

PhD THESIS

A Bayesian Model for Change Impact on SW Estimations

Author:

Jorge Ocón Alonso

Advisor:

Daniel Borrajo Millán

DEPARTAMENTO DE INFORMÁTICA

ESCUELA POLITÉCNICA SUPERIOR

Leganés, Octubre, 2015

TESIS DOCTORAL

A Bayesian Model for Change Impact on SW Estimations

Autor: Jorge Ocón Alonso

Director: Daniel Borrajo Millán

Firma del Tribunal Calificador:

 Firma

Presidente:

Vocal:

Secretario:

Calificación:

Leganés, de de

“A Bayesian model for Change Impact on Software Estimations”

Thesis

i

Table of contents

1 Introduction__ 9

2 Methodology for this thesis __ 12

3 State of the art __ 14

3.1 STATE OF THE ART OF CHANGE IMPACT ANALYSIS ____________________________________ 15

3.1.1 Key elements and concepts in the impact analysis process ____________________________________ 16

3.1.2 Techniques for change impact identification __ 21

3.1.3 Conclusions on impact analysis __ 23

3.2 STATE OF THE ART OF SOFTWARE ESTIMATIONS ______________________________________ 24

3.2.1 Types of techniques used for estimations __ 24

3.2.2 Estimations for Change impact ___ 29

3.2.3 Weaknesses of the traditional model for software estimations _________________________________ 30

3.2.4 Handling uncertainty __ 31

3.3 BAYESIAN BELIEF NETWORKS ___ 33

3.3.1 Causal models and Bayesian Belief Networks ___ 40

3.3.2 BBN,s used for change impact estimations ___ 45

3.3.3 The AREL Model __ 48

3.4 DESIGN RATIONALE ___ 51

3.4.1 Design Rationale: Services __ 52

3.4.2 Capture of data ___ 54

3.4.3 Notation __ 55

3.4.4 Rationale for Design: Rationale and SEURAT __ 57

3.5 CONCLUSIONS: CURRENT FLAWS OF ESTIMATIONS AND EXISTING PROBLEMS FOR DESIGN

RATIONALE ___ 59

3.6 AREL AND SEURAT: ANALOGIES AND DIFFERENCES ____________________________________ 63

4 Objectives of the thesis __ 65

5 THE APES-CIE Model __ 71

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 ii

5.1 APES-CIE MODEL: OVERVIEW ___ 72

5.2 TRADE-OFFS ___ 76

5.3 DECISIONS ___ 76

5.4 DECISION ELEMENTS___ 77

5.4.1 Requirements __ 78

5.4.2 Assumptions ___ 79

5.4.3 Design elements __ 80

5.4.4 Goals ___ 81

5.4.5 Environmental ___ 81

6 The APES CIE system __ 83

6.1 GENERAL CHARACTERISTICS OF THE APES-CIE SYSTEM _________________________________ 85

6.2 ASSUMPTIONS AND DEPENDENCIES __ 86

6.3 OPERATING ENVIRONMENT __ 87

6.4 EXAMPLE. DEVELOPMENT OF A MEMORY TOOL FOR A MISSION CONTROL CENTRE _________ 91

6.4.1 Step 1: Adding decision elements __ 92

6.4.1.1 Step 1.1 Adding Requirements __ 92

6.4.1.2 Step 1.2 Adding Assumptions ___ 95

6.4.1.3 Step 1.3: Adding Environmental issues ___ 96

6.4.1.4 Step 1.4 Adding Goals ___ 97

6.4.1.5 Step 1.5 Adding Design Elements __ 97

6.4.2 Step 2: Completing the tree: adding trade-offs and decisions __________________________________ 98

6.4.2.1 Step2.1 Adding trade-offs __ 98

6.4.2.2 Step 2.2: Adding decisions, causes and effects ___ 99

6.4.3 Step 3: Statistical analysis: using the tree view ___ 105

6.4.3.1 Step 3.1 Adjusting CPT’s for decision inputs __ 107

6.4.3.2 Step 3.2 Adjusting CPT’s for decision’s outputs __ 111

6.4.3.3 Step 3.3 Forward propagation: predictive reasoning ____________________________________ 114

6.4.3.4 Step 3.4 Backward propagation: diagnostic reasoning __________________________________ 117

6.4.3.5 Using Threshold warnings ___ 119

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 iii

6.5 APES-CIE FROM THE AEROSPACE’S METHODOLOGICAL PERSPECTIVE ____________________ 120

7 Evaluation ___ 124

7.1 USE CASE 1: ON-BOARD SOFTWARE DEVELOPMENT __________________________________ 125

7.2 USE CASE 2: ROVER FOR OIL & GAS PLATFORM AT SEA ________________________________ 129

7.3 EVALUATION METHOD __ 133

7.3.1 Design Support __ 133

7.3.2 Ease of use ___ 136

7.3.3 Maintenance __ 138

7.3.4 Learning support ___ 139

7.3.5 Documentation __ 140

7.3.6 Sensitivity analysis ___ 141

7.4 REVIEW OF THESIS’S OBJECTIVES ___ 142

8 Conclusions __ 145

9 Future work __ 150

10 Bibliography ___ 152

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 iv

List of figures

Figure 2-1: Methodology for this thesis 12

Figure 3-1: Steps in change impact and associated sets of SLOs. 18

Figure 3-2 Change Impact analysis and its associated SLOs 20

Figure 3-3: Serial connection: A->B->C 36

Figure 3-4: Diverging connection: A->B, A->C, … A->E 36

Figure 3-5: Converging connection: B->A, C->A, … E->A 36

Figure 3-6: An example of a small BBN 37

Figure 3-7: Simple BBN with four variables, their causal links and CPTs 42

Figure 3-8: Example of a BBN as shown using Netica, a BBN tool 43

Figure 3-9: Elements and their relations in the AREL model. 49

Figure 3-10: DRL ontology, as depicted in (Lee, 1989) 56

Figure 3-11: Seurat’s model for argumentation’s: RATSpeak, as shown in (Burge, 2005) 59

Figure 4-1: The APES project and its two main outcomes 66

Figure 5-1: The CIE Model 74

Figure 6-1: Selecting the Change Impact View in the Show View Dialog in Eclipse. 90

Figure 6-2: Selecting a project for the change impact view. 90

Figure 6-3: First steps: adding a requirement to an empty change impact treee 93

Figure 6-4: Partial view of the requirements in the Change Impact Tree 94

Figure 6-5: Adding a requirement that already exists 95

Figure 6-6: Adding an assumption 95

Figure 6-7: Environmental issues of the example 96

Figure 6-8: Goals for the example 97

Figure 6-9: Example of design elements 97

Figure 6-10: Trade-off for our example 99

Figure 6-11: Decision inputs and output folders, generated automatically 100

Figure 6-12: Initial tree for propagation 101

Figure 6-13: Decision Elements and its underlying network 103

Figure 6-14: BBN Model for the “development of a memory tool” example. 106

Figure 6-15: Editing a CPT for a decision: develop a new Java application 108

Figure 6-16: Change impact tree view showing probabilities for a decision 110

Figure 6-17: Editing an output for an output of a decision (outcome). 111

Figure 6-18: Editing the outcome based on those decisions that influence it 112

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 v

Figure 6-19: Probability propagation once the CPTs have been filled 113

Figure-6-20: Setting a fact for an input once it is known. 114

Figure 6-21: Tree view probability propagation once a fact for an input is set 115

Figure 6-22: Setting a fact for a decision. 116

Figure 6-23: Reverting a decision fact to “unknown”. 118

Figure 6-24: Setting a fact for an output goal, analysis of decisions to reach that goal. 118

Figure 6-25: Setting threshold for High reusability if probability is lower than 60%. 119

Figure 6-26: Probabilities affected and Warning for the High reusability. 120

Figure 6-27: Software lifecycle process, as depicted in (ECSS-E-40, 2009) 121

Figure 7-1: Different Trade-offs to be assessed and identified. 127

Figure 7-2: Decisions associated to GNC schedulability. 129

Figure 7-3: Trade-offs related to the rover for Oil & Gas. 131

Figure 7-4: Decisions for reading gauges. 132

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 vi

List of Tables
Table 7-1: Questions on design and their corresponding average values. .. 136

Table 7-2: Questions on ease of use and their corresponding average values ... 138

Table 7-3: Questions on maintenance. .. 139

Table 7-4: Questions on learning support .. 140

Table 7-5: Questions on documentation .. 141

Table 7-6: Questions on sensitivity Analysis .. 142

Table 7-7: Review of thesis’s objectives. ... 144

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 vii

Glossary

Acronym Description

AADL Architecture Analysis and Design Language

AE Architectural Element

AIS Actual Impact Set

AND Alpha-numeric display

APES Adaptable Project Estimation System

APES-CIE Adaptable Project Estimation System – Change Impact Estimations

API Application’s Program Interface

AR Architectural Rational

AREL Architecture Rationale and Element Linkage

ASW Application Software

ATEX ATmosphere EXplosibles1

BBN Bayesian Belief Networks

CART Classification and Regression Trees

CF Certainty Factor

CIA Change Impact Analysis

CIE Change Impact Estimations

CIP-IPF Class Interactions Prediction/Impact Prediction Filters

CIS Change Impact Set

CM Carrier Module

COCOMO Constructive Cost Model

CON Control

COTS Commercial Off-The-Shelf

CPT Conditional probability tables

DAG Directed Acyclic graph

DIS Discovered Impact Set

DJF Design Justification File

DM Descent Module

DR Design Rationale

DRL Design Rationale Language

ECSS European Cooperation for Space Standardization.

1 This is a the acronym in French

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 viii

Acronym Description

EIS Estimated Impact Set

ESA European Space Agency

ESTEC European Space Research and Technology Centre

FAT Factory Acceptance Test

FPIS False Positive Impact Set

GNC Guidance, Navigation and Control

GUI Graphical User Interface

HMC Hidden Markov Chains

HW Hardware

IMU Inertial Measurement Unit

KLOC Miles of Lines of code

IBIS Issue-Based Information Systems

IDE Integrated Desktop Environment

IEEE Institute of Electrical and Electronics Engineers

IG Influence Graph

LOC Lines of Code

MMI Man-Machine Interface

NASA National Aeronatics & Space Administration

OBSW On-board Software

OSAT On-Site Assessment and Training.

QDC Questions, Options and Criterua

RUP Rational Unified Process

SEURAT Software Using RATionale

SIS Starting Impact Set

SLO Software Lifetime Object

SRD Software Requirements Document

SW Software

TCL/TK Tool Command Language/Tool Kit

UCM Use Case Models

UML Unified Modelling language

4GL Fourth Generation Languages

3D Three Dimensional

A Bayesian model for Change Impact on Software Estimations”

Thesis“

9

1 INTRODUCTION

In the last decades, software has become the fuel of modern society, as it is being used in

all sectors, from industry to services, from the public to the private, from local areas to

worldwide networks (Samad, et al., 2011). This widespread use of the software in almost

any human activity is forcing software development to face increasingly complex challenges.

The ability to deal with a high level of complexity in a flexible way makes software an

essential and increasing part of so many products and services in the market. But this

flexibility of the software makes software project management especially difficult. Accurately

predicting the costs and resources that will be required for a project from its conception till its

final delivery is a very complex task (Kruchten, 2000).

In addition, through the whole lifecycle of the software projects, it becomes necessary to

make decisions in order to modify characteristics of the project such as its scope, its design,

the team, or the time required. In this scenario, to have precise estimations throughout the

whole project lifecycle in order to support decision-making becomes a key element for

success (Leung, et al., 2002).

These multiple and recurrent decisions lead to changes in the code and the design, to

accommodate to new requirements that are identified as crucial, other nice-to-have features

to be implemented, flaws that are identified in late stages of the project, etc… These

changes usually generate a cascade of additional, usually unexpected, changes. This is the

so-called “ripple effect” (Bilal, 2006).

Considering their impact for the outcome of the project, ideally, estimation models and

techniques should allow predicting the consequences of these changes and of this “ripple

effect”. The possibility of “what-if” analysis is a must for successful project execution

(Bohner, et al., 1996).

And these estimations should be based on the new design, since the source code will not be

available until the later phases of the project and re-done each time that the need for making

new decisions arises.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 10

Current estimation methods are based on models for project execution characterization.

External attributes of interest (cost, schedule, effort, budgeting, and quality) are related to

"internal" system attributes (structure, behavior, data management) (Angelis, et al., 2001).

And, different types of external attributes lead to different types of models for estimation:

quality, cost, and risk models. These models are based on quantifiable attributes of the

project, and their corresponding relationships and dependencies (Laird, et al., 2006)

The main problem related to current estimation techniques is that estimation methods must

be able to deal with uncertainties. For instance, estimations on effort based on lines of code

done at the beginning of a project are indeed an estimation of an estimation; based on an

estimation of the lines of code required, we estimate the final effort associated to a

development. As a matter of fact, we don’t know, prior to a given development, what would

the final number of requirements be, neither the lines of code, the number of classes of the

design, what would the components of the team be, nor the required changes in the design.

Therefore, most initial estimations are subject to failure. Exceptions to this rule are the cases

in which a new development is very similar to an existing previous one: based on the

similarities between both developments, we can assume, with a high degree of accuracy,

the values of most of the variables that are used to provide estimations. Nevertheless, in

most cases, there are evidences of tremendous deviations between the original estimations

and the final, real values.

An additional source of noise in software estimations is created by the decisions that affect

changes in the design and the code. There are numerous situations during the lifetime of a

project in which decisions have to be made. These decisions affect the design and the final

code, and have multiple effects on other elements or pieces of the software, even those that

are apparently unrelated. These decisions are not always made after an accurate change

impact and estimation analysis, and in most cases the causal relationships among the

elements involved as well as the considered rationale and the alternatives are not explicitly

detailed (or even analyzed). Projects end up with an associated network of decisions that

are mutually inter-related.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 11

This thesis focuses on these problems: first, the need to give accurate estimations to drive

the decision process; second, the need to identify and perform a mental mapping of the

elements involved in the design decisions; and third, the need to maintain this “network” of

decisions in such a way that it is being shared by the stakeholders within a project.

In order to tackle these problems, we will use Bayesian Belief Networks (in short, BBN) for

representing the main concepts related to a given project, their causal relationships, as well

as the associated conditional probabilities. BBNs are well-defined analysis techniques based

on probability calculus that have been used for estimations in multiple areas (Kjærulff, et al.,

2005). The main advantage of using BBN for project estimations and measuring change

impact is that they allow the estimations to be based on uncertainty and incompleteness of

the input parameters. In addition, BBN techniques allow software engineers to use an

explicit representation of the causal relationships between the relevant project attributes.

BBN estimations also allow us further refinement once these parameters are known.

The estimation and change impact problems are related to three different areas: change

impact analysis techniques allow to determine the software artifacts involved in change

before the change is made; software estimations and, in particular, the use of Bayesian

Belief Networks for software estimations provide the basis for estimating in advance the

effort, risk, and/or quality associated; and design rationale gives us the required background

for analyzing the mental process associated to software changes. In the following chapters

we will provide an overview of the state of the art in these techniques.

•

•

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 14

3 STATE OF THE ART

When we performed the analysis of the state of the art, we realized that there were four

areas of research connected to Change Impact estimations:

� Whenever a change is to be made in the software, a first task to be accomplished is an

estimation of the software and documentation artifacts affected by the proposed

change. For this, software change impact analysis or just “impact analysis” is the

discipline oriented to estimate what will be affected in software and the related

documentation if a proposed software change is made (Shawn 1996). An analysis of

the state of the art of this topic is given in Section 3.1. This section provides the

understanding on those techniques that are in use for analysing the impact of a change

in an existing design in terms of: artifacts affected and how they will be affected.

� Once these elements have been identified, we are in the position to compute

estimations on global software attributes (such as cost, or effort). For this, software

metric estimations try to provide global “attributes” of a development before the actual

development is made. The focus here is not in the software artifacts affected by the

change, but the key, global attributes (such as effort, quality and risk) needed for

decision making. As we will see in the following sections, software estimations is a

very wide area of knowledge in which multiple techniques have been developed, from

those based on lines of code to learning-oriented techniques (Boehm, 1981). This topic

is discussed in Section 3.2. This section provides us an insight into the different

estimation methods oriented to provide in-advance figures for the effort, risk, and

quality associated to a given development, as well as to evaluate the impact of a

change in terms of effort, risk or quality.

� The technique we use for software estimations is based on Bayesian Belief
Networks. We will discuss this technique, the reasons behind its use, as well as the

use for change impact estimations in Section 3.3. As we outlined in the introduction of

this thesis, BBNs are well defined analysis techniques based on probability calculus

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 15

that have been used for estimations in multiple areas (Korb, et al., 2004). And they are

especially oriented towards estimations when there is a high degree of uncertainty.
They can be used to estimate both the probability of artifacts to be effectively part of

the change, as well as to estimate global attributes as, for instance, was proposed by

Tang et al. (Tang, et al., 2006).

� Finally, these estimations ultimately serve for decision making. In most cases there will

be multiple alternatives for the implementation of a change, and one of them will be the

one considered best according to the input information. In others, a single change will

enforce a cascade of multiple decisions, some of which will be considered valid, some

others will be discarded. This is the core object of study for design rationale. Design
Rationale is a discipline devoted to study the reasons behind decisions made while

designing (Burge, 2005). As we will see in Section 3.4, design rationale provides many

benefits to an existing development: first of all, it provides an explicit assessment on

the alternatives being evaluated and the reasons behind any design decision, leading

to a better design support. Moreover, they improve the communication of the team,

ease the learning on tackling with design problems, and allow a better maintenance

and documentation (Lee, 1997).

3.1 STATE OF THE ART OF CHANGE IMPACT ANALYSIS

Impact analysis predicts the parts of the software system that can be affected by changes in

the system. Understanding the nature of changes and measuring their impact (in term of

those elements affected) is a process known as Change Impact Analysis (or CIA, for short).

The use of CIA techniques has various advantages: impact analysis information can be

used to make design decisions during the design process, identifying the expected changes,

planning them, and identifying the effects of such changes before they are actually

implemented. To summarize, CIA has the following advantages:

� It serves to foresee changes and their impact in new or evolving software resulting in

more robust components

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 16

� It can significantly reduce the cost of developing new software, since the later changes

or unexpected problems are dealt with, the more expensive (in terms of money, time

and other resources such as human resources) they become

� As a side effect, it assists project managers in the suitability of proposed changes

Experience in the last decades has shown that software changes are inherent to any

software development, and these unexpected changes come from the very beginning of the

development till the maintenance of the software. Moreover, as software processes have

become more and more reliable, the industry has shifted from generating new software to

reusing software as much as possible. Thus, “a major problem is that small changes can

ripple through software to cause major unintended impacts elsewhere” (Bilal, 2006).

From the multiple definitions on change impact we have found (Pleeger, 1991), (RADC,

1986) we will use the one from (Shawn, 1996) that defines impact analysis as “identifying

the potential consequences of a change, or estimating what needs to be modified to

accomplish a change”, because it emphasizes the fact that CIA is by itself an estimation,

since the actual changes are not known till the change is accomplished.

3.1.1 KEY ELEMENTS AND CONCEPTS IN THE IMPACT ANALYSIS PROCESS

A first concept of paramount importance for CIA is traceability. For impact analysis, we take

the definition of traceability from (Shawn, 1996) as “the ability to trace between artifacts
generated and modified during the software product lifecycle”. Much of the literature

about software development focuses on traceability of requirements, but we will use this

broader definition, that involves any existing artifact involved in the software production. In

particular, we are interested in predictive impact analysis (Kama, 2013), that is; estimations

on change impact to be performed before changes are implemented.

The motivation behind the impact analysis activity is to identify software artifacts (i.e.,

requirement, design, class and test artifacts) that are potentially affected by a change. The

change can be in the form of addition, removal or modification of new or existing software

artifacts. Once we have information on potentially affected software artifacts, effective

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 17

planning can be made on what actions will be undertaken with respect to the changes

(Kama, 2013).

The so-called “ripple effect” is another important concept, which was defined in (Stevens, et

al., 1974) as “the effect caused by making a small change to a system which affects many

other parts of a system”. Typical consequences of the ripple effect affect code, data and

documentation. However, the ripple effect can affect any artifact involved in the software

production: requirements, design elements, environmental elements, and management

aspects such as costs, schedule or training.

If we analyze the way software is produced, we find that, after a first stage in which some

documentation (requirements, initial design documents) is made, a model of the system is

produced. At some point in the development programmers start to develop code.

In an ideal situation, design and requirements will never change, but the real scenario is

different: late discoveries in the project force the design to be changed, and this also affects

requirements and (in some cases) adding new requirements that were unexpected at first.

As time for changes lowers, development of code increases to cover the new functionalities,

or, in some cases, to fix some deficiencies of the original design that are discovered when

coding. Decisions need to be taken in order to determine the changes required. Since there

is not a complete view of the impact of those changes, changes are finally implemented in

parallel at several levels (requirements, design, code, tests), making design and documents

obsolete and/or incomplete, since they don’t reflect accurately the underlying code. Modern

development methodologies, like the RUP (Kruchten, 2000), describe in a precise way this

problem. They provide a set of guidelines and practices to cope with this challenge. But it

requires a huge effort from the development team to synchronize documents, models and

code, and it is especially difficult to perform this task during the whole lifecycle of a given

project. Moreover, the reasons that lead to changes are usually not documented, and tend

to be forgotten, which makes learning from previous decisions difficult.

(Kama, 2013) and (Shawn, 1996) define the impact analysis as a process that generates

and modifies Software Lifetime Objects or SLO,s. SLO,s are composed of any possible

object involved in the development cycle: requirements, system descriptions, classes or

packages of the design, modules of the source code, test specification, tes

reports, resources being used for the development, etc…

The impact analysis process is a process in which the SLOs affected (to be generated

and/or modified) are determined. This process consists

shown in Figure

1. The fi

set of impacted artifacts that are thought to be affected.

impact set (SIS)

2. The second step is to trace the potential impact

additional elements that are to be affected.

Change

(Shawn, 1996)

found in the SIS

(FPIS), which is the overestimated impact set in the CIS.

3. A third step involves the implementation of the requested changes.

accomplished, the Actual

actually modified as

also

packages of the design, modules of the source code, test specification, tes

reports, resources being used for the development, etc…

The impact analysis process is a process in which the SLOs affected (to be generated

and/or modified) are determined. This process consists

Figure 3-1.

Figure

The first step for change impact

set of impacted artifacts that are thought to be affected.

impact set (SIS)

The second step is to trace the potential impact

additional elements that are to be affected.

hange Impact

(Shawn, 1996)

found in the SIS

(FPIS), which is the overestimated impact set in the CIS.

A third step involves the implementation of the requested changes.

accomplished, the Actual

actually modified as

also identified,

packages of the design, modules of the source code, test specification, tes

reports, resources being used for the development, etc…

The impact analysis process is a process in which the SLOs affected (to be generated

and/or modified) are determined. This process consists

.

Figure 3-1: Steps in change impact and associated sets of SLOs

rst step for change impact

set of impacted artifacts that are thought to be affected.

impact set (SIS) (Shawn, 1996)

The second step is to trace the potential impact

additional elements that are to be affected.

mpact Set (CIS) is the set of obj

(Shawn, 1996) after this analysis is performed.

found in the SIS can be identified; this is the so

(FPIS), which is the overestimated impact set in the CIS.

A third step involves the implementation of the requested changes.

accomplished, the Actual

actually modified as a result of the change

identified, that forms the

“A Bayesian model for Change Impact on Software Estimations”

packages of the design, modules of the source code, test specification, tes

reports, resources being used for the development, etc…

The impact analysis process is a process in which the SLOs affected (to be generated

and/or modified) are determined. This process consists

Steps in change impact and associated sets of SLOs

rst step for change impact consists of

set of impacted artifacts that are thought to be affected.

(Shawn, 1996), (Arnold, et al., 1993)

The second step is to trace the potential impact

additional elements that are to be affected.

Set (CIS) is the set of obj

after this analysis is performed.

can be identified; this is the so

(FPIS), which is the overestimated impact set in the CIS.

A third step involves the implementation of the requested changes.

accomplished, the Actual Impact Set

a result of the change

forms the Discovered

“A Bayesian model for Change Impact on Software Estimations”

 18

packages of the design, modules of the source code, test specification, tes

reports, resources being used for the development, etc…

The impact analysis process is a process in which the SLOs affected (to be generated

and/or modified) are determined. This process consists

Steps in change impact and associated sets of SLOs

consists of

set of impacted artifacts that are thought to be affected.

(Arnold, et al., 1993)

The second step is to trace the potential impact

additional elements that are to be affected.

Set (CIS) is the set of objects estimated to be affected

after this analysis is performed.

can be identified; this is the so

(FPIS), which is the overestimated impact set in the CIS.

A third step involves the implementation of the requested changes.

Impact Set (AIS)

a result of the change.

iscovered Impact

“A Bayesian model for Change Impact on Software Estimations”

packages of the design, modules of the source code, test specification, tes

reports, resources being used for the development, etc…

The impact analysis process is a process in which the SLOs affected (to be generated

and/or modified) are determined. This process consists of three different steps that are

Steps in change impact and associated sets of SLOs

consists of identifying

set of impacted artifacts that are thought to be affected.

(Arnold, et al., 1993).

The second step is to trace the potential impact,

additional elements that are to be affected. The E

ects estimated to be affected

after this analysis is performed. False impacted elements

can be identified; this is the so-called false Positiv

(FPIS), which is the overestimated impact set in the CIS.

A third step involves the implementation of the requested changes.

 is identified

 A new set of SLOs to be implemented is

mpact Set (DIS

“A Bayesian model for Change Impact on Software Estimations”

packages of the design, modules of the source code, test specification, tes

The impact analysis process is a process in which the SLOs affected (to be generated

of three different steps that are

Steps in change impact and associated sets of SLOs

ing the change specifi

set of impacted artifacts that are thought to be affected. This initial set is the starting

, the “ripple effect”, identifying

Estimated I

ects estimated to be affected

alse impacted elements

called false Positiv

(FPIS), which is the overestimated impact set in the CIS.

A third step involves the implementation of the requested changes.

is identified, a set that contains

A new set of SLOs to be implemented is

DIS).

“A Bayesian model for Change Impact on Software Estimations”

packages of the design, modules of the source code, test specification, test procedures, test

The impact analysis process is a process in which the SLOs affected (to be generated

of three different steps that are

Steps in change impact and associated sets of SLOs.

the change specification

This initial set is the starting

the “ripple effect”, identifying

Impact Set

ects estimated to be affected (Kama, 2013)

alse impacted elements

called false Positive Impact Set

A third step involves the implementation of the requested changes. Once this is

that contains

A new set of SLOs to be implemented is

“A Bayesian model for Change Impact on Software Estimations”

Thesis

t procedures, test

The impact analysis process is a process in which the SLOs affected (to be generated

of three different steps that are

cation; the

This initial set is the starting

the “ripple effect”, identifying

et (EIS) or

(Kama, 2013)

alse impacted elements, originally

e Impact Set

Once this is

that contains of SLOs

A new set of SLOs to be implemented is

“A Bayesian model for Change Impact on Software Estimations”

Thesis

t procedures, test

The impact analysis process is a process in which the SLOs affected (to be generated

of three different steps that are

the

This initial set is the starting

the “ripple effect”, identifying

(EIS) or

(Kama, 2013)

, originally

e Impact Set

Once this is

of SLOs

A new set of SLOs to be implemented is

•

•

In Figure

(SIS). After a change impact analysis, it is determined that this requirement will imply

changes in a package of th

the Estimated impact set (

the figure) and traceability analysis (T1,

new class ha

part of a set of the discovered impact set (DIS)

be generated as a result of the change

generated

Fig

ure 3-2, we can see that a

. After a change impact analysis, it is determined that this requirement will imply

changes in a package of th

the Estimated impact set (

the figure) and traceability analysis (T1,

new class has to be generated, which in turn requires modifications to the tests.

part of a set of the discovered impact set (DIS)

be generated as a result of the change

generated becomes the Actual Impact Set (AIS).

Figure 3-2 Change Impact a

we can see that a

. After a change impact analysis, it is determined that this requirement will imply

changes in a package of the design, and therefore both requirements and this package form

the Estimated impact set (EIS

) and traceability analysis (T1,

be generated, which in turn requires modifications to the tests.

part of a set of the discovered impact set (DIS)

be generated as a result of the change

becomes the Actual Impact Set (AIS).

“A Bayesian model for Change Impact on Software Estimations”

Change Impact a

we can see that a proposed

. After a change impact analysis, it is determined that this requirement will imply

e design, and therefore both requirements and this package form

 or CIS). To do so, we count on dependency analysis (D1

) and traceability analysis (T1,

be generated, which in turn requires modifications to the tests.

part of a set of the discovered impact set (DIS)

be generated as a result of the change. The

becomes the Actual Impact Set (AIS).

“A Bayesian model for Change Impact on Software Estimations”

 20

Change Impact analysis

proposed change involved

. After a change impact analysis, it is determined that this requirement will imply

e design, and therefore both requirements and this package form

To do so, we count on dependency analysis (D1

) and traceability analysis (T1, T2). During the implementation of the

be generated, which in turn requires modifications to the tests.

part of a set of the discovered impact set (DIS); that

be generated as a result of the change. The final

becomes the Actual Impact Set (AIS).

“A Bayesian model for Change Impact on Software Estimations”

 and its associated SLOs

change involved

. After a change impact analysis, it is determined that this requirement will imply

e design, and therefore both requirements and this package form

To do so, we count on dependency analysis (D1

During the implementation of the

be generated, which in turn requires modifications to the tests.

that is, the set of

final set containing all the SLOs mo

“A Bayesian model for Change Impact on Software Estimations”

and its associated SLOs

change involved initial changes in requirements

. After a change impact analysis, it is determined that this requirement will imply

e design, and therefore both requirements and this package form

To do so, we count on dependency analysis (D1

During the implementation of the

be generated, which in turn requires modifications to the tests.

set of new elements that are to

containing all the SLOs mo

“A Bayesian model for Change Impact on Software Estimations”

and its associated SLOs

initial changes in requirements

. After a change impact analysis, it is determined that this requirement will imply

e design, and therefore both requirements and this package form

To do so, we count on dependency analysis (D1

During the implementation of the

be generated, which in turn requires modifications to the tests. This forms

new elements that are to

containing all the SLOs mo

“A Bayesian model for Change Impact on Software Estimations”

Thesis

initial changes in requirements

. After a change impact analysis, it is determined that this requirement will imply

e design, and therefore both requirements and this package form

To do so, we count on dependency analysis (D1, in

 change, a

This forms

new elements that are to

containing all the SLOs modified or

“A Bayesian model for Change Impact on Software Estimations”

Thesis

initial changes in requirements

. After a change impact analysis, it is determined that this requirement will imply

e design, and therefore both requirements and this package form

, in

, a

This forms

new elements that are to

dified or

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 27

The most common and first metric to be used was the Lines of Code (LOC or KLOC for

thousands of lines of code) metric. It was, and still is, the basis for the measurement of

programming productivity (LOC per programmer/month) (Fenton, et al., 2000).

Further studies proposed regression-based models for module defect density (number of

defects per KLOC) in terms of module size measured in KLOC. The need for more

discriminating measures was evident during the 70,s with the increasing diversity of different

programming languages (Fenton, et al., 2000). Measurements for software complexity and

measurements of functional size were developed.

Boehm et al (Boehm, et al., 2000) survey the main approaches for metrics estimations and

defined five kinds of techniques:

o Model-based: they are parametric techniques, as SLIM, COCOMO (Boehm,

et al., 1995), Checkpoint, or SEER (Basha, et al., 2010). They rely on models

represented in a variety of formalisms (as functions, distributions, or

knowledge bases) that depend on some parameters and are able to produce

project estimations.

o Expertise-based: they are based on experts’ judgments. Examples are the

Delphi approach or the hierarchical decomposition of Work Breakdown

Structure (Leung, et al., 2002) They have the advantage of incorporating the

knowledge of experts, and the disadvantages that they are biased by the

experts that defined them (thus, sometimes, they are domain dependent), and

also the estimation models usually are hard to obtain.

o Learning-Oriented Techniques: the creation of the estimation model is

posed as an inductive task, and machine-learning techniques are used to

automatically generate the models from data. Examples of employed

techniques are analogy (Case-Based Reasoning), or neural networks, though

several other techniques could have been used as model-based regression

(M5 or CART) (Quinlan, 1992). The advantage of these techniques is that they

alleviate the knowledge acquisition task, and the main disadvantage is that

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 28

many instances of correct (little noise, no missing data,…) pairs <project,

metrics values> are needed while usually very few examples are available.

o Dynamics-Based Techniques: they assume that software project metrics

change over the system development cycle. Thus, metrics can be defined in

terms of formal models such as differential equations (Madachy, 1994). They

are good for planning and control, but particularly difficult to calibrate.

o Regression-Based Techniques: like OLS (Weisberg, 1985): they have been

the most widely used ones and pose the task as the learning-oriented ones (in

fact, one could merge them together): starting from data of <project, metric

values> generate a regression model (usually as a linear function of the

known variables). They obtain good results when there are lots of data, no

data is missing, there are no outliers, variables are uncorrelated, and the

understandability of variables in the model is important. However, these

conditions are seldom met, specially the three first conditions.

o Composite Techniques: they combine two or more of the previous

techniques. For instance, the Bayesian approach uses a causal model defined

by the experts that can be initially injected with estimations on conditional

probabilities generated from previous projects data (Fuentetaja, et al., 2013).

Other potential classification criteria could have been the kind of software metric a given

approach focuses on. Thus, there are approaches for cost estimation, quality estimation,

and risk estimation and so on.

Also, there are approaches that try to estimate several of those metrics in parallel. There are

other surveys on cost estimation that present a similar decomposition as (Molokken, et al.,

2003). They even compare different cost estimation metrics as in (Gray, et al., 1997), or of

only one kind as the analysis of machine learning in (Mair, et al., 2000). Finally, other

surveys focus on a specific context as software development within the 4GL framework

using space data (from NASA) (Morgan, et al., 2003)

This thesis will focus on this last type of techniques, the so called “composite techniques” in

particular those based on Bayesian Belief Networks. In the following sections, we will

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 29

provide the rationale for this decision, identifying the weaknesses of the traditional

estimations models, their current flaws and the new approach based on BBNs.

3.2.2 ESTIMATIONS FOR CHANGE IMPACT

One of the first works on measuring the ripple effect produced by changes in software is due

to Yau and Collofello (Yau, et al., 1980). This measurement results from the study of the

control flow of the program and how some changes on one variable affect other parts of the

software until no more source is found to be affected. Obviously, this computation is

significantly laborious so that different approaches have been proposed in order to make it

more explicit and easy to compute. In 2001, Blac suggested to break down the structure of

programs into their natural constituents (modules) in order to study more accurately the

ripple effect (Blac, 2001) though restricting the attention to procedural programs (i.e., those

adhering to the imperative paradigm). So far, the ripple effect is computed as the scope of a

change in one variable and how it ripples either within the same module (intra-module

change propagation) or among modules (inter-module change propagation). Thus, the

computation of the ripple effect provides also an additional measure on the program’s

complexity, in more than one sense.

Fortunately, some steps have been taken towards generalizing this measure to object-

oriented programming (such as C++ and Java). At the same time, it has been also observed

that changes (either internal as bugs, replacement of tools, etc.) or external (economic

constraints, human resources, etc.) shall be traced back to as early stages in the

development process as possible. Hence, it has been recently suggested to use architecture

design decisions as a starting point for the change impact analysis (Hassan, et al., 2008). In

this case, graphs are used to describe all the dependencies among objects. Since, in the

mentioned work, authors proposed to use AADL (Feiler, et al., 2012), being ADDL a model-

based language that allows enriching UML with more model-based design elements, these

objects are components, connectors and configurations as they are used in the architecture

design. From these graphs, a model is proposed to track the change impact by providing a

detailed examination of the consequences of changes in the system. This mechanism

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 32

rule. In order to ensure a best course of action, rule-based systems can be iterated

either in a forward or backward direction. The explanation results naturally from the

concatenation of all the rules selected so far. However, rule-based systems suffer from

very serious drawbacks. For instance, they cannot handle exceptions appropriately,

while reasoning with exceptions is an important, even crucial, factor in automated

decision systems.

� The first idea to tackle with exceptions is uncertainties. One can try to represent

exceptions with numbers representing how well a given fact is known. This can be

achieved by modifying the dictionary of rules to distinguish among different levels of

uncertainty, such as in the rule “A with certainty x implies B with certainty f(x)” where

f(x) is a function to be provided as well. While uncertainties can be used to derive the

value of other uncertainties from one assertion to the next, they have some significant

drawbacks. Most importantly:

� They do not stand for probabilities. While this is apparent from the definition, it has

some important consequences, including the fact that uncertainty measures cannot be

operated (e.g., aggregated) among them in a coherent and precise way

� It is not possible to compute uncertainties incrementally, i.e., it is not feasible to

compute the impact in the uncertainty from one observation and after assimilating this

new value, to re-compute it again considering the impact of a new fact (characterized

by its own uncertainty). The reason is that, as stated above, there is no way to operate

uncertainties jointly in a coherent way, since they are not probabilities

In fact, this distinction serves to classify automatic decision systems in one of the following

categories: either extensional system (such as MYCIN (Shortliffe, 1976) or R1 (McDermott,

1984)) or intentional systems. The extensional systems usually mirror relationships in the

form of rules such as (A implies B) and maybe decorated with an amount x which stands for

a certainty factor (CF), reflecting both beliefs and disbeliefs in such a way that they are not

necessarily related to each other –hence, leading easily to contradictory or counter-intuitive

results, as stated before. This short of assertions shall be read as “if A is found, then B can

•

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 34

Probably, one of the easiest paradigms to propagate probabilities instead of certainty factors

are Decision Trees, see (Gamerman, 1997). Decision Trees provide a pictorial view of a

given problem that can be used to compute the expected pay-off associated with a

sequence of actions according to the basic rules of statistics. Hence, the sequence leading

to the maximum expected pay-off can be systematically found. However, Decision Trees

have some serious drawbacks. In real-world problems it is far from easy to enumerate all the

feasible combinations of the variables taking part in the problem at hand. Also, decision

trees often compute the final outcome under the assumption that probabilities are

independently distributed. This is not usually the case, so that other techniques are often

used to compute the final probabilities associated with different courses of action. Therefore,

other algorithms are usually better suited. More remarkably:

Bayesian inference: from a precisely defined model that establishes the causal

relationships among different factors, probabilities can be propagated according to the

Bayes’ theorem. Models can be defined in various ways so that probabilities can be

propagated according to different mathematical apparatus (introduced in the bibliography

with the purpose of being both computationally efficient and as accurate as possible):

generalized linear models, hierarchical models, dynamic linear models and dynamic

generalized linear models.

Markov chains: can be used to predict the next state of a stochastic process just by

observing the last state. Beyond its scientific interest (since many results can be proven

describing the general behavior of many different types of dynamic systems), it is a very

powerful technique that can be used in many different contexts. For example, it is possible

to implement the so-called high-order Markov chains that result from considering the last n

states instead of the only one. Also, Markov chains can be combined among them and even

be used to describe partially observable states (such as the Hidden Markov Chains or HMC

for short). Markov chains can be also used for stochastic simulations. Among others, the

most common techniques are the Gibbs sampling and the Metropolis-Hasting algorithms

(Geman, et al., 1984).

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 35

A common technique extending the basic behavior of decision trees are Influence Diagrams

which are the basis of Causal Networks. Jensen (Jensen, 1996) describes causal networks

as a set of variables and a set of directed links between variables. Variables may have a

discrete (countable) or continuous domain. In any case, variables take values from a

number of mutually exclusive states. These values support different types of evidence (Korb,

et al., 2004):

� Specific evidence, which occurs once a variable is known to take on a specific value

� Negative evidence, when a variable is known not to be in a specific state

� Virtual evidence, which is just any probability distribution (either discrete or

continuous).

Evidence may be transmitted among variables in three different ways:

� Serial connection (e.g., A->B->C),

� Diverging conection (e.g., A->B, A->C, …, A->E), and

� Converging connection (e.g., B->A, C->A, …E->A).

Figure 3-3

From the previous types of propagation, the following definition follows (

variables A and B in a causal network are

is an intermediate variable

� The connection is serial or diverging and the state of V is known, or

� The connection is converging and neither V nor any of Vs descendants have received

evidence

3, Figure 3-

From the previous types of propagation, the following definition follows (

variables A and B in a causal network are

is an intermediate variable

connection is serial or diverging and the state of V is known, or

The connection is converging and neither V nor any of Vs descendants have received

evidence

-4 and Figure

Figure

Figure 3-4

Figure 3-5:

From the previous types of propagation, the following definition follows (

variables A and B in a causal network are

is an intermediate variable V such that either:

connection is serial or diverging and the state of V is known, or

The connection is converging and neither V nor any of Vs descendants have received

“A Bayesian model for Change Impact on Software Estimations”

Figure 3-5 illustrate

Figure 3-3: Serial connection: A

4: Diverging connection: A

: Converging connection: B

From the previous types of propagation, the following definition follows (

variables A and B in a causal network are

such that either:

connection is serial or diverging and the state of V is known, or

The connection is converging and neither V nor any of Vs descendants have received

“A Bayesian model for Change Impact on Software Estimations”

 36

illustrate the different sorts of connections:

Serial connection: A

Diverging connection: A

Converging connection: B

From the previous types of propagation, the following definition follows (

variables A and B in a causal network are d-separated

such that either:

connection is serial or diverging and the state of V is known, or

The connection is converging and neither V nor any of Vs descendants have received

“A Bayesian model for Change Impact on Software Estimations”

the different sorts of connections:

Serial connection: A->B-

Diverging connection: A->B, A->C, … A

Converging connection: B->A, C->A, … E

From the previous types of propagation, the following definition follows (

separated if for all paths between

connection is serial or diverging and the state of V is known, or

The connection is converging and neither V nor any of Vs descendants have received

“A Bayesian model for Change Impact on Software Estimations”

the different sorts of connections:

>C

>C, … A->E

>A, … E->A

From the previous types of propagation, the following definition follows (

if for all paths between

connection is serial or diverging and the state of V is known, or

The connection is converging and neither V nor any of Vs descendants have received

“A Bayesian model for Change Impact on Software Estimations”

the different sorts of connections:

>A

From the previous types of propagation, the following definition follows (d-separability

if for all paths between A and

connection is serial or diverging and the state of V is known, or

The connection is converging and neither V nor any of Vs descendants have received

“A Bayesian model for Change Impact on Software Estimations”

Thesis

separability): two

and B there

The connection is converging and neither V nor any of Vs descendants have received

“A Bayesian model for Change Impact on Software Estimations”

Thesis

): two

there

The connection is converging and neither V nor any of Vs descendants have received

This definition is of crucial importance since it turns out that when A and B are d

it can be proven that the certainty of A has no impact on the certainty on B. From the

definition of causal networks (whose main result consists of identifying d

property of human reasoning), when using probability calculus, the Bayesian ne

result. In this case, relations are expressed as conditional probabilities. Indeed, the

statement: “if B is true, the probability of event A is x” shall be read as P(A|B)=x. Contrary to

common intuition, this does not mean that if B is known to be t

probability x

section. Indeed, it means that if B is true and everything else is known to be irrelevant for A,

then P(A)=x. This way, the relations among dif

inference can be applied.

For example, the preceding figure shows a small portion of the BBN shown in

al., 2007)

� A stands for the project duration;

� B means average number of people working full time in the project.

This definition is of crucial importance since it turns out that when A and B are d

can be proven that the certainty of A has no impact on the certainty on B. From the

definition of causal networks (whose main result consists of identifying d

property of human reasoning), when using probability calculus, the Bayesian ne

result. In this case, relations are expressed as conditional probabilities. Indeed, the

statement: “if B is true, the probability of event A is x” shall be read as P(A|B)=x. Contrary to

common intuition, this does not mean that if B is known to be t

probability x –as it was suggested in the extensional systems discussed in the previous

section. Indeed, it means that if B is true and everything else is known to be irrelevant for A,

then P(A)=x. This way, the relations among dif

erence can be applied.

For example, the preceding figure shows a small portion of the BBN shown in

 where nodes have the following meaning:

A stands for the project duration;

B means average number of people working full time in the project.

This definition is of crucial importance since it turns out that when A and B are d

can be proven that the certainty of A has no impact on the certainty on B. From the

definition of causal networks (whose main result consists of identifying d

property of human reasoning), when using probability calculus, the Bayesian ne

result. In this case, relations are expressed as conditional probabilities. Indeed, the

statement: “if B is true, the probability of event A is x” shall be read as P(A|B)=x. Contrary to

common intuition, this does not mean that if B is known to be t

as it was suggested in the extensional systems discussed in the previous

section. Indeed, it means that if B is true and everything else is known to be irrelevant for A,

then P(A)=x. This way, the relations among dif

erence can be applied.

Figure

For example, the preceding figure shows a small portion of the BBN shown in

where nodes have the following meaning:

A stands for the project duration;

B means average number of people working full time in the project.

“A Bayesian model for Change Impact on Software Estimations”

This definition is of crucial importance since it turns out that when A and B are d

can be proven that the certainty of A has no impact on the certainty on B. From the

definition of causal networks (whose main result consists of identifying d

property of human reasoning), when using probability calculus, the Bayesian ne

result. In this case, relations are expressed as conditional probabilities. Indeed, the

statement: “if B is true, the probability of event A is x” shall be read as P(A|B)=x. Contrary to

common intuition, this does not mean that if B is known to be t

as it was suggested in the extensional systems discussed in the previous

section. Indeed, it means that if B is true and everything else is known to be irrelevant for A,

then P(A)=x. This way, the relations among dif

Figure 3-6: An example of a small BBN

For example, the preceding figure shows a small portion of the BBN shown in

where nodes have the following meaning:

A stands for the project duration;

B means average number of people working full time in the project.

“A Bayesian model for Change Impact on Software Estimations”

 37

This definition is of crucial importance since it turns out that when A and B are d

can be proven that the certainty of A has no impact on the certainty on B. From the

definition of causal networks (whose main result consists of identifying d

property of human reasoning), when using probability calculus, the Bayesian ne

result. In this case, relations are expressed as conditional probabilities. Indeed, the

statement: “if B is true, the probability of event A is x” shall be read as P(A|B)=x. Contrary to

common intuition, this does not mean that if B is known to be t

as it was suggested in the extensional systems discussed in the previous

section. Indeed, it means that if B is true and everything else is known to be irrelevant for A,

then P(A)=x. This way, the relations among different parameters can be modeled and

An example of a small BBN

For example, the preceding figure shows a small portion of the BBN shown in

where nodes have the following meaning:

B means average number of people working full time in the project.

“A Bayesian model for Change Impact on Software Estimations”

This definition is of crucial importance since it turns out that when A and B are d

can be proven that the certainty of A has no impact on the certainty on B. From the

definition of causal networks (whose main result consists of identifying d

property of human reasoning), when using probability calculus, the Bayesian ne

result. In this case, relations are expressed as conditional probabilities. Indeed, the

statement: “if B is true, the probability of event A is x” shall be read as P(A|B)=x. Contrary to

common intuition, this does not mean that if B is known to be t

as it was suggested in the extensional systems discussed in the previous

section. Indeed, it means that if B is true and everything else is known to be irrelevant for A,

ferent parameters can be modeled and

An example of a small BBN

For example, the preceding figure shows a small portion of the BBN shown in

where nodes have the following meaning:

B means average number of people working full time in the project.

“A Bayesian model for Change Impact on Software Estimations”

This definition is of crucial importance since it turns out that when A and B are d

can be proven that the certainty of A has no impact on the certainty on B. From the

definition of causal networks (whose main result consists of identifying d

property of human reasoning), when using probability calculus, the Bayesian ne

result. In this case, relations are expressed as conditional probabilities. Indeed, the

statement: “if B is true, the probability of event A is x” shall be read as P(A|B)=x. Contrary to

common intuition, this does not mean that if B is known to be true, A shall happen with

as it was suggested in the extensional systems discussed in the previous

section. Indeed, it means that if B is true and everything else is known to be irrelevant for A,

ferent parameters can be modeled and

An example of a small BBN

For example, the preceding figure shows a small portion of the BBN shown in

B means average number of people working full time in the project.

“A Bayesian model for Change Impact on Software Estimations”

This definition is of crucial importance since it turns out that when A and B are d-separated,

can be proven that the certainty of A has no impact on the certainty on B. From the

definition of causal networks (whose main result consists of identifying d-separability as a

property of human reasoning), when using probability calculus, the Bayesian ne

result. In this case, relations are expressed as conditional probabilities. Indeed, the

statement: “if B is true, the probability of event A is x” shall be read as P(A|B)=x. Contrary to

rue, A shall happen with

as it was suggested in the extensional systems discussed in the previous

section. Indeed, it means that if B is true and everything else is known to be irrelevant for A,

ferent parameters can be modeled and

For example, the preceding figure shows a small portion of the BBN shown in (Radlinski, et

B means average number of people working full time in the project.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

separated,

can be proven that the certainty of A has no impact on the certainty on B. From the

separability as a

property of human reasoning), when using probability calculus, the Bayesian networks

result. In this case, relations are expressed as conditional probabilities. Indeed, the

statement: “if B is true, the probability of event A is x” shall be read as P(A|B)=x. Contrary to

rue, A shall happen with

as it was suggested in the extensional systems discussed in the previous

section. Indeed, it means that if B is true and everything else is known to be irrelevant for A,

ferent parameters can be modeled and

(Radlinski, et

“A Bayesian model for Change Impact on Software Estimations”

Thesis

separated,

can be proven that the certainty of A has no impact on the certainty on B. From the

separability as a

tworks

result. In this case, relations are expressed as conditional probabilities. Indeed, the

statement: “if B is true, the probability of event A is x” shall be read as P(A|B)=x. Contrary to

rue, A shall happen with

as it was suggested in the extensional systems discussed in the previous

section. Indeed, it means that if B is true and everything else is known to be irrelevant for A,

ferent parameters can be modeled and

(Radlinski, et

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 38

These variables serve to compute the total effort adjusted by Brooks factor in node D which,

along with node C (that contains some metrics on process and people quality) serve to

predict the total effective effort, in node E.

It is important to emphasize that D is said to d-separate A and B from C and E if D receives

no evidence when computing the values for C and E, so that it has to be computed from A

and B solely. If D would have diverging connection issuing from it, it would be to d-separate

its parents (A and B) from its descendants (E and others) if D has received evidence so that

its children are computed solely from D.

Therefore, conditional probabilities can be seen as the strength of links relating pairs of

nodes. For instance, if A and B are parents of C, the probability p(C|A,B) shall be quantified,

instead of just the probabilities p(C|A) and p(C|B), which do not provide any clue on how to

compute the probability of C, since interactions between A and B are not taken into account.

Because there is no probabilistic approach for propagating probabilities with cycles,
Bayesian networks are required not to contain any cycles.

In other words, they are depicted as Directed Acyclic Graphs (DAG)3 where, for each

variable A with parents B1, B2, Bn, there is a probability P(A|B1, B2, …, Bn) attached. Of

course, root nodes (nodes with no parents) are just qualified with their “a priori” probability.

For all the other nodes, the Conditional Probability Tables (or just CPTs for short) shall be

defined which formalize the conditional probability of every node given its parents. From the

given conditional probabilities, it is possible to compute the probability of a universe of

variables with the chain rule which simply computes the product of all the conditional

probabilities for every variable given the set of ancestors of each variable. Since probabilities

can be conditioned upon any subset of variables, different types of reasoning are supported

by Bayesian Networks. More precisely:

� Diagnostic reasoning can be performed from symptoms to causes.

� Predictive reasoning can be used to update the beliefs on some effects when

information on new causes becomes available.

3 Also known as polytrees

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 39

Also, a type of reasoning known as intercausal reasoning is possible. Consider for example

the influence of two nodes A and B on a single effect, C. If after performing either diagnostic

or predictive reasoning, new evidence is available on one of the causes, say A, then the

probability on B can be accordingly updated. This reasoning can be used to understand, for

instance, given a set of effects (e.g., metrics values) which causes influence them (e.g.,

design decisions), and select other values for the input variables to see their effects.

If the model built so far satisfies d-separability, then Kim and Pearl’s message passing

algorithm for computing accurately the probability of each variable can be used. Otherwise

(i.e., in the presence of d-connected paths), more laborious methods have to be applied

which usually do not result in accurate values. However, if exact values are required, still

some techniques can be applied like clustering the belief network.

Usually the domain knowledge is manually acquired from experts. This leads to the effect

known as “knowledge bottleneck” since there might be no expert at all to interview or

because the elicitation can become an awkward process. To make it even worse,

knowledge elicitation is usually error prone, time consuming and a very expensive task.

Instead, whenever possible it would be highly desirable to automate the knowledge

acquisition by means of machine learning for either deriving the causal relationships or the

Conditional Probability Tables (CPTs) governing them. From the principle of Common

Cause it is possible to anticipate different types of relations among variables. Different

methods can be used to automatically assist in the modeling of belief networks, including

Path Models (Korb, et al., 2004) pag 153, Conditional independence learners whose main

goal is identifying variables that do no affect each other, and the Pearl’s Network

Construction Algorithm (Korb, et al., 2004) (page 38). The problem of automatically deriving

the topology of a polytree is usually referred to as causal modeling.

On the other hand, CPTs can be either defined upon the results of elicitation from expert

knowledge or by exploiting local information. This is typically known as statistical modeling.

Summarizing, BBNs present a set of advantages, with a significant impact in the context of

change impact estimations. If an event is known to happen (a node takes a unique value),

the BBN can be fed with probability 1.0 for that value. However, any probability distribution

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 40

can be used. This is, BBNs fairly generalize the behaviour of many other decision systems,

which are often deterministic. For example, in the likely case of not knowing the probability

of some input variables (also referred as decision variables), it is usually assumed that they

are all equally likely though other scenarios can be defined as well.

Although the most typical reasoning approach is a straight application of the definition of

conditional probabilities, which are updated according to the Bayes’ Theorem, there are

different ways of applying inference. Some of them are, but not necessarily limited to:

variable elimination, mini-bucket elimination or clique propagation. In general, it is possible

to run different inference algorithms over the same model.

Explanations can be easily generated. They result from the causal links that affected (up to

a given probability which does not exceed a given threshold) the node under consideration.

The usage of probabilities allows designers to carefully review the behavior of the BBN.

Since BBNs are fully probabilistic methods, other methods for estimating the a-priori

probabilities (such as max-likelihood estimation) or learning the structure of the BBN (mainly

based on Monte-Carlo procedures) are possible. In this regard, top-down inference (also

known as predictive inference) can be seen as a generalization of Markov stochastic

models. Indeed, there are generalizations of BBNs that can behave as Hidden Markov

Models when reasoning in a top-down fashion while providing additional functionality if they

are executed in bottom-up or combined mode. The same idea can be further generalized to

the so-called Logical Markov Models.

3.3.1 CAUSAL MODELS AND BAYESIAN BELIEF NETWORKS

One of the most important advantages we have mentioned of the BBN is that they allow

describing causal relationships. Originally, reasoning models were thought as graphs, which

consisted of nodes, which can take one among several values from a given range or

domain, and arcs that stand for some sort of relationship between a pair of concepts or

nodes. Propagation of values throughout the graph was mainly based on certainties and

was driven by the inference rule of Modus Ponens. Thus, though they significantly relied on

probabilistic computations, they did not obey the fundamental laws of statistics. Initially, this

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 41

was not a problem, since most "expert systems" were intentionally devoted to provide

significant explanations of their conclusions ---mainly as a trace of rules followed throughout

the model. Examples of this sort of "expert systems" are MYCIN (Shortliffe, 1976) and

PROSPECTOR (Hart, et al., 1977).
This completely changed with the introduction of Bayesian Belief Networks. While Bayesian

Belief Networks do retain the ability to produce explanations, they do adhere to a full

probabilistic calculus, making the resulting explanations easier to understand and, more

importantly, to debug and trace. From this perspective, it shall be clear that the most

significant contribution of BBN is the propagation model suggested. In this case, models

consist of acyclic graphs with nodes Xi which can take one among several values from a

domain Di (Kjærulff, et al., 2005). Each node can be connected to an arbitrary number of

neighbors, setting up a causal dependency, which is characterized with a conditional

probability. For example, if node X is connected to node Y, then Y is said to be conditioned

by X or, equivalently, that X is the cause of Y with a given likelihood. Moreover, if Y is also

connected to Z, X affects Y and the ultimate values of Y do also propagate to Z.

In short, Bayesian Nets consist of (Kjærulff, et al., 2005):

1. A set of nodes that represent random variables, whose values can be known or have

a given probability associated

2. A set of directed causal links represented as arcs between nodes which stand for

concepts.

3. Each node contains a Conditional Probability Table (or CPTs for short) which state

for every pair <cause, effect> its likelihood

Figure 3-7 shows a simple BBN consisting of four nodes, with its causal links and their

corresponding Conditional probability tables

Thus, using a BBN (which is expressed as a causal probabilistic Directed Acyclic Graph,

DAG) for a particular application domain requires completing a set of tasks

2004) nam

1. Identification of the relevant variables
our case these variables will include all elements that affect the estimation of costs

according to the selected metrics. This step also incorporates the definition o

variables values. Variables can have

variable, the specific values have to be defined.

Figure

Thus, using a BBN (which is expressed as a causal probabilistic Directed Acyclic Graph,

DAG) for a particular application domain requires completing a set of tasks

namely:

Identification of the relevant variables
our case these variables will include all elements that affect the estimation of costs

according to the selected metrics. This step also incorporates the definition o

variables values. Variables can have

variable, the specific values have to be defined.

Figure 3-7: Simple BBN with four

Thus, using a BBN (which is expressed as a causal probabilistic Directed Acyclic Graph,

DAG) for a particular application domain requires completing a set of tasks

Identification of the relevant variables
our case these variables will include all elements that affect the estimation of costs

according to the selected metrics. This step also incorporates the definition o

variables values. Variables can have

variable, the specific values have to be defined.

“A Bayesian model for Change Impact on Software Estimations”

Simple BBN with four

Thus, using a BBN (which is expressed as a causal probabilistic Directed Acyclic Graph,

DAG) for a particular application domain requires completing a set of tasks

Identification of the relevant variables
our case these variables will include all elements that affect the estimation of costs

according to the selected metrics. This step also incorporates the definition o

variables values. Variables can have

variable, the specific values have to be defined.

“A Bayesian model for Change Impact on Software Estimations”

 42

Simple BBN with four variables, their causal links and CPTs

Thus, using a BBN (which is expressed as a causal probabilistic Directed Acyclic Graph,

DAG) for a particular application domain requires completing a set of tasks

Identification of the relevant variables, which will form the nodes of the graph.

our case these variables will include all elements that affect the estimation of costs

according to the selected metrics. This step also incorporates the definition o

variables values. Variables can have discrete

variable, the specific values have to be defined.

“A Bayesian model for Change Impact on Software Estimations”

variables, their causal links and CPTs

Thus, using a BBN (which is expressed as a causal probabilistic Directed Acyclic Graph,

DAG) for a particular application domain requires completing a set of tasks

, which will form the nodes of the graph.

our case these variables will include all elements that affect the estimation of costs

according to the selected metrics. This step also incorporates the definition o

discrete or continuous

variable, the specific values have to be defined.

“A Bayesian model for Change Impact on Software Estimations”

variables, their causal links and CPTs

Thus, using a BBN (which is expressed as a causal probabilistic Directed Acyclic Graph,

DAG) for a particular application domain requires completing a set of tasks

, which will form the nodes of the graph.

our case these variables will include all elements that affect the estimation of costs

according to the selected metrics. This step also incorporates the definition o

continuous values. If it is a discrete

“A Bayesian model for Change Impact on Software Estimations”

variables, their causal links and CPTs

Thus, using a BBN (which is expressed as a causal probabilistic Directed Acyclic Graph,

DAG) for a particular application domain requires completing a set of tasks (Korb, et al.,

, which will form the nodes of the graph.

our case these variables will include all elements that affect the estimation of costs

according to the selected metrics. This step also incorporates the definition o

values. If it is a discrete

“A Bayesian model for Change Impact on Software Estimations”

Thesis

Thus, using a BBN (which is expressed as a causal probabilistic Directed Acyclic Graph,

(Korb, et al.,

, which will form the nodes of the graph. In

our case these variables will include all elements that affect the estimation of costs

according to the selected metrics. This step also incorporates the definition of the

values. If it is a discrete

“A Bayesian model for Change Impact on Software Estimations”

Thesis

Thus, using a BBN (which is expressed as a causal probabilistic Directed Acyclic Graph,

(Korb, et al.,

In

our case these variables will include all elements that affect the estimation of costs

f the

values. If it is a discrete

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 43

2. Identification of the causal dependencies among variables. If a variable X might

affect the value of another variable Y, an edge is defined in the graph between the

corresponding nodes, taking special care of not creating a cycle.

3. Parameterization of the probabilistic information of the graph. This step requires

defining the prior probabilities for each root node in the graph, and the conditional

probability tables (CPTs) associated with each non-root node that quantifies the

relationships between nodes.

Figure 3-8: Example of a BBN as shown using Netica, a BBN tool

So for instance, Figure 3-8 above shows a direct causal relationship between “adapted use

cases” and “new use cases” on a given design, indicating that there is a direct causal

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 44

relationship between the number of use cases to be implemented as new, and the number

of use cases that need to be adapted, with respect to the new classes to be developed.

Each of these nodes represents a different variable, which can have discrete or continuous

values.

The advantage of describing a probabilistic argument via a BBN, compared to describing it

via mathematical formulas and prose, is that the BBN represents the structure of the

argument in an intuitive, graphical format. The main use of BBNs is in situations that require

statistical inference — in addition to statements about the probabilities of events, the user

knows some evidence, that is, some events that have actually been observed, and wishes

to infer the probabilities of other events, which have not as yet been observed. Using

probability calculus and Bayes theorem it is then possible to update the values of all the

other probabilities in the BBN. This is called propagation. Bayesian analysis can be used

for both 'forward' and 'backward' inference (Tang, et al., 2006)

Although the underlying theory (Bayesian probability) has been around for a long time,

building and executing realistic BBN models has only been made possible because of

recent algorithms and software tools that implement them.

Once we have defined a BBN, there are several ways of using it, but the three most used

ones are:

1. Prediction (top-down): given the values to known variables, obtain the values for

goal variables, by propagating values through DAG. In the case of this thesis, this

scheme will be used, for instance, to estimate the given metrics from design

decisions.

2. Diagnosis (bottom up): given the observed (or required) values of the goal variables

(metrics in our case), obtain the most probable causes (design decisions, for

instance)

3. Combined approach: it can be used to understand, for instance, given a set of

effects (metrics values) which causes influence them (design decisions), and select

other values for the input variables to see their effects.

•

•

•

•

•

•

•

•

•

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 48

o To assist in the generation of test cases to be used in FATs, OSATs, etc. This

seems quite straightforward from the purpose of this project since BBNs shall

be used to estimate the complexity, expected number of errors, etc. of well-

separated software components. The more complex or error prone, the more

to be tested.

o Sensitivity analysis on the decision variables. It seems quite interesting to

understand how stable or not are different decision variables or assumptions

happening in a given software project. While BBNs are usually used for

deriving answers in the form of probability distributions (so that for each

allowable value, its probability is computed), they could also compute how

much a given variable has to change in order to have a significant impact in

another variable. This might be quite interesting since causes and effects are

usually related in a non-linear fashion so that big changes in some causes do

only slightly affect some effects while the contrary can happen as well for other

variables.

3.3.3 THE AREL MODEL

Tang et al. (Tang, et al., 2006) use BBNs to model and quantify the probability of the causal

relationships between design decisions and design elements. For this purpose, they define

the Architecture Rationale and Element Linkage (AREL) model to represent the causal

relationships between architecture design elements and decisions. AREL exploits the idea of

representing the causal relationships as arcs and objects as nodes. They form a DAG over

which it is possible to propagate statistics with the aim of tracing change impact decisions

back from the architectural design of software.

Tang et al. claim that it is highly desirable to automatically derive the design of BBNs to be

used in the project estimation reasoning. They suggest that all design decisions can be seen

as either:

•

•

•

•

•

•

•

•

•

•

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 52

turn implement changes), each having a different impact on the existing design or software

artifacts. In a traditional development, developers and designers start with an initial set of

requirements and implementation constraints, and they make a long sequence of design

decisions with no clear statement of why they do things on a given way, and not another

(Long Parnas, et al., 1986). Due to software’s mutability, design decisions are more likely to

be changed during software development than other types of product development. (Burge,

2005).

3.4.1 DESIGN RATIONALE: SERVICES

There is a common consensus on many aspects related to this area of knowledge: a first

conclusion is that design rationale provides an evident added value to the development. On

a survey conducted by Tang et al. (Tang, et al., 2005) around 85% percent of the

respondents considered design rationale as something important for the design justification

(setting its importance between 4 and 5 in a scale from 1 to 5). A similar percentage was

obtained for the frequency of considering alternative architecture designs in their designs.

Lee (Lee, 1997) discussed seven possible “services” that can be provided by any tool that

provides design rationale, some of which pending of a deeper exploration, namely:

1. Better design support: If the rationale is correctly structured, it can help any

designer to identify the different alternatives explored before the decision was

actually taken, which in turn could serve to detect inconsistencies in the existing

design, as well as supporting decision-making. As an example (Conklin, et al., 1991)

report on the use of a DR tool at the NCR company that helped to identify several

design omissions that would have cost three to six times more than the cost of

capturing and constructing the rationales.

2. Dependency management: Any design can be viewed as the process of managing

dependencies to yield a product that honors all dependencies among requirements

and the components that implement them (Lee, 1997). Burge and Brown (Burge, et

al., 2002) mention the possibility for the user to using rationale to verify that the

design meets the requirements and the designer’s intent. Design rationale eases

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 53

traceability, since it defines the existing path between requirements, the design

decisions taken, and the elements of the design produced as a result.

3. Collaboration and Project management. Explicitly assessing the rationale means

that a common vocabulary and project memories are shared across the stakeholders

involved in the project, which contributes to reduce the interaction among engineers

and contractors, and helps to improve the design process (Lee, 1997). Conklin and

Yamekovic (Conklin, et al., 1991) claim that, once the development team was trained

in the use of a gIBIS, a design rationale tool, users had the impression that meetings

were more productive.

4. Reuse/redesign/extension support. Reuse or redesign is improved in two different

ways: on one hand, it serves as a repository of knowledge, and secondly, the

decisions themselves that can be useful for future decisions in similar projects.

Rationale can serve to identify those portions of the design that can be reused

(Burge, 2001)

5. Better maintenance support. Because design rationales explain the design

decisions made, they can also help maintain the design. Burge provides an example

of use of DR techniques in order to perform corrective, perfective and enhancive

maintenance (Burge, 2001)

6. Learning support: design rationale contains important aspects of the know-how

used in each development. This information is very helpful for system designers, and

it is also possible for computational agents to learn from these decisions as Bracewell

et al. have done with Dred2.0 (Bracewell, et al., 2009).

7. Documentation support: design rationale can be used to automatically generate

documentation (i.e. not only what is designed and developed, but also why it was

developed). That is, for the elements of the design, we do have information regarding

why they were generated, and the reasons for these elements that lead to their

generation or modification. This information can be used to provide in the

documentation details about offering a picture of the history of the design and

reasons for the design choices as well as a view of the final product. (Burge, 2001)

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 55

3.4.3 NOTATION

The way to use DR varies depending on representation format and contents. Since the

seventies, there have been a plethora of different notations for design rationale. They all

have in common that they are based on entity-relationship models due to the convenience

of the use of node-link structures for computation as well as the view of design reasoning as

a sort of argumentation. That can also be seen as structured activity that can be represented

within a formal structure of nodes and links (Shum 1991). A notation particularly important,

that was the basis for other notations that extended it, is IBIS (Issue-Based Information

System). IBIS was developed during the 70,s by (Kunz, et al., 1970). IBIS uses a set of

elements (nodes in IBIS terminology) (such as positions, arguments, and resolutions) as

well as a set of relations that are used in a formal way to represent the rationale behind

decisions. The IBIS notation was used by Conklin and Yamekovic (Conklin, et al., 1991).

They developed two different tools (itIBIS and gIBIS) and tested them at NCR during the

nineties. Nowadays, the Dred2.0 tool, based also on IBIS, is being used by a subsidiary of

Rolls-Royce (Bracewell, et al., 2009).

The model proposed by IBIS had as its central element the issue. An issue is stated in the

form of a controversial question, with different points of view: issues can be categorized as

factual, deontic, explanatory, instrumental and conceptual (Noble, et al., 1998). For any

given issue, there can be many different positions (person’s responses to given issue),

indicating agreement or disagreement with the issue. In other cases, issues can have

different alternatives and each position can consider an optimal alternative. Positions are

supported or opposed by arguments, against or in favor of a position.

Lee (Lee, 1989) extends IBIS and creates a new language, the Design Rationale Language,

or DRL, “a language to provide a vocabulary for representing the qualitative aspects of

decision making -- such as the issues raised, pro and con arguments advanced, and

dependency relations among alternatives and constraints, that typically appear in a decision

making process”.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 56

Figure 3-10: DRL ontology, as depicted in (Lee, 1989)

The fundamental objects of DRL are goals, alternatives, and claims. Alternatives represent

the options to choose from, goals specify the properties of the ideal option, and claims

constitute arguments relevant for choosing. Other objects are no less essential in a decision

making, but either they are special cases of the above three (e.g. Decision Problem is a

subclass of Goal) or they are useful in general (e.g. Group, Viewpoint) or they are auxiliary

(e.g. Question, Procedure).

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 57

Finally, MacLean et al. propose a model based on Questions, Options and Criteria (QDC)

(MacLean, et al., 1991) in which questions identify the main issues, options provide possible

answers to questions, and criteria serve to compare and assess the options. The approach

they propose is Design Space Analysis, which takes into account the justifications for each

possible design, and reflects considerations such as consistency, models and analogies.

3.4.4 RATIONALE FOR DESIGN: RATIONALE AND SEURAT

Moreover, Burge and Brown (Burge, et al., 2008) describe the Software Using RATionale

(SEURAT) system. In line with the description of change impact analysis that we provided in

Section 3.1 of this thesis, the SEURAT system is based on the belief that software

development is, at its essence, a decision-making process.

A software development is therefore the final outcome derived from a set of design and

implementation decisions that are taken during the whole project development. They

highlight the fact that it is necessary to capture the rationale for decisions made, and the

developer’s intent behind their decision choices, as well as their evaluation of their

assumptions, requirements, quality attributes, and inter-decision dependencies.

The methodology outlined by Burge (Burge, 2005) and its tools can be applied to the

different workflows of the software development (Requirements, Analysis, Design,

Implementation, Testing and Maintenance). Moreover, Burge and Brown consider that these

different workflows overlap in time.

Rationale involves therefore not only the design phase, but also the remaining phases of the

software lifecycle. This rationale can be used for documentation, revision of designs, design

reuse, validation, evaluation and, particularly, for maintenance.

Burge (Burge, 2005) discusses on methods for Design Rationale Representation, Design

Rationale Capture and Design Rationale use, as well as on Software Design, Software

Architecture and Software Maintenance. The final tool that emerges as a result of this work

is the so-called SEURAT system. It defines the knowledge representation for the rationale,

provides a semi-formal argumentation structure, and uses inference to detect errors in the

rationale structure and content. SEURAT supports semantic inference via an argument

•

•

•

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 59

Figure 3-11: Seurat’s model for argumentation’s: RATSpeak, as shown in (Burge, 2005)

As can be seen in Figure 3-11 in SEURAT there are decision problems that are to be made

as part of the development process. A decision problem answers a set of questions, and has

a set of alternatives, each of them supported by a set of arguments. Arguments can be for

and against the proposed alternatives, and they can satisfy, address or violate requirements

or assumptions. Claims are in turn reasons why an alternative is good or bad. They are

specified using argument’s ontology. Ontology background knowledge gives relationships

between different arguments in the argument ontology and is used to check the rationale for

violations of the relationships. SEURAT was developed as an Eclipse (Clayberg, 2008)

Plugin and provided all these capabilities in a set of Eclipse Views and Editors.

3.5 CONCLUSIONS: CURRENT FLAWS OF ESTIMATIONS AND EXISTING
PROBLEMS FOR DESIGN RATIONALE

To summarize the conclusions obtained in this chapter, we find the following:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 65

4 OBJECTIVES OF THE THESIS

The main objective of this thesis is the development of a change impact model based on

BBNs. The main development took part in the framework of an ESA project: “Cost

Complexity and Change Impact” for ESA-ESTEC as detailed in its final report (Ocón, 2010).

The work on this project focused on the development of the so-called Adaptable Project

Estimation System (APES) tool, a system designed to provide different types of estimations

for software development projects in the aerospace sector. The project had two different

areas:

� APES for Project Estimations (APES-PE). The first component of the project focused

on traditional project estimations (like those commented in section 3.2 of this thesis).

These estimations provide effort, quality and risk estimations of the project, given a

project from which a set of attributes is known. The design of the topology of each BBN

was suggested by a tool, Weka (Hall, et al., 2009), and reviewed by an expert in the

field, that introduced changes. Once the BBN network is considered correct, CPTs are

adjusted automatically based on existing data from previous projects developed by two

different companies of the aerospace sector (Fuentetaja, et al., 2013).

� APES for Change Impact Estimations (APES-CIE). The second component, that is

the subject of this thesis, focused on the estimations for change impact. Here we found

that the approach had to be completely different. The network of interactions between

SLOs (the change impact analysis indicated in Section 3.1) was the driver for the

estimations and the underlying BBNs, and therefore the BBNs generated as a result

were, for each new project, different in nature, and it was not possible from previous

data from past projects not only to adjust the CPT,s, but even to generate a topology.

Therefore, a totally different approach had to be taken for change impact, and this is

the object of this thesis. The following sections outline the APES-CIE model and the

rationale that lead to its ontology.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 66

Figure 4-1: The APES project and its two main outcomes

 The main objectives focused on current needs in project development, being the first one

the need to determine the change impact throughout the lifetime of a project. As Kruchten

points out (Kruchten, 2000), in any project there are several workflows that need to be

managed in parallel in a coordinated manner: requirements elicitation, design, software

construction, deployment, testing and maintenance. These workflows span through the

entire lifetime and have strong dependencies among them. Therefore our first objective is:

O1: to develop a model to provide reliable estimations in order to determine the

change impact throughout the whole lifetime of a project.

That is, our aim is to develop a model that will be valid not only for the design process, but

for other processes as well as to related to software (or even hardware) development:

requirements elicitation, testing, maintenance. The model is to be validated via the

development of a system, the so-called APES-CIE (Adaptable Project Estimation System –

Change Impact Estimation part), and the testing of the validity of this model throughout the

use of APES-CIE tool in real developments.

In addition, this study has been promoted by the European Space Agency (ESA), so it has

to focus on space software development and maintenance (for on board and on-ground

software). As such, the model for change impact estimations and design rationale shall be in

line with the ESA standards for SW development, also known as the European Cooperation

APES

APES-PE

(Project estimations using BBNs)

APES-CIE

Change Impact Estimations

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 67

for Space Standardization, or ECSS standards (ECSS-E-40, 2009) (ECSS-E-40, 2003).

Therefore a second objective was:

O2: The APES-CIE Model shall be valid for the aerospace market

In Sections 3.1 and 3.2 we have seen that one of the main problems of estimations and

change impact is the uncertainty that is inherent to any development. Our model shall take

this into consideration; that is, that change impact estimates will have to be done without a

complete knowledge of the consequences of a change nor the right way to implement it,

namely:

O3: The APES-CIE model shall contemplate the inherent uncertainty associated to

any development. This uncertainty shall be managed using statistical techniques.

This means that, throughout the whole development lifecycle, the model will provide

estimations for changes, since uncertainty is considered inherent to any development. And

these estimations will be refined and adjusted periodically by the stakeholders.

As we have seen in section 3.3, BBN is a statistical technique, that is able to provide

relevant estimations in presence of uncertainty, and therefore:

O4: The statistical technique to be used by the APES-CIE model shall be based on

Bayesian Belief networks

Which means that the uncertainty associated to the elements involved in a change will be

represented by variables with probabilities associated to them, and these variables will be

linked in a Bayesian Belief Network. In other words, we will need to identify a valid

underlying BBN model relating all the elements involved in change impact analysis.

One of the main conclusions on our section for change impact (Section 3.1.3) was that any

development process can be seen as a chain of change decisions that can be linked to

other decisions, that is:

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 68

O5: Our change impact estimation model shall conceive the outcome of a software

development as a result of a network of design decisions.

Being decisions the key for taking actions that will modify the outcome of any development,

our model conceives decisions are the key drivers of the change process. And our model

shall be designed accordingly.

In section 3.4 we have seen the volatility of the decisions: the fact that, throughout the

project development most decisions are changed. But decisions have causes and effects.

Among these possible causes and effects we find the Software Lifetime Objects (SLOs) that

we mentioned in Section 3.1: requirements, classes, documents, modules, etc. That is:

O6: SLOs, among other elements, shall be linked to design decisions, either as

inputs (causes for the decisions to be taken) or as outputs (effects of such

decisions).

Since we want the model to be valid for change impact analysis, we need to be able to

identify the SLOs affected by a decision, or those SLOs that have some influence on taking

that decision (that, is, they are causes of the decision to be taken).

We need to determine new ways to link those elements related to design decisions (points in

which a change is decided) required during project’s development. By doing so, we

contribute to determine the traceability of the SLOs.

In section 3.4 we have seen the importance of the rationale for design decisions. In general,

each change is caused by a change decision, and this decision has an implicit rationale.

Capturing the rationale provides advantages for any development since it provides multiple

benefits: better design, team collaboration, support and maintenance. Moreover, change

impact and design rationale are inter-related. The model must not only contain the

decisions, but the rationale behind them; that is:

O7: It shall be possible, by using the model, to capture the rationale for decisions

Our model should enable users to explicit and declaratively express the main elements of

the design rationale. It should also allow users to explicitly represent the relations among

them.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 69

When we discussed design rationale, we found the problem of data gathering as a key

obstacle in design rationale. Development teams in general are reluctant to changes in the

way they work, and they do not see a real advantage on capturing the rationale for a design,

considering the additional time required to gather all this information. To minimize this

problem, one of the key objectives will be to maximize its usability, in other terms:

O8: The model shall be easy to use by developers

For this purpose, the elements linked to the process of decision making for each decision

shall be based on common and intuitive concepts for its users, and we shall create an

ontology for design rationale that shall not be intrusive from the developer’s point of view.

While the model will be based on BBNs in an “internal” model, we will try to find an “external”

model (the one seen by the user) that can be easily understood.

In addition to all this objectives, in section 3.3 we identified both predictive and diagnostic

reasoning as key advantages of BBNs, which leads us to the next objective.

09: The model shall take advantage of the predictive and diagnostic reasoning

capabilities of BBNs.

In section 3.1 we identified three steps for change impact analysis: identification of the

change, tracing of the impact, and implementation of changes. We discussed the main

techniques for change impact analysis: dependency analysis and traceability analysis.

Although there are automated methods for both techniques, none of the automated methods

provide estimations of the probabilities for SLOs to be involved in a change. Change impact

analysis, at the end, is a process to be performed by humans (cannot rely on automated

techniques). Also in sections 3.1 and 3.2 we identified that one of the problems for change

impact estimations is that each change is performed under certain circumstances, and

therefore this singularity of the change makes identifying the consequences of changes

based on past, historical data very difficult. In other words:

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 70

O10: Instead of being based on historical data, or automated techniques, the

model shall be based on the result of change impact analysis made by users.

Considering that for change impact, in the most general case, there is no precedent of an

identical situation, the model will depend on the manual input from developers of the

elements related to the rationale, as well as the evaluation of the probabilities associated to

the effects that a potential decision will have. However, we will leave open the model to the

automatically generated inputs based on some of the automated techniques discussed in

Section 3.1.2

For this CIE model, the APES-CIE tool will serve as the test bench in which to validate the

capabilities of the model, by applying the model to practical cases. In line with the objectives

for the model, the tool has two main requirements associated;

a. The complexity of the BBN shall be hidden to the users. Based on BBNs,

our aim here is to be able to represent the causal relations of design decisions

made during software development, in a way that can be easily understood by

developers (in line with objective O8)

b. APES-CIE shall use the Eclipse IDE as the environment for the tool: as in

the case of SEURAT, our tool will be a plug-in for Eclipse. By doing so, we

guarantee that developers can use from the IDE, therefore easing its adoption

(in line with objective O8)

Note that these last requirements are exclusive of the tool, and do not apply to the model.

The general characteristics of the APES-CIE tool are provided in Section 6.1. In the

following section we will discuss the APES-CIE ontology.

•

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 72

5.1 APES-CIE MODEL: OVERVIEW

The philosophy of the design rationale for change impact in our system conceives the

development as a series of trade-offs. Each trade-off corresponds to the way designers

respond to a specific question that requires design decisions to be made. Trade-offs can

be, in fact, considered equivalent to the concept of “issues” from IBIS.

For instance, suppose that, at a given point in the development, developing a new feature to

fulfill a requirement is needed. This feature can be implemented in many different, mutually

exclusive, ways. For instance, it can be made by reusing existing software or doing it from

scratch, or it can involve a chain of decisions that are not necessarily exclusive (i.e. a series

of design decisions).

As in the case of the AREL model, each decision has an “status” attribute, that is a discrete

variable that can have two possible values: either VALID or INVALID, that indicates that this

decision has been taken (=VALID) or discarded (=INVALID). Since the design decision has

an uncertainty associated to it, this attribute of the decision corresponds to a BBN variable.

But decisions have both causes that influence them (either positively or negatively), that are

inputs to the decision, as well as outputs, in the form of consequences.

In the AREL model, both inputs and outputs were elements of the design (Design

Elements). In the APES-CIE system, we have extended this concept to “decision element”.

In APES-CIE, a “decision element” is any element that is involved in a decision, either as an

input (cause) or as an output (consequence). Contrary to the AREL model, it is not restricted

to design elements. Each decision element, in turn, can also have an equivalent discrete

variable (“status”) that can have two different values.

The change impact evaluation is therefore conceived as a set of Trade-offs, each consisting

of a set of decisions to be made. These decisions can be mutually exclusive (i.e. a decision

made implies to discard the remaining decisions of that trade-off) or not (a trade-off involves

various decisions that are independent from each other). Causes and its consequences for

decisions are always “decision elements”. The set of possible decision elements is restricted

to five different types that correspond to concepts traditionally used during the system’s

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 73

design in the aerospace field: requirements, assumptions, goals, environmental issues and

design elements. Figure 5-1 shown in the next page) is a class diagram that describes our

model.

“A Bayesian model for Change Impact on Software Estimations - Thesis

74

Figure 5-1: The CIE Model

class APES-CIE Model

����

��������	
�����

����

����������������

����

����������������

�� ��	
����
����

�� �
�����
�������
����

�� ����������
����������

����

��
���
��

�� ��	
����
����

�� �
�����
�������
����

����

��������

�� �����
��
����������
��

�� �
�
������
�������
�
��

��
��
����
���������

�� �
�
���	
�
 ���
��� ���

�� ��������
�

����
�������
�
��

�� ����������
����������

����

�����������

��
��
����
!���
	
�
���

�� �
�
������
!���
	
�
�
�
��

�� ����������
����������

�� ��������
�
������
!���
	
�
�
�
��

����

����������

�� �
�
�����"���	�
����
�
��

�� ����������
����������

�� ��������
�
�����"���	�
����
�
��

����

��
��

�� �
�
�����#����
�
��

�� ��������
�
�����#����
�
��

�� ����������
����������

����

���������������

�� ���
����
������
	
�
���

�� ��
�	�

����$���%�������&���

�� �
�
������
������
	
�
�
�
��

�� ��������
�
������
������
	
�
�
�
��

����

�����������
�

�� �
�
������������	
�
���
�
��

�� ��������
�
������������	
�
���
�
��

�'� �����
�

����� 	!�

�' ������
�

��������	!�

1..*

REQUIRES1

1..*

IS_ENTRY_TO

1..*

1

CAUSED_BY

1..*

1..*

PRODUCES

1..*

1

HAS_A

1

1..*

IS_ENTRY_TO

1..*1..

HAS_A

1

“A Bayesian model for Change Impact on Software Estimations”

Thesis

75

As shown in Figure 5-1 causes and consequences inherit from a common class: “decision

element”. This “decision element” has a set of common attributes (name and description). In

addition, a set of classes inherit both from “inputs” and “outputs”: these are the different

types of decision elements, namely: requirements, assumptions, goals, design elements,

and environmental. Decision elements can play simultaneously the role of input to a decision

(cause) and output of another, different decision (consequence).

Each project has a set of trade-offs associated to it, with its corresponding decisions and

decision elements that form a single BBN. Variables of this BBN are the status of the

decisions (VALID, INVALID) and the statuses of the decision elements. As we mentioned

earlier, status for decision elements are discrete variables. They can have the following

values:

� For requirements, status can be either STABLE (meaning the requirement is part of the

baseline) or VOLATILE (meaning the requirement is not yet part of the baseline)

� Design elements can be STABLE or VOLATILE (stable meaning that they will take part

of the final design, VOLATILE meaning that it is yet to be decided)

� Assumptions can be TRUE or FALSE, TRUE indicates that we know for sure the

assumption is correct.

� Goals can be ACHIEVED or NOT ACHIEVED.

Each decision has an associated CPT based on the causes related to it (this is represented

by the CPT_Decision class in Figure 5-1). In turn, each decision element that is an output

has a set of decisions for which it is a consequence, and therefore has an associated CPT

whose entries are those decisions for which it is a consequence.

The following sections describe in detail each element of this model.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 83

6 THE APES CIE SYSTEM

To demonstrate the usefulness and advantages of the model exposed in the previous

section, the so-called APES-CIE tool was developed to allow us the definition of change

decisions affecting SLO,s in real projects, and to ease the decision-making process under

uncertainty.

To maximize the usability of the APES-CIE, the system, developed for ESTEC in the

framework of the CCI contract, this tool was conceived as an extension of an existing IDE

(Integrated Desktop Environment). From the IDE it is possible to link easily existing DLOs

(source modules, code classes, requirements) to the design changes created from the

system. The links between causes (the DLOs that produce the need for a change) and the

effects of the decision (the DLOs produced as a result of the decision) was to be reflected

internally in a Directed Acyclic Graph (DAG) along with “a priori” distribution probabilities for

the root-nodes and CPTs for the non-root nodes. But these DAGs and CPTs would be

hidden from the user, so that he or she does not have to burden with the details of the

generated BBN network.

The IDE chosen for the implementation was Eclipse. The reason to develop APES-CIE

within the Eclipse framework was the following:

a. Nowadays, Eclipse has a widespread use as a generic IDE in multiple developments.

b. Eclipse provides the possibility to develop in relatively easy way extensions to its

functionalities in the form of plugins (Clayberg, et al., 2008).

c. There is a current trend for UML tools to be integrated into the Eclipse’s IDE. Taking

this trend into account, the advantage of this approach is that it eases the traceability

from the code and design elements to the estimation model elements, since both

models are generated in the same development environment.

d. In addition, Eclipse eases the automatic generation of documentation, allowing

developers and managers to work on the design and the BBN from the very

beginning.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 84

e. Also the development of the APES tool as an Eclipse’s plug-in makes it independent

of any UML design tool being used. The same design and coding IDE (Eclipse) shall

therefore act as the Man-machine interface (MMI) for adding and modifying the

corresponding DAGs.

This extension to Eclipse, developed “ad-hoc” for the APES Change Impact functionality

allows a user to insert a cascade of change decisions that, in a similar way as in the AREL

model, links these decisions (design rationale) to its causes and effects (design elements),

being causes and effects SLOs of the development.

Internally, the APES-CIE tool creates the corresponding DAGs automatically. This reflects a

representation of the mental process of decision making, based on probabilistic estimates

from causes to effects.

For the propagation of probability to be performed, APES requires a BBN Engine, an

external library. In our case, the external engine being used was Netica (Netica, 2008).

Netica provides an API so that Bayesian propagation is performed by the system via calls to

Netica’s software.

By embedding APES into an IDE, the system allows users to link elements from many

different workflows (requirements, design, testing) of the design, and therefore it matches

one of the key requirements that were needed: the possibility to perform change estimations

throughout the whole lifecycle, as well as to refine them as soon as the certainty increases.

Also the system can easily be enhanced taking advantage of future plug-ins developed for

Eclipse.

Contrary to the other subset of the APES tool (APES-PE), APES-CIE is not based at all in

historical data, since, as we stated previously, for decisions to be taken when evaluating a

change we need to address situations that are, in the immense majority of the cases,

singular and based on the characteristics of the project and its situation in the moment in

which the decision has to be considered

All these capabilities provide a global greater flexibility of the tool with respect to future

changes and improvements in BBN technologies.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 85

6.1 GENERAL CHARACTERISTICS OF THE APES-CIE SYSTEM

The main requirements for the APES CIE system, that were its key drivers, are the following:

� Formalization of the DAG networks and elements. The tool uses intuitive, user-friendly

notation. Elements of the graphics will correspond to the equivalent BBN elements

(variables, states, causal relationships) so that it will be easy to familiarize users with

the tool, even for users without previous knowledge of BBN technology.

� Clean and concise interfaces to the BBN API. The primitives for the communication to

the BBN API are clearly identified, in order to make its future porting to a different BBN

engine possible.

� Extensive configurability. If a single user might find a use for an item to be configurable,

then that item will be configurable.

� Hierarchical configurability. Configuration items are configured at various levels, the

one which applies being the most specific one. For example, the system may be

globally configured not to show by default the corresponding CPTs, but a certain view

item for a particular DAG may be individually configured to show the values.

� Flexible propagation. The user is able to select the moment at which the propagation of

the values is performed.

� "Everything is editable" paradigm. It is possible from the MMI to modify all the values

that have any impact in the computation of the Bayesian Network outcomes. For those

values that need any additional textual value, it is possible for the user to introduce and

modify it.

� Flexibility on the selection of displayed properties. The GUI shows the name, value and

description for any parameter.

� Clear separation of computed and manually added values: it is possible from the GUI

to identify, without any additional action, which values are computed and which values

have been manually introduced. The MMI uses different colours for this.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 86

� Mapping between DAGs and Eclipse is straightforward. There is a one-to-one

relationship between Eclipse Projects and DAGs. Each project contains a single DAG

that has all its network of decisions.

� Portability. The system, as Eclipse, is able to work in various operating systems, and

has been tested as a minimum in Linux and Windows.

� Commercial off-the-shelf (COTS) software used by the tool is re reduced to a minimum.

The system shall not use any COTS product, except those required by the BBN engine

(Netica) and Eclipse.

6.2 ASSUMPTIONS AND DEPENDENCIES

During the design and implementation of the system the following quality attributes were

prioritized:

� Learnability and intuitiveness: the interface is designed to allow a smooth learning

curve.

� Efficiency: The tool is designed so that it does not consume many resources, in terms

of CPU, RAM memory and disk.

� Error logging: Errors occurred during the use of the tool are logged. It is possible to

perform a diagnosis of problems occurred using the tool by analysing its logs.

� Simplicity: Tool has been designed keeping in mind simplicity from both the usage

and the software design point of view.

� Defensive programming w.r.t. bad inputs: The tool does not allow users to introduce

data that could cause a malfunctioning of the tool, or that might cause it to provide an

unexpected behaviour.

� Forgiveness: When introducing wrong values, and whenever possible, users are

informed of the reasons why their input values were rejected.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 87

� Feedback: It is possible for the user to modify the variables that affect the

computation.

� CPT data (probabilistic estimates) will be input by the user, although this process will

be made for the user as easy and intuitive as possible

� Automatic gathering: whenever possible, the tool will perform automatic propagation

of all elements derived from the rationale, as described by the user.

6.3 OPERATING ENVIRONMENT

The operating environment of the tool stems from the previous discussion of requirements,

and from what we learned in Chapters 1 and 2 of this thesis. The tool runs as a plug-in

within Eclipse. The tool is oriented towards its use from a desktop PC or a laptop allowing

users change impact estimations based on change impact analysis elements defined by the

user. It is the user that performs the change impact analysis, and manually defines the

variables (SLOs) involved in the BBN, as well as its CPTs, being the tool in charge of the

impact estimations for the given analysis.

A main goal of the tool therefore is to provide support for the elements that perform the

change impact analysis depicted in Chapter 1. In this chapter we saw that during the whole

lifecycle of a given project, design is subject to changes. These changes could eventually

cause a tremendous effect on the evolution of the project that has been identified as “the

ripple effect”. And each change had a set of SLOs associated, both as inputs and outputs.

In Chapter 2 we identified “design changes” or more generally “change” as the

consequences of “design decisions”, being each “design decision” triggered by a design

rationale. In this rationale we identified additional elements (such as “goals”, “alternatives”),

in most cases not traditionally identified and written as part of the design, that played as a

key role in the decision.

Moreover, we identified the need in SW projects to work under uncertainty, and the need to

perform “what-if” analysis, that could help in the process of decision w.r.t different options.

•

•

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 90

Figure 6-1: Selecting the Change Impact View in the Show View Dialog in Eclipse.

Eclipse is a multi-project tool. Therefore, the Change Impact View is to be selected for a

particular project. Once the user selects the” Change Impact View” to be opened, a dialog is

shown on the screen asking for the project for which the tree view will be shown, as can be

seen in the following figure:

Figure 6-2: Selecting a project for the change impact view.

•

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 93

Figure 6-3: First steps: adding a requirement to an empty change impact treee

It is not necessary for a user to add all the requirements for the system. Users should only

add those requirements that are considered to be either causes for decisions to be taken, or

consequences of such decisions. However, in the case of requirements, it is particularly

important to check that all requirements are to be met.

In addition, requirements can be added as “sub-requirements” of other particular

requirements. Figure 5-4 shows the aspect that the requirements branch of the model tree

will have once a whole set of requirements have been added by the user.

In Figure

added. Users can also add requirements to the change impact view later on, if they are

considered relevant for the decisions to be made.

Note that, when saving a requirement, requirements names

for this element:

case the system shows a warning using a window like the one shown in Figure 5 3

Figure

Figure 6-4 only those requirements relative to the memory management too

added. Users can also add requirements to the change impact view later on, if they are

considered relevant for the decisions to be made.

Note that, when saving a requirement, requirements names

for this element: the

case the system shows a warning using a window like the one shown in Figure 5 3

Figure 6-4: Partial view of the requirements in the Change Impact Tree

only those requirements relative to the memory management too

added. Users can also add requirements to the change impact view later on, if they are

considered relevant for the decisions to be made.

Note that, when saving a requirement, requirements names

 system will not allow

case the system shows a warning using a window like the one shown in Figure 5 3

“A Bayesian model for Change Impact on Software Estimations”

: Partial view of the requirements in the Change Impact Tree

only those requirements relative to the memory management too

added. Users can also add requirements to the change impact view later on, if they are

considered relevant for the decisions to be made.

Note that, when saving a requirement, requirements names

will not allow

case the system shows a warning using a window like the one shown in Figure 5 3

“A Bayesian model for Change Impact on Software Estimations”

 94

: Partial view of the requirements in the Change Impact Tree

only those requirements relative to the memory management too

added. Users can also add requirements to the change impact view later on, if they are

considered relevant for the decisions to be made.

Note that, when saving a requirement, requirements names

will not allow the name

case the system shows a warning using a window like the one shown in Figure 5 3

“A Bayesian model for Change Impact on Software Estimations”

: Partial view of the requirements in the Change Impact Tree

only those requirements relative to the memory management too

added. Users can also add requirements to the change impact view later on, if they are

Note that, when saving a requirement, requirements names

the name to collide with existing elements. In such

case the system shows a warning using a window like the one shown in Figure 5 3

“A Bayesian model for Change Impact on Software Estimations”

: Partial view of the requirements in the Change Impact Tree

only those requirements relative to the memory management too

added. Users can also add requirements to the change impact view later on, if they are

Note that, when saving a requirement, requirements names are used as a single id

to collide with existing elements. In such

case the system shows a warning using a window like the one shown in Figure 5 3

“A Bayesian model for Change Impact on Software Estimations”

: Partial view of the requirements in the Change Impact Tree

only those requirements relative to the memory management tool have been

added. Users can also add requirements to the change impact view later on, if they are

are used as a single id

to collide with existing elements. In such

case the system shows a warning using a window like the one shown in Figure 5 3

“A Bayesian model for Change Impact on Software Estimations”

Thesis

l have been

added. Users can also add requirements to the change impact view later on, if they are

are used as a single identifier,

to collide with existing elements. In such

case the system shows a warning using a window like the one shown in Figure 5 3.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

l have been

added. Users can also add requirements to the change impact view later on, if they are

entifier,

to collide with existing elements. In such

This applies

impact (assumption, environmental, goal, tradeoff, decision). That is, change impact

elements are identified by their name that should be uni

system does not allow users to input two requirements with the same name, or change

impact elements without a name, since they will be used to build the internal BBN.

6.4.1.2 S
The next decision elements to be added a

assumptions can be added to the change impact tree by selecting the “Assumptions” branch

(See Figure

Once the user has clicked on the “New Assumption” option, a new tab will show up on the

Eclipse’s editor, showing the data to be edited of t

As we did previously with requirements, we

think will affect future decisions.

assumptions is that we are assuming a very high degree of similarity of the Alphanumeric

Displays of the spacecraft’s memory

this assumption not be valid, it would affe

adapting existing software assets.

applies not only for requirements, but also for any element to be added to the change

impact (assumption, environmental, goal, tradeoff, decision). That is, change impact

elements are identified by their name that should be uni

system does not allow users to input two requirements with the same name, or change

impact elements without a name, since they will be used to build the internal BBN.

STEP 1.2 ADDING

The next decision elements to be added a

assumptions can be added to the change impact tree by selecting the “Assumptions” branch

Figure 6-3), and clicking with the right button of the mouse

Once the user has clicked on the “New Assumption” option, a new tab will show up on the

Eclipse’s editor, showing the data to be edited of t

As we did previously with requirements, we

think will affect future decisions.

assumptions is that we are assuming a very high degree of similarity of the Alphanumeric

of the spacecraft’s memory

this assumption not be valid, it would affe

adapting existing software assets.

Figure 6-

not only for requirements, but also for any element to be added to the change

impact (assumption, environmental, goal, tradeoff, decision). That is, change impact

elements are identified by their name that should be uni

system does not allow users to input two requirements with the same name, or change

impact elements without a name, since they will be used to build the internal BBN.

DDING ASSUMPTIONS

The next decision elements to be added a

assumptions can be added to the change impact tree by selecting the “Assumptions” branch

), and clicking with the right button of the mouse

Once the user has clicked on the “New Assumption” option, a new tab will show up on the

Eclipse’s editor, showing the data to be edited of t

As we did previously with requirements, we

think will affect future decisions.

assumptions is that we are assuming a very high degree of similarity of the Alphanumeric

of the spacecraft’s memory

this assumption not be valid, it would affe

adapting existing software assets.

“A Bayesian model for Change Impact on Software Estimations”

-5: Adding a requirement that already

not only for requirements, but also for any element to be added to the change

impact (assumption, environmental, goal, tradeoff, decision). That is, change impact

elements are identified by their name that should be uni

system does not allow users to input two requirements with the same name, or change

impact elements without a name, since they will be used to build the internal BBN.

SSUMPTIONS
The next decision elements to be added a

assumptions can be added to the change impact tree by selecting the “Assumptions” branch

), and clicking with the right button of the mouse

Once the user has clicked on the “New Assumption” option, a new tab will show up on the

Eclipse’s editor, showing the data to be edited of t

Figure 6-6:

As we did previously with requirements, we

think will affect future decisions. In this particular

assumptions is that we are assuming a very high degree of similarity of the Alphanumeric

of the spacecraft’s memory (AND) with respect to previous developments. Should

this assumption not be valid, it would affe

adapting existing software assets. That is the reason why is

“A Bayesian model for Change Impact on Software Estimations”

 95

Adding a requirement that already

not only for requirements, but also for any element to be added to the change

impact (assumption, environmental, goal, tradeoff, decision). That is, change impact

elements are identified by their name that should be uni

system does not allow users to input two requirements with the same name, or change

impact elements without a name, since they will be used to build the internal BBN.

The next decision elements to be added are assumptions. In a similar way to

assumptions can be added to the change impact tree by selecting the “Assumptions” branch

), and clicking with the right button of the mouse

Once the user has clicked on the “New Assumption” option, a new tab will show up on the

Eclipse’s editor, showing the data to be edited of the new assumption.

: Adding an assumption

As we did previously with requirements, we will add exclusively those assumptions that we

In this particular

assumptions is that we are assuming a very high degree of similarity of the Alphanumeric

(AND) with respect to previous developments. Should

this assumption not be valid, it would affect seriously the effort that needs to be invested in

That is the reason why is

“A Bayesian model for Change Impact on Software Estimations”

Adding a requirement that already

not only for requirements, but also for any element to be added to the change

impact (assumption, environmental, goal, tradeoff, decision). That is, change impact

elements are identified by their name that should be unique for a given

system does not allow users to input two requirements with the same name, or change

impact elements without a name, since they will be used to build the internal BBN.

re assumptions. In a similar way to

assumptions can be added to the change impact tree by selecting the “Assumptions” branch

), and clicking with the right button of the mouse

Once the user has clicked on the “New Assumption” option, a new tab will show up on the

he new assumption.

Adding an assumption

will add exclusively those assumptions that we

In this particular example, one of the most important

assumptions is that we are assuming a very high degree of similarity of the Alphanumeric

(AND) with respect to previous developments. Should

ct seriously the effort that needs to be invested in

That is the reason why is

“A Bayesian model for Change Impact on Software Estimations”

Adding a requirement that already exists

not only for requirements, but also for any element to be added to the change

impact (assumption, environmental, goal, tradeoff, decision). That is, change impact

que for a given

system does not allow users to input two requirements with the same name, or change

impact elements without a name, since they will be used to build the internal BBN.

re assumptions. In a similar way to

assumptions can be added to the change impact tree by selecting the “Assumptions” branch

), and clicking with the right button of the mouse.

Once the user has clicked on the “New Assumption” option, a new tab will show up on the

he new assumption.

Adding an assumption

will add exclusively those assumptions that we

example, one of the most important

assumptions is that we are assuming a very high degree of similarity of the Alphanumeric

(AND) with respect to previous developments. Should

ct seriously the effort that needs to be invested in

That is the reason why is should be taken into account

“A Bayesian model for Change Impact on Software Estimations”

not only for requirements, but also for any element to be added to the change

impact (assumption, environmental, goal, tradeoff, decision). That is, change impact

que for a given type of element;

system does not allow users to input two requirements with the same name, or change

impact elements without a name, since they will be used to build the internal BBN.

re assumptions. In a similar way to requirements,

assumptions can be added to the change impact tree by selecting the “Assumptions” branch

Once the user has clicked on the “New Assumption” option, a new tab will show up on the

will add exclusively those assumptions that we

example, one of the most important

assumptions is that we are assuming a very high degree of similarity of the Alphanumeric

(AND) with respect to previous developments. Should

ct seriously the effort that needs to be invested in

be taken into account

“A Bayesian model for Change Impact on Software Estimations”

Thesis

not only for requirements, but also for any element to be added to the change

impact (assumption, environmental, goal, tradeoff, decision). That is, change impact

type of element; the

system does not allow users to input two requirements with the same name, or change

requirements,

assumptions can be added to the change impact tree by selecting the “Assumptions” branch

Once the user has clicked on the “New Assumption” option, a new tab will show up on the

will add exclusively those assumptions that we

example, one of the most important

assumptions is that we are assuming a very high degree of similarity of the Alphanumeric

(AND) with respect to previous developments. Should

ct seriously the effort that needs to be invested in

be taken into account.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

not only for requirements, but also for any element to be added to the change

impact (assumption, environmental, goal, tradeoff, decision). That is, change impact

the

system does not allow users to input two requirements with the same name, or change

requirements,

assumptions can be added to the change impact tree by selecting the “Assumptions” branch

Once the user has clicked on the “New Assumption” option, a new tab will show up on the

will add exclusively those assumptions that we

example, one of the most important

assumptions is that we are assuming a very high degree of similarity of the Alphanumeric

(AND) with respect to previous developments. Should

ct seriously the effort that needs to be invested in

.

Assumptions normally are considered inputs to decision

be considered ou

reinforce its validity.

6.4.1.3 S
In Chapter

requirements, but that will need to be taken into account for a decision: environmental

conditions in which the SW will have to run; organizational aspects; the team that we use;

the availability

aspects. In

account, that are shown in

These environmental issues refer all to the characteristics of the

work, that is:

development is to be done in Java)

have an impact,

three programmers for the development team

development had to be done

existing Microsoft Access will be available.

Other environmental issues could refer, for instance, to problems with the project plan,

unavailability of SW assets required, etc… As in the case of the

issues are traditionally

consequences o

Assumptions normally are considered inputs to decision

be considered outputs to decisions, since a given decision can invalidate an assumption, or

reinforce its validity.

STEP 1.3: ADDING

In Chapter 5.4.5 we define

requirements, but that will need to be taken into account for a decision: environmental

conditions in which the SW will have to run; organizational aspects; the team that we use;

the availability of a given asset (such as a simulator required for testing); or organizational

In our example

account, that are shown in

hese environmental issues refer all to the characteristics of the

work, that is: whether they will have

development is to be done in Java)

have an impact, if the development is to be done in Tcl/Tk), wh

programmers for the development team

development had to be done

existing Microsoft Access will be available.

Other environmental issues could refer, for instance, to problems with the project plan,

unavailability of SW assets required, etc… As in the case of the

issues are traditionally

consequences of decisions as well.

Assumptions normally are considered inputs to decision

tputs to decisions, since a given decision can invalidate an assumption, or

DDING ENVIRONMENTAL ISSUES

we defined “e

requirements, but that will need to be taken into account for a decision: environmental

conditions in which the SW will have to run; organizational aspects; the team that we use;

of a given asset (such as a simulator required for testing); or organizational

example, we have four

account, that are shown in

Figure

hese environmental issues refer all to the characteristics of the

whether they will have

development is to be done in Java)

if the development is to be done in Tcl/Tk), wh

programmers for the development team

development had to be done

existing Microsoft Access will be available.

Other environmental issues could refer, for instance, to problems with the project plan,

unavailability of SW assets required, etc… As in the case of the

issues are traditionally causes

f decisions as well.

“A Bayesian model for Change Impact on Software Estimations”

Assumptions normally are considered inputs to decision

tputs to decisions, since a given decision can invalidate an assumption, or

NVIRONMENTAL ISSUES

d “environmental elements” as those that are not considered

requirements, but that will need to be taken into account for a decision: environmental

conditions in which the SW will have to run; organizational aspects; the team that we use;

of a given asset (such as a simulator required for testing); or organizational

, we have four

Figure 6-7: Environmental issues of the example

hese environmental issues refer all to the characteristics of the

whether they will have Good Java Knowledge

development is to be done in Java), whe

if the development is to be done in Tcl/Tk), wh

programmers for the development team

development had to be done from scratch)

existing Microsoft Access will be available.

Other environmental issues could refer, for instance, to problems with the project plan,

unavailability of SW assets required, etc… As in the case of the

causes for decisions, however our model allows them to be

f decisions as well.

“A Bayesian model for Change Impact on Software Estimations”

 96

Assumptions normally are considered inputs to decision

tputs to decisions, since a given decision can invalidate an assumption, or

NVIRONMENTAL ISSUES
nvironmental elements” as those that are not considered

requirements, but that will need to be taken into account for a decision: environmental

conditions in which the SW will have to run; organizational aspects; the team that we use;

of a given asset (such as a simulator required for testing); or organizational

, we have four important environmental

Environmental issues of the example

hese environmental issues refer all to the characteristics of the

Good Java Knowledge

, whether they will have

if the development is to be done in Tcl/Tk), wh

programmers for the development team

from scratch), and whether

existing Microsoft Access will be available.

Other environmental issues could refer, for instance, to problems with the project plan,

unavailability of SW assets required, etc… As in the case of the

for decisions, however our model allows them to be

“A Bayesian model for Change Impact on Software Estimations”

Assumptions normally are considered inputs to decisions (as it is in this case)

tputs to decisions, since a given decision can invalidate an assumption, or

nvironmental elements” as those that are not considered

requirements, but that will need to be taken into account for a decision: environmental

conditions in which the SW will have to run; organizational aspects; the team that we use;

of a given asset (such as a simulator required for testing); or organizational

important environmental

Environmental issues of the example

hese environmental issues refer all to the characteristics of the

Good Java Knowledge

ther they will have good Tcl/Tk knowledge

if the development is to be done in Tcl/Tk), wh

 (which will be very important if the

, and whether

Other environmental issues could refer, for instance, to problems with the project plan,

unavailability of SW assets required, etc… As in the case of the

for decisions, however our model allows them to be

“A Bayesian model for Change Impact on Software Estimations”

(as it is in this case)

tputs to decisions, since a given decision can invalidate an assumption, or

nvironmental elements” as those that are not considered

requirements, but that will need to be taken into account for a decision: environmental

conditions in which the SW will have to run; organizational aspects; the team that we use;

of a given asset (such as a simulator required for testing); or organizational

important environmental issues to be taken into

Environmental issues of the example

hese environmental issues refer all to the characteristics of the team that will perform the

 (that will have an impact

good Tcl/Tk knowledge

if the development is to be done in Tcl/Tk), whether we will

(which will be very important if the

, and whether the former developers of the

Other environmental issues could refer, for instance, to problems with the project plan,

unavailability of SW assets required, etc… As in the case of the assumptions,

for decisions, however our model allows them to be

“A Bayesian model for Change Impact on Software Estimations”

(as it is in this case), but shall also

tputs to decisions, since a given decision can invalidate an assumption, or

nvironmental elements” as those that are not considered

requirements, but that will need to be taken into account for a decision: environmental

conditions in which the SW will have to run; organizational aspects; the team that we use;

of a given asset (such as a simulator required for testing); or organizational

issues to be taken into

team that will perform the

that will have an impact

good Tcl/Tk knowledge

we will have

(which will be very important if the

the former developers of the

Other environmental issues could refer, for instance, to problems with the project plan,

assumptions, environmental

for decisions, however our model allows them to be

“A Bayesian model for Change Impact on Software Estimations”

Thesis

, but shall also

tputs to decisions, since a given decision can invalidate an assumption, or

nvironmental elements” as those that are not considered

requirements, but that will need to be taken into account for a decision: environmental

conditions in which the SW will have to run; organizational aspects; the team that we use;

of a given asset (such as a simulator required for testing); or organizational

issues to be taken into

team that will perform the

that will have an impact if the

good Tcl/Tk knowledge (also will

 more than

(which will be very important if the

the former developers of the

Other environmental issues could refer, for instance, to problems with the project plan,

environmental

for decisions, however our model allows them to be

“A Bayesian model for Change Impact on Software Estimations”

Thesis

, but shall also

tputs to decisions, since a given decision can invalidate an assumption, or

nvironmental elements” as those that are not considered

requirements, but that will need to be taken into account for a decision: environmental

conditions in which the SW will have to run; organizational aspects; the team that we use;

of a given asset (such as a simulator required for testing); or organizational

issues to be taken into

team that will perform the

if the

also will

more than

(which will be very important if the

the former developers of the

Other environmental issues could refer, for instance, to problems with the project plan,

environmental

for decisions, however our model allows them to be

6.4.1.4 S
According to the definition we provided

are important to be achieved

company to have a system that can be reused for further developm

considered an internal goal

before the end of the year, moment in which the programme

involved in another project. This requirement is n

an internal goal for the company that will ease the

long term.

Goals are typical

some cases, they can also play the

the cause of it

6.4.1.5 S
The last type of decision element

others, classes, modules, diagrams, documents,

general case, they are outputs to decisions, but can also be inputs, as in the AREL model.

This corresponds to the tr

In the example, we are considering as possible outcomes of our design decisions three

different possibilities: either a SW t

development,

STEP 1.4 ADDING

ording to the definition we provided

are important to be achieved

company to have a system that can be reused for further developm

considered an internal goal

before the end of the year, moment in which the programme

in another project. This requirement is n

an internal goal for the company that will ease the

.

Goals are typically consequences of decisions, and as such are outputs to decisions, but in

some cases, they can also play the

the cause of it).

STEP 1.5 ADDING

The last type of decision element

classes, modules, diagrams, documents,

general case, they are outputs to decisions, but can also be inputs, as in the AREL model.

This corresponds to the tr

In the example, we are considering as possible outcomes of our design decisions three

possibilities: either a SW t

development, we perform an extension to Tcl/Tk

DDING GOALS

ording to the definition we provided

are important to be achieved

company to have a system that can be reused for further developm

considered an internal goal. In addition,

before the end of the year, moment in which the programme

in another project. This requirement is n

an internal goal for the company that will ease the

ly consequences of decisions, and as such are outputs to decisions, but in

some cases, they can also play the

DDING DESIGN

The last type of decision element

classes, modules, diagrams, documents,

general case, they are outputs to decisions, but can also be inputs, as in the AREL model.

This corresponds to the traditional concept of “design element” from the AREL model.

Figure

In the example, we are considering as possible outcomes of our design decisions three

possibilities: either a SW t

we perform an extension to Tcl/Tk

“A Bayesian model for Change Impact on Software Estimations”

OALS
ording to the definition we provided in Section

are important to be achieved”. In this exa

company to have a system that can be reused for further developm

. In addition, it is also an objective

before the end of the year, moment in which the programme

in another project. This requirement is n

an internal goal for the company that will ease the

Figure 6-8: Goals for the example

ly consequences of decisions, and as such are outputs to decisions, but in

some cases, they can also play the role of

ESIGN ELEMENTS

The last type of decision elements to be added

classes, modules, diagrams, documents,

general case, they are outputs to decisions, but can also be inputs, as in the AREL model.

aditional concept of “design element” from the AREL model.

Figure 6-9: Example of design elements

In the example, we are considering as possible outcomes of our design decisions three

possibilities: either a SW tool based on a

we perform an extension to Tcl/Tk

“A Bayesian model for Change Impact on Software Estimations”

 97

in Section 5.4.4

. In this example, in the long term it is important

company to have a system that can be reused for further developm

it is also an objective

before the end of the year, moment in which the programme

in another project. This requirement is not dictated by the project’s schedule, but is

an internal goal for the company that will ease the

: Goals for the example

ly consequences of decisions, and as such are outputs to decisions, but in

role of “inputs” (they can trigger a decision as well

LEMENTS
to be added

classes, modules, diagrams, documents, or

general case, they are outputs to decisions, but can also be inputs, as in the AREL model.

aditional concept of “design element” from the AREL model.

: Example of design elements

In the example, we are considering as possible outcomes of our design decisions three

based on a

we perform an extension to Tcl/Tk based on a existing product for memory

“A Bayesian model for Change Impact on Software Estimations”

5.4.4 goals are “high level objectives that

mple, in the long term it is important

company to have a system that can be reused for further developm

it is also an objective

before the end of the year, moment in which the programme

ot dictated by the project’s schedule, but is

an internal goal for the company that will ease the department to fulfill its objectives in the

: Goals for the example

ly consequences of decisions, and as such are outputs to decisions, but in

“inputs” (they can trigger a decision as well

to be added is “design elements”: these are

or packages to be developed. In the most

general case, they are outputs to decisions, but can also be inputs, as in the AREL model.

aditional concept of “design element” from the AREL model.

: Example of design elements

In the example, we are considering as possible outcomes of our design decisions three

based on an existing (and limited) M

based on a existing product for memory

“A Bayesian model for Change Impact on Software Estimations”

goals are “high level objectives that

mple, in the long term it is important

company to have a system that can be reused for further developments

it is also an objective to finish the testing of the tool

before the end of the year, moment in which the programmers associated will be also

ot dictated by the project’s schedule, but is

department to fulfill its objectives in the

: Goals for the example

ly consequences of decisions, and as such are outputs to decisions, but in

“inputs” (they can trigger a decision as well

“design elements”: these are

packages to be developed. In the most

general case, they are outputs to decisions, but can also be inputs, as in the AREL model.

aditional concept of “design element” from the AREL model.

: Example of design elements

In the example, we are considering as possible outcomes of our design decisions three

existing (and limited) M

based on a existing product for memory

“A Bayesian model for Change Impact on Software Estimations”

goals are “high level objectives that

mple, in the long term it is important

ents, and this can be

to finish the testing of the tool

rs associated will be also

ot dictated by the project’s schedule, but is

department to fulfill its objectives in the

ly consequences of decisions, and as such are outputs to decisions, but in

“inputs” (they can trigger a decision as well

“design elements”: these are

packages to be developed. In the most

general case, they are outputs to decisions, but can also be inputs, as in the AREL model.

aditional concept of “design element” from the AREL model.

In the example, we are considering as possible outcomes of our design decisions three

existing (and limited) Microsoft access

based on a existing product for memory

“A Bayesian model for Change Impact on Software Estimations”

Thesis

goals are “high level objectives that

mple, in the long term it is important for the

, and this can be

to finish the testing of the tool

rs associated will be also

ot dictated by the project’s schedule, but is

department to fulfill its objectives in the

ly consequences of decisions, and as such are outputs to decisions, but in

“inputs” (they can trigger a decision as well, being

“design elements”: these are among

packages to be developed. In the most

general case, they are outputs to decisions, but can also be inputs, as in the AREL model.

aditional concept of “design element” from the AREL model.

In the example, we are considering as possible outcomes of our design decisions three

icrosoft access

based on a existing product for memory

“A Bayesian model for Change Impact on Software Estimations”

Thesis

goals are “high level objectives that

for the

, and this can be

to finish the testing of the tool

rs associated will be also

ot dictated by the project’s schedule, but is

department to fulfill its objectives in the

ly consequences of decisions, and as such are outputs to decisions, but in

, being

among

packages to be developed. In the most

general case, they are outputs to decisions, but can also be inputs, as in the AREL model.

In the example, we are considering as possible outcomes of our design decisions three

icrosoft access

based on a existing product for memory

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 98

management, or we develop from scratch a Java GUI for the memory management. These

are all the possible three components that will be part of the design.

Design Elements have a very important attribute to be filled: the working hours that are

estimated for the development of the particular item. This datum will be used by the tool to

compute the costs associated to a decision, as we will see later.

6.4.2 STEP 2: COMPLETING THE TREE: ADDING TRADE-OFFS AND DECISIONS

6.4.2.1 STEP2.1 ADDING TRADE-OFFS
The last root entry that we saw in Figure 6-3 was “Trade-offs”: that is the point from which

trade-offs and their corresponding decisions are to be generated.

Trade-offs are a common root for a set of decisions associated to them. Until now, we have

added all the decision elements that will take part of our decisions, but, since they are not

part of the underlying BBN yet, (either as a cause of any decision or an effect of any

decision), the probabilities for the “status” attributes described in the elements of the model

are not being computed. In other words, no underlying BBN exists until the user adds trade-

offs and their corresponding decisions. For this purpose, the corresponding decision needs

to be added. And each decision is related exclusively to a single trade-off. Therefore, from

the “Trade-offs” branch, we add a new trade-off which is “type of memory tool to be used” as

shown in Figure 5-7. Once the user has clicked on the “New Trade-off” option, a new tab will

show up on the Eclipse’s editor, showing the data to be edited of the new Trade-off item. In

Figure 6-10 we have filled the data for our particular trade-off item:

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 99

Figure 6-10: Trade-off for our example

This trade-off “Type of memory tool to be used” will have three different design decisions

associated: either to what type of design element will have to be developed: either to

develop a new Java application for memory management, to use a TCL/TK existing editor,

or to reuse the MsAccess application. This is explained in the next section.

6.4.2.2 STEP 2.2: ADDING DECISIONS, CAUSES AND EFFECTS
In previous sections of this thesis, we mentioned that the main idea for the change impact

estimations was to tackle the “ripple effect” (i.e., what are the consequences of modifying

this component, which part of the design gets affected by a given change). For this, the

notion of design decision is central.

Design decisions are linked to the Trade-off that they are associated. In our example, we

create a “Develop new Java Application” decision, hanging from “Type of memory tool to be

developed”.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 100

Figure 6-11: Decision inputs and output folders, generated automatically

As we can see in Figure 6-11, the decision to Develop a new Java application has a 50% of

probability to be VALID, and the same probability to be invalid, since the user has not

indicated whether this decision is considered VALID or INVALID, and it has not any causes

nor decisions associated to it. In principle, the APES tool is agnostic w.r.t new decisions

(probabilities are equally distributed). Note also that at the right part of “Type of memory tool

to be developed” there is a label “WH=0” that indicates the estimated working hours

associated to this decision. This datum is generated based on the estimated costs of its

design elements: since it has none, there are no working hours associated to the decision.

At this point, the tool has internally generated a BBN; this BBN only has one node (the newly

created decision), has compiled the internal BBN, and has propagated its probabilities. But

design decisions for a project are triggered by its corresponding causes (i.e. decision

elements that were evaluated in order to take the decision). These are considered “inputs”

for the decision. In addition, decisions have the corresponding “outputs”, that is,

consequences that come as a result of the decision taken (which in turn can be decision

elements for further decisions). Both types of elements (inputs and outputs) need to be

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 101

added to the decision in order to provide accurate estimations. To complete the decision, we

need to add those decisional elements that are inputs and outputs for the decision. We do

this by adding the inputs (causes) and the outputs (consequences) for this decision, that are

decision elements we added previously. By adding all the decisions and all input and output

causes we end up having the following set of decisions associated to our trade-off, as

shown in the following extract of the change impact tree (Figure 6-22)

Figure 6-12: Initial tree for propagation

The tree can be read as follows: for the “type of memory tool to use” trade-off there are three

possible decisions to be taken, either to use an extension to an already existing MS access

application, to develop the tool as an extension to a TCL/TK editor, or to develop it from

scratch using Java. For each decision, the following considerations apply:

1. Decision elements that act as causes to take the decision to develop the memory tool

as an extension to MS Access are: to have available the team that developed the

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 102

former application and the similarity of the functionality to be developed (AND

displays). It will produce a MS access memory tool (design element) and will have an

impact (negative) on the possible reusability in future space applications goal.

2. Decision to build a TCL/TK editor for alphanumeric displays will depend on whether

the developer’s team has a good knowledge of TCL/TK, and also on the similarity of

the functionality to be developed with previous developments.

3. Finally, in order to develop the application from scratch using the Java language, we

must take into account whether we count on a good java knowledge of the team, the

similarity of the development w.r.t. previous applications, whether we count on a team

of more than three people for the task, and the availability of a set of tables required

for the development in Java. It will produce a java memory tool and will have a

(positive) impact on the reusability of the tool in future developments.

Note that the working hours for the decision and the issue have changed. This is because

we have set the estimated working hours for each of the design elements to be produced for

each decision. The Trade–off takes the working hours (WH=1200) for the worst case,

considering that they have the same probability. Note also that the system is not taking into

account yet that these three decisions are mutually exclusive (sum of probabilities for each

decisions associated to the issue is 1).

The complete change impact view is now shown in Figure 6-13

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 103

Figure 6-13: Decision Elements and its underlying network

•

•

•

•

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 105

6.4.3 STEP 3: STATISTICAL ANALYSIS: USING THE TREE VIEW

We are now at the point in which it is possible to see the propagation of probabilities for a

decision, and perform a “what-if” analysis, to analyze different scenarios.

if we perform a review of the characteristics of the example, we saw previously that software

architects have identified three different possibilities: The first option is the most risky (or at

least that is what it seems), since it assumes that we will develop the system from scratch in

Java. On the other hand, it will provide the developer’s team with a valid asset that can be

reused for future applications. This option is shown in the figure as “Develop a new Java

application”.

Another possibility is to develop an extension to a TCL/TK Editor. This is an internal

software asset that the developers have, and could be easily customized for this particular

spacecraft. This option is shown in Figure 6-13 as “use a TCL/TK editor”. It would also

provide a reusable tool, but its degree of integration is considered lower.

The third option would be to use an extension of an in-house development from the

spacecraft’s manufacturer. That will be in principle valid from the functional point of view, but

it means to have two different systems running on-line. In addition, changes to this software

will be required to be instantiated for the new spacecraft. This option is the one represented

by the entry “Use an extension to a Microsoft Access application”.

In Figure 6-13 we can see the working hours associated to each decision (labeled as WH=).

Working hours for each decision are computed by adding all the working hours for the

design elements that are outputs for the decision. So, for instance “Develop a new Java

application” has 1200 hours assigned because we previously set 1200 as the hours required

to develop the “Java Interfaces for memory development”, “Use a TCL/TK editor has 350

hours, because “Extension to an existing TCL/TK application for memory development” has

these hours assigned, and so on.

The working hours associated to the Trade-off “type of memory tool to use” are the working

hours corresponding to the decision that has the highest probability (in this case, the system

has selected “Develop a new Java application”, although the three of them are equally

probable).

automatically a BBN that holds the different elements.

underlying this model. This BBN is

probabilities are

it is not shown to the user,

We can see an equivalence w.r.t the tree view:

Tcl/tk knowledge

reusability of the code

“Develop a new Java application

existence of “

finish on

similarity of the alphanumeric displays w.r

MS Access developers. Outputs for Java and MS Access are their corresponding memory

modules, and all decisions have a different influence on a common goal which is “

reusability

probable). Internally, as the users add inputs to the decisions, the tool builds and compiles

automatically a BBN that holds the different elements.

underlying this model. This BBN is

probabilities are also automatically propagat

not shown to the user,

Figure 6

We can see an equivalence w.r.t the tree view:

knowledge” and the “

reusability of the code

Develop a new Java application

existence of “ASCII files for inputs

on time. Meanwhile,

similarity of the alphanumeric displays w.r

MS Access developers. Outputs for Java and MS Access are their corresponding memory

modules, and all decisions have a different influence on a common goal which is “

reusability”. In the following s

Internally, as the users add inputs to the decisions, the tool builds and compiles

automatically a BBN that holds the different elements.

underlying this model. This BBN is

also automatically propagat

not shown to the user, who does not need to have any knowledge on BBN technology

6-14: BBN Model for the “development of a memory tool” example.

We can see an equivalence w.r.t the tree view:

” and the “Similarity functionality to

reusability of the code” as well as a design component (e

Develop a new Java application

ASCII files for inputs

. Meanwhile, “Use an extension to Microsoft access

similarity of the alphanumeric displays w.r

MS Access developers. Outputs for Java and MS Access are their corresponding memory

modules, and all decisions have a different influence on a common goal which is “

”. In the following sections this is analyzed in depth.

“A Bayesian model for Change Impact on Software Estimations”

Internally, as the users add inputs to the decisions, the tool builds and compiles

automatically a BBN that holds the different elements.

underlying this model. This BBN is generated internally

also automatically propagat

who does not need to have any knowledge on BBN technology

: BBN Model for the “development of a memory tool” example.

We can see an equivalence w.r.t the tree view:

Similarity functionality to

as well as a design component (e

Develop a new Java application” is influenced by the “

ASCII files for inputs”. It also depends on the availability of

Use an extension to Microsoft access

similarity of the alphanumeric displays w.r

MS Access developers. Outputs for Java and MS Access are their corresponding memory

modules, and all decisions have a different influence on a common goal which is “

ections this is analyzed in depth.

“A Bayesian model for Change Impact on Software Estimations”

 106

Internally, as the users add inputs to the decisions, the tool builds and compiles

automatically a BBN that holds the different elements.

generated internally

also automatically propagated by the system via calls to the Netica API, but

who does not need to have any knowledge on BBN technology

: BBN Model for the “development of a memory tool” example.

We can see an equivalence w.r.t the tree view: “Use a tck/tk editor

Similarity functionality to

as well as a design component (e

” is influenced by the “

”. It also depends on the availability of

Use an extension to Microsoft access

similarity of the alphanumeric displays w.r.t. the previous applications and the availability of

MS Access developers. Outputs for Java and MS Access are their corresponding memory

modules, and all decisions have a different influence on a common goal which is “

ections this is analyzed in depth.

“A Bayesian model for Change Impact on Software Estimations”

Internally, as the users add inputs to the decisions, the tool builds and compiles

automatically a BBN that holds the different elements.

generated internally and compiled

ed by the system via calls to the Netica API, but

who does not need to have any knowledge on BBN technology

: BBN Model for the “development of a memory tool” example.

Use a tck/tk editor

Similarity functionality to AND displays

as well as a design component (extension to

” is influenced by the “Good Java Knowledge

”. It also depends on the availability of

Use an extension to Microsoft access

.t. the previous applications and the availability of

MS Access developers. Outputs for Java and MS Access are their corresponding memory

modules, and all decisions have a different influence on a common goal which is “

ections this is analyzed in depth.

“A Bayesian model for Change Impact on Software Estimations”

Internally, as the users add inputs to the decisions, the tool builds and compiles

Figure 6-14

compiled by the system,

ed by the system via calls to the Netica API, but

who does not need to have any knowledge on BBN technology

: BBN Model for the “development of a memory tool” example.

Use a tck/tk editor” is

AND displays”, and produces

xtension to

ood Java Knowledge

”. It also depends on the availability of

Use an extension to Microsoft access” only depends on the

.t. the previous applications and the availability of

MS Access developers. Outputs for Java and MS Access are their corresponding memory

modules, and all decisions have a different influence on a common goal which is “

ections this is analyzed in depth.

“A Bayesian model for Change Impact on Software Estimations”

Internally, as the users add inputs to the decisions, the tool builds and compiles

14 shows

by the system,

ed by the system via calls to the Netica API, but

who does not need to have any knowledge on BBN technology

: BBN Model for the “development of a memory tool” example.

 influenced by “

”, and produces

xtension to Tcl/tk existing SW).

ood Java Knowledge

”. It also depends on the availability of three developers to

” only depends on the

.t. the previous applications and the availability of

MS Access developers. Outputs for Java and MS Access are their corresponding memory

modules, and all decisions have a different influence on a common goal which is “

“A Bayesian model for Change Impact on Software Estimations”

Thesis

Internally, as the users add inputs to the decisions, the tool builds and compiles

ws the BBN

by the system, and its

ed by the system via calls to the Netica API, but

who does not need to have any knowledge on BBN technology.

influenced by “Good

”, and produces ”high

existing SW).

ood Java Knowledge ” and the

developers to

” only depends on the

.t. the previous applications and the availability of

MS Access developers. Outputs for Java and MS Access are their corresponding memory

modules, and all decisions have a different influence on a common goal which is “High

“A Bayesian model for Change Impact on Software Estimations”

Thesis

Internally, as the users add inputs to the decisions, the tool builds and compiles

the BBN

and its

ed by the system via calls to the Netica API, but

d

high

existing SW).

” and the

developers to

” only depends on the

.t. the previous applications and the availability of

MS Access developers. Outputs for Java and MS Access are their corresponding memory

High

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 107

6.4.3.1 STEP 3.1 ADJUSTING CPT’S FOR DECISION INPUTS
Here it is important to clarify what we mean by “probabilities” within APES-CIE. In previous

sections we have seen how users insert decisions for a given trade-off. These decisions

have “inputs” (causes) and “outputs” (effects) associated. Each of these “inputs” and

“outputs” are elements that have a discrete attribute (status) with two different possible

values. Although the users perspective is based on a tree of trade-offs and decisions, there

is an underlying BBN that contains all the elements and decisions that are linked together.

The steps that we will see in the following sections will allow users to fill the CPTs of this

BBN in a user-friendly manner, as well as to set those “findings” (i.e. facts) that the user

knows as certain. Based on this information, APES-CIE will propagate the probabilities for

all the elements in the underlying BBN, and will indicate the probability for a decision to be

taken, the probability for a design element to be part of the development, etc. These

probabilities are not based on historical data; instead, they are based on the CPTs and the

findings added by the user, which in turn depend on the plausibility that users concede to

the possible outcome of a decision based on the status of its causes, as well as the possible

outcome of an effect based on the decisions from which they depend.

Therefore, these probabilities indicate what users can expect based on their own beliefs, as

well as those certainties that they have. They are not based on historical data, and shall be

taken as estimations.

Since the system is in principle agnostic, the probabilities for all the elements that have been

added are 0.5. Now it is time to adjust the conditional probability tables for the decisions,

and the outcomes of these decisions. We will start by editing the probabilities for the

decision “Develop a new Java application” and its values (VALID and INVALID) on each

case by using the tool. The user edits the probabilities as shown in Figure 6-15

•

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 110

Figure 6-16: Change impact tree view showing probabilities for a decision

Note that the new probability for the Java decision depends on the newly CPT values added

by users, as well as the probabilities of its inputs. Note also that working hours for the trade-

off “type of memory tool to use” have changed to 350, while it was 1200 before. This is due

to the fact that the most likely decision now is “use a TCL/TK Editor”. The tree sets

automatically the working hours of a trade-off that has mutually exclusive decisions to the

working hours of the decision that has a higher probability to be VALID.

Similar operations are done for the other decisions of this trade-off (use a TLC/TK editor and

use an extension to a Microsoft Access application).

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 111

6.4.3.2 STEP 3.2 ADJUSTING CPT’S FOR DECISION’S OUTPUTS
Once we have setup the tables for the decisions, it is time to setup the tables for the

outcomes of these decisions. These are the items that were indicated in the “Outputs”

sections of the decision.

Some outcomes could be the result of several decisions, while others can depend on a

single decision. In our case, “high reusability” is an output of the three decisions, and

therefore depends on the results of the other decisions. Other outputs depend exclusively on

a single decision, and for this kind of outputs the probability table is very simple.

So, for instance “Java interface for memory development” will only be STABLE whenever

the decision “Develop a new Java application” is set as VALID. If we edit the conditional

probability table for this output of the decision as shown in Figure 6-17.

Figure 6-17: Editing an output for an output of a decision (outcome).

As we can see in the figure, for this particular development item, it should only be developed

in case that the decision to Develop a new Java application is VALID. Therefore, the

corresponding CPT is straightforward. By contrast, goal “Memory Management tool should

be reusable” has three decisions that could cause the goal to be obtained. The

corresponding CPT table is shown on Figure 6-18

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 113

In our example, once we have filled the corresponding CPT,s for all decisions and outputs,

the tree has changed the probabilities as shown on the figure:

Figure 6-19: Probability propagation once the CPTs have been filled

At this point there are no “findings” or “facts”. That is, all probabilities are computed based

on propagation from inputs based exclusively on the propagation of probability from the

CPTs. We are assuming that we don’t know anything about the inputs that are triggering the

decisions to be taken. Therefore, all decisions seem to have very similar probabilities. The

decision to use an extension to the Microsoft Access application seems the most likely, but

its associated probability (47%) is very similar to Use a TCL/TK Editor (44%) or Develop a

new Java application (34%). This is due to the fact that we haven’t put in place those facts

(certainties) that the users might have about the causes that trigger the corresponding

decisions. This is what we will do in the following section.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 114

6.4.3.3 STEP 3.3 FORWARD PROPAGATION: PREDICTIVE REASONING
Now let us suppose the user wants to analyze what would happen in case we could rely on

some facts. For instance, the decision to develop a new Java Interface was influenced by

the possibility to have a team with more than three people. Let’s suppose that we know this

fact, and that we can rely on the fact that Team size >3 people will be STABLE. We can edit

the corresponding entry, and set the value to STABLE manually, as shown in Figure-6-20

Figure-6-20: Setting a fact for an input once it is known.

Once we have done this, we can see that the probability to develop a Java application is

higher now (42%), and the tree becomes as shown in Figure 6-21

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 116

We see with this example how by setting the corresponding facts, users can determine the

probabilities for each decision, which could help them take the right decision. In addition, the

probabilities filled by the users contain the rationale for the decisions to be taken.

Similarly, users can set the decisions as facts; that is, they can set manually the status of a

particular decision to VALID or INVALID. The corresponding probabilities for their effects will

be propagated, and that would give them an idea of the results of the decisions taken. In our

case, for instance, setting the decision to “use an extension to Ms Access application” will

generate the results shown in Figure 6-22.

Figure 6-22: Setting a fact for a decision.

The automatic propagation of the probabilities allows users to see the results in the tree. In

our case, we can see that, by taking the decision to develop the system in Microsoft Access,

High reusability is very unlikely to be obtained. Also, the list of items to be developed is

shown on the tree.

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 118

Figure 6-23: Reverting a decision fact to “unknown”.

Saving the corresponding tab, we now set the “status” value for the “high reusability goal” to

ACHIEVED. Then, as shown in Figure 6-24, the corresponding probabilities change for the

decisions.

Figure 6-24: Setting a fact for an output goal, analysis of decisions to reach that goal.

We now have setup the goal “high reusability” to be the most important one for our

development. The probabilities for each decision have changed, clearly showing that the

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 119

decision to “Develop a new Java application” is the most likely to be implemented. All

decisions have been affected, and all the inputs and outputs are now in red, indicating that

their probability has changed. The working hours for the trade-off have been set to 1200,

because the most probable decision is “Develop a new Java application”, that has a design

element “java interface for memory development” that has a 1200 hours workload. Once

again, the only input that has not been affected is the “Team size > 3 people”, because it

was previously set as a fact and therefore its probability has not been modified. In this way

user can also determine which the decision to be taken is in order to obtain a set of given

results. Users can therefore analyze not only the effects of decisions, but also which are the

right decisions to take in order to obtain a given result.

6.4.3.5 USING THRESHOLD WARNINGS
The tool can also reason with a “warning” threshold. This warning threshold feature is

provided for inputs, outputs and decisions that can be used to detect whether the probability

for a given element goes below a given threshold. For instance, let us now modify the

threshold for the link “High reusability” and, at the same time, set the STATUS as UNKOWN

(“--------“), as shown in Figure 6-25

Figure 6-25: Setting threshold for High reusability if probability is lower than 60%.

By saving the corresponding values we can see what happens when we unset the

“STATUS” to VALID and set the Warning State to ACHIEVED with a probability lower than

60%.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 120

Figure 6-26: Probabilities affected and Warning for the High reusability.

We can see that the probabilities have changed now, because we unset the High reusability

as a fact (and this implies that its probability will be computed again by the system), but also

we can see that the High reusability is lower than 60 percent, and therefore the tool shows

an icon that indicates that the probability is lower than what we expect for this decision.

6.5 APES-CIE FROM THE AEROSPACE’S METHODOLOGICAL PERSPECTIVE

APES-CIE was designed for the aerospace market, in particular having in mind the ECSS

standards from ESA (ECSS-E-40, 2009). As we pointed out before, the APES-CIE system

can be used from the very beginning of the development cycle for multiple purposes.

Figure 6-27 shows the different activities involved in the software development process

•

•

•

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 124

7 EVALUATION

For the evaluation of the use cases, it was not necessary to evaluate the robustness of the

BBN statistical propagation, since APES_CIE used an already existing API from a BBN tool

(Netica, 2008) in charge of the propagation of probabilities. Instead, our aim was to test the

validity of the model for design rationale and change impact estimation, from the user’s point

of view. We wanted to know, among other issues, whether: the tool was easy to use; it

provided an added value for design rationale; or users thought that it allowed to improve

existing methods for change impact estimations.

Therefore, the evaluation of the model was conducted by using the tool in the development

of two different projects. The first project was an on-board software development for a space

mission: this use case is a development of critical software, which follows dense and strict

procedures. For instance, code testing is structured in 4 different layers (unitary tests,

numerical precision tests, integration tests, system tests) with a combined coverage of 100%

of the code. Programming rules are very strict; each individual deviation needs to be

justified, and the documentation of the project consists of dozens of different deliverable

documents, each with its own different releases (User Manual, Software development plan,

Interface Control Document, Design Justification File, Software Development Plan, Risk

Register, etc..)

The second project to which the tool was applied is a development of a robot (a rover) for an

oil & gas platform at sea. This is a very different project in which, although the software is

also critical, the number of documents to be delivered, that is, the evidences to be provided,

are fewer. The project has also a high dependency on the hardware; many decisions

depend on the availability or the accuracy of a set of sensors and actuators for a given task.

This case provides an added value: to investigate the validity of the tool when used for the

integration of hardware and software.

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 126

the software, is responsible for the integration of the ASW into the remaining OBSW

components, as well as for the system testing. Project’s duration is 28 months.

The APES-CIE tool was applied during the detailed design of the application software, trying

to identify and assess those issues, and their related decisions, that will lead to a better

design and will overcome existing problems.

One of the most important factors for the application software is that it has to be integrated

within an existing framework. This framework provides different possibilities for the ASW, in

order to perform its different tasks. In addition, in some cases, the application software itself

will need to cover capabilities not provided as part of this framework. Therefore, most of the

issues to be tackled are relative to the way the ASW will interface with the existing

framework.

Another important issue for the project is how to interact with the different teams of different

companies. This aspect refers not to the SW being developed, but instead to the SW assets

related to the different workflows in which all those companies involved will have to interact

(for instance, testing).

The main trade-offs identified in this case are depicted in Figure 7-1.

So, for instance

to interact with the existing framework, and design decisions of the ASW itself. Tradeoffs 7,

8, 10 and 11 are related to the verification and vali

interaction between different teams working for different companies.

A very interesting example of the possibilities for the APES

decision oriented to

subsystem (which is part of the application software)

concept named

is a subsystem manager, and as such

But, in the case of the Guidance, Navigation and Control

different tasks: a first task will collect data from the

radar and compute the navigation

accomplish the guidance

lower frequency.

Therefore

Figure

for instance, in Figure

o interact with the existing framework, and design decisions of the ASW itself. Tradeoffs 7,

8, 10 and 11 are related to the verification and vali

interaction between different teams working for different companies.

A very interesting example of the possibilities for the APES

decision oriented to

subsystem (which is part of the application software)

named “subsystem manager”.

is a subsystem manager, and as such

in the case of the Guidance, Navigation and Control

different tasks: a first task will collect data from the

radar and compute the navigation

accomplish the guidance

lower frequency.

Therefore, we had four

Figure 7-1: Different Trade

Figure 7-1, Tradeoffs from 1 to

o interact with the existing framework, and design decisions of the ASW itself. Tradeoffs 7,

8, 10 and 11 are related to the verification and vali

interaction between different teams working for different companies.

A very interesting example of the possibilities for the APES

decision oriented towards the schedulability of the Guida

subsystem (which is part of the application software)

“subsystem manager”.

is a subsystem manager, and as such

in the case of the Guidance, Navigation and Control

different tasks: a first task will collect data from the

radar and compute the navigation

accomplish the guidance (GUI)

four possible decisions

“A Bayesian model for Change Impact on Software Estimations”

: Different Trade

, Tradeoffs from 1 to

o interact with the existing framework, and design decisions of the ASW itself. Tradeoffs 7,

8, 10 and 11 are related to the verification and vali

interaction between different teams working for different companies.

A very interesting example of the possibilities for the APES

the schedulability of the Guida

subsystem (which is part of the application software)

“subsystem manager”. The Guidance, Navigation and Control of the system

is a subsystem manager, and as such, it had

in the case of the Guidance, Navigation and Control

different tasks: a first task will collect data from the

radar and compute the navigation. Meanwhile

(GUI) and control

possible decisions

“A Bayesian model for Change Impact on Software Estimations”

 127

: Different Trade-offs to be assessed and identified

, Tradeoffs from 1 to

o interact with the existing framework, and design decisions of the ASW itself. Tradeoffs 7,

8, 10 and 11 are related to the verification and vali

interaction between different teams working for different companies.

A very interesting example of the possibilities for the APES

the schedulability of the Guida

subsystem (which is part of the application software)

The Guidance, Navigation and Control of the system

, it had (in princ

in the case of the Guidance, Navigation and Control

different tasks: a first task will collect data from the

eanwhile, a second task (with lower periodicity) had to

and control (CON) functions, in a control loop which has a

possible decisions.

“A Bayesian model for Change Impact on Software Estimations”

offs to be assessed and identified

, Tradeoffs from 1 to 6 are related to design decisions on how

o interact with the existing framework, and design decisions of the ASW itself. Tradeoffs 7,

8, 10 and 11 are related to the verification and validation activities and

interaction between different teams working for different companies.

A very interesting example of the possibilities for the APES

the schedulability of the Guida

subsystem (which is part of the application software). The referred framewo

The Guidance, Navigation and Control of the system

(in principle) a single task associated to it.

in the case of the Guidance, Navigation and Control, we needed to split it into three

different tasks: a first task will collect data from the Inertial Measurement Unit (

a second task (with lower periodicity) had to

(CON) functions, in a control loop which has a

“A Bayesian model for Change Impact on Software Estimations”

offs to be assessed and identified

6 are related to design decisions on how

o interact with the existing framework, and design decisions of the ASW itself. Tradeoffs 7,

dation activities and

interaction between different teams working for different companies.

A very interesting example of the possibilities for the APES-CIE is its use for a design

the schedulability of the Guidance, Navigation and Control

. The referred framewo

The Guidance, Navigation and Control of the system

iple) a single task associated to it.

we needed to split it into three

Inertial Measurement Unit (

a second task (with lower periodicity) had to

(CON) functions, in a control loop which has a

“A Bayesian model for Change Impact on Software Estimations”

offs to be assessed and identified.

6 are related to design decisions on how

o interact with the existing framework, and design decisions of the ASW itself. Tradeoffs 7,

dation activities and depend also on the

CIE is its use for a design

nce, Navigation and Control

. The referred framework included a

The Guidance, Navigation and Control of the system

iple) a single task associated to it.

we needed to split it into three

Inertial Measurement Unit (IMU

a second task (with lower periodicity) had to

(CON) functions, in a control loop which has a

“A Bayesian model for Change Impact on Software Estimations”

Thesis

6 are related to design decisions on how

o interact with the existing framework, and design decisions of the ASW itself. Tradeoffs 7,

depend also on the

CIE is its use for a design

nce, Navigation and Control

rk included a

The Guidance, Navigation and Control of the system

iple) a single task associated to it.

we needed to split it into three

IMU) and the

a second task (with lower periodicity) had to

(CON) functions, in a control loop which has a

“A Bayesian model for Change Impact on Software Estimations”

Thesis

6 are related to design decisions on how

o interact with the existing framework, and design decisions of the ASW itself. Tradeoffs 7,

depend also on the

CIE is its use for a design

nce, Navigation and Control

rk included a

The Guidance, Navigation and Control of the system

we needed to split it into three

and the

a second task (with lower periodicity) had to

(CON) functions, in a control loop which has a

•

•

•

•

An initial analysis, based on previous developments, allowed us to determine that the

probability for all GNC control loops to fit into the high

Based on th

effects, assuming a 55% probability for multi

manager, the system pointed out D4 as the most

contractor, it was identified that it was possible to have multitasking (two tasks) in a single

subsystem manager, and therefore the right decision (D4) was taken. But the tool allowed

us to make the proper balan

usage that we did to the tool within this project,

7.2 USE CASE 2:

The objective

manometers

An initial analysis, based on previous developments, allowed us to determine that the

probability for all GNC control loops to fit into the high

Based on that, and

effects, assuming a 55% probability for multi

manager, the system pointed out D4 as the most

contractor, it was identified that it was possible to have multitasking (two tasks) in a single

subsystem manager, and therefore the right decision (D4) was taken. But the tool allowed

us to make the proper balan

usage that we did to the tool within this project,

USE CASE 2: R

The objective of this project

manometers and valves in an oil & gas plat

Figure 7-2:

An initial analysis, based on previous developments, allowed us to determine that the

probability for all GNC control loops to fit into the high

and based also on

effects, assuming a 55% probability for multi

manager, the system pointed out D4 as the most

contractor, it was identified that it was possible to have multitasking (two tasks) in a single

subsystem manager, and therefore the right decision (D4) was taken. But the tool allowed

us to make the proper balance related to the decisions.

usage that we did to the tool within this project,

ROVER FOR OIL & GAS P

this project

and valves in an oil & gas plat

“A Bayesian model for Change Impact on Software Estimations”

: Decisions

An initial analysis, based on previous developments, allowed us to determine that the

probability for all GNC control loops to fit into the high

based also on the corresponding CPTs for the decisions and their

effects, assuming a 55% probability for multi

manager, the system pointed out D4 as the most

contractor, it was identified that it was possible to have multitasking (two tasks) in a single

subsystem manager, and therefore the right decision (D4) was taken. But the tool allowed

ce related to the decisions.

usage that we did to the tool within this project,

OVER FOR OIL & GAS P

this project is the development of a medium

and valves in an oil & gas plat

“A Bayesian model for Change Impact on Software Estimations”

 129

 associated to GNC schedulability

An initial analysis, based on previous developments, allowed us to determine that the

probability for all GNC control loops to fit into the high

the corresponding CPTs for the decisions and their

effects, assuming a 55% probability for multi-tasking to be possible in a single subsystem

manager, the system pointed out D4 as the most probable

contractor, it was identified that it was possible to have multitasking (two tasks) in a single

subsystem manager, and therefore the right decision (D4) was taken. But the tool allowed

ce related to the decisions.

usage that we did to the tool within this project,

OVER FOR OIL & GAS PLATFORM AT SEA

the development of a medium

and valves in an oil & gas platform located overseas. This rover has to be able

“A Bayesian model for Change Impact on Software Estimations”

associated to GNC schedulability

An initial analysis, based on previous developments, allowed us to determine that the

probability for all GNC control loops to fit into the high frequency control loop was a 10%.

the corresponding CPTs for the decisions and their

tasking to be possible in a single subsystem

probable option

contractor, it was identified that it was possible to have multitasking (two tasks) in a single

subsystem manager, and therefore the right decision (D4) was taken. But the tool allowed

ce related to the decisions. This serves as an example of the

LATFORM AT SEA

the development of a medium

located overseas. This rover has to be able

“A Bayesian model for Change Impact on Software Estimations”

associated to GNC schedulability.

An initial analysis, based on previous developments, allowed us to determine that the

frequency control loop was a 10%.

the corresponding CPTs for the decisions and their

tasking to be possible in a single subsystem

option. After discussions with the

contractor, it was identified that it was possible to have multitasking (two tasks) in a single

subsystem manager, and therefore the right decision (D4) was taken. But the tool allowed

This serves as an example of the

LATFORM AT SEA

the development of a medium-size rover able to read

located overseas. This rover has to be able

“A Bayesian model for Change Impact on Software Estimations”

.

An initial analysis, based on previous developments, allowed us to determine that the

frequency control loop was a 10%.

the corresponding CPTs for the decisions and their

tasking to be possible in a single subsystem

. After discussions with the

contractor, it was identified that it was possible to have multitasking (two tasks) in a single

subsystem manager, and therefore the right decision (D4) was taken. But the tool allowed

This serves as an example of the

size rover able to read

located overseas. This rover has to be able

“A Bayesian model for Change Impact on Software Estimations”

Thesis

An initial analysis, based on previous developments, allowed us to determine that the

frequency control loop was a 10%.

the corresponding CPTs for the decisions and their

tasking to be possible in a single subsystem

. After discussions with the

contractor, it was identified that it was possible to have multitasking (two tasks) in a single

subsystem manager, and therefore the right decision (D4) was taken. But the tool allowed

This serves as an example of the

size rover able to read

located overseas. This rover has to be able

“A Bayesian model for Change Impact on Software Estimations”

Thesis

An initial analysis, based on previous developments, allowed us to determine that the

frequency control loop was a 10%.

the corresponding CPTs for the decisions and their

tasking to be possible in a single subsystem

. After discussions with the

contractor, it was identified that it was possible to have multitasking (two tasks) in a single

subsystem manager, and therefore the right decision (D4) was taken. But the tool allowed

This serves as an example of the

size rover able to read

located overseas. This rover has to be able

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 130

to negotiate stairs and overcome obstacles, smoothing out its movements when dealing with

inclined ground and lifting the robot up when it needs to go over an obstacle. Perception

sensors (cameras and 3D Laser) and the inertial measurement unit (IMU) allow the rover to

determine its position and attitude, thanks to image acquisition, localization and navigation

software. Image processing algorithms are used for the reading of manometers and valves.

In addition, Methane sensors in the robot are used to alert of a possible explosion.

The project’s team is composed of 8 different engineers, and development’s time is around

30 months.

The development is subject to a competition among different companies all over the world,

and once a year these companies have to pass a set of evaluation tests. The tests

performed one year serve to demonstrate basic capabilities that will be used in next year’s

tests.

In autonomous and semi-autonomous modes, the system must autonomously detect identify

anomalies, such as leaks, unforeseen obstacles, or out of limits measurements taken from

manometers and valves.

Being a project not as critical as the previous one, this project involves both hardware and

software, and it depends heavily on the right integration between both. In addition, there are

multiple suppliers for: sensors, actuators, motors, batteries, etc. and it is necessary to

evaluate multiple alternatives related to the hardware, as well as to perform the correct

hardware design. There are multiple algorithms whose reliability depend on the accuracy

and the availability of sensors and actuators.

These characteristics lead to a complex HW and SW design, with multiple inter-

dependencies among the HW and SW assets. For instance, to pass a single navigation and

vision test, the rover has to achieve multiple sub-goals, which in turn depend on a harmonic

collaboration between HW and SW. Considering that the rover is designed from scratch for

this competition, it is very easy to miss the global picture about which decisions are more

critical and what are the consequences for the different cases.

The tool was used after the first year

already built but faced numerous difficulties. We tried to identify those trade

more critical and that were needed to be solved and

Most of the

basic tasks: negotiate stairs, climb into the platform, locate itself after climbi

gauges, or

tests that require a combination of them

Other trade

instance, during the tests the mast that was carrying the cameras failed, and therefore we

had to decide for an alternative one.

detected during tests

this competition, it is very easy to miss the global picture about which decisions are more

critical and what are the consequences for the different cases.

The tool was used after the first year

already built but faced numerous difficulties. We tried to identify those trade

more critical and that were needed to be solved and

Most of these trade

basic tasks: negotiate stairs, climb into the platform, locate itself after climbi

or read the temperature properly. These basic skills will be also the input to other

tests that require a combination of them

Other trade-offs refer to decisions yet to be taken d

instance, during the tests the mast that was carrying the cameras failed, and therefore we

had to decide for an alternative one.

detected during tests

this competition, it is very easy to miss the global picture about which decisions are more

critical and what are the consequences for the different cases.

The tool was used after the first year

already built but faced numerous difficulties. We tried to identify those trade

more critical and that were needed to be solved and

Figure 7-3: Trade

trade-offs refer to decisions regarding the capability of the rover to

basic tasks: negotiate stairs, climb into the platform, locate itself after climbi

read the temperature properly. These basic skills will be also the input to other

tests that require a combination of them

refer to decisions yet to be taken d

instance, during the tests the mast that was carrying the cameras failed, and therefore we

had to decide for an alternative one.

detected during tests. For instance, how t

“A Bayesian model for Change Impact on Software Estimations”

this competition, it is very easy to miss the global picture about which decisions are more

critical and what are the consequences for the different cases.

The tool was used after the first year of development, at a point in which the rover was

already built but faced numerous difficulties. We tried to identify those trade

more critical and that were needed to be solved and

: Trade-offs related to the rover for Oil & Gas

offs refer to decisions regarding the capability of the rover to

basic tasks: negotiate stairs, climb into the platform, locate itself after climbi

read the temperature properly. These basic skills will be also the input to other

tests that require a combination of them, as, for instance,

refer to decisions yet to be taken d

instance, during the tests the mast that was carrying the cameras failed, and therefore we

had to decide for an alternative one.

or instance, how t

“A Bayesian model for Change Impact on Software Estimations”

 131

this competition, it is very easy to miss the global picture about which decisions are more

critical and what are the consequences for the different cases.

of development, at a point in which the rover was

already built but faced numerous difficulties. We tried to identify those trade

more critical and that were needed to be solved and

offs related to the rover for Oil & Gas

offs refer to decisions regarding the capability of the rover to

basic tasks: negotiate stairs, climb into the platform, locate itself after climbi

read the temperature properly. These basic skills will be also the input to other

, as, for instance,

refer to decisions yet to be taken d

instance, during the tests the mast that was carrying the cameras failed, and therefore we

had to decide for an alternative one. Finally, some of them

or instance, how to overcome lack of communications during the

“A Bayesian model for Change Impact on Software Estimations”

this competition, it is very easy to miss the global picture about which decisions are more

critical and what are the consequences for the different cases.

of development, at a point in which the rover was

already built but faced numerous difficulties. We tried to identify those trade

more critical and that were needed to be solved and assessed for the second year.

offs related to the rover for Oil & Gas

offs refer to decisions regarding the capability of the rover to

basic tasks: negotiate stairs, climb into the platform, locate itself after climbi

read the temperature properly. These basic skills will be also the input to other

, as, for instance, pass navigation and vision tests

refer to decisions yet to be taken due to the failure of a subsystem: for

instance, during the tests the mast that was carrying the cameras failed, and therefore we

Finally, some of them

o overcome lack of communications during the

“A Bayesian model for Change Impact on Software Estimations”

this competition, it is very easy to miss the global picture about which decisions are more

critical and what are the consequences for the different cases.

of development, at a point in which the rover was

already built but faced numerous difficulties. We tried to identify those trade

assessed for the second year.

offs related to the rover for Oil & Gas.

offs refer to decisions regarding the capability of the rover to

basic tasks: negotiate stairs, climb into the platform, locate itself after climbi

read the temperature properly. These basic skills will be also the input to other

pass navigation and vision tests

ue to the failure of a subsystem: for

instance, during the tests the mast that was carrying the cameras failed, and therefore we

Finally, some of them were related to problems

o overcome lack of communications during the

“A Bayesian model for Change Impact on Software Estimations”

this competition, it is very easy to miss the global picture about which decisions are more

of development, at a point in which the rover was

already built but faced numerous difficulties. We tried to identify those trade-offs that were

assessed for the second year.

offs refer to decisions regarding the capability of the rover to

basic tasks: negotiate stairs, climb into the platform, locate itself after climbing stairs, read

read the temperature properly. These basic skills will be also the input to other

pass navigation and vision tests

ue to the failure of a subsystem: for

instance, during the tests the mast that was carrying the cameras failed, and therefore we

were related to problems

o overcome lack of communications during the

“A Bayesian model for Change Impact on Software Estimations”

Thesis

this competition, it is very easy to miss the global picture about which decisions are more

of development, at a point in which the rover was

offs that were

assessed for the second year.

offs refer to decisions regarding the capability of the rover to perform

ng stairs, read

read the temperature properly. These basic skills will be also the input to other

pass navigation and vision tests.

ue to the failure of a subsystem: for

instance, during the tests the mast that was carrying the cameras failed, and therefore we

were related to problems

o overcome lack of communications during the

“A Bayesian model for Change Impact on Software Estimations”

Thesis

this competition, it is very easy to miss the global picture about which decisions are more

of development, at a point in which the rover was

offs that were

perform

ng stairs, read

read the temperature properly. These basic skills will be also the input to other

ue to the failure of a subsystem: for

instance, during the tests the mast that was carrying the cameras failed, and therefore we

were related to problems

o overcome lack of communications during the

tests, or how to achieve a coordinated start

failed).

There was a common consensus from the team that the

the most critical issues an

In Figure

cameras, illuminate with active LED lamp, reduce the integration’s period of the camera, and

reading gagues based o

An important difference with respect to the previous case is that all these decisions are

independent

once the CPTs were adjusted and once the probabilities for its main inputs were determined

(some depend on previous design decisions to be taken during the development).

how to achieve a coordinated start

There was a common consensus from the team that the

the most critical issues an

Figure 7-4, we can see different decisions related to gauge reading, such as switching

cameras, illuminate with active LED lamp, reduce the integration’s period of the camera, and

reading gagues based o

An important difference with respect to the previous case is that all these decisions are

independent; that is, they are not linked to each other.

once the CPTs were adjusted and once the probabilities for its main inputs were determined

(some depend on previous design decisions to be taken during the development).

how to achieve a coordinated start

There was a common consensus from the team that the

the most critical issues and their inter

Figure

we can see different decisions related to gauge reading, such as switching

cameras, illuminate with active LED lamp, reduce the integration’s period of the camera, and

reading gagues based on translation and correction

An important difference with respect to the previous case is that all these decisions are

that is, they are not linked to each other.

once the CPTs were adjusted and once the probabilities for its main inputs were determined

(some depend on previous design decisions to be taken during the development).

“A Bayesian model for Change Impact on Software Estimations”

how to achieve a coordinated start

There was a common consensus from the team that the

d their inter-dependencies.

Figure 7-4: Decisions for reading gauges

we can see different decisions related to gauge reading, such as switching

cameras, illuminate with active LED lamp, reduce the integration’s period of the camera, and

n translation and correction

An important difference with respect to the previous case is that all these decisions are

that is, they are not linked to each other.

once the CPTs were adjusted and once the probabilities for its main inputs were determined

(some depend on previous design decisions to be taken during the development).

“A Bayesian model for Change Impact on Software Estimations”

 132

how to achieve a coordinated start-up (that was non

There was a common consensus from the team that the

dependencies.

: Decisions for reading gauges

we can see different decisions related to gauge reading, such as switching

cameras, illuminate with active LED lamp, reduce the integration’s period of the camera, and

n translation and correction

An important difference with respect to the previous case is that all these decisions are

that is, they are not linked to each other.

once the CPTs were adjusted and once the probabilities for its main inputs were determined

(some depend on previous design decisions to be taken during the development).

“A Bayesian model for Change Impact on Software Estimations”

up (that was non

There was a common consensus from the team that the APES

dependencies.

: Decisions for reading gauges

we can see different decisions related to gauge reading, such as switching

cameras, illuminate with active LED lamp, reduce the integration’s period of the camera, and

n translation and correction of brightness and illumination.

An important difference with respect to the previous case is that all these decisions are

that is, they are not linked to each other. Figure

once the CPTs were adjusted and once the probabilities for its main inputs were determined

(some depend on previous design decisions to be taken during the development).

“A Bayesian model for Change Impact on Software Estimations”

up (that was non-deterministic and sometimes

APES-CIE tool helped to identify

: Decisions for reading gauges.

we can see different decisions related to gauge reading, such as switching

cameras, illuminate with active LED lamp, reduce the integration’s period of the camera, and

of brightness and illumination.

An important difference with respect to the previous case is that all these decisions are

Figure 7-4 show

once the CPTs were adjusted and once the probabilities for its main inputs were determined

(some depend on previous design decisions to be taken during the development).

“A Bayesian model for Change Impact on Software Estimations”

deterministic and sometimes

tool helped to identify

we can see different decisions related to gauge reading, such as switching

cameras, illuminate with active LED lamp, reduce the integration’s period of the camera, and

of brightness and illumination.

An important difference with respect to the previous case is that all these decisions are

shows the probabilities

once the CPTs were adjusted and once the probabilities for its main inputs were determined

(some depend on previous design decisions to be taken during the development).

“A Bayesian model for Change Impact on Software Estimations”

Thesis

deterministic and sometimes

tool helped to identify

we can see different decisions related to gauge reading, such as switching

cameras, illuminate with active LED lamp, reduce the integration’s period of the camera, and

of brightness and illumination.

An important difference with respect to the previous case is that all these decisions are

the probabilities

once the CPTs were adjusted and once the probabilities for its main inputs were determined

“A Bayesian model for Change Impact on Software Estimations”

Thesis

deterministic and sometimes

tool helped to identify

we can see different decisions related to gauge reading, such as switching

cameras, illuminate with active LED lamp, reduce the integration’s period of the camera, and

An important difference with respect to the previous case is that all these decisions are

the probabilities

once the CPTs were adjusted and once the probabilities for its main inputs were determined

•

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 134

In the following, we will comment the results for the different question

Q1: Are all aspects concerning issues (Trade-offs) correctly represented?

Here we obtained 4.6 points on average. That is, a majority of the users fully agree with this

conclusion. Some user pointed out that it would be better to have the possibility of sorting

the items so that they were always placed in the same order (order in the presentation

changes when probabilities are re-computed).

Q2: Does the tool have a positive impact when used for system's design?

The average value for this question was 4.8. One user that was working on use case 2

commented that it was probably worth to use the tool once the initial design has been made,

to avoid having in the change impact model a very large number of decisions taken during

the first stages of the project.

Q3: Is the tool helpful for setting priorities (in decisions and activities to

accomplish)?

Here we obtained 5 points on average. That is, users fully agree with this conclusion.

Q4: Is the tool helpful to identify inter-dependencies of decisions?

The result obtained on average was 4.2 (partial agreement). Two of the users commented

that there are cases in which an input (cause) for a decision is an output for another

decision, and this could be difficult to visually detect looking at the tree. Users in this case

need to open the corresponding CPT for that element. But, although the tree provides a

simpler view, it hides the underlying network. This affects the visualization of the BBN, but

not the underlying model.

Q5: Is the tool helpful to identify causes of decisions?

Here we obtained 4.8 points on average. That is, users almost fully agree with this

conclusion. There is no comment on how the model can be improved.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 135

Q6: There is a benefit of gathering the information related to alternatives in the

design, arguments

Here we obtained 5 points on average. That is, users fully agree with this conclusion.

Q7: Does the tools serve to determine the traceability among elements and their

inter-dependencies?

All users almost fully agree with this statement, with 4.8 points on average.

Q8: All elements involved in a design decision can be represented in the model.

This was a very important question, because it was addressed to determine the

completeness of the model. Users fully agreed with this assessment (with average 5.0)

Q9: The rationale for decisions is correctly represented.

Also a very important question, addressed to determine the validity for representing design

rationale. The obtained value was a 4.6 on average. Once again, there was no comment

regarding missing elements for the rationale.

Q10: The tool can help stakeholders to explain their motivations, and to reach an

agreement.

All users either fully agree or partially agree on this (with 4.8 points on average). Some

users commented that, by using probabilities, it is possible to better explain the

argumentation behind a decision, and that reaching an agreement on the probability tables

was the key factor.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 136

Design Support Average

Q1 All aspects concerning issues (Trade-offs) are correctly represented 4.6

Q2 The tool has a positive impact when used for system's design 4.8

Q3 It is a helpful tool for setting priorities
5.0

Q4 It is helpful tool to identify inter-dependencies of decisions 4.2

Q5 It is helpful to identify causes
4.8

Q6 There is a benefit of gathering the information related to alternatives in the design, arguments
5.0

Q7 The tools serves to determine the traceability among elements and their inter-dependencies
4.8

Q8 All elements involved in a design decision can be represented in the model 5.0

Q9 The rationale for decisions is correctly represented
4.6

Q10 The tool can help stakeholders to explain their motivations, and to reach an agreement 4.8

 Global Average on design 4.8
Table 7-1: Questions on design and their corresponding average values.

7.3.2 EASE OF USE

A set of questions were oriented towards the ease of use; here we were trying to identify

whether the tool was sufficiently simple as to be used by normal developers, as well as

possible improvements on usability. Questions were as follows:

Q11: The tool is easy to understand

We obtained a partial agreement on this point (average 4.2). Some user commented the

need to explain some of the acronyms used in the tool (WH, or CPT for instance). Others

commented the need for an on-line help. Some user commented that the tool required

“minor training”.

Q12: The tool is easy to use.

Here we obtained 4.4 points on average (almost complete agreement). There was a

comment on a user that mentioned the need of “high experience in project development to

define the right probability values used for computation and decision making, even though

this definition can be fine-tuned during several iterations”. Some user commented also the

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 137

advantage of the tool to be integrated into an Integrated Desktop Environment such as

Eclipse, a very familiar environment for developers.

Q13·: Data gathering does not take so much time.

This received one of the lowest grades: 3.6. (almost partial agreement) An important

comment related to this question was that “Specification of all elements (Requirements,

Goals, Assumption, Desing Particulars), that can affect final trade-offs decision is not an

easy task; it is refined step by step during project phases from the very beginning due to tool

flexibility. User certain experience is required for this and will be helpful.”

Q14: The tool provides relevant information in case of errors

For this question we received a 3.8 on average. Some user commented that when there

were facts added to the model that lead to contradictions (according to the CPTs),

probabilities were not computed, and were shown as “-“, without an explanation of the

conflict. That is, a CPT in which when a decision is VALID design element DE1 is STABLE,

and I set decision VALID and DE1 as VOLATILE, the system failed to compute the

probabilities (but there was no mention to the reason why this is happening).

Q15: The argumentation model (reasons for decisions and causes) is easy to follow

We had a 4.6 on average; a user commented the (already mentioned) issue that sometimes

it is difficult to follow the tree, when there were chained decisions.

The average value obtained for this section is 4.1, we found here again the issue of the tree

as a partial but not complete view of the model, the focus on the users regarding the need of

expertise for filling the CPTs, as well as some minor possible refinements in the tool

(explanation of acronyms, on-line help).

Table 7-2 shows the results for these questions

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 138

Design Support Average

Q11 The tool is easy to understand 4.2

Q12 The tool is easy to use
4.4

Q13 Data gathering does not take much time
3.6

Q14 The tool provides relevant information in case of errors
3.8

Q15 The argumentation model (reasons for decisions and causes) is easy to follow
4.6

 Global Average on this section 4.1
Table 7-2: Questions on ease of use and their corresponding average values

7.3.3 MAINTENANCE

Although the tool was not being used for maintenance in any of the two cases, we

considered important to ask the users about the possible usage during this phase. There

were two different questions regarding maintenance:

Q16: The tool helps developers understand design decisions, thus improving

future maintenance tasks

Here we obtained a 4.8 on average. In particular one user commented that “This could be

true in the case of activities developing products where maintenance phase is of paramount

importance”. Here it is worth mentioning that both use cases were focusing on their specific

project and not tied to a particular product to be maintained.

Q17: The tool helps understanding the changes required for better analysis

We got a 5.00 on average, with no discrepancy on this question.

The conclusion for maintenance is therefore that the tool is seen as valuable for

maintenance activities, particularly for maintenance of products that have a larger

maintenance period, and are subject to more changes and improvements.

Table 7-3 shows the results for this section.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 139

Maintenance Average

Q16 It helps developers understand design decisions, thus improving future maintenance tasks 4.8

Q17 The tool helps understanding the changes required for better analysis 5.0
 Global Average on this section 4.9

Table 7-3: Questions on maintenance.

7.3.4 LEARNING SUPPORT

We asked the users whether they thought this could be useful to allow developers with less

experience and know-how to learn from the design decisions modeled using the tool.

Q18 The tool can be used to understand why decisions were made by new

members of a project

Here we obtained an almost complete agreement (4.8). We received a comment stating that

“Post-analysis could be very interesting to avoid wasting time in futures project. Storing the

history (how the assumptions and probabilities were changing within the project) could also

be interesting” while others mentioned that “the tool can provide a quick overview of major

criticalities of a project for new members of the development team”.

Q19: Users can learn how to make future decisions based on the information

present

We received 4.8 points on this point. There was a comment of one user stating that it might

be difficult in most occasions to find a situation in which the causes and effects will be the

same. Anyhow he considered that having the rationale from the tool was a very valuable

asset.

Q20: Some decisions and their outcome can be extrapolated to external projects

Here we received again a 4.4 (partially complete agreement). Some comments mentioned

that this will only be possible for activities that have a strong similarity.

So as a general conclusion for this section, there is a recommendation to store the historical

data for the decisions (not only the current picture), and there is a global consensus on the

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 140

possibilities to use this information for learning about the project as well as the extrapolation

of decisions to other projects. But, this last issue will depend on very similar circumstances,

which is not the common case.

Table 7-4 shows values for this section

Learning support Average

Q18 The tool can be used to understand why decisions were made by new members of a project 4.8
Q19 Users can learn to make future decisions based on the information present 4.8

Q20 Some decisions and their outcome can be extrapolated to external projects, 4.4

 Global Average on this section 4.7

Table 7-4: Questions on learning support

7.3.5 DOCUMENTATION

Q21: The tool generates information that is relevant for projects' documentation

For this we received an average value of 4.4. The main objection regarding this is the lack of

possibilities for printing or exporting the information from the tool to another document.

Q22: Using the tool it could be possible to reduce the volume or number of

documents

For this question we received 3.8 points on average. Some users mentioned that there is no

possibility to reduce the amount of documents in some projects (since number and type of

deliverables are agreed from the very beginning). Others mentioned that, although there is

valuable information in the tool, it was not clear how to achieve this goal.

The main problem being identified for documenting is that it is impossible to export or import

information into other formats (pdf document, csv files, etc…)

The global average for this section is the lowest of all sections, being a 4.1 mainly due to this

fact.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 141

Documentation Average

Q21 The tool generates information that is relevant for projects' documentation 4.4
Q22 Using the tool it could be possible to reduce the volume of number of documents 3.8

 Global Average on this section 4.1

Table 7-5: Questions on documentation

7.3.6 SENSITIVITY ANALYSIS

Q23: Propagation of probabilities from causes to effects provides a helpful insight

of the key issues in making decisions.

With this question we tried to determine whether users find the forward propagation

capability of the tool useful, and whether it gives them hints on those arguments (causes)

that are more relevant to decisions. Although there was an almost complete agreement on

average (4.8), some users also mentioned the need for an on-line help for some activities

(for instance, in order to fill the CPTs).

Q24: Propagation of probabilities from effects to causes serves to identify the

most important elements that contribute in order to obtain an effect.

We obtained the same result as before (4.8 on average).

Q25: The tool serves to identify those elements that are critical to achieve our

goals

For this we obtained a complete agreement (5.0). The global average for this section is a

4.9, which means that users see a very good potential for both forward and backward

propagation.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 142

Sensitivity Analysis Average

Q23 Propagation of probabilities from causes to effects provides a helpful insight of the key issues
in making decisions

4.8

Q24 Propagation of probabilities from effects to causes serves to identify the most important
elements that contribute in order to obtain an effect

4.8

Q25 The tool serves to identify those elements that are critical to achieve our goals 5.0
 Global Average on this section 4.9

Table 7-6: Questions on sensitivity Analysis

7.4 REVIEW OF THESIS’S OBJECTIVES

It is now the time to contrast the objectives we had for this thesis against the results

obtained.

Objective of the thesis Global evaluation Possible

Improvement (s)

O1: to develop a model to provide

reliable estimations in order to

determine the change impact

throughout the whole lifetime of a

project.

Since the estimation model is based on the change

impact analysis performed by the user, the reliability

of the model is based on the experience and the

ability of the user when performing such analysis.

However, forward and backward propagation is

considered useful by the users (Q23, Q24) and, what

is more important, the tool serves to identify those

elements that are critical to achieve our goals (Q25).

Store the history of

estimations and use

learning techniques to

determine accuracy and

deviation

O2: The APES-CIE Model shall be

valid for the aerospace market

One of the projects used as a use case was an on-

board software development. Being the qualitative

evaluation performed by the developers involved in

this project very positive, and based on the analysis

we performed in Section 6.5, the model can be

considered valid for this market.

-

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 143

Objective of the thesis Global evaluation Possible

Improvement (s)

O3: The APES-CIE model shall

contemplate the inherent uncertainty

associated to any development. This

uncertainty shall be managed using

statistical techniques.

This objective has been achieved; the model allows

users to perform what-if and backward analyses and

there is a very positive feedback from the users

regarding propagation of probabilities (Q23, Q24). In

addition, users consider that the tool has a very

positive impact for system’s design (Q2). It can be

argued that the “probabilities” are, in the majority of

the cases, based on impressions from the user and

not based on historical data.

-

O4: The statistical technique to be

used by the APES-CIE model shall

be based on Bayesian Belief

networks

That is the way within which the model has been

designed.

O5: Our change impact estimation

model shall conceive the outcome of

a software development as a result of

a network of design decisions.

The main elements of the ontology are design

decisions – see Section 5.1

-

O6: SLOs, among other elements,

shall be linked to design decisions,

either as inputs (causes for the

decisions to be taken) or as outputs

(effects of such decisions).

The ontology considers SLOs as decision elements

linked to decisions as inputs or outputs.

O7: It shall be possible to capture the

rationale for decisions by using the

model,

The information regarding the decision taken is

contained in the model. There is no suggestion from

any evaluator regarding elements not contained in the

model. There are very positive answers from the

evaluators regarding this point (Q4, Q5, Q8).

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 144

Objective of the thesis Global evaluation Possible

Improvement (s)

O8: The model shall be easy to use

by developers

Q11, Q12 and Q15 induce to think that the results are

very positive in this respect.

Changes in the way the

information is presented

by the tool, but not

changes of the model are

required (for instance, to

use a network view

instead of a tree view)

09: The model shall take advantage

of the predictive and diagnostic

reasoning capabilities of BBNs.

Users considered forward and backward propagation

a very useful feature (Q22, Q23).

O10: Instead of being based on

historical data, or automated

techniques, the model shall be based

on the results of change impact

analysis made by users.

This was a conclusion from the state of the art that

has driven how the tool works. The tool provides a

useful insight of the key decisions, but is based on

(and limited by) the user’s perspective

Adding automatically

information from change

impact techniques

Table 7-7: Review of thesis’s objectives.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 145

8 CONCLUSIONS

Change Impact analysis and change impact estimations are a difficult area of knowledge for

software development. Although there have been software estimations based on probability

calculus for several decades, most of the software development companies still rely on the

heuristics from their experts, and not on statistics. The main reason for this is the uncertainty

inherent to software changes (the so-called ripple effect: a single change could have

multiple effects in different workflows of the software development process) and the

unavailability of most of the important variables that are used for estimations until an

advanced phase of the development (for instance, LOC). But software changes are inherent

to any software development, and unexpected changes come from the very beginning of the

development till the maintenance of the software. In fact, any software development can be

seen as a sum of changes, some of them being performed in parallel workflows. In this

context, BBNs are well defined analysis techniques based on probability calculus that have

been used for estimations in multiple areas, that allow estimations under uncertainty and

incompleteness of the input parameters.

The conclusions obtained in this thesis can be summarized as follows:

C1 Change impact analysis, design rationale and statistical techniques can be

combined to handle the uncertainty inherent to any development process

In the “State of the art” chapter, we identified four knowledge areas of research connected to

change impact estimations: change impact analysis (CIA), that predicts the parts of the

software system that can be affected by changes in the system; software metric estimations

(SE), that try to provide global “attributes” of a development before the actual development

is made; Bayesian Belief Networks (BBN), the modelling and statistical technique that we

decide to use for change impact estimations; and design rationale models (DR), oriented to

capture the knowledge and reasoning justifying the resulting design. We identified that in the

majority of the cases, software estimations lack causal modelling, which is an area

traditionally covered by DR and CIA. Design changes determine variations in effort, risk and

quality during the whole lifecycle of the project. Change impact is tied to change due to

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 146

design decisions, which in turn are tied to the rationale for these decisions, and these

decisions in turn determine the traceability among SLOs.

C2: The singularity of change impact makes its estimation more difficult than other

kinds of estimations: historic data is not as valuable due to the particularities of

any change

We also identified that the particularities of any software development make it difficult to

extrapolate previous results obtained in other projects to the changes to be performed on a

given project. Each project has its own, particular “network” of changes, and that traceability

among different SLO,s is the driver for this network. We learned that, although there are

multiple software tools for helping in the construction of such network, these tools do not

provide the complete set of relations that may exist among the different SLO,s.

C3: Change impact is driven by decisions, which in turn depend on design rationale

From this point of view, change impact analysis and design rationale are complementary

areas of knowledge. Our model provides the rationale behind the changes, so that it can

support not only the decision-making process, but the design justification, as well as the

change impact analysis.

C4: Our model is based on previous models, and can be considered an evolution

based on them

From the state of the art, two particular methods and techniques of particular relevance for

this thesis were found: the AREL model from Tang, and RATSpeak DRL (implemented in

SEURAT) from Burge. None of them satisfied completely our expectations: meanwhile the

AREL model focused on the design workflow, the design rationale model for SEURAT, that

was able to represent in a much more accurate way the rationale behind decisions, lacked a

probabilistic model for the uncertainty regarding SLO;s that are subject to change. We

combined ideas and models from both, using a different perspective, to create APES-CIE.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 147

C5: Common and intuitive concepts (requirements, design elements, goals,

assumptions, and environmental aspects) can be combined to create an ontology

for design rationale that is easy to use, and understand.

The APES-CIE model was created having the methodology for space development in mind.

APES-CIE uses common concepts of Design Rationale as well as software development

standards for the aerospace field to create a model that is intuitive, and easy to use by

developers. In this model, for each design decision, represented by trade-offs, users analyze

a possible set of design decisions. These design decisions can be mutually exclusive or not.

Inputs to the decisions are causes that lead to the decision to be taken, and these are also

common concepts used by developers in the development process: requirements,

assumptions, design elements, or environmental issues. Outputs to a decision are

consequences on elements that can be affected it the decision is taken: design elements

built, requirements fulfilled, goals achieved, or assessments that can be assumed to be true.

The model allows stakeholders to build the network of elements involved in a change. This

network is built manually by the users that are those that have the knowledge, avoiding the

need for them to learn the underlying techniques being used. In essence, the tool can be

seen as a mind-mapping tool for the design rationale, a tool that is directly connected to the

way that some deliverables in the space industry are produced (such as the design

justification file). Once users have identified the inputs (i.e. causes) and the outputs (i.e.

consequences) for a decision, they will have to assign probabilities for the decisions (based

on inputs) and outputs of decisions (based on decisions) by filling conditional probability

tables (CPTs). The initial setting of the tool for the CPTs is to provide equal probability for all

cases. Users must adjust the corresponding CPTs for the inputs to a decision as well as the

output for a decision based on their knowledge. Users can also set those facts that they

know, fixing the values for: requirements that are known to be part of the development,

assessments that are known to be true, decisions that are enforced, or environmental

conditions (for instance, having to work with a given number of developers, necessarily). As

CPTs are being adjusted, and facts are set, the model is able to propagate automatically the

•

•

•

•

•

•

•

•

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 152

10 BIBLIOGRAPHY

Angelis, L., Stamelos, I. and Morisio, M. 2001. Building a Software Cost Estimation Model

Based on Categorical Data. 2001.

Arnold, R.S: and Bohner, S.A. 1993. Impact Analysis – Towards a Framework for

Comparison. Los Alamitos, Calif : IEEE CS Press, 1993, pp. 292-301.

Basha, S and Dhavachelvan, P. 2010. Analysis of Empirical Software Effort Estimation

models. 2010, pp. 68-77.

Basri, Sufyan, Kama, Nazri and Ibrahim, Roslina. 2015. A Novel Effort Estimation

Approach for Requirement Changes during Software Development. 2015, pp. 237-252.

Bilal. 2006. "Computing Ripple Effect for Object Oriented Software". 2006.

Blac, S.E. 2001. Computation of Ripple Effect Measures for Software. PhD Thesis,. London,

UK : London South Bank University,, 2001.

Boehm, B. 1981. Software Engineering Economics. New-York : Prentice-Hall, 1981.

Boehm, B., Abts, C. and Chulani, S. 2000. Software Development Cost Estimation

Approaches: A Survey. 2000, pp. 177-205.

Boehm, Barry, et al. 1995. Cost Models for Future Software Live Cycle Processes:

COCOMO 2.0. Annals of Software Engineering Special Volume on Software Process and

Product Measurement. Amsterdam, The Netherlands, : J.C. Baltzer AG, Science Publishers,

1995, pp. 45-60.

Bohner, S.A. and Arnold, R.S. 1996. Software Change Impact Analysis. IEEE Computer

Society Tutorial : IEEE Computer Society Press, 1996.

Bracewell, R, et al. 2009. Dred 2.0: A method and tool for capture and communication of

design knowlede deliberated in the creation of technical products. 2009, pp. 6-223, 6-234.

Burge, J. and Brown, D.C. 2002. Discovering a research Agenda for using design rationale

in Software Maintenance. 2002.

Burge, J. E. and Brown, David C. 2008. SEURAT: Integrated Rationale Management.

Leipzig, Germany. : ACM 978-1-60558-079-1/08/05., 2008.

Burge, J. E. 2005. Software Engineering Using design RATionale. 2005.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 153

Burge, Janet E. and Brown, David C. 2003. Rationale Support for Maintenance of Large

Scale Systems. 2003.

Burge, Janet E. 2001. Design Rationale for Software Maintenance. 2001.

Clayberg, Eric and Rubel, Dan. 2008. Eclipse Plugins (3rd Edition). s.l. : ISBN-13: 978-

0321553461, 2008.

Clayberg, Eric. 2008. Eclipse Plug-ins (3rd Edition). 2008. ISBN-13: 978-0321553461.

Conklin, Jeffrey E. and K.C., Burgess Yakemovic. 1991. A Process-Oriented Approach to

Design Rationale. 1991, pp. 357-391.

ECSS-E-40, Part 1B. 2003. European Cooperation for Space Standardization (ECSS).

Space Engineering. Software – Part 1: Principles and Requirements. 2003.

ECSS-E-40, Part 1C. 2009. European Cooperation for Space Standardization (ECSS).

Space Engineering. Software – Part 1C. Noordwijk, The Netherlands : s.n., 2009.

Feiler, Peter H. and Gluch, David P. 2012. Model-Based Engineering with AADL: An

Introduction to the SAE Architecture Analysis & Design Language. s.l. : Addison-Wesley

Professional., 2012.

Fenton, N. E. and Ohlsson, N. 2002. Quantitative Analysis of Faults and Failures in a

Complex Software System. 2002.

Fenton, N.E. and Neil, M. 2000. Software Metrics: Roadmap. 2000.

Fenton, Norman and Neil, Martin. 1999. Software Metrics and Risk FESMA 99. 1999.

Fuentetaja, R., et al. 2013. Multi-step Generation of Bayesian Networks Models for

Software Projects. 2013.

Gamerman, Dani. 1997. Markov Chain Monte Carlo, Stochastic Simulation for Bayesian

Inference. London (UK) : Chapman & Hall, 1997.

Geman, S. and Geman, D. 1984. Stochastic relaxation, Gibbs distributions and the

Bayesian restoration of images: 609-628. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 12. 1984.

Gilb T. 1976. Software Metrics. s.l. : Chartwell-Bratt, 1976.

Gray, Andrew R. and MacDonell, Stephen G. 1997. A comparison of techniques for

developing predictive models of soft-ware metrics. 1997, pp. 425-437.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 154

Hall, M., et al. 2009. The Weka data mining software: an update. 2009.

Hart, P.E: and Duda., R.O. 1977. PROSPECTOR. A computer based consultation system

for Mineral Exploration. 1977.

Hassan, Mohamed Oussama and Basson, Henri. 2008. “Tracing Software Architecture

Change Using Graph Formalisms in Distributed System·”. 2008, pp. 1-6.

Hassine, J., et al. 2005. Change Impact Analysis for Requirement Evolution Using Use

Case Maps. Washington, U.S.A. : s.n., 2005.

IEEE Glossary. 1990. IEEE Standard Glossary of Software Engineering Terminology.

September, the 28th. s.l. : ISBN 1-55937-067-X., 1990.

IEEE. 2000. IEEE Recommended Practice for Architectural Description of Software

Intensive Systems. s.l. : Software Engineering Standards Comittee of the IEEE Computer

Society, 2000.

Jensen, Finn V. 1996. An Introduction to Bayesian Networks. London (UK) : UCL Press,

1996.

Kama. 2013. Change Impact Analysis for the Software Development Phase: State-of-the-

art. 2013, pp. Vol. 7, No. 2.

Kjærulff, Uffe B. and Madsen, Anders L. 2005. Probabilistic Networks — An Introduction

to Bayesian Networks and Influence Diagrams. 2005.

Korb, Kevin B. and Nicholson, Ann E. 2004. Bayesian Artificial Intelligence. Florida

(USA) : Chapman & Hall/CRC, 2004.

Kruchten, P. 2000. The Rational Unified Process: An Introduction. s.l. : Addison-Wesley

ISBN 0-201-70710-1, 2000.

Kunz, Werner and Rittel, Horst. 1970. ISSUES AS ELEMENTS OF INFORMATION

SYSTEMS. 1970.

Laird, Linda M. and Brennan, M. Carol. 2006. Software Measurement and Estimation: A

Practical Approach. s.l. : Wiley Interscience, 2006.

Lee, J. 1997. Design Rationale Systems: Understanding the issues. 1997, Vol. IEEE Expert,

pp. 78-85.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 155

—. 1989. Decision Representation Language (DRL) and its support Environment. 1989,

Vols. MIT AI LAb, Working Paper no 325, August.

Leung, H. and Fan , Z. 2002. Software Cost Estimations. 2002.

Long Parnas, D and Clements, P. C. 1986. A Rationale Design process: how and why to

fake it. 1986, pp. 251-256.

MacLean, Allan, et al. 1991. Questions, Options and Criteria, Elements of Design Space

Analysis. 1991, pp. 201-250.

Madachy, R.J. 1994. A software Project Dynamics Model for Process Cost, Schedule and

Risk Assessment. s.l. : Ph.D. dissertation, University of Southern California, 1994.

Mair, Carolyn, et al. 2000. An investigation of machine learning based prediction systems,.

2000, pp. 23-29.

McDermott, J. 1984. R1 re-visited: 4 years in the trenches. 1984, pp. 21-32. .

Molokken, K. and Jorgensen, M. 2003. A review of software surveys on software effort

estimation. 2003, pp. 223-230.

Morgan, Jeanette N. and Peeples, A. 2003. A Software Development Cost Estimation

Model for Higher Level Language Environments. 2003.

Netica. 2008. Netica‐J Manual. Vancouver, BC, : Norsys Software Corp., 2008.

Noble, D. and Horst, W.J. Rittel. 1998. Issue-Based Information Systems for Design. 1998,

pp. 275-286.

Ocón, J. 2010. Cost, Complexity and Change Impac Final Report (Deliverable of the CCI

Project). Madrid, Spain : s.n., 2010.

Pearl, Judea. 1998. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. San Francisco (USA) : Morgan Kaufmann, 1998.

Pleeger, S.L. 1991. Software Engineering: the production of quality software. New York :

MacMillan Publishing Company, 1991.

Quinlan, J.R. 1992. Learning with continuous classes. Proceedings AI’92. Singapore. :

Adams & Sterling Eds., 1992, pp. 343-348.

RADC. 1986. “Automated Lifecycle Impact Analysis System”. Rome : Rome Laboratories,

1986. Tech Report RADC-TR-86-197.

“A Bayesian model for Change Impact on Software Estimations”

Thesis

 156

Radlinski, L., et al. 2007. Improved Decision-Making for Software Managers Using

Bayesian Networks,. 2007, pp. pp. 13-19.

Samad, T. and Annaswamy, A. M. 2011. The Impact of Control Technology. s.l. : IEEE

Control Systems Society, 2011.

Schubanz, M., Pleuss, A. and Botterweck, G. 2012. Modeling Rationale over Time to

support Product Line Evolution Planning. Leipzig, Germany : s.n., 2012.

Shawn. 1996. Software Change Impact Analysis. Los Alamitos, California., : IEEE

Computer Society Press, 1996.

Shortliffe, E. H. 1976. Computer-based medical consultation: MYCIN. New York (USA) :

Elsevier, 1976.

Shum, S. 1991. Cognitive Dimensions of Design Rationale. People and Computers VI.

Cambridge : Cambridge University Press, 1991.

Smith, J. Q. 1992. Decision Analysis. A Bayesian Approach. Bristol (UK) : Chapman & Hall.,

1992.

Stevens, W:, Meyers, G. and Constantine, L. 1974. Structured Design, J. VOl 13 NO 2.

s.l. : IBM Systems, 1974.

Tang, A., et al. 2005. A Survey of the Use and Documentation of Architecture Design. 2005.

Tang, Antony, et al. 2006. Using Bayesian belief networks for change impact analysis in

architecture design. 2006, pp. 127–148.

Weisberg, S. 1985. Applied Linear Regression. New York : John Wiley and Sons, 1985.

Y. Li, J. Li, Yang, Y. and Mingshu, L. 2008. Requirement-centric Traceability for Change

Impact Analysis: A Case Study in Making Globally Distributed Software Development a

Success Story. 2008.

Yau, S. S. and Collofello, J.S. 1980. Some Stability Measures for Software Maintenance.

1980, pp. 542-552.

Zhao, J. 1998. Assessing the Complexity of Software Architectures. 1998, pp. 163-166.

