed form components by simulation in section 1.3. In section 1.4, I
show that the simulation based estimators of average treatment effect on the out-
come variable and treatment effect on choice probability as well as the identified
set of parameters are consistent. I also refer to the perturbed bootstrap for valid
inference. In section 1.5 a numeric example is given to show the behavior of the

simulation based estimator. The last section concludes the paper.

1.2 The Semiparametric Multinomial Discrete Choice
Model with Fixed Effects

In this section I showcase the details of the model I am going to study. Briefly indi-
vidual’s choice behavior is modeled by an augmented random utility model with
tixed effects. That is to say an utility is assumed for each individual and this util-
ity contains some unobserved variations including fixed effects. The unobserved
variations and other observed attributions of individuals in terms of various al-
ternatives reflect individuals” varied features and their idiosyncratic preferences
over different alternatives. All other components of the unobserved utility except
for the fixed effects are encapsulated into the error term €;;,, and it is assumed
that €;4, is independent from the rest of the utility, including both the fixed effects
and other observed variables. What is more, different assumptions about the er-
ror term’s marginal distribution can be used for different purposes, and the fixed
effects are freely correlated with the observed attributions in the utility since there
are no specifications about how they are dependent with each other and their re-
lationship can only be revealed by the field data. The fixed effects assumption
composes the nonparametric aspect of the model.

The rest of the model is parametrically specified as follows. Individual’s de-
cision behavior is studied over a specific period and the number of periods is de-
noted as T. Individuals are assumed to choose their favorite choice out of a finite
set of options F in each period t, where dim(F) = A. In each period ¢, individ-
ual i can have a utility (or any other objective functions that serve the purpose to
be maximized or minimized) Uj;, from choosing alternative a / F. For decision
makers, they know their utilities for all the alternatives such that they can opt for
the best alternative a, i.e. Uy, > Uj,efor all a€ / F and a€¥ a.

Of course, decision maker’s utility is hardly observed by researchers, instead
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they observe some attributes of the alternatives and the decision makers. Label
these attributes in period t as x;;, for any alternative a and individual i, then a
utility function Vj;, that relates these observed attributes to the decision maker’s
utility can be specified as Vi, = V(xj1,), and this is called the representative utility
by Kenneth E. Train 2009 or strict utility by D. McFadden 1977. This definition
for representative utility doesn’t consider the fixed effects, a;, and it can be gen-
eralized as a function that also includes the fixed effects, i.e. Vi, = V (x4, aia)-
In this paper I focus on parametric specifications on Vj;,;, and it generally has the
form Vi, = V(%jts, &is, B). There are some comments on its specification before I
continue.

First of all, should it be possible allowing observable attributes of alternatives
entering the representative utility is useful. It turns out an efficient way to include
alternatives in the utility function. Without x;;, being varied over alternatives 2, an
alternative method that allows a flexible substitution pattern between alternatives
is to use dummy variables for each alternative and let part of the parameters 8 to
be alternative specific. One drawback of this method is that it introduces a lot of
alternative specific parameters into the model if there are a host of alternatives

for each decision maker!’

. D. McFadden 1973 solved this problem by projecting
alternatives onto their characteristics. In other words, we can use a finite common
vector of characteristics to distinguish different alternatives and it is possible to
represent alternative specific parameters as functions of common parameters and
alternative’s attributes such that the number of § can be suppressed as the number
of alternatives increases. This method has been followed by many papers that
analyze demands for differentiated products'! and my paper is not an exception.

Secondly, letting x;;, to change over i is a similar way to capture idiosyncratic
preference of individuals without letting 8 to be specific to i. A borrowed example
of car market from Kenneth E. Train 2009 is helpful to clarify this idea. Suppose
that the only two attributes of cars that can be observed by the researchers are the
purchase price, PRy, for car a in period t and inches of shoulder room, SR,, which
is a measure of the interior size of the car a. The value that households place on
these two attributes varies over households, therefore the representative utility is

(1.2.1) Vita = BittSRa + Biro PR,

where B;; are parameters specific to household i and period t. This variation in
taste can be modeled in the following way. Suppose the value on shoulder room

10See Nevo 2000 for more discussions.
Hgome examples include: Bresnahan 1987, S. T. Berry 1994, S. Berry, Levinsohn, and Pakes 1995,
S. Berry, Levinsohn, and Pakes 2004 and S. T. Berry and Haile 2010.
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varies only with the number of members in the household, M;;, as
Binn = pMis,

where p is positive such that the value on shoulder room, Bj;;, increase as M;;
increases. Similarly, suppose the importance of purchase price is inversely related
to income, I;;, so that low-income households place more importance on purchase

price as

Bitx = 0/ L.

Substituting these relations into (1.2.1) produces
Vita = p(MitSRa) + 0(PRta/ Iit),

where the product M;;SR, and the quotient PRy, / I;; vary over i, t and a and this
is exactly covered by the model of general specification.

Furthermore, fixed effects can be included naturally. Suppose that the value
of shoulder room varies with household size plus some other factors'? that are

unobserved by the researcher. For example

Bir1 = oM + i,

where y; is random but constant over t. Similarly, the importance of purchase

price consists of its observed and unobserved components as
Bitr = 6/ Lit + 1;.
Substituting into (1.2.1) produces
Vita = p(MjSR;) + (PRt / i) + 4iSRy + 1;PRyq,

where the term 1;SR,; + 7;PRy, is unobservable because y; and #; are unobserv-
able. This example shows how the fixed effects come out and what is more, if you
would like to keep the structure of y;SR, 4 17;PRy,, this is also a model with fixed
effects of dimension two, where a;, = (4;SR,, 17;) and V (x5, ain, B) = p(M;1SR,) +
Q(PRta/Iit) + ]zliSRa + ﬂiPRm.

Last but not least, x;;,;, can contain element that only varies with t and keeps
constant over i and a, therefore the model has the capacity of dealing with time
effect. Furthermore this model can even deal with dynamic choice over periods,

e.g. you can let one element of x;;, to be the dummy variable 1(y;; 1) = a), where

12¢. g, sizes of the family members, or frequency with which the household travel together.
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Yit 1) is the choice from last period. Parameter for this dummy captures the type
of consumption inertia or variety seeking. Since the dynamic choice model needs
a different assumption about €it, > and causes confusions in the notation, I study
dynamic cases in a separate project and focus on static models right now.

After giving comments about specifications on the representative utility, let’s
continue with other parts of the utility. Since there are still some aspects of the
utilities that can not be observed by researchers, U;;, % Vj;,. Let’s define €j;, =
Ui, Vi, thus a general utility can be decomposed as

(1-2-2) Ujt, = V(xita/ Kig, :3) + €ita-

Random effects method assumes that x;;, and «; are independent. The car market
example has shown this assumption is too restrictive, since y; may be correlated
with I;; or 7; may be correlated with M;;. Therefore in this paper fixed effects
method is used such that more flexibility in the dependence between the time in-
variable heterogeneity, «;,, and other observable covariates, xj, is allowed. How-
ever, €j, is assumed to be independent of Vj;,. For fixed effects in the augmented
random utility model, even if an additive functional form is utilized in the utility,
ie. V(Xita, ig, B) = XitaPB + ajs'*, the observed choices in each period are not func-
tions that are additive in the fixed effects. This is because individuals are assumed
to behave according to the following rule

(1.2.3) Vit = arg r;%}V(xim,wm, B) + €ital -

The function above is not additive in the fixed effects and the fixed effects can not
be canceled out by simply taking the difference over time. This is the reason as
such some authors call this model nonseparable.

To simplify notations, let’s denote the behavior function (1.2.3) as
(124) Yir = gO(xit/ &i, €it, ,B)/ (Z - 1/ XXX, Tl,t - 1/ XXX, T)/

where xjy = }Xja| 0 /7, %i = }&ia| o /7, and €jy = }€iy| 4 /7. For simplicity the only
assumption that is going to be imposed on the fixed effects, «;, is the compact
support assumption. Denote the support of #; as Y — R4 and Y is assumed a
compact subset of R, where A is the cardinality of the choice set JF.

Behavior function (1.2.4) gives individuals” choice at each period t. To use all
the information in the panel and to improve the efficiency, individuals” choices

over all the T periods should be considered simultaneously. The idea is to treat

13We are discussing its definition in the next paragraph.
4Note that the results do not depend on this linear additive separable specification.
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every complete observation of choices for all the periods as a single alternative.
Let’s consider the choice set over all the T periods, F T and ] = AT is the car-
dinality of FT!°. For example, Z/ is to denote a general alternative in 7! with
Zl = }ay,...,ar|, where a; / F for any t. Let’s label decision maker’s history of
complete choices during all the T periods as Y; = }yit| ;/y1,.,7|, then Y; = Z if
and only if y;; = a; for all £.

Remember that the attributes x;;, is assumed to be discrete, and the complete
history of attributes is denoted as X; = }xit| 4 /11,1, Where xi; = }Xitg| o /7.
Suppose xj,; has p attributes, thus X; is actually a discrete vector of dimension
p* Ax T. Denote X;’s support as )V, and K is the cardinality of ). Thus Yk
is to indicate a general element in )/, and it could be used to distinguish all the
individuals from the perspective of researchers. If €; follows a specific distribution
which is independent from X; and a;, where €; = }ejt| ¢ 11, 1) and €iy = }eina| /7,
the probability of choosing Z/ out of F' for a decision maker with the observable

attributes )* and unobservable fixed effects a can be deduced. For example, if
(1.2.5) €; C H(e),

where C stands for distributed as. Denote the choice probability aforementioned
as 77;‘ («, B), where B is the parameter from the representative utility, then 73;.‘ (a, B)
is given by
Pi(a, B) = P(Y; = ZI|X; = yk o = a)
= Pr)go yt,a €ir, B) = at,HtHX y" ;= a(
1 )go Vi a, ey, B) = a;, 3t <dH(e)

ﬁﬂ) yt,oc €it, ) = at (dH(e).

(1.2.6)

The third equation holds because we assume ¢; are independent of X; and «;. Note

that the occurrence of the event

gO(ytk/ &, €jt, ,B) = ay

is equivalent to the occurrences of all the following events simultaneously

k , k .
}V(ytat/ Kay, ,B) + €itq, Z V(ytaf' ‘Xaf/ AB) + eztaf J0f/F and aa; .

5In applications, | is actually the number of realized history of choices in the observation. It
could be strictly less than AT for various reasons.
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Therefore the indicator function in the last equation of (1.2.6) can be expressed as

(1.2.7) H 1 ) V(ytl;t, o ﬁ) + €ita, = V(ytkat@ ‘xaf/ IB) + eitaf('
asa;

Substituting (1.2.7) into (1.2.6) produces
(1.2.8)

Ph(a, ) = /nfl [apea, 1) V(D 0 B) + €ita, > V(P e B) +eitag(dH<e>.

As you can see later in section 1.3, P;?(oc, B) serves the purpose of identification.
In practice, people may not be so interested in the probability of choosing a history
of choices per se. For example, to know the potential probability of choosing one
specific alternative a; in period t may be more interesting. For this purpose, let’s
define the corresponding choice probability as

(1.2.9) ng(“rﬁ) = Pr(yir = atl(xir = xt), Xi = yk,txi =),

where x;; = x; inside the parenthesis of the conditional part is to emphasis that
this probability is a potential probability for individuals with X; = Y* and «; =
« behaving as the current attributes is x; instead of ytk. This is useful for the
following counterfactual analysis and it could be easily rewritten as follows
(1.2.10)

Paf(a, B) = Pr>go(xf,oc,€it,/3) = atHXi =Yk = a(
= [ 1 (go(xt, o, €it, B) = ar) dH(e)

[ H 1 ) V(xtaf/ Xayy ,3) + €ita, Z V(xtaf/ “af/ ﬁ) + eitaf(‘iH(e)'
ag¥ay

Note that this potential probability doesn’t depend on the conditional information
but depends on the counterfactual value x; since ¢; is assumed to be independent
of X; and ;.

Now it is time to discuss the specifications about H(e). As mentioned in the
introduction, let’s first consider the GEV model where H(e) is the extreme value
type I distribution. This model is a direct extension to the binary logit model and
it has closed form expressions for (1.2.8) and (1.2.10).

1.2.1 Generalized Extreme Value Model

Although specifications on H(e) should reveal as more the economic realities as
possible, the freedom of specifying H(e) as you wish doesn’t come without costs.
The major problem is that for many specifications of H (e€), the integrations in equa-
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tion (1.2.8) and (1.2.10) do not have closed-form expressions and a numerical cal-
culation by simulation is needed. This was a challenge thirty years ago when the
computation was extremely costly. Econometricians at that time found some mod-
els where components like the choice probabilities have closed-form expressions,
and out of those models which had been developed in the early 1980’s the logit
model and the nested logit model are prominent workhorses. Both models assume
a joint extreme value distribution for €;, hence they are members of the generalized
extreme value models. Here I first introduce these two models as immediate exten-
sions of the binary logit model proposed by CFHN (2013) without extra efforts of
simulation.

The simplest assumption about €;’s joint distribution is made by the logit model,
which assumes each term in €; are iid over both ¢ and a and follows the type I ex-

treme value distribution. That is to assume €;;,’s cumulative distribution is
(1.2.11) F(ejy) =e © M forall i, t and a.

This is a strong assumption under which researchers believe that all the correla-
tions over alternatives and periods have been captured by the representative util-

ity. If this assumption holds, equation (1.2.8) has the following simple expression

T Vitut T V(yt]fzt'“ﬂt/ﬁ)

(1.2.12) P, B) =[] — 11

. k ’
1 L et ) oV iy B)
bi/F by /F

which is just the product of these probabilities of choosing 4;, the alternative of
period t in the choice history Z/, in each time period t. Equation (1.2.10) also has

a closed-form expression as follows

eV(xfllt llxﬂtl,B)

y oV (i pB)”
by /F

(1.2.13) Pt (o, B) =

This is a immediate extension of the binary logit model from CFHN (2013) by
considering more than two choices.

Another workhorse of discrete choice analysis is the nested logit model. It fur-
ther generalizes the multinomial logit model aforementioned by allowing correla-
tions in between errors corresponding to alternatives with similarity. For example,
alternatives can be organized into different groups according to the similarity in
their observed attributes. It is believed that alternatives in the same group enjoy

some similar unobservable attributes due to their similarity in the observed at-
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tributes, thus there should be correlation or dependence in between errors in the
same group.

To delineate thisidea, let’s divide the choice set F into exclusive subsets } F,| fji i
according to the similarity of alternatives, where N, is the number of subsets, and
F = ﬂgi 1Fn.' There exists correlation for errors, }ejty| 4 /7,, in each group Fy,
and oy, is used to measure the correlation for each group. Errors from different
groups are independent and they are also independent over periods. That is to
say €;,, and €;;,, are correlated if and only if t; = #; and alternatives 2 and b are
from the same subset 7, for some 11, otherwise they are independent of each other.
For simplicity it is assumed that there is no change in the partitioning } 7| i\]i 1
over periods and }oy| gi 1 are also constant over time. According to D. McFadden
1977’s interpretation, 0, / (0,1) and a larger 0, indicate a greater similarity or
dependence in between }e;y,| 4 /F,. As a result, the conditional choice probability
of choosing a; / F for individual i in each period t is given by

k eVitat /(1 oy) )Ea }_n Vira/ (1 Un)( o

“(a,B) = \
’ Znil Za/]—'n eVitﬂ/(l on) [1 On
BV(yt]fzt’OéatnB)/(l ) )211 F, ev(yt]fl,aﬂ,ﬁ)/(l o) (

Zn 1>Eﬂ/.7: e ytg,ﬂcu,ﬁ)/(l ) (1 Tn

(1.2.14)

On

therefore the conditional choice probability of choosing Z/ for individual i is the
product of the formula above over t, and the equation (1.2.8) has the following

expression

T eVita/ (1 ) >Ea JF e Vita/ (1 0n) ( o
: 1 oy
=1 Enil Za/]-' eVita/ (1 on) [
T eV(Jﬂt’;t,%t,ﬁ) 1 (7” )2 ]__ e ytﬂ’aulﬁ)/(l 0'71) (
= H 1 oy,

t=1 En 1)2(1/]:71 (VEaa,B)/ (1 w)(

(1.2.15)

On

Equations (1.2.12) and (1.2.15) are both examples of equation (1.2.8) when the
joint distribution in (1.2.5), H(e), takes the two joint extreme value distributions
aforementioned respectively.

These extensions in the family of GEV enjoy the closed form expressions for

16 A more general assumption is to allow alternatives to be included in more than one subsets.
This is because similarity between alternatives can be found in different aspects of their observed
attributes. Different partition can be used to tell the similarity in different aspects. That is to say
subsets can be overlapped. Models based on overlapped subsets are called generalized nested logit
models.
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equations (1.2.8) and (1.2.10), and their advantage is that we could adopt the
method of CFHN (2013) for estimation and inference without extra efforts. Nev-
ertheless, we can not always have the closed-form expressions under other spec-
ifications. There are reasons for using other specifications rather than sticking to
the multinomial logit and nested logit models. First of all, it is well known that
the multinomial logit model implicitly imposes the independent irrelevant alter-
native assumption (IIA), which states the relative ratio of choice probabilities be-
tween any two alternatives doesn’t depend on attributes of other alternatives. IIA
assumption has been shown too restrictive by the famous example of taking car
and bus of different colors as one’s means of transport. Secondly, the difference
of two type I extreme variables follows the logit distribution which is symmetric.
Obviously it can not be used in cases where we have to model some skewness in
the difference of error terms. Moreover allowing serial correlation in error terms
is not practicable in GEV models. Last but no least, the way to capture alternatives
specific dependences between error terms is not natural as we saw in the example
of nested logit model, and further sophisticated pattern of correlation will make
the closed form probability more and more complicated.

To have a more general result I would like to use the assumption on error ¢;
in (1.2.5), which includes multinomial logit model and nested multinomial logit

model as its special cases.

1.2.2 General Models

For specifications other than a joint GEV distribution for €;;, even for the inte-
gration of a single period, i.e. (1.2.10), it is hard to find a closed-form expres-

sion.”

Generally, when researchers are completely free to make specifications
on €;’s distribution to uncover the economy reality which they believe, to expect
closed-form expressions for 73;.‘ («, B) and P/ (, B) is unrealistic. Furthermore you
will see other components in the model would have the same problem very soon.
Fortunately simulation methods can be used to approximate them. The rest of
the paper will focus on these cases where simulation is used for any components
having non-closed-form expressions under the general assumption (1.2.5) of €;’s
distribution.

Primarily we are interested in parameters p in the multinomial discrete choice
model or some functions of them. In CFHN (2013), they studied the average treat-
ment effect on the outcome for binary choice models, where the discrete outcome

took either 0 or 1 such that the average treatment effect has a natural interpre-

7For example, although you can have the closed-form probability for binary probit model, you
can not do it for a multinomial probit model.
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tation as the change of the conditional probability of choosing 1 instead of 0 at
period t. For multinomial discrete choice model, the direct expansion of average
treatment effect on the outcome does not have a parallel interpretation. However,
it is found that in some applications the discrete choice set / can be mapped into
an ordinal scale, for example the choice of different contracts from your mobile
carrier indicates different expenditures, minutes of phone calls and so on. In such
cases researchers may be interested in the average treatment effect on the mapped
outcome. For example Kenneth E Train, D. L. McFadden, and Ben-Akiva 1987
analyzed the number and duration of phone calls made by households, using a
discrete choice model instead of a regression because the discrete choice model
allows for greater flexibility in handling the nonlinear price schedules. For such
potential applications, Blundell and Powell 2006’s method of average structural
function (ASF) is useful and the conditional average partial effect at period ¢ for

individuals with attributes }* can be defined as follows

AF = E}go(x?,oci,e,-t,ﬁ) go(xy, “i'eif’fg)HXi / yk{

(1.2.16) = Em‘ ] Eeit }gO(x?/ &, €it, ;B) go(x?, Wi, €it, ﬁ) {HXZ / yk{,

where x¢ and x? are individual attributes after and before the treatment respec-
tively. The second equation holds for the reason ¢; is independent of X; and «;.
This partial effect depends on k because «; could be correlated with X;. To make
the estimation for (1.2.16) more precisely, we assume that the distribution for €;;
doesn’t change over t such that in the previous definition A* doesn’t depend on
HS.

The average treatment effect with the interpretation in terms of the change
of choice probability also has its equivalent in the set up of multinomial discrete
choice model. Let’s consider the change in the conditional choice probability di-
rectly and define the change at period t also conditional on the fixed effects «; as
follows

(1.2.17) AP(, B) = Pi (0, B) Pl (a,B),

where x¢ and x? denote the attributes after the treatment and before the treatment
respectively. Therefore the change of choice probability only conditional on the
observable attributes, ¥, can be defined as

(1.2.18) NP = | AP, BdF(a) = | P, B) P (w, B)dF(w),

8This is not an essential assumption. However, in static models this assumption makes treat-
ment effects over periods homogeneous and improve the efficiency of its estimation. While in
dynamic models this assumption per se is not enough for getting homogeneous treatment effects.
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where x! = Y} generally, but you can choose different value for x?.
In this section more new assumptions are introduced, it is better to summarize

all the assumptions as follows before I continue

Assumption 1.2.1. Individuals’ potential utility function is of the form of equation (1.2.2),
and thus they behave according to function (1.2.3) or (1.2.4). And the error term €; is inde-
pendent of X; and a; and follows a distribution as (1.2.5), and its marginal distributions

for each period t are identical. w;’s support Y is a compact subset of Euclidean space.'

Since the assumption of a completely known distribution for €;, the normal-
ization problem for the general multinomial discrete choice model has been done
simultaneously. In the next subsection, I will focus on the individual behavior

conditional on observable attributes X;.

1.2.3 Model the Behavior Conditional on X;

So far information on the level of individual decision makers has been studied.
Since there exists fixed effects, a;, without knowing its conditional distribution
it prevents researchers from using maximum likelihood method as D. McFadden
1973 did. Some literatures use the aggregated information based on the individual
behavior rule to match its pertaining observable higher level data.?’

To see how to aggregate individual decision makers” behavior, it is better to
restate the discrete value assumption about X;’s support, such that individuals’
behavior can be aggregated conditional on its value.

Assumption 1.2.2. X; is a discrete variable or can be convincingly translated into a
discrete variable, and the support of X; is a finite set which can be written as ) =
}yl, XXX, yK] , where K is the cardinality of ).

Given the assumption above it is easy to study the aggregate behavior for in-
dividuals with the same attributes X; = Y*. Especially it is crucial to get model
choice probability for different types of individuals pertaining to X;, i.e. the con-
ditional probability P,(Y; = Z/|X; = V*), where 2/ is one of the possible choice
history out of }Zl, xxx, ZJ | , where ] is the number of different choice histories.

In this paper arbitrary dependence between the time invariant heterogeneity,
«;, and the explanatory variables in the representative utility, X;, is allowed and
«;’s possible distribution conditional on X; = V¥ is denoted as Fi.(«) without
imposing any assumptions on it. Since the choice probability conditional on the
fixed effects a; is given by (1.2.8), P,(Y; = Z/|X; = V¥) is supposed to be obtained

9The dimension of the Euclidean space is determined by both A and the dimension of a;,, e.g.,
if we allows 2 heterogeneities for each alternative, this will be R?4.
20For example S. Berry, Levinsohn, and Pakes 1995 and Chernozhukov et al. 2013a.
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by integrating out &; with respect to F(«). This intuition gives the assumption as
follows

Assumption 1.2.3. P,(Y; = ZfHXZ- = yk) = /P;?(oc,ﬁ)dFk(oc), (j=1,xx];
k=1, xxx,K).

For the analysis of treatment effect, part of the idea has been discussed in the
last subsection. Here I give more details. First of all, let’s denote the average
treatment effect on the outcome given both X; and «; as

(1.2.19) A(w, B) = Eg, }go(x?,tx, € B)  go(xf,a, eit,ﬁ){,

where this definition makes sense because €; is assumed to be independent of X;
and ;. Therefore equation (1.2.16) can be summarized as the following assump-

tion
Assumption 1.2.4. A* = [A(a, B)dF.(a).

Since it is assumed in assumption 2.4.1 that €; is identically distributed over ¢,
A(«, B) does not depend on t. Furthermore, x¥ and x! are controlled values of x;;
after and before the treatment, as a result A(«, B) doesn’t depend on X; either.

To study treatment effect on the choice probability in period ¢, I introduce the
conception of potential choice probability. It is defined as the imaginary probability
of choosing a; in period t by individual with attributes )’* while acting as other
individual with attributes x; at period t. I denote the potential choice probability
by P (yir = atl(xi; = x;), X; = Y¥). It can be calculated by integrating out a from

at (2, B) with respect to Fy (). This intuition is given as the following assumption

Assumption 1.2.5. P,(y; = a¢|(xiy = x1), X; = YK) = [Pii(a, B)dF(w).

Thereafter the treatment effect on the choice probability at period t can be de-
fined as:
(1.2.20)
AP = Po(yi = al(xir = x8), X; = V5)  Prlya = ag|(xir = 20), X; = VF),

where x? and x! are attributes after and before the treatment. If the treatment

effect on the choice probability conditional on the fixed effects is defined as
(1221 AP, ) =P (3,B) il (wB),

then the treatment effect on the choice probability (1.2.20) can be rewritten as
(1.2.22) AP = PHap) P (e B)dF(a) = | AP, B)dE(w).
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1.3 Model Identification and Estimation

The aforementioned aggregate behavior can be used to achieve set identification.
This idea of set identification was proposed by Honoré and Tamer 2006 and fur-
ther developed by CFHN (2013). In this section, I follow the schedule of section 7
in CFHN (2013) and give the set identification for both the structure parameter j
and the conditional average treatment effects A* and A*P.

First of all T denote the true probability of choosing Z/ conditional on X; = V¥

as
(13.1) Sf=P(Y;=ZI|X; = Y"),

andletS = (S 11, XXX, S ]1, XXX, S 1K, XXX, S ]K ). Those true conditional probabilities
should equal to their model implied counterparts defined in assumption 1.2.3 if
our model specifications are correct.

Because there are no restrictions on the conditional distribution functions Fi(«)
for all k, the parameter  can only be set identified as a set which consists of all
the B, for which we can find a conditional distribution function Fi(«) for each k
that makes the model implied conditional probabilities equal the true conditional
probabilities. To be concrete, for any given f3 let’s first define the set of all the Fi(«)
that are consistent with (B, S) as

(1.3.2) Gr(B,S) = }Pk(a) 5K = | P, B)dF(w),j= 1, ><><><,1<.
Thereafter the identified set of B can be defined as
(1.3.3) B=1}B:Gk(BS)¥ DIk =1, K|,

where B consists of all the parameters that can generate, together with some possi-
ble conditional distribution of «;, Fi(«a), the same aggregate choice probabilities as
the true DGP does. Given the definition of the identified set of 3, the sharp upper
and lower bounds Af and A;‘ for the average treatment effect on the outcome for
individuals with attributes V¥, a.k.a. A¥, can be defined as follows

A= sup | AlwB)dF(x) and
(1.3.4) B/B.E/Gr(B.S)

AF = inf Alw, B)dE, ().

: ﬁ/B/Fk/gk(,B/S)[ (2, B)dFi(«)

Similarly, the upper and lower bounds A% P and AfP for the treatment effect on the
choice probability for individuals with attributes Yk ak.a. AFP, can be defined
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as

AI;P = sup [ AP(a, B)dF.(x) and
(1.3.5) B/B/F/Gk(BS)
AfP = inf AP(x, B)dE(a).
: :B/BrFk/gk(,B;S)[ (o, p)Fi(a)

Before starting the estimation for B, A’,j, A;‘, AﬁP and A;‘P, it is better to first
discuss how to calculate them. As is shown by Lemma 7 in CFHN (2013), the
conditional distributions of the fixed effects, Fy(«), couldn’t generally be identified
in multinomial discrete choice models for the reason that every Fi(«), no matter
it is continuous or discrete, has a discrete equivalent with no more than | mass
points in its support Y that gives exactly the same aggregate choice probability.
Furthermore, restricting our attentions on those discrete equivalents doesn’t affect

the analysis of the upper and lower bounds for A,

To include the analysis of bounds for treatment effect on choice probability
AP, 1 give a slightly augmented variant of Lemma 7 in CFHN (2013) as follows

Lemma 1.3.1. If Assumptions 1.2.2 and 1.2.3 are satisfied and P;?(oc, B) is a measurable
function of « for each B / B, where B is the parameter space, then for each B and every
CDF Fy on Y, there is a discrete distribution F,{ with no more than | support points such
that  [P(a, B)dF) () = [Pi(a, B)dEi(a) (j = 1,50, ]). If, in addition, A(a, B) is
bounded for each B, then AXJand Aé‘ are not affected by restricting attention to F, / G(B)
that are discrete with no more than | support points. Similarly if AP(«, B) is bounded for
each B, then Ak P and A;‘P are not affected by restricting attention to F, / G(B) that are
discrete with no more than | support points either.

Consequently, we can consider discrete candidates of Fy exclusively. But there
is still a problem that lemma 1.3.1 doesn’t tell where are the mass points for each
k? CFHN (2013) proposed a refining fixed grids approaching method.

Let’s construct a fixed grid for the fixed effects a; over its support Y and denote
the grid as Yy = (&1pm, 2<%, &pm) €, where M is the number of grids and the
fixed grid can be refined by increasing M, and the upper bar indicates something
that is fixed or corresponding to a fixed grid. Let ¢ = (7K, xxx, 72%,) € denote
a distribution over the fixed grids. Then @ = (7S xxx, K9 denotes a MK * 1
vector of a;’s conditional distributions for all k with 7 being an element of the
M dimensional unit simplex Xjy;. After all (Y, 77) is used to approximate any

}F]g| K, with no more than | support points.

Thereafter the model implied conditional choice probabilities can be approxi-
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mated by

M
(1.3.6) P]k Z 7’(’,;73;{ Zmm, B), forall jand k.

Afterwards the following quadratic object function is used to serve the purpose

of matching the model implied choice probabilities with the true probabilities.

(13.7) Ty (B, 7, M) = wa]sf PE(B, A, M) {2 AT,
i

where w}‘ are positive weights, and CFHN (2013) proposed a chi-square weight
w}‘ =Sk/S ]k, for Sk = P(X; = V¥). And A, is a penalty multiplier that controls
the impact of the penalty term A, 7.

Then the identified set for B, a.k.a. B, can be approximated by the following
set

(1.3.8) B(M) = }B: Artst. To(B, 4, M) < &l , & > 0,

where the positive threshold ¢, ensures that the set sequence }B(M)| is lower

hemi-continuous and that B(M) need not be smaller than the identified set.?!

For the bounds of conditional average treatment effect on the outcome at pe-
riod ¢, i.e. AK, note that

m=1

(1.3.9) DN(M) = } ﬁ A& A (&, B,) : Ta(B, 1, M) < &y [

is the approximate set of all the possible conditional average treatment effects.
Approximate lower and upper bounds of A* are respectively defined as

(1.3.10) AK(M) = minD¥(M) and A¥ (M) = maxD*(M).

B B,

Similarly, for AP, let’s define

(1.3.11) DfP(M) = } % AP @y, B,) - Ta(B, 1, M) < &y [

m=1

as the approximate set of all the possible treatment effects on the choice probability

21Gee Section 8 of Chernozhukov et al. 2013a for more discussion.
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at period t, and its upper and lower bounds can be defined as follows

(1.3.12) AP(M) = rgif?DkP(M) and AKP(M) = r%z%kaP(M).

Discussion above gives a calculation method of the identified set of B, i.e. B(M),
and the bounds for the conditional average treatment effect on the outcome and
treatment effect on the choice probability if the following components are known
to researchers: the positive weights w;-‘, the true choice probability S ]l‘, the con-
ditional probability P;f(tx, B), the conditional average partial effect A(a, ) and
the treatment effect on the choice probability AP(«, ). Generally these quanti-

ties and functions are unknown, and either estimation or simulation is needed
k
]
easily estimated by their corresponding sample frequencies. For P;f(oc, B), Ala, B)

to calculate them. The positive weight w” and true choice probability S ]k can be
and AP(«, B), they generally don’t have closed-form expressions. To solve this
problem, I propose an uniform convergence estimator for each of them using the
simulated errors from the distribution of €;, H(e).

Suppose there is a generator which gives random vectors }&;|_; from the dis-
tribution H(e), where the number of replications r / oo as the sample size
n 1/ oo and the tilde over €; emphasizes the fact that they are generated by sim-
=
are given by using the behavior function (1.2.4). Thereafter with those generated
data the estimator for 77;?(0(, B) can be defined as

ulation. For a given triplet (V*, a, B), the simulated data }Y; = (¥, %%, i)

- 1< - .
(1.3.13) P(a, B) = - Y 1y = 2).
i=1
Following the way of restating (1.2.6) as (1.2.8), (1.3.13) can be restated in terms of

indicator functions with simulated data as follows
(1.3.14)

T
P, B) = le1 [T 1) Vh a0, B) +Eita > V(Yo iz B) +éimg<

r T
S TTTT 1) i, < VDK, ) V(yt'f,te%te,ﬁ)(

For given (x*, xb a, B), where x* and xt are attributes after and before the treat-
ment and the same value for each t is used wherein, i.e. x; = x;5 another simu-
lated data under treatment } Y;(x?), Y;(x?)! ::1 is given by using behavior function
(1.2.4) again, where Y;(x%) = i (x4), %, 7 (¥4) [“and 7 (x¢) = go(x}, &, &1, B),
similarly Y;(x?) = #n(xb), >0, it (x) [eand Gi(xl) = go(xl,a, &, B). After-
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wards let’s define

(1315 M) = 1Y o) g,

i=1

which is the estimator of A(«, §) using only information from period t. Since it
is assumed that €;;’s distribution doesn’t change over t, a more efficient estimator

for A(w, B) using information from all periods can be proposed as follows

T
(13.16) AwB) = 7 ) Milw B).
t=1

Quite similarly, for AP(a, B) the estimator using only information from period

t can be defined as

(1.3.17) AP

\I)—\

g] (Fit (xf) = ax) ﬂ)git(xt}f]) = ay ({,

and a more efficient estimator using all information can be defined as its average

over periods

i 1 I
(1.3.18) = =T Z

Since (1.2.9) can be expressed in terms of indicator functions as in (1.2.10), (1.3.18)
can be rewritten in terms of indicator functions of &; as follows
(1.3.19)

AP(a, B) =

\tl»—\

e
1~

} ;}1 So(xf, &, &, B) = ay) ]l>go(xf,zx,éit,ﬁ) = ay ({{

1

,.h
I
—_

—_

I
e
1~
-
M-

:| H 11] V(x?at/“ﬂtf :B) +éitﬂt > V( t,ﬁ/“ae/ﬁ ate{

t asda;

ass-a;

\
H Il} V(x?ﬂt’aaf’ ﬁ) + Eitg, = V( tuE’ “aE/,B + €jpac {\ff
{

Given all the building blocks, here comes the simulation based estimation
method. Define the simulated choice probability with fixed grids for (1.3.6) as

follows

M
(1.3.20) PX(B Z 7k P (@, B),

] ]
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and the estimated quadratic objective function for (1.3.7) is

(1.3.21) (B, 7) = Zw}‘]é}‘ Pt (B, 7, M) {2 + AT,
ik

where the true choice probability S ]k has been replaced by the data cell probabil-
ity?? S ]k and the model implied choice probability has been replaced by its equiv-
alent of simulation. Afterwards the identified set of B, i.e. B, is estimated by the
following random set

(1.3.22) B=1B/B: Arnst Ta(B,7) < &',

and the lower and upper bounds for the conditional average treatment effect A

are estimated by

(1.3.23) A;‘ — min D and A'; = max DF,
where
(1.3.24) DF = }Ak(ﬁ, 75 M) T (B, 7) < En
and

~ M ~
(1.3.25) AX(B Z 8 A (&, B

For the bounds of treatment effect on the choice probability, the estimators of the

lower and upper bounds are given by

(1.3.26) A¥P = min D¥P and ALP = max D*P,
where
(1.3.27) D = LAEP(B, 74, M) Ta(B, %) <&
and

M
(1.3.28) A*P(B Z P&, B)-

In the next section, I study asymptotic behavior of my simulation based esti-
mators and I show that under some regulatory conditions they are consistent, and

22 Aka the data frequency that individuals with attributes J* choose alternative Z/.
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the perturbed bootstrap can be used to learn their asymptotic distribution.

1.4 Asymptotic Behavior of the Simulation Based Es-

timator

Since simulation is introduced to the estimation, people are interested in its effect
on the asymptotic behavior of the new estimator, especially the property of con-
sistency. In this section I do two jobs. First I study the conditions under which
the consistency of the new estimator still holds. These conditions are given by a
series of assumptions and several lemmas and theorems are given in order such
that the profile of the proof can be seen clearly. Some comments are given for
these results, and all the details are reserved in the appendix section. Second, I
refer to the method of perturbed bootstrap by CFHN (2013) and show how it can
be used to learn the new estimator’s asymptotic distribution.

1.4.1 Consistency

Besides the notations for the fixed grid Y in a;’s support Y and its corresponding
conditional probability vector 77 for «;’s conditional distributions, denote the un-
known variable grid for a; with only ] + 12° support points as }a¥, xxx, oc’f 41/ and
denote its corresponding conditional probabilities as 7* sothat T = (7116, xxx, 7TK % =
Let af = (af, »xx, a’}ﬂ)e, a = (a1 0, aK9%and 7 = (aS79S so that all the
parameters needed in the model can be denoted as ¢ = (BS7¥9€ / & = B«
YUHDK X7, 1. Also denote 15]1‘(4)) Hl L Pr(ak, B)rf and P}‘((j)) ZIH Pr(ak, B) ek
and Af(¢) = Z]H A(ak, B) 7tk and AkP(¢) = Z]H AP(af, B) k.

First of all, I show that 75;‘(04, B) uniformly converges to 77;.‘(0(, B) over Y * B in

probability and the rate of convergence is 7.

Lemma 1.4.1. Estimator 75;‘(&, B) defined in (1.3.13) uniformly converges to 77;-‘(04, B)
over Y x 1B in probability if assumption (2.4.1) holds. Furthermore,

(1.4.1) r(Pi(w,B)  Pi(a,B)) ~ Gln,p),

where G(w, B) is a mean zero Gaussian process, and its finite dimensional distribution is
controlled by the distribution of €;, thus by H(e).

For other two simulation based random functions A(a, 8) and AP(«, B), they

ZLemma 1.3.1 tells us it is enough to consider unknown grids with no more than | support
points, here to consider one more support point is to facilitate the proofs afterwards and this
practice doesn’t break the lemma.
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need also uniformly converge to their expectations A(«, B) and AP(«, B) respec-
tively. This is given by the following lemmas.

Lemma 1.4.2. Estimator A(a, B) defined in equation (1.3.16) uniformly converges to
A(a, B) over Y = 1B in probability if assumptions (2.4.1) holds.

Lemma 1.4.3. Estimator AP(w, B) defined in equation (1.3.18) uniformly converges to
AP(a, B) over Y = B in probability if assumptions (2.4.1) holds.

Since the proof of consistency for bounds of AF and A*P are similar, I first give
the steps of proof for A¥ in detail and then give the parallel steps for AFP without
details. First of all, I show that for large grid M, here M > ] 4 1isneeded, for every
combination of K probability mass functions on fixed grids, i.e. 7 / ALY, there
are distribution functions Fk] 1 (a), k = 1, 3¢, K, with their supports are subsets
of Y having no more than | + 1 elements, which can generate the same choice
probability and partial effect as 77 can. This result can be stated as the following

Lemma.

Lemma 1.4.4. For every 7T / X]{\(/I, where M > |, there exists

o(B,7) = ) BS Y (B, 71)5 00, 1K (B, er>€(
such that )
PE(B, 7, M) = PF) B2 (B, 75)
M (p, 7, M) = &%) B2t (8,7
forall j =1, 3¢, ] and k = 1, xxx, K, and where

ij)ﬁ ( Hinl (& kM, B)

}+1

Ak>ﬁ’ ( an thM,

and }mf| l]:ll is a subset of }1, xxx, M| , which can be different for different k.

One implication of Lemma 1.4.4 is that whenever the approximated model
choice probability with fixed grid and simulation, i.e. 13}‘ (B, fck,M), is used, a
pertaining choice probability with a variable sub-grid, 15}‘ B, (B, ) [, can be
used instead. This fact is very useful for the rest of proof. Consider the following
two functions
(1.4.2)

Q(9(pm) = 5yt |85 P gk [{ = mpuak]8E Pr(p Ak M|
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and
Kl ok pky e f2
(1.4.3) Q(cp):ij]Sj P! (4>){.
ik

Define three subsets of the parameter space ®, namely

(1.4.4) @ =}p /D:Q(¢) =0

and

(1.4.5) = }o(B, ) : Q(p(B, 7)) + AnATE < G
and

(1.4.6) Oy = |¢(B,7) 7/ Xy /B

By construction the projection of ® onto B coincides with B, thus I call ® the
estimation set, and the projection of ®; onto B coincides with B, thus I call ®;
the identified set. ®)s contains all ¢ that is equivalent to some distribution on the
tixed grid Yy, thus I call @, the equivalent set.

In terms of the new notations, the identified set of conditional average treat-

ment effects on the outcome can be expressed again as
(1.4.7) DF = Lak(¢) 9 /@1

and its pertaining estimated set can be expressed as

(148) Dt = 1A%) B, (B, ﬁ")(z pB,7) /&

where Af(¢) = Z]H Aok, B)7tF and A* B, (B, %) [ = ZIH A& kM,,B)TC;C In
order to continue, the following assumption is also needed.

Assumption 1.4.1. (i) Y is a compact metric space endowed with the metric d(«, «9); (ii)
BB is a compact subset of RY, where b is the number of elements in B; (iii) There is L. < oo

such that forall (, B), (25 B89 / Y* B, |A(x, B)  A(aSBI||< L[d(a,a +\B B

(iv) A¥(¢p) is continuous in ¢.

Here I introduce the same metric as CFHN (2013) did in the parametric space

e

@, this metric is defined as

k
j

(149) (g9 = maxmax fa(af,a),
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Thereafter the following lemma holds.

Lemma 1.4.5. There exists a constant C such that for all ¢, ¢ / @, the following in-
equality holds

R 9)  B¥(p9)| < Ca(g,99 +0p(1),
where op(1) doesn’t depend on (¢, ¢9.

It can be shown that the Lipschitz-like condition result in Lemma 1.4.5 implies
a similar result in terms of Hausdorff metric, where the Hausdorff metric is de-
fined as

(1.4.10) H(D, P9 = max}sup inf d(¢,¢9, sup mf d(gb ) [
¢/ PP/ PE E/q)G

I claim this property as the following lemma
Lemma 1.4.6. Denote the Hausdorff metric as dy, Lemma 1.4.5 implies
dir ) AN (@s), B(®9) (< Cayy (s, @) +0p(1),
where ®g and O are two subsets of O and op(1) doesn’t depend on (P, D).

Thereafter it can be proved that if dy P, <I>1[ / 0, the simulation based
estimators of upper and lower bounds for the conditional average treatment effect,
i.e. A¥ are consistent. I state this result as the following lemma

Lemma 1.4.7. Ifdy &, @[ 70, we have

Aé‘ y A;‘andﬁﬁ N

u

Now it’s time to consider the case for A¥P. First of all, I have a parallel result
of Lemma 1.4.4 as stated bellow

Lemma 1.4.8. For every 7t / X]If,l, where M > |, there exists

BB, 7) = ) BS 7 (B, 71)5 00, 1K (B, ﬁK)EC

such that

B (B, 7%, M) = P ) B2 (B, ") (
R*P(p, 7", M) = &P ) B, +(p, ) (
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forall j =1, xxx, J and k = 1, xxx, K, and where

L J+1
y )5 ( Z i Py (& ka B)
Ak k k Hl k&
P ) (5, (= 1 A BP G B
I=1
and ymk| )" Hl is a subset of }1, xxx, M| , which can be different for different k.

Secondly, the identified set of the treatment effect on the choice probability can
be rewritten as

(1.4.11) DFp = }AkP(gb) /D,

and its pertaining estimated set can be rewritten as
(1.4.12) DFp = }Akp)ﬁ, ¥ (B, ) (: o8 7) /b

where AKP(¢) = Y1 AP(ak, B)tf and AP B, K (B, 7F)[ = X1} 1 AP35, B) 7
Except for Assumption 1.4.1, a new assumption is needed

Assumption 1.4.2. (i) There is L < oo such that for all («,B), (aSB9 / Y * B,
IANP(a, B)  AP(aSBY||< Ld(a,a® +\B B\ (ii) AXP(¢) is continuous in ¢.

Similarly, there are parallel results of Lemma 1.4.5 and 1.4.6, they are stated as

follows

Lemma 1.4.9. There exists a constant C such that for all ¢, < / P, the following in-
equality holds

A*P(g)  A*P(99 < Ca(g,99 +0p(1)
where op(1) doesn’t depend on (¢, ¢9).

Lemma 1.4.10. Denote the Hausdorff metric as dy, Lemma 1.4.9 implies
du ) AP (®,), A*P(®) (< Cdpt (D5, D) + 0p(1),
where ®g and O are two subsets of ® and op(1) doesn’t depend on (Ps, F).

Finally, here comes the key result

Lemma 1.4.11. Ifdy &, ®;[ 7 0, we have

Akp 7 AfPand Akp T AkP.

u
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After all, the rest of the job is to check whether the condition dy b, o, [ /

0 holds or not. Of course the condition itself has its own merit. To check this
condition, T would like to show that Q(¢) uniformly converges to Q(¢) first, and
this property holds as is stated by the following lemma

Lemma 1.4.12. sup |Q(¢) Q((]))”/P 0.
¢/®

The last assumption I need is as follows

Assumption 1.4.3. (i) 7(M) = sup min d(a,a%) 7 0as M/ oo, (ii) there is a con-

/Y% /YMm
stant C such that forall (x, B), (5B / Y= B, ”P]k(zxe, B9 P;‘(a,lg)H < Cld(a, a9 +\BE B\|;
(iii) Q(¢) is continuous in ®; and (iv) Let §,, = n*1, n(M) = n*2, A,, = n'3, r = n'

and }xp < 0,0 > k1 > max} 1,x|, k4 > 2%, k3 < k1.

Theorem 1.4.1. Under all the assumptions, dg; (D, ®;) P o.

Finally, I have the convergence of the bounds for conditional average treatment
effect on the outcome and the treatment effect of choice probability. I give this
result as follows

Theorem 1.4.2. By all the lemmas and theorems above, we have

Aé‘ 1 A;‘andﬁﬁ 1 Ak,

AP 7 AYpand Akp 7 AKP.
So far I have shown that for any given joint distribution H(e), the simulation
based set estimator for B is consistent, and so are the simulation based estimators
for the lower and upper bounds of the conditional treatment partial effect on the

outcome and the treatment effect of the choice probability.

1.4.2 Inference on Simulation Based Estimator

Asyou can see, estimator in this paper is highly nonlinear with simulation. Itisim-
practical to derive its asymptotic distribution analytically. Even if this is possible I
conjecture that the asymptotic behavior is not pivotal. The common practice is to
use bootstrap to approximate its asymptotic behavior. But the standard bootstrap
is not competent in this case as CFHN (2013) claimed. This idea can be briefly

described as follows

1. The Data Generating Process, thus DGP, of this model can be completely

described by & = }8 ]k ] and ket sk’ and any parameter can be written
J=1,2%) and k=1,

as a function of the DGP: §< = 05(S).*

24Here 0%is the generic form of our interested parameters, i.e. the upper and lower bounds for
ATE and treatment effect on choice probability.
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2. The estimator of Sis # = #5S), and the inference statistics is S, =
0< = 09S) 04S). It is supposed to estimate S,’s distribution G, (s, S)
by bootstrap, but standard bootstrap actually gets G, (s, S ). It works if only
Gu(s,8)7 Gu(s,S)asn’/ ooand S rs.

3. Due to the highly-complexity of the estimator in this paper, the limit version
of G(s,S) is not continuous in S, the standard bootstrap fails to estimate
critical value consistently. Thus CHFN (2013) proposed a variation of boot-
strap called the perturbed bootstrap to give a consistent confidence region for
0

In this section I explain the perturbed bootstrap method and show how to use
it step by step. But before the introduction of the perturbed bootstrap, I deviate
to talk about the DGP projection problem under misspecification or sampling er-

or.”> All the ideas about set identification I presented above work if the model
specification is correct. Note that under misspecification it may turn out an empty
set of identified B, and this is also possible because of the sampling error even if
the model specification is correct. To overcome this problem it is needed to project
S into the model space, where the model space is defined as all the choice proba-
bilities that can be generated by the model specification

(14.13)  MopeLSpace E = }P: A8 / Bs.t. Gy(B,P) ¥ @, Fk =1, xxx, K| .

Define the projection of S as

~ 2

Sk
(14.14) PYS) = argrlp/lgW(P ,S), where W(P,S) Z ) .
ik ]'

In practice, the projection is done first and PSS is used afterwards instead
of S, therefore the identified set can be guaranteed nonempty and the projected
DGP can be seen as the best approximation of the true DGP in the model space.

The main idea of the perturbed bootstrap is to construct a confidence region of
S and use each P in the confidence region as a perturbation of S. For every such
P, a standard bootstrap is used to construct a confidence region, and out of all the
confidence regions their convex hull is constructed as the conservative confidence

region and used for consistent inference.

First, the1l < confidence region for S is

(1.4.15) CRy ,(S) = }P /S;W(P,S8) < W)XK(] 1)( ’

2See section 9 of Chernozhukov et al. 2013a for more details and proofs, this part is a represen-
tation of their idea in the way that makes the notations consistent with the rest of our paper.
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where c; > X%(( I gis the (1  y)-quantile of the )ﬁ(( I distribution and W is
the goodness-of-fit statistic

st Bi(

j
Pk

(1.4.16) W(P,8)=n) S*
jk j

Secondly, define the estimates of the lower and upper bounds on the quantiles of
Gn(s,S) as follows

(1.4.17) G, 1(04,8)/En1(04,8) = inf/sup G, !(a,P),
P/CRy (S)

where G, '(a, P) = inf}s : G,(s,P) > a| is the a-quantile of the distribution
Gyu(s, P). Finally constructa (1 a )% confidence region for §<as follows

(1.4.18) CRy o (69 =16,6{,

where for & = a7 +ap, 0 =0 @nl(l 1,S8),0=0 G, ay,S).

Since the idea of set identification only depends on information S ]k but not S,
so it is acceptable to treat S¥ = SF in the analysis and practice. The following
assumption about the data generating process from CFNH (2013) is needed.

Assumption1.4.4. 11 /P = }(Sk,S}‘) Sk > e,S]k >egj=1,%]k=1%xK for

some € > 0.

Theorem 11 in CFHN (2013) showed that perturbed bootstrap delivers (uni-
formly) valid inference on the parameter of interest and they also gave an algo-
rithm for practicing the perturbed bootstrap.

1.5 A Numeric Example

To study the behavior of the simulation based estimation method let’s consider a
binary choice example in this section. The reason to choose a binary choice model
instead is that the algorithm in the practice is not efficient enough for too many
choices. Further more since I develop the binary choice example exactly in terms
of the multinomial discrete choice framework, it won’t hamper the demonstration
of the idea and method of general models.

Specifically, I consider an artificial car market. In this market, there are only
two models of cars. Different models are characterized by the number of seats,
i.e. NS / }2,4| where consumers have cars with two seats and cars with four
seats. Different cars have different prices, but for simplicity I assume that price
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is completely determined by car’s model in our data generating process®, where
consumers have two levels of prices, PR / }10,15|. The price for cars with 2
seats is 10 thousand dollars and price for cars with 4 seats is 15 thousand dollars.
For cars, there are two observable attributes, NS and PR, where NS is the major
common attributes of cars such that  use NS to define the two alternatives in the
car market, while PR is the minor common attributes that are not used to define
alternatives. Denote cars with 2 seats as a; and cars with 4 seats as a,. On the
other hand, consumers in the car market are families. They have two observable
attributes: the number of family members, NF, and family income, FI. For values
of NF, I assume that there are only single member families with NF = 1, couples
without child NF = 2 and families with one child NF = 3. For family income FI,
there exist only two levels, they are FI = 10 and FI = 20. By the combination of
NF and FI there are 6 types of families each year, and for a panel with T years,
there are 67 types of families. If T = 2, there are only 36 types. To reduce the
calculation burden, we draw 4 out of all the 36 types and make replications®” for
each type. By chance the four types of families in the generated sample are

1. NF, = 1,Fl;, = 10,NF;, = 2,Fl;, = 20,
2. NF, = 2,Fl;, = 10,NF,, = 3, Fl;, = 20,
3. NF, = 2,Fl;, = 10,NF,, = 1,FI;, = 20,
4. NF, = 2,FI;, = 10,NF;, = 2,FI;, = 20.

Out of the four types above, only the treatment effect of a family income change
from 10 to 20 for the 4th type is identified since the family income 10 and 20 appear
in different periods while other attributes keep constant.

Before I introduce all the treatment effects I am going to study, I continue to
finish the data generate process. For each family the utility of different choice of

car is given by
(1.5.1) Uita = B1itNSa + B2it PRta + €ita,

where 1;; and By;; are random coefficients that change over i and ¢, they are mod-
eled by

B1it = B1NF;

(1.5.2)
Bait = Poxi/Flj,

26Generally we may allow price to change over periods since we do not use PR as a major com-
mon attribute to define alternatives. See the memo from Huang 2014 for details.
?’In the simulation application, I have 2000 families for each type such that n = 8000.
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where «; is the fixed effects that measure consumer’s sensitivity to the price in
terms of the family income. For the true DGP I set f1 = 1 and B, = 10. Substi-
tute (1.5.2) into (1.5.1) generates

(1.5.3) Uity = BiNFi NS, + BoaiPRya / Fli + €it,,

where the error term €;; = }€jt1| a—a, 4, allows dependence between alternatives

and serial dependence. Specifically,
(1.54) €it = pe€ir 1+ Hits

where y1;; follows a given two dimensional normal distribution and p;¢,, and p;y,,
are correlated with each other. p has a absolute value smaller than unity therefore
(1.5.4) gives a stationary DGP for €;; that allows dependence between alternatives
and serial correlation. Note that giving (1.5.4) and its related parameters, distri-
bution of €; is completely determined thus the normalization of the utility (1.5.3)
has been done simultaneously.

For the true DGP of the fixed effects «;, I consider two cases. In the first case,
it is generated by a uniform distribution over the interval [0.6,1] which is inde-
pendent of all the RHS variables in (1.5.3). For the second case, it is dependent
with households’ income per capital in the first period, it is uniformly distributed
over interval [0.8,1] for households with income per capital less than 10 in the
first period and uniformly distributed over interval [0.6, 0.8] for other households.
For each individual at any period the generated binary choice outcome is either
Yit = ay or y;; = ap which gives the highest utility.

Given the generated data at hand, a series of interesting questions about treat-
ment effects on the probability of choosing a larger car can be asked. For example,
it can be asked what are the changes in the probabilities of choosing a larger car if
the number of family members increases by one person from 1 to 2 or from 2 to 3
or even from 3 to 4 for each subgroups. Note that we can ask questions where the
treatment has never happened in the data over periods, but we can’t ask questions
for subgroups that hasn’t been observed in the data. For example, partial effect
of increasing one family member for subgroup with NF;, = 1,FI;, = 10, NF;, =
2, FI;, = 20 can be answered while partial effect of increasing one family member
for subgroup with NF;, = 1,FI;; = 20, NF;, = 2,FI;, = 20 can not be answered
since the later subgroup doesn’t exist in the data.

We may also be interested in treatment effects caused by changes in family
income or car’s retail price or any combined effects caused by changes in family
members, family income and car price. In this numeric example, I won't cover

all of them but name a few. Specifically, I will study all the following treatment
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effects:
1. For the first subgroup
(a) Partial effect on choosing a larger car if only the number of family mem-

bers increases from 2 to 3 while the family income is 20.

(b) Partial effect on choosing a larger car if only the family income increases
from 10 to 20 while the number of family members is 1.

(c) Partial effect on choosing a larger car if only the price for two seats cars
increases from 10 to 12 while number of family member is 1 and family

income is 10.
2. For the second subgroup
(a) Partial effect on choosing a larger car if only the number of family mem-

bers increases from 2 to 3 while the family income is 20.

(b) Partial effect on choosing a larger car if only the family income increases

from 10 to 20 while the number of family members is 2.

(c) Partial effect on choosing a larger car if only the price for two seats cars
increases from 10 to 12 while number of family member is 2 and family
income is 10.

3. For the third subgroup
(a) Partial effect on choosing a larger car if only the number of family mem-

bers decreases from 2 to 1 while the family income is 10.

(b) Partial effect on choosing a larger car if only the family income increases
from 10 to 20 while the number of family members is 2.

(c) Partial effect on choosing a larger car if only the price for two seats cars
increases from 10 to 12 while number of family member is 2 and family

income is 10.
4. For the fourth subgroup
(a) Partial effect on choosing a larger car if only the number of family mem-

bers increases from 2 to 3 while the family income is 20.

(b) Partial effect on choosing a larger car if only the family income increases

from 10 to 20 while the number of family members is 2.

(c) Partial effect on choosing a larger car if only the price for two seats cars
increases from 10 to 12 while number of family member is 2 and family
income is 10.
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Out of all the treatment effects listed above, only the second treatment effect
for the fourth subgroup can be identified, while all other partial effects are only
set identified. Since I know the true DGP in this example, I can simulate all the
partial effects and compare them with these set identification estimations. As
the estimator is simulation based, it contains variations from simulation as well
as variations from the randomness of the data. Without considering estimator’s
variance, the true effect are not guaranteed to be inside the estimated intervals.
Instead of reporting the result from only one estimation, I run the data generation
and estimation 100 times and report the averages. This also gives the empirical
distribution of them. I illuminate these distributions by a set of boxplots starting
from figure 1.1 to figure 1.4. In those boxplots, three horizontal lines are added to
facilitate the comparison of upper bound, lower bound and the true effects, where
a purple line indicates the mean of upper bounds, a red line indicates the mean
of true effects and a blue line indicates the mean of lower bounds.

I also summarize findings under different DGP in from table 1.1 to table 1.4.
Out of all the bounds for 12 effects, most of the effects are included in the bounds
while others are quite close to the bounds. Except for the finite sample properties,
another reason for the non-inclusion is because of the challenge of searching for
all the conditional distribution of the fixed effects and f in the identified set. In
practice I use a simpler search that can be implemented by linear programmings
which were also used by Chernozhukov et al. 2013a. Theoretically these bounds
I report here are actually subsets of their identified sets respectively. Of course
because of the simulations, my algorithm costs more time for the computation®®

than CFHN’s algorithm without simulation.

1.6 Conclusion

This paper generalizes the estimation approach for a set identified semiparamet-
ric discrete choice model with fixed effect proposed by Chernozhukov et al. 2013a.
The idea of this estimation method is to use distribution assumption of the error
term together with the simulation of individual’s behavior to overcome the dis-
advantage of CFHN'’s, which is incapable of handling models with components
having no closed form expressions, such that this simulation based method can
be applied to a wider range of applications, i.e. a general multi-choice model
allowing error term’s serial dependence. One important feature of this method
inherited from CFHN is that it allows multi-dimensional fixed effects in the rep-

28]t takes more than one hour to finish the data generation and treatment effects bounds estima-
tion on a 2011 intel I5 desktop computer, and my code is written in R and C++. C++ code is to
implement the simulation and improve the efficiency.
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resentative utility, and it could be non-separable with other covariates. But I do
assume that the error term should be additively separable from other components
in the representative utility and also be independent of them.

I also note that the advantage comes with extra cost. For example, we need
more computation resource to simulate the choice probability as well as any other
components which have no closed form expressions either. For quantities like ¢,
1, Ay and r, their rates of convergence should depend on each others” and they
are controlled by assumption 1.4.3 (iv). Perturbed bootstrap can be used to give
valid inference on parameters of interest. In the last section a numeric example
based on the simulated data is given, and I give estimator’s distribution by simu-
lation instead of perturbed bootstrap®”. It can be seen the estimators for bounds
include the real treatment effects and for this specific example these bounds are
quite narrow.

All the models I mentioned in this paper, including binary logit and probit
with fixed effects, assume that the distribution of €; is known completely. I conjec-
ture it is possible to joint identify parameters f and some parameters from H(e)
under some extra assumptions. Of course challenges come after this idea, I will
study this case in another paper.

2Since this is a numeric example, data are generated such that the simulation is possible and
preferred than bootstrap. For application with field data, perturbed bootstrap is your friend.
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1.7

Tables and Figures

Table 1.1: PARTIAL EFFECTS ON CHOOSING A LARGER CAR (INDEPENDENDT
X; WITH SERIAL CORRELATION)

Group 1 Effect a Effectb Effect c
Upper bound  0.05927 0.42861 0.30907
Lower bound 0.05808 0.41071 0.28743
True effect 0.05909* (95)  0.42553* (97) 0.30485* (95)
Group 2 Effect a Effectb Effect c
Upper bound  0.05896 0.44602 0.39802
Lower bound 0.05296 0.43922 0.38660
True effect 0.05909  (95) 0.44037* (97) 0.39088* (97)
Group 3 Effect a Effectb Effect c
Upper bound -0.42127 0.44811 0.39946
Lower bound -0.43307 0.44035 0.38926
True effect -0.42556* (100) 0.44037* (97) 0.39088* (97)
Group 4 Effect a Effectb Effect c
Upper bound  0.05851 0.44233 0.39137
Lower bound 0.05768 0.43997 0.38701
True effect 0.05909  (95) 0.44037* (97) 0.39088* (96)

1 * indicates the value is included by our estimated upper and
lower bounds, where all values are the averages over the 100

simulations.
«; is independent with households” attributes and follows an

2

uniform distribution over [0.6, 1].

3

p = 0.7 and cov(Hita,, tita,) = 0.6, var (Hira, ) = var(Uita,)

=1

4 Effects a, b and c are defined in previous paragraphs, and they
may be different for different groups.

> Numbers in parentheses are frequencies of containing the true
effect in the 95% confidence intervals out of 100 simulations.
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Table 1.2: PARTIAL EFFECTS ON CHOOSING A LARGER CAR (INDEPENDENT
X; WITHOUT SERIAL CORRELATION)

Group 1 Effecta Effectb Effect ¢
Upper bound 0.01686 0.48451 0.32556
Lower bound 0.01632 0.45558 0.29300

True effect 0.01658*  (100) 0.46981* (99) 0.30879* (98)
Group 2 Effect a Effectb Effect c
Upper bound 0.02293 0.48710 0.46373

Lower bound 0.01142 0.47454 0.43240

True effect 0.01658* (99) 0.48355* (97) 0.45235* (100)
Group 3 Effecta Effectb Effect c

Upper bound -0.46560 0.48502 0.45540

Lower bound -0.47298 0.48086 0.44870

True effect -0.46988* (94) 0.48355* (96) 0.45235* (97)
Group 4 Effect a Effectb Effect c

Upper bound 0.01636 0.48441 0.45449

Lower bound 0.01557 0.48149 0.45087

Trueeffect  0.01658  (95) 0.48355* (96) 0.45235% (97)

1 * indicates the value is included by our estimated upper and

lower bounds, where all values are the averages over the 100

simulations.

a; is independent with households’” attributes and follows an

uniform distribution over [0.6, 1].

p = 0.0 and cov(Uita,, fita,) = 0.6, var (Wira, ) = var(pit,) = 1.

4 Effects a, b and c are defined in previous paragraphs, and they
may be different for different groups.

> Numbers in parentheses are frequencies of containing the true
effect in the 95% confidence intervals out of 100 simulations.

2

3
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Table 1.3: PARTIAL EFFECTS ON CHOOSING A LARGER CAR (DEPENDENT
X; WITH SERIAL CORRELATION)

Group 1 Effect a Effectb Effect ¢
Upper bound 0.03783 0.45568 0.34519
Lower bound 0.03706 0.44772 0.33519
True effect 0.03693 (94) 0.45668 (97) 0.34660 (96)
Group 2 Effect a Effectb Effect c
Upper bound 0.08800 0.56930 0.49611
Lower bound 0.08092 0.56168 0.48143
True effect 0.08120* (96) 0.56851* (95) 0.49906 (94)
Group 3 Effect a Effectb Effect c
Upper bound -0.31739 0.57670 0.50822
Lower bound -0.32351 0.56853 0.49753
True effect -0.32283* (96) 0.56851 (98) 0.49906* (97)
Group 4 Effect a Effectb Effect c
Upper bound 0.08187 0.56685 0.49406
Lower bound 0.08103 0.56481 0.48916
True effect 0.08120* (96) 0.56851 (95) 0.49906 (93)

1 * indicates the value is included by our estimated upper and
lower bounds, where all values are the averages over the 100

simulations.

2 For households with income per capital in the first period less
than 10, &; follows an uniform distribution over [0.8,1], and
For households with income per capital in the first period
more than or equal to 10, a; follows an uniform distribution

over [0.6,0.8].

o = 0.7 and cov(Jitay hite;) = 0.6, 0ar (Jiga,) = 007 (jiitey) = 1.

* Effects a, b and c are defined in previous paragraphs, and they
may be different for different groups.

> Numbers in parentheses are frequencies of containing the
true effect in the 95% confidence intervals out of 100 simu-
lations.

3
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Table 1.4: PARTIAL EFFECTS ON CHOOSING A LARGER CAR (DEPENDENT
X; WITHOUT SERIAL CORRELATION)

Group 1 Effect a Effectb Effect c
Upper bound 0.00673 0.56155 0.40990
Lower bound 0.00649 0.55005 0.39632
True effect 0.00649* (98) 0.55308* (97) 0.40084* (98)
Group 2 Effect a Effectb Effect c
Upper bound 0.03722 0.67936 0.63342
Lower bound 0.02331 0.66478 0.59605
True effect 0.02678* (98) 0.67551* (97) 0.62532* (99)
Group 3 Effect a Effectb Effect c
Upper bound -0.29060 0.67953 0.63156
Lower bound -0.29249 0.67687 0.62691
True effect -0.29381 (96) 0.67551  (95) 0.62532  (95)
Group 4 Effect a Effectb Effect c
Upper bound 0.02694 0.67717 0.62637
Lower bound 0.02632 0.67521 0.62380
True effect 0.02677* (98) 0.67551* (96) 0.62532* (97)

! % indicates the value is included by our estimated upper and
lower bounds, where all values are the averages over the 100

simulations.

2 For households with income per capital in the first period
less than 10, &; follows an uniform distribution over [0.8,1],
and For households with income per capital in the first pe-
riod more than or equal to 10, «; follows an uniform distribu-
tion over [0.6,0.8].

3 p = 0.0 and cov(pita,, tita,) = 0.6, var(pira,) = var(pita,) =

1

4 Effects a, b and ¢ are defined in previous paragraphs, and
they may be different for different groups.

> Numbers in parentheses are frequencies of containing the
true effect in the 95% confidence intervals out of 100 simu-

lations.
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Figure 1.1: Errects oN CHOOSING A LARGER CAR (INDEPENTENT &; WITH SERIAL CORRE-

LATION)
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Figure 1.2: Errects oN CHOOSING A LARGER CAR (INDEPENTENT &; WITHOUT SERIAL
CORRELATION)
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Figure 1.3: EFrecTs oN CHOOSING A LARGER CAR (DEPENTENT &; WITH SERIAL CORRELA-

TION)

(a) ErrecTts FOR GrOUP 1

T
Lower bound

/€0 G€0 €€0 LE0

T
Lower bound

Upper bound

T
Lower bound

Upper bound

210043
o feeooes <-4
HJJ
e
_ nv_.o _ mv_.o _ mh.o
q 19943
peeeeees - !
H-{J} -
e}
_ ov_o.o _ om_o.o
e 00y3

Upper bound

(b) ErrecTs FOrR GrROUP 2

I el
°;__T -
S -
w0 om0 o
2 ey3
S !
LE L
o T 1
ow_.o wm_.o mm.o vm_.o
q 19943
poeeeees - it
HJH -
-
_,_._.o _ mm.o nm.o _ mm.o
e 003

Lower bound Upper bound Lower bound Upper bound Lower bound

Upper bound

(c) ErrecTs FOor GrOUP 3

e
HH I
Sy (N
250 080 850 9v0

010043
S
HE
I
_ wm_.o _ wm_.o _ .vm,”.o

q 10843
-
HIH -
o
s 1o soo- seo-

—

Lower bound Upper bound Lower bound Upper bound Lower bound

Upper bound

(d) Errects FOR GrOUP 4

oo T...* _ ....... 1k
i.:ﬂ L
S —
Nm_.o _ o.n“.o wv_.o _ wm.o
0108))3
-
- +IH -
-
_ wm_.o _ wm“.o _ .vm_.o
q108)i3
oo *_ _ ..... | ok
| [ -
ofeeano- ] o L

G60'0 §80°0 SZ0°0 S90°0
B 1083

Lower bound Upper bound Lower bound Upper bound Lower bound

Upper bound

50



Figure 1.4: Errects oN CHOOSING A LARGER CAR (DEPENTENT &; WITHOUT SERIAL COR-
RELATION)
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Chapter 2

Set Identified Dynamic Multinomial
Discrete Choice Model with Fixed
Effects and Simulation
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Abstract

The idea of set identification by matching choice probabilities is general for dis-
crete choice models with fixed effects in the sense that it can be easily applied to
both static and dynamic models if all the model components have closed form
expressions. Huang 2015b considered the set identification and estimation of
tixed effects models without close form probabilities, such as multinomial discrete
choice models and nonlinear models with serially correlated errors. However, it
was assumed that all the explanatory variables are strictly exogenous, ruling out
dynamic models. In this paper I prove that Huang 2015b’s simulated estimator
is still consistent in dynamic models should we give up the serial correlation in
between error terms.



2.1 Dynamic multinomial discrete choice model with
fixed effects

In this paper I consider the following dynamic discrete choice model. In each pe-
riod t, there is an alternative a chosen by individual i out of an alternative set F
which is common over t. Assume that there are some strictly exogenous variables'
which present individual’s characteristics and alternative’s attributes of each pe-
riod, and they are denoted as x;;,. There are other dynamic state variables wy,
whose values are determined in a deterministic way as wj;11 = f(wj, yit). The
observed data including choice behavior y;; may start after the inception of the
dynamic process, as such choices in earlier periods is missing but their accumu-
lated result can be summarized by the dynamic state variables in the first period of
observation w;;. I denote w;; and those strictly exogenous variables x;;, together
as zj,. The observed choices prior to t, i.e. }yj, X<y 1|, is denoted as y; ¢,
where t = 2, 3, T. There exists fixed effects a; = }a;,| o/ 72 in the representative

utility

Vite = V(Zita, Vit %ia, B), for t =2, 500, T

2.1.1)
‘/itlil = V(Zita/ Kia, ﬁ)/ for = 1/

where  are parameters and function V is fully parameterized. Note that z;;, in-
cludes w;;, and w;; evolves according to f, therefore z;;, together with y; ; implies
wj;. Which means (2.1.1) is equivalent to

(212) Vita = V(xl'm, Wi, Kig, IB)’ fort = 1, XXX, T.

In each period there exists individual and alternative specific shocks €;;, to form
the utility

Uita = V(Zita, Yi 1, ®ia, B) + €ita, for t =2, 500, T

(2.13)
uim = V(Zita/ Xig, [3) + €itas fort=1

Individuals are assumed to choose the best alternative in each period accord-

IThese variables are strictly exogenous in the sense that they are independent of €;; for every
period t.

ZNotice that the situation where the fixed effects vary across individuals but not across alterna-
tives is a particular case of this.
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ing to the utility function above

yir = argmax }V(Zitg, Vi +, ig, B) + €ital
a/F

- gO(Zit/ Yi /%, €it, ﬁ)/ (Z — 1/ XXX, TZ), fort = 2/ XXX, T

(2.1.4)
yir = argmax }V(Zitg, Xig, B) + €ital
a/F
= 80(Zit,06i, eitrﬁ)/ (i =1, ><><><,n), fort =1.
€it = }€ita| a/F is assumed to be independent of the fixed effects w;, z; =

Yzital 4 /F and €; ;, where €; ; means all the errors prior to f, and its distribu-
t=1, 5

tion is known as
(2.1.5) €itlpi zi € ¢+ C Hi(e).

This assumption also implies €;; is independent of y; ;. Note €;; is independent of

z;, this is because z; = }xj1,, wi| 4 /F where x;;, are strictly exogenous variables
t=1,xxT
and w;; are dynamic state variables of the very first period of observation®.

The fixed effects «; is allowed to be freely correlated with z;, and I do not impose
any restrictions about their dependence. «; is also correlated with y;;, and their
correlation has been modeled by the rule of dynamic behavior as shown in (2.1.4),
but with the fixed effects conditional on z; there is no initial conditions problem.

2.1.1 Interested objects

In this paper [ am interested in parameters 8 and some partial effects of the choice

probability, i.e. AP defined later in the following paragraphs.

In each period ¢, let’s denote the state as s;; = }zj,y; | . For analysis of par-
tial effects on choice probability, it is useful to consider the following potential

conditional probabilities
(2.1.6) Pfli(tx,,B) = Pr(yi = a¢|(sit = st),zi = U, a; = a).

The expression inside the parenthesis in the conditional part is to indicate this is
a potential or counterfactual choice probability for individuals with z; = U and

unobservable fixed effects a; = a behaving as if they were with state s;. Itis helpful

3¢, could not be independent of w;; whenever t€< t, since w;; = f(wy 1,Yir 1)-
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to have it formulated as follows
(2.1.7)

P (e, B) = | 1(g0(st,, €, B) = ar) dHy (€)

= [ H 1 > V(Stﬂt' Xag, IB) + €ita, > V(Staf/ ‘Xaf/ ﬁ) + eitat€<dHf(€)'
ag¥ay

The first equation holds because €;; is independent of z; and «;.

Under further assumption such as z; are finite discrete variables, as such U

takes finite values out of the set }U?, 3¢, UX| . Then I have the following potential

probabilities conditional on z; only,
2.18) Pr(ya = atllsu = st),z = UY) = [ Pi(a, B)dFi(a),

where F; is a;’s distribution conditional on z; = UK.

Finally it turns out the partial effects on choice probability could be written as

(2.1.9) APy = Pr(yi = at|(sie = s), 20 = U*)  Pr(yu = arl(sie = s),z: = U"),

where s? and s? are states after and before the treatment. I also define

(2.1.10) APy(x, B) = P (a, B) ﬁ(w,ﬁ),

therefore (2.1.9) can be also expressed as

(2.1.11) AP = | APi(a, B)dF ().

2.2 Model Identification

I use the same idea of set identification as Chernozhukov et al. 2013a. This is to use
the matching of model implied choice probabilities with true choice probabilities
to get all the possible B and F.

Denote y; = }yit| =1, 1. Since the alternative set F is finite, all the possible
values of y; can be listed as a set } Z!, xxx, Z/| . 1 first introduce a conditional
probability as follows

(22.1) Pi(a, B) = Pr(yi = ki = UX a5 = ),
where Z/ is a general value of y; and it looks like 2 = Yae| 121 w1 (2.2.1) can be
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expressed as

7’;‘(0@ ) = PV)yiT = ar, XX,y = a1l = Uk = 06(

k
:P7’>yiT:aT”Vi r=a 1,z=U ,Déi=lx(*

XXX

k
Priyi=atllyi 1=a t,zi=U ,rxiza(*

XXX
(2.2.2) Pr )y = mles = U0 = tx(
= { ﬂ>go(U:'F,yi T=4a T,06€T,p)=ar (dHT(e)*

[ H)SO(UZ‘,% F=4a ¢, p) :at<dHt(e)*

§

[ 1>8O(U{</0@€i1,ﬁ) = (dH1(€),

where integrations hold because €;; is assumed to be independent of z;, y; ; and
«;. Also note that
(2.2.3)

1>80(Utkr3/i t=4a trlx,eit,ﬁ)zﬂt(z

[1 H>V(Utkat'yi (=0 b0y B) it 2 V(Ui Vi 1 =a 1,05 P) +€itat€<
ag¥ay

Therefore,(2.2.1) can finally be
(2.2.4)

7);'{(06’13) = [ H H)V(U%T/a T’“”Tfﬁ) +€iTﬂT = V(U%z%'a T/“u%/ﬁ) +€iTu$ (dHT(e)*

ag¥ar

XXX

{ H H)V(Ufaﬂa tr ®ay, IB) + €ita, > V(Ufat@a tr “af/ ﬁ) + eitaf<dHt(e)*
aga;

XXX

{ H 1 ) V(U{{alf Xay, :B) + €ila > V(Uﬁle, “alef :B) + €ilalE <dH1 (6)
as¥a

Therefore model implied choice probability conditional on z; = U is
(2.25) PE(BF) = | Ph(a, B)dE(w).
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Denote the true choice probability as
(2.2.6) Sf = Pr(y; = 2l = UY),

and § = (S 11, XXX, S ]1, XXX, S 1K, XXX, S ]K ). Define the set of conditional distribu-
tions Fy that are consistent with (B,S) as

(2.2.7) Gu(B,S) = PRla) : SF = PEB,F),j=1,000]
The identified set of f is actually
(2.2.8) B=1B:Gk(B,S)¥ D, k=1,xK|.

As a result, the upper and lower bounds for A*P; can be defined as follows
(2.2.9)

ALP, = su AP (a, B)dF(a), AP, = inf APi(a, B)dF(a).
" ﬂ/B,Fk/gk(,s,a e T B/BE/Gi(BS) P

2.3 Estimation

By Lemma 3.1 in Huang 2015b, I can use a discrete distribution with no more
than | support point, F, |, to replace any real distribution Fy, and this replacement
won't undermine the analysis for partial effects bounds. Since Fk] ‘s supporting
points vary with k and completely unknown, I use a fine grid over «;’s support
Y and its pertaining distribution 77 instead in the hope of approximating Fk] . In
other words, the following combination is used to approximate F /, and where M
is larger than J.

(231) }YM = (D_(lM/ XXX, D_CMM), 7=L'k = (7_T]1<, XXX, 77[1;\/1)

Therefore the approximated choice probability for (2.2.5) is

M
(2.3.2) PE(B, A, M) = Y 703, P} (&, B)-
m=1
and the approximated partial effect on choice probability (2.1.11) is

M
(2.3.3) AP (B, A, M) = Y 7 AP (amm, B).

m=1

All the approximations aforementioned are summations instead of integrations.

Also note that ij(tx, B) and AP:(a, B) do not usually have closed-form expres-

58



sions. Their simulated versions are derived according to the following steps. €;;
follows distribution H;(€), and a specific joint distribution for €; can be constructed.
Denote the joint distribution as H(e), a serial of random errors can be generated
according to H(e). Denote them as }¢&|!_,. For a given triplet (U*,a, B), simu-
lated data }y;| I_, are given by (2.1.4). Thus simulated P;F(oc, B) is

N 1L .
(23.4) Pila, ) =~} Ui = 2),
i=1
and its expanded expression is
(2.3.5)
_1g¢ k - k -
> Z H H)V(Ulay“ﬂl/ﬁ) + €ilgy > V(UlaE’ ‘xaler ﬁ) + eiluf(*
= afa; !
XXX
k ~ k ~
* ]]'>V(Utﬂf’a tr®ay, ﬁ) + €ita, 2 V(Utaf’a t'“atel IB) + eitaf(*
agsay
XXX
{
« T1 ]1)V(U§aT,a T8y, B) + Eiay > V(U 0 10, B) + Eimc <f .
a$¥ar

For given (s?,s!,a, B), where s? and s? are states after and before treatment,
the simulated counterfactual data }§;(s?), 7i:(s?)! ._ ; | are given by (2.1.4), where
Vit (st) = go(st, &, €, B). Thus the simulated AP;(x, [3) is

- 1< b
(23.6) AP, B) =5 Y |1Fa(st) = ar)  1(u(sh) = ar){,

i3

and its expansion is
(2.3.7)

~ 1 - ~
APt(“/ .B) = ; Z H 1 > V(Sf‘lat' Koy :B) + €ita; > V(S?at@ ‘xaf/ ﬁ) + ez‘tate(
i=1 | af¥a;

H 11) Stat/ Kayy IB) + éitﬂt > V(S?gf/ (Xate, ﬁ) + éitate(lr‘

agsa;

The simulated choice probability and partial effect on choice probability in
period t are respectively

]

M
(2.3.8) PE(B, Z 7k P (@, B),
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and
~ M ~
(2.3.9) AP(B, 7, M) = Y 7L APH(@mm, B)-
m=1
To practice the estimation, the following quadratic objective function is used.

(2.3.10) T\(B, 7) :Zw’?]é}‘ PE(B, ﬁk,M){2+Anﬁ€7—z,

where the weighting & is a consistent estimator of w;-‘ = Sk/8 ]k and S* is the

] A
real probability for z; = U*, S ]k is a consistent estimator for & ]k, it = }k| k=1, xxK-

Estimator for the set identified parameters B is
(2.3.11) B=1}B /B: A7, s.t.T\(B, ) < &

for a threshold value ¢;, and where B is the parameter space of B. The estimated

set of partial effects on choice probability in period t is
(2.3.12) DFp, = }Akpt(,/s, 75 M) : Ty (B, @) <
Consequently, AKP; and AX Py are estimated by

(2.3.13) A¥P; = min D*P; and Ak Py = max D¥P;.

24 Consistency

In this section, I prove that those estimators provided in section 2.3 are consistent,
under a set of similar assumptions as in Huang 2015b. The sketch of proof follows
Huang 2015b and I mention here only differences that arise for the reason of dy-
namic setting. Before I give lemmas and theories, I summarize all the assumptions

which scattered in previous sections as follows

Assumption 2.4.1. €;; is independent of a;, z; and €; , and its distribution is known as
Hi(e). What is more, €;’s distribution is jointly known as H(e).

Note that here I do not assume that H;(e€) is time homogeneous, since in dy-
namic model partial effects of choice probability at different period t are almost
time heterogeneous even if H;(€) is time homogeneous. Thus this additional as-
sumption won't help to improve estimation of partial effects of the choice probabil-
ity as it did in static models and it is never a necessary condition for only consistent

estimation.
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Assumption 2.4.1 also excludes serially correlated errors while in static models
this is allowed. The reason can easily be seen through expression (2.2.2), where
the conditional choice probability of any history of choices can only be expressed
as products of a sequence of iterative conditional probabilities because of the back-
wards dependence on state. Thereafter a serial independence of errors are needed
to have an expression of overall integration over H(€) as you can see in appendix
??. This distinction can be rephrased as an assumption that all the serial depen-
dences in errors are now completely captured by the explicit dynamics of the
model.

Assumption 2.4.2. z; are discrete variables and the support of z; is a finite set which can
be written as U = }UT, xooq, UK

z; includes all the strictly exogenous variables x; and the accumulated result
of choices before the initial round of observations, w;;. For example, individual’s

previous choices on schooling results in an accumulated variable, the initial level

of education.
Instead of considering the unknown distribution F/, 1 consider P]g 1 and de-
note a;’s support points as ak = }zx]{, XXX, Dé]; 41 s its distribution is 7¥, so that let

= }rt, s, X1 and ' = tal, o0, aK| and ¢ = }lzx 7| . All the parameters
in the model can be denoted as ¢ = }B,y| / ®and ® = Bx YUK« R
By lemma 3.1 in Huang 2015b, partial effect on choice probability (2.1.11) can be
expressed as

J+1
(2.4.1) AP = A*Pi(¢p) = Y i APy (af, B).

Assumption 2.4.3. (i) a;’s support Y is a compact subset of Euclidean space and it is
endowed with a metric d(a, «9); (ii) B is a compact subset of RY, where b is the number of
elements in B; (iii) There is L < oo such that for all («, B), («S B9 /Y * B,

AP (a, p)  APH(aS B[ < L]d Me)+€5 ﬁg{

(iv) A*Py(¢) is continuous in ¢.

Lemma 2.4.1. Simulated choice probability 75?(09 B) defined in (2.3.5) uniformly con-
verges to P;f(oc, B) over Y s 1B in probability under assumption (2.4.1). Furthermore,

(242) )Pl ) P p)( - Clp)

where G(a, B) is a mean zero Gaussian process, and its finite dimensional distribution is
determined by H(e).
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Lemma 2.4.2. Estimator APy(a, B) defined in (2.3.7) uniformly converges to AP;(a, B)
over Y x B in probability under assumption (2.4.1).

Follow the same argument as Huang 2015b, I introduce the following two func-
tions O and Q

A A . 2
(243) Qg 7)) = L f|8F PF ) (B, ") <{
jk
and in terms of new notations, (2.2.5) can be written as P]k(qb). I define
Kl ck  pkogy f
(2.4.4) Q(g) = Y wk|sF Pg){ .
ik

Define®; = }¢ / @ : Q(¢) = 0] andd = }¢(B,7) : Q(P(B, 1)) + AuAT < G-
The last assumption is
Assumption 2.4.4. (i) (M) = sup min d(a,a% 7 0as M 1 oo; (ii) there is a con-
« /Y YM
stant C such that for all («, B), (¢SS / Y * B, w);(oce, B9 P;?(oc, B) H < Cld(a, a9 +
\BE B\ (iii) Q(¢) is continuous in ®; and (iv) let &, = n™, n(M) = n*2, A,, = n's,
r=n"and }xp; < 0,0 >x; >max} 1,x|,64> 2K2,k3 < K1) .

This assumption is exactly the same as assumption 4.3 in Huang 2015b, and

also follow the same method I can prove that

Theorem 2.4.1. Under all the assumptions, dg (D, @) /"0, where d H is the Hausdorff
metric for two sets.

Theorem 2.4.2. If dy (D, ®;) /0, we have

AkP, /7 AKD, and ALP /7 AED,.

2.5 A Numeric Example

In this section, I consider a dynamic extension of the numeric example from Huang
2015b. Note that cars are actually durable goods, family’s car purchasing decision
should also depends on the number of cars the family has owned. Therefore be-
sides all the variables included in the static car market model, another state vari-
able NS;; should be introduced, where NS;; stands for the number of seats of all
the cars owned by family i at time t after the purchase decision. Also note that
it is reasonable not to buy any new cars, thus in this extended numeric example

I consider three alternatives, i.e. 2 = 0 (no new cars), a = 1 (buy a two-seat car)
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and a = 2 (by a four-seat car). NS;; has its evolution governed by the following
deterministic function

(251) Nsit = NSit 1 + Zﬂ(ylt = 1) + 4ﬂ(ylt = 2), = 1,2,

where NS is the initial state and is observed for each family.
Utilities of choosing different cars are described by the following function

(2.5.2) Uita = P1itNSa + B2itPRta + €ita, a =0, 1,2,

where NS, is the number of seats of car a4, PRy, is the price of car a at time t.
Especially when a = 0, no car is purchased, and NS, and PRy, are simply zeros.
B1i+ and By;; are random coefficients that change over i and t, and they are modeled

dynamically as follows

7

B1NF;;/NSj;, if NSj; is nonzero
lit =

(2.5.3) : any real number, otherwise
Boit = Paai/ Fly,
where the difference appears in the first equation and note that the value of the
number of seats of any new cars also depends on the total number of car seats
owned by the family after the purchase. The second equation has not been changed.
Substitute (2.5.3) into (2.5.2) gives the utility without random coefficients

254) U } B1NFENS,/NSj; + BoaiPRys / Flit + €jr,, if NS is nonzero,
. ita —

€ita, Otherwise,

where the error terms €;; = }€;4,] 1—0,12 are assumed iid joint normal over periods.

Suppose the true parameters are f; = 1 and B2 = 2, and the prices of cars
are 10 and 15 respectively in all two periods. For the true DGP of the fixed effects
«;, I consider the same two cases as I did in Huang 2015b.

2.5.1 Interested Objects

Suppose the population consists of four types of families and they are listed as
follows

1. NSy, = 0,NF, = 1,FI;, = 10, NF,, = 2, FI,, = 20,
2. NSy =2,NF, =2,FI;;, =10,NF;, = 3,FI;, = 20,
3. NStO =0, NFtl =2, FItl =10, Nth =1, FItz =20,
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4' Nsto :Z,NFtl :leltl — 1O,NPt2 :Z,Fltz - 20

They are evenly distributed in the population, and my simulated data has a sample
of 8000 individuals, that is 2000 for each type. There are many partial effects that
can be studied for each period, and the same partial effects can also be studied in
all periods. It is impossible to study all of them, therefore I make a short list of
them and show my study results. In the following list, there are 16 partial effects

on choosing a four-seats car and 4 effects for each type of family.

1. For the first group:
(a) Partial effect on choosing a larger car if only the number of family mem-
bers increases from 1 to 2 in the first period.

(b) Partial effect on choosing a larger car if only the family income increases
from 20 to 30 in the second period given that a two-seats car was pur-
chased in the first period*.

(c) Partial effect on choosing a larger car if only the price of 4-seats car
increases from 15 to 18 in the first period.

(d) Partial effect on choosing a larger car in the second period only because
of buying a 2-seats car instead of buying no car in the first period.
2. For the second group:
(a) Partial effect on choosing a larger car if only the number of family mem-
bers increases from 2 to 3 in the first period.

(b) Partial effect on choosing a larger car if only the family income increases
from 20 to 30 in the second period given that no car was purchased in
the first period.

(c) Partial effect on choosing a larger car if only the price of 4-seats car
increases from 15 to 18 in the first period.

(d) Partial effect on choosing a larger car in the second period only because

of buying a 2-seats car instead of buying no car in the first period.
3. For the third group:

(a) Partial effect on choosing a larger car if only the number of family mem-
bers increases from 2 to 3 in the first period.

4*Especially note that this partial effect is for a general family from the first group. It is not
specific to families of the first group who purchased a two-seats car in the first period.
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(b) Partial effect on choosing a larger car if only the family income increases
from 20 to 30 in the second period given that no car was purchased in
the first period.

(c) Partial effect on choosing a larger car if only the price of 4-seats car

increases from 15 to 18 in the first period.

(d) Partial effect on choosing a larger car in the second period only because
of buying a 2-seats car instead of buying no car in the first period.

4. For the fourth group:

(a) Partial effect on choosing a larger car if only the number of family mem-
bers increases from 2 to 3 in the first period.

(b) Partial effect on choosing a larger car if only the family income increases
from 20 to 30 in the second period given that no car was purchased in
the first period.

(c) Partial effect on choosing a larger car if only the price of 4-seats car

increases from 15 to 18 in the first period.

(d) Partial effect on choosing a larger car in the second period only because

of buying a 2-seats car instead of buying no car in the first period.

A monte carlo study of 100 replications has been undertaken, and the average
information about true values of these 16 partial effects and their estimated lower
and upper bounds are reported in tables 2.1 and 2.2. Further information about
their distribution can be seen from these boxplots in figures 2.1 and 2.2, where the
16 partial effects for all the four types of families are orderly named as from effect1
to effect16. Since the bounds of identified partial effects ask to find extreme values
out of a set whose structure is complicated and less known, in practice approxi-
mations and compromise are made in finding them. Thus I do not report the true
bounds of partial effects, instead the true partial effects are reported since they
are easy to calculate by simulation. You can not see how close this estimator is to
the true bounds in the monte carlo study, but the good news is that the estimated

bounds cover true values quite well.

2.6 Conclusion

This paper gives parallel results of Huang 2015b’s under a set of assumptions with
minor distinctions for a class of dynamic discrete choice models. In both papers,
the complete knowledge of the distribution of errors play a key role in the sim-

ulation method. In the static case, since all the covariates are strictly exogenous
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Table 2.1: PARTIAL EFFECTS ON CHOOSING A LARGER CAR (INDEPENDENT &;)

Group 1 Effect a Effectb Effect c Effect d

Upper bound 0.05600 0.09897 -0.03209 0.05412

Lower bound 0.04928 0.07271 -0.04280 0.01593

True effect 0.05201* (100) 0.08598* (100) -0.03710* (100) 0.03270* (100)
Group 2 Effect a Effect b Effect ¢ Effect d

Upper bound 0.09978 0.09743 -0.06079 -0.05229

Lower bound 0.07271 0.07318 -0.06822 -0.07341

True effect 0.08614* (100) 0.08556* (100) -0.06377* (100) -0.06386* (100)
Group 3 Effect a Effectb Effect c Effect d

Upper bound 0.04850 0.07681 -0.06238 -0.00183

Lower bound 0.03816 0.05954 -0.07238 -0.00628

True effect 0.04535* (100) 0.06927* (100) -0.06757* (100) -0.00417* (100)
Group 4 Effect a Effect b Effect ¢ Effect d

Upper bound 0.10207 0.09903 -0.06076 -0.03480

Lower bound 0.07063 0.07280 -0.06834 -0.05264

True effect  0.08624* (100) 0.08596* (100) -0.06383* (100) -0.04414* (100)

1+ indicates the value is included by our estimated upper and lower bounds, where

all values are the averages over the 100 simulations.

«; is independent with households’ attributes and follows an uniform distribution

over [0.6,1].

cov(€jta,, €ita,) = 0.6, var(€itqy) = var(€ita,) = var(€jp,) = 1.

4 Effects a, b, c and d are defined in previous paragraphs, and they may be different
for different groups.

> Numbers in parentheses are frequencies of containing the true effect in the 95%
confidence intervals out of 100 simulations.

2

3

it is possible to allow serial correlation in between them. While in dynamic dis-
crete choice model, serial correlation in errors cause dependence between €;; and
y; + and it makes the key step (B.0.1) in the following proof a challenge. To avoid
this complication, serial independence is assumed in dynamic models. Another
prevalent assumption in literatures of dynamic models is €;|w;, z;, y; + C Hi(€),
this assumption is weaker than what I use in this paper. This is because the weaker
assumption is not adequate to support the equation in (B.0.1), where I need to ap-
ply the Fubini theorem. Using the little bit stronger assumption about €;, it turns
out that the framework of proof for static models in Huang 2015b can be used to
prove the results for dynamic models with a few alterations which I give in section
24.

A monte carlo study suggests this is a satisfactory method since the estimated
bounds contain the true effect quite well, although I can not show how close they
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Table 2.2: PARTIAL EFFECTS ON CHOOSING A LARGER CAR (DEPENDENT 4&;)

Group 1 Effect a Effectb Effect c Effect d

Upper bound 0.06247 0.09086 -0.03897 0.06100

Lower bound 0.05490 0.06766 -0.04846 0.02249

True effect 0.06259  (100) 0.07762* (100) -0.04686* (99) 0.03918* (100)
Group 2 Effect a Effect b Effect c Effect d

Upper bound 0.08236 0.10991 -0.04701 -0.05492

Lower bound 0.06206 0.08585 -0.05610 -0.07528

True effect 0.07187* (100) 0.09746* (100) -0.05067* (100) -0.06605* (100)
Group 3 Effecta Effectb Effect c Effect d

Upper bound  0.04499 0.08094 -0.04957 -0.00340

Lower bound 0.03542 0.06635 -0.06193 -0.00737

True effect 0.04248* (100) 0.07449* (100) -0.05693* (100) -0.00610* (100)
Group 4 Effect a Effectb Effect ¢ Effectd

Upper bound 0.08453 0.10798 -0.04897 -0.03506

Lower bound 0.06004 0.08322 -0.05589 -0.05135

True effect 0.07189* (100) 0.09537* (100) -0.05067* (99) -0.04355* (100)

1 * indicates the value is included by our estimated upper and lower bounds, where
all values are the averages over the 100 simulations.

2

«; is dependent with households’ attributes, it is uniformly distributed over [0.6, 0.8]

if family’s first period income per capita is more than or equal to 10 or uniformly
distributed over [0.8, 1] if family’s first period income per capita is less than 10.

3

cov(€itqy, €ita,) = 0.6, W”(eimo) = var(€ita,) = var(€iy,) =

4 Effects a, b, c and d are defined in previous paragraphs, and they may be different
for different groups.
> Numbers in parentheses are frequencies of containing the true effect in the 95%
confidence intervals out of 100 simulations.

are to the true bounds.
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2.7 Figures

Figure 2.1: Errects oN CHOOSING A LARGER CAR (INDEPENDENT «;)
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Chapter 3

The Career Decisions of Young Men
Revised with Fixed Effects Approach
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Abstract

Keane and Wolpin 1997 studied the career decisions of young men using a single-
agent dynamic programming discrete choice model. Their model is a breakthrough
in the development of dynamic programming discrete choice models since their
model specification deviates from Rust’s model in several aspects. One of these im-
provements is to allow unobservable individual effects that is time invariant. A
well-known issue relating to individual effects is the model identification. Their
practice is assuming that unobservable individual effects can be captured by a
tinite number of types and the number of types is known by researchers. And
most applications have considered a small number of types due to the reason of
identification. Actually, should we give up the point identification a more flexible
specification of the individual effects is possible (see Chernozhukov et al. 2013a;
Huang 2015b and Huang 2015a). In this paper I restudy the career decision model
of young men using a more flexible specification of the individual effects. I am
interested in the set identified structural parameters of the model and bounds of
partial effects of various choice probabilities.



3.1 Introduction -Fixed Effects and Dynamic Program-

ming Discrete Choice Model

There are various reasons to include unobservable individual effects in an econo-
metric model. For most of the structure model this practice leads to a challenge of
model identification since structure model tends to make individual effects non-
separable and one can not get rid of them by primitive transformation like the first
difference. Bonhomme 2012 provides an idea of functional form difference dealing
with non-separable individual effects, however this idea does not apply to discrete
choice models. It seems that giving up the point identification is an alternative for
discrete choice models. Following Honoré and Tamer 2006 and Chernozhukov et
al. 2013a, Huang 2015b and Huang 2015a developed the estimation methods for
set identified static and dynamic discrete choice models respectively. This devel-
opment allows non-closed-form components of model by using Monte Carlo sim-
ulation, thus it makes the idea of set identification more applicable at the cost of
some extra computation and it may become an impediment for some complicated
applications.

One such example is the class of dynamic programming discrete choice mod-
els'. This class of dynamic discrete choice models are forward looking models
wherein individual’s behavior is not only determined by the current period util-
ity but also the discounted expectation of all future utilities. To practice the iden-
tification and calculate choice probabilities, it involves the solution of a dynamic
programming problem for each trail of parameters. This is also computation in-
tensive and maybe it is because of this problem, most of the dynamic discrete
choice models focusing on the fixed effects do not consider individual’s forward
looking behavior explicitly or structurally.

To study young men’s career decisions as shown by Keane and Wolpin 1997,
both individual effects and forward looking behavior are important. Combining
both challenges together is not a wise practice. Keane and Wolpin 1997 avoid
the fixed effects and identification issue by assuming a known small number of
types of the unobservable individual effects and using a mixture likelihood. In
this paper I relax this assumption and follow the fixed effects approach making
no restrictions on conditional distributions of individual effects’. As a cost of this
practice one important compromise I make is to use an reduced form expression
for the expectation of all future utilities. Due to this compromise, the model I pro-
pose is not a fully structural model but partial structural. Although this is a com-
promise in technique, there are some interpretations that consolidate its practice.

ISee Aguirregabiria and Mira 2010 for a great survey of this class of models.
2One exception is that individual effects’ support should be compact.
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First, the reduced form of the future utility expectation can be considered as an
approximation of the discounted utility from the future. This is because in many
applications value functions are smooth and approximation techniques work well
for smooth functions. Second, reduced form can be considered as a representation
of individual’s limited rationality for forward looking reasoning. It acts as a rule
of thumb in many complicated situations. By the second interpretation, it is even
possible to model idiosyncratic rules of thumb adopted by individuals by intro-
ducing further more individual effects. For simplicity I suppress this possibility
in later discussion of this paper.

3.2 A Modified Basic Human Capital Model

The model I am studying relies on the basic human capital model of Keane and
Wolpin 1997 with some modifications which I declare later. For each individuals
the observation starts at their age 16 and ends at a maximum age T. Each year,
an individual chooses between staying at home (2 = 5), attending school (a2 = 4),
or working at one of three occupations: blue collar (a = 1), white collar (a = 2),
or the military (¢ = 3). So the set of alternatives is F = }1,2,3,4,5|. In this
application, these five alternatives are hard to be described by their features or
attributes®, as such alternative specific parameters are used to model their effects
on individual utility*. Assume that there is a vector a; = }a;,| 4 /F containing
occupation and individual-specific endowments which is fixed from age 16 on.
The vector of observable state variables is x;;; = M, ki : a = 1,2,3|, where
hj; is schooling (in years), t presents age and ks, is cumulated work experience (in
years) in occupation a. Other unobservable state variables are €;;, which is known
by individual before he/she makes his/her decision. In this application I assume
that €, are independent over i, t and a. There could not be serial correlations
due to my finding in Huang 2015a. What is more, for a = 1,2, 3, €j, distribute
as exp(N(0,1)), and for a = 4,5, €j, distribute as N(0,1), where N(0,1) is the
standard normal distribution. The lower and upper bounds for fixed effects in
each dimension are assumed tobe 0.7 and 0.7 respectively, which covers almost
52% of the range of variations in a standard normal distribution.

3These alternatives are not concrete objects as products or service, therefore there are hardly
measures to tell their attributes and there are neither qualified measures in the available data set.

4If attributes of alternatives are available, it could be used in conjunction with a shorter common
parameter vector to reduce the demension of parameters. See also discussions in Huang 2015b.
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The specification of the current period utility functions of each alternative is
(3.2.1)

U(xits, ais, €it5) = iz + €its

U(xipa, aia €ira) = g Prl(hyy =2 12)  Bol(hip > 16) + €ipa

U(Xita, Ria, €ita) = Wita = Ta exp}tia + Bahit + Bakira  BsKija| + €ita, fora =1,2,3.

Compared with the original specification in Keane and Wolpin 1997, I take the
error term €j, out of the curly bracket in the last equation of (3.2.1). This is a
requirement by the technique of simulation which I am going to use. Itis assumed
working experience for everyone at age 16 is zero, i.e. kjj5, = Oforalliand a. Aget
evolves naturally every year and schooling and work experience evolves according
to the following rules

hip = hip 1+ 1y 1=4)

(32.2)
kittl - kit la +]1(th 1= a) fOI' a = 1/2/3/

where y;; is the observed choice of individual 7 at age ¢.

Let the discount parameter be p, then every period ¢ individual observes x;,
«; and €;; and choose his/her action (a;;, x<x, a;7) to maximize his/her expected

utility

Tt
(3.2.3) E> Y 0 U(Xitjas @i, €1t ja Wit Xit, @i, €5t [ :
=0

Let g(xit, «j, €;) and V(xjt, a;, €j) are the policy function and value function of the
dynamic programming (DP) problem. By Bellman’s principle of optimality the
value function can be presented in the recursive expression

(3.2.4)

V(xit, i, €i¢) = 131/6% MU (Xitg, Xig, €itq) + /v(xit+1/‘Xireit+1)dF(xit+lr€it+l I, xit, i, €3¢)! .

Let’s assume that p (xit 11, 0, €i141)AF (Xir11, €ir41 |1, Xit, 24, €5¢) is @ smooth
function of x;;, a; and eﬁ,ﬁfc:r any given a. I need to find a strategy to approximate
this function. For simplicity, suppose the approximation is given by a function
u(a, xj;, ;) and € is ignored from this approximation. Note U is additive separa-
ble in €, so that U (x4, &g, €ita) can be written as U(xjtq, aig, B) + €itq- Therefore,

individual’s decision rule can be presented by

yir = argmax U (Xjq, aig, B) + 1(a, Xit, ;) + €itg|
(3.2.5) a/F

= g(xit/ i, eif)'

74



Complement (3.2.5) with the previous assumption about €;;
(3.2.6) €it|i, X6, € + C Hi(e),

this application fit the framework proposed by Huang 2015a, where€; ; = }ej6, X0 €5 1],
and (3.2.6) is actually the same as

(3.2.7) €itlri, hive, € ¢+ C Hi(e),

since ki1, = 0 for all occupations a = 1,2, 3 by assumption.

3.2.1 Approximation Specification

How to specify the approximation of the future utility expectation is a challenge
in practice. For the reason of accuracy higher order polynomial with richer cross
terms is required. But it introduces too many parameters simultaneously and
hinder the practice of estimation. Thus I use a first order polynomial to do the
approximation. Denote the column vector z;; = (1, hy, ki1, kir, ki3, i, X%, &j5),
and let

(3.2.8) u(a, xjp, ;) = z5;0,,

where 6, is a choice specific vector of parameters. Therefore (3.2.5) can be rewrit-

ten as
Yit = arg Igl/ég }U(xim, Xig, B) + 2500 + €itg]

Xit, Xi, €it, Py
(xit, i, €it, B, 0)

(3.2.9) _,
= g(hi16/yi tr &i, €it, ﬁ/ 9)/

where f are parameters from the structural part of current utility and 6 are parame-
ters from the reduced-form expected utility of the future, and y; ; = }yie, X%, vir 1] -
The last equation holds because ki, = 0 for all a = 1, 2,3, and h;; and kj;, evolve

according to (3.2.2) such that (h;16,y; ;) can give the same information as x;; do.

3.2.2 Interested Objects In This Application

Basically parameters such as § and 6 are interested, but partial effects are more in-
teresting in setidentified models. Denotes;y = }hjie, Vi ¢| = e kisa, ko, kirs| 16<te<ts
all the partial effects on the choice probability of choosing a; in period t by indi-
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viduals with initial schooling h;1¢ = £ k can be generally denoted as follows
(3.2.10)
APy = Pryy = arl(sis = s8), hine = L5)  Pr(yi = ael|(si = s%), hine = LF),

where s! and s? are different states before and after the treatment, and the paren-
thesis around it is to emphasize that this probability is the potential probability
for the individual with h;14 = £* behaving as one with state s/ or s in period ¢
no matter whatever real state he/she may have.

To understand this probability, it is better to consider another potential prob-
ability
(3.2.11)

Po(a, B,0) = Pr(yis = ar|(sit = st), hine = £, a; = a)

— [ 1(3(st, 4 B,0) = ar) dHi )

= { IIt > U(xitas g B) + Zit Oue + €igar < U(Xita,, day, B) + Zit Oy + €ita, <dHt(€),
agsa;

where s; completely determines x;; = }hy, ki, : a = 1,2,3| . For any distribution
of &; conditional on K14 = L*, i.e. Fe(«), it holds that

(3.2.12) Pr(yiy = arl(si = 1), hite = L) = [ P, B, 0)dFi ().
Or if we define

(3.2.13) APy (e, B,0) = Pl (a, B,0) PZlf(txf B.9),

(3.2.10) can be written as

(3.2.14) AP = | APy(a, B,0)dE(s).

Partial effects as (3.2.10) covers a lot of examples, I name a few later in the section
of empirical study.

3.3 Model Identification and Estimation

3.3.1 Identification

In this application, observable strictly exogenous variable is only h;14. Suppose
there are K levels of initial schooling in years and they are } £ !, xxx, £ X| . For the
observations of individuals’ choices during the T 15 years, there are ] combina-
tions of choices over years and they are } Z1, xxx, Z/| . Any Z/ can be represented
as (a16, X, ar), where a; = 1, 3¢, 5 for any ¢.
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For identification, the method depends on the model implied choice probabil-

ities P;‘ and P}‘, and they are defined as follows

PA(a,,60) = Pr(y; = F s = L5, 0; = w)

= P”(]/iT =dar, ><><></yi16 = a16|V1i16 — Ek/“i — “)
- Pr(yiT = aT”yi rT=a 1,hj16 = ,Ck,ocl- = 04)*
(33.1) oo
Pr(yit - ai’Hyi = 4a tlhi16 = Ek’(xi — 0()*
XXX

Pr(yine = a16|hite = L5, a; = a).
And it could also be expressed as

P?(oc,ﬁ,@) = [ Il)g([,k,yi T=a 1,&¢€r,B,0)=ar (dHT(e)*
XXX
(3.3.2) [ l)g(ﬁ k,yi F=4a &€y, B,0) =a; (dHt(e)*
XXX

[ IL)g(‘C k/ X, €16, ,B; 9) = a16 (dH16(€).

Note the assumption of €;; in (3.2.6), and

(3.3.3)
1)8(£k/yi p=a 1,06 B,0)= at<_

I1 H)U(hil& Vi t=0a 00, B) + 200 + €itg, = Ulhing Yi + =a 1,05 B) + 250, + Gitaf(/
agéay

P’f(oc, B,0) can be further written as

(3].3.4)
Pf(zx,ﬁ,@) = { ]1)g(£k,yi r=a r,06€r,B,0)= aT(*
XXX
Il)g(ﬁk,yi p=a 0,6, B,0) = at<*
XXX

1)g(L,a€n6,B,60) = a6 (dH(e)
= { [t ) U(hpe, a 1,07, B) + 2i70ar + €itay = U(hing,a T, e, ) + ZieTea% + €ime <*
af¥ar
XXX

BB ) U(hie a e, B) + 200, + €ita, = U(hite, @ + 2 B) + 2505+ Eimf(*
agsa;

XXX
H 1 ) U(hil6f Xayer .B) + Zielégﬂls + €il6ays = U(hiléf Kacs /3) + ZiEléGalE6 + €il6as, (dH(E).

af,Fare
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Model implied choice probability conditional on /;;4 = L£* is thereafter
(3.35) PE(B,6,F) = | P(a, B,0)dFi(a).

Denote the true choice probability as S ]l‘, the set of conditional distributions Fj
which are consistent with (5,60,S), where S = (811, ><><><,S]1, ><><><,81K, XXX, S]K),
are
(3.3.6)

Gi(B,6,S) = }Pk(oc) . S =P(B,0,F),j=1,500] , forallk =1, K.

After all, the identified set of (B, 6) can be actually defined as
(3.3.7) B=1}(B,0):Gk(B,0,S)¥D,k=1xK|.

Consequently the upper and lower bounds for A*P; can be defined as

AEP, — sup | APy(a, B,0)dE(w),
(338) (ﬁ,@) /BrFk /Qk(ﬁ,G,S)
A;(Pt = inf [ APt(Dé, [3, Q)dFk(IX)

(B9)/B,Fic/Gk(B0,S)

3.3.2 Estimation and Further Details

Following the estimation method proposed by Huang 2015b and Huang 2015a, a
serial of random error terms, i.e. &;, should be first generated according to distri-
bution H(e). In this application the fixed effects is of five dimension and in each
dimension its range is from 0.7 to 0.7 as I mentioned previously. I use a fixed
grid of m points to approximate the fixed effects in each dimension, and there are
M = m° points for the fixed grid overall. Therefor the pertaining distribution of
the fixed effects conditional on hj;s = L£* is discretized as a positive vector 7k
which sums to unit.

Given simulated error terms, simulated data }7;|/_; is generated by (3.2.9),

and 77;‘ and AP; has their versions in simulation as follows

(3.3.9) Pi(w,B,0) = % iﬂ(}ii = 2J),
i=1
(33.10) APi(a,B,6) = %i}ﬂ(%(s?) =ar) (Fu(sh) = an){.

i=1
Therefore approximated choice probability and partial effects for (3.3.5) and (3.2.14)
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are

M

(3.3.11) Pr(B,60, ", M) = Y 7k P (@, B,0),
m=1
M

(3.3.12) A*Pi(B,0, 75 M) = Y 7k APy (m, B, 0).
m=1

The estimation of the identified set of p and 6 is given by
: klek K kan [
(3:313) B= 1(B,0): At st Y wf|Sf PEBO, A M){ + AaT <l

A similar set for partial effects is given by
(3.3.14)

~ - ~ - 2
Dkp; = }Ath(,B,G, 7k, M) : Zk;w;f]sf (B0, 75 M{ + 1 < [,
I

thereafter its lower and upper bounds are given by

A¥P; = min D*P;,

(3.3.15) . L
A uWPr = max D*P;.

Actually to practice B and find the lower and upper bounds for partial effects
is really a challenge. I find no perfect algorithm to do that job. Alternatively I
adopt the following method as a compromise.

First, let me explain how to find the set of B. I define an objective function as

follows
A 1 A ~ 2
Ta(p,6,7) = Yok |85 BF(p6, ﬁk,M){ AT
2
(3.3.16) - y 2
=Y f|SF Y AP (@ B, 9){ + AT
ik i m=1

Note for given (B,0) this objective function is only a function of /7. Minimizing
T1(B, 6, ) over 7t is actually a quadratic programming problem® with restrictions
that 7% should be positive and sum to unit for all k. Denote

(3.3.17) T.(B,0) = m%nT)\(IB, 0, 7).

5This step is practiced with the help of R package quadprog by Turlach and Weingessel 2013.
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T1(B,0) is a simulated function of 8 and 6, then I use several algorithms® to mini-
mize this function over p and 6. Finally I choose the method “nmkb”, which is a
Nelder-Mead simplex method enhanced with box constraint, to minimize T (8, ).
During its process of searching for smaller values of this function, a large number
of p and 6 have been tested. I collect all the tested  and 6 which give smaller func-
tion value than the threshold ¢,. Given enough time and trying different starting
points, more parameters  and 6 can be found. All these 8 and 6 are used as an
approximation of B in the practice.

Second, take finding the lower bound of partial effects as an example, let me
talk about how to find the bounds of partial effects. Scrutinize the definition of
lower bound in (3.3.15), it could actually be re-expressed as
(3.3.18) .

AP = min min}Ath(ﬁ,e,ﬁk,M):zjkaS}f P;f(/s,e,ﬁk,M){

A , + )\nﬁeﬁ' < gn .
(BO)/B 7

After consider the bound searching problems as such a two-step problem. It can
be realized that another challenge comes from the inner searching. Note that for
each (B,0) / B,aminimization of T) (B, 0, /) over 7t can generate a set of projected
choice probabilities 15}‘ defined by the given B, 8 and optimum 7. I use the follow-

ing linear programming problem to approximate the inner bound searching.

M
min Z ﬁfnﬁpt(o‘cm,ﬁ,ﬂ)
7k m=1

M
s.t.

N

* PX (&, B,0) = PF for all i
T X, B, or a
(3.3.19) Ty @ B, 6) = £ J

&
Il
[uay

> 0forall m

3 S|
Mz -
N
3»‘
Il
=

Sk . . .1 . .
where P; stands for the projected choice probability defined by the given g, 6 and

optimum 7.

3.4 Data

I take the same sauce of data as Keane and Wolpin 1997 did. The NLSY79 data

consists of 12,686 individuals, and this re-analysis is based on white males who

®Nash and R. Varadhan 2011 provided an R package optimx which unifided the interface for
several popular algorithms available in R. It makes the comparision of algorithms for your specific
problem at hand easy and straightforward. Nash 2014, R. Varadhan, Borchers, and M. R. Varadhan
2011, Bates et al. 2014 and Wright 2010 explain the best practice optimization methods in R and
help to understand several algorithms implemented in optimx.
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were age 16 or less as of the round of 1979 survey.

Schooling data is the highest grade attended and completed at the end of June.
I got the data by using two revised main variables recording the enrollment sta-
tus as of May 1 survey year, and highest grade completed as of May 1 survey
year. Only respondents who reported as enrolled and got a higher grade in the
next survey year are coded as attending school in period from October 1 to June
30. This period is also used to code the choices between the three occupations,
blue-collar, white-collar and military. NLSY79 has the starting and ending date
information for at most 5 civilian jobs for each respondent for each survey years.
I count the total working dates of these jobs and consider the one as an active
worker if she/he worked more than half of the 9 months, and his/her main occu-
pation is the most worked one. While there is no created NLSY79 variable that
identifies members of the active military forces, a simple method of identifying
these individuals through 1993 is to check whether they valid skipped the first
CPS question’. Only if respondents are of neither of the above categories, they
are classified as being home.

Since the gauge used in my data cleaning is not exactly the same as Keane and
Wolpin 1997’s. I use table 3.1 to check whether my data cleaning release the same
style as theirs did. The comparison shows that although the levels of numbers
and percentages are not exactly the same, they are quite close for the most part.
What is important is that this table shares the same style of distribution as theirs.
For example, as age increases the number of school decrease gradually and the
numbers of white-collar and blue-collar increase. The number of military has a
single peak at age 21 while it is at age 20 in Keane and Wolpin 1997’s.

Since the identification idea depends on choice probabilities conditional on the
initial level of schooling, h1¢. Its marginal distribution is given by table 3.2. Initial
schooling concentrates on three values, which are 8, 9 and 10 years and takes up
96.58% of the observations. Therefore I classify the initial level of schooling into
only three groups, where group 1is 4 < hj16 < 8, group 2 is hjj;4 = 9 and groups
3is 10 < hj16 < 12, and assume that the conditional distribution of a; does not
change within each group such that I explicitly consider only three conditional
distributions of fixed effects instead of nine distributions.

3.4.1 Simplify the Output of Choice Combinations

As for the number of combinations of choices over the 10 years of those young

men'’s early career, there are 817 distinct combinations and most of them has only

"This is the recommend identification method in http://nlsinfo.org/content/cohorts/nlsy79/topical-
guide/employment/military
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Table 3.1: Cuoick DistriBuTioN: WHITE MALES AGED 16-25

CHOICE

Ace School Home White-Collar Blue-Collar Military TotaL

16 1,009 90 4 38 0 1141
(88.43) (7.89) (0.35) (3.33) (0.00) (100%)
17 937 127 5 69 3 1141
(82.12) (11.13) (0.44) (6.05) (0.26) (100%)
18 608 205 52 241 35 1141
(53.29) (17.97) (4.56) (21.12) (3.07) (100%)
19 360 253 96 363 69 1141
(31.55) (22.17) (8.41) (31.81) (6.05) (100%)
20 283 235 124 419 80 1141
(24.80) (20.60) (10.87) (36.72) (7.01) (100%)
21 246 234 137 440 84 1141
(21.56) (20.51) (12.01) (38.56) (7.36) (100%)
22 185 203 172 504 77 1141
(16.21) (17.79) (15.07) (44.17) (6.75) (100%)
23 117 201 251 509 63 1141
(10.25) (17.62) (22.00) (44.61) (5.52) (100%)
24 82 179 316 509 55 1141
(7.19)  (15.69) (27.70) (44.61) (4.82) (100%)
25 54 154 338 541 54 1141
(4.73)  (13.50) (29.62) (47.41) (4.73) (100%)
! Note. - Number of observations and percentages.
Table 3.2: INtTIAL DISTRIBUTION OF SCHOOLING
SCHOOL IN YEARS
AGce 4 5 6 7 8 9 10 11 12 ToraL
16 2 1 8 16 112 435 555 9 3 1,141
0.18 0.09 070 1.40 9.82 38.12 4864 0.79 0.26 100%

! Note. - Number of observations and percentages.

one realization. This is a huge impediment to the methodology I proposed pre-
viously. Fortunately many combinations differ only in few periods and actually
share some common trends. Push this idea further, I classify all the combinations

into much fewer types. These types are constructed as follows®

1. Divide the ten years into two periods, the early five years and

years.

2. Choose a representative action for each periods. i.e a4 = 4 for more than 3

8The following rules only give a general guidance, for more details of the classification please

check my code for this application.
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year implies 4 is a representative action. In case a = 1,2,3 for more than 3
years, then any 1,2, 3 dominating in the 3 or more years is a representative
action.

3. Use the simplified choice outcomes in the two five years periods as the final
outcomes, then there are at most 25 outcomes and | < 25. Actually in the
data there are 22 outcomes.

3.5 Empirical Study Result

There are many partial effects can be studied by applying (3.2.10), As a pedagogic
example, in this section I am interested in partial effects of a complete high school
education on the choice probability of being a white collar at the year of high
school graduation. For group 1 with 4 < hj14 < 8, the mode of initial schooling
is 8 years. Therefore I choose a representative individual from this group the one
with initial schooling of 8 years at age 16. For group 2, a reasonable representative
individual is the one with initial schooling of 9 years at age 16. For group 3 with
10 < hj;¢ < 12, the mode of initial schooling is 10 years, thus a representative
individual is the one with initial schooling of 10 years. I exhibit the treatment of
a complete high school for them in table 3.3.

Table 3.3: TyricaL InDIviDuALS AND THEIR TREATMENTS 1

AGE

IniT. Sen 16 17 18 19 20 21 22 23 24 25
8 years e
(8years 5 5 5 5 . . . . . )
(8years 4 4 4 4 . . . . . )
9 years .

(8years 5 5 5 . . . . . . )
(9years 4 4 4 . . . . . . )
10years . . . . . . . .
(8years 5 5 . . . . . . . )
(10years 4 4 . . . . . . . )

! Note. - The first line in the parenthesis presents a
potential state of having not any high school educa-
tion for the typical individual of each types. The sec-
ond line in the parenthesis presents another poten-
tial state of having a complete high school education
for the same typical individual of each types.

For the first group, the age of high school graduation is 20, and for the second
group it is age 19 and for the last group it is age 18. I name the complete high
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school effects on white collar jobs for these three representative individuals as
Effect One, Effect Two and Effect Three, and exhibit my findings on their bounds in
table 3.4.

Table 3.4: Bounps oF TREATMENT EFFECTS
1 ror TypricaL INDIVIDUALS

Errects Lower Bounp Urprer BounD

ONE -2.776% 4.480%
Two -3.606% 17.144%
Turee  -5.040% 15.109%

! Note. - The treatment effect is the
change of probability of choosing a
white collar job due to a complete
high school education and the alter-
native choices are staying home for
4 years.

The findings are interesting. For average individuals who had finished 9 years
of schooling at their age 16, a complete high school education seems help most.
Contrarily, it helps only a little for those who had less than 9 years schooling at
the same age. For people who exceeded the average initial schooling high school
education helps but not as much as the average. Due to the reason of set identifi-
cation, all the three effects could be negative in their worst cases.

One may consider another possibility of choosing a blue collar job instead of
staying home while not taking the high school education. Since four year of blue
collar job experience accumulates job-specific human capital, economics theory
predicts even larger partial effects since a more experienced blue collar worker is
less likely hunting a white collar occupation. To check the intuition, I consider the
new treatments as listed in table 3.5, and table 3.6 shows the findings.

To my surprise, only the optimal effect of the first individual conforms the
intuition, and larger negative effects in the worst situations may suggest early blue
collar career experience have a more important positive effect on becoming a white
collar later on than the complete high school education. To make this idea more
clear, I further study the pure effects of early blue collar effect compared with
staying home on becoming white collar as declared in table 3.7.

Findings on these new treatments are listed in table 3.8. It consolidates the
previous finding. Generally blue collar experience has a larger positive effect on
the probability of becoming a withe collar than a complete high school education.
As a result a direct comparison of high school education and a blue collar experi-
ence at the same period as described in table 3.5 and 3.6 shows generally negative
effects. To understand this unusual finding, it is helpful to review the utility form
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Table 3.5: TypicaL InDIviDuAaLs AND THEIR TREATMENTS 2

AGE

IniT. Sc 16 17 18 19 20 21 22 23 24 25
8 years . e
(8years 1 1 1 1 . . . . . )
(8years 4 4 4 4 . . . . . )
9 years .

(8years 1 1 1 . . . . . . )
(9years 4 4 4 . . . . . . )
10years . . . . . . . .
(8years 1 1 . . . . . . . )
(10years 4 4 . . . . . . . )

! Note. - The first line in the parenthesis presents a
potential state (as blue collar worker) of having not
any high school education for the typical individ-
ual of each types. The second line in the parenthe-
sis presents another potential state of having a com-
plete high school education for the same typical in-
dividual of each types.

Table 3.6: Bounps or TREATMENT EFFECTS
2 FOR TyricAL INDIVIDUALS

Errects Lower Bounp Urprer BounD

ONE -29.609% 8.032%
Two -34.765% 11.901%
Turee  -23.360% 12.593%

I Note. - The treatment effect is the
change of probability of choosing a
white collar job due to a complete
high school education and the alter-
native choices are working as blue
collar workers.

fora = 1,2,3 in (3.2.1). Note that a quadratic term of occupation-specific work-
ing experience following Mincer 1958 is included in the skill production function,
therefore it is possible that the quadratic term makes the effect of four years blue
collar experience negative for some parameters. Itis clear that the data I use could
not exclude there parameters according to the idea of set identification. Therefore
it is superficial to say that blue collar experience helps to increase the possibility
of being a white collar. Instead it is more precise to say that in some cases indi-
vidual’s blue collar experience fails to build up his skill as expected. Unless it is

strongly believed that more experience can never reduce its output of skill, the
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Table 3.7: TypicaL INDIVIDUALS AND THEIR TREATMENTS 3

AcEe
INIT. Secn 16 17 18 19 20 21 22 23 24 25
8years . . . . ... ..
(8years 5 5 5 5 . . . . . )
(8years 1 1 1 1 . . . . . )
9years . . . . . . ...
(8years 5 5 5 . . . . . . )
(8years 1 1 1 . . . . . . )
10years . . . . . . . . .
(8years 5 5 . . . . . . . )
(8years 1 1 . . . . . . . )

! Note. - In this table the states before treatments are
from the pre-treatment states of table 3.3, and the
states after treatments are from the pre-treatment
states of table 3.5.

quadratic term should be included in our model specification”.
Another interesting finding is that while blue collar experience helps'’ indi-
vidual with average initial schooling the most, it also help people with less initial

schooling a lot.

Table 3.8: Bounps oF TREATMENT EFFECTS
3 rOR TyrPicaL INDIVIDUALS

Errects Lower Bounp Uprper BounD

ONE -10.234% 27.994%
Two -6.821% 32.727%
THrRee  -4.549% 21.367%

! Note. - The treatment effect is the
change of probability of choosing a
white collar job due to a blue collar
experience instead of staying home.

Another finding is that the ranges of effects are quite large. They cover some
negative effects while the majorities are positive. This is implied by the set identi-
fication, but there are some other reasons. For example, assumption 4.3 in Huang
2015b guarantees the consistency of the estimator but there are still a lot of free-
dom in choosing the values of ¢;;, A, and M given the sample size, it is still un-
known what is the most efficient practice. Another reason is I use a method to

9 Another result without the quadratic term will be reported soon.
19This is only a convenient phrase. Keep in mind the real reason why blue collar experience
sometimes increase the probability of being a white collar.
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simplify the output of choice combinations as I declare in section 3.4.1. This sim-
plification is a double-edged sword. While it decrease the variation of frequencies
and reduce the burden of calculation largely, it also throws away some data infor-
mation. An improvement is to find a better balance in between data information
and burden of calculation. For example it could be tried to have a division of
three periods instead of two in the process of output simplification, and in this
case there are no more than 125 possible combination of outcomes instead of only
25. Given more computation resource and time, a better estimated range could be
achieved.

Although the estimation could be improved somehow, my result suggests that
allowing for heterogeneity in a flexible way is important. For example, in this
application the partial effect of being a white collar by blue collar experience could
be positive largely because of the partial identification of parameters, which in
turn invokes us to think about whether a quadratic term of experience should be

included.

3.6 Conclusion

This paper is the first application of the simulation based method proposed by
Huang 2015b and Huang 2015a. It bridges the single agent dynamic program-
ming discrete choice model with discrete choice model with fixed effects. Instead
of point identification, the simulation based method follows the idea of set identi-
fication. To handle the complexity caused by fixed effects I use a reduced form for
agent’s expectation over future utility, and this practice avoids the solution of the
dynamic programming problem for every trail of parameters. I also gave reasons
on why this reduced form practice is reasonable except for the reason of being
practical. This application bases itself on the work of Keane and Wolpin 1997. To
study the ten years of white young men’s career choices with the set identified
idea, a two five-years periods simplification is introduced. It reduces the number
of distinct histories of choice thus avoids imprecisions of a lot of small sample fre-
quencies and it also reduces the burden of calculation asked by the method. It also
has its own drawbacks and the most serious one is the data information throwing
away, which is a reason for the wide bounds of estimation. One needs to find a
good balance between its advantages and drawbacks.

Besides the demonstration of the new method, the main finding are also very
interesting. I use the change of probability of having a white collar position at the
age of high school graduation as the measure of those young men’s effects of pre-
vious behaviors. I find that both high school education and blue collar experience
help them to increase the probability of becoming white collars. Generally the
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effect of blue collar experience is larger than high school education, and their dis-
tributions over initial schooling levels are quite different. While both high school
education and blue collar experience help individual with average initial school-
ing level the most, high school education seems fail to help individuals with less
than average initial schooling and blue collar experience helps them a lot. High
school education does help individuals with higher initial schooling but not as
much as it does for the averages. Blue collar experience also helps individuals
with higher initial schooling, but can not be compared with it effects on other two
types.

The same method can be used to study effects on other sex or racial groups,

such that comparison across sexes and races can be made.
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Appendix A

Mathematics for Chapter 1

Lemma 1.3.1: If Assumptions 1.2.2 and 1.2.3 are satisfied and 77;-‘(0(, pB) is a measur-
able function of « for each f / B, where B is the parameter space, then for each
B and every CDF F; on Y, there is a discrete distribution F]g with no more than
J support points such that P;f(oc, /S)dFk](oc) = e‘[P;.‘(zx, B)dF(a) (j = 1,>0]).
If, in addition, A(w, B) is bounded for each B, th A]fl and A;‘ are not affected by
restricting attention to F, / G (B) that are discrete with no more than | support
points. Similarly if AP(«, B) is bounded for each B, then Ak P and AP are not af-
fected by restricting attention to F, / G (B) that are discrete with no more than |
support points either.

Proof: See Proof of Lemma 7 in Chernozhukov et al. 2013b, one important thing
is that when we are considering the bounds of A¥ and A*P, we can not use the
same Fk]; ! for both purposes since this is not implied by the proof. B

Lemma 2.4.1: Estimator 75;‘ («, B) defined in (1.3.13) uniformly converges to 77;‘ (a, B)
over Y * B in probability if assumption (2.4.1) holds. And

r(Pi(a,B)  Pi(a,p)) ~ Gla,p),

where G(a, B) is a mean zero Gaussian process, and its finite dimensional distri-
bution is controlled by the distribution of &;, thus by H(e).
Proof: We only need to prove the second statement. That is to prove }ﬂg Y = Zj )" /Y /B
is Donsker. To see this more clear, we rewrite the indicator function 1(Y; = Z/)
as:
T

fa,ﬁ(éi) = H H ﬂ)éitate éitat < V(ytlfzt/ Xay,s ;B) V(ytlfzt@ aaff 5) (

t=1 at%éat

This is what we did in (1.3.14), and now it is clear that indicator function 1(Y; =
ZJ) is actually a function of & indexed by («,8) / Y * B. So we need to prove
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}fapl (a,) v+ B is Donsker. Define a new class of functions with its element as:

hap(@) =1 )Ep  Eia, < V(D 0, B) V(J’f’;te%te,ﬁ)(

Note that }1(x; < t)| ; /g is P-Donsker for any P, and the newly defined class is ac-
tually a subset of (€, €irg,)’s indicator functions. So }hiy g| (4,p) /v« B is Donsker
and also a bounded class since this is a indicator function class. Furthermore,
}fapl (a,8) /Y+ B 15 a subset of the product set which consists of production of func-
tions from Donsker classes, }h, | . By Kosorok 2007, }fu g| (a,8) /v« B i3 Donsker.
|

Lemma 2.4.2: Estimator A(a, B) defined in equation (1.3.16) uniformly converges
to A(a, B) over Y * B in probability if assumptions (2.4.1) holds.

Proof: First we prove that for any ¢,

7

1 Z Qo(xf,a,€4,B) El0(xf, a &y B)]

i3

P

(A.0.1) sup /0.

(,8) /Y* B

We treat go(xf,a, €, B) as a function of & for the given « and f, and define
H=}go(x{, &, & B): (a,8) /Y* B|.(A.0.1)is actually to claim that the class of
functions His 8-Glivenko-Cantelli.

Define Hs envelope as G(e) = sup [g(€)|} € / R?, and we have |G(e)[| < Q,

8§/M
where Q is the bound for the choice set since our choice set is finite such that

we can exclude the unbounded choices. Then J G(e)dH < [QdH = Q <

ry 4.4.3 of Geer 2006 we only
need to prove that His Vapnik-Chervonenkis. That is to say we need to prove
}subgraph(g) : ¢ / H formsa VC class.

oo, where H is the distribution of €;;. By coroll

Note that any function g / Htakes the form

go(xf, 0, &, B) = ) L (go(xf, 2, &t p) = c)

(A0.2) “r o ] )
= Z ¢ H 1(&ipee Eite < V(xie e, B)  V(Xjottes B)) -
c/F Sk

Define a set for each ¢ / F as follows:

(A03) RA = }é,'t JRA e &y <V(xh,ae,B) V(X¥oasB), I,
and a set for each pair (c, ¢9 as follows:

(A.0.4) RA. = }éit JRA &y & < V(xhae, B) V(xfoaesp)
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It is easy to see we have the following relation: RZ = é& RA.

We can write the subgraph of function g as

(A.0.5) subgraph(g) = N ( oo, c] * RA.

c/F

Therefore we should prove that } N ( oo,c]* R is a VC class.
/7 () /Y+ B

It can be easily proved that }R4. (@) Y+ B 1S VC class because its VC dimen-

sionis bounded by a finite integer. Then by lemma 4.3.2 of Geer 2006, }lRf | (,) /Y+ B

is also VC.1If } ( x RZ (a,p) /s B 152 VC classforanyc / F,then }c?f( oo, c] ¥ RY ((a 8) Yr

is a VC class by using lemma 4.3.2 of Geer 2006 again, and it is obvious that the
VC dimension of }( oo,c] x RA! (@) /Y B 1S finite as long as the VC dimension of
PR (@) /Y+ B 13 finite. So we have proved His VC and hence a Glivenko-Cantelli
class. That is to say (A.0.1) holds.

Similarly we can show that

1< - . P
(A.0.6) sup —Zgo(x,lf,oc,eit,ﬁ) E go(xf,zx,eit,ﬁ){/ 0
(w8) /Y B || i=1
holds for any t.
We have

A, ) Ale, B)|

1 & ,
= |7 ZiAt(oc,,B) E]go(x?,zx,e,-t,ﬁ) go(xt,a,eit,ﬁ){H
t=
o 1 u A E a . b )
(A.O.7) - T t_zl } t(a’ 18) }go(xt/a/ €it, .B) go(xt/a/ €its ,B){
T r B
g% Y } %ZgO(X?/“/éit/ﬁ) E[go(xf, a,€it, B)] ||
t=1 i=1
T r
%; } %;go(x?/“réinﬁ) E]go(xtb,“,e‘it,ﬁ){’ {

where the second equation follows definition (1.2.19).

Combine (A.0.1), (A.0.6) and (A.0.7) together and note the fact €; is generated
from €;’s distribution, we have

(A.0.8) sup  [A(wB) A )|/’ 0. =
(a,8) /Y* B
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Lemma 1.4.3: Estimator AP(a, B) defined in equation (1.3.18) uniformly converges
to AP(«, B) over Y x B in probability if assumptions (2.4.1) holds.

Proof: This proof follows the same idea as the proof of lemma 2.4.2 with some

minor differences. First of all, note that

AP(a

~

B)  AP(w,B)| ]
1(g0(x{, &, &, B) = ar)  Pi (a, )H

/
~l=
7~
——

F,
Il
—_
N [ =

- I7-

~
I
—_

(A.0.9)

N [ =

+
e
1=
——

-
I
—_

]1)g0(x?/“/éit/f5) Zﬂt( PZ?(“/ )“

and we need to check whether

1
r

P

(A.0.10) sup 70

(0,8) /Y B

éﬂ (g0(x 0, & B) = ar) P, B)

holds for any t. Note Py (¢, B) = Ee, [1 (g0(xt, a, €it, B) = at)], (A.0.10) is to ask
11 (8o(xt, 2, Eit, B) = ar)| (4 p) /vs 18 Glivenko-Cantelli. Note that

1 (go(xt, a, &, B) = at)

=II1 ) V(X105 25 B) + Eitae < V(Xta,, ay, ) + Eitg, (
(A.0.11) aitay

- H ]l>éitat€ €ita, <V (Xta,, oy, B) V(xfﬂte’%te’ﬁ)(
agsa;

and we can use the same idea of subgraph to prove (A.0.10) holds for any t. Then
by (A.0.9), we have

(A.0.12) sup  |AP(a,B) AP pB)|’ 0. ®
(x,8) /Y* B

Lemma 1.4.4: For every 7T / XIIf,I, where M > |, there exists

o(B,7) = ) BS Y (B, )5 00, K (B, ﬁK>€(

such that



forall j =1, xxx, ] and k = 1, xxx, K, and where

J+1

p]k)ﬁf < 2771 (& kMr B)

]+1

Ak>ﬁ, ( an &t B
and }mk ] 1 is a subset of }1, xxx, M| , which can be different for different k.

Proof: Denote I'%y () = })Pk( ,B)S A ,,B)(: x/Yum (, where P¥ (&, B) =

- J o
}P;‘(Ec,ﬁ) Y and I'%),(B) is the convex hull of I'%),(B). Then by lemma 3 of

Chamberlain 1987, we have:

S

I8(B) = })) [ P*(a, B)dF (a) r, [ A(a, B)dF(w) [ : Fisacdfon Yy [ :

Therefore for any 7 / AL,

))zmmM,

Note that P*(&,8) / Aj, then by Caratheodory Theorem there exists a discrete
distribution F] with ] +1 support points )zx kg 0% | ( —Y s and prob-

ability (7¥, >xx, 7'(’]‘ 1) such that

S M

Z (@mm, B [ / f‘]éM(ﬁ)

where the last equation is the definition. Bl

Lemma 1.4.5: There exists a constant C such that for all ¢, € / @, the follow-
ing inequality holds: |A*(¢) A (¢9]|| < Cd(¢, ¢S + op(1), where 0p(1) doesn’t
depend on (¢, ¢9.
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Proof:

<L [palp stk pnt
ﬁ\p(aé;,m M@, 9|4
o

+) INCHOLANS A S LA
1

< l;s;g) Hé(aﬁ‘,ﬁ) A(“ﬁﬁ)””f

ﬁﬁ\p(m% A, 9|4
J+1

+ L [pak g awd,p9nd]

= op(1) +j§ \%(w%‘ﬁ)nﬁ‘ A(“éﬂﬁe)”éfu

J+1

<X |peet ot |

_|_j_i11HA(p¢;(,‘B) A((Xé;,ﬁe)Hﬂ'él{‘f‘OP(l)

J+1
< Cd(p,¢9 + Y Lld(ak,a%)
=1

+QB ﬁegﬂéerOP(l)
d(p, 9% +op(1),

where the last inequality follows by Assumption 1.4.1. H

Lemma 1.4.6: Denote Hausdorff metric as 4, Lemma 1.4.5 implies
dy )Ak(q>s),Ak(q>§) << Cdp(®s, DS +0p(1),
where @, and ®$are two subsets of ® and op(1) doesn’t depend on (P, D).
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Proof: By the definition of Hausdorff metric,

dy (AF(®s), AF(@9))
— : Ak Ak . <k ~k
o g it [30) 83 p g o9 2o

If |A¥(¢)  A%(¢9]| < Cd(¢p, ¢9 + op(1) holds for all ¢, ¢/ P, and op(1) doesn’t
depend on (¢, ¢9, it can be shown that

sup ot )A" (@)  Af99 H < sup nf Cd(@, 99 +op(1),
and
sup. Jnf }Ak (99 A%¢) H < sup. Jnf Cd(959) +op(1).
So that
du ) AF(@), A5 (@9 (
< max }jl/lg ¢ie%secd(¢,¢€) + op(l),q)sel/lgg¢i?qgs Cd(¢S¢) +op(1) [

= Cmax psup inf d(¢,¢9, sup inf d(¢< [—Fo 1
biap st (0,49, sup ot 500 | 4an)

= CdH(q)s,q)Se) + Op(l) |

Lemma 1.4.7: If dy &, ] 70, we have

A;‘ y Aé‘andﬁﬁ 1 AK.

Proof: Since the minimum and maximum of a set are continuous in the Haus-
dorff metric, it is sufficient to show

(A.0.13) dH)Dk, Dk< 7o

Note that

(A.0.14) <dy , Kk (@)) +dH>Ak(<I>1),Ak(<I>I)
< Cdy &, @[ +0p(1) +dys ) A (1), (@)

The first inequality follows by triangular inequality and the second inequality
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follows by Lemma 1.4.5 and Lemma 1.4.6. By Lemma 2.4.2 we have

J+1
sup |A*(¢)  A¥(9)[|= sup ZA of, B Y A, By
¢/ a,p, ||= I=1

J+1
(A.0.15) <sup ) sup HA ocl, ucl,,B)Hr(f‘
T o1=1 ap
—supHA «f, ocl,IB)H /0.
Also note that
P R B ey
we have
(A.0.16) ¢/q> (Pglél }A (¢) 4)€)H< ;,}15 HA )H
Similarly, we have
(A.0.17) 4;/(1) ¢g/1<§>1 }A (¢) Ak(q;E)H< ;}1(1; HA H

It follows by (A.0.15) (A.0.16) and (A.0.17) that

(A.0.18) dH>Ak(<I>I) AX(®)) <<;>1£IHA H 7o

So if we have dy &, @] 70, by (A.0.14) and (A.0.18) we have:

dH>Dk,Dk( 7 0. m

Lemma 1.4.12: sup [[Q(¢) Q(¢) H/P
¢/

Proof: First we notice that

leg HP}(((P) H< Sup Hpk af,B)  Pi(af, Bl

and lemma 2.4.1 tells us
sup HV( af, 7?;‘ le,ﬁ)H 0.

96




Follow this result, we have

HOREAC]

sup
¢/®

Furthermore we notice that H15]k(¢) + P]k (¢) H < 2, and we have

) o ()

By some tedious calculation, we have

oF)si(C h)si(
gl o

R s st

P

sup r 0.

¢/®

sup [Q(¢)
0/®

Of all the right-hand-side items, the first one converges to 0 in probability by

law of large numbers and continuous mapping theorem.
For the second part,

SLCIEEL e S LRI LT
gkl

ik

Z sup
ik ¢/®

For the third part,
) sup ‘kakSkPk }) @;?S}‘P]k(cp) H < 22 ‘H‘S]k A;‘S']k

ik ¢/®
sup Hl’
ik ¢/P

~k &k
|
Since all the right-hand-side terms converge to 0 in probability, we prove that:
A P
sup [Q(¢) Q(¢)[|7 0. m
¢/®

Theorem 1.4.1: Under all the assumptions, 4 H(CTD, D)) " o.
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Proof:! First step, we prove that:

sup inf d(¢,¢9 <6 wp.al. foranyé > 0.
4;6/@ (P/(DI

Define ®¢ = }cp . inf d(¢, ¢ < 6(, and P9 is open by its definition. So ® v

¢/ P1 (
@9 is compact. By continuity of Q(¢), Q(¢) takes its minimal value on ® @9,

inf 5Q(cp) = p > 0. We know that Q(¢) uniformly converges to Q(¢) in
/P Py
probability by Lemma 1.4.12. So inf Q(¢) > § w.p.a.l.

¢/ f‘?

ie.

By, / 0,
sup Q(¢) < sup }Q (¢(B, 7)) : Q(¢(B, 7)) + ATt < &yl < %’,
9/P 7

so that & ~ ®J. Therefore w.p.a.1 for all $¢ / ® there exists ¢ / @ such that
d(pSP) <6, ie. sup(pi;lf d($, 99 < dwp.a.l.

¢/ T/
The second step is to show that:

sup inf d(¢,¢9 <6 wp.al. foranyé > 0.
(l?/q)] ¢E/(I>

First, by definition of Q(¢) in (1.4.2),

o)<V of &k sk k] pk oL
a0 <gN A ompEelno o
+2sup Y@k )SF sk( PE(¢)  DX(g)
<P/‘11>91]k ])] j }J J(‘P{

It can be easily seen that the first part on the right hand side of the last inequal-

IThe proof here is a adjustment of Chernozhukov et al. 2013a, the most important difference
here is that we need to find the rate of convergence of the estimated choice probability to the true
choice probability and adjust other terms’ convergence rates accordingly. You can see A9.2 in

Chernozhukov et al. 2013b for comparison.
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ity is Op(n !) since LD;‘ = Sk/8 ]k and both the numerator and denominator are

Op(n %). We need to find the rate of convergence for the other two parts.

For the second part,

sup Zd)ﬂp}c((p) Pk { Y 5‘] sup
¢/Pr jk ik
and P}‘(cp) (47) Y }P;‘(tx;‘,ﬁ) P;.‘(zx;‘,ﬁ){by definition.
So that

sup Yk [ Phg)  Php){

¢/Pr jk ik

N\

&
T
[

—
1=
7]
c
)
\ﬁél
=
==
=
X
=
==
=
/—/HN

By Lemma 2.4.1, we know the following process

} ;]75;((“?':5) 77;((04(,[5){ (“zzﬁ)/Y*

converges in distribution to a Gaussian process. Note that taking absolute value
and sup are continuous mappings between their proper spaces with proper met-

rics respectively.We have

;}1(1}: H } “(ak, B P}‘(uc;‘,ﬁ) {Hw 5}1(1}:1 ‘Faussian process G(tx;‘,[%)H: Op(1).

Then we have

- 2
sup Y@ | PE(¢)  PR(9){ <Op(r ).
¢/Pr jk

For the third part,

! S}
_— -
NI—=

s
=
)
e
)
e
=}
N
| I
I
=
N—
—~. >\~
VR
N—
923
e
V)
e
q
—N
N —=
—_
92]
@)
~
—~
=
NI
:_/
Q
=}
Q.




since sup,, /g, }15}((4’) Pk H S Sup, g

’7?"(04‘,8) P (ak, B H Op(r 3).

So we have

zsupzco;f)sjk sf(}pf(gb) ﬁ]k(qb){gop(n 2)Op(r 2) = op)( )z(.

¢/Pr jk

Finally we know

(4.019) sup Q(¢) < Op(n ') +Op(r ') +Op(n 2)Op(r 2).
¢/P;

For any ¢ and ¢< / @, we have

Pk By Phiat 9| < [Piad, p) 7’?(065‘,/3)“+]Ff(wéf,/3€) P, 59|

H’Pk “1 B) “l ﬁe)H
<221/1£H7)k ocl ,B Pk(lxl ,3 H‘*‘Cd(gb ¢e)
So that

HOMAG

J+1
<L Pi(af, Bt Pt g7 |
Elpetmn s At St
Blpatoll =tl-pen At

1]
<L d(¢, 99 + Cd(¢, ¢ +2)sup\h>k af, ) j<“5‘fﬁ>H[ ”éf{

:cd<¢,¢€>+2;1;g\ﬁ(“5"ﬁ il



and

(A.0.20)
R(¢) Q9|
[atls mof zatls meof]
] I
_ jlk}z@;fsf)zzkw% p]k<¢>(+w;<))p]k<¢>(2 )p]kwe)([{'
SR i AC R AOl o A A A R Al
]s
=2 HerllPreen mr[2]isf]+ [prees + o
]s

<4 |Pro9 P

j/

k
< Cd(¢,¢9 +8) sup Hﬁf(%‘zﬁ) P]k(“éc'ﬁ)H
]

= Cd(¢,¢9 + Op(r 2).

By Assumption (1.4.3) and M /oo

sup min d(a, a9 = (M) T 0,

a /Y Ym
therefore for any a /Y, there is a &,,(,)p1 / Ym such that d)oc, Ry () M < <
<

- . k =
So that for any ¢ / ®, there is (o) M with 1<§2?3r(1,k }d ) o,

m

Let af(¢) = )&m(“;{)M, X004 By ok, - AN a(P) = al(¢)S o ak(9)]
$(¢) = (BSa(9)S 19" By construction ¢(¢) / ®um and d (§(9),¢) < 7(M).

Thus we have

(A.0.21) sup inf d(¢, 99 < y(M).
¢ /0P Pu

Given (A.0.20) and (A.0.21), we have

(A.0.22) sup inf |Q(¢) Q(¢9]||< Cp(M) +Op(r ?).
¢ /P Pum

That is to say, for any ¢ / @, there exista ¢(¢) / P such thatd (¢(¢), $) <
1(M) and [Q(¢)  Q(§)]|< Cn(M) +Op(r 2).
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Next let 6 > 0 be any positive constant and define four events:

Ey = (M) <4l ,

[, = }Cn(M) +Op(r 2) < %”(

¢/ 3
¢ \
Ey = b sup Ayt < 22/ .
7t/ X 3 {

By &, = 1", n(M) = n*2, A,, = n*3, r = n™ and the assumption of their order:

o <0, 0>x1 >max} 1|, kg < 2K, k3 < K1 ,

it follows that
lEl 11,
1
(r 2) U(M) 1z,
C o1,
) + M) 3
1 gn
)opn )+ Op(r )+op)(nr) z<<§[ ;o
P(Ey) > >AHK\§[ ro1.

It follows that P, {#_,E,[ / 1. When the event }{?_E,! occurs, for every
¢ / @, thereis ¢(¢) / Py such thatd(p, $) < J, and

Q($) + MntTt < Q(P) + %
<O +0@) Q)+
< supQ(p) + (M) + 0plr 1) + 2 < &,

¢/

which implies ¢ / ®.
Thus, w.p.a.1,

sup inf d(¢, p < 6.
/CI>1<I7€/(I>

By both sup inf d(¢, ¢ < ¢ and sup inf d(¢, ¢S < 4, it follows that w.p.a.l
¢/ 0195/ ge/ &P/ 1

dy @, CIDI[ < 4. Since é > 0 is arbitrary, it follows that dy D, CIDI[ 7 0. m
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Appendix B

Mathematics for Chapter 2

Lemma 2.4.1 Proof: Firstof all, it is useful to realize that the product of integrations

in (2.2.2) can be expressed as a single integration with respect to H(e) as

P )= 1)Uk yi =0 raenp) = aT<*
XXX

(B.0.1) 1)g0(Ukyi 1 =a 106, B) = af(*

XXX
1 )go(U{‘, a,€1,B) =a; (dH(e).

This equation holds since ¢;; is serial independent. With indicator functions of
utilities, its expansion is
(B.0.2)

Pi(a, ) = [ I JI)V(U%T,a T/ Qap, B) + €itay 2 V(U%;/ﬂ T, %5, B) + €imas (*

aS¥ar

XXX

1 ]1)V(U{‘a,,a oy, B) +€ita, > V(Ufiea 005 B) + €itﬂf(*
assa;
SO

[T 1) V(U 0, B) + €ita, > V(Ufe e, B) + eﬂale<dH<e>.
af¥ay

Itis needed to prove that these functions under integration above indexed by (&, )
form a Donsker class. These functions are product of different indicators, and by
the same way of Huang 2015b each class formed by indicators is Donsker, so do
their product. This complete the proof. B
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Lemma 2.4.2 Proof: Note that

BPia,8) AP p)< | L0 = a) Pl B+

and I need to check whether

E ill(}iit(St) =ar) P (e, B)

su
p v ¢
i=1

(a,) /Y B

This is actually to check whether the indicator functions }1 (7i¢(st) = ar)| (, g) form
a Glivenko-Cantelli class. This can be seen by writing it as follows

L(Fit(st) = ar) = H ﬂ>éimt€ Eita, < V(Stay, aay, B) V(Staff Xa& B) (
agsay

This could be proved by use the same idea of subgraph argument as in Huang
2015b. Then by the first inequality, I have

sup  |AP(«,B) APt(oc,/S)H/P 0.1
(a,8) /Y* B
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