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Abstract

The analysis of financial series, assuming calendar effects and unequally spaced

times over continuous time, can be studied by means of COGARCH models based

on Lévy processes.

In order to estimate the COGARCH model parameters, we propose to use two

different Bayesian approaches. First, we suggest to use a Hamiltonian Montecarlo

(HMC) algorithm that improves the performance of standard MCMC methods.

Secondly, we introduce an Approximate Bayesian Computational (ABC) methodo-

logy which allows to work with analytically infeasible or computationally expensive

likelihoods.

After a simulation and comparison study for both methods, HMC and ABC, we

apply them to model the behaviour of some NASDAQ time series and we discuss

the results.

Keywords: Approximate Bayesian Computation methods (ABC), Bayesian infer-
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ence, COGARCH model, Continuous-time GARCH process, Hamiltonian Monte

Carlo methods (HMC), Lévy process.
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1 Introduction

Financial series present some particular characteristics (see Mandelbrot (1963)) be-

cause of the presence of heteroscedasticity, or calendar effects. In such cases, ARCH

or GARCH models may be suitable options, but when financial data are observed

over unequally spaced times, standard discrete time models may be not adequate.

Although there are different approaches in order to generalize GARCH models

on continuous time (see for a review e.g. Kluppelberg et al. (2010) and Granzer

(2013)), we will follow in this paper the Klüppelberg et al. (2004) approach. It is

based on a single Lévy process which incorporates continuous calendar effects and

models the jumps of the process.

Following the Klüppelberg et al. (2004) approach, Maller et al. (2008) characte-

rized a discrete time model which allows to include irregularly spaced observations.

They used an embedded sequence of discrete GARCH models Gn = (Gn(t))t≥0.

They also proved that this approximation converges in probability in strong sense

to a COGARCH model, with respect to the Skorokhod metric.

Regarding inferential and estimation techniques, Haug et al. (2007) developed

a method of moments and they showed that the resulting estimators are consistent

and asymptotically normal. On the other hand, Maller et al. (2008) presented

estimators based on pseudo-maximum likelihood techniques, and Müller (2010) used

a Markov chain Monte Carlo (MCMC) procedure for a COGARCH model driven by

a compound Poisson process. Recently, Maŕın et al. (2015) applied a data cloning
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methodology to obtain approximate maximum likelihood estimates by means of a

MCMC algorithm.

In regard of a Bayesian point of view, the standard MCMC techniques based

on the Gibbs and Metropolis-Hasting samplers may be inefficient in some situa-

tions, due to their random walk behaviour. The Hamiltonian Monte Carlo appro-

ach (HMC) addresses this situation by defining auxiliary variables and more efficient

jumping rules (see Duane et al. (1987)).

On the other hand, also under the Bayesian framework, a new class of algorithms,

called Approximate Bayesian Computational (ABC) methods, have been proposed

to tackle with likelihoods which are analytically infeasible or computationally ex-

pensive. The first type of ABC algorithm was introduced by Pritchard et al. (1999)

regarding a Population Genetics problem. The basic idea (see e.g. Csilléry et al.

(2010) is based on a rejection algorithm which simulates a large number of datasets

under a given parametric model. The parameters are sampled from a probability

distribution and reduced to summary statistics; such that the sampled parameters

are accepted or rejected if the distance between simulated and observed summary

statistics is small enough.

Therefore, for a given a tolerance level and a set of summary statistics, it is

possible to obtain a reasonable approximation to the posterior distribution of the

model parameters.

In this paper, we deal with a Bayesian approach for inference in COGARCH

models based on a Approximate Bayesian Computational (ABC) methodology and

we compare its behaviour with the Hybrid Monte Carlo (HMC) technique. In section

2 we revise the main definitions and characteristics of COGARCH models; in section

3 we describe the Hamiltonian Monte Carlo (HMC) and ABC methodologies to

obtain Bayesian estimates of the model parameters. In section 4 we first consider
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a simulation study of a COGARCH(1,1) model with fixed parameters in order to

compare the HMC and the ABC approaches. As results seem to be reasonable in

both cases, we apply these methodologies to a real example of the NASDAQ stock

index.

2 Introduction to COGARCH Models

In this section, we introduce the definition of the COGARCH model from Klüppelberg

et al. (2004) and the approximation in irregular discrete time points proposed by

Maller et al. (2008).

Definition 1. Let (Ω,F , P, (Ft)t≥0) be a filtered probability space, where (Ft)t≥0

is the natural filtration of the background driving Lévy process L = (Lt)t≥0. Given

an initial value σ0, the COGARCH process G = (Gt)t≥0 and the variance process

σ2 = (σ2
t )t≥0 are defined by the stochastic differential equations

dGt = σtdLt (1)

dσ2
t+ = βdt− ησ2

t dt+ ϕσ2
t d[L,L]t (2)

where t > 0, G0 = 0, β > 0, η > 0, ϕ ≥ 0 and [L,L]t is the quadratic variation of

the Lévy process. �

Maller et al. (2008) proved that this model can be expressed as a continuous

time limit of a sequence of GARCH models. As the COGARCH model may be

approximated by an appropriate set of GARCH processes, the parameters of the

COGARCH model can be estimated using the relation between them.

In order to deal with the approximation to a COGARCH model, Maller et al.

(2008) fixed an interval [0, T ], where T > 0, and they took the sequence of integers
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(Nn)n≥1 such that limn→∞Nn =∞, and a sequence of partitions

0 = t0(n) < · · · < tNn(n) = T,

which divides the interval [0, T ] into Nn sub-intervals of length ∆ti(n) = ti(n) −

ti−1(n). It is assumed that ∆t(n) = maxi=1,...,Nn ∆ti(n) −→ 0, when n→∞.

The corresponding discrete-time processes (Gi,n)i=1,...,Nn and (σ2
i,n)i=1,...,Nn are

defined by

Gi,n = Gi−1,n + σi−1,n

√
∆ti(n)εi,n

σ2
i,n = β∆ti(n) + (1 + ϕ∆ti(n)ε2i,n)e−η∆ti(n)σ2

i−1,n,

where i = 1, . . . , Nn, and innovations εi,n are independent and identically distributed

with E(εi,n) = 0, V ar(εi,n) = 1 and σ2
0,n = σ2

0.

The continuous-time versions of Gi,n and σ2
i,n are defined as

Gn(t) = Gi,n in t ∈ [ti−1(n), ti(n)] with Gn(0) = 0

σn(t)2 = σ2
i,n in t ∈ [ti−1(n), ti(n)]

If E(L1) = 0 and E(L2
1) = 1, there exists for each n ≥ 1 a sequence εi,n such that

ρ((Gn, σ
2
n), (G, σ2))

P−→
n→∞

0,

where ρ is the Skorokhod distance.

Therefore, the process (Gn(t), σn(t)) can be viewed as an approximation to the

COGARCH model (G(t), σ(t)) for n large enough.

Maller et al. (2008) used this approximation to fit the model to unequally spaced

time data, and they derived a pseudo-maximum likelihood function and obtained
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the estimates of the corresponding parameters by numerical maximization. We will

address the previous pseudo-likelihood function as the basis of the joint posterior

distribution of the parameters in the HMC approach.

Accordingly, let us assume that data G(ti) are distributed as a COGARCH

model, defined in (1) and (2), in time points 0 = t0 < t1 < · · · < tN = T . Let

Yi = G(ti) − G(ti−1) be returns and ∆ti = ti − ti−1 the time increments. As the

process (σti)i=1...,N is Markovian, Yi is conditionally independent of the previous

returns Yi−1, Yi−2, . . . given Fti−1 .

The conditional expectation and variance of Yi given Fti−1 , by using Proposition

5.1 in Klüppelberg et al. (2004), are

E(Yi|Fti−1) = 0

ρ2
i = V ar(Yi|Fti−1) = E(Y 2

i |Fti−1) =(
σ2
ti−1
− β

η − ϕ

)(
e(η−ϕ)∆ti − 1

η − ϕ

)
+
β∆ti
η − ϕ

, (3)

where (Lt)t≥0 is a quadratic pure jump process with E(L1) = 0, E(L2
1) < ∞ and

(σ2
t )t≥0 is stationary.

To ensure the stationarity of the process it must be taken on that E(L2
1) = 1

and E(σ2
0) = β

η−ϕ , with η > ϕ.

Then, assuming that Yi are conditionallyN(0, ρ2
i ), the pseudo-likelihood function

for the observed returns y = (y1, . . . , yN ) is

L(β, ϕ, η|y) =

 N∏
i=1

1√
2πρ2

i

 exp

{
−

N∑
i=1

y2
i

2ρ2
i

}
,
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where

σ2
i = β∆ti + e−η∆tiσ2

i−1 + ϕe−η∆ti(
√

∆tiεi,nσi−1)2

= β∆ti + e−η∆tiσ2
i−1 + ϕe−η∆tiy2

i (4)

σ2
0 =

β

η − ϕ

Equation (4) is obtained by substituting σ2
ti−1

by σ2
i−1 in (3), and assuming the

discretization of the volatility process.

3 ABC and HMC estimation in COGARCH

models

Bayesian methods have been recently applied in COGARCH models by means of a

MCMC approach (see e.g. Müller (2010)) and a data cloning approach (see Maŕın

et al. (2015)).

In this section, we also follow a Bayesian approach in COGARCH models; in par-

ticular, we address a Hamiltonian Monte Carlo (HMC) and an approximate Bayesian

computational (ABC) methodologies. HMC methodology improves the performance

of a standard MCMC approach, and ABC is a simulation-based approach that allows

to work with cumbersome likelihoods functions. In this section, we study both tech-

niques and we compare their behaviours with respect to COGARCH(1,1) model.

7



3.1 Hamiltonian Monte Carlo estimation in COGARCH

models

In a Bayesian framework, computation times can be large, particularly in cases

like COGARCH models given the complexity of these processes. In this sense, a

Hamiltonian Monte Carlo approach provides more efficient Metropolis-Hasting steps

which allow to obtain a more accurate and faster approximation to the posterior

distributions of parameters.

The original idea of HMC methods is based on Hamiltonian dynamics (see e.g.

Gelman et al. (2014) and Neal (2011) for a survey) as a general technique in theo-

retical Physics, where the total energy of a system of particles is described by means

of a function called Hamiltonian function.

When these ideas are applied in the context of Bayesian Inference, the position

of particles can be seen as the parameters of interest, i.e. θ = (θ1, . . . , θd), and the

potential energy of particles can be understood as their log–posterior distributions.

An auxiliary momentum variable φj (j = 1, . . . , d) is added for each component

θj , such that both members of the couple are jointly updated for each j. Accordingly,

the posterior distribution of θ is augmented by the distribution of the auxiliary

parameter φ, in order to obtain the joint posterior distribution P (θ,φ|y).

In the HMC procedure, simulations are derived from P (θ,φ|y), although φ is

just an auxiliary variable that enables the algorithm to move faster in the parameter

space. Additionally, in the procedure, it is required to calculate the gradient of

the log–posterior distributions which, in practice, it can be computed by means of

numerical differentiation.

Now, we first describe the HMC approach for a COGARCH(1,1) model assuming

the approximation proposed by Maller et al. (2008) and described in section 2. The
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model parameters of interest are β, η and ϕ which play the role of position variables

in the HMC scheme.

We set as prior distributions, vaguely-informative uniform distributions,

β ∼ U(0, a), ϕ ∼ U(0, c), η|ϕ ∼ U(ϕ, b) (5)

where a, c and b are positive real values and b > c.

Then, the posterior distribution is

π(β, ϕ, η|y1, · · · , yN ) ∝ L(β, ϕ, η)π(β)π(ϕ)π(η|ϕ)

∝

 N∏
i=1

1√
2πρ2

i

 exp

{
−

N∑
i=1

y2
i

2ρ2
i

}
· I(0,a)(β) · I(0,c)(ϕ) · I(ϕ,b)(η|ϕ)

∝

(
N∏
i=1

1

ρi

)
exp

{
−

N∑
i=1

y2
i

2ρ2
i

}
· I(0,a)(β) · I(0,c)(ϕ) · I(ϕ,b)(η|ϕ) (6)

and ρi is defined as

ρ2
i =

(
σ2
i−1 −

β

η − ϕ

)(
e(η−ϕ)∆ti − 1

η − ϕ

)
+
β∆ti
η − ϕ

,

where σ2
i = β∆ti + e−η∆tiσ2

i−1 + ϕe−η∆tiy2
i and σ2

0 = β
η−ϕ , with η > ϕ.

The potential energy is the derivative of the log-posterior density function,

d log π (β, η, ϕ|y1, · · · , yN )

d (β, η, ϕ)
.

The momentum variables (φ1, φ2, φ3) are auxiliary variables that are assumed

to be distributed as a normal distribution φj ∼ N (0, 1) for j = 1, 2, 3.
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3.2 ABC estimation of COGARCH models

Approximate Bayesian Computational (ABC) methods can be deemed as a natural

way to find estimates in models, where the likelihood function is not completely

known or it is intractable, although it is possible to simulate from it.

In ABC algorithms, samples are simulated from a given model and they are

compared with observed data. A more operative approach (instead of a direct

comparison between the real data and the simulated samples), is to use a statistic

ξ and to fix a small enough distance between them, bounded by a term ε.

Pritchard et al. (1999) proposed the first practical ABC algorithm: Assume we

observe some data y ∈ D ⊂ Rn, then we define:

i) A set of summary statistics ξ(Y ) (a function on data but usually not a sufficient

statistic).

ii) A distance ρ between the the simulated and the real data by means of statistic

ξ.

iii) A tolerance level ε.

Then, the algorithm can be summarized as follows:

for i = 1 to N do

– Repeat

— Generate θ′ from the prior distribution π(·)

— Generate z from the likelihood f(·|θ′)

– until ρ{ξ(z), ξ(y)} ≤ ε

Set θi = θ′

end for

The algorithm of Pritchard et al. (1999) obtains samples of the joint distribution
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of θ and z, from the marginal distribution of z,

πε(θ, z|y) =
π(θ)f(z|θ)IAε,y(z)∫

Aε,y×θ π(θ)f(z|θ)dzdθ
,

where I(·) is an indicator function and

Aε,y = {z ∈ D|ρ {ξ(z), ξ(y)} ≤ ε} .

Then, the posterior distribution is approximated as

πε(θ|y) =

∫
πε(θ, z|y)dz ≈ π(θ|y).

Noticeably, when the tolerance level ε becomes smaller better approximations to

the posterior distribution are obtained, but at a higher computational cost.

The accurate behaviour ABC algorithm depends on the appropriate selection of

the tuning parameters: the summary statistics ξ, the distance ρ and the tolerance

ε. These terms have to be set before running the algorithm, and handy selections of

them improve the results in this methodology. Although an universal procedure for

the calibration and setting of the tuning parameters remains up today as an open

issue.

McKinley et al. (2009) carried out an empirical study to test different strategies

to select the tolerance level ε, the distance ρ and the summary statistics ξ. They no-

ticed that the selection of summary statistics and distance is essential for obtaining

accurate approximations of posterior distributions.

In order to implement an ABC algorithm to estimate the COGARCH model

parameters, we have tested some possible sets of summary statistics ξ and distances

ρ.
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With regards of ρ, the standard euclidean distance seems to work appropriately.

Apropos of the set of statistics ξ, we include several relevant issues of financial series:

i) The volatility lower bound, because parameters η and β are related with it.

ii) The magnitude of the process jumps (difference between the maximum and

the minimum observed volatilities), that is related with parameter ϕ.

iii) The correlation coefficient of the squared values, related with the autocorrela-

tion of the squared returns of financial series.

iv) The sample variance.

v) The median absolute deviation.

Finally, we have noticed that, in order to find good enough results in a reasona-

ble computational time, it is better to limit the prior distributions of parameters

around the pseudo–maximum likelihood, or the moments estimates of them. Ac-

cordingly, we have used as prior distributions of parameters, uniform distributions

whose supports are located around the moment estimates (see Haug et al. (2005)).

In the next Section, the performances of the HMC and ABC approaches are

explored under simulated time series. Then, both procedures are applied in a real

data example.

4 Applications of HMC and ABC methods

In this section, we first undertake a simulation study to check and to compare

the estimates obtained by the HMC and ABC methodologies in a COGARCH(1,1)

model (see section 3).

Then, we apply both methods in order to model some Nasdaq index returns (from

January 2008 to December 2012) and the corresponding results are compared.
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4.1 HMC and ABC estimations for COGARCH(1,1)

simulated data

In this simulation study, we have simulated a series of 100 data points with param-

eters β = 0.25, η = 0.35 and ϕ = 0.02.

In the HMC method we follow the approach of section 3.1. Here, we assume

uniform prior distributions as in (5), where a = 100, b = 10 and c = 0.05. Then,

we approximate the posterior distributions of parameters (6) by simulating 3 chains

with 5000 iterations, each one.

The HMC algorithm have been programmed in Stan (Stan Development Team

(2014b)) software by means of Rstan package (Stan Development Team (2014a)).

In the ABC methodology, we follow the procedure shown in section 3.2. The

algorithm is programmed in R (R Core Team (2012)) and codes were run with

parallel computing by means of library doParallel (see Analytics and Weston

(2014)) in order to diminish computing times in multicore machines.

We use uniform prior distributions (5) but we bound their domains to close

intervals near the moments estimates of the parameters (see Haug et al. (2005)),

by using the package COGARCH (Bibbona et al. (2014)) in order to calculate them.

Then, we use the package ABC (Csillery et al. (2012)) to analyse the corresponding

outputs. We have run 100000 simulations with a tolerance level of 0.01, in such a

way that 1000 sets of parameters have been accepted as a sample from the posterior

distributions.

The results obtained by applying the HMC and ABC algorithms in the simulated

data set are shown in table 1. It displays the real values of parameters, the obtained

estimates, the standard deviations and the HPD intervals.

Regarding the accuracy of HMC and ABC methods, it may be noticed that for
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Estimates using ABC
Parameter Real Value Posterior mean S.D. HPD 0.95

β 0.25 0.335 0.119 (0.118, 0.501)
η 0.35 0.297 0.145 (0.098, 0.569)
ϕ 0.02 0.024 0.014 (0.003, 0.047)

Estimates using HMC
Parameter Real Value Posterior mean S.D. HPD 0.95

β 0.25 0.542 0.202 (0.162, 0.948)
η 0.35 0.323 0.144 (0.088, 0.367)
ϕ 0.02 0.027 0.014 (0.002, 0.048)

Table 1: Estimation of COGARCH(1,1) parameters using ABC and HMC methods

all parameters estimates are close to their corresponding real values (remarkably η

and ϕ), and they are all included in the HPD intervals. Furthermore, for parameter

β the proposed ABC algorithm obtains a smaller HPD interval.

Although both methods obtain quite similar results, the practical advantage

of the ABC approach is that it is a pure simulation-based method, where it is

not necessary to deal with approximate quasi–maximum likelihood estimation or

methods of moments. Although, the computational burden may be huge if the

support of the prior distributions is not restricted somehow, as we have considered

in section 3.2.

4.2 HMC and ABC estimations for a NASDAQ-100

stock index data set

In this section, we apply a COGARCH(1,1) model to analyse the behaviour of

the Nasdaq-100 stock index from January 2000 to November 2012. Data have

been obtained from the website finance.yahoo.com. In order to estimate the

parameters, we apply both HMC and ABC methodologies.

As in Section 4.1, in the HMC methodology we assume uniform prior distribu-

tions (5), where a = 100, b = 10 and c = 0.05. Then, we approximate the posterior
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distributions of parameters (6) by simulating 3 chains with 5000 iterations each one.

Correspondingly, the HMC algorithm have been programmed in Stan (Stan Devel-

opment Team (2014b)) software by means of Rstan package (Stan Development

Team (2014a)).

In the ABC procedure, we have used 100000 simulations with a tolerance level of

0.01, then a sample of 1000 sets of parameters have been accepted from the posterior

distribution. We have undertaken parallel computing with codes by means of library

doParallel (see Analytics and Weston (2014)) to optimize computing times.

As in Section 4.1, we use uniform prior distributions (5), whose domains are

bounded close to the moments estimates of parameters (see Haug et al. (2005)). We

use the package COGARCH (Bibbona et al. (2014)) in order to calculate the moments

estimators, and we use the package ABC (Csillery et al. (2012)) to analyse the outputs

of the program.

Results obtained with HMC can be compared with those obtained by an ABC

approach. Table 2 shows similar posterior means, standard errors and HPD intervals

for the COGARCH(1,1) parameters. Although with a long time series as in this

case, the computing times of ABC are much larger than in the HMC approach,

rounding ten times more time (3 days with a 4 cores i7 computer).

Estimates using ABC
Parameter Posterior means S.D. HPD 0.95

β 9.663 0.379 (9.040, 10.198)
η 0.077 0.031 (0.051, 0.136)
ϕ 0.033 0.013 (0.007, 0.049)

Estimates using HMC
Parameter Posterior means S.D. HPD 0.95

β 9.637 2.064 (6.155, 14.289)
η 0.053 0.004 (0.045, 0.062)
ϕ 0.046 0.002 (0.038, 0.049)

Table 2: ABC and HMC estimates for a COGARCH(1,1) model for Nasdaq daily returns data
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In general, parameter η measures the speed of the decline of a volatility burst,

and for this dataset the value is not very high, namely, when a volatility burst

appears due to the arrival of new information to markets, its influence in volatility

declines with a moderate speed.

By the other hand, parameter ϕ measures the magnitude of the volatility jumps

and it may be viewed as a measure of how information affects to volatility and how

fast that the market assumes new events. In this Nasdaq-100 series the estimate

of ϕ is not large, so volatility bursts seem to be small and daily index are stable

regarding the appearance of relevant information in market.

Finally, parameter β represents the level of volatility and regarding this Nasdaq-

100 series, the estimated value is quite large.

5 Final conclusions

Nowadays, GARCH modelling is a very popular methodology, that takes into ac-

count the most important stylized facts that financial series present, and it is applied

in equally spaced data. But there are periods of time with holidays and weekends

that may affect the behaviour of series, and it is convenient to introduce unequally

spaced or continuous time periods. In this sense, COGARCH models may be a good

alternative to tackle with this kind of situations.

In this work, we use COGARCH models based in Lévy processes which include

volatility and model the process jumps (see Klüppelberg et al. (2004)). We propose

to use Hamiltonian Monte Carlo (HMC) and Approximate Bayesian Computation

(ABC) methodologies to estimate their parameters.

The main obtained results are:

i) Both HMC and ABC approaches can be used for inference in COGARCH
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models as they show a good behaviour in simulation studies.

ii) We have analysed the behaviour of the Nasdaq-100 index series under a

COGARCH(1,1) model, by means of HMC and ABC methodologies. Re-

sults are quite similar in both cases and they can be easily interpreted from a

practical point of view.

iii) Although the ABC method may be used in long real time series, and programs

can be efficiently parallelized, the computing times are larger than in the case

of the HMC approach. So in this point HMC would be a better option.
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