

TESIS DOCTORAL

New Approaches to Data Access in Large-Scale Distributed Systems

AUTOR: Borja Bergua Guerra
DIRECTORES: Prof. Dr. Félix García Carballeira

Dr. Alejandro Calderón Mateos

FIRMA DEL TRIBUNAL CALIFICADOR

FIRMA

PRESIDENTE:

VOCAL:

SECRETARIO:

CALIFICACIÓN:

Leganés, a 21 de Diciembre de 2015

Acknowledgments

Many people appeared in my life during this thesis. Many people have contributed to making
this thesis possible. My sincere gratitude to all of you.

First and foremost, I would like to thank specially the incredible support of my advisor Dr.
Félix García Carballeira. It is impossible to describe how much I owe you. I have always found good
advises and wise experience in you. You have been the most relevant person in my professional
life. No doubt. You know how sad it was for me to stop working with you. But life must go on.
And I wish to be, someday, as important for a team mate as you were for me. Thank you very
much Félix.

I would also like to thank my co-advisor Dr. Alejandro Calderón. Since a I met you, you have
always been a good friend. And very probably, we will be for life.

I would like to acknowledge Dr. Jesús Carretero, head of ARCOS research group of Universidad
Carlos III de Madrid. Thank you very much for your patience and confidence.

Very special thanks go to Javi “Zor”, Luismi, Alejandra, Maria Cristina, and “Fortran”. You
have been much more than simply team mates.

I would also like to thank all the people that are or have been members of ARCOS team during
all these years: Javi “Doc”, José Daniel, Florin, David, Paco, Sole, Fernando, Rosa, J.C. Pichel,
Daniel, Juanma, Alberto “Garci”, Carlos, Gonzalo, Pablo, Gabriel, Fran “Duro”, Ernesto, JuanFra,
José Luis G. Compean, J. Manuel P. Lobato, M. Gregoria, M. Blanca, Chema and Marga.

I made very good friends in the admin lab of the Computer Science department. Óscar, the
very first person I worked with, here at university, back in 2003. And Roberto, my coffee mate
and confidant. How many good moments both of you gave me. Thank you so much. Impossible to
remember everyone, here are some of them: Jaime, Rafa, Fran, Álvaro, Adrian, Carlos, Iván, ...

As part of the international PhD, I did a research stay at Laboratoire d’Informatique de
Grenoble. First of all, I would like to thank specially Dr. Derrick Kondo, for hosting my visit, and
for all his support to me. I would also like to thank many people there at Grenoble that made
me feel like at home: Arnaud Legrand, Pierre Navarro, Laurent Bobelin, Corinne Touati, Cristian
Ruiz, Christophe Laferrière, Joseph Emeras, Lucas Schnorr, Eric Amat, Rodrigue Chakode, and
many others (sorry, my memory is fragile). Thanks so much to all of you. You have a friend in
Spain.

Also, during my time in Grenoble, I had the pleasure to meet a fabulous group of friends:
Laura, Ana, Irene, Sonia, ... Every time I see a Sephora I put a smile on my face.

The last part of this thesis was finished while working at Pragsis Technologies S.L. It is being
an exciting stage in my professional life, surfing the wave of Big Data & Data Science. First of
all, I would like to thank Pedro Agudo, for giving me this opportunity and all the help that I
needed to finish this thesis. To David Millán for believing in me for this job. And very specially to
Daniel Palomar, my perfect complement and good friend. Also, I would like to thank all the good
friends I have made at Pragsis: Ramiro, Miguel, Gerardo, Dima, Aitor, Sole, Fernando, Marta,
Benjamin, José David, Fernanda, Verónica, Raúl, Rubén, Óliver, David Santibáñez, Jaime, José
Manuel, Santiago, Antonio, José María, Belén, Mónica, Eduardo, Alberto, and many others.

Finally, I would like to thank my closest family: parents, brother, mother’s aunt, and very
specially to Nuria, my friend, my soul mate, my love, my everything. Only you know how much
this thesis has stolen to us. And only you know how much I owe you. Finishing this thesis does
not pay for all the lost moments, but this is the end of a road, and a new and exciting road will
born in April. That will surely compensate everything.

Borja Bergua.

Abstract

A great number of scientific projects need supercomputing resources, such as, for example,
those carried out in physics, astrophysics, chemistry, pharmacology, etc. Most of them generate, as
well, a great amount of data; for example, a some minutes long experiment in a particle accelerator
generates several terabytes of data.

In the last years, high-performance computing environments have evolved towards large-scale
distributed systems such as Grids, Clouds, and Volunteer Computing environments. Managing a
great volume of data in these environments means an added huge problem since the data have to
travel from one site to another through the internet.

In this work a novel generic I/O architecture for large-scale distributed systems used for
high-performance and high-throughput computing will be proposed. This solution is based on
applying parallel I/O techniques to remote data access. Novel replication and data search schemes
will also be proposed; schemes that, combined with the above techniques, will allow to improve
the performance of those applications that execute in these environments. In addition, it will be
proposed to develop simulation tools that allow to test these and other ideas without needing
to use real platforms due to their technical and logistic limitations. An initial prototype of this
solution has been evaluated and the results show a noteworthy improvement regarding to data
access compared to existing solutions.

Resumen

Un gran número de proyectos científicos necesitan recursos de supercomputación como, por
ejemplo, los llevados a cabo en física, astrofísica, química, farmacologia, etc. Muchos de ellos
generan, además, una gran cantidad de datos; por ejemplo, un experimento de unos minutos de
duración en un acelerador de partículas genera varios terabytes de datos.

Los entornos de computación de altas prestaciones han evolucionado en los últimos años
hacia sistemas distribuidos a gran escala tales como Grids, Clouds y entornos de computación
voluntaria. En estos entornos gestionar un gran volumen de datos supone un problema añadido de
importantes dimensiones ya que los datos tienen que viajar de un sitio a otro a través de internet.

En este trabajo se propondrá una nueva arquitectura de E/S genérica para sistemas dis-
tribuidos a gran escala usados para cómputo de altas prestaciones y de alta productividad. Esta
solución se basa en la aplicación de técnicas de E/S paralela al acceso remoto a los datos. Así
mismo, se estudiarán y propondrán nuevos esquemas de replicación y búsqueda de datos que, en
combinación con las técnicas anteriores, permitan mejorar las prestaciones de aquellas aplicaciones
que ejecuten en este tipo de entornos. También se propone desarrollar herramientas de simulación
que permitan probar estas y otras ideas sin necesidad de recurrir a una plataforma real debido
a las limitaciones técnicas y logísticas que ello supone. Se ha evaluado un prototipo inicial de
esta solución y los resultados muestran una mejora significativa en el acceso a los datos sobre las
soluciones existentes.

Contents

List of Figures xix

List of Tables xxi

List of Algorithms xxiii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Structure and contents . 3

2 State of the art 5
2.1 Supercomputing . 5
2.2 Large-scale distributed systems . 6

2.2.1 World Wide Web . 7
2.2.2 Grid . 8

2.2.2.1 Globus Toolkit . 9
2.2.2.2 Open Grid Services Architecture (OGSA) 9
2.2.2.3 Managed, shared virtual systems 9
2.2.2.4 gLite . 10

2.2.3 Volunteer computing and desktop Grids . 10
2.2.3.1 BOINC . 11

2.2.4 Cloud . 12
2.2.4.1 Service models . 12
2.2.4.2 Deployment models . 15

2.2.5 Internet of Things . 15
2.2.6 Wireless Sensor Networks . 16
2.2.7 Peer-to-peer . 16

2.3 Data-intensive computing paradigms . 17
2.3.1 Data Grids . 17
2.3.2 Content Delivery Networks . 17

xi

xii CONTENTS

2.3.3 Peer-to-Peer networks . 18
2.3.4 Distributed databases . 18
2.3.5 Big Data . 19

2.3.5.1 MapReduce . 19
2.4 Data transport technologies in large-scale distributed systems 20

2.4.1 HTTP . 20
2.4.1.1 REST . 20

2.4.2 GASS . 21
2.4.3 IBP . 21
2.4.4 FTP . 21
2.4.5 GridFTP . 21
2.4.6 Globus XIO . 22

2.5 Data replication . 23
2.5.1 Benefits of data replication strategies . 23
2.5.2 Static replication strategies . 23
2.5.3 Dynamic replication strategies . 24
2.5.4 RLS . 24

2.6 Distributed storage . 25
2.6.1 Grid DataFarm (Gfarm) . 25
2.6.2 Grid File Access Library (GFAL) . 26
2.6.3 Legion I/O . 26
2.6.4 SRB I/O . 26
2.6.5 Bigtable . 26
2.6.6 Ceph . 27
2.6.7 GlusterFS . 27
2.6.8 Hadoop Distributed File System (HDFS) 28

2.7 Simulation of large-scale distributed systems . 29
2.7.1 General purpose simulation frameworks . 29
2.7.2 Network simulation . 31

2.7.2.1 Packet-level simulation . 31
2.7.2.2 Flow-based simulation . 32

2.7.3 SimGrid . 35
2.8 Summary . 41

3 Proposal of a generic I/O arch. for large-scale distributed systems 43
3.1 Motivation and objectives . 43

3.1.1 Use cases of parallel file systems for large-scale distributed systems 43
3.2 Summary of the architecture, design, and implementation of Expand 47

3.2.1 Data distribution and files . 49

CONTENTS xiii

3.2.2 Naming and metadata management . 50
3.2.3 Parallel access . 53
3.2.4 Access control and authentication . 53
3.2.5 User interface . 54

3.2.5.1 ROMIO Integration . 55
3.3 Architecture of a generic I/O middleware for large-scale distributed systems 56

3.3.1 Remote I/O in distributed applications . 58
3.4 Implementation of a parallel file system for large-scale distributed systems 61

3.4.1 Problems of Expand for large-scale distributed systems 61
3.4.2 Implementation of open protocols . 62

3.4.2.1 HTTP driver implementation . 62
3.4.2.2 GridFTP driver implementation 63
3.4.2.3 OGSA ByteIO web service implementation 63

3.4.3 Full replication or mirroring policy . 64
3.4.4 Block grouping and reordering in round-robin policy 64
3.4.5 Block grouping in full replication policy . 68

3.5 Summary . 71

4 Evaluation of the parallel FS in Grid and volunteer comp. envs. 73
4.1 Introduction . 73
4.2 Evaluation environments . 73

4.2.1 Real environments . 74
4.3 Evaluation in Grid environments . 75

4.3.1 Objective . 75
4.3.2 Benchmarks definition . 76

4.3.2.1 Random benchmark . 76
4.3.2.2 Balanced benchmark . 77

4.3.3 Results, analysis, and discussion of evaluation in real environments 79
4.3.3.1 Effect of reading part of a file . 80
4.3.3.2 Effect of different protocols used in distributed environments . . . 81
4.3.3.3 Effect of different workloads on servers and clients 85
4.3.3.4 Effect of having networks with different latencies 88
4.3.3.5 Effect of third-party transfers . 90

4.4 Evaluation in volunteer computing environments 94
4.4.1 Introduction . 94
4.4.2 Integration of a parallel file system into BOINC 95
4.4.3 Results, analysis, and discussion of evaluation in real environments 96

4.5 Summary . 98

xiv CONTENTS

5 Optimizations for replica selection in large-scale distributed systems 99
5.1 Motivation and objectives . 99
5.2 Problem definition . 100
5.3 Selection of virtual parallel partitions in large-scale replicated environments 102
5.4 Evaluation of the replica selection algorithm in Grid and volunteer computing en-

vironments . 107
5.4.1 Simulation environment . 107

5.4.1.1 Components of a distributed I/O simulator 107
5.4.2 Workload modeling . 108

5.4.2.1 Characterization of file size distributions 108
5.4.2.2 Benchmark workloads . 114
5.4.2.3 Platform definition . 115

5.4.3 Evaluation in Grid environments . 116
5.4.4 Evaluation in volunteer computing environments 118

5.5 Summary . 119

6 Conclusions and future work 121
6.1 Contributions . 122
6.2 Thesis results . 123
6.3 Future work . 126

Appendix A Architecture, design, and implementation of Expand 129
A.1 Introduction . 129
A.2 General overview of the architecture of Expand . 130
A.3 Model of distributed partition . 133

A.3.1 Configuration file . 134
A.4 Model of parallel file . 137

A.4.1 Definition of parallel file . 137
A.4.2 Data distribution . 139
A.4.3 Metadata . 142
A.4.4 Naming . 144
A.4.5 Location of master node . 145
A.4.6 Renaming of files . 146

A.5 Directories . 147
A.6 Virtual file handle and parallel access . 147
A.7 Dynamic reconfiguration of partitions . 149
A.8 Access control and authentication . 151
A.9 Architecture of Expand . 151

A.9.1 Core layer or file system kernel . 152

CONTENTS xv

A.9.2 Policy layer or policy management . 153
A.9.3 Network File Interface layer or access to I/O servers 154

A.10 User interfaces . 156
A.10.1 Built-in and POSIX interfaces . 156
A.10.2 Java interface . 157
A.10.3 MPI-IO interface . 157

A.11 Summary . 161

Bibliography 163

List of Figures

2.1 A BOINC server consists of several components, sharing several forms of storage. . 11
2.2 Strict master/worker model in BOINC . 13
2.3 Globus XIO Architecture . 22
2.4 Linear network with identical links of capacity C 33
2.5 SimGrid components overview . 35
2.6 SimGrid layers, and main data structures . 37

3.1 Use case: Distributed multi-protocol partition . 44
3.2 Use case: Remote partition . 45
3.3 Use case: Parallel partition . 46
3.4 Use case: Full replication . 47
3.5 Expand architecture . 49
3.6 File structure in Expand . 50
3.7 directory mapping in Expand . 51
3.8 Rename process in Expand . 53
3.9 Parallel access in Expand . 54
3.10 Expand integration inside ROMIO . 55
3.11 Generic I/O architecture for large-scale distributed systems 57
3.12 Classic vs Remote models . 58
3.13 H expression . 61
3.14 Example of four replicas in a fully replicated partition 64
3.15 Round-robin with no block grouping and reordering 65
3.16 Round-robin with block grouping and reordering 67
3.17 Full replication with no block grouping . 69
3.18 Full replication with block grouping and no reordering 70

4.1 GRIDIMadrid platform . 74
4.2 Grid5000 interconnection schema . 75
4.3 Classic vs Remote models . 76
4.4 Balance levels . 78

xvii

xviii LIST OF FIGURES

4.5 Balance modes . 79
4.6 Effect of reading part of a file in Random Benchmark (HTTP, 16 clients, 4 servers,

Cluster platform) . 80
4.7 Effect of reading part of a file in Random Benchmark (HTTP, 16 clients, 8 servers,

Cluster platform) . 80
4.8 Effect of reading part of a file in Balanced Benchmark (HTTP, 16 clients, 8 servers,

Cluster platform) . 81
4.9 Simple Transfer in Expand (Small Grid platform) 82
4.10 Benchmark Grid of Expand (Small Grid platform) 83
4.11 Effect of different protocols used in distributed environments using Random Bench-

mark with Distributed Copies mode (16 clients, 8 servers, Cluster platform) 84
4.12 Effect of different protocols used in distributed environments using Random Bench-

mark with Parallel mode (16 clients, 8 servers, Cluster platform) 84
4.13 Effect of different protocols used in distributed environments in Balanced Bench-

mark (16 clients, 8 servers, Cluster platform) . 84
4.14 Random Benchmark results for 1 server (HTTP, Cluster platform) 85
4.15 Random Benchmark results with Distributed Copies mode (HTTP, Cluster platform) 86
4.16 Random Benchmark results with Parallel mode (HTTP, Cluster platform) 87
4.17 Effect of having balanced/unbalanced workloads on servers (HTTP, Cluster platform) 87
4.18 Effect of having networks with different latencies (HTTP, all clients at Lyon,

Medium Grid platform) . 88
4.19 Effect of having networks with different latencies (HTTP, Medium Grid platform) . 89
4.20 Effect of having networks with different latencies (HTTP, 16 clients, 4 servers,

Medium Grid platform without Lyon) . 89
4.21 Effect of having networks with different latencies in the presence of slow links

(HTTP, all clients at Lyon, Medium Grid platform) 90
4.22 Effect of having networks with different latencies in the presence of slow links

(HTTP, 16 clients, 8 servers, Medium Grid platform without Lyon) 90
4.23 Traditional model of third-party file transfer in Grid 91
4.24 New model of third-party file transfers in Grid with Expand 92
4.25 Expand as third-party downloader evaluation results (two Cluster platforms) . . . 93
4.26 Strict Master/worker and distributed models in BOINC 94
4.27 Proposed model using Expand . 95
4.28 Results of Expand in volunteer computing (4 MB and 100 MB files, Desktop Grid

and Cluster platforms) . 97
4.29 Results of Classic and Expand modes in volunteer computing by file size (Desktop

Grid and Cluster platforms) . 98

5.1 Functions . 102
5.2 Weighting functions: some examples . 103
5.3 Disperssion functions . 106

LIST OF FIGURES xix

5.4 Pareto distribution . 109
5.5 Lognormal distribution . 110
5.6 Lognormal distribution (log-log) . 110
5.7 Double Pareto distribution . 112
5.8 Double Pareto distribution (log-log) . 112
5.9 Pareto-Double Pareto comparison (log-log) . 113
5.10 Double Pareto-Lognormal distribution . 114
5.11 Double Pareto-Lognormal sample . 115
5.12 Results of Classic vs Replica Selection Algorithm in Grid environment (FS-KB

dataset, simulated Medium Grid platform) . 116
5.13 Results of Classic vs Replica Selection Algorithm in Grid environment (FS-MB

dataset, simulated Medium Grid platform) . 117
5.14 Results of Classic vs Replica Selection Algorithm in volunteer computing environ-

ment (FS-MB dataset, simulated Medium Grid platform) 118

A.1 Generic architecture of a parallel file system . 130
A.2 Architecture of Expand . 131
A.3 Architecture of Avaki . 133
A.4 File and directory structure in Expand . 135
A.5 Example of data projection . 136
A.6 Data distribution in Expand . 139
A.7 AdExpand architecture . 140
A.8 Structure of a file in Expand . 141
A.9 The structure of a file in Expand . 145
A.10 Process of renaming of files in Expand . 147
A.11 Parallel access to files in Expand . 149
A.12 Adding a node to a partition in Expand . 150
A.13 Reconstruction of a partition by adding a new node 151
A.14 Expand Architecture . 152
A.15 Expand integration in FUSE . 156
A.16 Expand implementation using C and Java for cluster environments 157
A.17 Expand integration in ROMIO . 159
A.18 Data sieving . 159
A.19 Expand integration in ROMIO . 160

List of Tables

3.1 Most significant NFS server operations . 48
3.2 Distribution (standard deviation) of masters in different distributed partitions . . . 52
3.3 Definitions and notations for data access model . 58

5.1 Summary of importance of latency and throughput 102
5.2 limfs→1wlat and limfs→1wthr . 104
5.3 wlat and wthr for fs = 1 . 104
5.4 limfs→∞wlat and limfs→∞wthr . 104
5.5 wlat and wthr for 1 < fs <∞ . 104
5.6 Summary statistics for models used in Surge (1998) 111

A.1 Standard deviation in the distribution of master nodes 146

xxi

List of Algorithms

3.1 Round-robin with no block-grouping operation in Expand 64
3.2 Round-robin with block grouping operation in Expand 66
3.3 Round-robin retrieve operation in Expand . 66
3.4 Round-robin block reordering operation in Expand 67
3.5 Full replication with no block-grouping operation in Expand 68
3.6 Full replication block grouping operation in Expand 68
3.7 Full replication retrieve operation in Expand . 69
5.1 File opening operation in the replica selection algorithm 105
5.2 Parallel read operation in the replica selection algorithm 105
A.1 File renaming operation in Expand . 146
A.2 Initialization operation in Expand . 153
A.3 Resources release operation in Expand . 153
A.4 File creation operation in Expand . 154
A.5 File opening operation in Expand . 154
A.6 File removal operation in Expand . 155
A.7 Parallel read operation in Expand . 155
A.8 Parallel write operation in Expand . 156

xxiii

Chapter 1

Introduction

In the last years the computing power of high-performance systems has continued increasing at an
exponential rate, making even more challenging the access to large data sets. The ever increasing
gap between I/O subsystems and processor speeds has driven researchers to look for scalable I/O
solutions, including parallel file systems and I/O libraries.

A typical parallel file system stripes the file data and metadata over several independent disks
managed by I/O nodes in order to allow parallel file access from several compute nodes. Examples
of popular file systems include GPFS [Schmuck and Haskin (2002)], PVFS [Ligon and Ross (1999)]
and Lustre [Cluster File Systems Inc. (2002)]. These parallel file systems manage the storage of
several clusters and supercomputers from the top 500 list.

In distributed systems there are file systems that offer parallel access using multiple replicas.
Examples of such distributed file systems include CEPH [Weil et al. (2006a)], GlusterFS [Red
Hat, Inc (2015)] or HDFS [The Apache Software Foundation (2015a)]. However these file systems
require deploying specific services, which does not make them suitable for working completely at
client-side. And, also, do not address specifically the problem of optimizing replica selection for
small accesses in addition to big transfers.

1.1 Motivation

The parallel I/O solutions proposed so far in literature address either clusters of computers or
supercomputers. Given the proprietary nature of many supercomputers, the majority of works had
concentrated on clusters of computers. Only a limited number of papers have proposed novel solu-
tions for scalable parallel I/O systems in large-scale distributed systems. Nevertheless, distributed
systems have a complex architecture consisting of several networks and tiers (computing, I/O,
storage), and, consequently, a potential parallel access to data. This type of architecture provides
a rich set of opportunities for parallel I/O optimizations. Existing approaches concentrate on large
sequential movements of data across networks, or the use of replicas to select the closest sites.

Data intensive applications need to access to great amounts of data. The I/O access patterns of

1

2 Chapter 1. Introduction

scientific parallel applications often consist of accesses to a large number of small, non-contiguous
pieces of data. Furthermore, many current data access libraries such as HDF5 and NetCDF rely
heavily on small data accesses to store individual data elements in a common large file [The HDF
group (2012), Li et al. (2003)]. For small file accesses the performance is dominated by the latency
of network transfers and disks. Additionally, parallel scientific applications lead to interleaved file
access patterns with high interprocess spatial locality at the I/0 nodes [Nieuwejaar et al. (1996),
Simitici and Reed (1998)]. For big file accesses the performance is dominated by the bandwidth
of networks. These characteristics of the access patterns of data intensive applications motivated
several researchers to propose the use of replication schemes to improve data access and availability
[Amjad et al. (2012)].

However, these optimizations do not benefit of I/O techniques used in clusters or supercomput-
ers. In this thesis, we propose to demonstrate that parallel and remote techniques to data access,
as those typically used in clusters, results in a significant performance improvements, scalability,
and better resource usage in large-scale distributed systems.

1.2 Objectives

The main objectives of this dissertation are:

� To propose a generic I/O middleware architecture for large-scale distributed systems.

� To design a replica selection algorithm for configuring access virtual parallel partitions
for large-scale distributed systems.

By fulfilling the above objectives we try to obtain the following benefits:

� Generic architecture. This architecture targets large-scale distributed systems. The ma-
jority of existing approaches target cluster and supercomputer architectures, due to the
high-performance nature of clusters and supercomputers. The novelty of this dissertation
consists in proposing a generic architecture based on open-source software, encompassing
large-scale distributed systems.

� Portability. Portability is achieved by using well known technologies like HTTP and
GridFTP, de-facto transfer standards in distributed architectures.

� Scalability. This architecture should be scalable to systems with thousands of machines.
The novelty of our approach consists in addressing scalability by using multiple replicas of
the data in parallel.

� High-throughput. The application should be offered high-throughput parallel and remote
I/O. High throughput is obtained from parallel and remote access to independent storage
resources, a tight integration between the applications and the middleware, and overlap of
computation, communication, and I/O.

� High resources utilization. The middleware should achieve a high utilization of available
resources such as storage and networks.

1.3. Structure and contents 3

� Transparency and simplicity of use. This architecture can be used transparently by the
user. Optionally, the user may chose different parallel I/O optimizations in a straightforward
way.

1.3 Structure and contents

The remainder of this document is structured in the following way:

� Chapter 2 State of the art contains the state of the art.

� Chapter 3 Proposal of a generic I/O arch. for large-scale distributed systems presents the
architecture of the parallel file system proposed to solve some of the I/O problems that can
be found in large-scale distributed systems.

� Chapter 4 Evaluation of the parallel FS in Grid and volunteer comp. envs reports perfor-
mance results for both grid and volunteer computing environments.

� Chapter 5 Optimizations for replica selection in large-scale distributed systems presents opti-
mizactions designed towards improving data access in large-scale distributed environments,
and reports performance results of the optimizations for Grid and volunteer computing
environments.

� Chapter 6 Conclusions and future work contains a summary of this thesis, publications, and
future plans.

� Appendix A Architecture, design, and implementation of Expand contains an detailed study
of the Expand parallel file system.

Chapter 2

State of the art

This chapter presents the state of the art related to this dissertation and the background concepts
necessary for the understanding of the solution. The material is organized in six sections: Super-
computing, Large-scale distributed systems, Data-intensive computing paradigms, Data transport
technologies in large-scale distributed systems, Data replication, and Distributed storage.

2.1 Supercomputing

A supercomputer is a computer at the frontline of current processing capacity, particularly speed of
calculation. Supercomputers were introduced in the 1960s and were designed primarily by Seymour
Cray at Control Data Corporation (CDC), and later at Cray Research. While the supercomputers
of the 1970s used only a few processors, in the 1990s, machines with thousands of processors
began to appear and by the end of the 20th century, massively parallel supercomputers with tens
of thousands of “off-the-shelf” processors were the norm [Science and Board (1989)] [Hill (2000)].

Systems with a massive number of processors generally take one of two paths: in one approach,
e.g. in grid computing the processing power of a large number of computers in distributed, di-
verse administrative domains, is opportunistically used whenever a computer is available [Prodan
(2007)]. In another approach, a large number of processors are used in close proximity to each
other, e.g. in a supercomputer cluster. The use of multi-core processors combined with centraliza-
tion is an emerging direction [Niu et al. (2005), Tan et al. (2011)]. Currently, Japan’s K computer
(a cluster) is the fastest in the world [The New York Times (2011)].

Supercomputers are used for highly computation-intensive tasks such as problems including
quantum physics, weather forecasting, climate research, oil and gas exploration, molecular mod-
elling (computing the structures and properties of chemical compounds, biological macromolecules,
polymers, and crystals), and physical simulations (such as simulation of airplanes in wind tunnels,
simulation of the detonation of nuclear weapons, and research into nuclear fusion).

High-throughput computing is a computer science term to describe the use of many comput-
ing resources over long periods of time to accomplish many computational tasks. The primary

5

6 Chapter 2. State of the art

objective is solving as many tasks as possible over a period of time.
There are many differences between high-throughput computing (HTC), high-performance

computing (HPC), and many-task computing (MTC). HPC tasks are characterized as needing
large amounts of computing power for short periods of time, whereas HTC tasks also require large
amounts of computing, but for much longer times (months and years, rather than hours and days)
[Beck (1997)]. HPC environments are often measured in terms of FLOPS. The HTC community,
however, is not concerned about operations per second, but rather operations per month or per
year. Therefore, the HTC field is more interested in how many jobs can be completed over a long
period of time instead of how fast an individual job can complete.

As a general rule, HPC systems are tightly coupled parallel jobs, and as such they must
execute within a particular site with low-latency interconnects. Conversely, HTC systems are
independent, sequential jobs that can be individually scheduled on many different computing
resources across multiple administrative boundaries. HTC systems achieve this using various grid
computing technologies and techniques.

MTC aims to bridge the gap between HTC and HPC. MTC is reminiscent of HTC, but it
differs in the emphasis of using many computing resources over short periods of time to accomplish
many computational tasks (i.e. including both dependent and independent tasks), where the
primary metrics are measured in seconds (e.g. FLOPS, tasks/s, MB/s I/O rates), as opposed
to operations (e.g. jobs) per month. MTC denotes high-performance computations comprising
multiple distinct activities, coupled via file system operations.

2.2 Large-scale distributed systems

A distributed system [Coulouris et al. (2005), Tanenbaum and van Steen (2007)] consists of mul-
tiple autonomous computers that communicate through a computer network. The computers
interact with each other in order to achieve a common goal.

The word distributed in terms such as “distributed system”, “distributed programming”, and
“distributed algorithm” originally referred to computer networks where individual computers were
physically distributed within some geographical area [Lynch (1996)]. The terms are nowadays
used in a much wider sense, even referring to autonomous processes that run on the same physical
computer and interact with each other by message passing [Andrews (1999), Dolev (2000)].

While there is no single definition of a distributed system [Ghosh (2006)], the following defining
properties are commonly used:

� There are several autonomous computational entities, each of which has its own local memory
[Andrews (1999), Dolev (2000), Ghosh (2006), Lynch (1996), Peleg (2000)].

� The entities communicate with each other by message passing [Andrews (1999), Ghosh
(2006), Peleg (2000)].

A distributed system may have a common goal, such as solving a large computational problem
[Ghosh (2006), Peleg (2000)]. Alternatively, each computer may have its own user with individual
needs, and the purpose of the distributed system is to coordinate the use of shared resources or
provide communication services to the users [Ghosh (2006), Peleg (2000)].

Other typical properties of distributed systems include the following:

2.2. Large-scale distributed systems 7

� The system has to tolerate failures in individual computers [Ghosh (2006), Lynch (1996),
Peleg (2000)].

� The structure of the system (network topology, network latency, number of computers) is
not known in advance, the system may consist of different kinds of computers and network
links, and the system may change during the execution of a distributed program [Lynch
(1996), Peleg (2000)].

� Each computer has only a limited, incomplete view of the system. Each computer may know
only one part of the input [Ghosh (2006), Lynch (1996), Peleg (2000)].

2.2.1 World Wide Web

It is important to know that this is not a synonym for the Internet. The World Wide Web (WWW),
or just “the Web”, as ordinary people call it, is a subset of the Internet. The Web consists of pages
that can be accessed using a Web browser. The Internet is the actual network of networks where
all the information resides. Things like Telnet, FTP, Internet gaming, Internet Relay Chat (IRC),
and e-mail are all part of the Internet, but are not part of the World Wide Web. The Hyper-
Text Transfer Protocol (HTTP) is the method used to transfer Web pages to your computer.
With hypertext, a word or phrase can contain a link to another Web site. All Web pages are
written in the hyper-text markup language (HTML), which works in conjunction with HTTP
[TechTerms.com (2013)].

The three architectural bases of the Web [W3C Technical Architecture Group (2004)] are:

� Identification. URIs are used to identify resources.

� Interaction. Web agents communicate using standardized protocols that enable interaction
through the exchange of messages which adhere to a defined syntax and semantics. By
entering a URI into a retrieval dialog or selecting a hypertext link, a client tells her browser
to perform a retrieval action for the resource identified by the URI. For example, the browser
sends an HTTP GET request (part of the HTTP protocol) to a server, via TCP/IP port 80,
and the server sends back a message containing what it determines to be a representation
of the resource as of the time that representation was generated. Note that this example is
specific to hypertext browsing of information —other kinds of interaction are possible, both
within browsers and through the use of other types of Web agent.

� Formats. Most protocols used for representation retrieval and/or submission make use of a
sequence of one or more messages, which taken together contain a payload of representation
data and metadata, to transfer the representation between agents. The choice of interaction
protocol places limits on the formats of representation data and metadata that can be
transmitted. HTTP, for example, typically transmits a single octet stream plus metadata,
and uses the “Content-Type” and “Content-Encoding” header fields to further identify the
format of the representation. In this scenario, the representation transferred is in XHTML,
as identified by the “Content-type” HTTP header field containing the registered Internet
media type name, “application/xhtml+xml”. That Internet media type name indicates that
the representation data can be processed according to the XHTML specification.

8 Chapter 2. State of the art

A client’s browser is configured and programmed to interpret the receipt of an “application/x-
html+xml” typed representation as an instruction to render the content of that representa-
tion according to the XHTML rendering model, including any subsidiary interactions (such
as requests for external style sheets or in-line images) called for by the representation. In the
scenario, the XHTML representation data received from the initial request instructs client’s
browser to also retrieve and render in-line the weather maps, each identified by a URI and
thus causing an additional retrieval action, resulting in additional representations that are
processed by the browser according to their own data formats (e.g., “application/svg+xml”
indicates the SVG data format), and this process continues until all of the data formats have
been rendered. The result of all of this processing, once the browser has reached an appli-
cation steady-state that completes client’s initial requested action, is commonly referred to
as a “Web page”.

2.2.2 Grid

The term “the Grid” [Foster et al. (2001, 2002a), Foster and Kesselman (2004)] was coined in the
mid-1990s to denote a (then) proposed distributed computing infrastructure for advanced science
and engineering. Much progress has since been made on the construction of such an infrastructure
and on its extension and application to commercial computing problems. And while the term
“Grid” has also been on occasion conflated to embrace everything from advanced networking and
computing clusters to artificial intelligence, there has also emerged a good understanding of the
problems that Grid technologies address, and at least a first set of applications for which they are
suited.

Grid concepts and technologies were originally developed to enable resource sharing within
scientific collaborations, first within early gigabit/sec testbeds [Catlett (1992), Smarr and Catlett
(1992)] and then on increasingly larger scales [Beiriger et al. (2000), Brunett et al. (1998), Johnston
et al. (1999), Stevens et al. (1997)]. Applications in this context include distributed computing for
computationally demanding data analyzes (pooling of compute power and storage), the federation
of diverse distributed datasets, collaborative visualization of large scientific datasets (pooling of
expertise), and coupling of scientific instruments with remote computers and archives (increasing
functionality as well as availability).

A common theme underlying these different usage modalities is a need for coordinated re-
source sharing and problem solving in dynamic, multi-institutional virtual organizations [Foster
et al. (2001)]. More recently, it has become clear that similar requirements arise in commercial
settings, not only for scientific and technical computing applications but also for commercial
distributed computing applications, including enterprise application integration and business-to-
business partner collaboration over the Internet. Just as the Web began as a technology for
scientific collaboration and was adopted for e-business, we see a similar trajectory for Grid tech-
nologies.

We thus argue that both science and industry can benefit from Grids. However, at the risk
of stating the case too broadly, we make a more comprehensive statement. A primary purpose of
information technology and infrastructure is to enable people to perform their daily tasks more
efficiently or effectively. To the extent that these tasks are performed in collaboration with others,
Grids are more than just a niche technology, but rather a direction in which our infrastructure
must evolve if it is to support our social structures and the way work gets done in our society.

2.2. Large-scale distributed systems 9

The success of the Grid to date owes much to the relatively early emergence of clean architec-
tural principles, de facto standard software, aggressive early adopters with challenging application
problems, and a vibrant international community of developers and users. This combination of
factors led to a solid base of experience that has more recently driven the definition of the service-
oriented Open Grid Services Architecture that today forms the basis for both open source and
commercial Grid products.

2.2.2.1 Globus Toolkit

From 1997 onward, the open source Globus ToolkitTM version 2 (GT2) [Foster (2005a), Foster and
Kesselman (1996), Foster (2005b)] emerged as the de facto standard for Grid computing [Foster
and Kesselman (2004)]. Focusing on usability and interoperability, GT2 defined and implemented
protocols, APIs, and services used in thousands of Grid deployments worldwide. By providing
solutions to common problems such as authentication, resource discovery, and resource access,
GT2 accelerated the construction of real Grid applications. Also by defining and implementing
“standard” protocols and services, GT2 pioneered the creation of interoperable Grid systems and
enabled significant progress on Grid programming tools. The GT2 protocol suite leveraged exist-
ing Internet standards for transport, resource discovery, and security. Some elements of the GT2
protocol suite were codified in formal technical specifications, reviewed within standards bodies,
and instantiated in multiple implementations: notably, the GridFTP data transfer protocol [All-
cock et al. (2003)] and elements of the Grid Security Infrastructure [Kesselman (2001), Tuecke
et al. (2004)]. However, in general, GT2 “standards” were neither formal nor subject to public
review. Similar comments apply to other important Grid technologies that emerged during this
period, such as the Condor high-throughput computing system.

2.2.2.2 Open Grid Services Architecture (OGSA)

The year 2002 saw the emergence of the Open Grid Services Architecture (OGSA) [Foster et al.
(2002b), Foster and Kesselman (2004)], a true community standard with multiple implementations,
including, in particular, the OGSA-based GT 3.0, released in 2003. Building on and significantly
extending GT2 concepts and technologies, OGSA firmly aligns Grid computing with broad in-
dustry initiatives in service-oriented architecture and Web services. In addition to defining a core
set of standard interfaces and behaviors that address many of the technical challenges introduced
previously, OGSA provides a framework within which one can define a wide range of interoper-
able, portable services. OGSA provides a foundation on which can be constructed a rich Grid
technology ecosystem comprising multiple technology providers.

2.2.2.3 Managed, shared virtual systems

The definition of the initial OGSA technical specifications is an important step forward, but much
more remains to be done before the full Grid vision is realized [Foster and Kesselman (2004)].
Building on OGSA’s service-oriented infrastructure, we will see an expanding set of interoperable
services and systems that address scaling to both larger numbers of entities and smaller device
footprints, increasing degrees of virtualization, richer forms of sharing, and increased qualities of
service via a variety of forms of active management. This work will draw increasingly heavily on

10 Chapter 2. State of the art

the results of advanced computer science research in such areas as peer-to-peer, knowledge-based
[Berners-Lee et al. (2001)], and autonomic [Horn (2001)] systems.

We define a Grid as a system that coordinates distributed resources using standard, open,
general-purpose protocols and interfaces to deliver nontrivial qualities of service. We examine the
key elements of this definition:

� Coordinates distributed resources

� Using standard, open, general-purpose protocols and interfaces

� To deliver nontrivial qualities of service

2.2.2.4 gLite

gLite [EGEE Project (2013)] is a middleware computer software project for grid computing used
by the CERN LHC experiments and other scientific domains. It was implemented by collaborative
efforts of more than 80 people in 12 different academic and industrial research centers in Europe.
gLite provides a framework for building applications tapping into distributed computing and
storage resources across the Internet. The gLite services were adopted by more than 250 computing
centres and used by more than 15000 researchers in Europe and around the world.

2.2.3 Volunteer computing and desktop Grids

Volunteer Computing (VC) and Desktop Grids (DG) [Choi et al. (2008)] is a paradigm in which
large numbers of computers, volunteered by members of the general public, provide computing
and storage resources [Anderson et al. (2005)]. Early volunteer computing projects include the
Great Internet Mersenne Prime Search [Mersenne Research, Inc. (2013)], SETI@home [Anderson
et al. (2002)], distributed.net [distributed.net (2013)] and Folding@home [Larson et al. (2004),
Beberg et al. (2009)]. Volunteer computing is being used in high-energy physics, molecular biology,
medicine, astrophysics, climate study, and other areas.

Since the late 1990’s [INRIA/IN2P3 (2008)], Volunteer Computing systems, such as SETI@Home
[Anderson et al. (2002)], have been the largest and most powerful distributed computing sys-
tems in the world, offering an abundance of computing power at a fraction of the cost of dedi-
cated, custom-built supercomputers. Many applications from a wide range of scientific domains
–including computational biology, climate prediction, particle physics, and astronomy– have uti-
lized the computing power offered by Volunteer Computing and Desktop Grid systems. Volunteer
Computing and Desktop Grid systems have allowed these applications to execute at a huge scale,
often resulting in major scientific discoveries that would otherwise had not been possible.

The computing resources that power VC and DG are shared with the owners of the machines.
Because the resources are volunteered, utmost care is taken to ensure that the VC and DG tasks do
not obstruct the activities of each machine’s owner; a VC or DG task is suspended or terminated
whenever the machine is in use by another person. As a result, VC and DG resources are volatile in
the sense that any number of factors can cause the task of a VC or DG application to not complete.
These factors include mouse or keyboard activity, the execution of other user applications, machine
reboots, or hardware failures. Moreover, VC and DG resources are heterogeneous in the sense
that they differ in operating systems, CPU speeds, network bandwidth, memory and disk sizes.
Consequently, the design of systems and applications that utilize these system is challenging.

12 Chapter 2. State of the art

Data servers handle file uploads using a certificate-based mechanism to ensure that only
legitimate files, with prescribed size limits, can be uploaded. File downloads are handled by plain
HTTP.

Files (associated with application versions, workunits, or results) have project-wide unique
names and are immutable. Files can be replicated: the description of a file includes a list of URLs
from which it may be downloaded or uploaded. Files can have associated attributes indicating,
for example, that they should remain resident on a host after their initial use, that they must be
validated with a digital signature, or that they must be compressed before network transfer.

When the BOINC client communicates with a scheduling server it reports completed work, and
receives an XML document describing a collection of the above entities. The client then downloads
and uploads files and runs applications; it maximizes concurrency, using multiple CPUs when
possible and overlapping communication and computation. BOINC’s computational system also
provides a distributed storage facility (of computational inputs or results, or of data not related
to distributed computation) as a by-product. This storage facility is much different from peer-
to-peer storage systems such as Gnutella, PAST [Rowstron and Druschel (2001)] and Oceanstore
[Kubiatowicz et al. (2000)]. In these systems, files can be created by any peer, and there is no
central database of file locations. This leads to a set of technical problems (e.g. naming and file
location) that are not present in the BOINC facility.

The BOINC architecture is based on a strict master/worker model (see Figure 2.2), with a
central server responsible for dividing applications in thousands of small independent tasks and
then distributing the tasks to the worker nodes as they request the work units. To simplify network
communication and bypass any NAT problems that might arise with bidirectional communication,
the centralized server never initiates communication with worker nodes: all communication is
instantiated from the worker when more work is needed or results are ready for submission.

2.2.4 Cloud

The term “cloud computing” covers a range of delivery and service models [U.S. Department of
Energy (2011)]. The common characteristic of these service models is an emphasis on pay-as-
you-go and elasticity, the ability to quickly expand and collapse the utilized service as demand
requires. Thus new approaches to distributed computing and data analysis have also emerged
in conjunction with the growth of cloud computing. These include models like MapReduce and
scalable key-value stores like Big Table [Chang et al. (2006, 2008)].

Cloud computing technologies and service models are attractive to scientific computing users
due to the ability to get on-demand access to resources to replace or supplement existing systems,
as well as the ability to control the software environment. Scientific computing users and resource
providers servicing these users are considering the impact of these new models and technologies.
In this section, we briefly describe the cloud service models and technologies to provide some
foundation for the discussion.

2.2.4.1 Service models

Cloud offerings are typically categorized as Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS) [U.S. Department of Energy (2011)]. Each of these models
can play a role in scientific computing. The distinction between the service models is based on

14 Chapter 2. State of the art

virtual machine control, etc. The interface for these services is often compatible with Amazon
EC2 allowing the same set of tools and methods to be used.

In Magellan, in conjunction with other synergistic activities, we use Amazon EC2 as the com-
mercial cloud platform to understand and compare an existing cloud platform. We use Eucalyptus
and OpenStack to set up a private cloud IaaS platform on Magellan hardware for detailed experi-
mentation on providing cloud environments for scientific workloads. The IaaS model enables users
to control their own software stack that is useful to scientists that might have complex software
stacks.

Platform as a Service Platform as a Service (PaaS) provides a computing platform as a
service, supporting the complete life cycle of building and delivering applications. PaaS often
includes facilities for application design, development, deployment and testing, and interfaces to
manage security, scalability, storage, state, etc. Windows Azure, Hadoop, and Google App Engine
are popular PaaS offerings in the commercial space.

Windows Azure is Microsoft’s offering of a cloud services operating system. Azure provides
a development, service hosting, and service management environment. Windows Azure provides
on-demand compute and storage resources for hosting applications to scale costs. The Windows
Azure platform supports two primary virtual machine instance types—the Web role instances and
the Worker role instances. It also provides Blobs as a simple way to store data and access it from
a virtual machine instance. Queues provide a way for Worker role instances to access the work
quantum from the Web role instance. While the Azure platform is primarily designed for web
applications, its use for scientific applications is being explored [Li et al. (2010), Qiu et al. (2009),
Ekanayake et al. (2010)].

Hadoop is another well-known example of PaaS, that will be described later in section 2.3.5.1.
Hadoop provides a platform for managing loosely coupled data-intensive applications.

PaaS provides users with the building blocks and semantics for handling scalability, fault
tolerance, etc. in their applications.

Software as a Service Software as a Service provides access to an end user for an application
or software that has a specific function. Examples in the commercial space include services like
SalesForce and Gmail. In our project activities, we use the Windows Azure BLAST service to run
BLAST jobs on the Windows Azure platform. Science portals can also be viewed as providing a
Software as a Service, since they typically allow remote users to perform analysis or browse data
sets through a web interface. This model can be attractive since it allows the user to transfer the
responsibility of installing, configuring, and maintaining an application and shields the end-user
from the complexity of the underlying software.

Hardware as a Service Hardware as a Service (HaaS) is also known as “bare-metal provi-
sioning”. The main distinction between this model and IaaS is that the user-provided operating
system software stack is provisioned onto the raw hardware, allowing the users to provide their
own custom hypervisor, or to avoid virtualization completely, along with the performance impact
of virtualization of high-performance hardware such as InfiniBand. The other difference between
HaaS and the other service models is that the user “leases” the entire resource; it is not shared
with other users within a virtual space. With HaaS, the service provider owns the equipment and

2.2. Large-scale distributed systems 15

is responsible for housing, running, and maintaining it. HaaS provides many of the advantages of
IaaS and enables greater levels of control on the hardware configuration.

2.2.4.2 Deployment models

According to the NIST definition, clouds can have one of the following deployment models, de-
pending on how the cloud infrastructure is operated: (a) public, (b) private, (c) community, or
(d) hybrid.

Public Cloud. Public clouds refer to infrastructure provided to the general public by a large
industry selling cloud services. Amazon’s cloud offering would fall in this category. These services
are on a pay-as-you-go basis and can usually be purchased using a credit card.

Private Cloud. A private cloud infrastructure is operated solely for a particular organization
and has specific features that support a specific group of policies. Cloud software stacks such as
Eucalyptus, OpenStack, and Nimbus are used to provide virtual machines to the user. In this
context, Magellan can be considered a private cloud that provides its services to DOE Office of
Science users.

Community Cloud. A community cloud infrastructure is shared by several organizations and
serves the needs of a special community that has common goals. FutureGrid [Indiana University
(2013)] can be considered a community cloud.

Hybrid Cloud. Hybrid clouds refer to two or more cloud infrastructures that operate indepen-
dently but are bound together by technology compliance to enable application portability.

2.2.5 Internet of Things

According to [Atzori et al. (2010)], the Internet of Things (IoT) is a novel paradigm that is
rapidly gaining ground in the scenario of modern wireless telecommunications. The basic idea of
this concept is the pervasive presence around us of a variety of things or objects – such as Radio-
Frequency IDentification (RFID) tags, sensors, actuators, mobile phones, etc. – which, through
unique addressing schemes, are able to interact with each other and cooperate with their neighbors
to reach common goals [Giusto et al. (2010)].

Unquestionably, the main strength of the IoT idea is the high impact it will have on several
aspects of everyday-life and behavior of potential users. From the point of view of a private user,
the most obvious effects of the IoT introduction will be visible in both working and domestic fields.
In this context, domotics, assisted living, e-health, enhanced learning are only a few examples of
possible application scenarios in which the new paradigm will play a leading role in the near
future. Similarly, from the perspective of business users, the most apparent consequences will be
equally visible in fields such as, automation and industrial manufacturing, logistics, business/pro-
cess management, intelligent transportation of people and goods.

“Internet of Things” semantically means “a world-wide network of interconnected objects
uniquely addressable, based on standard communication protocols” [Bassi et al. (2008)]. This

16 Chapter 2. State of the art

implies a huge number of (heterogeneous) objects involved in the process.
The very first definition of IoT derives from a “Things oriented” perspective; the considered

things were very simple items: Radio-Frequency IDentification (RFID) tags. The terms “Internet
of Things” is, in fact, attributed to The Auto-ID Labs [Sarma and Fleisch (2015)], a world-wide
network of academic research laboratories in the field of networked RFID and emerging sensing
technologies.

2.2.6 Wireless Sensor Networks

A wireless sensor network (WSN) consists of spatially distributed autonomous sensors to monitor
physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or
pollutants and to cooperatively pass their data through the network to a main location. The more
modern networks are bi-directional, also enabling control of sensor activity. The development of
wireless sensor networks was motivated by military applications such as battlefield surveillance;
today such networks are used in many industrial and consumer applications, such as industrial
process monitoring and control, machine health monitoring, and so on.

The WSN is built of “nodes” —from a few to several hundreds or even thousands, where
each node is connected to one (or sometimes several) sensors. Each such sensor network node has
typically several parts: a radio transceiver with an internal antenna or connection to an external
antenna, a microcontroller, an electronic circuit for interfacing with the sensors and an energy
source, usually a battery or an embedded form of energy harvesting. A sensor node might vary
in size from that of a shoebox down to the size of a grain of dust, although functioning “motes”
of genuine microscopic dimensions have yet to be created. The cost of sensor nodes is similarly
variable, ranging from a few to hundreds of dollars, depending on the complexity of the individual
sensor nodes. Size and cost constraints on sensor nodes result in corresponding constraints on
resources such as energy, memory, computational speed and communications bandwidth. The
topology of the WSNs can vary from a simple star network to an advanced multi-hop wireless
mesh network. The propagation technique between the hops of the network can be routing or
flooding [Dargie (2010), Sohraby (2007)].

2.2.7 Peer-to-peer

Peer-to-peer (P2P) computing or networking is a distributed application architecture that parti-
tions tasks or workloads among peers. Peers are equally privileged, equipotent participants in the
application. They are said to form a peer-to-peer network of nodes.

Peers make a portion of their resources, such as processing power, disk storage or network
bandwidth, directly available to other network participants, without the need for central coordi-
nation by servers or stable hosts [Schollmeier (2001)]. Peers are both suppliers and consumers of
resources, in contrast to the traditional client-server model where only servers supply (send), and
clients consume (receive).

The peer-to-peer application structure was popularized by file sharing systems like Napster.
The concept has inspired new structures and philosophies in many areas of human interaction.
Peer-to-peer networking is not restricted to technology, but covers also social processes with a peer-
to-peer dynamic. In such context, social peer-to-peer processes are currently emerging throughout
society.

2.3. Data-intensive computing paradigms 17

2.3 Data-intensive computing paradigms

Three related distributed data-intensive research areas that share similar requirements, functions,
and characteristics are described in the following sections [Venugopal et al. (2006)].

2.3.1 Data Grids

Scientific applications in domains as diverse as high energy physics, molecular modelling, and earth
sciences involve the production of large datasets from simulations or from large-scale experiments
[Venugopal et al. (2005, 2006)]. Collectively, these large scale applications have come to be known
as part of e-Science [Hey and Trefethen (2002)], a discipline that envisages using high-end comput-
ing, storage, networking, and Web technologies together to facilitate collaborative, data-intensive
scientific research.

Data Grids [Chervenak et al. (1999), Hoschek et al. (2000)] primarily deal with providing
services and infrastructure for distributed data-intensive applications that need to access, transfer,
and modify massive datasets stored in distributed storage resources.

According to Venugopal et al. [Venugopal et al. (2006)], a few studies have investigated and
surveyed Grid research in the recent past. Krauter et al. [Krauter et al. (2002)] present a taxonomy
of various Grid resource management systems that focuses on the general resource management
architectures and scheduling policies. Specifically for Data Grids, Bunn and Newman [Bunn and
Newman (2003)] provide an extensive survey of projects in High Energy Physics, while Qin and
Jiang [Qin and Jiang (2003)] produce a compilation that concentrates more on the constituent
technologies. Moore and Merzky [Moore and Merzky (2003)] identify functional requirements
(features and capabilities) and components of a persistent archival system. In contrast to these
articles, Finkelstein et al. [Finkelstein et al. (2004)] spell out requirements for Data Grids from
a software engineering perspective and elaborate on the impact that these have on architectural
choices. A similar characterisation has been performed by Mattmann et al. [Mattmann et al.
(2005)].

A Data Grid provides services that help users discover, transfer, and manipulate large datasets
stored in distributed repositories and also, create and manage copies of these datasets. At the min-
imum, a Data Grid provides two basic functionalities: a high-performance, reliable data transfer
mechanism, and a scalable replica discovery and management mechanism [Chervenak et al. (1999)].

2.3.2 Content Delivery Networks

A Content Delivery Network (CDN) [Davison (2001), Dilley et al. (2002)] consists of a “collection
of (nonorigin) servers that attempt to offload work from origin servers by delivering content on
their behalf” [Krishnamurthy et al. (2001)]. That is, within a CDN, client requests are satisfied
from other servers distributed around the Internet (also called edge servers) that cache the content
originally stored at the source (origin) server. A client request is rerouted from the main server to
an available server closest to the client likely to host the content required [Dilley et al. (2002)].

Content Delivery Networks [Pathan and Buyya (2007)] provide services that improve net-
work performance by maximizing bandwidth, improving accessibility and maintaining correctness
through content replication. They offer fast and reliable applications and services by distribut-
ing content to cache or edge servers located close to users. A CDN has some combination of

18 Chapter 2. State of the art

content-delivery, request-routing, distribution and accounting infrastructure. The content-delivery
infrastructure consists of a set of edge servers (also called surrogates) that deliver copies of con-
tent to end-users. The request-routing infrastructure is responsible to directing client request to
appropriate edge servers. It also interacts with the distribution infrastructure to keep an up-to-
date view of the content stored in the CDN caches. The distribution infrastructure moves content
from the origin server to the CDN edge servers and ensures consistency of content in the caches.
The accounting infrastructure maintains logs of client accesses and records the usage of the CDN
servers. This information is used for traffic reporting and usage-based billing. In practice, CDNs
typically host static content including images, video, media clips, advertisements, and other em-
bedded objects for dynamic Web content. Typical customers of a CDN are media and Internet
advertisement companies, data centers, Internet Service Providers (ISPs), online music retailers,
mobile operators, consumer electronics manufacturers, and other carrier companies. Each of these
customers wants to publish and deliver their content to the end-users on the Internet in a reliable
and timely manner. A CDN focuses on building its network infrastructure to provide the following
services and functionalities: storage and management of content; distribution of content among
surrogates; cache management; delivery of static, dynamic and streaming content; backup and
disaster recovery solutions; and monitoring, performance measurement and reporting.

2.3.3 Peer-to-Peer networks

Peer-to-peer (P2P) networks [Oram (2001)] are formed by ad hoc aggregation of resources to
form a decentralized system within which each peer is autonomous and depends on other peers
for resources, information, and forwarding requests. The primary aims of a P2P network are to
ensure scalability and reliability by removing the centralized authority, to ensure redundancy, to
share resources, and to ensure anonymity. An entity in a P2P network can join or leave any-
time and, therefore, algorithms and strategies have to be designed keeping in mind the volatility
and requirements for scalability and reliability. P2P networks have been designed and imple-
mented for many target areas such as compute resource sharing (e.g., SETI@Home [Werthimer
et al. (2001), Anderson et al. (2002)], Compute Power Market [Buyya and Vazhkudai (2001)]),
content and file sharing (Napster, Gnutella, Kazaa [Subramanian and Goodman (2005)]), and
collaborative applications such as instant messengers (Jabber [Jabber.org (2013)]). Milojicic et
al. [Milojicic et al. (2003)] present a detailed taxonomy and survey of peer-to-peer systems. And
later, Androutsellis-Theotokis and Spinellis [Androutsellis-Theotokis and Spinellis (2004)] present
a survey of peer-to-peer content distribution technologies.

2.3.4 Distributed databases

A distributed database (DDB) [Ceri and Pelagatti (1984), Özsu and Valduriez (1999)] is a logically
organized collection of data stored at different sites of a computer network. Each site has a degree
of autonomy, is capable of executing a local application, and also participates in the execution
of a global application. A distributed database can be formed either by taking an existing single
site database and splitting it over different sites (top-down approach) or by federating existing
database management systems so that they can be accessed through a uniform interface (bottom-
up approach) [Sheth and Larson (1990)]. The latter are also called multidatabase systems.

Recently, Google developed Spanner. Spanner [Corbett et al. (2012)] is Google’s scalable,
multi-version, globally-distributed, and synchronously-replicated database. It is the first system

2.3. Data-intensive computing paradigms 19

to distribute data at global scale and support externally-consistent distributed transactions.

2.3.5 Big Data

Big data [Lynch (2008), Howe et al. (2008), Manyika et al. (2011)] is an open concept that has
multiple definitions. According to Kusnetzky, “In simplest terms, the phrase refers to the tools,
processes and procedures allowing an organization to create, manipulate, and manage very large
data sets and storage facilities” [Kusnetzky (2010)]. But “big” does not refer exactly to big volume
only, but also to big complexity [MIKE2.0 (2013)]. And that combination of volume and complexity
is what makes the data set difficult to process using traditional data processing tools.

The most well-known programming model for Big Data is probably MapReduce, that is now
discussed.

2.3.5.1 MapReduce

MapReduce [Dean and Ghemawat (2008, 2010)] is a programming model and an associated im-
plementation for processing and generating large data sets. Users specify a map function that
processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce function
that merges all intermediate values associated with the same intermediate key. Many real world
tasks are expressible in this model.

Programs written in this functional style are automatically parallelized and executed on a large
cluster of commodity machines. The run-time system takes care of the details of partitioning the
input data, scheduling the program’s execution across a set of machines, handling machine failures,
and managing the required inter-machine communication. This allows programmers without any
experience with parallel and distributed systems to easily utilize the resources of a large distributed
system [Dean and Ghemawat (2004)]. MapReduce is tightly coupled with Google File System.

The Google File System [Ghemawat et al. (2003a,b)] is a scalable distributed file system for
large distributed data-intensive applications. It provides fault tolerance while running on inexpen-
sive commodity hardware, and it delivers high aggregate performance to a large number of clients.
It is widely deployed within Google as the storage platform for the generation and processing of
data used by Google’s services as well as research and development efforts that require large data
sets. The largest cluster to date provides hundreds of terabytes of storage across thousands of
disks on over a thousand machines, and it is concurrently accessed by hundreds of clients.

A popular open-source implementation of MapReduce is Hadoop [The Apache Software Foun-
dation (2015b)]. Hadoop [White (2011)] is an open-source software that provides capabilities to
harness commodity clusters for distributed processing of large data sets through the MapReduce
[Dean and Ghemawat (2008)] model. The Hadoop streaming model allows one to create map-
and-reduce jobs with any executable or script as the mapper and/or the reducer. This is the
most suitable model for scientific applications that have years of code in place capturing complex
scientific processes.

The Hadoop Distributed File System (HDFS) is the primary storage model used in Hadoop.
HDFS is modeled after the Google File system [Ghemawat et al. (2003a,b)] and has several features
that are specifically suited to Hadoop/MapReduce. Those features include exposing data locality
and data replication. Data locality is a key mechanism that enables Hadoop to achieve good
scaling and performance, since Hadoop attempts to locate computation close to the data. This is

20 Chapter 2. State of the art

particularly true in the map phase, which is often the most I/O intensive phase.

2.4 Data transport technologies in large-scale distributed systems

In this section, various projects involved in data transport over distributed systems are discussed.
The data transport technologies studied here range from protocols such as FTP to over-lay meth-
ods, such as Internet Backplane Protocol, to file I/O mechanisms [Venugopal et al. (2006)].

2.4.1 HTTP

The Hypertext Transfer Protocol (HTTP) [Fielding et al. (1999)] is an application-level protocol
for distributed, collaborative, hypermedia information systems. It is a generic, stateless, protocol
which can be used for many tasks beyond its use for hypertext, such as name servers and dis-
tributed object management systems, through extension of its request methods, error codes and
headers. A feature of HTTP is the typing and negotiation of data representation, allowing systems
to be built independently of the data being transferred. HTTP has been in use by the World-Wide
Web global information initiative since 1990.

The HTTP protocol is a request/response protocol. A client sends a request to the server
in the form of a request method, URI, and protocol version, followed by a MIME-like message
containing request modifiers, client information, and possible body content over a connection with
a server. The server responds with a status line, including the message’s protocol version and a
success or error code, followed by a MIME-like message containing server information, entity
metainformation, and possible entity-body content.

2.4.1.1 REST

Representational State Transfer (REST) [Fielding (2000), Fielding and Taylor (2002)] is a co-
ordinated set of architectural constraints that attempts to minimize latency and network com-
munication, while at the same time maximizing the independence and scalability of component
implementations. This is achieved by placing constraints on connector semantics, where other
styles have focused on component semantics. REST enables the caching and reuse of interactions,
dynamic substitutability of components, and processing of actions by intermediaries, in order to
meet the needs of an Internet-scale distributed hypermedia system.

The name “Representational State Transfer” is intended to evoke an image of how a well-
designed Web application behaves: a network of Web pages forms a virtual state machine, allowing
a user to progress through the application by selecting a link or submitting a short data-entry
form, with each action resulting in a transition to the next state of the application by transferring
a representation of that state to the user [Fielding and Taylor (2002)].

The modern Web is one instance of a REST-style architecture. Although Web-based appli-
cations can include access to other styles of interaction, the central focus of its protocol and
performance concerns is distributed hypermedia. REST elaborates only those portions of the
architecture that are considered essential for Internet-scale distributed hypermedia interaction.
Areas for improvement of the Web architecture can be seen where existing protocols fail to ex-
press all of the potential semantics for component interaction, and where the details of syntax can

2.4. Data transport technologies in large-scale distributed systems 21

be replaced with more efficient forms without changing the architecture capabilities [Fielding and
Taylor (2002)].

2.4.2 GASS

Global Access to Secondary Storage (GASS) [Bester et al. (1999)] is a data access mechanism
provided within the Globus toolkit for reading local data at remote machines and for writing
data to remote storage and moving it to a local disk. The goal of GASS is to provide a uniform
remote I/O interface to applications running at remote resources, while keeping the functionality
demands on both the resources and the applications limited.

2.4.3 IBP

Internet Backplane Protocol (IBP) [Plank et al. (1999), Bassi et al. (2002)] allows applications
to optimize data transfer and storage operations by controlling data transfer explicitly by storing
the data at intermediate locations. IBP uses a store-and-forward protocol to move data around
the network. Each of the IBP nodes has a temporary buffer into which data can be stored for a
fixed amount of time. Applications can manipulate these buffers so that data is moved to locations
close to where it is required.

2.4.4 FTP

The File Transfer Protocol (FTP) [Postel and Reynolds (1985)], defined by RFC 959, is one of
the fundamental protocols for data movement in the Internet. FTP is, therefore, ubiquitous, and
every operating system ships with an FTP client. FTP separates the process of data transfer into
two channels, the control channel used for sending commands and replies between a client and a
server, and the data channel through which the actual transfer takes place.

2.4.5 GridFTP

GridFTP [Allcock et al. (2001a,b, 2002, 2003), Mandrichenko et al. (2005)] is a data transfer
protocol defined by Global Grid Forum Recommendation GFD.020 [Allcock et al. (2003)], RFC
959, RFC 2228, RFC 2389, and a draft before the IETF FTP working group. GridFTP extends
the default FTP protocol by providing features that are required in a Data Grid environment. The
aim of GridFTP is to provide secure, robust, fast, and efficient transfer of (especially bulk) data
in Grid environments. The Globus ToolkitTM provides the most commonly used implementation
of this protocol, though others do exist (primarily tied to proprietary internal systems). GridFTP
extends the FTP protocol, and includes the following features:

� Grid Security Infrastructure (GSI) support, and Kerberos-based authentication

� Third-party control and data transfer

� Parallel data transfer using multiple TCP streams

� Striped data transfer using multiple servers

� Partial file transfer and support for reliable and restartable data transfer

2.5. Data replication 23

wrappers and compression.
Transport drivers are expected to implement some kind of common semantic behavior. Trans-

port drivers that follow the same semantics (for e.g., TCP and UDP) can be interchanged without
user code change. The GridFTP driver was designed to follow a ‘file-like’ semantic, so it could be
swapped out with the file driver without user code change.

2.5 Data replication

Providing efficient data access and maximum data availability is a challenging task. To achieve
this task, data is replicated to different sites [Amjad et al. (2012)].

2.5.1 Benefits of data replication strategies

The benefits of data replication strategies can be summarized in:

Availability All the replication strategies aim to provide maximum availability. Rather, it would
be better to say that replication is the only way to improve availability of data: generally in
all distributed database environments and specifically in data grids.

Reliability When replication increases the availability, the reliability is improved as well. The
more the number of replicas more is the chance that user’s request will be serviced properly,
and hence systems is more reliable.

Scalability It is another important metric that must be considered by a replication algorithm.
The extent to which scalability can be provided depends upon the architecture chosen for the
data grid. Different architectural models support different levels of scalability. That means,
scalability is more dependent on model than replication algorithm.

Adaptability This is a very important parameter which must be provided by a replication strat-
egy. The nature of the grid is very dynamic. Nodes keep on entering and leaving the grid
very frequently. The replication algorithm must be adaptive to provide support to all nodes
present in a data grid at any given time.

Performance As the availability of data increases the performance of the data grid environment
increases.

2.5.2 Static replication strategies

In a static replication strategy [Amjad et al. (2012)], the number of replicas and the host node is
chosen statically at the start of the life cycle, no more replicas are created or migrated after that
[Tatebe et al. (2002), Chervenak et al. (2002)].

However, static replication strategies are worse that dynamic strategies because the latter
can make intelligent decisions about the placement of data depending upon the information of
the environment. Hence, the presence in the literature of works about static replication is smaller
[Loukopoulos and Ahmad (2000), Khan and Ahmad (2008)].

24 Chapter 2. State of the art

2.5.3 Dynamic replication strategies

Dynamic replication strategies [Amjad et al. (2012)] adapt to changes in user request pattern,
storage capacity and bandwidth and can create replicas on new nodes and can delete replicas that
are no longer required depending upon the global information of the data grid [Ranganathan and
Foster (2001), Yuan et al. (2007), Lamehamedi et al. (2003), Lee and Weissman (2001)].

Dynamic replication [Amjad et al. (2012)] is an optimization technique which aims to reduce
the average job execution time. It ensures high availability of data, and improved usage of network
bandwidth available. There are certain issues which a data replication technique must address
during replication according to the constraints of a specific situation:

Dynamic nature The nature of the grid is very dynamic and users can join and leave a grid
at any time. So the number of participants present in a grid at any given time can vary.
The data replication algorithm must be adaptive to the changing size of the grid in order
to provide better results.

Grid architecture The replication technique is highly dependent upon architecture of the grid.
A data grid can be supported by many different architectures. It can be a multi-tier ar-
chitecture; a tree like structure in which the nodes are arranged in a tree like hierarchy.
For example, the data grid of the GriPhyN project in which tier 0 is the main data source
(CERN), tier 1 contains the national centers, tier 2 the regional centers, tier 3 the work
groups and finally at tier 4 are the desktops. Alternatively it can be a graph like topology,
in which any node can be connected to any other node without any restrictions of tree
topology. It can be a peer to peer topology, or it can be any hybrid model. A replication
technique is designed according to the architecture in question.

Decision making Data replication involves a very critical decision, i.e. when to replicate data,
which files should be replicated, and where the replica should be placed. Depending on the
answers, different replication strategies have been evolved.

Available storage space Although the storage devices have now become very cheap, the repli-
cation strategies must still keep into account the amount of available storage space before
creating a replica. In case the available storage is not sufficient enough to store a replica, a
replacement strategy is adopted.

Cost of replication The replication strategy must ensure that the benefit of the replication is
higher than the cost of replication.

2.5.4 RLS

Replica Location Service (RLS) [Chervenak et al. (2002)] is a system that maintains information
about physical locations of copies of data. The main components of RLS are the Local Replica
Catalog (LRC) which maps the logical representation to the physical locations and the Replica
Location Index (RLI) which indexes the catalog itself. The actual data is represented by a logical
file name (LFN) and contain some information such as the size of the file, its creation date, and
any other such metadata that might help users to identify the files that they seek. A logical file has
a mapping to the actual physical location(s) of the data file and its replicas, if any. The physical

2.6. Distributed storage 25

location is identified by a unique physical file name (PFN) which is a URL (Uniform Resource
Locator) to the data file on storage. Therefore, a LRC provides the PFN corresponding to an
LFN.

2.6 Distributed storage

Storage plays a fundamental role in computing, a key element, ever present from registers and RAM
to hard-drives and optical drives. Functionally, storage may service a range of requirements, from
caching (expensive, volatile and fast) to archival (inexpensive, persis- tent and slow). Combining
networking and storage has created a platform with numerous possibilities allowing Distributed
Storage Systems (DSS) to adopt roles vast and varied which fall well beyond data storage [Placek
and Buyya (2006)].

There are many distributed file systems: AFS [Howard et al. (1988)], NFS [Sandberg et al.
(1985)], Coda [Satyanarayanan et al. (1990), Kistler and Satyanarayanan (1992)], xFS [Anderson
et al. (1995, 1996)], GFS [Soltis et al. (1996, 2002)], etc. But there are not many mechanisms
suitable for large-scale distributed systems like Grid environments, volunteer computing or desktop
grids. In this section, several distributed storage and file systems used within distributed systems
are studied.

2.6.1 Grid DataFarm (Gfarm)

The Grid Datafarm (Gfarm) [Tatebe et al. (2002, 2005, 2010)] is an architecture for petascale
data-intensive computing on the Grid. This model specifically targets applications where data
primarily consists of a set of records or objects which are analyzed independently. Gfarm takes
advantage of this access locality to achieve a scalable I/O bandwidth using an enhanced parallel
filesystem integrated with process scheduling and file distribution. It provides a global, Grid-
enabled, fault-tolerant parallel filesystem whose I/O bandwidth scales to the TB/s range, and
which incorporates fast file transfer techniques and wide-area replica management.

Large-scale data-intensive computing frequently involves a high degree of data access local-
ity. To exploit this access locality, Gfarm schedules programs on nodes where the corresponding
segments of data are stored to utilize local I/O scalability, rather than transferring the large-scale
data to compute nodes. Gfarm consists of the Gfarm filesystem, the Gfarm process scheduler, and
Gfarm parallel I/O APIs. Together, these components provide a Grid-enabled solution to a class
of data-intensive problems.

A Gfarm file is a large-scale file that is divided into fragments and distributed across the
disks of the Gfarm filesystem, and which will be accessed in parallel. The Gfarm filesystem is an
extension of a striping parallel system in that each file fragment has an arbitrary length and can
be stored on any node.

Every Gfarm file is basically write-once. Applications are assumed to create a new file instead
of updating an existing file. The Gfarm parallel I/O API supports read/write open, which is
internally implemented by versioning and creating a new file. This is because 1) large-scale data
is seldom updated (most data is write-once and read-many), and 2) data can be recovered by
replication, or by recomputation using a command history log.

26 Chapter 2. State of the art

2.6.2 Grid File Access Library (GFAL)

The Grid File Access Library (GFAL) [CERN (2015)] is a library that offers to the user a POSIX-
like interface to access data on various flavours of Storage Elements offering an SRM interface.
GFAL is interfaced to SRM-compliant back-ends (both v1.1 and v2.2) and storage systems such
as Castor, dCache or DPM in which case the relevant protocol is used transparently behind the
scenes. Using information published in the information system, it resolves relevant abstract domain
data/file names so that the physical data access as well as the end-points of services are achievable
transparently. It allows and unifies access to various types of items such as: LFN, GUID, SURL,
SRM and TURL or local path. In addition, some of the crucial, yet common, backend calls are
exposed through the library so that users are not limited to POSIX mapping to do specific calls
e.g. to reserve space or pin a file. The pluggable architecture of the library permits dynamic change
of the versions of some of the supported protocols (i.e. rfio, dCache) without need of redeployment
[European Middleware Initiative (2015, 2013b,a)].

2.6.3 Legion I/O

Legion [Chapin et al. (1999)] is a object-oriented grid middleware for providing a single system
image across a collection of distributed resources. The I/O mechanism within Legion [White et al.
(2000)] aims to provide transparent access to files stored on distributed resources through APIs
and daemons that can be used by native and legacy applications alike.

2.6.4 SRB I/O

The Storage Resource Broker (SRB) [Baru et al. (1998)] developed at the San Diego Supercom-
puting Center (SDSC) focuses on providing a uniform and transparent interface to heterogenous
storage systems that include disks, tape archives, and databases.Data transport within SRB pro-
vides features such as parallel data transfers for performing bulk data transfer operations across
geographically distributed sites.

The purpose of the SRB is to enable the creation of shared collections through management
of consistent state information, latency management, load levelling, logical resources usage, and
multiple access interfaces [Baru et al. (1998), Rajasekar et al. (2003)]. SRB also aims to provide a
unified view of the data files stored in disparate media and locations by providing the capability
to organize them into virtual collections independent of their physical location and organization.
It provides a large number of capabilities that are not only applicable to Data Grids but also for
collection building, digital libraries, and persistent archival applications.

2.6.5 Bigtable

Bigtable [Chang et al. (2006, 2008)] is a distributed storage system for managing structured data
that is designed to scale to a very large size: petabytes of data across thousands of commodity
servers. Many projects at Google store data in Bigtable, including web indexing, Google Earth,
and Google Finance. These applications place very different demands on Bigtable, both in terms of
data size (from URLs to web pages to satellite imagery) and latency requirements (from backend
bulk processing to real-time data serving). Despite these varied demands, Bigtable has successfully
provided a flexible, high-performance solution for all of these Google products.

2.6. Distributed storage 27

2.6.6 Ceph

Ceph [Weil et al. (2006a)] is a distributed storage system designed for scalability, reliability, and
performance. The system is based on a distributed object storage service called RADOS (reliable
autonomic distributed object store) that manages the distribution, replication, and migration of
objects. On top of that reliable storage abstraction Ceph builds a range of services, including a
block storage abstraction (RBD, or Rados Block Device) and a cache-coherent distributed file
system (CephFS).

Data objects are distributed across Object Storage Devices (OSD), which refers to either
physical or logical storage units, using CRUSH [Weil et al. (2006b)], a deterministic hashing
function that allows administrators to define flexible placement policies over a hierarchical cluster
structure (e.g., disks, hosts, racks, rows, datacenters). The location of objects can be calculated
based on the object identifier and cluster layout (similar to consistent hashing [Karger et al.
(1997)]), thus there is no need for a metadata index or server for the RADOS object store. A
small cluster of monitors (ceph-mon daemons) use Paxos to provide consensus on the current
cluster layout, but do not need to explicitly coordinate migration or recovery activities.

CephFS builds a distributed cache-coherent file system on top of the object storage service
provided by RADOS. Files are striped across replicated storage objects, while a separate cluster
of metadata servers (ceph-mds daemons) manage the file system namespace and coordinate client
access to files.

Ceph metadata servers store all metadata in RADOS objects, which provides a shared, highly-
available, and reliable storage backend. Unlike many other distributed file system architectures,
Ceph also embeds inodes inside directories in the common case, allowing entire directories to read
from RADOS into the metadata server cache or prefetched into the client cache using a single
request.

Client hosts that mount the file system communicate with metadata servers to traverse the
namespace and perform file I/O by reading and writing directly to RADOS objects that contain
the file data. The metadata server cluster periodically adjusts the distribution of the namespace
across the MDS cluster by migrating responsibility for arbitrary subtrees of the hierarchy between
a dynamic pool of active ceph-mds daemons. This dynamic subtree partitioning [Weil et al. (2004)]
strategy is both adaptive and highly scalable, allowing additional metadata server daemons to be
added or removed at any time, making it ideally suited both for large-scale workloads with bursty
workloads or general purpose clusters whose workloads grow or contract over time [Wang et al.
(2013)].

However, in Ceph, the metadata are stored in memory cache in MDS (metadata server). As
for safety, MDS must commit journal to the OSD. The synchronous I/O fails to achieve the high
performance when multiple clients upload or download thousands of files simultaneously [Duan
et al. (2015)].

2.6.7 GlusterFS

GlusterFS [Red Hat, Inc (2015)] is a clustered file-system for scaling the storage capacity of many
servers to several peta-bytes. It aggregates various storage servers or bricks over an interconnect
such as InfiniBand or TCP/IP into one large parallel network file system. GlusterFS in its default
configuration does not stripe the data, but instead distributes the namespace across all the servers.

28 Chapter 2. State of the art

Internally, GlusterFS is based on the concept of translators. Translators may be applied at either
the client or the server. Translators exist for Read Ahead and Write Behind. In terms of design,
a small portion of GlusterFS is in the kernel and the remaining portion is in userspace. The calls
are translated from the kernel VFS to the userspace daemon through the Filesystem in UserSpace
(FUSE) [Noronha and Panda (2008)].

[Donvito et al. (2014)] points out that GlusterFS is a storage technology that permits, starting
from several volumes hosted on different servers, the construction of a distributed replicated
network file-system, fully POSIX compliant, also with support of new storage paradigms such as
Block Storage and Object Storage. GlusterFS stores the data on stable kernel file-systems like
ext4, xfs, etc.; it does not use an additional metadata server for the files metadata, using instead
a unique hash tag for each file, stored within the file-system itself.

In the Gluster terminology a volume is the share that the servers, that host the actual kernel
space file-system in which the data will be stored, expose to the clients. Each volume can be built
by several subvolumes, generally hosted by different servers. A subvolume is built by a brick, the
storage file-system that has been assigned to the volume, processed by at least one translator. A
translator connects to one or more subvolumes, does something with them, and offers a subvolume
connection.

With these basic concepts one can build 3 types of complex volumes: distributed, replicated
and striped. The most basic volume is a distribute only volume, that simply spread the data across
the available bricks, so that over 100 files written on a volume built by two bricks, an average fifty
will end up on one brick, and fifty on the other. If the bricks are hosted on two different servers,
we have something similar to RAID0 for physical disks, with all the pros (increased velocity) and
cons (increased fragility of the volume). With the replicated volume GlusterFS can transparently
replicate the data with the multiplicity chosen at the volume creation, when it is possible to set
the number of file replicas that the volume must contain. Obviously this setup is particularly
useful if the bricks are located on different servers.

It is also possible to mix the basic volume types, so for example one can build a distributed-
replicated volume, that distributes the data across multiple servers and replicates them in order
to obtain an increased availability [Donvito et al. (2014)].

However GlusterFS still requires to install some components in all nodes [Beloglazov et al.
(2012)].

2.6.8 Hadoop Distributed File System (HDFS)

As stated by [Donvito et al. (2014)], Apache Hadoop is an open-source software framework devel-
oped in Java that allows distributed processing of large data sets across clusters of computers using
simple programming models. It is composed of several modules such as Hadoop Yarn and Hadoop
MapReduce for cluster resource management and parallel processing, Hadoop Distributed File
System (HDFS), inspired by the Google File System [Ghemawat et al. (2003a,b)], that provides
high-throughput access to application data and other related sub-projects such as Cassandra,
HBase, Zookeeper, etc.

HDFS [The Apache Software Foundation (2015a)] has a master/slave architecture. The Na-
meNode is the master server that manages file-system namespace and regulates access to files by
clients. It can be replicated in high-availability in Active/StandBy configuration sharing metadata
via NFS to enable automatic or manual failover. In order to scale the name service horizontally,

2.7. Simulation of large-scale distributed systems 29

is possible to split namespace into multiple federations with independent namenodes and names-
paces. They do not require coordination with each other but use the same datanodes as common
storage.

HDFS is designed to reliably store very large files across machines in a large cluster. It stores
each file as a sequence of blocks on datanodes. The size of the blocks is configurable by dfs.blocksize
parameter. Every block is replicated as many times as specified by replication factor parameter
(dfs.replication) according to a replica placement policy managed by active namenode. To realize
data reliability, namenode needs to know network topology of the cluster, and so the node-rack
relationship, to place file blocks on datanodes according to replica policy that by default writes the
first replica on a node of the local rack, and second and third replica on different nodes of a remote
rack, considering three as replication factor. The file-system resists the failure of a whole rack.
In our activities, we developed two custom replica policies: One Replica Policy and Hierarchical
Policy. The first one places a replica per rack in order to increase reliability (resisting the failure of
two racks) and available bandwidth for read operation; the second one, instead, is able to exploit
a geographically distributed infrastructure because it gives Hadoop the awareness of a hierarchical
network topology organized in datacenters, racks and nodes. This data policy place first replica
on a rack of a local site, and second and third on different racks of a remote site; in this way, the
system resists failure of a whole datacenter. After a datanode failure, automatically Namenode
schedules a re-replication of the blocks stored on that datanode. If it come back up, blocks are
marked as over-replicated, so they will be deleted automatically in order to balance the number
of replicas [Donvito et al. (2014)].

2.7 Simulation of large-scale distributed systems

This section will review the state of the art in simulation frameworks and tools for large-scale dis-
tributed systems, beginning with general-purpose simulation frameworks, continuing with network
simulation, and finishing with the SimGrid simulation framework.

2.7.1 General purpose simulation frameworks

Parsec [Bagrodia et al. (1998)] is a simulation environment developed at UCLA that provides
these features:

� An easy path for the migration of simulation models to operational software prototypes.

� Implementation on both distributed- and shared-memory platforms and support for a diverse
set of parallel simulation protocols.

� Support for visual and hierarchical model design.

This environment consists of three primary components: a parallel simulation language called
Parsec (parallel simulation environment for complex systems); its GUI, called Pave; and the
portable runtime system that implements the simulation algorithms.

A simulation in Parsec consists of a series of events, which must be executed in the order of
their time stamps. On a single processor, these events can be placed in a central queue so that
the global event list algorithm can correctly order them. When run in parallel, however, not only

30 Chapter 2. State of the art

is the event list distributed so that each processor has only a portion of it, but events may also
arrive asynchronously from other processors [Bagrodia et al. (1998)].

Parsec adopts the process-interaction approach to discrete-event simulation. A Parsec program
consists of a set of entities and C functions. Each entity is an LP that models a corresponding
physical process; entities can be created and destroyed dynamically. Events are modeled by mes-
sage communications among the corresponding entities. Each message carries a logical time stamp
matching the time at which the corresponding event occurs in the physical system. An entity may
also schedule for itself a special message, called a timeout, for a specific time in the future. This
message is often used by an entity to simulate the passage of time in the physical system, and its
handling has been optimized in the system [Bagrodia et al. (1998)].

Parsec supports the following synchronization algorithms [Bagrodia et al. (1998)]:

� A sequential or global event-list algorithm.

� Three parallel conservative algorithms: a null- message-based algorithm, a conditional event
algorithm, and a combination of the two (the accelerated null message (ANM) algorithm).

� An optimistic algorithm based on space-time simulations.

� The ideal simulation protocol (ISP), based on the critical path concept, which predicts a
realistic lower bound on the execution time of a given parallel model.

OMNeT++ [Varga (2001), Varga and Hornig (2008), Varga (2010)] is a C++-based discrete
event simulator for modeling communication networks, multiprocessors and other distributed or
parallel systems. OMNeT++ represents a framework approach. Instead of directly providing sim-
ulation components for computer networks, queuing networks or other domains, it provides the
basic machinery and tools to write such simulations. Specific application areas are supported by
various simulation models and frameworks such as the Mobility Framework or the INET Frame-
work [Varga (2013)]. These models are developed completely independently of OMNeT++, and
follow their own release cycles. OMNeT++ was designed from the beginning to support network
simulation on a large scale [Varga (2010)].

An OMNeT++ model consists of modules that communicate with message passing. The active
modules are termed simple modules; they are written in C++, using the simulation class library.
Simple modules can be grouped into compound modules and so forth; the number of hierarchy
levels is not limited. Messages can be sent either via connections that span between modules or
directly to their destination modules [Varga (2010)].

OMNeT++ also has support for parallel simulation execution. Very large simulations may
benefit from the parallel distributed simulation (PDES) feature, either by getting speedup, or
by distributing memory requirements. If the simulation requires several Gigabytes of memory,
distributing it over a cluster may be the only way to run it. For getting speedup (and not actually
slowdown, which is also easily possible), the hardware or cluster should have low latency and
the model should have inherent parallelism. The communication layer is MPI, but it’s actually
configurable, so if the user does not have MPI it is still possible to run some basic tests over named
pipes [Varga (2010)].

The user defines the structure of the model (the modules and their interconnection) in OM-
NeT++’s topology description language, NED. Typical ingredients of a NED description are

2.7. Simulation of large-scale distributed systems 31

simple module declarations, compound module definitions and network definitions. Simple mod-
ule declarations describe the interface of the module: gates and parameters. Compound module
definitions consist of the declaration of the module’s external interface (gates and parameters),
and the definition of submodules and their interconnection. Network definitions are compound
modules that qualify as self-contained simulation models [Varga (2010)].

The OMNeT++ package includes an Integrated Development Environment which contains a
graphical editor using NED as its native file format; moreover, the editor can work with arbitrary,
even hand-written NED code. The editor is a fully two-way tool, i.e. the user can edit the network
topology either graphically or in NED source view, and switch between the two views at any time
[Varga (2010)].

However, to effectively simulate a distributed system, specially a large-scale distributed sys-
tem, the most critical part is the network. Next section describes the state of the art in network
simulation, with an emphasis on efficient simulation of a network.

2.7.2 Network simulation

Section 2.7.2.1 presents general content on packet-level simulation, already presented in [Fujiwara
and Casanova (2007)], and section 2.7.2.2 on flow-based simulation, already presented in [Casanova
and Marchal (2002)] first, later in [Fujiwara and Casanova (2007)], and more in-depth in [Velho
and Legrand (2009)], but included here for completeness.

This section will briefly review existing packet-level and flow-based simulators used by re-
searchers in the area of grid computing. We then give some details about network simulation in
SimGrid, since it is the simulation framework chosen for the evaluation of this thesis.

2.7.2.1 Packet-level simulation

Packet-level simulators use discrete-event simulation by which a flow over a network path can
be represented as a sequence of events, such as packet arrivals and departures at end-points and
routers. End-points and routers both implement full-fledge network protocols. Simulation time
typically increases in proportion to the number of events [Liu et al. (2001)]. Popular such simulators
include Cnet [McDonald (1991a,b)], SSFNet [Cowie et al. (1999b)], ns-1 [Bajaj et al. (1999)], ns-2
[The University of Southern California (2011)], ns-3 [Henderson et al. (2006, 2008), The NS-3
Consortium (2013)], GTNetS [Riley (2003)], and INET [Varga (2013)]. The main problem with
these simulators is that simulation time can be orders of magnitude larger than simulated time for
simulations that involve realistic topologies with many flows. For instance, using GTNetS, which
is known for good scalability, simulating 200 flows each transferring 100MB between two random
end-points in a random 200-node topology for 125 sec of simulated time takes approximately 1500
sec on a 3.2GHz Xeon processor [Fujiwara and Casanova (2007)]. While this is acceptable for
researchers studying network protocols, it is prohibitive for many researchers studying distributed
systems and algorithms on large-scale platforms for application that are long-running and/or that
involve large amounts of communication. This problem is often compounded by the need to rely
on results from over thousands of simulation experiments to compute valid statistics regarding the
relative effectiveness of competing algorithms (see for instance the scheduling study in [N’Takpé
and Suter (2006)], which uses over one million simulation experiments, with each experiments
requiring over 1,000 sec of simulated time).

32 Chapter 2. State of the art

Several researchers have attempted to increase the speed of packet-level simulations. For
instance, in [Liu and Chien (2003)] the authors developed the MaSSF framework, which combines
the DaSSF packet-level simulator [Cowie et al. (1999a)] with message passing [Snir et al. (1998)]
to accelerate and increase the scalability of network simulation by running in parallel on large
clusters of workstations. MaSSF is the main component of the MicroGrid [Song et al. (2000)] tool
for simulating Grid platforms and applications. Others have proposed emulation techniques by
which traffic flows on physical devices, introducing delay, bandwidth and packet loss characteristics
of the network to be simulated. A well-known example of such work is ModelNet [Vahdat et al.
(2002)].

While the above works do increase the speed and scalability of packet-level simulation without
compromising simulation accuracy, many users performing grid simulations need simulations or-
ders of magnitude faster. Facing such requirements, simulators that relax the definition of a packet
were developed. For instance, the Bricks simulator [Takefusa et al. (1999)] uses ideal queuing net-
works to simulate real networks. While the user can specify a packet size in this simulator, Bricks
packets do not correspond to real network packets and Bricks does not implement real network
protocols. Large packets lead to fast simulation but obviously low accuracy (in the extreme, multi-
path network communications use a store-and-forward approach with no pipelining across network
links). Although lower packet size leads to behavior presumably qualitatively closer to that of real
networks, nothing in this simulator ensure that the behavior is quantitatively close to that of,
for instance, TCP. Another simulator, GridSim [Sulistio et al. (2007)] implements a protocol that
includes some elements of UDP and allows for variable packet size. Like Bricks, GridSim requires
small packet size to hope to gain accuracy close to that of true packet-level simulators on realistic
network topologies, but then suffers from high simulation costs. Many other “grid” simulators
exist, such as OptorSim [Cameron et al. (2004)], GangSim [Dumitrescu and Foster (2005)], Neko
[Urbán et al. (2002)], or HyperSim [Phatanapherom et al. (2003)] (readers interested in depth
details are invited to consult [Quetier and Cappello (2005)]). All implement some network model,
but to the best of our knowledge (i.e., based on publications and/or on inspection of source codes),
these simulators either use packet-level simulation or do not attempt to implement a model that
realistically tracks the behavior of TCP networks.

2.7.2.2 Flow-based simulation

To increase the speed of network simulation one approach is to use theoretical models to compute
the throughput of each flow in a network topology at a given time. Models have been proposed
[Padhye et al. (1998), Mathis et al. (1997), Ott et al. (1997)] that model the throughput of
a TCP flow as a function of packet loss and round trip delay, as well as some parameters of
the network and of the TCP protocol. Unfortunately, some of these parameters are difficult to
measure and/or instantiate for the purpose of grid simulations. Furthermore, it is not clear how
the model can be applied to arbitrary network topologies with many simulated flows competing
for network resources. Instead, one desires reasonable models that capture the bandwidth sharing
behavior induced by TCP among flows on arbitrary topologies and that are defined by a few simple
parameters, namely link physical bandwidths and TCP congestion window size. This notion of
macroscopic models of bandwidth sharing is challenging [Massoulié and Roberts (2002)].

While it is important to model the throughput of a single flow appropriately, an equally
important phenomenon to capture is the sharing of bandwidth among flows using the same link(s)

2.7. Simulation of large-scale distributed systems 33

[Fujiwara (2007)]. Several researchers have explored the questions of bandwidth-sharing between
TCP flows [Kelly (1997), Massoulié and Roberts (2002)]. Most works model bandwidth-sharing
with fluid flows: flows are treated as continuous fluid rather than discrete packet instances.

The authors in [Casanova and Marchal (2002)] consider that the network is represented as a
set of links L where link l ∈ L has a capacity Cl > 0. A flow is defined by a sequence of links, that
is, a subset of L. Let F be the set of flows. Let λf be the data transfer rate of flow f . A feasible
bandwidth allocation must satisfy the following constraint:

∀l ∈ L,
∑
f3l

λf 6 Cl (2.1)

which states that links cannot deliver more bandwidth than their capacities. We now discuss three
well-known models for bandwidth-sharing. We illustrate them on the classical example of a linear
network, which is depicted in figure 2.4.

....flow 0
link 1 link 2 link L

flow 1 flow 2 flow L

Figure 2.4: Linear network with identical links of capacity C

MaxMin Fairness MaxMin fairness is a traditional bandwidth-sharing principle [Bertsekas and
Gallager (1992)]. The objective is to maximize the minimum of {λf}. λf is MaxMin fair if
and only if an increase of any λf within the domain of feasible allocations must be at the
cost of a decrease of some λf ′ such that λf ′ < λf . This leads to the following formula:

∀f ∈ F , ∃l ∈ f,
∑
f ′3l

λf ′ = Cl and λf = max{λf ′ , f ′ 3 l} (2.2)

In the linear network shown in Figure 2.4 under MaxMin fairness, all flows achieve the same
data transfer rate:

∀l, λl = C/2

Proportional Fairness Kelly [Kelly (1997)] questioned the validity of MaxMin fairness as a
way to model TCP behavior. MaxMin fairness allocates more network resources to long
flows than to short ones. Indeed, TCP is known to do just the opposite. As an alternative
to MaxMin fairness, Kelly proposed proportional fairness, which is defined as follows. The
objective of proportional fairness is to maximize

∑
F
λf log(λf) (2.3)

The solution must satisfy the following criteria: {λf}f∈F is unique and for any other feasible
allocation {λ′f}f∈F , satisfies

34 Chapter 2. State of the art

∑
f∈F

λ′f − λf
λf

6 0 (2.4)

In the linear network shown in Figure 2.4 under proportional fairness, we find

λ0 =
C

L+ 1

∀l 6= 0, λl =
C(L− 1)

L+ 1

Potential Delay Minimization Another idea is to minimize the time to complete all transfers.
Assume that the data size transferred is fixed. One must then minimize the potential delay
1/λf for all flows. Such an allocation minimizes

∑
f∈F 1/λf . In the linear network shown in

Figure 2.4 under potential delay minimization, we find

λ0 =
C

1 +
√
L

∀l 6= 0, λl =
C
√
L

1 +
√
L

The question is then: which bandwidth-sharing principle holds for TCP connections on the
Internet? The most widely known model is the simple MaxMin fairness model, which computes
a bandwidth allocation in which increasing the allocation of a flow would require decreasing the
allocation of another. However, it is well-known that TCP does not implement MaxMin fairness,
as shown for instance by Chiu [Chiu (2000)]. The consensus is that TCP protocol is “close” to
proportional fairness, since it favours short flows. However, Chiu also shows in [Chiu (2000)] that
TCP does not implement proportional fairness exactly.

Indeed, the analytical models for TCP throughput in [Floyd and Fall (1999), Padhye et al.
(1998)] approximate the throughput, λ(p), to:

λ(p) =
c

RTT
√
p

(2.5)

where p is the fraction of packets lost, RTT is the round-trip time, and c is some constant, provided
that p is not “too high”. Assuming that all flows experience the same loss rate, p, this formula
suggests that bandwidth is in fact shared in inverse proportion to the RTT . This thus suggests
a MaxMin scheme that is modified to account for low RTT s. Additionally, the TCP congestion
mechanism relies on a window whose size is generally bounded (we denote by W this maximum
window size), which impacts greatly the effective bandwidth of the flows (the effective throughput
is thus bounded by W/RTT as there are always at most W pending packets).

Last, it has been proved that TCP sharing mechanism at the equilibrium is indeed equivalent
to maximizing

∑
i

√
3/2

Di
tan−1(

√
3/2Diλi) (2.6)

2.7. Simulation of large-scale distributed systems 35

whereDi is the equilibrium round-trip-time [Low (2003)]. Such an equilibrium is generally different
from the MaxMin sharing and should thus be more accurate. Solving such equations is however
harder than the MaxMin sharing algorithm.

Based on the previous considerations, the designers of the SimGrid simulation tool [Casanova
et al. (2008, 2014)], have opted for a RTT-aware MaxMin flow-level model. In this model, the
bandwidths allocated to flows competing over a bottleneck link is inversely proportional to the
flows’ RTTs (a link is considered a bottleneck if the sum of the bandwidths allocated to the flows
over this link is equal to the total bandwidth of the link), and the bandwidth of each flow is
bounded by a value inversely proportional the inverse of its RTT.

Maximize miniRTTi · λf ,
under constraints
∀l ∈ L,

∑
f |f uses l

λf 6 Cl

∀f ∈ F , λf 6
W

RTTi

(2.7)

We refer the reader to [Casanova and Marchal (2002)] for full details on the model and for
initial validation results via which this particular model was selected among several alternatives.
The model is instantiated solely based on network link physical characteristics (latencies and
bandwidths) and on the size of the TCP congestion window size. As a result, SimGrid is, to the
best of our knowledge, the first simulation framework designed for the study of distributed systems
and algorithms for large-scale platforms that uses a flow-level network simulation approach that
attempts to capture the true behaviour of TCP networks and that decreases simulation costs by
orders of magnitude when compared to packet-level simulation (simulations of more than 2 million
nodes have been reported to work [Quinson et al. (2012)]).

2.7.3 SimGrid

The SimGrid framework [Casanova et al. (2008, 2014), The SimGrid Team (2014)] is a simulation-
based framework for evaluating cluster, grid and P2P algorithms and heuristics.

SMURF
SimIX network proxy

SimIX

SURF
virtual platformsimulator

XBT

SimDag
SM P I

M SG
GRAS

”POSIX-like” API on a virtual platform

Figure 2.5: SimGrid components overview

36 Chapter 2. State of the art

SimGrid offers four user interfaces: SimDag, MSG, GRAS, and SMPI (see Figure 2.5). SimDag
is the descendant of SimGrid v1 and is designed for the investigation of scheduling heuristics for
applications as task graphs. MSG is the interface introduced in SimGrid v2 to study CSPs. GRAS
allows to use SimGrid as a development lab for real distributed applications. SMPI enables the
direct simulation of MPI applications.

XBT is a “toolbox” module used throughout the software, which is written in ANSI C for
performance. It implements classical data containers, logging and exception mechanisms, and
support for configuration and portability. SURF is the code-name of the simulation engine. SimIX
is an internal module that provides a POSIX-like API on top of SURF, thus easing the development
of simulation APIs that implement the abstraction of multiple concurrent processes. For instance,
it would allow the development of openMP- or BSP-like user interfaces. The purpose of the SMURF
module is to allow the distribution of simulated processes over a cluster, harnessing the memory
of several computers. This would allow to improve the scalability of SimGrid, which is currently
limited by memory.

The SimGrid simulation core [Donassolo et al. (2010)] implements and provides interfaces to
a number of simulation models that vary in sophistication, and can be used to simulate different
types of resources (network resources, computational resources). It consists of two main layers:
the SURF layer implements the simulation models, and the SIMIX layer provides a low-level API
to these models upon which user-level APIs can be developed. Both layers are described hereafter.
Some simulation models share the same structure, which is implemented as an additional layer,
called LMM, which is called by SURF and which is briefly described hereafter as well. MSG is
one of the user interfaces that are offered to users. Users develop their algorithms on top of the
MSG API. Figure 2.6 shows the whole picture of SimGrid.

MSG MetaSimGrid [Legrand and Lerouge (2002)], or MSG for short, is one of the four user
interfaces of the SimGrid simulation framework. It provides some entities to model the participants
in a simulation, and a set of functions to operate with. Next is the list of resource models in MSG:

Process Users need to simulate many independent scheduling decisions, so the concept of process
is at the heart of the simulator. A process may be defined as a code, with some private data,
executing in a host.

Host A host is any possible place where a process may run. Thus it may be represented as a
physical resource with computing capabilities, some mailboxes to enable running processes
to communicate with remote ones, and some private data that can be only accessed by local
processes.

Task Since most scheduling algorithms rely on a concept of task that can be either computed
locally or transferred on another processor, it seems to be the right level of abstraction for
users purposes. A task may then be defined by a computing amount, a message size, and
some private data.

Link Like in real-life environments, hosts are connected through network links. Then, a link
represents the physical notion of a network link that connects two hosts, or a host with a
switch. A link may then be defined by a latency, and a bandwidth.

2.7. Simulation of large-scale distributed systems 37

LMM

SIMIX

SURF

MSG

Actions372
435

245
245

530
530

50
664work

remaining

variable

...

x1

x2
x2

x2
x3

x3

xn+ +

+

... CP

CL1

CL4

CL2

CL3

Constraints

Variables

Conditions

... Process

us
er
co
de

us
er
co
de

us
er
co
de

us
er
co
de

us
er
co
de

...

≤
≤
≤
≤
≤

Figure 2.6: SimGrid layers, and main data structures

Mailbox For convenience, the simulator provides the notion of mailbox that is close to the TCP
port notion.

Using the above entities a simulator should be described only in terms of processes, running
on hosts, and interacting by sending, receiving, or processing tasks. Algorithms implemented on
top of SimGrid should not have direct access to links, but rather should be implemented as a
process that sends a task to a host using a mailbox. In fact, a host may have many mailboxes, and
a mailbox is identified simply by a string. So, sending a task to a host using a mailbox amounts
to transfer the task on a particular link, depending on the emitter host, and on the destination
host, and to put it in a particular mailbox.

SIMIX SIMIX provides a Pthread-like API to manage concurrent simulated processes. More
precisely, it provides the following abstractions: processes, locks, condition variables, and actions.
Processes correspond to threads of control of the simulated application, locks and condition vari-
ables are used for synchronizing these threads of control, and actions are used to represent resource
consumption generated by these threads of control. We briefly illustrate these abstractions via a
simple example.

Consider a simulation of a computation on a host. This computation is embedded within
a SIMIX process and launched via a user-level API call, e.g., MSG_task_execute if using the
MSG API. This call creates a SIMIX action that corresponds to the amount of computation

38 Chapter 2. State of the art

to be performed (specified by the user-level API call). This action is associated with a SIMIX
condition variable on which the process blocks. Once the action is completed, as dictated by the
simulation models after some elapsed simulated time, the condition variable is signaled. The user-
level API call returns control to the user, thereby providing the simulation of the delay incurred
for performing the computation.

Most simulations consist of many SIMIX processes. All processes run in mutual exclusion and
SIMIX is responsible for controlling their execution. Essentially, all processes run in round-robin
fashion until all of them block on condition variables to wait for action completions. At a given
simulated time t, SIMIX has thus a list of blocked processes. SIMIX then calls the lower layer of the
simulation core, SURF, through the surf_solve function. SURF, discussed in the next section,
is responsible for handling the simulation clock and the usage of simulated physical resources.
surf_solve advances the simulation clock to time t + δ at which at least one of the actions
waited upon has completed (or failed). A list of the completed (or failed) actions at time t + δ
is returned to SIMIX. SIMIX then wakes up the corresponding processes. The same procedure is
repeated, advancing the simulated time from task completion to task completion until all processes
terminate.

The execution of the simulated application is handled by SIMIX, and is fully separated from
the simulation of the underlying platform, which is handled by SURF. The two layers communicate
solely via the condition variable and action abstractions, as shown in the top part of Figure 2.6.

SURF SURF provides several models for determining simulated action execution times and
resource consumptions. These models can be selected and configured at runtime, and each model
is responsible for actions and resources of a given type (e.g., CPU, network, timer). For instance,
in terms of network resource models, the current implementation provides a default model of TCP
networks [Velho and Legrand (2009)], a model that offloads all simulation to the GTNetS packet-
level network simulator [Riley (2003)], a simple model based on uniform random distributions,
and more advanced models that use Lagrangian optimization and gradient descent [Low (2003)].
By picking an appropriate model the user can trade off speed/scalability for accuracy, with no
change to user source code.

All simulation models are accessed via the surf_solve function, which proceeds in the fol-
lowing steps:

1.- Query each active simulation model for the next action completion/failure date among all
the actions managed by that model. This is done through the share_resources function,
which each model must implement. For many models, this function relies on an extra layer,
LMM, via which resource usage is represented as a set of linear constraints, as seen in the
next section. This general approach enables to represent very complex situations. LMM uses
a sparse representation of this linear system and uses a simple MaxMin allocation algorithm
by default but also implements more sophisticated models based on the work in [Low (2003)].
As seen in Figure 2.6, the models in SURF keep track of the amount of work remaining for
each action, and can therefore determine when each action will complete based on current
simulated resource usage.

2.- Compute tmin, the minimum of these completion dates. Examine user-provided traces used
to describe dynamically changing resource conditions to see whether a resource state change
occurs before tmin (e.g., the available bandwidth of a network link increases, a host is

2.7. Simulation of large-scale distributed systems 39

shutdown). If such a state change occurs, then call the update_resource_state function of
the model in charge of the resource. Each model must implement update_resource_state.
Update tmin to be the earliest time of next resource change.

3.- Ask each active model to advance the simulation time to tmin and to update every action
state accordingly. This is done through the update_action_state function, which each
model must implement.

4.- Return the set of actions that have finished or failed.

The LMM Layer Many of the simulation models in SimGrid represent actions and resources
as variables and constraints in a linear system. For example, given a set L of network links defined
by their bandwidths and a set F of network flows defined by the set of links they use, we can
represent each flow f by a variable xf (representing the bandwidth allocated to it). For each link
l we have the following constraint: ∑

f3l
xf 6 Cl (2.8)

where Cl is the bandwidth of link l, which states that the bandwidth capacity of the link can-
not be exceeded. For instance, in Figure 2.6, variable x2 and x3 correspond to two flows using
respectively {L1, L2, L3} and {L2, L4}. Many allocations x can satisfy the set of link capacity
constraints and different network protocols lead to different allocations [Low (2003)]. SimGrid
uses a simple MaxMin allocation by default [Bertsekas and Gallager (1992)] but also implements
more sophisticated models based on the work in [Low (2003)].

For such models, the LMM layer uses a sparse representation of the above constraints. The
problem is solved by the lmm_solve function, which is efficient because its complexity is linear in
the system size, where the system size depends on the number of actions, the number of active
resources, and the complexity of the resource usage. For example, the system corresponding to a
set of N CPUs running each an action would be of size Θ(N). The system corresponding to F
flows going each through L links would be of size Θ(F · L).

If the system needs to be modified it is invalidated and the allocation must be recomputed with
possibly new variables and constraints. For example, in Figure 2.6, removing variable x2 would
force recomputation of variable x3, removing variable x1 would force recomputation of variable xn,
etc. More generally, such invalidations occur based on the action life-cycle (e.g., action creation,
action termination, action suspension/resumption), i.e., between two successive calls to surf_-
solve, or based on resource state changes, i.e., when function update_resource_state is called.
Although we have used network resources as an example, the same approach is applicable to other,
arguably less challenging, resource types.

The Default CPU Model Like many other models, the default CPU model relies on a LMM
system and associates each CPU with a constraint whose bound is the rate of the simulated CPU
(in MFlop/s). We detail the components of this model along with their complexities:

Action creation An action is defined by its remaining amount of work (in MFlop), which is
initialized upon creation, and by a corresponding variable in the LMM system. The resource

40 Chapter 2. State of the art

consumption rate allocated to the action varies over time depending on the value of this
variable.

share_resources To compute the next action completion date, this function first computes a
new solution of the LMM system, if needed. Then, it goes through the list of all active
actions to compute when each would complete, based on its current resource share and
remaining amount of work, assuming that the system remains unchanged. The complexity
of this function is thus Θ(|actions|) plus possibly the complexity of lmm_solve, which is also
Θ(|actions|).

update_resource_state When the state of a resource is changed, one needs only to update the
bound of the corresponding constraint, which is done with complexity Θ(1).

update_action_state This function advances simulation time. To do so it goes through the list
of all actions to update their remaining amounts of work, which leads to a Θ(|actions|)
complexity.

The Default Network Model The communication time of a message for flow f is given by
Tf = Sf/λf+Lf , where Sf is the message size, λf is the bandwidth allotted to f , and Lf is the sum
of the latencies of the links traversed by f . However, according to [Velho et al. (2011)], Lf and Bl
(used in the computation of λf) are physical characteristics that are not directly representative of
what may be achieved by flows in practice. The protocol overhead should be accounted for, which
can be done by multiplying all latencies by a factor α > 1 and all bandwidths by a factor β < 1.
α can account for TCP slow-start and stabilization, which prevent flows from instantaneously
reaching steady-state. β can account for packing and control overheads. The above leads to that
SimGrid communication time (T (SG)

L,B) is well approximated by a linear function of message size
(S) as follows:

T
(SG)
L,B (S) = α · L+

S

min(β ·B, W2L)
(2.9)

where W = 20000 is the maximum window size, L the latency, and B the bandwidth.
The authors in [Velho and Legrand (2009)] propose the following model for SimGrid. Every

link Lk has a maximum bandwidth Bk, and every flow Fi has a throughput ρi. Each flow Fi really
starts after α

∑
k|Fi uses Lk Latk, and the bandwidth sharing of active flow is computed by solving

the following program:

Maximize mini ωi · ρi,
under constraints

∀Lk,

∑
i|Fi uses Lk

ρi 6 β ·Bk

∀Fi, ρi 6
W

RTTi

(2.10)

where

2.8. Summary 41

ωi =
∑

k|Fi uses Lk

(
Latk +

σ

Bk

)
(2.11)

Research conducted in [Velho and Legrand (2009)] showed that the values that minimize the
error are: α = 10.4, β = 0.92, and σ = 8775. Later research conducted in [Velho et al. (2011)]
suggests: α = 13.01, β = 0.97, and σ = 20537.14. With the latter settings, the maximum error of
SimGrid compared to GTNetS for messages whose sizes are S > 100KB is less that 10%, and the
mean error decreases marginally to 3%.

2.8 Summary

This chapter has been presented a complete vision of distributed systems, distributed storage, and
technologies used in large-scale distributed systems for data transfers.

Also, general purpose simulation frameworks models have been presented, including simulation
of networks and networked environments.

Chapter 3

Proposal of a generic I/O architecture
for large-scale distributed systems

This chapter explains the architecture and implementation of a parallel file system specifically
suited for large-scale distributed systems. The rest of this chapter is organized as follows. First, the
Motivation and objectives of this file system will be explained, then the Architecture of a generic
I/O middleware for large-scale distributed systems is presented, and finally the Implementation
of a parallel file system for large-scale distributed systems is detailed.

3.1 Motivation and objectives

This chapter aims to fulfill the first primary objective indicated in Section 1.2: to propose a
generic I/O middleware architecture for large-scale distributed systems.

This section presents the motivation of using the parallel file system proposed as a viable
solution for large-scale distributed systems, and the main use cases that need to be addressed, so
that this parallel file system can be used as a generic I/O middleware for large-scale distributed
systems.

3.1.1 Use cases of parallel file systems for large-scale distributed systems

The list of use cases of parallel file systems for large-scale distributed systems are:

� Use existing data servers through open protocols

� Connect clients and servers through the Internet

� Build parallel partitions over the Internet

� Build distributed partitions using full replicas

43

44 Chapter 3. Proposal of a generic I/O arch. for large-scale distributed systems

Use existing data servers through open protocols

Clusters and supercomputers typically use file systems and data servers optimized for high-speed
networks. Parallel file systems for clusters and supercomputers are designed to work with different
kinds of data servers. However, when a connection needs to traverse different administrative do-
mains, as happens on the internet, NFS, PVFS, GPS, Lustre, etc. are not a feasible solution due
to firewall rules prevent these kinds of systems to work properly. Thus, a set of open and standard
protocols must be present in a generic I/O middleware for large-scale distributed systems, so that
it can access to existing data servers on the internet (see Figure 3.1).

Distributed multi-protocol partition

Clients

HTTP FTP GridFTP WS

Figure 3.1: Use case: Distributed multi-protocol partition

Also, a generic I/O middleware must be able to use existing data servers without deploying
further services. There are many examples of distributed file systems designed for big netowrks,
Grids, and others. A very good example of these is Gfarm [Tatebe et al. (2002)]. However, these
kinds of file systems need to deploy custom services in order to work. While this would be an ideal
situation in terms of performance, it is only feasible in organizations under control, which does
not happen when one needs to use existing servers running on the internet, and managed by third
parties. Thus, a generic I/O middleware for large-scale distributed systems must be able to access
those systems, and get the maximum benefit from those, without modifying the architecture, or
deploying any further services.

3.1. Motivation and objectives 45

Connect clients and servers through the Internet

In cluster environments and supercomputers nodes are typically connected through high-speed
networks, like Gigabit Ethernet, 10 Gigabit Ethernet, Myrinet, Infiniband, optical fiber, etc. These
networks have something in common, low latencies, and high bandwidth.

However, the communications that takes place on the internet have much higher latencies
than on a high-speed network, and, in many cases, lower bandwidths also. A very good example
of these two problems are DSL connections of final users, which have high latency, and asymmetric
bandwidth (see Figure 3.2).

Remote partition

Clients

Figure 3.2: Use case: Remote partition

Build parallel partitions over the Internet

A generic I/O middleware for large-scale distributed systems must provide a parallel file system
able to create and use parallel partitions. A parallel partition is that in which each data block
is stored in a different server (see Figure 3.3). This kind of partition saves storage space while
provides high throughput by parallel access to data servers. This case has two problems:

� The file system must work on a high-latency networks.

� It must be able to request certain blocks from the data server.

46 Chapter 3. Proposal of a generic I/O arch. for large-scale distributed systems

Parallel partition

Clients

1
5

0
4

3
7

2
6

Figure 3.3: Use case: Parallel partition

Build distributed partitions using full replicas

A generic I/O middleware for large-scale distributed systems must be able to create and use
replicas distributed on the internet. This means that this generic I/O middleware must be able to
access to one or several full replicas. A fully replicated partition is that in which each data block
of a file is stored in all servers that form the partition (see Figure 3.4). This kind of partition
provides high throughput by parallel access to data servers, but it does not save storage space
because every file is stored several times. However, it is a very common form of replicated content
on the internet nowadays, since it is very easy to create a replica of a file. As in in the previous
case, this has two problems:

� The file system must work on a high-latency networks.

� It must be able to request certain blocks from the data server.

3.2. Summary of the architecture, design, and implementation of Expand 47

Full replication

Clients

0
1

0
1

0
1

0
1

Figure 3.4: Use case: Full replication

3.2 Summary of the architecture, design, and implementation of
Expand

This section summarizes the design and implementation of the Expand Parallel File System. An
in-depth explanation of Expand can be found in Appendix A Architecture, design, and implemen-
tation of Expand .

Expand combines multiple NFS servers to create a distributed partition where files are striped.
Expand requires no changes to the NFS servers and uses RPC operations to provide parallel access
to the same file. Expand is also independent of the clients, because all operations are implemented
using RPC and NFS protocols. Using this system, it can join heterogeneous servers (Linux, Solaris,
Windows, etc.) to provide a parallel and distributed partition. This section describes the design
and implementation of Expand.

The main motivation of the Expand design is to build a parallel file system for heterogeneous
clusters using standard servers. To satisfy this goal, the authors designed and implemented a
parallel file system using NFS servers.

The Network File system (NFS) [Sandberg et al. (1985)] supports the NFS protocol, a set
of remote procedure calls (RPC) that provides the means for clients to perform operations on a

48 Chapter 3. Proposal of a generic I/O arch. for large-scale distributed systems

remote file server. This protocol is operating system independent. Developed originally for use in
networks of UNIX systems, it is widely available in many systems, such as Linux or Windows,
two operating systems very frequently used in clusters. Table 3.1 shows a simplified list of NFS
server operations. In these operations, files are identified using file handles, an opaque structure
that contains the information that the server needs to distinguish an individual file.

NFS operation Description
lookup(fh, name) → (fh2, attr2) Lookups the file name in a directory
create(fh, name, attr) → (fh2, attr2) Creates a new file in a directory
remove(fh, name) → status Removes a file from a directory
getattr(fh) → attr Gets attributes associated to a file
setattr(fh, attr) → attr2 Sets attributes associated to a file
read(fh, offset, count) → (attr, data) Reads data from file
write(fh, offset, count, data) → attr Write data to a file
rename(fh, name, fh2, name2) → status Modify the name of a file
link(fh2, name2, fh, name) → status Add a new link
symlink(fh2, name2, string) → status Add a new symbolic link
readlink(fh) → string Gets name associated with a symbolic link
mkdir(fh, name, attr) → (fh2, attr2) Create a new directory
rmdir(fh, name) → status Removes a directory
readdir(fh, cookie, count) → entries Returns entries information from a directory
statfs(fh) → status Get file system information

Table 3.1: Most significant NFS server operations

Figure 3.5 shows the architecture of Expand. This figure shows how multiple NFS servers can
be used as a single file system. File data are striped by Expand among all NFS servers, using
blocks of different sizes as the striping unit. Processes in clients use an Expand library to access
to an Expand distributed partition. Expand offers an interface based on POSIX system calls.
This interface, however, is not appropriate for parallel applications using strided patterns with
small access size [Nieuwejaar and Kotz (1996a)]. For parallel applications, Expand uses ROMIO
[Thakur et al. (1999a)] to support the MPI-IO interface, implementing the appropriate Expand
ADIO. This integration is explained in Section 3.2.5.

Using the former approach offers the following advantages:

1.- No changes to the NFS server are required to run Expand. All aspects of Expand operations
are implemented on the clients.

2.- Expand is independent of the operating system used in the client. All operations are imple-
mented using RPC and NFS protocols.

3.- Parallel file system construction is greatly simplified, because all operations are implemented
on the clients. This approach is completely different to that used in many current parallel
file systems, such as CFS [Pierce (1989)], Vesta [Corbett et al. (1993)], HFS [Krieger (1994)],
PIOUS [Moyer and Sunderam (1994)], Scotch [Gibson (1995)], PPFS [Madhyastha (1997)],
ParFiSys [Carretero et al. (1997), Pérez et al. (1997)], Galley [Nieuwejaar and Kotz (1996a,b,
1997)], and PVFS [Carns et al. (2000)].

50 Chapter 3. Proposal of a generic I/O arch. for large-scale distributed systems

partition. All files in the system are striped across all NFS servers to facilitate parallel access,
with each server storing a subfile of the parallel file conceptually. A file in Expand consists of
several subfiles, one for each NFS partition. All subfiles are fully transparent to Expand users.
On a distributed partition, the user can create, in the current prototype, striped files with cyclic
layout. In these files, blocks are distributed across the partition following a round-robin pattern.
This structure is shown in Figure 3.6.

/export1

Dir1 Dir2

SU-1

/Dir2/Dir4/input.dat

Stride size

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Dir3

Dir4

input.dat

/export2 /export3

Dir1 Dir1Dir2 Dir2

SU-2 SU-3

Dir3 Dir3

Dir4 Dir4

input.dat

Master node for file A

Active
Metadata

input.dat

Subfile

Se
rv

er
1

Se
rv

er
2

Se
rv

er
3

/xpn1

Figure 3.6: File structure in Expand

3.2.2 Naming and metadata management

Partitions in Expand are defined using a small configuration file. For example, the following
configuration file defines two partitions:

/xpn1 8 4
server1 /export/home1
server2 /export/home2
server3 /export/home3
server4 /home

/xpn2 4 2
server1 /users
server3 /export/home/users

52 Chapter 3. Proposal of a generic I/O arch. for large-scale distributed systems

the data contained within the filehandle. Expand uses a virtual filehandle, which is defined as:⋃N
i=1 filehandlei, where filehandlei is the filehandle used for NFS server i to reference subfile i

belonging to the Expand file. The algorithm used in Expand for opening a file is very simple:

xpn_open(file) {
Divide the file in (dir, name)
for (i=0; i < numServers; i++) {

Obtain the filehandle for dir in server_i (dfhi)
lookup(dhi, name) -> fhi

}
}

The metadata of a file resides in the header of a subfile stored in a NFS server. This NFS
server is the master node of the file, similar to the mechanism used in the Vesta Parallel File
System [Corbett et al. (1993)]. To obtain the master node of a file, the file name is hashed into
the number of the node:

hash(filename) = NFS serveri (3.1)

The hash function used in the current prototype is:strlen(filename)∑
i=1

filename[i]

 mod numServers (3.2)

The use of this simple approach offers a good distribution of masters. Table 3.2 shows the
distribution (standard deviation) of masters between several I/O nodes. These results have been
obtained using a real file system with 145,300 files. The results shown in this table demonstrate
that this simple scheme allows one to distribute the master nodes and the blocks between all NFS
servers, balancing the use of all NFS servers and, hence, the I/O load.

Number of I/O nodes Standard deviation
4 0.43
8 0.56
16 0.39
32 0.23
64 0.15
128 0.11

Table 3.2: Distribution (standard deviation) of masters in different distributed partitions

Because the determination of the master node is based on the file name, when a user renames
a file, the master node for this file is changed. The algorithm used in Expand to rename a file is
the following:

56 Chapter 3. Proposal of a generic I/O arch. for large-scale distributed systems

� Miscellaneous. Other operations included in ADIO provide routines for deleting files, resizing
files, flushing cached data to disks, and initializing and terminating ADIO.

Expand integration needs several phases:

1.- Implement the Expand-ADIO Interface (ADIOI).

2.- Connect Expand ADIO into ROMIO.

3.- Modify the MPICH compilation chain to include Expand ADIO in the compilation process.

3.3 Architecture of a generic I/O middleware for large-scale dis-
tributed systems

The proposed architecture for a generic I/O middleware is based on a different approach to the
vast majority of parallel file systems:

� Use existing data servers through open protocols

� Connect clients and servers through the Internet

� Build parallel partitions over the Internet

� Build distributed partitions using full replicas

The parallel file system for large-scale distributed systems is designed according to the clien-
t/server model, where the client side of the file system is responsible for receiving requests from
processes through different types of interfaces, such as POSIX, FUSE, or by command line tools;
and the server side is formed by any standard networked file server that can operate through
different administrative domains, and can typically traverse common firewall rules.

The client is responsible to contact the servers using the protocols associated with them. For
this, the client is designed as shown in Figure 3.11, divided into four layers.

The top layer is responsible for providing various access interfaces to parallel applications.
The layer named core is responsible for defining the basic algorithms used for data access. Inside
this layer is located the module called policy, that is responsible for defining what are the actions
to take in the operations of metadata location, selection of servers involved in every operation,
etc. Both core and policy use the services of the layer called NFI, which stands for Network File
Interface. This layer provides an interface to the basic operations of a file system. The lower layer
is responsible for implementing the interface provided in the NFI layer for the different access
protocols to a file system.

The data of a file are scattered by the generic I/O middleware through all servers using blocks
of a certain size as distribution unit, or fully replicating the file across all the servers. The processes
of a parallel application are the clients that use the generic I/O middleware library to access to a
distributed partition.

The generic I/O middleware provides an interface based on POSIX-like calls. However, this
interface is not enough for unmodified applications that use the system POSIX interface. For
unmodified applications to work with the generic I/O middleware a FUSE interface is also needed.

3.3. Architecture of a generic I/O middleware for large-scale distributed systems 57

Distributed multi-protocol partition

Clients

HTTP FTP GridFTP
Web
Services

Clients

Client

HTTP
WebDAV

GridFTP Web
Services Local ...

...POSIX FUSE Commands

NFI

Core
Policy

Figure 3.11: Generic I/O architecture for large-scale distributed systems

Using the outlined approach for the design of generic I/O middleware we have the following
advantages:

� No changes are required on the servers (HTTP, WebDAV, FTP, GridFTP, Web services,
etc.) to benefit from the generic I/O middleware. All aspects of the operations are deployed
in the client.

� The generic I/O middleware is independent of the operating system used on clients. All
operations are implemented using standard protocols.

� It allows the use of servers running on different architectures and operating systems, since
the use of standard protocols hides these differences.

� Building a file system is greatly simplified because all operations are implemented in clients.

� The configuration of the system is much simpler as standard servers, such as HTTP, are very
familiar to users. The server only needs to export the appropriate directories, and clients
only need a small configuration file detailing how is the distributed partition.

3.3. Architecture of a generic I/O middleware for large-scale distributed systems 59

Where:

TStageIn =
Ns

D

(
Ln +

D

Bn

)
+

2Ns

D

(
tseek + tlat +

D

Bd

)
TStageOut =

Ns

D

(
Ln +

D

Bn

)
+

2Ns

D

(
tseek + tlat +

D

Bd

)
TProcessing = 2N

(
tseek + tlat +

s

Bd

)
+ TExec

According to the above expressions, the traditional approach is as follows:

TTradExec = TSendExecutable + TExec+

+ 2N

(
tseek + tlat +

s

Bd

)
+

+
2Ns

D

(
Ln +

D

Bn

)
+

+
4Ns

D

(
tseek + tlat +

D

Bd

)

When remote I/O is used for executing applications in distributed environments, the StageIn
and StageOut phases are not required, because in this case, all I/O operations are remote. The
time for executing the same application in this case is defined as:

TRemoteIO = TSendExecutable + TExec+

+ 2N

(
tseek + tlat +

s

Bd

)
+

+ 2N

(
Ln +

s

Bn

)

We are interested in analyzing those cases where TRemoteIO < TTradExec. Simplifying the
above expressions, we obtain:

60 Chapter 3. Proposal of a generic I/O arch. for large-scale distributed systems

2N

(
Ln +

s

Bn

)
<

2Ns

D

(
Ln +

D

Bn

)
+

4Ns

D

(
tseek + tlat +

D

Bd

)
Ln +

s

Bn
<

s

D

(
Ln +

D

Bn

)
+

2s

D

(
tseek + tlat +

D

Bd

)
Ln +

s

Bn
<

s

D
Ln +

s

Bn
+

2s

D

(
tseek + tlat +

D

Bd

)
Ln <

s

D
Ln +

2s

D

(
tseek + tlat +

D

Bd

)
1 <

s

D
+

2s

D

(
tseek + tlat + D

Bd

Ln

)

Finally, we obtain that TRemoteIO < TTradExec is verified when:

s

D

(
1 +

2(tseek + tlat + D
Bd

)

Ln

)
> 1

As we can see, this expression depends on several factors: the application access size (s), the
transfer size (D) used in the StageIn and StageOut phases, the network latency (Ln) and disk
access times (tseek, tlat, and Bd).

Figure 3.13 shows in logarithmic scale the value of the expression:

H =
s

D

(
1 +

2(tseek + tlat + D
Bd

)

Ln

)

for different network latencies and different s
D values, assuming a conventional disk.

In figure 3.13 TRemoteIO < TTradExec when H > 1. This is always true for short latencies. For
higher latencies the performance of the remote access is better when s

D gets closer to 1. Therefore,
the best situation is to perform as few operations as possible. This means that a way to improve
the behavior of parallel systems for large-scale distributed systems is to implement a buffered
cache in the file system to get a s

D >= 1. In this scenario the performance of remote I/O will
always be better [Bergua et al. (2008)].

62 Chapter 3. Proposal of a generic I/O arch. for large-scale distributed systems

� They use ports that are usually filtered or firewalled when crossing the organization’s bound-
aries.

� These file systems are designed assuming that they will run on low-latency high-bandwidth
networks.

Therefore, Expand needs to incorporate new drivers for open protocols and services that are
found on the internet nowadays, in large-scale systems, as HTTP, GridFTP, and web services.

Expand is not prepared for high-latency networks

Similarly as argued in the section above, Expand was designed for clusters. Clusters and super-
computing environments usually have low-latency high-bandwidth networks, as Gigabit Ethernet,
10 Gigabit Ethernet, Myrinet, Infiniband, optical fiber, etc.

However, a distributed application or file system that runs on the internet needs to traverse
high-latency, and usually low-bandwidth also, networks. This problem requires to implement op-
timizations to Expand, so that access to data servers is made using as few requests as possible to
minimize the side effect of high-latency networks.

Expand does not use replicas, or any other distributed fault tolerance system

Expand was initially designed as a parallel file system. This implies that data blocks, when using
multiple servers, are stored cyclically among all available data servers in round-robin. This ap-
proach optimizes storage space while provides maximum throughput. However, the failure of one
single data server makes the any data completely unrecoverable.

Thus, Expand needs to support some sort of fault tolerance for distributed systems, so that the
failure of a node does not make the whole system unusable. Among all fault tolerance algorithms,
it is worth noting a basic replica management system, because it very easy to implement, and
currently very common on the internet. Many large-scale systems have replicated files as a form
of fault tolerance. Therefore, Expand needs to be able to support the management of full replicas,
at least.

3.4.2 Implementation of open protocols

Three open protocols have been chosen for their inclusion in Expand. For this task, three imple-
mentations have been developed in Expand :

� HTTP driver implementation

� GridFTP driver implementation

� OGSA ByteIO web service implementation

3.4.2.1 HTTP driver implementation

Nowadays, HTTP is the clear dominant data server on the internet. Many different services are
served by HTTP servers. Thus, an HTTP driver has been added to Expand. To implement the

3.4. Implementation of a parallel file system for large-scale distributed systems 63

HTTP we have used FuseDAV 1 2 rev. c20061002001751, a FUSE module for mounting WebDAV
shares, which has been patched to support remote access and operations in memory (since it uses
cached files on a local dir). This FuseDAV module makes use of the libneon library3 rev. r1801,
a client library for managing HTTP and WebDAV connections, which has also been patched to
support ranged PUTs4.

3.4.2.2 GridFTP driver implementation

In Grid environments the GridFTP protocol is the standard for file tranfers. There was a partial
implementation of the GridFTP protocol by means of the Globus eXtensible Input Output library
(XIO) API5. The implementation was developed in [Bergua Guerra (2006), Bergua et al. (2007)],
and later studied in depth in [García Carballeira et al. (2007)]. However, the Globus XIO GridFTP
Driver6 is a very limited interface. It barely provides functions for opening/closing, reading/writing
files, and handle/attribute manipulation:

� globus_xio_open

� globus_xio_close

� globus_xio_read

� globus_xio_write

� globus_xio_handle_cntl

� globus_xio_attr_cntl

Thus, a complete GridFTP driver has been implemented in Expand. The GridFTP driver
implemented uses the Globus API for GridFTP, which is a complete interface that offers a range
of functions for file and directory management.

3.4.2.3 OGSA ByteIO web service implementation

The OGSA ByteIO Working Group proposes seven POSIX-like functions [Morgan (2006), Chue
Hong et al. (2009)] for the Byte I/O interface (which is described in UML):

� Read

� Write

� Append

� TruncAppend
1http://0pointer.de/lennart/projects/fusedav/
2https://github.com/AndyA/FuseDAV
3http://www.webdav.org/neon/
4http://www.mail-archive.com/neon@webdav.org/msg00465.html
5http://www.globus.org/api/c/globus_xio/html/index.html
6http://www.globus.org/api/c-globus-5.0.3/globus_xio_gridftp_driver/html/index.html

66 Chapter 3. Proposal of a generic I/O arch. for large-scale distributed systems

minimize the side effects of high latencies between nodes, a grouping and reordering optimization,
that can be seen in Figure 3.16, has been incorporated to Expand. This optimization consists of
three steps:

1.- First, all the data blocks that need to be retrieved from a data server are grouped (see
Algorithm 3.2).

1 roundrobin_grouping (fd , buffer , size , offset , num_servers)
2 {
3 new_offset = offset
4 count = 0
5

6 while (size > count) {
7 server = ((offset

block_size%num_servers) + first_node)%num_servers

8 local_offset = (
offset

block_size
num_servers ∗ block_size) + (offset%block_size)

9

10 // local_size is the remaining bytes from new_offset
until the end of the block

11 local_size = block_size− (new_offset%block_size)
12

13 // If local_size > the remaining bytes to read/write ,
then adjust local_size

14 if ((size− count) < local_size)
15 local_size = size− count
16

17 queue_block(io_queue[server],
18 buffer + count, local_offset, local_size)
19

20 count = local_size+ count
21 new_offset = offset+ count
22 }

Algorithm 3.2: Round-robin with block grouping operation in Expand

2.- Then, all the blocks that need to be retrieved from a server are requested in one single call
per server (see Algorithm 3.3).

1 roundrobin_retrieve (io_queue , contiguous_buffer)
2 {
3 count = 0
4 ∀ server ∈ io_queue:
5 local_offset = minio∈io_queue[server]{io.offset}
6 local_size =

∑
io∈io_queue[server] io.size

7 retrieve_block(contiguous_buffer + count,
8 server, local_offset, local_size)
9 count = count+ local_size

10 }

Algorithm 3.3: Round-robin retrieve operation in Expand

68 Chapter 3. Proposal of a generic I/O arch. for large-scale distributed systems

3.4.5 Block grouping in full replication policy

Similarly to the round-robin case, the default full replication policy management in Expand is
cyclic, what means that to retrieve each data block, a different request to each server is made (see
Algorithm 3.5).

1 fullreplication_no_grouping (fd , buffer , size , offset , num_servers
)

2 {
3 new_offset = offset
4 count = 0
5

6 while (size > count) {
7 server = ((offset

block size%num_servers) + first_node)%num_servers
8 local_offset = offset
9

10 // local_size is the remaining bytes from new_offset until
the end of the block

11 local_size = block_size− (new_offset%block_size)
12

13 // If local_size > the remaining bytes to read/write , then
adjust local_size

14 if ((size− count) < local_size)
15 local_size = size− count
16

17 retrieve_block(buffer + count, server, local_offset, local_size)
18

19 count = local_size+ count
20 new_offset = offset+ count
21 }
22 }

Algorithm 3.5: Full replication with no block-grouping operation in Expand

This process is depicted in Figure 3.17.
As argued in the round-robin case, this process in not optimal in the presence of high latencies.

As done in round-robin policy, a grouping optimization has been incorporated to Expand. But in
this case, there is no need of reordering, since in a fully replicated partition, every server stores
the whole file, so we only need to select block ranges from each server because contiguous blocks
hold the proper order. This optimization consists of two steps:

1.- First, all the data blocks that need to be retrieved from a data server are grouped (see
Algorithm 3.6).

1 fullreplication_grouping (fd, buffer , size , offset)
2 {
3 l_size = size

‖servers‖
4 for (i = 0 ; i < ‖servers‖ ; i+ +)
5 {
6 server = servers[i]

3.5. Summary 71

3.5 Summary

This chapter has explained the architecture and implementation of a generic I/O middleware
specifically suited for large-scale distributed systems. To implement this architecture we have made
used of Expand, the parallel file system for clusters and supercomputers described in chapter A,
as the base file system for this proposal. In order to use Expand as a generic file system for
large-scale distributed systems it needed several modifications and enhancements. This chapter
has detailed these modifications and enhancements made to Expand to adapt it to large-scale
distributed systems.

Chapter 4

Evaluation of the parallel file system for
large-scale distributed systems in Grid
and volunteer computing environments

This chapter presents the main results of the evaluation of the generic I/O middleware proposed
in this thesis: a parallel file system for data access in large-scale distributed systems, and its
application in Grid and volunteer computing environments.

4.1 Introduction

The two different target environments will be analyzed independently. First of all, the results of
the evaluation for grid environments will be shown. Later, its application for volunteer computing
environments.

To do these evaluations, a complete simulator of the proposed system has been implemented;
so that, the evaluations can be done in a more flexible way, and without the requirement of having
real hardware environments to do the tests.

4.2 Evaluation environments

This section explains the different evaluation environments used to do the tests. There are three
real platforms. Also, a simulator has been developed to extend the tests to cases that were not
feasible to perform in real environments.

73

4.3. Evaluation in Grid environments 75

conducted in this platform have been done using machines located in different cities around
France, and sharing the network with many other users.

Figure 4.2: Grid5000 interconnection schema

The software libraries used for the evaluations are:

Grid software Globus Toolkit 5.2.2.

HTTP software Apache web server 2.0.

4.3 Evaluation in Grid environments

This section details the study performed of the general architecture for data access in grid envi-
ronments, and the benchmarks used for that purpose.

4.3.1 Objective

The main objective of the evaluation is to compare two different models of accessing the data:

Classic model The classic model is that in which the files are first downloaded, then they are
written to disk, and finally, read (see Figure 4.3(A)).

Remote access model In the remote access model the data are accessed on-the-fly, downloading
the data blocks when needed, and never written to disk (see Figure 4.3(B)).

The specific objectives of the evaluation are:

� To study the effect of reading part of a file: 1%, 5%, 10%, 20%, ... 100%

� To study the effect of different protocols used in distributed environments, namely, GridFTP,
XIO (with GridFTP driver), and HTTP

4.3. Evaluation in Grid environments 77

of files, being 50 the total amount of files downloaded by all clients. This benchmark compares the
classic method of download the files, write them to disk, and later, read them from disk (“Classic”
in figures); versus remote access to data, processing the files on-the-fly instead (“Expand” in fig-
ures), using an internal buffer size of 10% of file size, 10 MB. The benchmark also evaluates the
impact of reading only part of the file, instead of the whole file.

Three different download scenarios are evaluated:

One server All files are stored in one server, and clients download the files from this server.

Distributed copies The files are distributed among a number of servers, and clients download
each file from the corresponding server.

Parallel All files are replicated in all the servers, and clients download the files in parallel from
all the servers.

4.3.2.2 Balanced benchmark

This test is an extension of the above, Random benchmark. In this case, instead of assigning the
workload to clients randomly, the workload is forced to produce a certain balance (or unbalance)
in the servers (the workload that the servers must serve), so that, some percentage of the workload
is balanced among all the servers, and the rest is assigned to one server. The different scenarios
can be shown in Figure 4.4:

Perfect unbalance This can be considered the worst situation. In this case, all the workload is
served by only one server (Figure 4.4(a)).

Certain balance/unbalance In this case the workload has some degree of balance (or unbal-
ance). For example, if there is 30% of balance (Figure 4.4(b)), this means that 30% of the
workload is served evenly by all the servers, and the remaining 70% is served by only one
server. Alternatively, if there is 70% of balance (Figure 4.4(c)), this means that 70% of the
workload is served evenly by all the servers, and the remaining 30% is served by only one
server.

Perfect balance This can be considered the best situation. In this case, all the workload is
served evenly by all the servers (Figure 4.4(d)), so that, all the servers serve exactly the
same number of files.

Once a certain balance level on the servers is chosen, we need a client workload that generates
the chosen balance level in the servers. To force some level of workload balance in the servers,
several ways of distributing that workload among clients can be used. What follows is a list of
different ways of generating client workloads, so that, each of them is a different way of producing
the chosen balance level in the servers:

Subset In this case, every client has an associated server, so that, clients request every file to
their associated server (see Figure 4.5(a)). This case is similar to Distributed copies (from
Random benchmark), the files needed by a client are located and, thus, served by just one
server, but in this case, all the files needed by a certain client are always downloaded from
the same server.

78 Chapter 4. Evaluation of the parallel FS in Grid and volunteer comp. envs.

Server 1 Server 2 Server 3 Server 4

100%

Balance: 0%

(a) Perfect unbalance

Server 1 Server 2 Server 3 Server 4

70%

Balance: 30%

(b) 30% balanced, 70% unbalanced

Server 1 Server 2 Server 3 Server 4

30%

Balance: 70%

(c) 70% balanced, 30% unbalanced

Server 1 Server 2 Server 3 Server 4

Balance: 100%

(d) Perfect balance

Figure 4.4: Balance levels

Random In this case, each time a client needs to access a file, it selects a server randomly among
the available servers (see Figure 4.5(b)).

Proportional In this case, every time a client needs to access a file, it selects a different server,
so that, client’s workload is proportional among servers (see Figure 4.5(c)).

Parallel In this case, every file is downloaded in parallel, evenly from all available servers (see
Figure 4.5(d)). Thus, this case is perfectly balanced (100%), i.e., it generates equally balanced
workload on servers. For this reason, this case will only appear at 100% balance level in the
figures.

Expand This case is very similar to the parallel case (see Figure 4.5(d)), but accessing files re-
motely, instead of downloading and writing them to disk before reading. For the same reason
as in parallel, this case generates perfectly balanced workload on servers, and, therefore, this
case will only appear at 100% balance level in the figures.

4.3. Evaluation in Grid environments 81

0 10 20 30 40 50 60 70 80 90 100
Balance (%)

0

20

40

60

80

100

120

Ti
m

e
(s

)

Read percentage=10

Subset
Random
Proportional
Parallel
Expand

(a) 10%

0 10 20 30 40 50 60 70 80 90 100
Balance (%)

0

20

40

60

80

100

Ti
m

e
(s

)

Read percentage=50

Subset
Random
Proportional
Parallel
Expand

(b) 50%

0 10 20 30 40 50 60 70 80 90 100
Balance (%)

0

20

40

60

80

100

120

Ti
m

e
(s

)

Read percentage=100

Subset
Random
Proportional
Parallel
Expand

(c) 100%

Figure 4.8: Effect of reading part of a file in Balanced Benchmark (HTTP, 16 clients, 8 servers, Cluster
platform)

4.3.3.2 Effect of different protocols used in distributed environments

Four different protocols have been used in this thesis:

� OGSA ByteIO (Expand-WS and Expand-GridOGSA-ByteIO in figures)

� GridFTP

� Globus XIO (with GridFTP driver)

� HTTP

First of all, OGSA ByteIO protocol was evaluated to study the feasibility of this protocol for
implementing a parallel file system. With this aim, the evaluation has been made using a single
transfer and a typical grid computing scenario, both sending the data in plain text and encrypted
[Bergua et al. (2008)].

To test the single transfer we have used the globus-url-copy command (which uses GridFTP
protocol), Expand with GridFTP protocol and Expand with OGSA ByteIO protocol (Expand-WS
in figure), sending the data in plain text and encrypted. Each job transfers a 500 MB file from
client to server. The platform used was the Small Grid.

Figure 4.9 shows time, in seconds, required to run the single transfer benchmark. The best
results are for the globus-url-copy command and Expand with GridFTP, which show simi-
lar results compared to OGSA ByteIO (Expand-WS in figure), but Expand being better than
globus-url-copy, as expected.

For analyzing OGSA ByteIO in a typical grid scenario we have defined two grid benchmarks,
one sends the data in plain text and the other encrypted, that consist of 500 jobs scheduled on
4 workstations. Each job accesses to a random number of files (between 1 and 10 files) chosen
among 1000 files. The size of each file is 500 MB. This benchmark has been tested in different
modes:

� All files are stored in one single GridFTP server (1 site in figures) and they are accessed
using the globus-url-copy command, the command line tool provided by Globus.

84 Chapter 4. Evaluation of the parallel FS in Grid and volunteer comp. envs.

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

5

10

15

20

25

30

35

Ti
m

e
(s

)

Test=Distributed Copies

Classic
Expand

(a) GridFTP

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

5

10

15

20

25

30

35

Ti
m

e
(s

)

Test=Distributed Copies

Classic
Expand

(b) XIO

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

5

10

15

20

25

30

Ti
m

e
(s

)

Test=Distributed Copies

Classic
Expand

(c) HTTP

Figure 4.11: Effect of different protocols used in distributed environments using Random Benchmark with
Distributed Copies mode (16 clients, 8 servers, Cluster platform)

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

5

10

15

20

25

30

Ti
m

e
(s

)

Test=Parallel

Classic
Expand

(a) GridFTP

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

5

10

15

20

25

30

35

Ti
m

e
(s

)

Test=Parallel

Classic
Expand

(b) XIO

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

5

10

15

20

25

30

35

Ti
m

e
(s

)

Test=Parallel

Classic
Expand

(c) HTTP

Figure 4.12: Effect of different protocols used in distributed environments using Random Benchmark with
Parallel mode (16 clients, 8 servers, Cluster platform)

GridFTP directly when doing remote access.
Figure 4.13 shows the effect of the different protocols in Balanced benchmark used in dis-

tributed environments.

0 10 20 30 40 50 60 70 80 90 100
Balance (%)

0

20

40

60

80

100

120

Ti
m

e
(s

)

Read percentage=100

Subset
Random
Proportional
Parallel
Expand

(a) GridFTP

0 10 20 30 40 50 60 70 80 90 100
Balance (%)

0

20

40

60

80

100

120

Ti
m

e
(s

)

Read percentage=100

Subset
Random
Proportional
Parallel
Expand

(b) XIO

0 10 20 30 40 50 60 70 80 90 100
Balance (%)

0

20

40

60

80

100

120

Ti
m

e
(s

)

Read percentage=100

Subset
Random
Proportional
Parallel
Expand

(c) HTTP

Figure 4.13: Effect of different protocols used in distributed environments in Balanced Benchmark (16
clients, 8 servers, Cluster platform)

86 Chapter 4. Evaluation of the parallel FS in Grid and volunteer comp. envs.

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

10

20

30

40

50

60

70

Ti
m

e
(s

)

Test=Distributed Copies

Classic
Expand

(a) 4 clients, 4 servers

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

10

20

30

40

50

Ti
m

e
(s

)

Test=Distributed Copies

Classic
Expand

(b) 8 clients, 4 servers

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

5

10

15

20

25

30

35

40

45

Ti
m

e
(s

)

Test=Distributed Copies

Classic
Expand

(c) 16 clients, 4 servers

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

10

20

30

40

50

60

Ti
m

e
(s

)

Test=Distributed Copies

Classic
Expand

(d) 4 clients, 8 servers

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

5

10

15

20

25

30

35

40

Ti
m

e
(s

)

Test=Distributed Copies

Classic
Expand

(e) 8 clients, 8 servers

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

5

10

15

20

25

30

Ti
m

e
(s

)

Test=Distributed Copies

Classic
Expand

(f) 16 clients, 8 servers

Figure 4.15: Random Benchmark results with Distributed Copies mode (HTTP, Cluster platform)

Balanced benchmark As described in section 4.3.2.2, Balanced benchmark evaluates a number
of levels of balance (or unbalance) on servers: 0% (Perfect unbalance), 10%, 20%, ..., 100% (Perfect
balance). And, for every server’s balance level, five different client workloads were tested: Sub-
set, Random, Proportional, Parallel, and Expand. As explained in section Balanced benchmark,
Parallel and Expand cases are only tested in 100% balance level (Perfect balance).

Figure 4.17 shows a combination of number of clients and servers for 100% read percentage.
When using 4 clients, “Subset” mode is clearly worse than others (see Figures 4.17(a) and 4.17(b)).
When using 16 clients “Subset” is comparable to others (see Figures 4.17(c) and 4.17(d)). Generally,
“Proportional” provides very good performance for any balance level.

However, neither server balance nor client workloads are things that can be chosen in a real
scenario. They simply happen. The combination of “Subset”, “Random”, and “Proportional” modes
with server balance levels ranging from 0% to 100% pursues the aim to compare “Parallel” and
“Expand” with all the possible scenarios that might take place in real life. The results show
that parallel access outperforms significantly any other scenario, and remote access (“Expand” in
figures) also outperforms parallel access (see Figure 4.17).

4.3. Evaluation in Grid environments 87

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

10

20

30

40

50

60

Ti
m

e
(s

)

Test=Parallel

Classic
Expand

(a) 4 clients, 4 servers

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

5

10

15

20

25

30

35

40

Ti
m

e
(s

)

Test=Parallel

Classic
Expand

(b) 8 clients, 4 servers

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

5

10

15

20

25

30

35

40

Ti
m

e
(s

)

Test=Parallel

Classic
Expand

(c) 16 clients, 4 servers

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

10

20

30

40

50

60

Ti
m

e
(s

)

Test=Parallel

Classic
Expand

(d) 4 clients, 8 servers

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

5

10

15

20

25

30

35

Ti
m

e
(s

)

Test=Parallel

Classic
Expand

(e) 8 clients, 8 servers

1 5 10 20 30 40 50 60 70 80 90 100
Read percentage

0

5

10

15

20

25

30

35

Ti
m

e
(s

)

Test=Parallel

Classic
Expand

(f) 16 clients, 8 servers

Figure 4.16: Random Benchmark results with Parallel mode (HTTP, Cluster platform)

0 10 20 30 40 50 60 70 80 90 100
Balance (%)

0

20

40

60

80

100

120

140

160

180

Ti
m

e
(s

)

Read percentage=100

Subset
Random
Proportional
Parallel
Expand

(a) 4 clients, 4 servers

0 10 20 30 40 50 60 70 80 90 100
Balance (%)

0

50

100

150

200

Ti
m

e
(s

)

Read percentage=100

Subset
Random
Proportional
Parallel
Expand

(b) 4 clients, 8 servers

0 10 20 30 40 50 60 70 80 90 100
Balance (%)

0

20

40

60

80

100

120

Ti
m

e
(s

)

Read percentage=100

Subset
Random
Proportional
Parallel
Expand

(c) 16 clients, 4 servers

0 10 20 30 40 50 60 70 80 90 100
Balance (%)

0

20

40

60

80

100

120

Ti
m

e
(s

)

Read percentage=100

Subset
Random
Proportional
Parallel
Expand

(d) 16 clients, 8 servers

Figure 4.17: Effect of having balanced/unbalanced workloads on servers (HTTP, Cluster platform)

96 Chapter 4. Evaluation of the parallel FS in Grid and volunteer comp. envs.

� The data are accessed in parallel from the data servers. This means a higher potential
throughput between a client and the BOINC data server.

� The data is never written to disk, instead the data is passed to the application through
its standard input/output. This is specially useful for clients with poor storage capacity.
Because of data will not be in clients, sensible data does not need encryption for being
stored on client disk.

� An application which is able to operate by reading the input data from its standard input
and by writing the results to its standard output can work in this model without any change.

4.4.3 Results, analysis, and discussion of evaluation in real environments

The main motivation for our performance test is to study whether the new proposed model of
transferring data from the data servers in parallel is feasible, and if it achieves better performance
[Bergua et al. (2009a, 2010)]. With this aim, we have counted the number of work units successfully
computed in one hour using the classical model of one BOINC server and the Expand solution
using a parallel partition of four nodes. In each case we have chosen two kind of applications for
the work units:

� One that does some processing with the input data (“Processing” in the figures). Input files
are JPG images, and the processing consists of applying a smoothing filter to the image
using the convert tool.

� And another that is data intensive and does no computing at all, just transfers data (“Data
intensive” in the figures).

Both applications have been tested with two different kind of input/output files: a big file of
100 MB, and another smaller file of 4 MB.

The way the benchmark works is as follows: it creates a project of 1,000 work units with a
100 MB input file each, and another project of 20,000 work units with a 4 MB input file each.
Once the projects has been created a shell script starts the BOINC client on the worker nodes in
parallel and stops them one hour later. Finally, we count the number of work units successfully
finished.

To perform this test we have used the following platform:

� A BOINC server and data repository: IntelR© XeonR© CPU Quad Core, 4 GB RAM

� 4 workstations as standard servers for Expand : IntelR© CoreR© 2 Quad CPU Q8200 @ 2.33GHz,
4 GB RAM.

� 68 workstations as clients taken from the Desktop Grid platform (AMD AthlonTM 64 X2
Dual Core Processor 4200+, 2 GB RAM).

All of them located in the campus of Leganés of Universidad Carlos III de Madrid.
Figures 4.28(a) and 4.28(b) show the number of work units successfully computed, obtained

after running the benchmark for one hour. The former for small files and the latter for large

Chapter 5

Optimizations for replica selection in
large-scale distributed systems

This chapter presents the optimizations for replica selection designed for large-scale distributed
systems. The rest of this chapter is organized as follows. First, the Motivation and objectives of
these optimizations will be explained, later the Problem definition is stated, then the Selection
of virtual parallel partitions in large-scale replicated environments is explained, and finally, the
Evaluation of the replica selection algorithm in Grid and volunteer computing environments is
presented.

5.1 Motivation and objectives

This chapter aims to fulfill the second primary objective indicated in Section 1.2: to design a
replica selection algorithm for configuring access virtual parallel partitions for large-scale
distributed systems.

There are many works related to the topic of replica selection in replicated environments.
Basically, all works that focus on replica selection pursue two objectives:

1.- Optimize the download of whole files

2.- Optimize the download of big files

However, besides the previous problems, in large-scale distributed systems there are, also,
additional problems or needs:

� Need to access to data, but not necessarily write them to disk

� Need to access to just some (possibly small) part of a file, but not necessarily the whole file

99

100 Chapter 5. Optimizations for replica selection in large-scale distributed systems

� Need to access to or download small files

The objective of this chapter is, thus, to propose a new approach for accessing to file replicas to
optimize the access to virtual parallel partitions configured basing on the available set of replicas
for a given file.

Now, let us suppose that among a hypothetical list of data servers, some of them are clearly
better than the rest in terms of latency and throughput, i.e., they offer low latency and high
throughput. An obvious strategy for replica selection would suggest to select these subset of data
servers. However, if we always select the same subset of data servers because they have reported
to be good, they will quickly become a bottleneck. A replica selection algorithm should assure a
good balance among server’s workloads, while providing high overall performance in the system.

Many approaches to this problem suggest to constantly monitor the status of the network
to adjust the configuration dynamically. However, this solution introduces extra complexity and
overhead in the network.

Ideally, the objectives of a replica selection algorithm for large-scale distributed systems are:

� Optimize the transfer of chunks of data ranging from tiny chunks to huge files

� Take advantage of all kinds of data servers, ranging from bad servers (high latency, low
throughput) to good servers (low latency, high throughput)

� Balance workload on servers proportionally to their characteristics

� Select the best level of parallelism for any given request

� Be fault tolerant, so that if all nodes but one die, the transfer still can take place

� Be as autonomous as possible, getting rid of agents or other external systems, that introduce
complexity and overhead

The objective of this chapter is to design, and evaluate, an algorithm for configuring virtual
parallel partitions, given a list of replicas for a given file, and based on a probability function that
chooses the servers or set of servers randomly among all the servers that hold a replica of a given
file, and creating a virtual parallel partition to transfer the file in parallel from this random set of
servers. The set of servers used by the algorithm for creating a virtual parallel partition is chosen
randomly among all the servers that hold a replica of the file that needs to be transferred. The way
the algorithm chooses the set of servers randomly is by using a probability function that gives to
each server a probability of being chosen, based on a weight function that gives to every server a
weight depending on how well suited is each server for a given transfer. The weight function gives
a weight to every server for a given transfer, prioritizing low latency servers for small transfers,
and high throughput servers for big transfers.

5.2 Problem definition

Given a list of servers S, defined as:

5.2. Problem definition 101

S =
k⋃
i=1

si

And given a set of files F , defined as:

F =
n⋃
i=1

fi

where each file fk can be replicated in a set Sfk of 1 or more servers, being Sfk defined as:

Sfk ⊆ S

The objective is to define an access virtual parallel partition AV PP , defined as:

AV PP ⊆ Sfk

that allows to access to this file using the generic I/O middleware proposed in this thesis.
Classic approaches to access to replicated data use replica selection algorithms to access to

the best set of replicas to download a file, or set of files, usually big files, as fast as possible.
However, the approach proposed in this thesis pursues to create a virtual parallel partition

(AV PP), chosen among the servers (Sfk) that hold a replica of a given file (fk), which is optimized
for a given size access. This means, that an AV PP for a small transfer of a given file fk will be
possibly different than an AV PP for a bigger transfer of the same file fk. Each time, the AV PP
is chosen to optimize the specific transfer that is going to take place.

Traditionally, the basic equation for predicting how long a transfer will last is shown in
Equation 5.1. Many approaches use this equation as the reference equation for selecting the best
server or set of servers for doing a transfer, since it does a very good job for predicting the time
of big transfers.

time = latency +
file size

throughput
(5.1)

However, if we use Equation 5.1 as the reference equation for a generic I/O middleware
architecture for large-scale distributed systems, the best servers (those with low latency, and high
throughput) will always be the best candidates for every transfer. In big transfers, the throughput
component hides the latency. In a general purpose large-scale distributed environment, in which
transfer sizes range from tiny transfers to huge transfers, the best servers will quickly become
overloaded by big transfers. And this would cause a terrible penalty to small transfers.

Thus, we need to separate both latency and throughput components, and give them different
treatments when selecting the server or set of servers for any given transfer, giving them different
weights depending on the transfer size.

A good replica selection algorithm for a generic I/O middleware architecture for large-scale
distributed systems would need to give special importance to low-latency servers for small trans-
fers, and high-throughput servers for big transfers (see Table 5.1).

102 Chapter 5. Optimizations for replica selection in large-scale distributed systems

Latency Throughput
Small transfers High Low
Big transfers Low High

Table 5.1: Summary of importance of latency and throughput

5.3 Selection of virtual parallel partitions in large-scale replicated
environments

We need to design a sort of mechanism, so that small transfers will have higher priority in the
lowest latency servers, and big transfers will be have higher priority in the highest throughput
servers. In order to properly model the requirements of table 5.1, we need:

� For weighting the latency: a function that must be increasing when file size tends to 0, and
decreasing when file size gets arbitrary big.

� For weighting the throughput: a function that must be decreasing when file size tends to 0,
and increasing when file size gets arbitrary big.

With the above needs in mind we propose:

� y = 1
x as the base function for weighting the latency (being x the file size)

� y = ex as the base function for weighting the throughput (being x the file size)

Figure 5.1 shows the shape of the two proposed functions for the algorithm.

file size

la
te

nc
y

Functions

y= 1
αx

y=eβx−1

th
ro

ug
hp

ut

Figure 5.1: Functions

5.3. Selection of virtual parallel partitions in large-scale replicated environments 103

The black vertical lines represent some examples of different file sizes, and the cut points
between the black vertical lines and the weighting functions (blue and red lines) are the spe-
cific weights that the weighting functions will have for those file sizes. Final weights will be a
combination of those two cut points for every black line.

As can be seen, the two proposed functions for weighting latency and throughput hold that, if
used in combination, they would give higher importance to low-latency servers in small transfers,
and to high-throughput servers in big transfers, i.e., they fulfill the needs of Table 5.1. Figure 5.2
shows some specific examples of how these functions would behave for different file sizes.

lat or thr

la
te

nc
y

Functions

y= 1

lat
· 1

0.25

y= 1

lat
· 1

1

y= 1

lat
· 1

2

y=thr(e0.25−1)

y=thr(e1−1)

y=thr(e2−1)

th
ro

ug
hp

ut

Figure 5.2: Weighting functions: some examples

Equations 5.2 and 5.3 show the final expressions of the weighting functions. Some terms have
been added to the original expressions of Figure 5.1 to make them work in corner cases.

wlat(fs) =
1

lat+ 1
· 1

αfs
(5.2)

wthr(fs) = thr(eβ(fs−1) − 1) (5.3)

Being α and β the slope parameters that can be tuned for optimal performance, for example,
using some optimization method to find the pair of values that gives the best performance.

Though intuitively these functions fulfill the needs, let us do a theoretical study of these
functions in corner cases. Table 5.2 shows limfs→1wlat and limfs→1wthr:

104 Chapter 5. Optimizations for replica selection in large-scale distributed systems

lim
lat→0

wlat =
1

α
lim
thr→1

wthr = 0

lim
lat→latmax

wlat =
1

latmax + 1
· 1

α
lim

thr→thrmax

wthr = 0

Table 5.2: limfs→1 wlat and limfs→1 wthr

Which holds that wlat=0 > wlat > wlatmax ∀ 0 < lat < latmax. In particular, if fs = 1:

If lat = 0, wlat = 1
α

If lat = latmax, wlat = 1
latmax+1 ·

1
α

wthr = 0 ∀ thr

Table 5.3: wlat and wthr for fs = 1

Table 5.4 shows limfs→∞wlat and limfs→∞wthr:

lim
lat→0

wlat = 0 lim
thr→0

wthr = 0

lim
lat→latmax

wlat = 0 lim
thr→thrmax

wthr =∞

Table 5.4: limfs→∞ wlat and limfs→∞ wthr

Which holds that wthr=0 < wthr < wthrmax ∀ 0 < thr < thrmax, 1 < fs < ∞. In
particular, if 1 < fs <∞:

If lat = 0, wlat = 1
αfs If thr = 0, wthr = 0

If lat = latmax, wlat = 1
latmax+1 ·

1
αfs If thr = thrmax, wthr = thrmax(eβ(fs−1) − 1)

Table 5.5: wlat and wthr for 1 < fs <∞

Equation 5.4 shows the final expression of the combination of the two weighting functions as
a function of file size.

wi(fs) = θwlat(fs) + (1− θ)wthr(fs), 0 6 θ 6 1 (5.4)

Being θ the balance parameter between latency and throughput. Finally, Equation 5.5 repre-
sents Equation 5.4 turned into a probability function. It gives the probability of server i of being
chosen for a given file size.

pi =
wi∑n
j=1wj

(5.5)

The final algorithm must be divided in two steps. The first step consists of locating the list
of servers that hold a replica of the given file. This step must be done when opening the file (see
Algorithm 5.1).

The second step consists of calculating weights for all servers that hold a replica based on
the transfer size requested, and then converting the weights into probabilities. Finally, a set of

5.3. Selection of virtual parallel partitions in large-scale replicated environments 105

1 open(filename , flags [, mode]) {
2 for each Si ∈ S
3 for each SUij ∈ Si

4 if filename ∈ SUij

5 Sfd ← SUij

6 // Continue with the rest of operations for opening a file
7 fM (filename)→ SUM ∈ Sfd

8 for each SUi ∈ Sfd

9 {obtain fhi ∈ Si}
10 {obtain SM ∈ SUM }
11 fd← FH
12 }

Algorithm 5.1: File opening operation in the replica selection algorithm

servers is chosen randomly. This step must be carried out every time a transfer on the given file
is requested, i.e., in every read request (see Algorithm 5.2).

1 read(fd, buffer , size) {
2 {obtain Sfd of fd}
3 for each Si ∈ Sfd

4 compute wlati(size) (Equation 5.2)
5 compute wthri(size) (Equation 5.3)
6 compute wi (Equation 5.4)
7 for each wi

8 compute pi (Equation 5.5)
9 AV PP ← random({pi, SUi}∀SUi ∈ Sfd)

10 // Continue with the rest of operations for reading a file
11 for each SU ∈ AV PP
12 if fhi ∩ SUi = ∅
13 {obtain fhi}
14 {divide buffer in {d, v} whose size ≤ ‖Bij‖ ∈ AV PP }
15 ∀{d, v} ∈ buffer
16 fd(dk, vk)⇐ Bij ∈ Si

17 }

Algorithm 5.2: Parallel read operation in the replica selection algorithm

Figure 5.3 shows 2D and 3D colored representations of the behavior of the final Equation 5.5
for different fake examples of file sizes. It shows how, when the file size is small, the lowest
latency servers have the highest weights; and as file size increases, the weights turn to the highest
throughput servers.

5.4. Evaluation of the replica selection algorithm in Grid and volunteer computing
environments 107

5.4 Evaluation of the replica selection algorithm in Grid and vol-
unteer computing environments

This section presents the main results of the evaluation of the optimizations proposed in this thesis:
a replica selection algorithm for configuring virtual parallel partitions in large scale distributed
systems, and its application for Grid and volunteer computing environments.

5.4.1 Simulation environment

Performing tests for large-scale scenarios requires access to big platforms, and in case access to
those platforms is granted experiments might take long time. To ease the task of evaluating the
proposed solutions a simulator of distributed I/O has been developed. Next sections explain the
components of the simulator, and its validation.

5.4.1.1 Components of a distributed I/O simulator

We have chosen SimGrid as the simulation framework because it is extremely scalable (simula-
tions of more than 2 million nodes have been reported to work [Quinson et al. (2012)]) while ac-
curate, and provides abstractions for building distributed system simulators: network (send/recv,
wait/waitall/test/listen/etc.), and tasks (exec/pause/resume/kill). The simulator developed for
this thesis is built on top of SimGrid v3.10. SimGrid has been extensively validated by its
authors (see Section 2.7.3 SimGrid for details about SimGrid).

Data server The data server is responsible of accepting download/upload requests from clients.
When a download request is accepted, it reads the file from disk, and sends it to the client.
The data server can serve whole files, or part of them. When an upload request is accepted,
it receives the file from the client, and once this transfer has finished the server writes the
file to disk.

Disk A disk is simulated using the same simulation model as that used for simulating how tasks
execute on CPUs in SimGrid. Though intuitive, we do not use network links to simulate
access to disks because links have some side effects to accurately simulate TCP under con-
gestion. On the contrary, the simulation model of the execution of tasks in CPUs in SimGrid
is a fair sharing model, what means that if two tasks request access to disk, each task will
obtain half of the disk throughput, without network-related side effects.

Grid client Grid clients request files to data servers. They can request whole files or part of
them to a single data server, or to several data servers in parallel. Once the file is received,
the client can write it to disk for later processing, or process it on-the-fly without making
use of the disk.

VC client A volunteer computing client is very similar to a grid client, but a VC client have a
predefined script of functioning that repeats over and over again:

1.- Request a job to a VC server.

2.- Download input files from one data server, or from several in parallel.

108 Chapter 5. Optimizations for replica selection in large-scale distributed systems

3.- Write input files to disk for later processing, process the files and write the results to
disk. Or process them on-the-fly.

4.- Upload results to one data server, or to several in parallel.
5.- Inform the server that the job has been completed.

VC server A volunteer computing server is responsible of accepting requests from VC clients,
and assign jobs to clients. Whenever a VC server receives a job request from a client, it
chooses the next unfinished job, and a set of one or several data servers to download the
input files from, and sends the chosen job along with the set of servers to the client.

5.4.2 Workload modeling

In order to evaluate the proposed algorithm we need a realistic workload of files with different
sizes. A good and realistic workload is important to draw conclusions about the benefits of the
proposed algorithm. This section will explore the complexity of the Characterization of file size
distributions, and later the Benchmark workloads will be explained.

5.4.2.1 Characterization of file size distributions

[Feitelson (2015)] points out that the distribution of file sizes in a file system or retrieved from
a web server follows a heavy-tailed distribution [Irlam (1993), Crovella and Bestavros (1997),
Barford and Crovella (1998), Downey (2001)]. So does the distribution of popularity of items on a
web server, and the distribution of popularity of web sites [Barford and Crovella (1998), Breslau
et al. (1999), Roadknight et al. (2000), Adamic and Huberman (2001), Oke and Bunt (2002)].

Heavy tails are most commonly defined as those governed by power laws. What follows is some
basic definitions of power law, Pareto, and lognormal distributions taken from [Mitzenmacher
(2003a,b)].

A non-negative random variable X is said to have a power law distribution if the complemen-
tary cumulative distribution function (ccdf), or Pr[X > x], satisfies

Pr[X > x] ∼ cx−α

for constants c > 0 and α > 0. Here, f(x) ∼ g(x) denotes that the limit of the ratios goes to
1 as x grows large. One specific commonly used power law distribution is the Pareto distribution,
which satisfies

Pr[X > x] ∼
(x
k

)−α
for some α > 0 and k > 0. The probability density function (pdf) for the Pareto distribution

is

f(x) = αkαx−α−1

If X has a power law distribution, then in a log-log plot of the ccdf, asymptotically the
behavior is a straight line. See Figures 5.4(a) and 5.4(b) for a graphical representation of the pdf
and ccdf of a Pareto distribution.

5.4. Evaluation of the replica selection algorithm in Grid and volunteer computing
environments 109

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pareto density split into 10 equal areas

x

f(x
)

k

(a) Pareto pdf

0.
05

0.
10

0.
20

0.
50

1.
00

Log−log ccdf of Pareto

log(x)
lo

g(
1−

F(
x)

)
k

(b) Pareto ccdf (log-log)

Figure 5.4: Pareto distribution

A random variable X has a lognormal distribution if the random variable Y = ln X has a
normal (i.e. Gaussian) distribution. The density function for a lognormal distribution satisfies

f(x) =
1√

2πσx
e−(ln x−µ)

2/2σ2

where µ is the mean and σ is the standard deviation of the associated normal distribution.
See Figure 5.5 for a graphical representation of the pdf of a lognormal distribution.

The lognormal distribution is extremely similar in shape to power law distributions, in the
following sense: if X has a lognormal distribution, then in a log-log plot of the ccdf or the den-
sity function, the behavior will be a straight line except for a large portion of the body of the
distribution. See Figures 5.6(a) and 5.6(b) for a graphical representation of the pdf and ccdf of a
lognormal distribution.

[Barford and Crovella (1998)] proposed a model for file sizes based on a lognormal distribution
for the body and a Pareto for the tail. This model for file sizes and other aspects of workload char-
acterization are included in Surge, a web workload generation tool. A summary of distributions
and their parameters regarding file and request sizes in Surge are shown in Table 5.6:

These results are based on previous work by [Arlitt and Williamson (1996), Crovella and
Bestavros (1997)], whose basic assumptions were later confirmed by [Williams et al. (2005)].

Up to 2001 there was broad consensus on that the distribution of file sizes follows a lognormal
distribution for the body and a Pareto for the tail. However, [Downey (2001)] found no evidence
for long tails (the Pareto distribution is considered long-tailed). Instead, he proposed a model
for the evolution of a file system over time, based on a multiplicative process. The idea is that
the size of a new file can be modeled by taking the size of an old file and multiplying it by a

110 Chapter 5. Optimizations for replica selection in large-scale distributed systems

pdf of Lognormal

x

f(x
)

Figure 5.5: Lognormal distribution

Log−log pdf of Lognormal

log(x)

lo
g(

f(x
))

(a) Lognormal pdf (log-log)

0.
05

0.
10

0.
20

0.
50

1.
00

Log−log ccdf of Lognormal

log(x)

lo
g(

F(
x)

)

(b) Lognormal ccdf (log-log)

Figure 5.6: Lognormal distribution (log-log)

random variable. Downey argued that this model yields a lognormal distribution for file sizes.
If a model with more parameters is needed, it can be extended to include more than one mode
with a two-mode lognormal. He concluded that long-tailed models are not necessary to describe
the observed distributions, and that his user model is a better fit for the data than the hybrid
lognormal-Pareto model [Downey (2001)].

Lognormal distributions can be naturally generated by multiplicative processes. Lognormal

5.4. Evaluation of the replica selection algorithm in Grid and volunteer computing
environments 111

Component Model Probability Density Function Parameters

File sizes - Body Lognormal p(x) = 1
xσ
√
2π
e−(ln x−µ)

2/2σ2
µ = 9.357, σ = 1.318

File sizes - Tail Pareto p(x) = αkαx−(α+1) k = 133K , α = 1.1
Popularity Zipf p(x) = kx−s

Request sizes Pareto p(x) = αkαx−(α+1) k = 1000 , α = 1.0

Table 5.6: Summary statistics for models used in Surge (1998)

distributions are natural for describing growth of organisms, and any process where over a time-
step the underlying growth is a random factor independent of the current size [Mitzenmacher
(2003a,b)].

Then, [Mitzenmacher (2003b)] expanded Downey’s work to a dynamic model that allows
additions (not necessarily derived from existing files, as opposed to Downey’s model) and deletions.
As a result he obtained a family of models referred to as Recursive Forest File model. The resulting
distribution of file sizes is a double Pareto distribution. Double Pareto distributions have been
suggested to describe several power law phenomena [Reed (2003), Reed and Jorgensen (2004)].
These distributions have a lognormal body and a Pareto tail, which matches some previous studies
of empirical data for file sizes [Mitzenmacher (2003b)].

To understand how a power law can be obtained from a lognormal distribution, I present a
summarized explanation taken from [Mitzenmacher (2003b)]. Suppose we have a system Xt =
FtXt−1, where X0 = 1 and Ft is a lognormal distribution with parameters (µ, σ2). Think of index
t as referring to time. If we let the system run and stop it at some fixed time k, we obtain a
random variable from the lognormal distribution with parameters (kµ, kσ2). Suppose instead we
run the system until some random time k. Then we obtain a random variable that comes from
a mixture of lognormal distributions. Specifically consider the case where we have a geometric
mixture of lognormal distributions. Then, the resulting distribution from this mixture will have
a power law. Exponential mixtures can be used instead of geometric mixtures for convenience. I
refer the interested reader to [Mitzenmacher (2003a,b), Mitzenmacher and Tworetzky (2003)] for
further details on the above explanation, and empirical studies.

A double Pareto distribution defined over x > 0 with parameters α, β > 0 has pdf

f(x) =

{
αβ
α+βx

β−1, for 0 < x ≤ 1
αβ
α+βx

−α−1, for x > 1

See Figure 5.7 for a graphical representation of the pdf of a double Pareto distribution.
A key characteristic of the double Pareto distribution is that it has a power law at both tails.

That is, if we look at the cumulative distribution function (cdf) on a log-log plot, it will also
have a linear tail (for the small files). This provides a test for seeing whether a distribution has
a double Pareto distribution; look at both the ccdf and the cdf on log-log plots for linear tails
[Mitzenmacher (2003b)]. See Figures 5.8(a) and 5.8(b) for a graphical representation of the cdf
and ccdf of a double Pareto distribution.

The double Pareto distribution falls nicely between the lognormal distribution and the Pareto
distribution. Like the Pareto distribution, it is a power law distribution. But while the log-log plot
of the density of the Pareto distribution is a single straight line (see Figure 5.9(a)), for the double

112 Chapter 5. Optimizations for replica selection in large-scale distributed systems

pdf of Double Pareto

x

f(x
)

1

Figure 5.7: Double Pareto distribution

1e
−0

4
1e

−0
3

1e
−0

2
1e

−0
1

1e
+0

0

Log−log cdf of Double Pareto

log(x)

lo
g(

F(
x)

)

1

(a) Double Pareto cdf (log-log)

1e
−0

8
1e

−0
6

1e
−0

4
1e

−0
2

1e
+0

0

Log−log ccdf of Double Pareto

log(x)

lo
g(

1−
F(

x)
)

1

(b) Double Pareto ccdf (log-log)

Figure 5.8: Double Pareto distribution (log-log)

Pareto distribution the log-log plot of the density consists of two straight line segments that meet
at a transition point (see Figure 5.9(b)). This is similar to the lognormal distribution, which has
a transition point around its median eµ. Hence, an appropriate double Pareto distribution can
closely match the body of a lognormal distribution and the tail of a Pareto distribution. The
ccdf for a lognormal and a double Pareto distributions match quite well with a standard scale
for probabilities. On the log-log scale, however, the double Pareto distribution follows a power

5.4. Evaluation of the replica selection algorithm in Grid and volunteer computing
environments 113

law (see Figure 5.8(b)), while the lognormal distribution has a clear curvature (see Figure 5.6(b))
[Mitzenmacher (2003a,b)].

Log−log pdf of Pareto

log(x)

lo
g(

f(x
))

k

(a) Pareto pdf (log-log)

Log−log pdf of Double Pareto

log(x)

lo
g(

f(x
))

1

(b) Double Pareto pdf (log-log)

Figure 5.9: Pareto-Double Pareto comparison (log-log)

Also, Reed has suggested a generalization of the double Pareto distributions called double
Pareto-lognormal distributions with similar properties [Reed and Jorgensen (2004)]. The double
Pareto-lognormal distribution has more parameters, but might allow closer matches with empirical
distributions [Mitzenmacher (2003b)].

The pdf of a double Pareto-lognormal distribution can be expressed in terms of the cdf Φ and
ccdf Φc of N(0, 1) as

f(x) = αβ
α+β

[
A(α, ν, τ)x−α−1Φ

(
log x−ν−ατ2

τ

)
+A(−β, ν, τ)xβ−1Φc

(
log x−ν+βτ2

τ

)]
where

A(θ, ν, τ) = exp
(
θν +

θ2τ2

2

)
See Figure 5.10 for a graphical representation of the pdf of a double Pareto-lognormal distri-

bution.
I refer the reader to [Reed (2001), Reed and Hughes (2002), Reed (2003), Reed and Jorgensen

(2004)] for further details about power law, Pareto, double Pareto, and double Pareto-lognormal
distributions, and their use to model size distributions.

114 Chapter 5. Optimizations for replica selection in large-scale distributed systems

pdf of Double Pareto−Lognormal

x

f(x
)

(a) Double Pareto-Lognormal pdf (β > 1)

pdf of Double Pareto−Lognormal

x

f(x
)

(b) Double Pareto-Lognormal pdf (β < 1)

Log−log pdf of Double Pareto−Lognormal

log(x)

lo
g(

f(x
))

(c) Double Pareto-Lognormal pdf log-log (β > 1)

Log−log pdf of Double Pareto−Lognormal

log(x)

lo
g(

f(x
))

(d) Double Pareto-Lognormal pdf log-log (β < 1)

Figure 5.10: Double Pareto-Lognormal distribution

5.4.2.2 Benchmark workloads

According to the study of the characterization of file size distributions presented in Section 5.4.2.1,
a double Pareto-Lognormal distribution, with parameters α = 1, β = 2, ν = 0, and τ = 1, will
be used. The number of files generated will be 1000. See Figure 5.11 for histogram, and empirical
complementary cumulative distribution function (eccdf) of the generated sample.

5.4. Evaluation of the replica selection algorithm in Grid and volunteer computing
environments 115

Histogram with Double Pareto−Lognormal Curve

File size

Fr
eq

ue
nc

y

0 2 4 6 8 10

0
20

40
60

80

(a) Double Pareto-Lognormal histogram

5e−03 5e−02 5e−01 5e+00 5e+01

0.
00

1
0.

00
5

0.
05

0
0.

50
0

log(x)
lo

g(
Pr

op
or

tio
n

>
x)

(b) Double Pareto-Lognormal eccdf

Figure 5.11: Double Pareto-Lognormal sample

Also, to study the impact of the solution, several units will be considered for the generated
sample. In other words, different data sets will be considered using the same sample of 1000 files
generated using the distribution specified above, the only difference among these data sets is the
unit of the file sizes. Two different data sets will be considered for file sizes:

� FS-KB: 18 bytes → 5.05 MB

� FS-MB: 18.62 KB → 5.05 GB

This means that the first data set considered will be that in which each file size ranges from
18 bytes to 5.05 MB; and, the second data set is that in which each file size will ranges from 18.62
KB to 5.05 GB.

The above workload will be tested for a number of clients and servers:

� Number of clients: 60, 120, 360, and 480

� Number of servers: 2, 4, 6, 8, 10, and 12

5.4.2.3 Platform definition

The experiments conducted in this chapter will use the simulator described in Section 5.4.1 Sim-
ulation environment. The platform simulated will be Grid5000, the Medium Grid platform.

5.4. Evaluation of the replica selection algorithm in Grid and volunteer computing
environments 117

2 4 6 8 10 12
Num. Servers

2000

4000

6000

8000

10000

12000

14000

16000

Ti
m

e
(s

)

Num. Clients=60

Classic
Expand-ReplicaVPP

(a) Results for 60 clients

2 4 6 8 10 12
Num. Servers

0

5000

10000

15000

20000

25000

30000

Ti
m

e
(s

)

Num. Clients=120

Classic
Expand-ReplicaVPP

(b) Results for 120 clients

2 4 6 8 10 12
Num. Servers

10000

20000

30000

40000

50000

60000

70000

80000

90000

Ti
m

e
(s

)

Num. Clients=360

Classic
Expand-ReplicaVPP

(c) Results for 360 clients

2 4 6 8 10 12
Num. Servers

0

20000

40000

60000

80000

100000

120000
Ti

m
e

(s
)

Num. Clients=480

Classic
Expand-ReplicaVPP

(d) Results for 480 clients

Figure 5.13: Results of Classic vs Replica Selection Algorithm in Grid environment (FS-MB dataset,
simulated Medium Grid platform)

Figure 5.13 shows a peak in classic round-robin approach for 8 servers. The reason of this peak
is that when using 8 servers (compared to using 2, 4, and 6), a dataserver located in Sophia is
added. Sophia is a city located at the south of France, which connects the two 1 Gigabit Ethernet
links, Nantes and Reims, to the rest of Grid5000 (see Figure 4.2). When Sophia is added, this
causes a bottleneck in the link that connects Sophia, and thus Nantes and Reims too, with the
rest of Grid5000 network. Reims node was already being used, but when using both Sophia and
Reims the throughput of Reims drops significantly, causing a the shown peak for 8 servers.

However, the replica selection algorithm proposed in this thesis overcomes this situation,
balancing the workload efficiently, and takes into consideration the slow links behind Sophia.

5.5. Summary 119

5.5 Summary

This chapter has presented the optimizations proposed for large-scale distributed systems, namely,
a replica selection algorithm for configuring virtual parallel partitions. The theoretical model
has been presented. For the evaluation, a complete simulator of Grid and volunteer computing
environments has been designed. Finally, the replica selection algorithm has been evaluated in a
simulated Grid and volunteer computing environments using the simulator developed.

Chapter 6

Conclusions and future work

In this thesis we have proposed a generic I/O middleware architecture for large-scale distributed
systems, and an algorithm for replica selection to improve data access performance.

The thesis has properly fulfilled all the primary objectives indicated in Section 1.2:

� To propose a generic I/O middleware architecture for large-scale distributed systems.

� To design a replica selection algorithm for configuring access virtual parallel partitions
for large-scale distributed systems.

Our generic parallel and remote I/O middleware architecture, along with an algorithm for
replica selection has accomplished a number of benefits:

� Generic architecture. The architecture proposed targets large-scale distributed systems.
Instead of targeting cluster and supercomputer architectures, like is typically done in high-
performance environments, this thesis proposed a generic architecture based on open-source
software, encompassing large-scale distributed systems.

� Portability. Portability is achieved by using well known technologies like HTTP and
GridFTP, de-facto transfer standards in distributed architectures.

� Scalability. This architecture has proven to be scalable to systems with thousands of nodes
through simulation. The novelty of our approach consists in addressing scalability by using
multiple replicas of the data in parallel, and an algorithm for selecting the best set of replicas
for every single request.

� High-throughput. The application offered high-throughput parallel and remote I/O. High
throughput is obtained from parallel and remote access to independent storage resources, a
tight integration between the applications and the middleware, and overlap of computation,
communication, and I/O.

121

122 Chapter 6. Conclusions and future work

� High resources utilization. The conjunction of the middleware and a novel algorithm
for replica selection achieves a high utilization of available resources such as storage and
networks.

� Transparency and simplicity of use. This architecture can be used transparently by the
user. Optionally, the user may chose different parallel I/O optimizations in a straightforward
way.

The results obtained in thesis allows to affirm that these objectives have been been fulfilled: a
parallel and remote file system, called Expand, has been proposed, and adapted, and in conjunction
with an algorithm for replica selection, to provide scalability and high-performance in large-scale
distributed systems.

The rest of this chapter is organized as follows. We start by describing the contributions of
this thesis. Then, we enumerate the publications obtained, and finally we propose new lines of
research arising from this thesis.

6.1 Contributions

This thesis presents contributions to the study, design and improvement of data access to large-
scale distributed systems. It makes two main contributions to these kinds of environments:

� The proposal of a parallel and remote I/O system, originally designed for clusters and
supercomputers, based on standard I/O services, and its adaptation to provide it with well-
known and standard protocols and services in distributed systems, and with optimizations
needed to operate efficiently in environments with high latencies or low throughputs, that
provides compatibility and adaptability in large-scale distributed systems.

� The proposal of an algorithm for replica selection to be used in parallel and remote I/O
systems, that selects an optimized subset of replicas for any given request, balancing I/O
workload generated by user applications among all the servers.

These two approaches provide new opportunities in the implementation of I/O systems and
services for large-scale distributed systems.

This thesis makes the following contributions:

� Definition of a generic I/O middleware architecture for large-scale distributed
systems. An existing parallel file system, called Expand, based on standard I/O services,
and that provides remote access has been proposed as the base architecture for large-scale
distributed systems. Expand has been adapted to provide it with two main capabilities
needed for large-scale distributed systems: support for well-known and standard protocols,
and low-level optimizations to provide high-performance in remote access to high-latency or
low-throughput servers.

� Evaluation of remote I/O compared to traditional execution of applications. A
comparative study of different ways of execution of applications in distributed environments
has been carried out. The main objective of the study has been comparing the traditional

6.2. Thesis results 123

execution of applications in distributed systems, and the proposed scheme of parallel and
remote I/O. For this purpose, several types of workloads, and platform environments (Grids
and volunteer computing environments) have been tested. The results show that parallel
and remote I/O in distributed systems provides better performance than the traditional
execution of applications.

� Definition of an exhaustive benchmarking methodology. During the course of this
work, the necessity of an exhaustive benchmark arose. In order to evaluate the proposals of
this thesis, an exhaustive methodology of benchmarking was designed: Balanced Benchmark.
This methodology defines balance levels for servers’ workload, and different client workloads
that generate the different balance levels in the servers. This is a rigorous methodology of
benchmarking distributed systems that covers most of the cases of client workloads.

� Integration of a generic I/O middleware architecture for large-scale distributed
systems into BOINC. In order to evaluate the generic I/O middleware for large-scale
distributed systems proposed in this thesis, we have integrated the Expand parallel file
system into the BOINC software, so that the use of this file system is completely transparent
to applications running in BOINC.

� Design and implementation of a complete simulator for clusters, Grids, Desktop
Grids, and volunteer computing platforms. Performing tests for large-scale scenarios
requires access to big platforms, and in case access to those platforms is granted experiments
might take long time. To ease the task of evaluating the proposed solutions a complete
simulator of parallel and remote distributed I/O has been developed.

� Proposal of a replica selection algorithm for large-scale distributed systems. In
order to select an efficient subset of replica servers, an algorithm for replica selection has
been proposed. On the one hand, this algorithm for replica selection takes into account the
size of the requests. On the other hand, the performance of data servers, measured in terms
of latency and throughput. The result is that for a given size request, and considering the
characteristics of the data servers, an optimized subset of replicas is chosen for configuring
virtual parallel partitions to do parallel and remote I/O, while keeping a balance on servers’
workloads.

6.2 Thesis results

The principal contributions of the thesis have been published in diverse papers in international
conferences and journals. We enumerate the publications classified in four groups: articles in
journals, posters, international, and national conferences.

� Journals

– SkyCDS: A resilient content delivery service based on diversified cloud storage
Journal: Simulation Modelling Practice and Theory, vol. 54, pp. 64–85
Year: 2015
ISSN: 1569-190X
DOI: 10.1016/j.simpat.2015.03.006

124 Chapter 6. Conclusions and future work

– Expanding the volunteer computing scenario: A novel approach to use parallel applica-
tions on volunteer computing
Journal: Future Generation Computer Systems, vol. 28, no. 6, pp. 881–889
Year: 2012
ISSN: 0167-739X
DOI: 10.1016/j.future.2011.04.004

– A novel methodology for the monitoring of the agricultural production process based on
wireless sensor networks
Journal: Computers and Electronics in Agriculture, vol. 76, no. 2, pp. 252–265
Year: 2011
ISSN: 0168-1699
DOI: 10.1016/j.compag.2011.02.004

� International conferences

– Improving MPI Applications with a New MPI_Info and the Use of the Memoization
Conference: 20th European MPI Users’ Group Meeting (EuroMPI ’13), September
15-18, 2013, Madrid, Spain
Year: 2013
ISBN: 978-1-4503-1903-4
DOI: 10.1145/2488551.2488554

– Fault-tolerant middleware based on multistream pipeline for private storage services
Conference: 7th International Conference for Internet Technology and Secured Trans-
actions (ICITST 2012), December 10-12, 2012, London, UK
Year: 2012
ISBN: 978-1-4673-5325-0
URL: ieeexplore

– Virtual I/O Forwarding for Cloud-based HPC Applications
Conference: 2012 10th IEEE International Symposium on Parallel and Distributed
Processing with Applications (ISPA 2012), July 10-13, 2012, Leganés, Madrid, Spain
Year: 2012
ISBN: 978-1-4673-1631-6
DOI: 10.1109/ISPA.2012.139

– An Efficient Deployment Strategy for Large Sets of Virtual Appliances
Conference: 2009 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 09), July 13-16, 2009, Las Vegas, Nevada, USA
Year: 2009
DBLP key: conf/pdpta/RodriguezCNBCG09

– Resource selection for fast large-scale Virtual Appliances Propagation
Conference: 14th IEEE Symposium on Computers and Communications (ISCC 2009),
July 5-8, 2009, Sousse, Tunisia
Year: 2009
ISSN: 1530-1346
DOI: 10.1109/ISCC.2009.5202254

6.2. Thesis results 125

– Architecture for improving data transfers in grid using the Expand parallel file system
Conference: 3rd Iberian Grid Infrastructure Conference (IBERGRID 2009), May 20-
22, 2009, Valencia, Spain
Year: 2009
ISBN: 978-84-9745-406-3
URL: Ibergrid 2009 Programme

– Comparing Grid Data Transfer Technologies in the Expand Parallel File System
Conference: 16th Euromicro Conference on Parallel, Distributed and Network-Based
Processing (PDP 2008), February 13-15, 2008, Toulouse, France
Year: 2008
ISSN: 1066-6192
DOI: 10.1109/PDP.2008.51

� Posters

– Improving the performance of the BOINC volunteer computing platform using the Ex-
pand parallel file system
Conference: Fifth IEEE International Conference on e-Science (e-Science 09), Decem-
ber 9-11, 2009, Oxford, UK
Year: 2009

� National conferences

– Mejora del entorno de computación voluntaria BOINC usando el sistema de ficheros
paralelo Expand
Conference: XXI Jornadas de Paralelismo, September, 7-10, 2010, Valencia, Spain
Year: 2010

– Descripción de una nueva arquitectura de E/S para grandes clusters
Conference: XIX Jornadas de Paralelismo, September 17-19, 2008, Castellón, Spain
Year: 2008
ISBN: 978-84-8021-6

– Un nuevo enfoque para implementaciones MPI en entornos Grid
Conference: XIX Jornadas de Paralelismo, September 17-19, 2008, Castellón, Spain
Year: 2008
ISBN: 978-84-8021-6

– Adaptación del sistema de ficheros paralelo Expand a entornos Grid
Conference: XVIII Jornadas de Paralelismo, September 11-14, 2007, Zaragoza, Spain
Year: 2007
ISBN: 84-9732-593-6

Other achievements in this thesis include research stays, and research grants:

126 Chapter 6. Conclusions and future work

� Research stays

– Laboratoire d’Informatique de Grenoble
Institution: Inria, Grenoble Rhône-Alpes, France
Hosted by: Dr. Derrick Kondo
Date: July-October 2011
Duration: 3 months

� Research grants

– Programa propio de investigación, ayudas de movilidad 2011
Institution: Universidad Carlos III de Madrid
Funds: 2,100e

6.3 Future work

There are several lines of research arising from this work which could be pursued:

� Apply these ideas to different environments, like virtualized and Cloud envi-
ronments. Many researchers agree that in the future companies will rely less on their own
infrastructures and more on remote clouds. An interesting line of research is to study parallel
and remote I/O techniques in these environments to provide higher I/O performance.

� Study of heterogeneous distributed partitions. In this work we have assumed that
the distributed partitions are homogeneous in terms of the protocols used to serve the data.
We propose to study the effect of having distributed partitions on the Internet whose data
servers use different protocols to serve the data, and how this heterogeneity affects overall
performance.

� Hybrid remote-memory-disk system for large-scale distributed systems. This the-
sis has studied traditional execution of applications, and parallel and remote access to data.
However, it is interesting to study a hybrid remote-memory-disk system for large-scale dis-
tributed systems. An scalable storage architecture, based on intermediary storage nodes,
has already been proposed in other works for clusters and supercomputers. We propose to
extend this approach to large-scale distributed systems, to define a hybrid remote-memory-
disk system, which makes use local disks for caching data, while providing the data to the
application as soon as they come, as in remote access, and completely transparent to the
user, but for large-scale distributed systems.

� Integration of Expand in Big Data environments. ApacheTM HadoopR© is the reference
technology in the emerging Big Data ecosystem. ApacheTM HadoopR© (on top of HDFSTM) is
a massively distributed data environment, that offers a MapReduce programming interface
to ease the development of distributed applications that need to process massive amounts of
data. We propose to integrate Expand in ApacheTM HadoopR©, and to study how a MapRe-
duce application can benefit from this architecture.

6.3. Future work 127

� Design a Spark-like backend into Expand . Among all technologies around the Big Data
ecosystem, the most promising technology nowadays is, probably, Apache SparkTM. Apache
SparkTM is a fast and general-purpose cluster computing system, which loads the dataset
required by an application into memory, so that all operations over the dataset are carried
out in memory. Spark’s operators spill data to disk if it does not fit in memory. Likewise,
cached datasets that do not fit in memory are either spilled to disk or recomputed on the fly
when needed. We propose to design an Spark-like backend into Expand, so that unmodified
single node (though possibly multicore) applications can benefit from parallel and remote
access to a distributed dataset cached in memory.

� Define new architectures in Expand that decouple data and metadata. Currently,
Expand architecture is strongly dependent on coupling data and metadata. We propose to
define new architectures that decouple data and metadata, through a fault-tolerant and high
performance metadata system using Apache ZookeeperTM.

� Implementation and study of the replica selection algorithm in real environ-
ments. The algorithm for replica selection proposed in this thesis is only a sketch, and it
has only been tested through simulation. Clearly, this algorithm for replica selection should
be implemented into Expand and tested in real environments in order to evaluate its fea-
sibility as an effective replica selection algorithm. But this is a field of study by itself. We
propose to study this question more in depth, for all the possible situations, use cases, and
implications around the problem of selecting the optimal subset of replicas for configuring
virtual parallel partitions in large-scale distributed systems.

� Make use of a replica location service. Currently, the replica selection algorithm im-
plementation is based on a static list of replica servers. However, during the life-time of
an evolving environment, replicas are often created and removed. We propose to design or
make use of a low latency replica location system, so that the algorithm for replica selection
can select better replicas when available, or eliminate dead replicas when they are no longer
available.

� Self-adjusting replica selection algorithm. Currently, the replica selection algorithm
implementation selects a subset of replicas based on weights functions that are configured
statically. However, the optimal parameters for these functions strongly depend on the plat-
form. We propose to design a self-adjusting mechanism, so that, the weights of the functions
can be tuned during the life-time of the system, looking for the optimal configuration in
every moment.

Appendix A

Architecture, design, and
implementation of Expand

This chapter describes the Expand parallel file system. The architecture of this file system is used
as a reference for the model of parallel file system for large-scale distributed systems proposed in
this thesis.

The main motivation in the design of Expand was to build a parallel file system for heteroge-
neous clusters using standard servers. To this aim, the Computer Architecture, and Technology
group of Universidad Carlos III de Madrid designed, and implemented a parallel file system using
NFS servers. The firsts prototypes have been been described, and evaluated in the given bib-
liography [García Carballeira et al. (2002), Calderón et al. (2002a,b), García Carballeira et al.
(2003a,b,c), Calderón et al. (2003), Sánchez García (2003), Bergua Guerra (2006), Bergua et al.
(2007)]. And later, more in depth in [Calderón (2005)], and more formally in [Sánchez García
(2009)].

As Expand will be used as a base parallel file system to implement the ideas and proposals of
this thesis, this chapter presents previous works on Expand, including the reference architecture,
the parallel file model used, data and metadata distribution, naming, parallel access, and user
interfaces.

A.1 Introduction

Heterogeneous clusters consist of compute nodes running different operating systems, and software,
which limits the amount of file systems suitable for such systems. This set of suitable file systems
comprises NFS or CIFS, which are standard in many computing environments. This difficulty to
incorporate parallel file systems to these kinds of environments prevents the use of techniques for
parallel access to data, and reduces the performance of storage systems.

The Expand parallel file system has been designed to face these problems, which uses standard

129

132 Appendix A. Architecture, design, and implementation of Expand

to take in the operations of metadata location, selection of servers involved in every operation,
etc. Both core and policy use the services of the layer called NFI, which stands for Network File
Interface. This layer provides an interface to the basic operations of a file system. The lower layer
is responsible for implementing the interface provided in the NFI layer for the different access
protocols to a file system.

The data of a file are scattered by Expand through all servers using blocks of a certain size
as distribution unit. The processes of a parallel application are the clients that use the Expand
library to access to a distributed partition.

Expand provides an interface based on POSIX calls. However, this interface is not suitable
for parallel applications that use stridden patterns with small access sizes [Nieuwejaar and Kotz
(1996a)]. For parallel applications Expand has been integrated within ROMIO [Thakur et al.
(1999a,c)] which allows it to access to the MPI-IO interface.

Using the outlined approach for the design of Expand we have the following advantages:

� No changes are required on the servers (NFS, WebDAV, FTP, etc.) to benefit from Expand.
All aspects of the operations of Expand are deployed in the client.

� Expand is independent of the operating system used on clients. All operations are imple-
mented using standard protocols.

� It allows the use of servers running on different architectures and operating systems, since
the use of standard protocols hides these differences.

� Building a file system is greatly simplified because all operations are implemented in clients.
This approach is completely different to that used in many of the current parallel file sys-
tems such as CFS [Pierce (1989)], Vesta [Corbett et al. (1993)], HFS [Krieger (1994)], PI-
OUS [Moyer and Sunderam (1994)], Scotch [Gibson (1995)], Galley [Nieuwejaar and Kotz
(1996a,b, 1997)], ParFiSys [Carretero et al. (1997)] or PVFS [Carns et al. (2000)].

� The configuration of the system is much simpler as standard servers, such as NFS, are very
familiar to users. The server only needs to export the appropriate directories, and clients
only need a small configuration file detailing how is the distributed partition.

Other systems use a standard server as a basis for their work, similar to Expand. For example,
Bigfoot-NFS [Kim et al. (1994)] also combines multiple NFS servers. However, this system uses
a file as distribution unit and, therefore, all the data of a file reside on a single server. Although
the files in the same directory can be distributed across multiple machines, this system does not
allow parallel access to the same file.

Another similar system is the Slice file system [Chase et al. (2000)]. Slice is a storage system
for high speed networks that uses a microproxy (called µproxy) as a packet filter to virtualize an
NFS server, so that it presents a unified and shared file volume to NFS clients. This system uses
the µproxy to distribute file service requests among aggregated servers, providing compatibility
with file systems on clients. However, the µproxy can become a bottleneck affecting the overall
system scalability. This is a serious disadvantage compared to Expand.

Another similar solution is developed by Avaki [Avaki Corporation (2005)]. Avaki offers a
commercial solution for providing data access in Grids (see Figure A.3). It is based on Legion
[White et al. (2001)], developed by the University of Virginia, and its aim is the management of

134 Appendix A. Architecture, design, and implementation of Expand

� Create/remove/open/close a directory.

� Read entries of a directory.

� Read/modify attributes of system’s object (file or directory).

� Check file system status, for example indicating the free blocks.

Finally, the system identifies the server that provides the storage unit to be used.
A property of a storage unit is that it allows to store files, and each file has a unique name

within that storage unit. A storage unit thus contains a set of files and directories that are managed
by the local file system of the server that provides such storage unit. This involves two levels of
metadata management, one in the storage unit level, and other in the parallel file system level.
Expand only manages the latter metadata.

In a single server there can be multiple storage units. This allows you to add more storage
units as needed, offering more flexibility to users. However, the use of multiple storage units in
the same server can result in a lower performance of the Expand parallel file system.

Expand combines multiple storage units to form a parallel and distributed partition (see
Figure A.4). Therefore, a parallel and distributed partition is defined as:

PDP ≡ {
n⋃
i=0

SUi,Mpdp } (A.2)

That is, as the union of several storage units, along with some metadata about the partition,
called Mpdp. The main attribute of these data is the default stride size of files among different
storage units.

A.3.1 Configuration file

Expand partitions are defined using a small configuration file in XML format [World Wide Web
Consortium (W3C) (2008)], with the following structure:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xpn_conf>

<partition name="<partition1>" type="<options>" bsize="<block_size>">
<data_node id="id1" url="<protocol>://<server>/path/"/>
...

</partition>
...

<partition name="<partitionN>" type="<options>" bsize="<block_size>">
<data_node id="id1" url="<protocol>://<server>/path/"/>
...

</partition>
</xpn_conf>

Where the label partition allows the definition of the structure of a storage partition. This
partition is characterized by four basic elements:

A.4. Model of parallel file 137

A.4 Model of parallel file

After introducing the concept of distributed partition, we proceed to introduce the concept of
parallel file that resides on a distributed partition.

This section analyzes aspects such as the distribution of the data, metadata, directory and
file naming.

A.4.1 Definition of parallel file

A file (F) has a projection in Expand (FP) by a function fe. A parallel file (FP) is defined as:

fe(F)→ FP : FP ≡ (D,M) (A.5)

Where D is the user data distributed in the storage units defined in Expand, and M is the set
of metadata associated with the parallel file FP . Data D and metadata M are distributed over
several storage units SU , which are grouped into distributed partitions (P) (see Figure A.4), and
each SU consists of a data server (SUD), and an exported directory (SUE).

In Expand, for every file there is a subfile in each storage unit (storage unit file) of the
distributed partition.

User data (D) of parallel files (FP) are distributed through storage units (SU) through sub-
division into blocks (B) of equal size. Data blocks (Bi) are represented as the set of tuples of the
form (offset, value), where offset uniquely identifies the tuple with the rest of tuples of the file,
and value is the data to be stored in the tuple (see Definition A.6). The offset allows the location
of a value, forming an ordered sequence of tuples (see Definition A.7).

Bi ≡ {(oi, vi)} (A.6)

D ≡
n⋃
i=i

Bi ≡ {(o1, v1), ..., (on, vn)} (A.7)

This abstraction is not new, it was used in Linda [Ahuja et al. (1986)] to provide a commu-
nication system among cooperating processes using some memory sharing mechanism.

Both the data contained in the parallel file, as well as the data contained in the subfiles stored
in storage units are represented along this abstraction.

These data blocks (B) are grouped into subfiles (S) stored in different storage units (SU).
A subfile (Si) consists of one or more sorted data blocks (Bij), where i represents the subfile i,
and j the internal order in it. Moreover, ‖Bi‖ represents the number of blocks stored in Si. Each
storage unit only has one subfile per parallel file.

∀SUi ∈ P,∃Si : Si ⊂ SUi (A.8)

Si ≡
n⋃
j=1

Bij : n ∈ IN → ‖Bi‖ ⊂ Si (A.9)

138 Appendix A. Architecture, design, and implementation of Expand

∀SUi, SUj ∈ P, i 6= j : SUi ∩ SUj = ∅ (A.10)

Each subfile Si stores part of the data of the parallel file, so that the union of the data
contained in the subfiles (following a predetermined order) represents the content of the parallel
file, ie:

Data(Si) ≡
in⋃
j=i0

{(oj , vj)} (A.11)

Data(FP) ≡
s⋃
i=0

Data(Si) (A.12)

Each subfile is stored in a storage unit. Since each subfile is stored in a storage unit, the server
that manages the storage unit will handle the metadata associated with this subfile. These are:
stride unit (block size), creation date, modification date, etc.

The metadata contains the distributed partition (P) where the file is stored, and the distri-
bution function fd that indicates the distribution of the data blocks in the different subfiles stored
on their respective storage units.

Each server provides, at least, one storage unit. Storage units are independent of each other,
and each one can be managed by a local storage management system in the server.

Parallel file systems access to different storage units in parallel, being each storage unit in a
server. A storage unit is provided by a server, but a server can provide multiple storage units. To
provide a higher level of parallelism in a distributed partition, and so on all files belonging to it,
it is desirable that each storage unit resides on a different server. Thus, there is no server that
provides two storage units, to prevent it to be a bottleneck in the access to the data stored in its
storage units when done in parallel.

To find out where in the subfile Si of D is stored the information of a tuple of data (x, v), a
distribution function fd is used. This function is the correspondence between an offset (used to
indicate the location of the file data), and a tuple (SUIi, xj). In such tuple, SUIi is the unique
identifier of the storage unit SUi, which the associated subfile is stored in, and xj is the offset of
the user data within the subfile.

fd : IN −→ IN × IN (A.13)

For all the data of the parallel file (x, y), the function fd allows to know the subfile, by means
of the storage unit identifier SUIi (which is the unique identifier of the storage unit SUi), and the
location xj within that subfile whose associated tuple contains the value y.

∀ (x, v) ∈ D (A.14)
∃ Si ∈ S ∧ ∃(xj , v) ∈ Si ∧ Si stored in SUi,

fd(x) = (SUIi, xj)

A.4. Model of parallel file 141

� NNREP (N servers, no repetition). The client application that aims to create a new file
in an Expand partition makes a request to a broker service, as described above, to request
N data servers among all existing servers. The servers returned are those with the highest
percentage of free space available. This allows small servers, with smaller capacity, serve less
requests, thereby maintaining the system more balanced.

� NREP (N servers, with repetition). The client application performs an action similar to
that indicated above, with the difference that a node may appear more than once in the set
of nodes returned. The N servers returned by the broker are selected as follows: first, the
servers with more than 90% of free space are added to the set; next, the servers with more
than 75% of free space; and finally, the servers with more than 50% of free space. If there
are not any nodes with more than 50% of free space, then the NNREP policy is used. The
NREP policy allows a server appear several times in the set of nodes where the data of a
file will be distributed. The aim of this policy is that those servers with more free capacity
serve more requests.

To distribute the blocks with the user data, it is possible to use the above different distribution
policies. Expand uses, by default, a cyclic distribution policy (fc), also known as round-robin or
RAID0.

User data is divided into blocks of size equal to the stride unit. As shown in the top of Figure
A.8, the data are divided into blocks which can be enumerated, so that each block is identified
by a positive integer. As shown in the bottom of Figure A.8, each storage unit stores a subfile
containing part of the blocks of the user data. In addition, each storage unit stores a small block
whose content is the set of metadata of the file.

SU-1

File A

Stride size

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

SU-2 SU-3

Master node for file A

 Active Metadata

...

Subfile

Figure A.8: Structure of a file in Expand

Despite reserving space for metadata on all subfiles of each storage unit, only one of the
subfiles stores the actual metadata of the file. The idea is to distribute the metadata of different
files in a partition among all storage units, to distribute the workload of managing these metadata.
The storage unit that stores the metadata of a parallel file is called master node

142 Appendix A. Architecture, design, and implementation of Expand

Despite all files can start in the same storage unit, the various files in a partition start in
different storage units. The idea, again, is to distribute the workload among the servers that
manage the associated storage units. Therefore, the distribution of blocks of each file begins in
a different storage unit. That where the first data block stands, and from which the rest of the
blocks are distributed cyclically is called base node. This base node is part of the metadata of the
parallel file. Initially (at the time of creation of the file) the base node and the master node for a
file match.

Later sections detail the metadata management, and how to determine the master node of a
file, as well as the evolution that can take the base node and the master node over the life of a file
parallel.

A.4.3 Metadata

In Expand it is possible to distinguish two types of metadata depending on the level in which the
management is performed:

� Low-level metadata (ME), belonging to the subfiles generated by Expand in each storage
unit. They are managed by each server independently and transparently to Expand. Such
metadata includes, among others, the file owner, access permissions, and information on the
location of the blocks used to store the various subfiles in the storage devices.

� High-level metadata (MP), involving the Expand file. They are managed directly by Expand.
They include, among other, the following information: the size of the stride unit for each file
(the same partition can store files with different stride units), the base storage unit (which
identifies the storage unit that stores the first block of the file, and the distribution pattern
to use), etc.

Thus, the metadata (M) of a parallel file (FP) comprises:

M = {MP ,
n⋃
i=1

MEi} : MEi ∈ Ei (A.18)

For the design of the high-level metadata several options have been considered:

� Metadata management service: system used by PVFS [Carns et al. (2000)] or GPFS [Schmuck
and Haskin (2002)], where an external service manages the metadata, which can cause a bot-
tleneck in the system. Other file systems like PVFS2 [Argonne National Laboratory (2011)]
have decentralized metadata management to avoid such problems. Moreover, having an ex-
clusive service for handling metadata can increase the complexity of the system.

� Header metadata along with data (BM): in this case you can access metadata in the same way
that data, storing them as a data block in a subfile Sm, which facilitates the implementation
of the file system.

SM ∈ SUM : ∀{Bi} ∪BM ∈ SM (A.19)

A.4. Model of parallel file 143

This metadata can be replicated in each of the files or distributed by some kind of distribution
function. In addition, due to the fact that the metadata are included along with the data,
you can quickly access them, since the local file system of the storage server can cache them
in memory. There are two problems in this management mechanism, first a method for
maintaining the consistency of metadata has to be established, and secondly, by including
information within subfiles, metadata can not grow, making it difficult to incorporate new
information in the metadata.

� Subfile with the metadata content (SM): like the previous case, the metadata is stored as
data, which facilitates its handling by the data server. Furthermore, this solution allows
separating data from metadata, a situation that was not possible in the previous scheme.
This scheme favors a greater easiness in the creation and management of replication and
fault tolerance schemes. Moreover, it allows the metadata to grow unlimited, facilitating
the inclusion of more information in the metadata. In contrast, as in the previous case,
mechanisms to ensure the consistency of metadata have to be established.

FP =

‖SU‖⋃
i=1

{Si} ∪ SM ∈ P (A.20)

� Precomputed metadata: this is the last solution proposed, and is the most agile of those
studied so far for managing metadata. This is because physically storing metadata on a
device is not needed, as they are generated by the system configuration and by the informa-
tion of each of the subfiles that represent the data of the parallel file. For example, the size
of a parallel file can be obtained from the sum of each of the sizes of the different subfiles
which form the parallel file and are defined in the configuration file (see Equation A.21).
This metadata management mechanism has some shortcomings, such as the impossibility of
maintaining individualized information of files, or the difficulty generated in some of the file
management operations, such as renaming or moving.

fsize(file) =
∑

Si∈FP (file)

fsize(Si) (A.21)

Expand does not use any metadata manager, as is the case of PVFS [Carns et al. (2000)]. The
two main advantages of this strategy are:

� It eliminates a single point of failure, because if the metadata manager fails, the access to
all files on the partition fails.

� It eliminates the bottleneck caused by the metadata manager, since it spreads the load
associated with managing the metadata across servers.

The metadata management mechanism based on the use of an external subfile has been chosen
for Expand. This external subfile that contains the metadata of the parallel file is stored in one
of the storage units of the distributed partition (see Figure A.4). For the management of the
data, this subfile incorporates precomputed metadata, such as, creation, modification, and access

144 Appendix A. Architecture, design, and implementation of Expand

times, or file size, using for this purpose algorithms designed for obtaining them from the low-level
metadata information of each data subfile.

The metadata subfile of an Expand file is stored in one of the storage units of the partition
called master node. This node may be different from the base node, where the first block of the
file is stored. To simplify the naming process and reduce potential bottlenecks, Expand does not
use a metadata manager. Instead, the management of the metadata is distributed among the data
servers of the partition.

The metadata of a file stores the following information:

� Size of stride unit.

� File type: with or without fault tolerance support.

� Base node identifier, i.e. the storage unit that stores the first data block.

� Distribution pattern. In the current implementation this pattern is cyclical.

Each server is, also, responsible for managing the metadata associated with the subfiles that
are stored in it.

A.4.4 Naming

The files that belong to a distributed partition are distributed in the subfiles of each storage unit,
as shown in Figure A.9.

As shown in this figure, for each storage unit a subfile with the same name as the parallel
file is created. Each of the subfiles resides in the same hierarchy of directories as the parallel file,
since such hierarchy is replicated in all storage units, and each of the subfiles contains a part of
the data blocks of the parallel file. Specifically, data blocks are distributed cyclically among the
sequence of storage units that form the distributed partition.

Therefore, the file /xpn1/Dir2/Dir4/input.dat, which belongs to the distributed partition
xpn1 in Expand, is projected to the following subfiles:

/export1/Dir2/Dir4/input.dat
/export2/Dir2/Dir4/input.dat
/export3/Dir2/Dir4/input.dat

For the local storage system of servers server1, server2, and server3 respectively. These
correspond, in turn, with the storage units SU-1, SU-2, and SU-3 respectively. The name of a file
in Expand has the following format:

/<distributed partition name>/<directories/<file name>

Where the distributed partition name uniquely identifies the partition, listed in the configu-
ration file that defines the various existing distributed partitions. The directories form the path
to reach the file.

The filename is very important to locate the master node, which identifies the storage unit
whose subfile stores the metadata of the parallel file. The following section details how to perform
that location.

A.4. Model of parallel file 145

/export1

Dir1 Dir2

SU-1

/Dir2/Dir4/input.dat

Stride size

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Dir3

Dir4

input.dat

/export2 /export3

Dir1 Dir1Dir2 Dir2

SU-2 SU-3

Dir3 Dir3

Dir4 Dir4

input.dat

Master node for file A

Active
Metadata

input.dat

Subfile

Se
rv

er
1

Se
rv

er
2

Se
rv

er
3

/xpn1

Figure A.9: The structure of a file in Expand

A.4.5 Location of master node

To get the metadata of a file it is necessary to access the header of a subfile that resides in one of
the SU of the distributed partition called master (SUM). To know which SU stores this subfile,
a method similar to that employed in the Vesta parallel file system [Corbett et al. (1993)] is used,
which consists of a localization function fM :

fM (filename, ‖SU‖) = SUi, (A.22)
1 ≤ i ≤ ‖SU‖, i ∈ N, SU ∈ P

In the current implementation, the distribution function (fM) is:

fM (filename) = (

strlen(filename)∑
i=1

filename[i]) mod (‖SU‖) (A.23)

That is, the result of adding the value of the ASCII table for each of the characters that form
the name of the file, and performing the modulus operation with the number of storage units.

Using this solution has two advantages:

146 Appendix A. Architecture, design, and implementation of Expand

� Facilitates the rapid location of metadata.

� Offers a good distribution of nodes dedicated to be master nodes.

To demonstrate the latter advantage, a test of a distribution of 256,400 files in a real file
system on a parallel and distributed partition with different number of storage units (SU) has
been done.

The number of files per storage unit whose master node (SUM) is stored in that storage unit
has been measured, and then calculated the standard deviation of the average number of files per
storage unit. Table A.1 shows the standard deviation of the number of storage units (I/O nodes)
used.

The results shown in the table show that this scheme is simple, and allows a good distribution
of master nodes (SUM) and blocks among all storage units by balancing the use of such storage
units and, therefore, the I/O load.

Number of Storage Units Standard deviation

4 0.43
8 0.56
16 0.39
32 0.23
64 0.15
128 0.11

Table A.1: Standard deviation in the distribution of master nodes

A.4.6 Renaming of files

Because the master node (SUM) is defined in terms of the file name, when a user renames a file,
the master node (SUM) of this file may also change. Algorithm A.1 illustrates the steps in Expand
to rename a file.

1 rename(oldname , newname) {
2 SUM = fM (oldname, ‖SU‖)
3 SU ′

M = fM (newname, ‖SU‖)
4 { move SM from SUM to SU ′

M }
5 ∀ SUi ∈ FP : { rename oldname to newname }
6 }

Algorithm A.1: File renaming operation in Expand

This process is shown in Figure A.10. The only operation necessary to preserve the coherence
of the master node for all files in Expand is moving the metadata.

148 Appendix A. Architecture, design, and implementation of Expand

V FH =

‖SU‖⋃
i=1

fhi ∈ Si, FH ∈ FP (A.24)

Where fhi is the handle used by the i-th storage unit SUi to access the data subfile Si of the
Expand file. Each SUi used provides its own handler fhi, which is dependent on the protocol and
server used.

The file descriptor fhi is a data structure that describes the file to the server, depending on
the access protocol used. Therefore, for the NFS protocol, format and values associated with that
descriptor may be different to that used in other protocols, such as FTP. Only the server can
interpret the data contained within the file descriptor.

As mentioned, all operations in Expand use a virtual file descriptor. This virtual descriptor is
the reference to the file used in all operations. When Expand needs to access to a subfile, it uses
the appropriate file descriptor associated with the virtual descriptor.

To open a file, the fhi of the metadata subfile SM that resides in the storage unit SUM is
obtained, and it includes the metadata of the file. This metadata contain the servers and the
blocks distribution policy for the file. Handlers of data subfiles are obtained on demand when
access to data of a subfile is required. This speeds up the process of opening a file.

When Expand needs to access data in a subfile, it uses the handler used by the storage
unit where the subfile resides. To improve the I/O, Expand performs the operations in parallel.
To do this, when a request involves k storage units, Expand performes k operations in parallel
using threads. So, when using NFS servers, a parallel operation of k servers takes place, and is
divided into k individual operations, each of which uses RPC and the NFS protocol to access the
appropriate subfile. Another example of parallel operations can be seen in the creation of a file
in Expand, which involves the creation of multiple data subfiles. This process is shown in Figure
A.11, which performs a read operation involving multiple data blocks and several SU .

A.9. Architecture of Expand 153

This interface, similar to that available in POSIX, abstracts the developer from the complexity
of the parallel file system.

Furthermore, this layer needs of the lower layers to perform the operations of data access, or
to know the distribution of the data.

The operations performed at this level of abstraction are generic and independent of protocols
and policies used at lower levels. These operations can be classified according to the scope of work:

� Operations for the management of the file system, such as system initialization and release
of used resources (see Algorithms A.2, and A.3).

1 xpn_init () {
2 for each Pi ∈ P
3 n = ‖SUPi‖
4 Pi = {NPi, TPi, SPi, ‖EPi‖,

⋃n
j=1{SUj}}

5 for each SUij ∈ Pi

6 SUij = {CEi, IEi, DEi}
7 }

Algorithm A.2: Initialization operation in Expand

1 xpn_destroy () {
2 for each FP

3 {free resources of FPi}
4 for each Pi ∈ P
5 {free resources of Pi}

Algorithm A.3: Resources release operation in Expand

� Operations that manage objects of the parallel file system (files and directories), allowing
their creation (see Algorithm A.4), opening (see Algorithm A.5), and elimination from the
system (see Algorithm A.6).

� Operations for data reading (see Algorithm A.7), or writing (see Algorithm A.8).

A.9.2 Policy layer or policy management

This layer is located in the middle level of the system, and is responsible for providing to the core
layer the policies to be used in cases where the basic algorithms defined above depend on external
data, or on policies defined by the user.

The operations performed are:

� Define the data distribution in I/O nodes (for example, round-robin).

154 Appendix A. Architecture, design, and implementation of Expand

1 xpn_creat(filename , mode) {
2 {obtain P of filename}
3 fM (filename)→ SUM ∈ P
4 {create SM in P }
5 for each SU ∈ P
6 {create Si}
7 for each Si ∈ FP

8 {obtain fhi ∈ Si}
9 fd← FH ∪ fhi

10 }

Algorithm A.4: File creation operation in Expand

1 xpn_open(filename , flags [, mode]) {
2 {obtain P of filename}
3 fM (filename)→ SUM ∈ P
4 for each SU ∈ P
5 {obtain fhi ∈ Si}
6 {obtain SM ∈ SUM }
7 fd← FH
8 }

Algorithm A.5: File opening operation in Expand

� Locate I/O nodes.

� Define the available nodes to be used (by default, all available nodes).

� Perform naming operations.

� Locate the metadata location function, etc.

This layer is also responsible for initializing the lower layers according to the protocol estab-
lished in the configuration parameters (url, protocol, directories, etc.). To perform these tasks,
this layer provides a generic interface that uses the kernel of the Expand file system.

A.9.3 Network File Interface layer or access to I/O servers

This layer, responsible for accessing data from different I/O servers, is called Network File Inter-
face, or NFI for short. Mainly, it provides two critical elements in the architecture used by the
upper layers:

� Sets a single interface for accessing data from the upper layers of the architecture, abstracting
internal operations necessary to perform the low-level I/O operations, and management of
the I/O servers.

A.9. Architecture of Expand 155

1 xpn_unlink(filename) {
2 {obtain P of filename}
3 fM (filename)→ SUM ∈ P
4 for each SU ∈ P
5 {remove Si ∈ FP }
6 {remove SM ∈ SUM }
7 }

Algorithm A.6: File removal operation in Expand

1 xpn_read(fd , buffer , size) {
2 {obtain P of fd}
3 for each SU ∈ P
4 if fhi ∩ SUi = ∅
5 {obtain fhi}
6 {divide buffer in {d, v} whose size ≤ ‖Bij‖ ∈ P }
7 ∀{d, v} ∈ buffer
8 fd(dk, vk)⇐ Bij ∈ Si

9 }

Algorithm A.7: Parallel read operation in Expand

� Defines the necessary mechanisms to allow parallel operations if parallelism has been set at
higher levels of the architecture.

The interface provides various types of operations, both for handling elements (files or di-
rectories) of the file system of the I/O server, as for accessing data stored therein. On the other
hand, management functions for the I/O server have been included in order to perform actions
such as starting or finishing communications with the I/O servers, which are necessary for the
proper functioning of the system.

The mechanism used by NFI to handle transactions on an I/O server is similar to that used
in Linux with its Virtual File System (VFS) [Card et al. (1994)]. Previously, a module that
implements all the operations necessary for the management of the file system of an I/O server
must be available. This module replaces calls to the NFI interface so that, when upper layers
perform generic NFI operations, these calls are made in the NFI module corresponding to the
desired implementation.

In Expand, an NFI module for each used I/O server is established, so that the operations
between client and servers are independent from each other. All communications between NFI
independent modules are done through higher levels, thereby reducing system complexity.

158 Appendix A. Architecture, design, and implementation of Expand

� Many parallel file systems have a Unix interface (API), which allows a user to access only
one contiguous piece of data of a file at any given time. Thus, non-contiguous access involves
multiple calls for each piece of contiguous data.

With this interface, the file system can not easily detect the global access pattern of an indi-
vidual process, or group of processes working together. As a result, the file system is constrained
in the optimizations it can do.

Many file systems offer their own extensions or variations of Unix interface, but these variations
make programs not portable.

To overcome these limitations in performance and portability of parallel I/O interfaces, the
MPI-Forum defined a new interface for parallel I/O as part of the MPI-2 standard. This interface
is known as MPI-IO.

There are multiple implementations of MPI-IO, which facilitates applications portability.
Furthermore, MPI-IO contains a functionality-rich interface, which allows users to indicate non-
contiguous access patterns, so that reading or writing of data is performed in a single I/O request.
It also allows to indicate collective I/O requests, to be performed by a group of processes.

MPI-IO also allows MPI applications to define views on a file. To do this, three elements are
defined:

� An etype, which is the access and positioning unit.

� A filetype, which is the basis for the division of a file among processes.

� A template to access the file.

A filetype can be formed by a simple data type, or a derived MPI datatype constructed from
multiple instances of the same etype. A view establishes the actual, visible, and accessible data
set of a file as an ordered set of etypes. Each process has its own view, consisting of three values:
an offset, an etype, and a filetype. The pattern described by the filetype is repeated, starting at
the indicated offset, to define the view.

This interface has been included in Expand [Calderón et al. (2002a,b)] through its integration
in ROMIO [Thakur et al. (1999a)], and can be used with the MPICH distribution (see Figure
A.17). Portability is achieved in ROMIO by an abstract interface of parallel I/O called ADIO
[Corbett et al. (1995)].

ROMIO [Thakur et al. (1999a,c)] is an implementation of MPI-IO, which uses an abstract
interface of I/O devices called ADIO (Abstract Device Input Output). ROMIO uses ADIO to
achieve the desired portability.

ADIO [Thakur et al. (1999a,c)] is a mechanism specifically designed to implement a portable
parallel I/O API on multiple file systems. ADIO consists of a small set of basic functions for
parallel I/O.

ROMIO implements the following optimizations:

� Data sieving, (see Figure A.18) that transforms a sequence of small readings which are close
to each other in a single read operation that covers all. Once all data are available in memory,
those needed are taken. This sieving process allows to optimize the access to the parallel
storage system, which is generally optimized for large requests.

A.11. Summary 161

� File Control. This operation is used to set or get information about an opened file.

� Miscellaneous. Other operations included in ADIO provide routines to delete files, resize
them, write cached data to disk, and initialize and finalize ADIO.

The result of the integration is a new version of MPICH which includes support for Expand,
so that any parallel application can use Expand services through the MPI-IO interface.

For example, in the case of the example included in the ROMIO distribution named simple,
to run the application using Expand, the following should be indicated:

$ mpirun -np 4 simple -fname xpn:/xpn1/example-02
That is, it is only necessary to include the prefix xpn:, that identifies a file of an Expand

partition, namely the partition identified as xpn1.

A.11 Summary

In this chapter we have presented the architecture, design, and implementation of the Expand
parallel file system, which is taken as a basis in this work for a parallel file system for large-scale
distributed systems.

The architecture of the Expand parallel file system, the distributed partition model, and the
parallel file model have been defined. Also, the name system, as well as the data access, or the
metadata management have been described. Moreover, access control and authentication methods,
used for access to data arranged in parallel partitions, have been detailed. Finally, interfaces used
by the architecture (POSIX, MPI-IO, etc.) were detailed.

The main motivation is to provide a parallel file system for heterogeneous clusters using
standard servers that do not require modification. Expand is built using standard data servers as
a basis. This solution is very flexible since it is not necessary to install new servers to run Expand.
It is also independent of the operating system used on clients because it uses the protocol that
provides the data server itself.

The reasons for using Expand as a model in this work is that it is generic enough, and it
offers a similar architecture to other parallel file systems for clusters. In addition, the fact that it
has no centralized metadata manager, and that has the directory tree replicated allows a better
adaptation to different types of computing environments.

Bibliography

L. A. Adamic and B. A. Huberman. The web’s hidden order. Comm. ACM, 44(9):55–59, Sep
2001.

S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. Computer, 19(8):26–34, 1986. ISSN
0018-9162.

B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, C. Kesselman, S. Meder, V. Nefedova,
D. Quesnel, S. Tuecke, and I. Foster. Secure, efficient data transport and replica manage-
ment for high-performance data-intensive computing. In Mass Storage Systems and Technolo-
gies, 2001. MSS ’01. Eighteenth IEEE Symposium on Mass Storage Systems and Technolo-
gies, pages 13–13, 2001a. DOI: 10.1109/MSS.2001.10001. URL http://toolkit.globus.org/
alliance/publications/papers/msc01.pdf.

B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S. Meder,
V. Nefedova, D. Quesnel, and S. Tuecke. Data management and transfer in high-performance
computational grid environments. Parallel Computing, 28(5):749–771, May 2002. ISSN
0167-8191. DOI: 10.1016/S0167-8191(02)00094-7. URL http://toolkit.globus.org/alliance/
publications/papers/dataMgmt.pdf.

W. Allcock, A. Chervenak, I. Foster, L. Pearlman, V. Welch, and M. Wilde. Globus toolkit
support for distributed data-intensive science. In International Conference on Computing in
High Energy and Nuclear Physics, Beijing, China, 2001b. URL http://toolkit.globus.org/
alliance/publications/papers/Globus.CHEP01.pdf.

W. Allcock, J. Bester, J. Bresnahan, S. Meder, and S. Tuecke. GridFTP: Protocol Extensions to
FTP for the Grid, 2003. URL http://www.ggf.org/documents/GFD.20.pdf.

W. Allcock, J. Bresnahan, R. Kettimuthu, and J. Link. The Globus eXtensible Input/Output
System (XIO): A protocol independent IO system for the Grid. In Parallel and Distributed
Processing Symposium, 2005. Proceedings. 19th IEEE International, pages 8 pp.–, April 2005.
DOI: 10.1109/IPDPS.2005.429.

American Physical Society. Einstein@home. Last visited, Apr. 2013. URL http://www.
einsteinathome.org.

T. Amjad, M. Sher, and A. Daud. A survey of dynamic replication strategies for improving data
availability in data grids. Future Generation Computer Systems, 28(2):337 – 349, 2012. ISSN
0167-739X. DOI: 10.1016/j.future.2011.06.009. URL http://www.sciencedirect.com/science/
article/pii/S0167739X11001208.

163

164 BIBLIOGRAPHY

D. Anderson, E. Korpela, and R. Walton. High-performance task distribution for volunteer com-
puting. In e-Science and Grid Computing, 2005. First International Conference on, pages 8
pp.–203, July 2005. DOI: 10.1109/E-SCIENCE.2005.51.

D. P. Anderson. Boinc: A system for public-resource computing and storage. In GRID
’04: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, pages
4–10, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2256-4. DOI:
10.1109/GRID.2004.14.

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. Seti@home: an experiment
in public-resource computing. Commun. ACM, 45(11):56–61, 2002. ISSN 0001-0782. DOI:
10.1145/581571.581573.

T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli, and R. Y. Wang.
Serverless network file systems. ACM SIGOPS Operating Systems Review, 29(5):109–126, 1995.

T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli, and R. Y. Wang.
Serverless network file systems. ACM Transactions on Computer Systems (TOCS) - Spe-
cial issue on operating system principles, 14(1):41–79, Feb. 1996. ISSN 0734-2071. DOI:
10.1145/225535.225537. URL http://doi.acm.org/10.1145/225535.225537.

G. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming. Addison-
Wesley, 1999.

S. Androutsellis-Theotokis and D. Spinellis. A Survey of Peer-to-Peer Content Distribution
Technologies. ACM Comput. Surv., 36(4):335–371, Dec. 2004. ISSN 0360-0300. DOI:
10.1145/1041680.1041681. URL http://doi.acm.org/10.1145/1041680.1041681.

Argonne National Laboratory. The parallel virtual file system 2 (PVFS2), Apr. 2011. URL
http://www.pvfs.org/.

M. F. Arlitt and C. L. Williamson. Web server workload characterization: The search for invariants.
In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pages 126–137, May 1996.

L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A survey. Computer Networks,
54(15):2787 – 2805, 2010. ISSN 1389-1286. DOI: 10.1016/j.comnet.2010.05.010. URL http:
//www.sciencedirect.com/science/article/pii/S1389128610001568.

Avaki Corporation. Avaki home page, 2005. URL http://www.avaki.com.

R. Bagrodia, R. Meyer, M. Takai, Y.-A. Chen, X. Zeng, J. Martin, and H. Y. Song. Parsec: a
parallel simulation environment for complex systems. Computer, 31(10):77–85, Oct. 1998. ISSN
0018-9162. DOI: 10.1109/2.722293.

S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M. Handley, A. Helmy, J. Heidemann,
P. Huang, S. Kumar, S. McCanne, R. Rejaie, P. Sharma, K. Varadhan, Y. Xu, H. Yu, and
D. Zapalla. Improving simulation for network research. Technical Report 99-702, University of
Southern California, Computer Science Department, Mar. 1999.

BIBLIOGRAPHY 165

P. Barford and M. Crovella. Generating representative web workloads for network and server
performance evaluation. In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst.,
pages 151–160, Jun 1998.

C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC storage resource broker. In Proceedings
of CASCON, 1998.

A. Bassi, M. Beck, G. Fagg, T. Moore, J. S. Plank, and et al. The Internet Backplane Protocol:
A Study in Resource Sharing. In Future Generation Computing Systems, pages 551–561, 2002.

A. Bassi, H. Europe, and G. Horn. Internet of things in 2020, roadmap for
the future. Technical report, INFSO D.4 Networked Enterprise & RFID IN-
FSO G.2 Micro & Nanosystems, in co-operation with the RFID Working Group
of the European Technology Platform on Smart Systems Integration (EPoSS), Sept.
2008. URL http://www.smart-systems-integration.org/public/documents/publications/
Internet-of-Things_in_2020_EC-EPoSS_Workshop_Report_2008_v3.pdf.

A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, and V. S. Pande. Folding@home:
Lessons from eight years of volunteer distributed computing. In Proceedings of the IEEE
International Parallel & Distributed Processing Symposium (IPDPS 2009), volume 0, pages
1–8, Los Alamitos, CA, USA, 2009. IEEE Computer Society. ISBN 978-1-4244-3751-
1. DOI: 10.1109/IPDPS.2009.5160922. URL http://doi.ieeecomputersociety.org/10.1109/
IPDPS.2009.5160922.

A. Beck. High throughput computing: An interview with miron livny, 1997. URL http://www.
hpcwire.com/hpc-bin/artread.pl?direction=Current&articlenumber=11444.

J. I. Beiriger, H. P. Bivens, S. L. Humphreys, W. R. Johnson, and R. E. Rhea. Constructing
the asci computational grid. In Proceedings of the 9th IEEE International Symposium on High
Performance Distributed Computing, HPDC ’00, pages 193–, Washington, DC, USA, 2000. IEEE
Computer Society. ISBN 0-7695-0783-2. URL http://dl.acm.org/citation.cfm?id=822085.
823324.

A. Beloglazov, S. F. Piraghaj, M. Alrokayan, and R. Buyya. Deploying OpenStack on CentOS us-
ing the KVM hypervisor and GlusterFS distributed file system. Technical Report CLOUDS-TR-
2012-3, Cloud Computing and Distributed Systems Laboratory, The University of Melbourne,
Aug. 2012.

B. Bergua, F. García Carballeira, L. M. Sánchez, A. Calderón, and J. Carretero. Adaptación del
sistema de ficheros paralelo expand a entornos grid. In XVIII Jornadas de Paralelismo, Sept.
2007. ISBN 84-9732-593-6.

B. Bergua, F. García Carballeira, A. Calderón, L. M. Sánchez, and J. Carretero. Comparing
Grid Data Transfer Technologies in the Expand Parallel File System. In Proceedings of the 16th
Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP 2008), PDP
’08, pages 110–114, Washington, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-
3089-5. DOI: 10.1109/PDP.2008.51. URL http://dx.doi.org/10.1109/PDP.2008.51.

B. Bergua, F. García Carballeira, A. Calderón, L. M. Sánchez, and J. Carretero. Improving the
performance of the BOINC volunteer computing platform using the Expand parallel file system

166 BIBLIOGRAPHY

(poster). In Fifth IEEE International Conference on e-Science. IEEE Computer Society, Dec.
2009a. Poster session.

B. Bergua, F. García Carballeira, L. M. Sánchez, A. Calderón, A. Rodríguez, and J. Carretero.
Architecture for improving data transfers in grid using the expand parallel file system. In 3rd
Iberian Grid Infrastructure Conference (IBERGRID 2009), pages 315–326, May 2009b. ISBN
978-84-9745-406-3.

B. Bergua, F. García Carballeira, A. Calderón, L. M. Sánchez, and J. Carretero. Mejora del
entorno de computación voluntaria BOINC usando el sistema de ficheros paralelo Expand. In
XXI Jornadas de Paralelismo (JP2010), Sept. 2010.

B. Bergua Guerra. Adaptación del sistema de ficheros paralelo Expand 2.0 a entornos Grid.
Bachelor’s thesis, Computer Science department, Universidad Carlos III de Madrid, Sept. 2006.

F. Berman, G. C. Fox, and A. J. G. Hey, editors. Grid Computing: Making the Global Infrastructure
a Reality, chapter 10, From Legion to Avaki: The Persistence of Vision, pages 265–298. John
Wiley & Sons, March 2003. ISBN 0-470-85319-0.

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, May 2001.

D. Bertsekas and R. Gallager. Data networks (2nd ed.). Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1992. ISBN 0-13-200916-1. URL http://web.mit.edu/dimitrib/www/datanets.html.

J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS: A Data Movement and
Access Service for Wide Area Computing Systems. In Proceedings of the sixth workshop on I/O
in parallel and distributed systems, IOPADS ’99, pages 78–88, New York, NY, USA, 1999. ACM.
ISBN 1-58113-123-2. DOI: 10.1145/301816.301839. URL http://doi.acm.org/10.1145/301816.
301839.

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions:
Evidence and implications. In 18th IEEE INFOCOM, volume 1, pages 126–134, Mar 1999.

S. Brunett, K. Czajkowski, S. Fitzgerald, I. Foster, A. Johnson, C. Kesselman, J. Leigh, and
S. Tuecke. Application experiences with the globus toolkit, 1998.

J. J. Bunn and H. B. Newman. Grid Computing: Making the Global Infrastructure a Reality,
chapter 39: Data-intensive Grids for high-energy physics. John Wiley & Sons, Inc., 2003.

R. Buyya and S. Vazhkudai. Compute Power Market: Towards a Market-Oriented Grid. In
Proceedings of the 1st International Symposium on Cluster Computing and the Grid, CCGRID
’01, pages 574–, Washington, DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-1010-8.
URL http://dl.acm.org/citation.cfm?id=560889.792354.

A. Calderón. Técnicas de tolerancia a fallos en sistemas de ficheros paralelos para clusters. PhD
thesis, Computer Science department, Universidad Carlos III de Madrid, 2005.

A. Calderón, F. García, J. Carretero, J. M. Pérez, and J. Fernández. An implementation of mpi-
io on expand: A parallel file system based on nfs servers. In D. KranzlmÃĳller, J. Volkert,
P. Kacsuk, and J. Dongarra, editors, Recent Advances in Parallel Virtual Machine and Message

BIBLIOGRAPHY 167

Passing Interface, volume 2474 of Lecture Notes in Computer Science, pages 306–313. Springer
Berlin Heidelberg, 2002a. ISBN 978-3-540-44296-7. DOI: 10.1007/3-540-45825-5_47. URL
http://dx.doi.org/10.1007/3-540-45825-5_47.

A. Calderón, F. García, J. Carretero, J. M. Pérez, and J. Fernández. An implementation of MPI-
IO on Expand: A parallel file system based on NFS servers. In Proceedings of the 9th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 306–313, London, UK, 2002b. Springer-Verlag. ISBN 3-540-44296-0.

A. Calderón, F. García Carballeira, J. Carretero, J. M. Pérez., and J. Fernández. Soporte de
tolerancia a fallos en expand. In XIV Jornadas de Paralelismo, 2003.

D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, C. Nicholson, K. Stockinger, and F. Zini.
OptorSim: A simulation tool for scheduling and replica optimisation in data grids. In Proceedings
of the Computing in High Energy and Nuclear Physics (CHEP) conference, 2004.

R. Card, T. Ts’o, and S. Tweedie. Design and implementation of the second extended filesystem.
In Proceedings of the First Dutch International Symposium on Linux, 1994. ISBN 90-367-0385-9.

P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur. PVFS: A parallel file system for linux
clusters. In Proceedings of the 4th Annual Linux Showcase and Conference, pages 317–327.
USENIX Association, 2000. ANL/MCS-P804-0400.

J. Carretero, F. Pérez, P. de Miguel, F. García, and L. Alonso. ParFiSys: A parallel file system
for MPP. ACM Operating Systems Review, 30(2):74–80, 1996.

J. Carretero, F. Pérez, P. de Miguel, F. García, and L. Alonso. Performance increase mechanisms
for parallel and distributed file systems. Parallel Computing: Special Issue on Parallel I/O
Systems. Elsevier, 23(3):525–542, 1997.

H. Casanova and L. Marchal. A Network Model for Simulation of Grid Application. Rapport de
recherche RR-4596, INRIA, Oct. 2002. URL http://hal.inria.fr/inria-00071989.

H. Casanova, A. Legrand, and M. Quinson. SimGrid: a generic framework for large-scale dis-
tributed experiments. In Proceedings of the Tenth International Conference on Computer
Modeling and Simulation, UKSIM ’08, pages 126–131, Washington, DC, USA, Mar. 2008.
IEEE Computer Society. ISBN 978-0-7695-3114-4. DOI: 10.1109/UKSIM.2008.28. URL
http://dx.doi.org/10.1109/UKSIM.2008.28.

H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter. Versatile, scalable, and accu-
rate simulation of distributed applications and platforms. Journal of Parallel and Distributed
Computing, 74(10):2899–2917, June 2014. URL http://hal.inria.fr/hal-01017319.

C. Catlett. In search of gigabit applications. Communications Magazine, IEEE, 30(4):42 –51,
april 1992. ISSN 0163-6804. DOI: 10.1109/35.135788.

S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems. McGraw-Hill Computer
Science Series. McGraw-Hill, 1984. ISBN 9780070108295. URL http://books.google.es/books?
id=sepQAAAAMAAJ.

168 BIBLIOGRAPHY

CERN. Grid file access library 2.0. Last visited, Nov. 2015. URL https://dmc.web.cern.ch/
projects/gfal-2/home.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. E. Gruber. Bigtable: a distributed storage system for structured data. In Proceedings
of the 7th USENIX Symposium on Operating Systems Design and Implementation - Volume 7,
OSDI ’06, pages 15–15, Berkeley, CA, USA, 2006. USENIX Association. URL http://dl.acm.
org/citation.cfm?id=1267308.1267323.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. E. Gruber. Bigtable: A distributed storage system for structured data. ACM Trans.
Comput. Syst., 26(2):4:1–4:26, June 2008. ISSN 0734-2071. DOI: 10.1145/1365815.1365816.
URL http://doi.acm.org/10.1145/1365815.1365816.

S. J. Chapin, D. Katramatos, J. Karpovich, and A. S. Grimshaw. The Legion Resource Manage-
ment System. In Proceedings of the 5 th Workshop on Job Scheduling Strategies for Parallel
Processing, pages 162–178. Springer Verlag, 1999.

J. S. Chase, D. C. Anderson, and A. M. Vahdat. Interposed request routing for scalable network
storage. In Fourth Symposium on Operating System Design and Implementation (OSDI2000),
pages 259–272, October 2000.

A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The Data Grid: Towards an
Architecture for the Distributed Management and Analysis of Large Scientific Datasets. Journal
of Network and Computer Applications, 23:187–200, 1999.

A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C. Kesselman, P. Kunszt,
M. Ripeanu, B. Schwartzkopf, H. Stockinger, K. Stockinger, and B. Tierney. Giggle: A frame-
work for constructing scalable replica location services. In Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, Supercomputing ’02, pages 1–17, Los Alamitos, CA, USA, 2002.
IEEE Computer Society Press. URL http://dl.acm.org/citation.cfm?id=762761.762798.

D. M. Chiu. Some observations on fairness of bandwidth sharing. In Proceedings of the Fifth
IEEE Symposium on Computers and Communications (ISCC 2000), ISCC ’00, pages 125–
131, Washington, DC, USA, July 2000. IEEE Computer Society. ISBN 0-7695-0722-0. DOI:
10.1109/ISCC.2000.860626. URL http://dl.acm.org/citation.cfm?id=844383.845579.

S. Choi, R. Buyya, H. Kim, E. Byun, M. Baik, J. Gil, and C. Park. A taxonomy of desktop
grids and its mapping to state-of-the-art systems. Technical Report GRIDS-TR-2008-3, Grid
Computing and Distributed Systems Laboratory, The University of Melbourne, Australia, Feb.
2008. URL http://www.cloudbus.org/reports/DesktopGridTaxonomy2008.pdf.

N. P. Chue Hong, M. Drescher, A. Krause, M. S. Memon, and M. Morgan. OGSA ByteIO
implementations – experiences document. Technical Report GFD-E.146, Open Grid Forum,
Mar. 2009. URL http://www.ogf.org/documents/GFD.146.pdf.

Cluster File Systems Inc. Lustre: A scalable, high-performance file system. Cluster File Systems
Inc. white paper, version 1.0, November 2002. URL http://www.lustre.org/docs/whitepaper.
pdf.

BIBLIOGRAPHY 169

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s globally-distributed database. In Proceedings
of the 10th USENIX conference on Operating Systems Design and Implementation, OSDI’12,
pages 251–264, Berkeley, CA, USA, 2012. USENIX Association. ISBN 978-1-931971-96-6. URL
http://dl.acm.org/citation.cfm?id=2387880.2387905.

P. Corbett, S. Johnson, and D. Feitelson. Overview of the vesta prallel file system. ACM Computer
Architecture News, 21(5):7–15, Dec. 1993.

P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J.-P. Prost, M. Snir, B. Traversat,
and P. Wong. Overview of the MPI-IO parallel I/O interface. In Proceedings of the IPPS ’95
Workshop on Input/Output in Parallel and Distributed Systems, pages 1–15, 1995.

F. Costa, L. Silva, I. Kelley, and G. Fedak. Optimizing the data distribution layer of boinc
with bittorrent. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International
Symposium on, pages 1–8, April 2008. DOI: 10.1109/IPDPS.2008.4536446.

G. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems (4th ed.): concepts and design.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski. Towards realistic million-node internet simu-
lations. In H. R. Arabnia, editor, Proceedings of the 1999 International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA’99), pages 2129–2135. CSREA
Press, June 1999a. ISBN 1-892512-15-7.

J. H. Cowie, D. M. Nicol, and A. T. Ogielski. Modeling the global internet. Computing in Science
& Engineering, 1(1):42–50, Jan. 1999b. ISSN 1521-9615. DOI: 10.1109/5992.743621.

M. E. Crovella and A. Bestavros. Self-similarity in world wide web traffic: Evidence and possible
causes. IEEE/ACM Trans. Networking, 5(6):835–846, Dec 1997.

W. Dargie. Fundamentals of Wireless Sensor Networks. Wiley, New York, 2010. ISBN
9780470997659.

B. D. Davison. A Web Caching Primer. IEEE Internet Computing, 5(4):38–45, July 2001. ISSN
1089-7801. DOI: 10.1109/4236.939449. URL http://dx.doi.org/10.1109/4236.939449.

J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In
Proceedings of the 6th Symposium on Opearting Systems Design & Implementation - Vol-
ume 6, OSDI’04, pages 137–150, Berkeley, CA, USA, 2004. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1251254.1251264.

J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. Communica-
tions of the ACM, 51(1):107–113, Jan. 2008. ISSN 0001-0782. DOI: 10.1145/1327452.1327492.
URL http://doi.acm.org/10.1145/1327452.1327492.

J. Dean and S. Ghemawat. MapReduce: A flexible data processing tool. Communications of
the ACM, 53(1):72–77, Jan. 2010. ISSN 0001-0782. DOI: 10.1145/1629175.1629198. URL
http://doi.acm.org/10.1145/1629175.1629198.

170 BIBLIOGRAPHY

J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl. Globally Distributed
Content Delivery. IEEE Internet Computing, 6(5):50–58, Sept. 2002. ISSN 1089-7801. DOI:
10.1109/MIC.2002.1036038. URL http://dx.doi.org/10.1109/MIC.2002.1036038.

distributed.net. distributed.net. Last visited, Apr. 2013. URL http://distributed.net.

S. Dolev. Self-Stabilization. MIT Press, 2000. ISBN 0-262-04178-2.

B. Donassolo, H. Casanova, A. Legrand, and P. Velho. Fast and scalable simulation of volunteer
computing systems using SimGrid. In Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, HPDC ’10, pages 605–612, New York, NY, USA,
2010. ACM. ISBN 978-1-60558-942-8. DOI: 10.1145/1851476.1851565. URL http://doi.acm.
org/10.1145/1851476.1851565.

G. Donvito, G. Marzulli, and D. Diacono. Testing of several distributed file-systems (hdfs, ceph
and glusterfs) for supporting the hep experiments analysis. Journal of Physics: Conference
Series, 513(4):042014, 2014. URL http://stacks.iop.org/1742-6596/513/i=4/a=042014.

A. B. Downey. The structural cause of file size distributions. In 9th Modeling, Anal. & Simulation
of Comput. & Telecomm. Syst. (MASCOTS), Aug 2001.

H. Duan, S. Yu, M. Mei, W. Zhan, and L. Li. Cstore: A desktop-oriented distributed public
cloud storage system. Computers & Electrical Engineering, 42:60 – 73, 2015. ISSN 0045-
7906. DOI: 10.1016/j.compeleceng.2014.11.001. URL http://www.sciencedirect.com/science/
article/pii/S0045790614002705.

C. L. Dumitrescu and I. Foster. GangSim: A simulator for grid scheduling studies. In Proceedings
of the Fifth IEEE International Symposium on Cluster Computing and the Grid (CCGrid’05)
- Volume 2 - Volume 02, CCGRID ’05, pages 1151–1158, Washington, DC, USA, 2005. IEEE
Computer Society. ISBN 0-7803-9074-1. URL http://dl.acm.org/citation.cfm?id=1169223.
1169632.

H. Eckardt. Investigation of distributed disk I/O concepts. Technical report, ESPRIT PUMA,
Siemens, 1990.

EGEE Project. gLite. Last visited, Apr. 2013. URL http://glite.cern.ch/.

J. Ekanayake, T. Gunarathne, and J. Qiu. Cloud technologies for bioinformatics applications,
2010.

European Middleware Initiative. Gfal functional description. Last visited, Apr. 2013a. URL
https://svnweb.cern.ch/trac/lcgutil/wiki/GFAL.

European Middleware Initiative. Grid file access library 2.0. Last visited, Apr. 2013b. URL
https://svnweb.cern.ch/trac/lcgutil/wiki/gfal2.

European Middleware Initiative. Grid file access library 2.0. Last visited, Nov. 2015. URL http://
www.eu-emi.eu/emi-2-matterhorn-products/-/asset_publisher/B4Rk/content/gfal-lcg-util.

D. G. Feitelson. Workload modeling for computer systems performance evaluation. Cambridge
University Press, May 2015. URL http://www.cs.huji.ac.il/~feit/wlmod/.

BIBLIOGRAPHY 171

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1, 1999.

R. T. Fielding. Architectural Styles and the Design of Network-based Software Architectures. PhD
thesis, University of California, Irvine, 2000. URL http://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm.

R. T. Fielding and R. N. Taylor. Principled design of the modern web architecture. ACM
Transactions on Internet Technology (TOIT), 2(2):115–150, May 2002. ISSN 1533-5399. DOI:
10.1145/514183.514185. URL http://doi.acm.org/10.1145/514183.514185.

A. Finkelstein, C. Gryce, and J. Lewis-Bowen. Relating Requirements and Architectures: A
Study of Data-Grids. Journal of Grid Computing, 2:207–222, 2004. ISSN 1570-7873. DOI:
10.1007/s10723-004-6745-6. URL http://dx.doi.org/10.1007/s10723-004-6745-6.

S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the internet.
IEEE/ACM Transactions on Networking (TON), 7(4):458–472, Aug. 1999. ISSN 1063-6692.
DOI: 10.1109/90.793002. URL http://dx.doi.org/10.1109/90.793002.

I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. Network and Parallel
Computing, LNCS, 3779/2005:2–13, 2005a. ISSN 0302-9743 (Print) 1611-3349 (Online). DOI:
10.1007/11577188_2. URL http://dx.doi.org/10.1007/11577188_2.

I. Foster. A globus toolkit primer, 2005b. URL http://www.globus.org/toolkit/docs/4.0/key/
GT4_Primer_0.6.pdf.

I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. International
Journal of Supercomputer Applications, 11:115–128, 1996.

I. Foster and C. Kesselman. The grid: blueprint for a new computing infrastructure. The Mor-
gan Kaufmann Series in Computer Architecture and Design Series. Elsevier, 2004. ISBN
9781558609334. URL http://books.google.es/books?id=8-0BofIhoU0C.

I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual
organizations. Int. J. High Perform. Comput. Appl., 15:200–222, August 2001. ISSN 1094-
3420. DOI: 10.1177/109434200101500302. URL http://dl.acm.org/citation.cfm?id=1080644.
1080667.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An open grid services
architecture for distributed systems integration, 2002a. URL http://www.globus.org/alliance/
publications/papers/ogsa.pdf.

I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid services for distributed system integration.
Computer, 35:37–46, June 2002b. ISSN 0018-9162. DOI: 10.1109/MC.2002.1009167. URL
http://dx.doi.org/10.1109/MC.2002.1009167.

I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid Computing: Making the Global Infras-
tructure a Reality, chapter The Physiology of the Grid, pages 217–249. Wiley, 2003.

K. Fujiwara. Cost and accuracy of packet-level vs. analytical network simulations: an empirical
study. Master’s thesis, University of Hawai’i, May 2007.

172 BIBLIOGRAPHY

K. Fujiwara and H. Casanova. Speed and accuracy of network simulation in the SimGrid frame-
work. In Proceedings of the 2nd international conference on Performance evaluation methodolo-
gies and tools, ValueTools ’07, pages 12:1–12:10, ICST, Brussels, Belgium, Belgium, Oct. 2007.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineer-
ing). ISBN 978-963-9799-00-4. URL http://dl.acm.org/citation.cfm?id=1345263.1345279.

F. García Carballeira, A. Calderón, J. Carretero, J. Fernández, and J. M. Pérez. Parallel file
system based on NFS servers for heterogeneous clusters. In 3rd ACIS International Conference
on Software Engineering, Artificial Intelligence Networking and Parallel/Distributed Computing,
SNPD02, 2002.

F. García Carballeira, A. Calderón, J. Carretero, J. Fernández, and J. M. Pérez. The de-
sign of the Expand parallel file system. International Journal of High Performance Com-
puting Applications, 17(1):21–37, 2003a. DOI: 10.1177/1094342003017001003. URL http:
//hpc.sagepub.com/content/17/1/21.abstract.

F. García Carballeira, A. Calderón, J. Carretero, J. M. Pérez, and J. Fernández. An expandable
parallel file system using NFS servers. In Proceedings of the 5th international conference on
High performance computing for computational science, VECPAR’02, pages 565–578, Berlin,
Heidelberg, 2003b. Springer-Verlag. ISBN 3-540-00852-7. URL http://dl.acm.org/citation.
cfm?id=1766851.1766897.

F. García Carballeira, A. Calderón, J. Carretero, J. M. Pérez, and J. Fernández. A parallel and
fault tolerant file system based on NFS server. In Euromicro Conference on Parallel Distributed
and Network based Processing, 2003c.

F. García Carballeira, J. Carretero, A. Calderón, J. D. García, and L. M. Sánchez. A global
and parallel file system for grids. Future Generation Computer Systems, 23(1):116–122, Jan.
2007. ISSN 0167-739X. DOI: 10.1016/j.future.2006.06.004. URL http://www.sciencedirect.
com/science/article/pii/S0167739X06001282.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, SOSP ’03, pages 29–43, New York, NY, USA,
2003a. ACM. ISBN 1-58113-757-5. DOI: 10.1145/945445.945450. URL http://doi.acm.org/
10.1145/945445.945450.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. SIGOPS Operating Systems
Review, 37:29–43, Oct. 2003b. ISSN 0163-5980. DOI: 10.1145/1165389.945450. URL http:
//doi.acm.org/10.1145/1165389.945450.

S. Ghosh. Distributed Systems: An Algorithmic Approach. Chapman & Hall/CRC, 2006.

G. A. Gibson. The Scotch paralell storage systems. Technical Report CMU-CS-95-107, Scholl of
Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1995.

D. Giusto, A. Iera, G. Morabito, and L. Atzori. The Internet of Things: 20th Tyrrhenian workshop
on digital communications. Springer Science & Business Media, 2010. ISBN 978-1-4419-1673-0.
DOI: 10.1007/978-1-4419-1674-7.

BIBLIOGRAPHY 173

T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley. ns-3 project goals. In Proceeding from
the 2006 workshop on ns-2: the IP network simulator, WNS2 ’06, New York, NY, USA, 2006.
ACM. ISBN 1-59593-508-8. DOI: 10.1145/1190455.1190468. URL http://doi.acm.org/10.
1145/1190455.1190468.

T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. B. Kopena. Network simulations
with the ns-3 simulator. In Demonstrations of the ACM SIGCOMM 2008 conference on Data
communication, SIGCOMM’08, Seattle, Washington, USA, Aug. 2008. ACM. ISBN 978-1-
60558-175-0.

T. Hey and A. E. Trefethen. The UK e-Science Core Programme and the Grid. Future Gener. Com-
put. Syst., 18(8):1017–1031, Oct. 2002. ISSN 0167-739X. DOI: 10.1016/S0167-739X(02)00082-1.
URL http://dx.doi.org/10.1016/S0167-739X(02)00082-1.

M. Hill. Readings in Computer Architecture. Morgan Kaufmann, San Diego, 2000. ISBN
1558605398.

P. Horn. The IBM vision for autonomic computing. Technical report, IBM, 2001. URL http:
//www.research.ibm.com/autonomic/manifesto.

W. Hoschek, F. J. Jaén-Martínez, A. Samar, H. Stockinger, and K. Stockinger. Data Management
in an International Data Grid Project. In Proceedings of the First IEEE/ACM International
Workshop on Grid Computing, GRID ’00, pages 77–90, London, UK, UK, 2000. Springer-Verlag.
ISBN 3-540-41403-7. URL http://dl.acm.org/citation.cfm?id=645440.652836.

J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N. Sidebotham,
and M. J. West. Scale and performance in a distributed file system. ACM Transactions on
Computer Systems (TOCS), 6(1):51–81, Feb. 1988. ISSN 0734-2071. DOI: 10.1145/35037.35059.
URL http://doi.acm.org/10.1145/35037.35059.

D. Howe, M. Costanzo, P. Fey, T. Gojobori, L. Hannick, W. Hide, D. P. Hill, R. Kania, M. Scha-
effer, S. St Pierre, S. Twigger, O. White, and S. Y. Rhee. The future of biocuration. Nature,
455(7209):47–50, Sep 04 2008. DOI: 10.1038/455047a.

K. Hwang, H. Jin, E. Chow, C.-L. Wang, and Z. Xu. Designing SSI clusters with hierarchical
checkpointing and single I/O space. IEEE Concurrency, 7(1):60–69, 1999. ISSN 1092-3063.
DOI: 10.1109/4434.749136.

Indiana University. Futuregrid portal. Last visited, Apr. 2013. URL https://portal.futuregrid.
org/.

INRIA/IN2P3. XtremWeb: the open source platform for desktop grids, 2008. URL http://www.
xtremweb.net/.

G. Irlam. Unix file size survey, 1993. URL http://www.gordoni.com/ufs93.html.

Jabber.org. Jabber. Last visited, Apr. 2013. URL http://www.jabber.org.

W. E. Johnston, D. Gannon, and B. Nitzberg. Grids as production computing environments:
The engineering aspects of nasa’s information power grid. In Proceedings of the 8th IEEE

174 BIBLIOGRAPHY

International Symposium on High Performance Distributed Computing, HPDC ’99, pages 34–
, Washington, DC, USA, 1999. IEEE Computer Society. ISBN 0-7695-0287-3. URL http:
//dl.acm.org/citation.cfm?id=822084.823281.

D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin. Consistent hashing
and random trees: Distributed caching protocols for relieving hot spots on the world wide web.
In Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, pages
654–663. ACM, 1997.

F. P. Kelly. Charging and rate control for elastic traffic. European Transactions on Telecommu-
nications, 8:33–37, 1997. URL http://www.statslab.cam.ac.uk/~{}frank/elastic.html.

C. Kesselman. Internet x.509 public key infrastructure proxy certificate profile. IETF, 2001.

R. Kettimuthu, L. Wantao, J. M. Link, and J. Bresnahan. A GridFTP Transport Driver for Globus
XIO. In Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications, PDPTA 2008, Las Vegas, Nevada, USA, July 14-17, 2008, 2 Vol-
umes, pages 843–849, 2008. URL http://toolkit.globus.org/alliance/publications/papers/
gridftp_transport_driver_xio.pdf.

S. U. Khan and I. Ahmad. Comparison and analysis of ten static heuristics-based internet
data replication techniques. Journal of Parallel and Distributed Computing, 68(2):113 – 136,
2008. ISSN 0743-7315. DOI: 10.1016/j.jpdc.2007.06.009. URL http://www.sciencedirect.com/
science/article/pii/S0743731507001153.

G. H. Kim, R. G. Minnich, and L. McVoy. Bigfoot-NFS: A Parallel File-Striping NFS Server,
1994.

J. J. Kistler and M. Satyanarayanan. Disconnected operation in the coda file system. ACM
Transactions on Computer Systems (TOCS), 10(1):3–25, Feb. 1992. ISSN 0734-2071. DOI:
10.1145/146941.146942. URL http://doi.acm.org/10.1145/146941.146942.

K. Krauter, R. Buyya, and M. Maheswaran. A Taxonomy and Survey of Grid Resource Man-
agement Systems for Distributed Computing. Softw. Pract. Exper., 32(2):135–164, Feb. 2002.
ISSN 0038-0644. DOI: 10.1002/spe.432. URL http://dx.doi.org/10.1002/spe.432.

O. Krieger. HFS: A Flexible File System for Shared-Memory Multiprocessors. PhD thesis, De-
partment of Electrical and Computer Engineering, University of Toronto, 1994.

B. Krishnamurthy, C. Wills, and Y. Zhang. On the Use and Performance of Content Distri-
bution Networks. In Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measure-
ment, IMW ’01, pages 169–182, New York, NY, USA, 2001. ACM. ISBN 1-58113-435-5. DOI:
10.1145/505202.505224. URL http://doi.acm.org/10.1145/505202.505224.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, C. Wells, and B. Zhao. Oceanstore: an architecture for global-scale persis-
tent storage. SIGARCH Comput. Archit. News, 28(5):190–201, 2000. ISSN 0163-5964. DOI:
10.1145/378995.379239.

D. Kusnetzky. What is “Big Data?”. ZDNet, Feb. 2010. URL http://www.zdnet.com/blog/
virtualization/what-is-big-data/1708.

BIBLIOGRAPHY 175

H. Lamehamedi, Z. Shentu, B. Szymanski, and E. Deelman. Simulation of dynamic data replication
strategies in data grids. In Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS’03), pages 10–, 2003. DOI: 10.1109/IPDPS.2003.1213206.

S. M. Larson, C. D. Snow, M. R. Shirts, and V. S. Pande. Folding@Home and Genome@Home:
Using distributed computing to tackle previously intractable problems in computational biology.
In R. P. Grant, editor, Computational Genomics: Theory and Application. Horizon Bioscience,
2004. ISBN 978-1-904933-01-4. URL http://books.google.com.do/books?id=f0JkQgAACAAJ.

B.-D. Lee and J. Weissman. Dynamic replica management in the service grid. In Proceedings
of the 10th IEEE International Symposium on High Performance Distributed Computing, pages
433–434, 2001. DOI: 10.1109/HPDC.2001.945213.

A. Legrand and J. Lerouge. MetaSimGrid: Towards realistic scheduling simulation of distributed
applications. Technical Report 2002-28, Laboratoire de l’Informatique du Parallélisme (LIP),
École Normale Supérieure de Lyon, July 2002.

J. Li, W. K. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel, B. Gal-
lagher, and M. Zingale. Parallel netCDF: A High-Performance Scientific I/O Interface. In SC
’03: Proceedings of the 2003 ACM/IEEE conference on Supercomputing, page 39, Washington,
DC, USA, 2003. IEEE Computer Society. ISBN 1-58113-695-1.

J. Li, M. Humphrey, D. A. Agarwal, K. R. Jackson, C. van Ingen, and Y. Ryu. escience in
the cloud: A modis satellite data reprojection and reduction pipeline in the windows azure
platform. In IPDPS, pages 1–10. IEEE, 2010. DOI: 10.1109/IPDPS.2010.5470418. URL http:
//dblp.uni-trier.de/db/conf/ipps/ipdps2010.html#LiHAJIR10.

LIGO Scientific Collaboration. Einstein@Home search for periodic gravitational waves in LIGO
S4 data. Physical Review D, 79:022001, 2009. URL doi:10.1103/PhysRevD.79.022001.

LIGO Scientific Collaboration and D. P. Anderson. Einstein@Home search for periodic grav-
itational waves in early S5 LIGO data. Physical Review D, 80:042003, 2009. URL doi:
10.1103/PhysRevD.80.042003.

W. Ligon and R. Ross. An Overview of the Parallel Virtual File System. In Proceedings of the
Extreme Linux Workshop, June 1999.

B. Liu, D. Figueiredo, Y. Guo, J. Kurose, and D. Towsley. A study of networks simulation
efficiency: fluid simulation vs. packet-level simulation. In INFOCOM 2001. Twentieth Annual
Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE,
volume 3, pages 1244–1253 vol.3, 2001. DOI: 10.1109/INFCOM.2001.916619.

X. Liu and A. A. Chien. Traffic-based load balance for scalable network emulation. In Proceedings
of the 2003 ACM/IEEE conference on Supercomputing, SC ’03, pages 40–, New York, NY, USA,
2003. ACM. ISBN 1-58113-695-1. DOI: 10.1145/1048935.1050190. URL http://doi.acm.org/
10.1145/1048935.1050190.

T. Loukopoulos and I. Ahmad. Static and adaptive data replication algorithms for fast information
access in large distributed systems. In Distributed Computing Systems, 2000. Proceedings. 20th
International Conference on, pages 385–392, 2000. DOI: 10.1109/ICDCS.2000.840950.

176 BIBLIOGRAPHY

S. H. Low. A duality model of TCP and queue management algorithms. IEEE/ACM Transactions
on Networking, 11(4):525–536, Aug. 2003. ISSN 1063-6692. DOI: 10.1109/TNET.2003.815297.
URL http://dx.doi.org/10.1109/TNET.2003.815297.

C. Lynch. How do your data grow? Nature, 455(7209):28–9, Sep 04 2008. DOI: 10.1038/455028a.

N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1996. ISBN 1558603484.

T. M. Madhyastha. Automatic classification of input/output access patterns. PhD thesis, Graduate
College of the University of Illinois at Urbana-Champaign, 1997.

I. Mandrichenko, W. Allcock, and T. Perelmutov. GridFTP v2 Protocol Description, 2005. URL
http://www.ggf.org/documents/GFD.47.pdf.

J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers. Big data:
The next frontier for innovation, competition, and productivity. McKinsey Global Institute,
pages 1–137, 2011.

L. Massoulié and J. Roberts. Bandwidth sharing: objectives and algorithms. IEEE/ACM Trans-
actions on Networking (TON), 10(3):320–328, June 2002. ISSN 1063-6692. DOI: 10.1109/T-
NET.2002.1012364. URL http://dx.doi.org/10.1109/TNET.2002.1012364.

M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic behavior of the TCP conges-
tion avoidance algorithm. ACM SIGCOMM Computer Communication Review, 27(3):67–82,
July 1997. ISSN 0146-4833. DOI: 10.1145/263932.264023. URL http://doi.acm.org/10.1145/
263932.264023.

C. A. Mattmann, N. Medvidovic, P. M. Ramirez, and V. Jakobac. Unlocking the Grid. In Proceed-
ings of the 8th international conference on Component-Based Software Engineering, CBSE’05,
pages 322–336, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3-540-25877-9, 978-3-540-25877-
3. DOI: 10.1007/11424529_22. URL http://dx.doi.org/10.1007/11424529_22.

C. McDonald. A network specification language and execution environment for undergradu-
ate teaching. ACM SIGCSE Bulletin, 23(1):25–34, Mar. 1991a. ISSN 0097-8418. DOI:
10.1145/107005.107012. URL http://doi.acm.org/10.1145/107005.107012.

C. McDonald. A network specification language and execution environment for undergraduate
teaching. In Proceedings of the twenty-second SIGCSE technical symposium on Computer science
education, SIGCSE ’91, pages 25–34, New York, NY, USA, 1991b. ACM. ISBN 0-89791-377-9.
DOI: 10.1145/107004.107012. URL http://doi.acm.org/10.1145/107004.107012.

Mersenne Research, Inc. Great Internet Mersenne Prime Search. Last visited, Apr. 2013. URL
http://www.mersenne.org/.

MIKE2.0. Big Data definition. Last visited, Apr. 2013. URL http://mike2.openmethodology.org/
wiki/Big_Data_Definition.

D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins, and
Z. Xu. Peer-to-peer Computing. Technical Report HPL-2002-57 (R.1), HP Laboratories Palo
Alto, 2003.

BIBLIOGRAPHY 177

M. Mitzenmacher. A brief history of generative models for power law and lognormal distributions.
Internet Mathematics, 1(2):226–251, 2003a. DOI: 10.1080/15427951.2004.10129088.

M. Mitzenmacher. Dynamic models for file sizes and double pareto distributions. Internet Math-
ematics, 1(3):305–333, 2003b. DOI: 10.1080/15427951.2004.10129092.

M. Mitzenmacher and B. Tworetzky. New models and methods for file size distributions. In
Proceedings of the 41st Annual Allerton Conference on Communication Control and Computing,
volume 41, number 1, pages 603–612. The University; 1998, 2003.

R. W. Moore and A. Merzky. Persistent Archive Concepts, December 2003. URL http://www.
ggf.org/documents/GFD.26.pdf. No. GFD.26.

M. Morgan. ByteIO specification 1.0. Technical Report GFD-R-P.087, Open Grid Forum, Oct.
2006. URL http://www.ogf.org/documents/GFD.87.pdf.

S. A. Moyer and V. S. Sunderam. PIOUS: A scalable parallel I/O system for distributed computing
environments. In Proceedings of the Scalable High-Performance Computing Conferece, pages 71–
78, 1994.

N. Nieuwejaar and D. Kotz. Performance of the galley parallel file system. In Fourth Workshop
on Input/Output in Parallel and Distributed Systems, pages 83–94, 1996a.

N. Nieuwejaar and D. Kotz. The galley parallel file system. In Proceedings of the 10th International
Conference on Supercomputing, ICS ’96, pages 374–381, New York, NY, USA, 1996b. ACM.
ISBN 0-89791-803-7. DOI: 10.1145/237578.237639. URL http://doi.acm.org/10.1145/237578.
237639.

N. Nieuwejaar and D. Kotz. The galley parallel file system. Parallel Computing, 23(4âĂŞ5):
447–476, 1997. ISSN 0167-8191. DOI: 10.1016/S0167-8191(97)00009-4. URL http://www.
sciencedirect.com/science/article/pii/S0167819197000094. Parallel I/O.

N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and M. Best. File Access Characteristics of
Parallel Scientific Workloads. In IEEE Transactions on Parallel and Distributed Systems, 7(10),
pages 1075–1089, Oct. 1996.

Y. Niu, Z. Hu, K. Barner, and G. R. Gao. Performance modelling and optimization of memory
access on cellular computer architecture cyclops64. In Proceedings of the 2005 IFIP international
conference on Network and Parallel Computing, NPC’05, pages 132–143, Berlin, Heidelberg,
2005. Springer-Verlag. ISBN 3-540-29810-X, 978-3-540-29810-6. DOI: 10.1007/11577188_18.
URL http://dx.doi.org/10.1007/11577188_18.

R. Noronha and D. Panda. Imca: A high performance caching front-end for glusterfs on infiniband.
In Parallel Processing, 2008. ICPP ’08. 37th International Conference on, pages 462–469, Sept
2008. DOI: 10.1109/ICPP.2008.84.

T. N’Takpé and F. Suter. Critical path and area based scheduling of parallel task graphs on
heterogeneous platforms. In Proceedings of the 12th International Conference on Parallel and
Distributed Systems, volume 1 of ICPADS ’06, pages 3–10, Washington, DC, USA, July 2006.
IEEE Computer Society. ISBN 0-7695-2612-8. DOI: 10.1109/ICPADS.2006.32. URL http:
//doi.ieeecomputersociety.org/10.1109/ICPADS.2006.32.

178 BIBLIOGRAPHY

A. Oke and R. Bunt. Hierarchical workload characterization for a busy web server. In T. Field
et al., editors, TOOLS, pages 309–328. Springer-Verlag, Apr 2002. Lect. Notes Comput. Sci.
vol. 2324.

R. Oldfield and D. Kotz. Armada: A parallel file system for computational grids. In Proceedings
of the First IEEE/ACM International Symposium on Cluster Computing and the Grid, pages
194–201. IEEE Computer Society Press, May 2001.

A. Oram, editor. Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 2001. ISBN 059600110X.

T. Ott, J. Kemperman, and M. Mathis. Window size behavior in TCP/IP with constant loss prob-
ability. In Proceedings of 4th IEEE Workshop on High-Performance Communication Systems
(HPCS), June 1997.

Oxford University. Climateprediction.net. Last visited, Apr. 2013. URL http://
climateprediction.net.

T. Özsu and P. Valduriez. Principles of distributed database systems. Prentice Hall, 1999. ISBN
9780136597070. URL http://books.google.es/books?id=K89QAAAAMAAJ.

J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput: a simple model and
its empirical validation. In Proceedings of the ACM SIGCOMM ’98 conference on Applications,
technologies, architectures, and protocols for computer communication, SIGCOMM ’98, pages
303–314, New York, NY, USA, 1998. ACM. ISBN 1-58113-003-1. DOI: 10.1145/285237.285291.
URL http://doi.acm.org/10.1145/285237.285291.

A.-M. K. Pathan and R. Buyya. A taxonomy and survey of content delivery networks. Technical
Report GRIDS-TR-2007-4, Grid Computing and Distributed Systems Laboratory, The Univer-
sity of Melbourne, Australia, Feb. 2007. URL http://www.cloudbus.org/reports/CDN-Taxonomy.
pdf.

P. Paul. SETI@home project and its website. Crossroads, 8(3):3–5, 2002. ISSN 1528-4972. DOI:
10.1145/567162.567164.

D. Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000. ISBN 0-89871-464-8.

F. Pérez, J. Carretero, F. García, P. de Miguel, and L. Alonso. Evaluating ParFiSys: a high-
performance and distributed file system. Journal of Systems Architecture. Elsevier. Vol. 43,
pages 533–542, 1997.

J. M. Pérez, L. M. Sánchez, F. García, A. Calderón, and J. Carretero. High performance Java
Input/Output for heterogeneous distributed computing. 2012 IEEE Symposium on Computers
and Communications (ISCC), 0:969–974, 2005. ISSN 1530-1346. DOI: 10.1109/ISCC.2005.79.
URL http://doi.ieeecomputersociety.org/10.1109/ISCC.2005.79.

S. Phatanapherom, P. Uthayopas, and V. Kachitvichyanukul. Fast simulation model for grid
scheduling using hypersim. In Proceedings of the 2003 Winter Simulation Conference, volume 2,
pages 1494–1500 vol.2, 2003. DOI: 10.1109/WSC.2003.1261594.

BIBLIOGRAPHY 179

P. Pierce. A concurrent file system for a highly parallel mass storage subsystem. In Proceedings of
the Fourth Conference on Hypercubes Concurrent Computers and Applications (HCCA), pages
155–161, 1989.

M. Placek and R. Buyya. A taxonomy of distributed storage systems. Technical Re-
port GRIDS-TR-2006-11, Grid Computing and Distributed Systems Laboratory, The Uni-
versity of Melbourne, Australia, July 2006. URL http://www.cloudbus.org/reports/
DistributedStorageTaxonomy.pdf.

J. S. Plank, M. Beck, W. R. Elwasif, T. Moore, M. Swany, and R. Wolski. The Internet Backplane
Protocol: Storage in the Network, 1999.

J. Postel and J. Reynolds. File Transfer Protocol (FTP), 1985.

R. Prodan. Grid Computing: Experiment Management, Tool Integration, and Scientific Workflows.
Springer, Berlin, 2007. ISBN 3540692614.

X. Qin and H. Jiang. Data Grid: Supporting Data-Intensive applications in Wide-Area Networks.
Technical Report TR-03-05-01, University of Nebraska-Lincoln, Lincoln, NE, May 2003.

X. Qiu, J. Ekanayake, S. Beason, T. Gunarathne, G. Fox, R. Barga, and D. Gannon. Cloud
technologies for bioinformatics applications. In Proceedings of the 2nd Workshop on Many-Task
Computing on Grids and Supercomputers, MTAGS ’09, pages 6:1–6:10, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-714-1. DOI: 10.1145/1646468.1646474. URL http://doi.acm.
org/10.1145/1646468.1646474.

B. Quetier and F. Cappello. A survey of grid research tools: simulators, emulators and real life
platforms. In Proceedings of the 17th IMACS World Congress (IMACS), July 2005.

M. Quinson, C. Rosa, and C. Thiery. Parallel simulation of peer-to-peer systems. In Proceedings
of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(ccgrid 2012), CCGRID ’12, pages 668–675, Washington, DC, USA, May 2012. IEEE Computer
Society. ISBN 978-0-7695-4691-9. DOI: 10.1109/CCGrid.2012.115. URL http://hal.inria.fr/
inria-00602216.

A. Rajasekar, M. Wan, R. Moore, G. Kremenek, and T. Guptil. Data grids, collections, and grid
bricks. In Proceedings of the 20 th IEEE/11 th NASA Goddard Conference on Mass Storage
Systems and Technologies (MSS’03), MSS ’03, pages 2–, Washington, DC, USA, 2003. IEEE
Computer Society. ISBN 0-7695-1914-8. URL http://dl.acm.org/citation.cfm?id=824467.
825010.

K. Ranganathan and I. Foster. Design and evaluation of dynamic replication strategies for a high-
performance data grid. In International Conference on Computing in High Energy and Nuclear
Physics, 2001.

Red Hat, Inc. Gluster: Storage for your cloud. Last visited, Nov. 2015. URL http://www.gluster.
org/.

W. J. Reed. The pareto, zipf and other power laws. Economics Letters, 74(1):15 – 19, 2001.
ISSN 0165-1765. DOI: 10.1016/S0165-1765(01)00524-9. URL http://www.sciencedirect.com/
science/article/pii/S0165176501005249.

180 BIBLIOGRAPHY

W. J. Reed. The pareto law of incomes - an explanation and an extension. Physica A:
Statistical Mechanics and its Applications, 319(0):469–486, 2003. ISSN 0378-4371. DOI:
10.1016/S0378-4371(02)01507-8. URL http://www.sciencedirect.com/science/article/pii/
S0378437102015078.

W. J. Reed and B. D. Hughes. From gene families and genera to incomes and internet file
sizes: Why power laws are so common in nature. Physical Review E, 66(6), Dec 2002. DOI:
10.1103/PhysRevE.66.067103. URL http://link.aps.org/doi/10.1103/PhysRevE.66.067103.

W. J. Reed and M. Jorgensen. The double pareto-lognormal distribution - a new paramet-
ric model for size distributions. Communications in Statistics - Theory and Methods, 33(8):
1733–1753, 2004. DOI: 10.1081/STA-120037438. URL http://www.tandfonline.com/doi/abs/
10.1081/STA-120037438.

G. F. Riley. The Georgia Tech Network Simulator. In Proceedings of the ACM SIGCOMM
workshop on Models, methods and tools for reproducible network research, MoMeTools ’03, pages
5–12, New York, NY, USA, 2003. ACM. ISBN 1-58113-748-6. DOI: 10.1145/944773.944775.
URL http://doi.acm.org/10.1145/944773.944775.

C. Roadknight, I. Marshall, and D. Vearer. File popularity characterisation. Performance Evalu-
ation Rev., 27(4):45–50, Mar 2000.

A. Rowstron and P. Druschel. Storage management and caching in past, a large-scale, persistent
peer-to-peer storage utility. SIGOPS Oper. Syst. Rev., 35(5):188–201, 2001. ISSN 0163-5980.
DOI: 10.1145/502059.502053.

L. M. Sánchez García. Diseño, implementación y evaluación del sistema de ficheros paralelo
Expand 2.0. Bachelor’s thesis, Computer Science department, Universidad Carlos III de Madrid,
2003.

L. M. Sánchez García. Sistema de ficheros paralelo escalable para entornos “cluster”. PhD thesis,
Computer Science department, Universidad Carlos III de Madrid, Nov. 2009. URL http://hdl.
handle.net/10016/6738.

L. M. Sánchez García, J. M. Pérez, A. Calderón, F. García Carballeira, and J. Carretero. Arqui-
tectura escalable para E/S de altas prestaciones en sistemas heterogéneos. In XV Jornadas de
Paralelismo, 2004.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementation of
the SUN network filesystem. In Proceddings of the 1985 USENIX Conference, pages 119–130.
USENIX, 1985.

S. Sarma and E. Fleisch. Auto-ID Labs. Last visited, Oct. 2015. URL http://www.autoidlabs.
org/.

M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and D. C. Steere. Coda:
a highly available file system for a distributed workstation environment. IEEE Transactions on
Computers, 39(4):447–459, 1990. ISSN 0018-9340. DOI: 10.1109/12.54838.

BIBLIOGRAPHY 181

F. Schmuck and R. Haskin. GPFS: A shared-disk file system for large computing clusters. In
Proceedings of the First Conference on File and Storage Technologies (FAST), pages 231–244,
Jan. 2002.

R. Schollmeier. A definition of peer-to-peer networking for the classification of peer-to-peer archi-
tectures and applications. In Peer-to-Peer Computing, 2001. Proceedings. First International
Conference on, pages 101 –102, aug 2001. DOI: 10.1109/P2P.2001.990434.

C. Science and T. Board, editors. Supercomputers. National Academy Press, Washington, 1989.
ISBN 0309040884.

A. P. Sheth and J. A. Larson. Federated database systems for managing distributed, hetero-
geneous, and autonomous databases. ACM Comput. Surv., 22(3):183–236, Sept. 1990. ISSN
0360-0300. DOI: 10.1145/96602.96604. URL http://doi.acm.org/10.1145/96602.96604.

H. Simitici and D. Reed. A Comparison of Logical and Physical Parallel I/O Patterns. In Inter-
national Journal of High Performance Computing Applications, special issue (I/O in Parallel
Applications), 12(3), pages 364–380, 1998.

L. Smarr and C. E. Catlett. Metacomputing. Commun. ACM, 35:44–52, June 1992. ISSN 0001-
0782. DOI: 10.1145/129888.129890. URL http://doi.acm.org/10.1145/129888.129890.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI-The Complete Reference,
Volume 1: The MPI Core. MIT Press, Cambridge, MA, USA, 2nd. (revised) edition, 1998. ISBN
0262692155.

K. Sohraby. Wireless Sensor Networks. Wiley, New York, 2007. ISBN 9780471743002.

S. R. Soltis, T. M. Ruwart, and M. T. OâĂŹkeefe. The global file system1. In Proceedings of the
Fifth NASA Goddard Conference on Mass Storage Systems and Technologies, volume 1, page
319. NASA, Sept. 1996.

S. R. Soltis, M. T. O’keefe, T. M. Ruwart, G. A. Houlder, J. A. Coomes, M. H. Miller, E. A.
Soltis, R. W. Gilson, K. W. Preslan, et al. Global file system and data storage device locks,
Dec. 2002. US Patent 6,493,804.

H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and A. Chien. The MicroGrid:
A scientific tool for modeling computational grids. Scientific Programming, 8(3):127–141, Aug.
2000. ISSN 1058-9244. URL http://dl.acm.org/citation.cfm?id=1239907.1239908.

R. Stevens, P. Woodward, T. DeFanti, and C. Catlett. From the i-way to the national technology
grid. Commun. ACM, 40:50–60, November 1997. ISSN 0001-0782. DOI: 10.1145/265684.265692.
URL http://doi.acm.org/10.1145/265684.265692.

R. Subramanian and B. D. Goodman. Peer to Peer Computing: The Evolution of a Disruptive
Technology. IGI Publishing, Hershey, PA, USA, 2005. ISBN 1591404290.

A. Sulistio, G. Poduval, R. Buyya, and C.-K. Tham. On incorporating differentiated levels of
network service into gridsim. Future Gener. Comput. Syst., 23(4):606–615, May 2007. ISSN
0167-739X. DOI: 10.1016/j.future.2006.10.006. URL http://dx.doi.org/10.1016/j.future.
2006.10.006.

182 BIBLIOGRAPHY

Sun Microsystems. WebNFS Developer’s Guide, chapter 2 Extended Filesystem API. Oracle,
2004. URL http://docs.oracle.com/cd/E19455-01/806-1067/6jacl3e6g/index.html.

M. Szeredi. FUSE: Filesystem in userspace. Last visited, Apr. 2013. URL http://fuse.
sourceforge.net.

A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and U. Nagashima. Overview of a performance
evaluation system for global computing scheduling algorithms. In Proceedings of the 8th IEEE
International Symposium on High Performance Distributed Computing (HPDC), pages 97–104,
1999. DOI: 10.1109/HPDC.1999.805287.

G. Tan, V. C. Sreedhar, and G. R. Gao. Analysis and performance results of computing between-
ness centrality on ibm cyclops64. J. Supercomput., 56:1–24, April 2011. ISSN 0920-8542. DOI:
10.1007/s11227-009-0339-9. URL http://dx.doi.org/10.1007/s11227-009-0339-9.

A. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms (2nd ed.).
Prentice Hall, 2007.

O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and S. Sekiguchi. Grid datafarm architecture
for petascale data intensive computing. In Proceedings of the 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid, CCGRID ’02, pages 102–, Washington, DC,
USA, 2002. IEEE Computer Society. ISBN 0-7695-1582-7. URL http://dl.acm.org/citation.
cfm?id=872748.873272.

O. Tatebe, N. Soda, Y. Morita, S. Matsuoka, and S. Sekiguchi. Gfarm v2: A grid file system
that supports high-performance distributed and parallel data computing. In Proceedings of
the 14th International Conference on Computing in High Energy Physics and Nuclear Physics
(CHEP’04), Interlaken, Switzerland, September 27-October 1, 2004, pages 1172–1175, 2005.
URL http://doc.cern.ch/yellowrep/2005/2005-002/p1172.pdf.

O. Tatebe, K. Hiraga, and N. Soda. Gfarm grid file system. New Generation Computing, 28(3):
257–275, 2010. ISSN 0288-3635. DOI: 10.1007/s00354-009-0089-5. URL http://dx.doi.org/
10.1007/s00354-009-0089-5.

TechTerms.com. WWW. Last visited, Apr. 2013. URL http://www.techterms.com/definition/
www.

R. Thakur, W. Gropp, and E. Lusk. On implementing MPI-IO portably and with high per-
formance. In Proceedings of the Sixth Workshop on I/O in Parallel and Distributed Systems,
IOPADS ’99, pages 23–32, New York, NY, USA, 1999a. ACM. ISBN 1-58113-123-2. DOI:
10.1145/301816.301826. URL http://doi.acm.org/10.1145/301816.301826.

R. Thakur, W. Gropp, and E. Lusk. Achieving high performance with MPI-IO. Technical Report
ANL/MCS-P742-0299, Argonne National Laboratory, 1999b.

R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective I/O in ROMIO. In Proceedings of
the 7th Symposium on the Frontiers of Massively Parallel Computation, pages 182–189. Argonne
National Laboratory, 1999c.

The Apache Software Foundation. HDFS Architecture Guide. Last visited, Nov. 2015a. URL
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

BIBLIOGRAPHY 183

The Apache Software Foundation. Apache Hadoop. Last visited, Nov. 2015b. URL http://
hadoop.apache.org/.

The HDF group. HDF5 Reference Manual, 2012. URL http://www.hdfgroup.org/HDF5/doc/RM/
RM_H5Front.html.

The New York Times. Japanese ‘k’ computer is ranked most powerful, 2011. URL http://www.
nytimes.com/2011/06/20/technology/20computer.html?_r=1.

The NS-3 Consortium. ns-3. Last visited, Apr. 2013. URL http://www.nsnam.org/.

The SimGrid Team. Simgrid. Last visited, Nov. 2014. URL http://simgrid.gforge.inria.fr/.

The University of Southern California. The network simulator - ns-2. Web page, Nov. 2011. URL
http://www.isi.edu/nsnam/ns/.

S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson. Internet X.509 public key
infrastructure (PKI) proxy certificate profile. Technical Report 3820, IETF, June 2004. URL
http://www.ietf.org/rfc/rfc3820.txt.

P. Urbán, X. Défago, and A. Schiper. Neko: A Single Environment to Simulate and Prototype
Distributed Algorithms. Journal of Information Science and Engineering, 18(6):981–997, 2002.

U.S. Department of Energy. The Magellan Report On Cloud Computing for Science. Office of
Advance Scientific Computing Research (ASCR), 2011. URL http://science.energy.gov/~/
media/ascr/pdf/program-documents/docs/Magellan_Final_Report.pdf.

A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić, J. Chase, and D. Becker. Scalability
and accuracy in a large-scale network emulator. ACM SIGOPS Operating Systems Review -
OSDI ’02: Proceedings of the 5th symposium on Operating systems design and implementation,
36(SI):271–284, Dec. 2002. ISSN 0163-5980. DOI: 10.1145/844128.844154. URL http://doi.
acm.org/10.1145/844128.844154.

A. Varga. The OMNeT++ discrete event simulation system. In Proceedings of the European
Simulation Multiconference (ESM’2001), volume 9, Prague, Czech Republic, June 2001.

A. Varga. Omnet++. In K. Wehrle, M. Güneş, and J. Gross, editors, Modeling and Tools for
Network Simulation, pages 35–59. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-12330-6.
DOI: 10.1007/978-3-642-12331-3_3.

A. Varga. The INET framework. Last visited, Apr. 2013. URL http://inet.omnetpp.org/.

A. Varga and R. Hornig. An overview of the omnet++ simulation environment. In Proceedings
of the 1st international conference on Simulation tools and techniques for communications, net-
works and systems & workshops, Simutools ’08, pages 60:1–60:10, ICST, Brussels, Belgium,
Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering). ISBN 978-963-9799-20-2. URL http://dl.acm.org/citation.cfm?id=
1416222.1416290.

184 BIBLIOGRAPHY

P. Velho and A. Legrand. Accuracy study and improvement of network simulation in the Sim-
Grid framework. In Proceedings of the 2nd International Conference on Simulation Tools
and Techniques, Simutools ’09, pages 13:1–13:10, ICST, Brussels, Belgium, Belgium, 2009.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineer-
ing). ISBN 978-963-9799-45-5. DOI: 10.4108/ICST.SIMUTOOLS2009.5592. URL http:
//dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5592.

P. Velho, L. Schnorr, H. Casanova, and A. Legrand. Flow-level network models: have we reached
the limits? Rapport de recherche RR-7821, INRIA, Nov. 2011. URL http://hal.inria.fr/
hal-00646896.

S. Venugopal, R. Buyya, and K. Ramamohanarao. A taxonomy of data grids for distributed data
sharing, management and processing. Technical Report GRIDS-TR-2005-3, Grid Computing
and Distributed Systems Laboratory, University of Melbourne, Australia, Apr. 2005. URL
http://www.cloudbus.org/reports/DataGridTaxonomy.pdf.

S. Venugopal, R. Buyya, and K. Ramamohanarao. A taxonomy of data grids for distributed data
sharing, management, and processing. ACM Comput. Surv., 38(1), June 2006. ISSN 0360-0300.
DOI: 10.1145/1132952.1132955. URL http://doi.acm.org/10.1145/1132952.1132955.

W3C Technical Architecture Group. Architecture of the world wide web, volume one, 2004. URL
http://www.w3.org/TR/webarch/.

F. Wang, M. Nelson, S. Oral, S. Atchley, S. Weil, B. W. Settlemyer, B. Caldwell, and J. Hill.
Performance and scalability evaluation of the ceph parallel file system. In Proceedings of the 8th
Parallel Data Storage Workshop, PDSW ’13, pages 14–19, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2505-9. DOI: 10.1145/2538542.2538562. URL http://doi.acm.org/10.1145/
2538542.2538562.

S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller. Dynamic metadata management for
petabyte-scale file systems. In Proceedings of the 2004 ACM/IEEE conference on Supercomput-
ing, page 4. IEEE Computer Society, 2004.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, OSDI ’06, pages 307–320, Berkeley, CA, USA, 2006a. USENIX
Association. ISBN 1-931971-47-1. URL http://dl.acm.org/citation.cfm?id=1298455.1298485.

S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn. CRUSH: Controlled, scalable, decen-
tralized placement of replicated data. In Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, page 122. ACM, 2006b.

D. Werthimer, J. Cobb, M. Lebofsky, D. Anderson, and E. Korpela. SETI@HOME—massively
distributed computing for SETI. Computing in Science and Engineering, 3(1):78–83, 2001. ISSN
1521-9615. DOI: 10.1109/5992.895191.

B. White, A. S. Grimshaw, and A. Nguyen-tuong. Grid-Based File Access: The Legion I/O Model.
In Proceedings of the Ninth IEEE Symposium on High Performance Distributed Computing,
pages 165–173, 2000.

BIBLIOGRAPHY 185

B. S. White, M. Walker, M. Humphrey, and A. Grimshaw. LegionFS: A Secure and Scalable File
System Support Cross-Domain High Performance Applications. In Proceedings of Supercomput-
ing 2001, 2001. URL http://legion.virginia.edu/papers/SC2001.pdf.

T. White. Hadoop: The Definitive Guide. O’Reilly, second edition, 2011.

A. Williams, M. Arlitt, C. Williamson, and K. Barker. Web workload characterization: Ten years
later. In X. Tang, J. Xu, and S. T. Chanson, editors, Web Content Delivery, volume 2 of Web
Information Systems Engineering and Internet Technologies Book Series, pages 3–21. Springer
Science+Business Media, Inc., 2005. ISBN 978-0-387-24356-6. DOI: 10.1007/0-387-27727-7_1.

World Wide Web Consortium (W3C). Extensible markup language (XML) 1.0, 2008. URL
http://www.w3.org/TR/xml/.

Y. Yuan, Y. Wu, G. Yang, and F. Yu. Dynamic data replication based on local optimization prin-
ciple in data grid. In Proceedings of the Sixth International Conference on Grid and Cooperative
Computing (GCC 2007), pages 815–822, 2007. DOI: 10.1109/GCC.2007.62.

