
 

 

TESIS DOCTORAL 
 

ESTUDIOS FUNCIONALES MEDIANTE RESONANCIA MAGNÉTICA EN 
PEQUEÑOS ANIMALES 

 

 

 

FUNCTIONAL MAGNETIC RESONANCE IMAGING STUDIES IN SMALL 
ANIMALS 

 

 

Autor: 

Cristina Chavarrías Navas 
 

 

Directores: 

Manuel Desco Menéndez 

Juan Felipe Pérez-Juste Abascal 

 

 

DEPARTAMENTO DE BIOINGENIERÍA E INGENIERÍA AEROESPACIAL  

 

 

Leganés, diciembre de 2015 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/44309695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




 

 

 

TESIS DOCTORAL 

 

 

ESTUDIOS FUNCIONALES MEDIANTE RESONANCIA MAGNÉTICA EN 
PEQUEÑOS ANIMALES  

 

   Autor:   Cristina Chavarrías Navas 

Directores: 

Manuel Desco Menéndez 

Juan Felipe Pérez-Juste Abascal 

 

 

 

Firma del Tribunal Calificador: 

                                                                                                      Firma 

Presidente:  

 

 

Vocal:  

 

 

Secretario:  

 

 

Calificación:   

Leganés,        de                          de             





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A ti, papá.  

Tu incansable lucha obrera me ha permitido 

llegar hasta aquí, donde quizá tú 

debieras haber llegado. 

 

 

“La lucha del hombre contra el poder es la 

lucha de la memoria contra el olvido” 

Milan Kundera 

 



 

 



 

AGRADECIMIENTOS  

A mis directores de tesis.  

A Manolo por haberme sacado del cascarón y haber confiado en mí desde el primer 
momento. Gracias por tu esfuerzo, a veces poco apreciado, que nos ha permitido hacer 
lo que nos gusta durante tantos años. Además de mucho conocimiento me llevo 
valiosas lecciones de inconformismo, escepticismo y espíritu crítico.  

A Juan por ser un faro en mitad de la noche. Tu paciencia, optimismo y comprensión 
han sido imprescindibles para poder encontrar la salida del túnel. Gracias por tantas 
horas de generosa dedicación. 

A todos los que me ayudaron en los comienzos con su saber hacer o con sus consejos: 
un gallego encantador y muy docente, Marina, Sandra, Ángela, Ángel, Yasser, Vero, 
Chema, Juanjo, Balaban. Todos formáis parte en mayor o menor medida de este 
trabajo, muchas gracias. 

Gonzalo, tú has sido mi apoyo durante todos estos años. Contigo he aprendido tanto o 
más que dentro del laboratorio, y probablemente enseñanzas más valiosas. Gracias por 
ser un señor de los pies a la cabeza. 

A Paula, por tu inmenso cariño. Siempre me has apoyado laboralmente y 
personalmente. Dicen que más vale tarde que nunca, y contigo este refrán se ha 
personificado. No sólo tienes unos valores personales que son un tesoro sino que 
además tienes la inteligencia, serenidad y humildad características de los 
investigadores más brillantes. Eres una grande y vas a llegar muy lejos. ¡¡¡Y quiero 
estar ahí para verlo!!! 

Sin duda en los últimos años el mayor apoyo lo he encontrado cada mañana frente al 
café o por la tarde frente a la sidra. Gracias a mi pequeño Santidrín por acogerme con 
los brazos abiertos, cuidarme, aconsejarme o simplemente escuchar. Os quiero 
mucho… y lo sabéis (insert meme here :P). 

Eu, mi torbellino hermano, ten paciencia, que todo llega. Aptitudes y energía te sobran 
a borbotones. Gracias por tu frescura, alegría, por tus abrazos, y por tener siempre un 
plan genial para mí. 

Esta tesis no resume mi estancia en el LIM, sólo una pequeña parte, pero es ahora 
cuando freno, miro atrás y siento nostalgia por la familia que fuimos. Echo de menos 
aquel núcleo duro que me sacaba a olvidar las penas: Tra, Sisni, Esther, Juanolas, Edu, 
Alvarico, Gus, Josete, Irina, Angelito, Santi Reig, Gonzalo, los neuros, Yassel, Jafi, 



 

 

Kike, Fidel, María, y seguro que algunos otros que me estoy olvidando. Vaya 
recuerdos me quedan. Gracias también a las nuevas adquisiciones por seguir 
cuidándome, sois unos encantos e irradiáis talento. No dejéis que se pierdan estos 
lazos, que te ayudan a sujetarte cuando te estás cayendo. En general gracias a todos mis 
compañeros del LIM, pasados y presentes, que siempre estáis y habéis estado 
dispuestos a echar una mano. Son tantas horas compartidas que de verdad os siento 
como mi familia de acogida. 

 Y cómo no, a mi familia real, por apoyarme en todo aunque a veces no entendieran 
una sola de mis palabras o acciones. 

 



Functional magnetic resonance studies in small animals 

TABLE OF CONTENTS 

RESUMEN ............................................................................................................................. 11 

ABSTRACT ........................................................................................................................... 13 

1 GLOSSARY OF TERMS ............................................................................................ 15 

2 MOTIVATION AND OBJECTIVES ........................................................................... 19 

2.1 Objectives ................................................................................................. 22 

3 INTRODUCTION ....................................................................................................... 23 

3.1 fMRI basics ............................................................................................... 23 
3.2 Experimental considerations ....................................................................... 28 
3.3 Preclinical fMRI: advantages and challenges .............................................. 36 
3.4 The need for speed ..................................................................................... 38 
3.5 Analysis of rodent fMRI ............................................................................ 45 

4 EXPERIMENTAL SETUP .......................................................................................... 47 

4.1 Introduction ............................................................................................... 47 
4.2 Methods .................................................................................................... 50 

Animal preparation .................................................................................... 50 
Experimental design................................................................................... 51 
Functional paradigm and stimulation details ............................................... 53 
Image analysis ........................................................................................... 53 

4.3 Results ...................................................................................................... 54 
4.4 Discussion ................................................................................................. 56 

5 ACQUISITION AND RECONSTRUCTION ............................................................... 57 

5.1 Introduction ............................................................................................... 57 
5.2 Theory ....................................................................................................... 59 

The Split Bregman method ......................................................................... 59 
5.3 Methods .................................................................................................... 64 



 

 

5.4 Results ...................................................................................................... 67 
5.5 Discussion ................................................................................................. 70 
5.6 Conclusions ............................................................................................... 73 

6 FMRI ANALYSIS: FMRAT ........................................................................................ 75 

6.1 Introduction ............................................................................................... 75 
6.2 Methods .................................................................................................... 77 

Architecture ............................................................................................... 77 
Graphical user interface (GUI) ................................................................... 78 
Default automatic processing pipeline: preprocessing steps ......................... 80 
Default automatic processing pipeline: GLM estimation and results............. 81 
Assessment ................................................................................................ 82 

6.3 Results ...................................................................................................... 84 
Smoothing ................................................................................................. 84 
Design matrix ............................................................................................ 85 
Tool output ................................................................................................ 86 
Quantitative assessment ............................................................................. 86 

6.4 Discussion ................................................................................................. 87 
6.5 Conclusions ............................................................................................... 89 

7 CONCLUSIONS ......................................................................................................... 91 

8 FUTURE LINES ......................................................................................................... 95 

9 PUBLICATIONS ........................................................................................................ 97 

9.1 Directly related to this thesis ...................................................................... 97 
Articles...................................................................................................... 97 
Conferences ............................................................................................... 97 

9.2 Other publications ...................................................................................... 98 
Articles...................................................................................................... 98 
Conferences ............................................................................................... 98 

10 REFERENCES .......................................................................................................... 103 



Functional magnetic resonance studies in small animals 

11 

RESUMEN 

Esta tesis se enmarca dentro del ámbito de la imagen biomédica preclínica, y 

específicamente trata sobre la técnica de imagen de resonancia magnética funcional 

(fMRI) en pequeños animales. La complejidad de dicha técnica tanto a nivel 

experimental como tecnológico ha limitado considerablemente su ámbito de uso, y por 

ello no es una modalidad de imagen que se realice de manera habitual. Sin embargo 

ofrece información muy valiosa tanto a nivel fisiológico, para el estudio de los 

mecanismos del cerebro normal durante la actividad neuronal, como a nivel patológico, 

para la búsqueda y estudio de fármacos aplicables a diferentes disfunciones cerebrales. 

En esta tesis se han estudiado técnicas y métodos para intentar aliviar estas dificultades 

y facilitar su utilización por parte de la comunidad científica. El trabajo incluye 

aportaciones en los ámbitos de la configuración del experimento, de la adquisición de 

los datos y su reconstrucción, y por último del análisis cuantitativo final de las 

imágenes. 

En el primer capítulo se trata el problema del uso de anestesia durante el experimento. 

Para obtener medidas funcionales es necesario establecer un protocolo anestésico que 

facilite la sedación del animal pero sin llegar a un estado anestésico profundo. Por otra 

parte, es deseable que sea de rápida inducción y recuperación, y que no sea tóxico para 

que pueda usarse en estudios longitudinales. En esta parte de la tesis se realizaron 

experimentos de fMRI en rata sedada con sevofluorano, para lo cual fue necesario 

realizar un estudio dosis-respuesta y un barrido de frecuencias de estimulación. 

Además, la señal obtenida en la corteza cerebral se comparó con la de otro protocolo de 

sedación  más tradicional, con medetomidina subdérmica. La señal obtenida fue de 

intensidad similar a la obtenida con medetomidina, pero el tiempo de preparación del 

animal se incrementó considerablemente, lo cual constituye un grave inconveniente 

práctico para el uso de este anestésico. 
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El segundo capítulo está dedicado al estudio de un entorno de adquisición comprimida 

o “compressed sensing” que permita reducir sustancialmente el tiempo de adquisición 

sin degradar la calidad de la imagen, gracias a la adquisición de una cantidad mucho 

menor de datos. En este trabajo se muestra que sería posible acelerar la adquisición a 

altas tasas que incumplen el criterio de Nyquist-Shannon siempre y cuando se explote 

la redundancia de información temporal y al mismo tiempo se empleen algoritmos de 

reconstrucción de imagen iterativos no lineales. En concreto se compara la eficacia de 

tres algoritmos  de reconstrucción que explotan la redundancia temporal para recuperar 

el contraste BOLD y que han arrojado buenos resultados en otras aplicaciones o 

modalidades de imagen: tomografía por rayos X, estudios dinámicos de corazón por 

resonancia magnética, y resonancia funcional en reposo o “resting state”. La 

comparativa se realizó en dos escenarios de relación señal a ruido y se concluye que el 

algoritmo que utiliza una imagen a priori (PICCS) es el que mejores resultados obtiene 

en la reconstrucción. 

El tercer capítulo aborda el postprocesado y análisis de las imágenes. Existen varias 

herramientas gratuitas y de código abierto para este fin, pero fueron diseñadas para 

imagen de cerebro humano, y su adaptación a imágenes de roedores requiere el uso de 

herramientas adicionales o la realización de transformaciones en la imagen que 

implican conocimientos de programación. Además, para obtener valores cuantitativos 

es imprescindible el uso de extensiones o herramientas adicionales. En este trabajo se 

han estudiado las herramientas existentes y se ha propuesto y desarrollado un nuevo 

software, fMRat, que realiza el análisis completo de varios sujetos de manera 

automática, desde el cambio de formato de las imágenes hasta la obtención de valores 

numéricos de las regiones de interés elegidas por el usuario. La herramienta está 

programada en Matlab como una extensión de un paquete SPM ya existente, y fue 

validada con 460 estudios reales de ratas. El código está publicado como “open-

software” en el sitio web de Github y es accesible a cualquier neurocientífico que desee 

utilizarlo.  
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ABSTRACT 

This thesis is framed within the field of preclinical biomedical imaging, and 

specifically devoted to the study of functional magnetic resonance imaging (fMRI) 

technique in small animals. The experimental and technological complexity of this 

modality has greatly limited its use, and therefore it is not a routine imaging modality. 

However, it provides valuable information both at the physiological level, to study the 

mechanisms of normal brain during neuronal activity, and at the pathological level, to 

study drugs intended for different brain dysfunctions. 

In this work we have studied techniques and methods that intend to alleviate these 

difficulties and facilitate their use by the scientific community. The work includes 

contributions at several stages: the experimental setup, the data acquisition and 

reconstruction, and the quantitative image analysis. 

The first section addresses the problem of using anesthesia during the experiment. In 

order to perform functional measurements, it is necessary to establish a protocol to 

induce anesthetic sedation of the animal rather than a deep anesthetic state. Moreover, 

the use of non-toxic drugs with fast induction and recovery is desirable. In this section 

of the thesis we conducted fMRI experiments in rats sedated with sevoflurane, and 

since this agent had not been previously reported for fMRI, it was necessary to conduct 

strategies in order to determine the optimum dose-response and stimulation frequency. 

Furthermore, the signal obtained in the cerebral cortex was compared with a more 

traditional protocol sedation, subdermal medetomidine. The signal obtained was 

similar to that obtained under medetomidine, but the animal preparation time increased 

considerably, which constitutes a serious practical drawback for the use of sevoflurane. 

The second section is devoted to the study of a compressed sensing framework that 

allows a substantial reduction on the acquisition time without degrading image quality. 

The acquisition of a much reduced amount of data, thus at high rates of acceleration 
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that violate the Nyquist-Shannon criterion, is possible by means of a wise exploitation 

of the temporal information redundancy and by the use of nonlinear iterative 

reconstruction algorithms. In this study we evaluated the performance of three 

compressed-sensing reconstruction algorithms that exploit temporal redundancy to 

recover the BOLD contrast and which have proved successful in other applications or 

imaging modalities such as: X-ray tomography, dynamic cardiac MRI, and resting state 

MRI studies. The comparison was performed in two signal-to-noise ratio scenarios and 

the conclusion drawn is that the algorithm which uses an a priori image (PICCS) yields 

the best reconstruction. 

The third section deals with the post-processing and image analysis. There are several 

open-source tools available to this purpose, but they were originally designed for 

human studies. Their adaptation to rodent images requires the use of additional tools or 

some image transformation processing that involve programming skills. Moreover, to 

obtain quantitative values, the user would need to use additional extensions or external 

software. In this work we have studied the existing tools and proposed and developed a 

new software, fMRat, which automatically performs a full multi-subject analysis, from 

the initial format conversion to the extraction of numerical values from the regions 

interest chosen by the user. The tool was programmed in Matlab as an extension of the 

existing SPM package, and was validated with 460 real rat studies. The code has been 

published as "open-software" in Github website and is accessible to the neuroscience 

community. 
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1 GLOSSARY OF TERMS 

ATP:  adenosintriphosphat 

AUC:  area under the curve, typically under a ROC curve 

BOLD (signal):  blood oxygenation level-dependent (signal) 

CBF:  cerebral blood flow 

CL:  alpha-chloralose 

CMRO2:  cerebral metabolic rate of oxygen 

CO2:  carbon dioxide 

CS:  compressed sensing 

dHB:  deoxyhemoglobin 

EPI:  echo planar imaging 

EVI:  echo volumar imaging 

fMRI:  functional magnetic resonance 

FOV:  field of view 

FPF:  false positive fraction 

FWE:  family-wise error 

FWHM:  full width at half maximum 

GABA:  gamma-aminobutyric acid (neurotransmitter) 

GLM:  general linear model 

GUI:  graphical user interface 

HRF:   hemodynamic response function 

HYPR:  highly constrained back-projection —algorithm— 

HYPR LR: HYPR local reconstruction —algorithm— 

HYPRIT: HYPR by iterative estimation 

I-HYPR:  iterative HYPR 

KLT:  Karhunen-Loève transformation 

k-t BLAST: broad-use linear acquisition speed-up technique —algorithm— 

k-t FASTER: fMRI accelerated in space-time via truncation of 

effective rank —algorithm— 

k-t FOCUSS: k-t focal underdetermined system solver —algorithm— 

k-t SENSE:  k-t sensitivity encoding —algorithm— 
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k-t SPARSE: high frame-rate dynamic imaging exploiting spatio-temporal 

sparsity —algorithm— 

L1:  L1 norm, noted as 
1
 . Also called taxicab distance 

  or Manhattan distance. 

L2:  L2 norm, noted as 
2

 . Also called Euclidean distance. 

MC:  matrix completion  

MR:  magnetic resonance 

MRI:  magnetic resonance imaging 

pCO2:  carbon dioxide arterial tension 

PCA:  principal component analysis 

PET:   positron emission tomography 

PICCS:  prior image constrained compressed sensing —algorithm— 

RARE:  rapid acquisition with relaxation enhancement 

rCBF:  regional cerebral blood flow 

ROC:  receiver operating curve (of a detection system) 

ROI:  region of interest 

S1:  somatosensorial primary cortex 

S1FL:  left forelimb somatosensorial primary cortex 

S1FR:  right forelimb somatosensorial primary cortex 

S1HL:  left hindlimb somatosensorial primary cortex 

S1HR:  right hindlimb somatosensorial primary cortex 

SE-EPI:  spin-echo (SE) echo planar imaging (EPI) 

SER:  simultaneous echo refocusing 

SIR:  simultaneous image refocused 

SNR:  signal to noise ratio 

SPM:  1statistical parametrical mapping (in general) 
2software package developed by the Wellcome Trust Centre for 

Neuroimaging, UK, for statistical parametrical mapping 

SPM5:  SPM, version 5 

SPM8:  SPM, version 8 

SPM12:  SPM, version 12 

T1:  longitudinal magnetization relaxation time constant 

T2:  transversal magnetization relaxation time constant 
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TE:  echo time 

TTL:  transistor-transistor logic (digital electronics standard) 

TTV:  spatio-temporal total variation —algorithm—  

TV:  total variation (spatial) 

TPF:  true positive fraction 

TR:  repetition time 

VD:   variable density 
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2 MOTIVATION AND OBJECTIVES 

Functional magnetic resonance imaging (fMRI) in rodents has been used for decades to 

study brain function and dysfunction [1-6]. Such a technique has enabled a finer study 

of the brain hemodynamics thanks to the higher resolution it provides as compared to 

human fMRI –one order of magnitude higher-[3]. Moreover, these studies in rodents 

have also enabled simultaneous measurements of the electrical activity and the BOLD 

(blood oxygenation level-dependent) signal for a deeper understanding of the neuro-

vascular coupling and its associated mechanisms [3]. However, the complexity of the 

experimental setup, the variability of the subject physiological conditions, the long 

acquisition times and the intricacy of the image analysis have prevented this technique 

from being widely used in preclinical studies. 

Keeping a sedative state is critical in rodent fMRI for obtaining a robust and 

reproducible BOLD signal with minimal head movement, and this was traditionally 

achieved by using alpha-chloralose (CL) as the anesthetic agent [7-10]. This drug was 

reported to produce the strongest brain activation as compared to other anesthetics, 

probably because CL preserves better the functional-metabolic coupling [7, 8]. 

Unfortunately, it has significant toxic side effects, such as acidosis and seizure-like 

activity, and it has a very long recovery time [11-14]. Therefore it is not recommended 

for survival procedures [9]. The latest research on anesthetics for fMRI preclinical 

experiments has focused on survival-compatible drugs such as medetomidine or 

isoflurane which may substitute alpha-chloralose and enable longitudinal studies [10-

14]. Inhaled anesthetics are particularly preferred because of the easier animal 

manipulation required and fast recovery. In this line, sevoflurane is widely used in the 

human clinical practice since it is well tolerated by adult and pediatric patients, with a 

low incidence of mild airway complications, and particularly better tolerated than 

isoflurane or halothane during rapid induction [15]. Nonetheless, its adequacy for 

preclinical fMRI studies has not been tested yet. 
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Another challenge regarding fMRI experiments is the long duration of the acquisition 

sequences, and the consequent excessive time required by the whole protocol. In a 

typical experiment, the animal preparation and the image adjustments and localization 

may take about one hour. In addition, several fMRI runs have to be acquired at the 

beginning to ensure the stimuli adequacy, the synchronization of the stimuli with the 

scanner and the animal physiological conditions. After that, the aimed fMRI series are 

acquired under the different circumstances required by the study. Between runs, the 

animal is typically allowed to rest for 5-10 minutes in order to avoid developing stimuli 

tolerance. All these steps result in a total experiment duration of several hours, which 

adds some extra difficulty to maintain anesthesia and to avoid stimuli tolerance.  

An additional difficulty in fMRI comes from the fact that BOLD contrast is very small 

in comparison with the background noise (both physiological and electronic), and 

therefore the image has to be acquired repeatedly to build a temporal series that is 

statistically analyzed at later stages. There is a trade-off between acquisition time and 

final statistical power achieved. 

Efforts have not been spared to shorten the series acquisition time by exploiting 

parallel imaging techniques [16, 17], by multiplexing along different dimensions [18, 

19], or by using single-shot 3D trajectories [20-22]. Although most of these approaches 

are prone to artifacts at high acceleration factors, the compressed sensing (CS) 

framework [23-25] has relieved those effects and is nowadays one of the strategies 

with the highest potential for accelerating fMRI acquisitions. In addition, it can be 

combined with parallel imaging or single-shot trajectories to achieve even faster 

acquisitions. The theory behind CS states that a full recovery of the signal is possible 

from a partial measurement of the k-space if certain conditions are fulfilled: the signal 

must be sparse in some transform domain, the undersampling must be random or 

pseudo-random in order to ensure incoherent artifacts and a non-linear optimization 

algorithm should be used for reconstruction [23, 24, 26]. Many CS algorithms have 

been tested for dynamic cardiac MRI but very few of them have been tested for fMRI 

(k-t FOCUSS [27], generalized series [28] and low-rank approaches [29]). 
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Some of the works mentioned above intended to exploit the compressed sensing 

framework to increase the spatial or temporal resolutions instead of reducing scan time. 

Higher spatial resolution translates into better localization of the neurological activity, 

and higher temporal resolution helps to attenuate susceptibility artifacts, chemical 

shifts and physiological noise. The reduction of the readout periods may also be used to 

improve the statistical power in the final fMRI maps if more repetitions are acquired 

within the same acquisition time [28]. 

The typical analysis of fMRI series comprises several preprocessing steps, the fitting of 

a regression model and a voxel-by-voxel statistical test, but every single step has to be 

performed with different algorithms and software implementations, which makes the 

methodology cumbersome and subject to controversy. Moreover, most of the research 

in this field was carried out for human fMRI [30-33], and thus available software tools 

such as SPM (Statistical Parametric Mapping, The Wellcome Trust Centre for 

Neuroimaging), AFNI [34] or FEAT [35], are oriented to this type of images. The large 

difference in resolution between human and rodent images demands adjustments of the 

realignment, normalization, smoothing and visualization steps as well as the adaptation 

of the hemodynamic function model involved in the regression model. An extension 

for rodents, a software named SPMMouse was developed for a previous version of 

SPM (SPMMouse, Wolfson Brain Imaging Centre, University of Cambridge [39]), but 

is no longer maintained. Simpler software packages, such as Bruker proprietary 

software or Stimulate (University of Minnesota [40]), provide a fast and 

straightforward analysis, but they lack relevant features such as series realignment, 

adjustment to a general linear model (GLM), multiple comparisons correction, or ROI 

(region of interest) quantification. 

In summary, fMRI is a technology with high potential for a deeper knowledge of brain 

functioning but there are several aspects which impair its daily use in rodent studies: 

physiological considerations, experimental issues such as the acquisition time, and the 

post-processing complexity. 
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2.1 OBJECTIVES 

The main objective of this thesis is to contribute to improving fMRI technique in rat 

brains, at three main different stages: the experimental setup, the acquisition, and the 

statistical analysis. The specific objectives of each content block are: 

1. To define and validate an optimum experimental setup able to conduct 

electrical somatosensorial fMRI experiments in normal rats, under a 

recoverable sedation and producing a strong BOLD contrast. 

2. To investigate the applicability of compressed sensing techniques to reduce 

total scan time while preserving BOLD contrast, by defining a new acquisition 

scheme able to exploit the temporal redundancy of fMRI series. 

3. To study the specific requirements for the automatic analysis of rodent fMRI, 

and to develop and validate a new and versatile solution fulfilling the needs of 

both expert and non-expert users.  
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3 INTRODUCTION 

This chapter introduces the physiological mechanisms that produce the BOLD contrast, 

and reviews the MRI sequences used in fMRI together with the required image 

postprocessing and statistical analysis. 

3.1 FMRI BASICS 

Neurovascular coupling 

BOLD (Blood Oxygenation Level-Dependent) contrast was first described by Ogawa 

et al. [36, 37] as an endogenous MRI contrast agent reflecting the blood oxygenation 

level in-vivo. They observed a reduction in the MRI signal intensity of gradient-echo 

sequences in the bigger venous blood vessels produced by the presence of deoxy-

hemoglobin, which had already been described as paramagnetic by Pauling in 1936 

[38]. However, it was not until 1993 that the first rat stimuli-related positive BOLD 

contrast was observed [39]. In this thesis the term “BOLD contrast” will denote the 

change in MR signal intensity related to a neuronal activation induced by some 

external stimulation. 

Since deoxy-hemoglobin (dHb) is paramagnetic, it produces a noticeable difference in 

susceptibility between the vessels and the surrounding tissues: 

 

 

Figure 1.Susceptib ility effects of the concentrat ion of deoxy-hemoglobin around a vessel [40].  
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The paramagnetic core of Hb is surrounded by a hydrophobic structure, and this 

explains why the T1 relaxation time is preserved, while the T2 relaxation time is 

shortened, especially where deoxy-hemoglobin is compartmentalized –vessels and red 

blood cells- [41]. 

During brain stimulation, local oxygen demands from the neurons produce an initial 

increase in the deoxy-hemoglobin content of the surrounding capillary bed. Subsequent 

vasodilation and regional increase in cerebral blood flow (CBF) takes place to increase 

the oxygen supply. This compensatory increase in regional cerebral blood flow (rCBF) 

and oxygen supply exceeds the tissue oxygen extraction, and therefore produces a net 

dHb decrease. The initial increase in dHb translates into an MRI signal decrease due to 

the spin-spin dephasing, commonly known as the “initial dip” [42]. The following dHb 

decrease leads to a main BOLD signal increase or “primary response”, after which a 

latter “post-stimulus undershoot” takes place [43]. All these dynamic changes in MRI 

contrast are typically called ‘brain hemodynamic response function’ (HRF), which 

actually constitutes the system impulse response function. The biological  mechanisms  

underlying this signal response are called ‘neurovascular coupling’ and have been 

studied through electrophysiology, spectral optical imaging, ultrasound, photoacoustic 

microscopy and MRI studies in both human and rodents [3, 42, 44-53]. 

 

 
Figure 2. Hemodynamic response function and its parts: the init ial dip, the posit ive response and the 

post-st imulus undershoot [42]. 

Therefore, the vasoreactivity or vascular tone and the cerebral blood flow play an 

important role in the BOLD contrast generation [43]. Three different phenomena 
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influence the level of cerebral blood flow: the hyperemic response or flow-metabolism 

coupling described above, the mechanical cerebral autoregulation, and the CO2 

reactivity [54]. Under physiological conditions, the brain has the capability of 

maintaining a stable blood flow under a range of cerebral perfusion pressures, which is 

called cerebral autoregulation [55], but the underlying mechanisms of this regulation 

are still under study [56, 57]. They have been hypothesized to depend on the transmural 

pressure caused by changes in perfusion pressure (myogenic reflex), but also to depend 

on adenosine levels (metabolic response) and sympathetic/parasympathetic innervation 

(neurogenic mechanism) [54, 56, 57]. Astrocytes seem to be the origin of the 

substances involved in both the regulation (prostaglandins, nitric oxide, and 

arachidonic acid) and the synapse mechanisms (glutamate, ATP, adenosine, GABA, D-

serine) [47, 58, 59].  

On the other hand, carbon dioxide is a well-known modulator of the vascular tone since 

changes in arterial blood carbon dioxide partial pressure lead to vasodilation or 

constriction and therefore they alter the CBF. However, the way it modifies the 

CBF/CPP regulation curve remains unknown [60]. 

 

 
Figure 3. Major pathways that regulate blood f low from astrocytes and neurons [58]  
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Applications 

Since functional magnetic resonance provides an indirect measurement of the neural 

activity, it has proven to be a very useful technique to study both brain physiology and 

pathology [2-6, 41, 48, 50, 61-63]. More specifically, it has been widely used to study 

the hemodynamic coupling and uncoupling processes, to study how the different brain 

networks work and interact, or to study vascular or neural injuries and treatments. In 

this regard, animal studies have been of great help in the assessment of the neural and 

vascular responses simultaneously, in order to study the timing and coupling of both 

responses. Many researchers have reported simultaneous acquisition of fMRI images 

and electrical recordings of the neuronal firing with microelectrodes inserted in the 

brain or through external EEG measurements performed during fMRI scanning. Others 

have tried to assess and understand the BOLD signal generation by comparison with 

optical measurements of the capillaries blood oxygenation or even with photoacoustic 

measurements [46, 64-66]. All these recordings are not possible in human volunteers, 

since they require the surgical exposure of the cerebral cortex, and thus imply an 

interesting advantage of rodent fMRI as compared to human fMRI.  

As illustrative examples of its potential, cortical layer-dependent BOLD and CBF were 

measured in cat fMRI studies already in 2006 [67], and lately in 2012, contributions of 

macrovascular and microvascular BOLD signals have been independently identified 

(Figure 4 left) and studied throughout the rat barrel cortical layers (Figure 4 right) [68]. 

Another interesting research field where rodent fMRI outstrips human fMRI is the 

assessment of pain. Rodent fMRI has allowed studying the brain responses to 

nociceptive stimuli, either electrical or mechanical or chemical [63, 69-77], and it has 

enabled imaging hyperalgesia [78].  

Nevertheless, the killing application for rodent fMRI is definitely drug development 

research [5]. Pharmacological fMRI is critical in preclinical and clinical trials for drug 

development studies, since it saves money and efforts in further stages. fMRI technique 

helps in the target validation, in the patient stratification and in the evaluation of the 
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drug response. In fact, as it can be applied to both rodents and human, it helps to assess 

correspondences in tests of mechanisms [79]. 

 

 

Figure 4. Left:  BOLD signal from the barre l cortex at dif ferent t ime points shows dif ferent delays for 
macro vessels and the surrounding t issue. Right: BOLD signal from layers IV -V rise faster than signal 

from layers I -I I I and VI. [68].  

Regarding the pathological brain, rodent fMRI has facilitated the study of the ischemic 

brain lesion [80-82] brain plasticity after stroke [83, 84], peripheral nerve injury [85], 

or spinal cord injury [86-88]. Actually preoperative fMRI before epilepsy surgery has 

helped other intraoperative electrophysiological techniques to localize motor, sensorial, 

language-related and memory-related functions, or the epileptogenic areas [89-92]. 

Clinical fMRI has also guided tumor resection [93, 94], has contributed to follow 

neurological rehabilitation patients after stroke [95], and helped to guide pre-surgical 

training to take enhance plasticity and reallocate a function before tissue removal [96]. 

Further details on clinical fMRI for surgery planning or plasticity concerns can be 

found in [97]. 

Obviously, the translation of rodent fMRI to humans is limited by the inherent 

anatomical and physiological species differences. The variety of applications in 
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humans exceeds that of rodents, since not only supports the study basic functions as 

those related to sensorial/motor stimuli, but it also enables more intricate analyses of 

superior cognitive processes. 

 

3.2 EXPERIMENTAL CONSIDERATIONS 

The typical experiment in fMRI consists on sequentially acquiring several T2* 

weighted images at rest and several images during some type of stimulus, and 

statistically comparing both groups of images in a voxel-by-voxel fashion. In order to 

group them correctly, the image acquisition must be physically synchronized with the 

stimuli presentation, and this requires some hardware and/or software modifications of 

the stimulating device, the scanner or both. Figure 5 shows an example of an 

experimental setup: the animal is placed inside the scanner with several monitoring 

sensors attached in order to keep its physiological variables under control, and it is also 

connected to the stimulation device (electrical stimulator in this case). The 

synchronization of the scanner and the stimulator is depicted with green and red lines 

carrying a TTL signal and the stimulation electrical pulses respectively.  

The experimental protocol consists on anesthesia induction, placement of the animal on 

the scanner bed, where all the monitoring sensors must be attached to the subject and 

some heating system should be accommodated, and where the stimulation device must 

be attached to the animal and tested (Figure 5). Then the head coil, which is usually a 

surface coil to ensure a high signal-to-noise ratio (SNR), is placed on the animal head, 

and the animal is positioned inside the field of view (FOV), ensuring that the target part 

of the brain is in the center of the scanner. Radiofrequency and field adjustments are 

performed, and a structural image is usually acquired per subject for later visualization 

purposes. Then the functional slices are planned and various fMRI trials (fMRI series 

of T2 images) are acquired to assess different experimental conditions, typically 



Functional magnetic resonance studies in small animals 

29 

allowing for resting periods of 5-15 minutes between trials to avoid adaptation to the 

stimuli. 

 

Figure 5. Example of an experimental setup. The sensors and st imulat ion electrodes are attached to 
the animal inside the MRI scanner, whereas the monitoring computer, the scanner control computer 

and the st imulat ion device are placed in the operation  room, outside the magnetic f ield.  

 

Functional paradigm and stimulation 

The sequence of stimuli or tasks presented to the subject during one trial is called the 

fMRI paradigm, and numerous possibilities have been tested (Figure 6). The stimuli 

can be arranged as a block design, inherited from the positron emission tomography 

(PET) field and used in the first fMRI experiments. In this paradigm all the stimuli 

inside a block are exactly the same. Alternatively, they can be presented in a 

randomized fashion, but separated enough to let the BOLD signal reach the baseline 

between stimuli, which produces an individual response of equal intensity for each 
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event. This is called a ‘slow event-related paradigm’. Finally, stimuli can be presented 

in a randomized fashion but faster than the HRF drop, which makes responses to 

accumulate and produces stronger final responses provided that the events are close. 

This is called a ‘rapid event-related paradigm’ and the responses to individual stimuli 

can be disentangled by deconvolution. 

All these types of paradigms have been tested in rodent fMRI, but the block design is 

typically preferred for simplicity. On the contrary, in human trials, fMRI event-related 

paradigms are more popular since they avoid cognitive adaptation to the stimuli from 

the subject [97]. From all the rodent studies referenced in this manuscript, only one of 

them presented randomized stimuli [74], and corresponded to a pain study, where 

adaptation to stimuli is more critical. All the rest were block designed paradigms. 

 

Figure 6. Typical types of fMRI paradigms: block design, slow event -related design and rapid event -
related design.  

Regarding the stimuli nature, the simplest approach relies on electrical stimulation of 

the forelimbs or hindlimbs [14, 69, 84, 98-102] and therefore it is the most widely used 

procedure. However, mechanical stimuli applied through filaments [6, 73] or chemicals 

[75, 76] have also been reported, mainly in nociception studies. Heat stimulation is 

another possibility [78, 103], and a controlled air flow has also been used for whisker 

stimulation [104]. In the literature, a few examples of odorous [105] and visual stimuli 

[106, 107] can also be found. 
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Anesthesia 

Besides the endogenous factors of cerebral autoregulation presented in the previous 

subsection, anesthesia may be a confounding factor, since it plays a role in the BOLD 

signal by modulating CO2 reactivity [108] and affecting neuro-vascular coupling. It 

increases basal CBF [108-110] and therefore reduces BOLD contrast. In addition, the 

vascular reaction produced by anesthetics may be vasodilation or constriction 

depending on the dose, as described by Kolbitsch et al. [111], and a high dose can 

dramatically suppress brain activity [109, 112] and spinal transmission [113]. These 

phenomena have also been studied in animals [46, 109, 114, 115], where the anesthesia 

control is critical to avoid head movement and image artifacts. In addition, other 

exogenous factors such as mental stress [62] or pain [63, 116] may influence these 

flow-related mechanisms. However, anesthesia is not only a confounder in rodent 

research, it should also be taken into account in human studies performed under 

anesthetics on noncollaborative patients [117-121].  

For instance, different timings for the onset and duration of the hemodynamic response 

have been reported under different anesthetics, which also differ from those of the 

awake response [46].  The BOLD signal in awake animals has been found to be 

stronger than under sedation in most brain areas, but also bilateral and less specific 

activations were found, which are more difficult to interpret and may confound the 

target measurements [46]. 

Therefore the number of studies carried out on awake animals has grown in the past 

decade. Animals can also be paralyzed with some neuromuscular blocking agents such 

as pancuronium [99, 100, 122], tubocurarine [123] , vecuronium, mivacurium [115, 

124], or atracurium [125], but this demands mechanical ventilation during the fMRI 

experiment, and patently complicates the experimental procedures. On the one hand, 

oxygenation and pCO2 may be altered if not properly monitored and controlled during 

ventilation, and on the other hand, special care must be taken to avoid an excess of 

histamine release [9]. A blocking agent may  also interfere with the anesthetic, for 

example, inhaled anesthetics potentiate the effect of neuromuscular blockers [126], and 
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the histamine release might be excessive as compared to the use of the neuromuscular 

agent alone. Besides, the usage of neuromuscular blockers without any anesthetics or 

sedative agents is controversial because the animal would be paralyzed but not sedated 

and this is hardly permitted by animal handling regulations, in order to avoid animal 

stress. This, in turn, may cause side-effects related to the vascular tone, undesirable for 

fMRI. 

 

Figure 7. Effects of chloralose and medetomidine on (D,E) the electrical  brain act ivity at the primary 
somatosensorial cortex, (B,C)their corresponding average BOLD and CBV responses and (A,B) the 

st imulat ion frequency for the strongest BOLD signal. Figu re reproduced from [12]. 

Another option to perform awake studies would be to restrain the animals movement 

and/or to train them to keep still during image acquisition [127-129] by acclimatization 

to the restraining procedures, the MR noise and the stimuli. However it requires an 

expert operator to conduct them, hours of training per subject and, in the end, the 

movement is not completely suppressed. Even a slight movement has a strong impact 

on the acquisition and produces artifacts in the fMRI activation maps [115]. 
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All these technical and physiological obstacles for awake fMRI still support the 

execution of studies under sedation as the typical approach to conduct functional 

experiments in rodents. The main types of anesthetics used in rodent fMRI are: 1) 

hypnotics, such as alpha-chloralose (CL) or urethane; 2) sedatives, such as 

medetomidine; and 3) inhaled volatile compounds, such as halothane, enflurane, 

isoflurane or sevoflurane. As mentioned previously, each anesthetic leads to different 

effects on the neuro-vascular coupling and therefore different BOLD response 

characteristics. As an example, Figure 7 shows the electrical signals and BOLD 

responses measured under different anesthetics.  

There has been extensive research on survival-compatible anesthetic protocols that 

would enable long fMRI sessions involving repeated fMRI runs, while maintaining 

stable physiological conditions during hours of experiment [10, 11, 14, 104, 113]. 

 

Analysis 

Once the data have been acquired within a controlled and stable physiological 

environment, a postprocessing of the images provides the final statistical maps. 

Regarding the neurovascular brain response, there have been various attempts through 

the literature to mathematically model the hemodynamic mechanisms, like the balloon 

model proposed by Buxton et al. [43]. In a controlled environment, it is traditionally 

accepted that the HRF is a sum of gamma functions [130], and the BOLD contrast 

measured by the MRI is proportional to this hemodynamic response. Then, the data are 

typically adjusted to a gamma model (and optionally its derivatives) by linear 

regression. However, in order to account for other 

physiological/psychological/behavioural variables involved, more regressors or 

covariates can be added to the equation system and therefore the data are commonly 

fitted using the so-called General Linear Model (GLM) [31].  

These linear analyses are based on the hypothesis that, during the trial, the cerebral 

blood flow is not influenced by other variables other than the oxygen consumption by 
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neurons and thus the BOLD signal is interpreted to be proportional to the underlying 

neuronal activity. However, in order to account for cerebral blood flow variations 

during the experiment, more sophisticated compartmental models of BOLD signal have 

been proposed [44, 131], which express the relationship between the increment in 

BOLD signal, the changes in CBF and the oxygen consumption (CMRO2). These 

methodologies, named “calibrated fMRI”, require special acquisition techniques in 

order to measure BOLD signal and CBF in an interleaved manner, for example 

interleaving the BOLD T2 weighted images with arterial-spin labeling sequences [44, 

131-133]. These models have been validated by assessment of the CMRO2 through 13C 

spectroscopy measurements [45, 134, 135], but they include several parameters that 

require extra measurements, which are field, subject, and session-specific. 

Furthermore, some of the assumptions that simplify the models do not always hold for 

patients [136]. However, there is an increasing interest in measuring the oxygen 

consumption and deoxy-hemoglobin concentration with accuracy in the stroke and 

oncology research fields. A review of calibrated fMRI can be found in [136]. 

As mentioned above, the simplest approach consists of assuming a linear relationship 

between the BOLD signal measured and the stimuli applied, regardless of the possible 

CBF variability and avoiding extra acquisitions. Once the general linear model, GLM, 

is fitted, statistical inference is accomplished by means of t-tests between the time 

points acquired at rest and those under stimulation or task performance. This final step 

provides the activity maps, which are typically thresholded by statistical significance 

and spatial cluster size and finally overlaid on a structural image. 

These steps constitute the core of an fMRI analysis, but actually the fitting to a GLM 

usually includes some other corrections like high-pass filtering to remove scanner drifts 

or slow physiological signals, and a whitening of the data. Compensation for spatial 

and temporal correlations is recommended, since a voxel-wise analysis, with a final t-

test of all the volumes sampled, is implicitly assuming spatiotemporal independence of 

the voxels. Furthermore, before fitting the fMRI signals to the GLM, it is critical to 
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apply spatial realignment, normalization and smoothing to avoid artifacts and improve 

the sensitivity and specificity of the BOLD detection.  

To summarize the image processing, from the raw data collected in the scanner to the 

final statistical maps, these are the typical analysis steps performed in sequential order 

[137]: 

1. Data conversion to a standardized format. Nifti format [138] has been widely 

adopted by the neuroscience community. 

2. Realignment of the volumes that constitute each trial to correct for the subject 

movement. Rigid registrations are the most adequate here, since it is an 

intrasubject, intramodality transformation. 

3. Normalization of the different acquisitions to a common spatial reference for 

posterior group analysis. In this case elastic or affine transformations are 

recommended since it is an intersubject registration. 

4. Spatial smoothing to allow a better correction for degrees of freedom and 

therefore improve the statistics [139, 140]. 

5. Fitting to the GLM. This is typically performed in two steps. The first one 

estimates temporal correlations in the image voxels or correlations between 

the levels of a factor. The second pass fits an augmented model, which 

includes a whitening correction. The correlation parameters estimated in the 

first pass are used in the posterior statistical inference to correct the number of 

degrees of freedom. 

6. Estimation and thresholding of a statistical map, by performing statistical 

contrasts on the fitted regressors. The resulting statistical map is usually 

thresholded through a combination of a p-level threshold and a cluster size 

threshold. 
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7. Visualization of the thresholded map overlaid on a structural image. 

 

3.3 PRECLINICAL FMRI: ADVANTAGES AND 

CHALLENGES 

In a rat fMRI experiment, all the physiological factors mentioned above must be 

considered. Since the anesthesia produces hypothermia, and this may cause vascular 

constriction, the animal is usually kept warm with an external heating system that helps 

to control the animal temperature during the scan. As mentioned before, the anesthetic 

dose should be enough to avoid the animal stress and prevent its movement during 

image acquisition, but not as high as to suppress the electrical brain activity [112]. It is 

crucial to avoid long periods of vasodilation or constriction, such as the one produced 

with high dose of volatile anesthetics during induction, because they can reduce 

vascular reactivity. Normal levels of pCO2 are also required, and therefore ventilation, 

expiratory gas exhaust and/or neuromuscular blocking agents should be carefully 

handled. 

There are other technical issues that make rodent fMRI differ from human fMRI. The 

most important one is the difference in the magnetic field strength, which entails both 

advantages and disadvantages. The higher field strength together with a reduced bore 

size and smaller radiofrequency coils enable resolutions approximately one order 

magnitude higher than in human scanners, and considerably higher temporal resolution 

too [3]. On the other side, a higher magnetic field implies stronger deviations from the 

expected precession frequencies and therefore more obvious susceptibility artefacts, 

which in turn requires finer shimming strategies.  

The field strength also influences the way water diffusivity affects the BOLD signal. 

Changes in T2 relaxation time actually occur wherever there is an interface of magnetic 

susceptibility change, and this happens both in the vessel walls and around the red 
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blood cells, inside the vessels. Therefore, the BOLD signal actually has several 

contributions, the extravascular component generated around the vessels and the 

intravascular signal coming from the blood stream. In fact, the interesting signal that 

closely reflects neuronal oxygen consumption is the one coming from extravascular 

very small vessels (capillaries). This extravascular dephasing of spins related to dHb 

can be averaged around small vessels due to diffusion during the echo time and have 

little contribution to the total BOLD signal. This is what happens in gradient echo 

sequences at low field strengths. Contrary to this, with spin echo sequences the 

contribution from capillaries is still noticeable, since the 180º refocusing pulse cancels 

this effect. In addition, the higher the field strength, the lesser the contribution from the 

intravascular signal (Table 1). To summarize, working with rodents at high field 

strengths and with spin echo sequences allows measuring a BOLD signal mainly from 

the extravascular interface of capillaries, which ensures higher spatial specificity [40, 

133, 141, 142]. 

 

Table 1. Contributions of macro/microvasculature and extra/intravascular signals to 
the BOLD contrast measured at different field strengths and with GE or SE 

sequences.  

 Gradient echo (GE) Spin Echo (SE) 

↓ B0 
macrovasculature 

extra- and intravascular 

macro- and microvasculature 
extra- and intravascular 

↑B0 
macro- and microvasculature 

extravascular 
microvasculature  

extravascular 

  

The physiological issues described in this section, mostly those related to anesthesia 

and movement, make rodent fMRI experiments still complex to set up and perform 

under accurate control. Moreover, the experiments usually last for hours. This can 
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produce adaptation of the subject to the stimuli, it leads to higher variability on the 

physiological variables which are supposed to be stable during the trials, and also 

implies an intensive usage of the scanner. 

 

3.4 THE NEED FOR SPEED 

MRI accelerations techniques before compressed sensing 

All these experimental problems of physiological stability and motion artifact 

avoidance urge the need of shortening the acquisition time. Among the traditional 

“fast” MRI sequences, where several k-space lines are acquired for the same excitation 

RF pulse, the echo-planar imaging or EPI sequence [143] has been the most 

widespread sequence in the field of fMRI. It enables the acquisition of the k-space of a 

complete slice (or even several slices) within a single readout. Its implementation 

consists of opposite gradient readouts interleaved with “blips”, or small phase encoding 

gradients. The typical readout pathway is a cartesian zig-zag, but other alternatives 

have also been applied to fMRI studies with success, such as radial, spiral or rosette 

trajectories. However not all trajectories allow acquiring a complete plane within a 

single readout, as it is the case with radial trajectories or the PROPELLER sequence. 

Following the same principle, efforts were made to acquire a whole volume in a single 

readout in the shortest time possible. Cartesian sequences such as the single-shot EVI 

(echo-volumar imaging) [147] or multi-shot cartesian 3D sequences were proposed 

[21] for those scenarios where high temporal resolution is required. Three-dimensional 

spirals [151] and radial trajectories [20] have also been investigated, either single shot 

or covering the volume with several shots. In order to reconstruct MRI images these 

singular trajectories require either a regridding step to locate the measurements in a 

regular grid suitable for the traditional Fourier transform, or a non-uniform Fourier 

transformation. 
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Figure 8. Examples of dif ferent k -space sampling trajectories, both two- and three-dimensional. Figure 
composed by adaptations from [144-150].  

In general, single-shot sequences have the advantage of a faster readout but at the cost 

of larger off-resonance effects, which in the end translate into image artifacts and 

distortion [152]. Thus single-shot implies higher temporal resolution at the cost of 

lower spatial quality. This led the efforts towards multi-shot sequences, such as the 

multi-slab 3D sequences, built as stacks of spirals [153] or as stacks of EVIs [154]. 

Besides fast sequences, parallel imaging and undersampled acquisitions are other 

acceleration techniques typically implemented in most scanners. Parallel imaging 

consists in using arrays of coils to acquire less number of samples while preserving the 

final image quality [16, 17]. The preservation of the final SNR is possible because the 

coils share part of the field of view and therefore they measure redundant information. 

Combinations of parallel imaging with fast sequences enabled high resolution fMRI 

imaging in a cognitive Stroop experiment already in 2009 [21, 155].  
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On the other hand, undersampled acquisitions rely on acquiring only part of the k-

space. For example, it is possible to acquire only the central part of the k-space (the 

‘zero filling’ technique), or more than a half of the k-space on the phase encoding 

direction (“partial Fourier”) or more than a half of it in the readout direction (“partial 

echo” technique).. Other undersampling strategies rely on regularly skipping 

measurements along the phase encoding direction, the temporal dimension or both, like 

k-t BLAST or k-t SENSE [156, 157]. All these techniques lead to aliasing artifacts, 

which may be mitigated with correction algorithms or carefully designed 

undersampling patterns. 

Another recent possibility for the acceleration of the acquisition is multiplexing in 

either the readout time or the frequency domain (Figure 9). 

 

Figure 9. Acquisit ion scheme for a mult i -slice mult iplexed EPI. This scheme combines readout 
mult iplexing, frequency mult iplexing and parallel imaging accelerat ion techniques [158].  

In the first case, two different slices are excited sequentially and read within the same 

readout gradient [18]. This technique was originally called SER (Simultaneous Echo 

Refocusing) and afterwards SIR (Simultaneous Image Refocused). With frequency 

domain multiplexing several slices are excited simultaneously at frequencies far apart 

from each other so that the multiplexing is performed in a spectral band fashion [19]. 

One limitation is that, in both cases, aliasing between the multiplexed measurements 
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must be carefully handled. On the other hand, both strategies can be combined with 

parallel imaging for even higher acceleration factors [18, 19, 158].  

 

Compressed sensing 

The compressed sensing framework emerged in 2004-2006 [23, 24] and notably 

surpassed the efficiency of the previous undersampling approaches intended for 

accelerated MRI acquisition. Traditional undersampling theory sustained that a band-

limited signal could only be completely recovered without aliasing if sampling meets 

the Nyquist-Shannon criterion, which states that the sampling frequency ought to be 

higher than twice the signal bandwidth. The compressed sensing framework 

generalizes the sampling process and allows aliasing to occur as long as it can be 

compensated during the posterior reconstruction. 

This theoretical frame entailed a revolution in the signal processing field, and 

specifically in the medical imaging scenario, since datasets of the same quality could 

be obtained at one fourth of the traditional acquisition time or even less. In addition, as 

we will discuss later, it can be potentially combined with the previous acceleration 

techniques, such as fast sequences, parallel imaging or data multiplexing.  

In short, feasibility of the compressive sensing requires three conditions to be satisfied 

[159]: 

1. The signal must have a sparse representation in some transformed domain. 

2. The undersampling operator must be incoherent with the transformation base. 

3. The signal can be recovered without loses if a non-linear convex optimization 

is used for reconstruction. 

Regarding the transformed domain, the gradient, the wavelet transform and the discrete 

cosine are the most frequent transformations due to their sparsifying properties when 
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applied to medical images [25]. The discrete cosine and wavelet transforms had 

traditionally been exploited in graphics and video compression algorithms.  

Nevertheless, theoretically the data can be transformed into any domain where data 

become sparse, where sparse means that very few samples of the signal are different 

from zero (the zero norm is minimized). This is why the first attempts to apply 

compressed sensing to MRI focused on angiography, since the image is already sparse 

in its original domain, considering that the transformation in this case is the identity 

transform, and it is also sparse after the computation of its finite-differences (see Figure 

10) [25].  

 
Figure 10. Example of two sparsifying transforms applied to a) a brain T1 image and b)a leg 

angiography. Figure from [25]. 

Moreover, not only medical images are typically sparse, but also the higher the 

dimensionality of the measurements, the higher the acceleration that can be achieved, 

and fMRI is a good example due to its temporal redundancy. However, each type of 
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study may have a sparser representation in a different transformed domain according to 

its characteristics. For example, periodic signals will be sparser in the Fourier domain, 

and other signals may become sparser with shearlets, with the Karhunen-Loeve 

transform (KLT), or with the discrete cosine transform. 

Until the emergence of CS, undersampling was typically performed in a regular 

fashion, and aliasing was estimated and filtered out to avoid image artifacts. These 

regular patterns can be found in the k-t BLAST, k-t SENSE or UNFOLD algorithms 

[145, 157]. However, the acceleration factor that can be achieved is modest compared 

with the compressed sensing framework, where the undersampling is random or quasi-

random  [25]. 

Formally, the non-linear optimization algorithm required for the reconstruction can be 

expressed as: 

 min  such that  
ou

u Fu f    (1.1) 

Where u  is the target image reconstruction,   is the sparsifying transform, F  stands 

for the Fourier transform and f  are the undersampled k-space measurements acquired. 

However, solving this problem is not computationally tractable, and it is more effective 

to solve its corresponding L1 norm convex problem: 

 1min   such that 
u

u Fu f    (1.2) 

This equation can also be expressed as: 

 2

1 2min   such that 
u

u Fu f      (1.3) 

Where   accounts for the noise in the measurements. The first term of the equation 

imposes sparsity whereas the second term imposes data fidelity, although other sparsity 

terms can be found in the CS literature. 

Even though the framework already existed for some years, the first application of 

compressed sensing techniques to the MRI field was conducted by Lustig et al. in 2007 

[25]. It was tested with angiographic and structural brain images at first, and suddenly 
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gained popularity in dynamic MR imaging since the exploitation of the temporal 

redundancy enables higher acceleration factors than those of conventional imaging [27, 

160, 161].  

Cardiac imaging has been an excellent field for testing different algorithms and the 

scientific production on this application has been ample during the past years. 

However, there are much fewer works on the application of compressed sensing to 

fMRI.  

The first acceleration algorithm tested in fMRI was the k-t FOCCUSS proposed by 

Jung et al. in 2007 [27, 162] followed by the k-t SPARSE proposed by Lustig et al., 

which was applied to fMRI by several groups [163-165]. In 2013, Nguyen et al. 

successfully tested a new compressed sensing approach based on generalized series 

with variable density (VD) spiral trajectory EPIs. One year later, this group explored 

the algorithms exploiting the low-rank characteristics of the data, which became more 

popular lately [166]. More recently, Chiew et al. successfully evaluated one of these 

approaches, k-t FASTER, for studying human resting state networks with fMRI [29]. 

However, we could only find in the literature one study in rodent fMRI, for the 

detection of BOLD signal in the rat olfactory bulb [105]. 

fMRI is an application which can strongly benefit from the application of compressed 

sensing algorithms, because of its temporal redundancy. However its specific 

characteristics also make it a challenging application in comparison with other MRI 

protocols. Firstly, the contrast-to-noise ratio and the spatial resolution of the BOLD 

signal are much lower than in other dynamic MRI techniques. Secondly, the imaging 

postprocessing required in fMRI makes it harder to evaluate the achievable acceleration 

since the target is the statistical assessment of the BOLD contrast and not the images 

themselves. Given the technical issues existing in high field MRI mentioned in the 

previous subsection regarding long acquisition times and susceptibility artefacts, 

further developments on compressed sensing methodology applied to rodent fMRI are 

warranted. 
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3.5 ANALYSIS OF RODENT FMRI  

There are several software packages available for the analysis of fMRI series, most of 

them originally conceived for human datasets. 

The most popular tools in the scientific community are SPM (Statistical Parametric 

Mapping, The Wellcome Trust Centre for Neuroimaging)  and FSL [167], but their use 

on rodent studies requires adapting the image resolution and tuning some registration 

parameters. This optimization requires some computing skills, or alternatively the use 

of plugins such as SPMMouse (SPMMouse, Wolfson Brain Imaging Centre, University 

of Cambridge) [168]. A fully automated analysis is possible with these tools, though it 

is recommended to check all intermediate results to avoid mistakes, and SPM offers a 

batch mode for this purpose. 

Other simpler alternatives available do not perform all the data corrections and assume 

that volumes are perfectly realigned, without any head motion, do not allow 

registration to a common space for further group analysis or do not take into account 

the spatiotemporal voxel correlations. They typically carry out a voxel-wise statistical 

test and threshold and display the resulting map. Some examples are the Bruker 

proprietary tool FunTool [169] or the Stimulate package from the University of 

Minnesota Medical School [170]. 

In the end, the fMRI analysis involves the tuning and checking of numerous parameters 

in each workflow step, which require a deeper understanding of image processing, and 

is highly demanding from a computational point of view. This often discourages 

researchers from analyzing their images themselves and forces them to delegate the 

analysis to some third party. 
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4 EXPERIMENTAL SETUP 

This chapter presents the details of an experimental setup designed to assess fMRI 

studies carried out under sevoflurane anesthesia and its comparison with the already 

settled medetomidine protocol. 

4.1 INTRODUCTION 

Functional magnetic resonance (fMRI) in rats is being widely used to study brain 

pathologies as well as normal brain functioning, usually under chloralose or 

medetomidine anesthesia [14, 171]. However, the anesthetic agent may greatly 

influence the underlying neuro-vascular mechanisms, actually in a different way for 

different anesthetics. The differences in hemodynamic response between different 

anesthetics are a consequence of a different action of anesthetics on both electrical and 

vascular responses. It has been demonstrated that these drugs affect the vascular tone, 

and therefore the neuro-vascular coupling and the BOLD signal [172].  

Hyder et al. were the first researchers who performed rat fMRI with alpha-chloralose 

[98] in 1994, following the dose schemes tested by Lindauer and colleagues [173].  

They already knew that hypnotics like alpha-chloralose or urethane preserve cortical 

activity better than other anesthetics [7, 8] and that alpha-chloralose specifically 

produces a minimal depression of the cardiac and respiratory functions [174], preserves 

the metabolic coupling, provides a stable blood flow baseline and also preserves 

vascular reactivity [108, 173, 175]. Since then, several stimuli tests were reported by 

varying the electrical stimulation frequency or pulse width in order to achieve the 

strongest BOLD contrast possible [102, 176, 177]. The strongest activations were 

found at stimulation frequencies ranging 3 Hz - 5 Hz. Nevertheless, alpha chloralose is 

known to be toxic and produces severe side effects [7, 174], so its use in fMRI remains 

controversial [104] and soon other alternatives were proposed.  
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In 2002, intravenous medetomidine arose as a suitable alternative to alpha-chloralose 

[178]. Some years later a medetomidine subdermal infusion protocol was proposed and 

optimized [14, 179], and it was soon adopted by the scientific community due to its 

better stability and safety as compared to alpha-chloralose. This protocol was compared 

to alpha-chloralose by Weber et al. in 2006 [14], and two years later Zhao et al. 

performed a task-induced study under medetomidine but also proposed this anesthetic 

for resting state functional magnetic resonance [171]. In this study, the BOLD signal 

peaked with an electrical stimulation of 9 Hz and 0.3 ms of duration. Further 

improvements were proposed for the anesthetic protocol in order to prolong the 

experiments up to 6 hours by stepping up the infusion dosage after 2.5 hours from 100 

μg/kg/h to 300 μg/kg/h [11]. 

Another important group of anesthetics is that of volatile compounds. Since 1960 

several derivatives of methoxiflurane (a methyl ethyl ether) such as halothane, 

isoflurane and sevoflurane had been used for veterinary purposes. Their advantage over 

injected anesthetics was their lower blood solubility, which enables faster induction 

and recovery [180, 181]. Additionally the administration via face mask avoids the need 

of any catheter or infusion pump and enables a much simpler experimental setup. In 

2004, Liu et al. [182] performed the first fMRI experiments under isoflurane 

anesthesia, and later works appeared comparing the signal obtained with isoflurane and 

the traditional alpha-chloralose [10, 113]. In the study by Masamoto et al. 2007 (Figure 

11), electrical stimuli at 3, 6, 12 and 20 Hz were compared, and 12 Hz was found to 

provide the strongest cortical activation at the primary somatosensory region [10]. The 

pulse width and amplitude had been previously optimized and set to 1.0 ms and 1.4 mA 

respectively.  

Halothane has also been proposed for spinal fMRI [102, 183], but its use has not been 

widely reported in brain function studies, probably because it depresses respiration and 

cardiac activity and produces arrhythmias [180], alters cerebral blood flow more than 

sevoflurane [184] and provides a slower induction and recovery as compared to 

isoflurane and sevoflurane [181]. 
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Figure 11. Frequency study performed under isof lurane anesthesia  [10]. 

From all the volatile anesthetics, the most popular in clinical applications is 

sevoflurane, since it is the fastest one for induction and recovery, it is similar to 

isoflurane regarding the cardiovascular effects, and it is significantly safer than 

halothane in the degree to which it sensitizes the myocardium to the arrhythmias [185]. 

This fact, together with the lack of airway irritation makes sevoflurane the preferred 

volatile anesthetic for pediatrics [117]. 

There is some experience on the use of sevoflurane for functional human studies. One 

work compared the BOLD response under sevoflurane during an auditory paradigm 

with that found in the awake state, and the BOLD signal was found to be weaker under 

sevoflurane anesthesia [186]. Other study conducted resting state experiments under 

sevoflurane and in awake subjects, and the basal resting activity was found to be more 

heterogeneous over the brain in the anesthetized group [120]. Regarding animal 

studies, sevoflurane has been found to produce cerebrovasodilatory effects that increase 

intracranial pressure in a dose-dependent manner and reduce vessel resistance [15, 184, 

187]. However, since these studies measured perfusion at rest using radiolabeled 
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microspheres, actual effects on BOLD signal in fMRI studies under sevoflurane are not 

known. 

In our work, we compare an fMRI protocol under medetomidine (as described by 

Weber at al. [14]) with another protocol under sevoflurane anesthesia. To this purpose, 

we conducted a dose-response to find the optimal sevoflurane sedative dose and 

characterized the BOLD response to different electrical stimulation frequencies 

4.2 METHODS 

Animal preparation 

We performed fMRI somatosensorial studies with electrical stimulation on Wistar and 

Sprague-Dawley rats (~350g) under two types of anesthesia: subcutaneous 

medetomidine (Domtor®) and inhaled sevoflurane. The animals under medetomidine 

anesthesia were prepared and anesthetized following the protocol described in [14], 

although the dose for the sevoflurane group needed to be adjusted and validated, as 

described in the Experimental design subsection. 

Animals were handled according to the European Communities Council Directive 

(2010/63/UE) and national regulations (RD 53/2013), and with the approval of the 

Animal Experimentation Ethics Committee of Hospital General Universitario Gregorio 

Marañón. The animals were housed in a constant-temperature and humidity-controlled 

vivarium with a 12 h light-dark cycle. Commercial rodent laboratory chow and water 

were available ad libitum.  

For anesthesia induction we used an induction box with sevoflurane at 7%. Afterwards 

the animals were transferred to the scanner bed, equipped with a face mask, where they 

were kept warm with a circulating water blanket. At this point the sevoflurane was 

decreased to 4% during animal preparation to monitor temperature, respiration, ECG 

and peripheral oxygen saturation. When the animal was stable, we inserted the 

stimulation electrodes in the forepaws, tested the stimulation current and started 

specific anesthetic protocols in each experimental group, as described in detail below. 
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         GROUPS 
 
A) Medetomidine (n=5)   0.05 mg/kg bolus + ci 0.15 mg/kg   9 Hz [2] 
 
B) Sevoflurane (n=7)   Dose-response test (n=7):                       4% - (0.25% / 15min) 

Frequency test (n=3):                              (3,5,7,9,10,11,12) Hz  
 

Once the anesthetic optimal point was reached, we acquired the fMRI studies, 

alternating left and right stimulation to avoid adaptation. 

Experimental design 

We divided the animals into two groups according to the anesthetic used for 

maintenance: medetomidine (n=5) or sevoflurane (n=7). For the medetomidine group 

we followed an already established protocol [14] and for the sevoflurane group we 

performed a dose-response test and a stimulation frequency study. 

A group scheme is shown below: 

 

 

 

 

 

Group A: For the medetomidine group, we switched the anesthetic from 

4% sevoflurane used for induction to medetomidine. We administered a 

bolus of 0.05 mg/kg subdermal medetomidine and placed a catheter for 

subdermal infusion in the back of the animal. Then we started a constant 

infusion of 0.15 mg/kg/h while slowly reducing sevoflurane to zero 

during 15 minutes approximately. Once the animal was stable with only 

the subcutaneous medetomidine, we introduced it inside the scanner. 

Group B: For the sevoflurane group, we introduced the animals in the 

scanner with sevoflurane at 4%. Firstly we performed a dose-response 

test with each individual in order to find an optimal anesthetic point at 

which there is no body movement but the animal still shows BOLD 

signal. From the initial 4% of sevoflurane, we decreased the dose at a 

rate of 0.25% every 15 minutes until we obtained BOLD contrast. 

Whenever we observed movement, we increased the dose again to the 
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last stable value. At BOLD signal emergence, we recorded the dose and 

performed 3-5 assessment runs per subject for the between-groups 

comparison. Finally we performed a frequency study in n=3 subjects, 

randomly selected from this group, by acquiring additional fMRI runs 

(one per frequency) at frequencies of 3, 5, 7, 9, 10, 11 and 12 Hz.  

 

Imaging parameters 

All studies were conducted in a 7T Bruker Biospec 70/20 scanner. Firstly we acquired 

structural axial and sagittal images covering the whole brain in order to localize the 

subsequent functional images. These structural references were 2D RARE images with 

RARE factor=8, TR/TE (effective) = 4000/33 ms, FOV 2.9 x 2.9, matrix= 256 x 256, 

17 slices of 1 mm thickness, resolution 0.11 x 0.11 x 1 mm, and 3 averages. 

 
Figure 12. Localizat ion of the functional images. Left,  Centre: planning of the functional slices with the 
help of sagittal and axial structural RARE sequences. Right: central slice of S1 (approximate ly Bregma 
+1mm) from Paxinos at las which was used as a reference . 

Then we acquired the functional image series following the protocol described in [14]: 

SE-EPI 2D images with axial orientation, TE/TR = 30 / 3000 ms; FOV 1.92 x 1.92 x 1 

cm; matrix of 64 x 64, 5 slices of 2 mm thickness, 115 repetitions. We used a surface 

phased array coil of four elements for reception and combined the data from the 

different coils through a weighted sum of squares. 
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Functional paradigm and stimulation details 

The stimulation consisted on non-noxious electrical pulses of 1 mA, 0.3 ms duration 

delivered by a synchronized stimuli generator (STG 4002, Multi Channel Systems 

GmbH, Reutlingen, Germany). The stimulation frequency was 9 Hz [170], except for 

the frequency study in group B. 

To enable synchronization, we modified the sequence acquisition code in the scanner 

in order to generate a TTL signal trigger for the stimulator. We stimulated the animal’s 

forepaws through subdermal needle electrodes following a block paradigm, starting 

and ending with resting blocks (see Figure 13). We allowed 5 minutes of rest between 

fMRI runs to avoid adaptation. Each fMRI series comprised 115 volumes acquired in 

sequential stimulation blocks of 5 images and resting blocks of 15 images, thus 

following the pattern: 15 OFF +5ON +15 OFF +5ON +15 OFF +5ON+15 OFF 

+5ON+15 OFF +5ON+15 OFF. 

 
Figure 13. Left:  Electrical st imulat ion was applied through subdermal needle electrodes inserted in the 

forepaws. Right: The block st imulat ion paradigm followed during the acquisit ion of each fMRI run.  

Image analysis 

We analyzed the fMRI datasets with the fMRat tool described in chapter “5. fMRI 

analysis” of this thesis. The statistical maps were thresholded at p=0.001 with cluster 

size=4 voxels and were saved as uncompressed .tiff images. We analyzed the primary 

sensorial cortex regions of interest S1FL and S1FR (according to Paxinos atlas [183]) 

by means of the atlas and ROI functionalities included in the tool. The percentage of 

signal change was computed for each voxel inside the corresponding contralateral 

region of interest. Their maximum and mean signal change values were obtained, 

printed to a text file and compared for groups A and B by means of a repeated 

measurement GLM analysis of variance, performed with SPSS software package. 
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4.3 RESULTS 

We could observe consistent BOLD responses in the S1 cortex of all rats under 

medetomidine, and in 6 out of 7 rats under sevoflurane. Figure 14 shows an example of 

activation maps.  

 
Figure 14. Example of act ivat ion maps from each group: sevoflurane (left) and medetomidine (right)   

Regarding the definition of an optimal sevoflurane dose, we tested the higher dose (to 

avoid movement artifacts in the images) which at the same time provided BOLD signal 

in S1. The final doses for the different subjects are shown in Table 2; the average stable 

sevoflurane dose was [Mean ± SD] = 1.8% ± 0.8% sevoflurane (n=7), thus showing a 

high intersubject variability. The time required to stabilize the animal and obtain 

BOLD signal was 103 minutes on average, whereas in all animals under medetomidine, 

BOLD signal was present from the beginning.  

Table 2. Dose-response test for sevoflurane 

  % Sevoflurane Time to BOLD (min) 
Animal 1 1.00% 109 
Animal 2 1.50% 126 
Animal 3 2% 156 
Animal 4 1.50% 104 
Animal 5 1.50% 135 
Animal 6 3.50% 28 
Animal 7 1.75% 67 

1.82% 
 

103.6 
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Figure 15 shows maximum percentage signal change at S1 cortex, mean percentage 

signal change at S1 cortex and total number of activated voxels over the thresholds, 

across the different frequencies tested under sevoflurane anesthesia.  

 
Figure 15. Results of the frequency test performed for n=3 animals from the sevoflurane group.  

The maximum signal change peaked at 10 Hz, providing a signal change of 2.4% 

whereas the mean signal change and the number of activated voxels peaked at 9 Hz, 

where they showed values of 0.6% and 317 voxels respectively. Thus the stimulation 

frequency which provided the higher signal change and the wider activated area overall 

was 9 Hz, the same value reported for medetomidine [170], and different from the 12 

Hz previously reported for isoflurane [10].  

Regarding the comparison between medetomidine and sevoflurane, the maximum and 

mean percentage signal changes at S1 were higher for the medetomidine group, see 

Table 3, though the differences in maximum or mean values were not significant in a 

repeated-measurements GLM analysis. From a total number of 57 fMRI runs, 17 cases 
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without consistent activation in S1 (less than 50 voxels) were excluded from the 

analysis. 

Table 3. Anesthesia dependency of BOLD contrast: values estimated by GLM statistical 
analysis. 

Medetomidine (n=22 
runs) 

Sevoflurane (n=18 
runs) 

Max % signal change at S1 2.42 2.17 
Mean % signal change at 

S1 0.60 0.59 

 

4.4 DISCUSSION 

We successfully optimized a sevoflurane protocol for rat fMRI studies. The optimal 

dose was 1.8 % for a sedative state which did not suppress brain activity as assessed by 

BOLD signal, and the best electrical stimulation frequency was 9 Hz for a maximum 

BOLD contrast at S1 of 2.4% of signal change.  

The signal change obtained with sevoflurane was lower than under medetomidine, but 

the differences were not statistically significant.  

However, the time necessary to stabilize the animal and obtain BOLD signal with 

sevoflurane was around 100 minutes, whereas medetomidine yielded significant BOLD 

contrast from the beginning of the experiment.  

In summary, a researcher willing to use sevoflurane would spend around 2 hours of 

animal preparation in total, which would prolong the already lengthy fMRI 

experiments. Both the delay on the BOLD emergence and the difficulty in finding the 

optimal anesthetic dose for each subject entail severe practical impairments to its use. 

Therefore we can conclude that rat fMRI studies are feasible under sevoflurane 

anesthesia and might help to understand the effects of sevoflurane on the neurovascular 

coupling, but does not seem advisable as a standardized protocol for fMRI because of 

practical reasons. 
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5 ACQUISITION AND RECONSTRUCTION 

This chapter investigates three different algorithms which exploit the temporal 

redundancy for the reconstruction of two retrospectively undersampled fMRI datasets, 

with high and low SNR respectively. 

5.1 INTRODUCTION 

Functional magnetic resonance imaging (fMRI) has been used for more than 20 years 

to study normal and pathological brain functioning in rodents [2, 39, 61, 184, 185]. 

However, the complexity of the experimental setup and the long acquisition times 

required still prevent its widespread application in preclinical research.  

Prior to the development of compressed sensing for magnetic resonance imaging 

(MRI), attempts had been made to decrease acquisition times using parallel imaging, 

reduced K-space acquisitions, multiplexed acquisitions and single-shot readouts [16, 

17, 19-22, 147, 151, 186], although image quality worsened at high acceleration rates. 

In contrast, the compressed sensing framework enabled accurate reconstructions from 

few phase encoding data using convex optimization, provided that the image is sparse 

in the transformed domain [23, 24, 26] and undersampling is random or quasi-random.  

A commonly used transformed domain is the spatial gradient. This operator generates 

the functional known as total variation (TV) [24, 25, 187-189], which efficiently 

removes the noise and artifacts caused by undersampling. Furthermore, its extension to 

the temporal dimension, i.e. spatiotemporal total variation (TTV), has provided 

encouraging results in dynamic MRI [161, 190, 191]. However, to our knowledge TTV 

has not been applied to fMRI.  

TV has also been combined with an initial image estimate in the prior image 

constrained compressed sensing (PICCS) algorithm, which is applied mainly in X-ray 

computed tomography. In this context, the prior image is typically constructed as the 
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average of all undersampled datasets [192-197]. To our knowledge, PICCS 

reconstruction has not been applied in MRI, and our hypothesis was that the 

undersampled fMRI series itself could provide an efficient prior image owing to its 

temporal redundancy. This idea of using a prior image or initial estimate was already 

presented in k-t FOCUSS [27], and in HYPR algorithms [198] and its modifications, 

HYPR LR[199], I-HYPR[200] or HYPRIT [201]. However, PICCS constitutes a more 

generalized framework since it imposes the sparsity constraints on the CS 

formulation[189]. 

Other recent approaches rely on the exploitation of low rank components along 

different dimensions of the data matrix in some transformed domain [29, 166, 191, 

202] and have also provided effective compressed sensing reconstructions of fMRI 

datasets [29, 166, 202]. Few methods that explicitly exploited the temporal dimension 

in fMRI studies —k-t FOCUSS [27, 105], low-rank [29, 166, 202] or generalized series 

[28]— achieved acceleration factors of x4-x5. 

In this study, our objective was to determine whether the PICCS algorithm could 

improve the statistical maps in fMRI better than other strategies that also exploit 

temporal redundancy. TTV and k-t FASTER were chosen as the reference algorithms 

since they have already shown high performance and robustness in other MRI 

applications, such as cardiac MRI and resting state fMRI [29]. Therefore, we tested and 

compared the maximum values of acceleration achievable using PICCS, TTV and k-t 

FASTER reconstructions. Different pseudo-random undersampling patterns were 

applied at five acceleration factors to 2 fully acquired rat fMRI series, and 

reconstructed images were obtained with the three algorithms. To our knowledge, this 

is the first study reporting on the application of PICCS and TTV algorithms to fMRI 

data. The evaluation was carried out on the final statistical maps in terms of the 

sensitivity/specificity of the detection of cortex activation (measured as the area under 

the ROC curve referenced to the fully sampled map), together with a visual inspection 

of the resulting maps. 
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5.2 THEORY 

Compressed sensing 

Compressed sensing theory states that it is possible to obtain an exact reconstruction of 

signals sampled below the Nyquist limit provided that the data are sparse in a 

transformed domain, the sampling operator is incoherent in that domain and a specific 

non-linear method is used for reconstruction [23]. 

Therefore, the reconstruction in our MRI context solves the following constrained 

problem:  

 2 2
1 2

min   such that 
u

u Fu f      (5.1) 

where 1 denotes the L1 norm,  is the sparsifying transform, F RF is the 

undersampled Fourier transform, f are the measured data and 2  accounts for the 

variance of the noise. The L1 norm of the transformed image imposes sparsity, whereas 

the term 
2 2

2
Fu f    enforces data fidelity. 

When the spatial derivative is used as the transform domain, ( , )x y      , the 

functional 
1

( )TV u u   is known as total variation. 

 

The Split Bregman method 

Constrained optimization problems based on L1 penalty functions can be solved using 

classic constrained optimization methods, but this approach is computationally 

intensive. Splitting strategies such as the Split Bregman method enable decoupling of 

the L1 and L2 components of the functional, so that the L1 component of the problem 

can be efficiently solved through shrinkage formulas and the L2 component of the 

problem can be solved analytically [203]. The Split Bregman formulation [203] makes 

the unconstrained algorithm efficiently converge to the solution of the constrained 
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problem. It has been successfully applied in signal processing [204], fluorescence 

tomography [205] and MRI [161, 203, 206]. 

 

TTV 

The extension of TV in (5.1) to both spatial and temporal dimensions yields the 

following constrained problem [161]: 

   2 2
1 22

,  such that min x y tu
u RFuu u f         (5.2) 

where t  is the temporal gradient, 
1tu is the temporal TV and the spatial TV is 

computed as an isotropic model:  

     22

2
u, ( )x y x yuu u        (5.3) 

By adding one parameter,  , to equation (5.2), we can weight the degree of spatial and 

temporal sparsity: 

     2 2
1 22

min 1 ,  such that x y tu
u u u RFu f           (5.4) 

The problem (5.4) is easily solved using the Split Bregman framework, which enables 

splitting of L1 and L2 [203]. The L2 component of the problem is solved analytically 

in the Fourier domain, and the L1 component of the problem is solved through 

shrinkage formulas. The formulation and pseudocode of the algorithm can be found in 

[161] and are not replicated here. Values of 1  , 1   were chosen according to 

previous tests [206], values for   were tested as described in the next subsection, and 

a maximum of 5000 iterations was chosen as the stopping criterion. 
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PICCS 

The PICCS algorithm solves the convex constrained optimization problem:

 2 2
1 21 1

min(1 )  ( )   such that pu
u u u RFu f           (5.5) 

where pu  denotes the prior image,   stands for the weight of the prior penalty 

function and 1  and 2  are sparsifying transforms. Since 1  and 2  are usually 

chosen to be the spatial gradient, the first functional represents the spatial total 

variation of u , ( )TV u , whereas the second functional represents the spatial total 

variation of  pu u . 

We also extended the PICCS formulation with a stability functional, 
1

Vu , as 

suggested by Goldstein [203], obtaining the problem: 

 2 2
1

min   (1 ) ( )  ( )   such that pu
TV u TV u u Vu RFu f           (5.6) 

The introduction of the variables x xd u  , y yd u  , ( )x x pw u u   , 

( )y y pw u u   and v Vu  (in this case we choose V I ) enable splitting of L1 and 

L2, and the Bregman iterations k
ib  and kf enable conversion of (5.6) into an equivalent 

unconstrained problem: 

 

2

11 1 2, ,

2 2

2 2

22

2 2

2

2
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  (5.7) 

The Bregman iterations are updated as follows: 
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  (5.13) 

The linear system (5.13) can be solved in the Fourier domain as  

 1 1 ( ) /k ku F F r K        (5.14) 

where  - 2K R I      , as described in [203]. 

Values of 1  , 1  , and 2   were chosen according to previous tests [206] with 

the undersampled datasets. All results were obtained using these values and a 

maximum of 5000 iterations as the stopping criterion. 

We tested both TTV and PICCS algorithms using alpha values of 0.05, 0.5, and 0.95 on 

2 datasets with 3 different undersampling patterns at an acceleration factor of x5 (20% 

of k-space lines preserved from each dataset) (see Methods section for datasets and 

undersampling details). In all cases BOLD contrast was better preserved for 0.95  . 

The prior, pu in equation (5.5), was the mean of the undersampled k-spaces across the 

temporal dimension and was the same for all volumes in the fMRI series; therefore, it 

was replicated to match the dimensions of u .  

 

k-t FASTER 

The k-t FASTER method consists on using a nonlinear algorithm to fill the non-

sampled locations of the k-space data matrix using a low-rank constraint. This matrix 

completion (MC) technique was first described in [207]. The algorithm and its 

application to fMRI were thoroughly described in [29] and will not be replicated here. 

Different values were tested at an acceleration factor of x5 (20% lines) for each of the 

three parameters involved in its performance, mu, c and R (rank) and the best 
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combination [mu=0.95, c=0.5, R=114] was selected. All subsequent results were 

obtained using these values and a maximum of 100000 iterations. 

 

5.3 METHODS 

Datasets 

All the reconstructions in the present study were obtained from undersampled versions 

of fully sampled studies acquired in a Bruker Biospec 70/20 7T preclinical MRI 

scanner. In order to consider the high variability in BOLD contrast and extension on 

either inter- and intrasubject studies, two datasets (named A and B) were analyzed. 

Dataset A exhibited a high signal-to-noise ratio (SNR) and a large activation region (58 

voxels, maximum t-value of 13.64), whereas dataset B presented a lower SNR together 

with a smaller activation region (16 voxels, maximum t-value of 4.64). 

Dataset A was obtained from an fMRI experiment based on a block design paradigm of 

forepaw somatosensorial electrical stimulation (2mA, 0.3ms, 8Hz rectangular pulses) 

in an adult Wistar rat (~300g) sedated with medetomidine [190, 208]. The fully 

sampled data from dataset A consisted of 115 spin echo–echo planar imaging (SE-EPI) 

volumes with TR/TE = 3000/30 ms, five slices and a resolution of 0.3 x 0.3 x 2 mm 

with a 0.1 mm gap between slices, for a total acquisition time of 5'45''. The resting 

blocks comprised 15 volumes (45 s), whereas the stimulation blocks comprised five 

volumes (15 s). The first and last blocks corresponded to resting periods, for a total of 

11 alternating blocks (OFF-ON-OFF-ON-OFF-ON-OFF-ON-OFF-ON-OFF).  

For dataset B, all values were the same except the number of slices (11), the 

stimulation of the left hindpaw instead of the right forepaw, and the sedation 

maintenance protocol (alpha-chloralose) [209]. 

In both cases, a phased array coil of four elements was used for reception, and the data 

from the different coils were detrended, undersampled and reconstructed separately 

before being combined using a weighted sum of squares. 
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Animals were treated according to the European Communities Council Directive 

(86/609/EEC) and local regulations, with the approval of the Animal Experimentation 

Ethics Committee of Hospital General Universitario Gregorio Marañón. 

 

Undersampling  

From the complete dataset (A), the central slice (located at the primary somatosensorial 

cortex corresponding to the right forelimb, S1FL) was extracted, since it showed the 

highest functional activation. For dataset B, the fifth slice was selected for analysis 

(located at the contralateral primary somatosensorial cortex corresponding to the left 

hindlimb, S1HR). 

The detrended k-space corresponding to the selected slice was undersampled at 5 

different ratios by removing some of the phase encoding lines from the fully sampled 

EPI, assuming that in a real scenario the subsampling EPI artifacts could be corrected a 

posteriori using a reference scan [105]. 

The final ky-t undersampling was quasi-randomly distributed, because a different ky 

undersampling pattern was applied for each frame or time point within the fMRI series. 

The selection of ky lines was performed in a quasi-random fashion according to [161] 

—adapted from [25]— following a polynomial probability density function with higher 

weight at the center of the k-space (delimited by the distance rad) and decay towards 

the higher frequencies: 

  1

1

pr if r rad

if r rad







 


  (5.15) 

Parameter values of the probability density function were chosen heuristically to 

densely sample the lower frequencies and gradually varied for the 5 undersampling 

factors. Three different realizations were generated for each distribution function, 

yielding 3 different undersampling patterns at each undersampling factor. 
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The 5 different factors preserve 5% (acceleration x20), 10% (x10), 12.5% (x8), 20% 

(x5) and 50% (x2) of the original number of k-space lines. Figure 16 shows an example 

of the undersampling patterns obtained for 50% of the lines acquired. 

 

Figure 16. Example of the undersampl ing patterns generated for 50% of the preserved k -space lines 
(x2 accelerat ion). A) Example of a kx -ky pattern. B) Probability density function in the ky direct ion. C) 

ky-t sampling.  

For the PICCS algorithm, the prior image was constructed from the sum over time of 

these undersampled k-spaces. 

 

Image analysis 

We compared the reconstruction algorithms after statistical processing of the fMRI 

series using SPM8 (The Wellcome Trust Centre for Neuroimaging) and the 

SPMMouse toolbox (Wolfson Brain Imaging Centre, University of Cambridge [210]).  

Images were realigned to their mean, smoothed with a 1.2 mm FWHM gaussian kernel, 

and fitted to the block design through the general linear model. The resulting maps 

were thresholded at puncorr<0.05, with a cluster size of 12 voxels [10, 13, 211] for 

dataset A and cluster size of 4 voxels for dataset B. 

In the fully sampled datasets (which serve as the reference for the compressed sensing 

evaluation), activation was only observed in the contralateral somatosensorial cortex 

(see reference "full" map in Figure 17 and Figure 18). 



Functional magnetic resonance studies in small animals 

67 

 

Evaluation of the statistical maps 

We visually compared the statistical maps obtained with the TTV, PICCS and k-t 

FASTER algorithms with the fully sampled map in 3 realizations for each scenario. To 

assess the sensitivity/specificity of the BOLD detection for each reconstruction, we 

computed the receiver operating characteristic (ROC) curves using the fully sampled 

maps as the ground truth. A ROC curve depicts the true positive fraction (TPF) versus 

the false positive fraction (FPF). In the context of detection of fMRI activation, 

according to the definitions given in [27] "TPF means the ratio of the number of 

detected voxels as activated among truly activated voxels to the total number of truly 

activated brain voxels and FPF indicates the ratio of the number of detected voxels as 

activated among truly non-activated brain voxels to the total number of truly non-

activated brain voxels". Therefore, the higher the area under the curve (AUC), the more 

robust the detection algorithm. We compared the areas under the curves for TTV, 

PICCS and k-t FASTER in all undersampling scenarios for the realizations generated 

(n=3). 

5.4 RESULTS 

Activation maps 

Figure 17 shows examples of the activation maps for the fully sampled dataset A (high 

SNR) and five undersampling factors –columns– using the three algorithms –rows—. 

Artifacts resulting from aliasing are obvious at high undersampling factors, particularly 

for the TTV, although BOLD contrast is preserved at the region of interest, S1FL. The 

functional images reconstructed (shown as the background) appear more “patchy” for 

TTV, as previously described in [212]. Visual inspection suggests similar activation 

intensities for PICCS and k-t FASTER, and in both cases higher than those of TTV.  
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Figure 17. Example of the activat ion maps generated for dataset A by the three reconstruct ion 
algorithms at several undersampling factors. The percentages indicate the amou nt of k-space lines 

preserved from the full dataset. The accelerat ion factor is shown in parentheses. Maximum t -values are 
shown in yellow below each map.  

 

Figure 18. Example of the activat ion maps for the noisy dataset (B) gener ated by the three 
reconstruct ion algorithms at several undersampling factors. The percentages indicate the amount of k -
space lines preserved from the full dataset. The accelerat ion factor is shown in parentheses. Maximum 

t-values are shown in yellow below each map.  
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Figure 18 shows examples of the activation maps for the fully sampled dataset B (low 

SNR) and the five undersampling factors –columns– using the three algorithms –

rows—. In general acceleration-related artifacts appear earlier than for dataset A, 

probably due to the lower SNR of this dataset. Visual inspection suggests slightly 

higher BOLD contrast for the TTV than for the PICCS algorithm and more 

“patchy”[212] images for TTV at high acceleration factors. K-t FASTER produced 

significant activation maps at x2 and x5 accelerations, but failed to detect significance 

(p<0.05 uncorrected and cluster size k≥4) at higher acceleration factors. 

 

Sensitivity, specificity and acceleration 

For dataset A, the areas under the ROC curves were very similar for all the three 

algorithms at low acceleration factors, and slightly lower for TTV at high 

undersampling rates (Figure 19).  

For dataset B, the performance of the three reconstruction algorithms was very similar 

at low acceleration factors (Figure 20), as with dataset A. However, PICCS yielded the 

highest AUC values at high acceleration factors, thus indicating better 

sensitivity/specificity than TTV or k-t FASTER.  

 

 

Figure 19 Areas under the ROC curves for the three reconstruct ion methods at dif fere nt sampling 
factors. Three dif ferent realizat ions of the undersampling function were averaged for each accelerat ion 

factor and method. Error bars indicate 1 standard deviat ion from the mean (n=3).  
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Figure 20. Areas under the ROC curve for the three reconstruct ion methods at dif ferent sampling 
factors. Three dif ferent realizat ions of the undersampling function were averaged for each accelerat ion 

factor and method. Error bars indicate 1 standard deviat ion from the mean (n=3).  

 

5.5 DISCUSSION 

We performed a comparison of the TTV [161] and PICCS [192, 193, 195, 197], two 

algorithms which had never been applied to fMRI, with k-t FASTER [29], recently 

proposed for resting state fMRI. This comparison was carried out using previously 

acquired rat functional magnetic resonance datasets, which were retrospectively 

undersampled. Although all algorithms exploit temporal redundancy, PICCS proved to 

be more robust in a noisy scenario where k-t FASTER failed to provide significant 

maps at high acceleration factors. TTV also provided acceptable maps but reached 

lower sensitivity/specificity than the other two algorithms. In general, according to the 

visual inspection of the statistical maps and the AUC values obtained, PICCS seems 

able to achieve acceleration factors within the range x5-x8. TTV can also reach this 

acceleration but providing worse spatial localization of the BOLD contrast, whereas k-t 

FASTER reached a maximum acceleration of x5 in noisy scenarios. Acceleration 

values of x4 and x5 have been previously reported in the literature for fMRI 

applications [27-29, 105, 165, 166, 202, 213]. The acceleration factor of x8 reached by 
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PICCS doubles the value reported in the only existing article about compressed sensing 

applied to preclinical rodent studies [105] based on k-t FOCUSS reconstruction. 

However, direct comparison would be unfair, since the aim of the authors in [105] was 

not to find the maximum possible acceleration. In general, any direct comparison with 

other methods applied to fMRI, such as k-t FOCUSS [27, 105] and generalized series 

[28], is fairly difficult, given the numerous variables which differ between the 

applications (e.g., biological model, acquisition sequence, SNR and resolution, 

implementation, etc.). 

The exploitation of temporal redundancy by averaging all available undersampled k-

spaces to build a prior image has provided robust results. It takes advantage of all the 

available information acquired, and greatly constrains the problem. The prior image 

seems to provide good spatial support for the slight BOLD temporal changes and thus 

facilitates their recovery by the PICCS algorithm. 

We can hypothesize that, at high acceleration factors, combinations of this prior-based 

strategy with other frameworks such as k-t FOCUSS, TTV or k-t FASTER might also 

perform better than any method alone. Further studies to corroborate this hypothesis 

are warranted. 

Regarding the two methodologies specifically developed by the authors for this 

context, the formal difference between PICCS and TTV algorithms lies in the use of 

temporal redundancy. In the case of TTV, the use of a temporal gradient leads to image 

quality degradation at high acceleration factors, probably because neighboring frames 

have very few k-space lines. On the other hand, PICCS makes use of a prior image 

containing all the temporal information compressed into a single volume. Since this 

prior image is replicated along the temporal dimension, each volume of the series under 

reconstruction uses the same prior volume. Thus, PICCS builds images upon a prior 

image with a good SNR, thus leading to better image quality than TTV. This may be 

the reason why PICCS performs better than TTV regarding sensitivity/specificity. 
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It is remarkable that all the algorithms presented here could also be used for other 

sequences, such as traditional gradient echo sequences (as suggested in [105]), variable 

density spirals [28, 214] and 3D EPIs [29]. 

In all cases, the acceleration achieved could be exploited either to reduce total scan 

time or to increase temporal or spatial resolutions. In 2014, Zong et al. [105] studied 

the advantages of total scan time reduction using a gradient echo sequence accelerated 

with compressed sensing instead of EPI. Alternatively, if the acceleration is exploited 

by reducing the TR (increased temporal resolution), the saved scan time could allow us 

to acquire more repetitions of the fMRI series, thus improving the BOLD signal [214]. 

Following the same principle, the spatial resolution of the fMRI maps could be 

improved by acquiring more spatial data within the same total acquisition time, as 

demonstrated with spiral trajectories [214]. In the specific case of EPI and other fast 

sequences, the compressed sensing framework enables the reduction of the train length, 

which is often desirable when attempting to attenuate susceptibility artifacts, chemical 

shifts and physiological noise [28, 214]. 

One limitation of our study is that results were obtained by simulating a compressed 

sensing acquisition via undersampling of a fully acquired EPI dataset. In a real 

scenario, data would have to undergo a correction step before reconstruction, which is 

usually performed by means of a reference scan with the phase encoding switched off, 

as reported in [105].  

Another limitation is that we did not systematically test the parameters of the 

undersampling probability density function in order to find their optimum value, since 

the aim of the study was to compare the two reconstruction algorithms under the same 

circumstances. Therefore, optimized parameters could lead to even higher 

accelerations. 

We chose the gradient as our sparsifying transform because it is generally used with the 

PICCS method. However, other transforms such as wavelets, shearlets or discrete 

cosine transforms might lead to sparser representations and provide even higher 

accelerations; consequently, further testing is warranted. These transforms can be 
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easily implemented within the framework we present based on the Split Bregman 

formulation, which provides an efficient solution to the problem. The Split Bregman 

formulation also solves a constrained optimization problem by obviating the search for 

appropriate regularization parameters [160, 161, 203, 205] and thus considerably 

reducing the computational burden. 

 

5.6 CONCLUSIONS 

In the present study, we successfully applied three reconstruction algorithms that 

exploit the temporal redundancy of dynamic acquisitions to undersampled rat fMRI 

data: TTV, which has previously been applied in cardiac MRI[161]; PICCS, which has 

been widely used in compressed sensing frameworks for computed tomography 

imaging [192, 193, 195, 197]; and k-t FASTER [29], which has recently been tested 

with resting state human fMRI data. The PICCS algorithm performed similarly to k-t 

FASTER in a high SNR scenario, but much better in a low SNR scenario, where k-t 

FASTER failed to provide significant maps. TTV also provided consistent statistical 

maps but with less sensitivity/specificity on the BOLD contrast detection than the other 

two algorithms. Our results suggest that acceleration factors up to x8 are feasible with 

the PICCS algorithm. 

 



 

74 

 

 



Functional magnetic resonance studies in small animals 

75 

6 FMRI ANALYSIS: FMRAT 

This chapter proposes a new tool for the fully automatic analysis of rodent fMRI 

studies, fMRat. The tool is programmed in Matlab as an extension for SPM package 

and makes use of several SPM functions . In addition to a simple and friendly user 

interface, it also loads appropriate parameters for rodents, offers optional advanced 

processing steps and obtains percentage signal changes in user-defined ROIs. 

Therefore fMRat gathers functionalities of several software packages into a single tool 

for an automatic multi-subject analysis. 

6.1 INTRODUCTION 

Functional imaging of rodent brains using BOLD (blood-oxygen-level-dependent) 

contrast has been widely applied in preclinical research for the past 20 years, as it 

enables indirect measurement of neurological responses to induced stimuli [2, 39, 61, 

98, 185]. Neurology, radiology, and behavioral sciences are the main areas of 

application of rodent fMRI imaging, which makes it possible to map the BOLD signal 

in the brain by means of statistical analysis of the voxel signal changes in voxel time-

series [2, 140, 215].  

A typical fMRI analysis addresses acquisition inaccuracies through several 

preprocessing steps, namely, spatial realignment of the volumes constituting the series, 

optional normalization to standard spatial coordinates to ensure further between-group 

comparison, and spatial smoothing. Statistical analysis of fMRI studies is usually 

carried out by applying a general linear model (GLM), where the measured voxel 

values represent linear responses to the convolution of the applied stimuli with a 

hemodynamic response function (HRF). The linear coefficients in the model are 

estimated from both the acquisition data and a user-provided design matrix, which is 

composed mainly of HRF-convolved stimuli regressors and covariate regressors. Once 



 

76 

the model is estimated by means of a restricted maximum likelihood algorithm, a 

voxel-wise paired t test produces the final parametric image. 

Although several fMRI tools are available, few perform these preprocessing steps 

appropriately for the analysis of fMRI preclinical data. The most user-friendly tools 

usually offer few features and only provide elementary preprocessing algorithms. 

Among them, we can cite the Bruker proprietary FunTool [169] and the Stimulate 

package from the University of Minnesota Medical School [170].  

SPM (Statistical Parametric Mapping, The Wellcome Trust Centre for Neuroimaging), 

one of the most widely used software packages in neuroscience, produces thorough 

analyses and implements the full possible span of preprocessing and processing 

routines. However, it was originally designed for human application and therefore 

requires adjustment (with totally new default values) before being applied in preclinical 

studies. In order to address this problem, an SPM extension tool was developed for 

rodent studies (SPMMouse, Wolfson Brain Imaging Centre, University of Cambridge). 

SPMMouse allows the user to work with rodent fMRI studies by adapting several SPM 

functions and defining specific preprocessing and display settings but it is no longer 

maintained [210]. 

Another toolbox that can be applied in preclinical environments is ‘SPM batch’ (from 

release SPM8), which enables fully automated multisubject analyses. However, prior to 

execution, it is necessary to manually select each subject and define the acquisition 

parameters. Once the SPM model has been estimated for each fMRI series and the 

statistical inference performed, other SPM extensions such as MarsBar [216] and the 

VBM tools [217] can generate quantitative results for specific regions of interest 

(ROIs). 

In summary, an expert user can complete the analysis of rodent fMRI data by using 

four different tools to load appropriate default parameters with SPMMouse, to create 

an SPM batch template, to run this batch, and to extract quantitative ROIs data with 

some of the SPM extensions mentioned above.  
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However, all of these steps involve significant user interaction, which prevents a fully 

automated pipeline and makes the analysis prone to user errors, and require some 

expertise in programming. The purpose of our work was to develop a multiplatform 

automatic tool for full processing of fMRI rodent studies. Based on a user-friendly 

interface, the tool provides first-level statistical parametric brain maps (t and Z) by 

means of an automatic pipeline that loads appropriate default parameters for preclinical 

studies and processes multiple subjects in batch mode. The workflow and several 

software parameters were specifically tuned for rat brain analysis and validated with 

real fMRI data. 

6.2 METHODS 

Architecture 

The multiplatform (Windows, Linux and MAC) tool was implemented in Matlab 

(MathWorks ®). It uses several functions from the SPM package (e.g., spm_realign m, 

spm_coreg m, spm_affreg, spm_smooth, spm_run_fmri_design m, and spm_spm) 

complemented with functions taken from other toolboxes: the CBMGmosaic 

(Northwestern Cognitive Brain Mapping Group) (ortho viewer code) and SPMMouse 

(Wolfson Brain Imaging Centre, University of Cambridge [168]) (preset loading 

function).  

Since SPMMouse was originally designed for SPM5, we had to ensure compatibility 

with SPM5, SPM8 and SPM12 by introducing some minor modifications into the 

original SPMMouse code. An overview of the program flow is presented in Figure 21. 

The workflow was designed to run in separate modules that communicate via disk files 

in such a way that modules can be executed independently from a command line. The 

typical execution workflow recommended for non-expert users is described below.  
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Figure 21. Flow diagram. User input is displayed in  blue,  output in green ,  and optional steps in l ight 
orange.The default pipeline includes each processing step, as shown in the "Advanced Options" of  

Figure 22.  

 

Graphical user interface (GUI) 

The GUI prompts the user for the image format, in either Bruker raw format or in Nifti 

format [138]. For both image formats the main window interface (Figure 22) asks for a 

directory of interest, which can host multiple studies from different subjects, and the 

stimulation paradigm. Advanced users can provide onsets and durations of the 

stimuli/tasks, covariates data and customize optional parameters for image registration 

(such as the final resolution desired) and statistical analysis (optional multiple 
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comparisons correction, statistical p threshold, or cluster threshold). The content of the 

initial GUI varies slightly depending on the image format used.  

 

Figure 22. Main GUI (Bruker format). Required inputs in blue panels :  directory, block design, TR, 
Bruker acquisi t ion methods and strain or at las directory. Optional arguments for advanced users  are 
shown in grey panels, and specif ic features for Nift i (TR is required) or Bruker format (the f irst format 
conversion step) are highlighted in orange.  

For Nifti images, the user is prompted for the acquisition repetition time (TR) and an 

extra Nifti selector, which serves to define the correspondence between functional and 

structural images, whereas for the Bruker format, all the information required to build 

the data structure (geometrical parameters, data type, and acquisition sequence) is read 

from the acquisition parameter Bruker files (acqp, method, and reco files). 

Advanced users can also choose specific steps in the pipeline and adjust additional 

parameters such as the application of a user-defined atlas for normalization, the degree 
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of smoothing, the statistical correction applied (familywise error, FWE, or uncorrected 

p value) and the cluster size. 

Required basic information and advanced parameters are displayed in separate panels. 

Advanced parameters include non-blocked paradigms, extra regressors, format 

conversion, realignment, atlas normalization, final resolution after normalization, 

smoothing, matrix design, estimation, statistical p-threshold, cluster size, and ROIs 

folder. These input data can be saved and reloaded as templates from the GUI. Once 

the “Start” button is pressed, the tool no longer prompts the user. Any possible 

processing errors are recorded into a text log file. 

 

Default automatic processing pipeline: preprocessing steps 

First, user input arguments are parsed and checked, an error log file is opened, and 

adequate SPM default parameters for rat studies are loaded. If the user is working with 

the Bruker format, a preprocessing step recursively detects all subjects and studies 

under the directory selected, as well as the structural and functional images within each 

study and the Bruker scout (Tripilot) images, if present. Based on this information, 

each functional image is associated with the latest structural image acquired within the 

study, thus overcoming the problem of having different sample positions within the 

same study. The complete data structure is saved into a tracking mat file that is used in 

further steps. The outcome of this step is to convert the functional 4D raw data into 1-

volume-per-file images in Nifti format.  

The Nifti images conforming a series are then rigidly realigned to their mean image 

[218] and normalized [219] to an anatomical atlas in order to achieve spatial 

concordance for subsequent group analyses. If desired, normalization can also be 

manually initialized to ensure convergence of the optimization algorithm, as is 

commonly required in human fMRI analysis. This normalization to the atlas is 

achieved via intermediate affine registration to the anatomical image [220]. The user 

can either select one of the 2 atlases (for Sprague-Dawley and Wistar strains) provided 
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with the tool or apply a user-provided atlas [221, 222]. At this step of atlas 

normalization, the tool also enables the user to specify a custom final pixel size for the 

warped functional images. 

Both registration steps (functional-structural intrasubject rigid registration and 

structural-atlas normalization) were implemented using the spm_coreg m and 

spm_affreg.m SPM functions, which perform 2-level multiresolution rigid 

transformations by maximizing the normalized mutual information and a subsequent 

least squares affine registration respectively. As mentioned above, the structural images 

are also registered to the atlas, thus providing a fused display after the analysis. 

Once all the functional and anatomical images are in the geometrical space of the atlas, 

the user can apply an optional Gaussian smoothing kernel with a user-specified FWHM 

(full width at half maximum). 

 

Default automatic processing pipeline: GLM estimation and results 

After the preprocessing steps, the tool builds a GLM design matrix, where rows 

correspond to different volume acquisitions (temporal axis) and columns to possible 

regressors. The first column corresponds to the convolution of the applied stimuli with 

a squared finite impulse response, the next 6 regressors represent the translation and 

rotation parameters obtained from the spatial realignment, and the last regressor is the 

mean voxel value at each time point. This automatic default design matrix corresponds 

to the typical block paradigms most frequently used in rodent fMRI. We included the 

realignment parameters in the design in order to allow for the correction of residual 

movement artifacts in the final statistical map [223]. In the “Advanced” panel, the 

advanced user may select more flexible paradigms as well as additional regressors to 

be used as covariates. 

Statistical assessment was based on a restricted maximum likelihood algorithm [23]. 

The complete fMRI model includes a high-pass temporal filter, which suppresses 
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baseline drifts caused by the scanner and other low-frequency biological signals, and 

an autoregressive estimation of temporal correlations in the fMRI series. 

Once the linear model has been estimated, the software applies 2 contrasts to detect 

areas where signal intensity is higher/lower in stimulation blocks than in rest blocks 

(“positive”/“negative” contrast respectively). After optional correction for multiple 

comparisons (FWE), the software applies extent and amplitude thresholding and 

provides a fused display that overlays the final t- and Z- statistical maps onto their 

corresponding normalized structural image. Positive and negative contrasts are 

represented with different color scales. 

Maximum, mean and standard deviation of the percentage of signal change are also 

calculated, averaged, and written to text files for the whole masked brain and for any 

optional mask-delimited ROIs defined by the user. 

Assessment 

The tool and the default processing parameters were assessed with 460 rat time series. 

We tested 5 smoothing kernel sizes, the inclusion of the realignment parameters in the 

design matrix, and 3 different hemodynamic models. 

The assessment was performed using images from 32 different rats (25 Sprague-

Dawley and 7 Wistar [weight 300 g to 400 g]). The functional images were acquired 

with a 7T Bruker Biospec 70/20 scanner following the protocol described in [14]: axial 

orientation, TE/TR = 30 / 3000 ms; FOV 1.92 x 1.92 x 1 cm; matrix of 64 x 64 x 5 

voxels. Hindlimbs and forelimbs were stimulated alternatively with sensorial electrical 

stimuli (1 mA, 0.3 ms duration) through a synchronized stimuli generator (a 

customized STG 4002, Multi Channel Systems GmbH, Reutlingen, Germany). Each 

time series consisted of 115 SE-EPI volumes acquired using a block design paradigm. 

Resting blocks comprised 15 images (45 s), whereas stimulation blocks comprised 5 

images (15 s). The first and last blocks corresponded to resting periods in such a way 

that there were 6 resting blocks and 5 stimulation blocks per series. 
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We included in the package sample anatomical atlases for 2 rat strains (Wistar and 

Sprague-Dawley). These were built by means of rigid registration of the RARE T2-

weighted axial anatomical images acquired during the fMRI sessions: 7 subjects for the 

Wistar atlas and 16 for the Sprague-Dawley atlas (256 x 256 x 15 voxels [0.075 mm x 

0.075 mm x 1 mm resolution]). Images were reoriented, re-sliced in order to improve 

the axial resolution, averaged, and smoothed with FWHM=0.3 mm in the axial 

direction. For the quantitative analysis of our experiments, we segmented the following 

ROIs on the atlas: S1FL (primary somatosensorial cortex forelimb region left), S1FR 

(primary somatosensorial cortex forelimb region right), S1HL (primary 

somatosensorial cortex hindlimb region left), S1HR (primary somatosensorial cortex 

hindlimb region right), and the whole brain. Users may define any ROIs, as long as 

they are stored in Nifti format. 

 

 

Figure 23. Axial slices of the at las created and provided for each strain of rat ( left  = Sprague-Dawley, 
right  = Wistar).  The overlaid ROIs correspond to S1FL ( red),  S1FR (purple),  S1HL (green),  and S1HR 

(pink).  

In order to select an optimum degree of smoothing to be used as a default setting, we 

tested 5 different 3D isotropic smoothing kernels, with FWHM ranging from 1 (no 

smoothing) to 5 times the voxel size. The optimum value provided as a default setting 

was chosen by visual inspection and by comparison of the maximum t-values obtained 

(see Results section). 

Regarding the design matrix, we tested 2 issues: 1) whether the inclusion of the 

realignment parameters as regressors of no interest improves data fitting [224] (groups 

WITH and WITHOUT); and 2) which specific hemodynamic response function 
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provides better results with rats. The use of a generic boxcar-shaped hemodynamic 

response (BOXCAR) was compared to the “canonical function” proposed by Friston 

(FRISTON HRF) for humans and to a gamma function adapted for rat hemodynamics 

(RAT HRF) using the parameters reported by Martin et al. [46] for oxyhemoglobin in 

anesthetized rat cortex (mean=4.28 s, width=4.12 s). In both cases (realignment 

parameters and hemodynamic response), we assessed the goodness-of-fit of the linear 

model by comparing the median of variance images, assuming that a lower variance 

implies a better fit. Significance was assessed using the Wilcoxon signed rank test 

(realignment) and Friedman test (hemodynamic response). 

6.3  RESULTS 

Figure 21 and Figure 22 show an outline of the program flow and a snapshot of the 

main GUI.  Figure 23 illustrates the 2 atlases built for Wistar and Sprague-Dawley rat 

strains, with segmented ROI masks overlaid.  

 

Smoothing 

In our experiments, the maximum t value was obtained with the 1.2-mm FWHM filter, 

which corresponds to four times the voxel size (Figure 24). This is in accordance with 

the postulate in [33], which states that the smoothing kernel should match the 

activation areas expected in size. In fact, this is the filter that best enhances signal-to-

noise ratio (SNR) according to the “matched filter” principle in detection theory. In our 

study, 1.2 mm is approximately the activation extension expected, according to the 

Paxinos atlas [183]. Visual inspection of the activation maps shows accurate S1 cortex 

localization (Figure 25). 
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Figure 24. Effect of smoothing kernel size on the f inal maximum t value in the activat ion map (whole 

brain maximum).  

 

Design matrix 

Median residual variance of the linear model was higher for the analyses which did not 

include the realignment parameters as regressors. A Wilcoxon signed-rank test yielded 

significant between-group differences (p < 1e−3, between the WITH and WITHOUT 

realignment parameters analyses). 

As for hemodynamic functions, we did not find significant differences between the 

gamma models (FRISTON HRF–RAT HRF), although the boxcar approach (p < 1e–3) 

led to significantly lower residual variance. Post hoc analysis yielded p = 0.21 for 

FRISTON HRF–RAT HRF, p < 1e−3 for BOXCAR–RAT HRF, and p = 1e−3 for 

BOXCAR–FRISTON HRF, thus confirming that the difference was due to the boxcar 

group, which led to lower variance values. 
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Tool output 

The tool output consists of two mosaics per acquisition, two text files per study 

summarizing the ROI values of all the acquisitions within the study and all the 

intermediate images as generated by SPM. The two mosaics show the activation maps 

of positive (hot red scale) and negative (cool blue scale) contrasts, overlaid on the 

background anatomical image. One shows the t value map, and the other the Z score 

map (t value and Z value mosaics are similar but with a different normalization of the 

activation), both of which are overlaid onto the same background structural image. For 

each subject, the tool generates two text files (for the positive and negative contrasts, 

respectively) reporting the number of activated voxels and the percentage of signal 

change in the ROIs (mean, standard deviation, maximum and localization of the 

maximum). These ROIs include the whole image (with background), the masked brain 

and any user-defined ROIs analyzed. 

All intermediate images (as generated by SPM) are also stored in a new folder named 

“Processed” inside each acquisition folder. The “Processed” folder enables the user to 

check the result of individual steps in the pipeline. 

Figure 25 shows an example of the Z map image mosaic, as printed by the tool, and an 

example of a text file containing the input default parameters and the percentage of 

signal change measured at the different ROIs. 

 

Quantitative assessment 

We carried out a quantitative assessment comparing the percentage of signal change 

between our tool and the values reported by Marsbar [216] on the four regions 

mentioned in the previous section: S1FL, S1FR, S1HL and S1HR for n = 8 different 

acquisitions—with different BOLD contrasts. 

Average differences (in absolute value) and correlation between measurements from 

both tools were computed. The mean percentage difference between both tools was 

0.07 %, and the correlation coefficient was 0.95. 
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Figure 25. 1) Example of output image mosaics (in this case, the Z  score map overlaid onto the warped 
structural image).  2) Example of the output text f i les printed: date and hour when the analysis was 
f inished, default  parameters –input of the analysis–, and ROI values in tabbed columns –output–.  

 

6.4 DISCUSSION 

We present an automatic tool developed for the analysis of rodent fMRI series. It 

comprises a user-friendly interface that enables statistical parametrical maps to be 

obtained in a fully automated way and provides the additional flexibility required by 

advanced users who wish to execute only specific steps of the processing pipeline. For 

example, the smoothing could be sometimes excessive when activated regions are 
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small, as suggested by Worsley et al. [33]. Such an approach enables to skip some 

computationally expensive steps, which may be particularly valuable in an 

experimental fMRI acquisition context, where an immediate analysis may provide 

important feedback about the animal physiology for tuning the next fMRI series before 

the acquisition process is complete.  

We also investigated the optimum pipeline for rat studies, concluding that the inclusion 

of realignment parameters in the design matrix yielded less residual variance once the 

model was adjusted and, therefore, led to a more accurate fitting. The side effect is that 

it might decrease sensitivity in those cases where the movement is highly correlated 

with the stimuli of interest; consequently, care should be taken depending on the 

particular fMRI experiment [224]. Regarding hemodynamic response functions, our 

results suggest that for small animals such as rats, which have fast vascular dynamics 

[225], the simpler approach using a short boxcar response led to a better fit of the 

model than more complex approaches, at least at the relatively low temporal 

resolutions of our scans (acquisition time per volume = 3 s). We did not test other types 

of hemodynamic response functions, such as Fourier series [137] or derivative models, 

which would give good results for higher temporal resolutions.  

Our study is subject to some limitations. Firstly, the tool may not be completely 

automatic if the user wishes to normalize to an external atlas, because manual 

initialization is sometimes required to ensure convergence of normalization. This 

problem occurs similarly in human studies. Secondly, the tool has only been tested 

with typical rat studies, and additional testing with mice or using different geometries 

or parameters is warranted.  

Our tool offers the advantage of a thorough analysis in an automated pipeline. Simpler 

software packages, such as Bruker proprietary software or Stimulate (University of 

Minnesota), also provide a straightforward online analysis, but they lack relevant 

features such as series realignment, adjustment to a GLM model, or multiple 

comparison correction. Our tool automates all these steps, including ROI quantification 

in a single pipeline. 
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6.5 CONCLUSIONS 

To conclude, we present a new tool for the online analysis of rat brain fMRI series. The 

tool provides a user-friendly interface for both standard and expert users, which 

enables an immediate and complete analysis to be obtained, even during the acquisition 

and with the functionality of four different tools in one. The tool is programmed in a 

modular fashion, thus enabling the advanced user to perform partial analyses in order 

to test specific hypotheses. Furthermore, it enables intensive offline analysis, including 

automatic multi-subject detection for Bruker format datasets.  

The automation achieved reduces user interaction, thus preventing possible mistakes 

derived from manual operation of previous and more complicated analysis approaches. 

Besides, the GUI, the multi-subject automatic detection and the adaptation to 

preclinical studies could make fMRat a very valuable tool for preclinical research in 

fMRI. 

The tool fMRat, its code and some sample images are publicly available to encourage a 

wider use from the scientific community and can be downloaded from: 

https://github.com/HGGM-LIM/fmrat 
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7 CONCLUSIONS 

The main objective of this thesis was to investigate new techniques for rodent fMRI 

that could improve the experimental practice and the quality of results at three different 

stages: the experimental setup, the data acquisition and the image processing. 

Therefore, for the three stages mentioned, the main contributions of this thesis have 

been 1) the optimization of an anesthetic protocol with sevoflurane for rat fMRI, 2) the 

exploration of three different compressed sensing algorithms to speed up acquisition by 

exploiting the temporal redundancy in fMRI and 3) the proposal of a new automatic 

analysis tool for rodent fMRI. 

The first contribution dealt with animal preparation and the problem of using 

anesthetics. fMRI statistical maps are very sensitive to head movement, and awake 

studies in rodents convey more difficulties than advantages, thus the use of an 

anesthetic is compulsory. On the other hand, anesthetics may suppress the neuronal 

activity in certain brain areas and some of them are toxic in the long term. 

Subcutaneous medetomidine constant infusion of 0.15 mg/kg/h had been adopted as a 

non-toxic sedative protocol appropriate for longitudinal studies. However, inhaled 

anesthetics are also non-toxic and preferred in the preclinical daily practice because of 

their faster induction and recovery. Specifically, sevoflurane is of great interest due to 

its use in the pediatric context, and there were no previous reports of its use in 

preclinical fMRI studies before this thesis. This first contribution addressed the 

definition of an optimal setup for rat fMRI studies under sevoflurane regarding the 

sevoflurane dose and the stimulation scheme for achieving the maximum BOLD signal 

possible. Results were compared with the previously established medetomidine 

protocol. Our results show that fMRI under sevoflurane is feasible in rats and produces 

a BOLD contrast as high as the one obtained under medetomidine protocol but the 

animal preparation takes longer and may discourage its use. 
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The second contribution deals with data acquisition and reconstruction. Long 

experiments may compromise the assumption of a stable physiological condition of the 

subject during data acquisition, which is critical for most experimental fMRI 

paradigms. In addition, due to the weak intensity of the BOLD signal, any fMRI task 

experiment requires many repetitions for the posterior statistical analysis. This 

frequently leads to fMRI runs of several minutes with total experimental time of hours. 

Although the interest of reducing acquisition time is obvious, conventional accelerated 

acquisition schemes are prone to produce aliasing artifacts. Compressed sensing has 

demonstrated to overcome these limitations in other imaging fields, but there are only a 

few works of its application to fMRI. Furthermore, it has been proved that each 

particular application may benefit from a specific optimization to better exploit its 

information redundancy. In this work we addressed the exploitation of the temporal 

redundancy of rat fMRI data and applied (for the first time in fMRI) three different 

state-of-the-art algorithms which had had yielded promising results in other 

applications such as CT (PICCS algorithm), cardiac MRI (TTV algorithm) or resting 

state human fMRI (k-t FASTER).  

The third contribution of this thesis addresses the image postprocessing. A typical 

fMRI analysis involves many pre-processing and processing steps in order to ensure a 

robust statistical inference, what results in a wide variety of parameter combinations 

that the user must select. The existing processing tools were originally designed for 

humans and, though they can be adapted for rodents, typically require significant user 

interaction and computing skills. We developed a new tool, specifically optimized for 

rodent fMRI, which provides a fully automated multisubject analysis with a user 

friendly interface . The tool makes use of core SPM package functions and reports the 

statistical maps, displayed in a mosaic fashion, and the percentage signal change of any 

user provided ROI. Besides, it also includes advanced features that enable a more 

flexible analysis for expert users, such as advanced paradigm designs, additional 

regressors or the execution of individual processing steps. It was programmed as a 

plugin for the SPM software package and its code was made publicly available from 

Github website.  
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The specific conclusions reached during the progress of this thesis are: 

1. It is feasible to perform BOLD experiments in rats under sevoflurane 

anesthesia. The electrical stimulation frequency at which BOLD contrast is in 

general more robust is 9Hz for sevoflurane anesthesia. The average dose at 

which BOLD contrast arises is 1.8% of sevoflurane, but the emergence of 

BOLD contrast is delayed about 100 minutes from the start of the anesthetic 

maintenance, which considerably increases the total fMRI experiment 

duration.  

2. The percentage signal change measured in the primary sensorial cortex 

corresponding to the forelimbs is higher for the medetomidine anesthetic 

protocol than for the sevoflurane protocol, but the differences are not 

statistically significant. 

3. The compressed sensing framework allowed the reconstruction of 

retrospectively undersampled rat fMRI datasets and provided significant 

statistical maps. The PICCS algorithm performed similarly to k-t FASTER in 

a high SNR scenario, but much better in a low SNR scenario, where k-t 

FASTER failed to provide significant maps. Spatiotemporal total variation 

also provided consistent statistical maps but with less sensitivity/specificity on 

the BOLD contrast detection than the other two algorithms.  

4. Our results suggest that acceleration factors up to x8 are feasible with the 

PICCS algorithm. 

5. A new tool, fMRat has been developed for a fully automated multisubject 

analysis of rodent fMRI. fMRat performs a thorough analysis including all the 

preprocessing steps and the GLM corrections typically performed with human 

tools such as SPM package. Its code and some sample images are publicly 

available to encourage a wider use from the scientific community. 

6. fMRat has been validated with datasets from 32 different rats of both Wistar 

and Sprague-Dawley strains. For a subset of eight datasets, fMRat percentage 
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signal changes and those obtained with Marsbar (a ROI quantification SPM 

plugin) had a correlation coefficient of 0.95. 
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8 FUTURE LINES 

Based on the contributions of this thesis, research can still be carried out to further 

improve the three stages that comprise a rodent fMRI experiment, as described below: 

 To explore the possible causes of the delay in the BOLD emergence under 

sevoflurane anesthesia, for instance by simultaneously examining the vascular 

reactivity during the fMRI experiment acquisition. 

 To compare the signal obtained under sevoflurane and isoflurane sedation, in 

order to elucidate possible differences in the underlying neuro-vascular 

coupling mechanisms for the two halogenated ethers. 

 To implement the compressed sensing acquisition in order to check the 

maximum acceleration actually achievable for rodent fMRI. 

 To study the feasibility of pseudo-randomly undersampling the EPI sequence 

and the modifications required in the conventional EPI corrections applied to 

the k-spaces. 

 To implement and test a new algorithm that exploited the sparsity in other 

domains, such as the spatial domain of the statistical maps. This would mean 

iteratively evaluating the statistical final map inside the reconstruction 

algorithm and therefore would require an exploration of the processing steps 

that should be included inside the reconstruction algorithm. 

 To extend the testing of fMRat tool to mice and pathological subjects. Further 

testing should be performed in order to ensure the robustness of the tool but 

unfortunately we had no datasets available other than healthy Wistar and 

Sprague-Dawley rats. We hope that the public availability of the tool will help 

to test it with a greater variety of subjects. 
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 To extend fMRat in order to automatically perform second level (group) 

analysis. . 
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