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Optical fiber sensor boosts
aircraft engine monitoring
Joseba Zubia, Carmen Vázquez, and Javier Mateo

A reflective, intensity-modulated optical fiber sensor enables monitor-
ing of tip clearance and tip timing in aircraft engines at low cost and
high resolution.

Measuring blade vibrations in aircraft engines is crucial to not
only assess turbine operation but also predict blade failures from
fatigue. To predict the lifespan of engine blades and to prevent
damage that can lead to huge repair costs or even to engine
destruction, a low-cost and effective blade vibration system is
needed. Fiber-optic sensors (FOS) are well-established technol-
ogy broadly used to monitor physical parameters in airplanes.
For example, FOS have been used to detect impact location and
damage, temperature, pressure, strain, and deformation.1 Re-
cently, we have demonstrated that FOS are also well suited to
measure the blade tip timing (BTT) and tip clearance (TC) in air-
craft turbines,2, 3 two of the main parameters governing the effi-
ciency of a turbine engine.4

Techniques that measure blade tip timing can provide use-
ful information to monitor the structural health of an engine,
whereas tip clearance is related to engine efficiency. Blade vi-
brations are usually measured with strain gauges. Despite their
proven suitability, strain gauges require considerable instrumen-
tation, are restricted to a few blades of the turbine, and require
physical contact with the blades, which then disturbs the blade.
Other approaches are based on magnets, capacitive sensors,
eddy current sensors, discharging probes, require conducting
blades, and/or only measure the shortest clearance.5 By con-
trast, FOS are small in size and provide simple, noncontact
measurements and instrumentation that are high in sensitivity,
resolution, and bandwidth. Furthermore, FOS are robust to elec-
tromagnetic interference and can measure every blade.

We used a reflective intensity-modulated FOS to measure both
blade tip timing and tip clearance. The main component is a tri-
furcated optical fiber bundle with three ‘legs’ on one side and a
common leg on the other. The common leg has a central trans-
mitting fiber, which illuminates the blade, and two concentric

Figure 1. (a) Microscope image of the cross-section of the common leg
(CL) of the optical fiber bundle (OFB) of the fiber-optic sensor. (b) Op-
erational principle. (c) Experimental set-up. BTT: Blade tip timing.
DO: Digital oscilloscope. L0, L1, L2: Legs of OFB. LD: Laser diode.
NA: Numerical aperture. PD1, PD2: Photodetectors. RB: Rotor blade.
TC: Tip clearance.

rings of receiving fibers surround the central fiber, which collect
the reflected light from the blade. A laser is coupled to the cen-
tral fiber to transmit the light to the probe end. Two identical
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Figure 2. (a) Deviation of each blade from the equilibrium position in
a complete revolution. (b) Fourier transform of the deviations. EO: En-
gine order. ND: Nodal diameter.

photodetectors are connected to the receiving legs to collect the
reflected light (see Figure 1).

The TC value is the minimum distance between the tip of a
blade and the casing of the engine and is obtained as a function
of the quotient of two photodetector voltages. Contrary to the re-
sults obtained by other approaches, our sensor has a wide band
of frequency response, gives us the distance for each blade—
rather than for a single blade of contact measurements—with

high accuracy (here, 25�m), and does not require physical con-
tact with the blades.6

The BTT technique is based on the measurement of the arrival
times (the time taken by the blades to arrive at a fixed position,
where the FOS is placed) of all the blades. If the blades vibrate,
their arrival times precede or succeed the theoretical nonvibrat-
ing arrival times. The difference between these values is con-
verted into blade deflections in the postprocessing of the system.
Fast Fourier transform provides the traveling wave spectrum,
which is an average value of all the blade vibration amplitudes
for each frequency (see Figure 2). This information can then be
used to monitor the integrity of the blades against flutter, crack
propagation, or foreign-object damage.

With this measurement system, we can simultaneously carry
out both BTT and TC measurements with the same probe of a
real turbine rig, something other systems cannot do. In addition,
the measurement system is a noncontact one, which enables in-
formation to be obtained from all the blades with very short in-
strumentation times and relatively low cost. Next, we hope to
characterize the piston seal with three circumferentially equidis-
tributed sensors, placed approximately 5mm away from the disk
edge. Such a setup should measure TC changes of ˙100�m with
an accuracy of 1�m in a distance range of 4.5–5.5mm.
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