
Analyzing Audit Trails in the Aeolus Security Platform
by

Aaron Blankstein
S.B., C.S. M.I.T., 2010

S.B., Mathematics M.I.T., 2010

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTTUT
OF TECHNOLOGY

JUN 2 1 2011

LIBRARIES

ARCHNES

June 2011

@ Massachusetts Institute of Technology 2011. All rights reserved.

Author................
Department of Electrical Engineering and Computer Science

May 20, 2011

Certified by
Barbara H. Liskov
Institute Professor
Thesis Supervisor

Accepted by-----
Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

Analyzing Audit Trails in the Aeolus Security Platform

by

Aaron Blankstein

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2011, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis presents the design and implementation of an analysis system for audit
trails generated by Aeolus, a distributed security platform based on information
flow control. Previous work focused on collecting these audit trails in the form of
event logs. This thesis presents a model for representing these events and a sys-
tem for analyzing them. In addition to allowing users to issue SQL queries over
the audit log, this analysis system provides mechanisms for active monitoring of
events. This thesis introduces a new model for event monitoring called watchers.
These watchers receive updates about events from a watcher manager. This man-
ager allows watchers to specify filters and rules for dynamically modifying those
filters. My results show that this analysis system can efficiently process large event
logs and manage large sets of queries.

Thesis Supervisor: Barbara H. Liskov
Title: Institute Professor

4

Acknowledgments

I would like to start by thanking my advisor, Prof. Barbara Liskov. Her help with

this project was invaluable. I feel very fortunate to have worked with her and

learned from her during my time with PMG. I'm very grateful for all of the patience

and effort that she invested in this work and my writing.

I thank everyone in 32-G908 for making my time in the lab more enjoyable and

my frequent trips to the coffee machine more social. I would especially like to

thank Vicky for the many conversations we spent grappling with the details of the

Aeolus platform.

I wouldn't be where I am now if it wasn't for my family. I thank my grand-

mother for all her support and encouragement over the years. I would like to

thank my parents for their support, for worrying about the things I wouldn't, and

for putting that first Compaq computer in my room so many years ago. I would

like to thank my sister for her care, understanding, and wonderful food recom-

mendations. I'd especially like thank her for being such a tough act to follow.

I would also like to thank my roommate Luke for putting up with me this year

and tagging along during both my adventures and misadventures.

I would also like to thank MIT- Anne Hunter, my advisors, professors and

friends. I would especially like to thank the Crew team. Finally, I thank the Charles

River for everything it has given and taken. Every bend will be missed.

6

Contents

1 Introduction 11

1.1 Thesis Outline . 12

2 Aeolus System Overview 13

2.1 Aeolus System Model 13

2.2 Log Collection 15

3 Modeling Events 17

3.1 Event M odel 17

3.1.1 Operation Attributes 18

3.1.2 Context Attributes 18

3.1.3 Information Flow Labels and Context 19

3.2 Authority Provenance . 20

3.3 Running Principal and the Basis . 21

4 Querying Events Directly 23

4.1 Information Flow Constraints . 23

4.2 OpName Constants . 24

4.3 Special Querying Node . 24

4.4 Direct Querying Examples . 25

5 Watchers and Active Monitoring 27

5.1 Controlling Watcher Contamination 28

5.2 Filtering Unneccessary Events . 28

5.2.1 Abstract Syntax for Filters . 28

5.2.2 Example Filters . 30

5.3 Dynamic Filter Modification . 31

5.3.1 Abstract Syntax for Rules . 31

5.3.2 Evaluating Rules . 32

5.3.3 Example Rules . 33

5.4 Semantic Constraints . 33

5.5 Watcher Definition and Registration 34

5.6 Ordering Guarantees . 35

5.7 Example Watcher Registration . 36

6 Implementation 39

6.1 Log Processor . 40

6.1.1 Collected Event Format . 40

6.1.2 Ordering Events . 41

6.1.3 Adding Context Information 42

6.1.4 Tracking Authority Provenance through Cache Lines 42

6.2 Database Manager . 43

6.2.1 Storing Events with Different Sets of Attributes 43

6.2.2 Information Flow Labels and Events 44

6.2.3 Table Indices . 44

6.3 Watcher Manager . 45

6.3.1 Registration Manager . 45

6.3.2 Event Dispatcher . 47

6.3.3 Automatic Removal of Unsatisfiable Patterns 48

6.3.4 Shipment Threads . 48

7 Performance Evaluation 51

7.1 Log Processor . 51

7.2 Dispatching Quickly . 52

7.3 Event Detection Latency . 57

8 Related Work 59

9 Future Work and Conclusions 63

9.1 Contributions . 63

9.2 Future Work . 64

A Event Attributes and Context Information 67

A.1 Operations . 67

A.2 OpAttributes . 68

A.3 General Attributes and Context Fields 69

10

Chapter 1

Introduction

To manage information securely, a system must be able to detect information mis-

use. By tracking relevant security events, we can build audit trails that can be used

for this purpose. By querying and analyzing these trails, we can track information

misuses.

This thesis presents a system to analyze audit trails in Aeolus, a distributed se-

curity platform based on information flow control. Aeolus is designed to facilitate

the development of secure applications that protect confidential information.

Even in secure systems, malicious administrators, users or developers may be

able to launch attacks that tamper with or leak important information. Determin-

ing what information was compromised and who was responsible not only enables

administrators to stop further abuses, but in many instances has legal ramifica-

tions.

Tracking information misuse can be achieved by collecting relevant informa-

tion into audit trails and then analyzing those trails. By actively monitoring certain

processes and events for suspicious activity or violations of high-level policies, ap-

plications can be stopped before more violations occur. And by examining past

events, the source of violations can be determined.

This thesis presents a model for representing events and an interface for analy-

sis that supports both monitoring events as they occur and selecting events in the

past. I provide a design and implementation of this interface that prepares audit

trails for querying, accepts query requests, and executes those queries.

1.1 Thesis Outline

The remainder of the thesis is structured as follows. Chapter 2 provides relevant

background information on the Aeolus platform and log collection. Chapter 3

presents a user model for representing events and describes the original storage

format. Chapter 4 presents an interface for directly querying events. Chapter 5

describes the watcher system for active event monitoring. Chapter 6 describes the

various implementation problems involved in creating the user model of events,

executing queries, and running watchers. Chapter 7 evaluates the various com-

ponents of the analysis system in terms of performance. Chapter 8 discusses re-

lated work in event tracing systems, streaming databases, and intrusion detection.

Chapter 9 presents some topics for future work and reviews the contributions of

the thesis. Appendix A details the various attributes of the user event model.

Chapter 2

Aeolus System Overview

My work on analysis of audit information has been carried out on top of a secu-

rity platform called Aeolus. In this chapter, I present an overview of the Aeolus

security model, and relevant details of log collection. More complete descriptions

of Aeolus and log collection can be found in Cheng [8] and Popic [18].

2.1 Aeolus System Model

Aeolus is a distributed security platform based on information flow control. In

information flow control, all data are tagged with security labels. Security labels

are sets of tags, and these tags become associated with processes as they read data.

Processes can communicate with other processes within the system and the ap-

propriate tags will flow between them. Processes carrying tags are called contam-

inated. Contaminated processes cannot write to arbitrary files or communicate

outside of the system. Tags can be removed from a process only if that process has

authority for that tag.

Aeolus associates each process and piece of information with two labels: se-

crecy and integrity. As information flows through the system, the following con-

straints are imposed on the information and the receiver.

SECRECYinformation C SECRECYreceiver

INTEGRI1Yinformation 2 INTEGRIYreceiver

For example, if a process has secrecy label {SECRET}, it may only write to files

containing the tag SECRET in their secrecy label. Integrity, however, must flow

towards smaller labels. For example, if a file has integrity label {BOB}, only a

process whose integrity label constains BOB can write to the file.

Certain modifications of a process' labels require authority. Declassification,

removing a tag from the secrecy label, and endorsement, adding a tag to the in-

tegrity label, both require authority. The opposite modifications, however, do not.

In Aeolus, authority is derived from principals (users or roles) and processes run

on behalf of those principals. Principals gain authority through delegations from

other principals.

VN V

AS
AeoluAeolus

internet

Figure 2-1: High level overview of Aeolus system architecture.

The Aeolus system is designed to support distributed applications. Figure 2-

1 shows an overview of the system architecture. Each computer is modeled as

a node and each node may run several virtual nodes. These virtual nodes are re-

sponsible for running user processes. User processes may communicate with other

processes on the same virtual node using shared state mechanisms and communi-

cate with other virtual nodes using an RPC mechanism. Aeolus manages the flow

of labels over shared state and through RPC calls. The Aeolus library and runtime

also manages authority state - the collection of all of the tags and authority chains

for principals (roles or users) in the system. Additionally, Aeolus provides a file

system where each file has integrity and secrecy labels.

2.2 Log Collection

Aeolus Node Aeolus Node Aeolus Node Authority Server

Log Collector Node

Figure 2-2: Flow of logs to the log collection system.

Aeolus distributes log collection across all nodes in the system. Each node is

responsible for logging any events that occur locally Nodes submit these logs

periodically to a central log collector that stores the events for later processing and

analysis.

All calls to the Aeolus runtime generate events. For example, when a user de-

classifies a tag from their label, this creates a Declassify event. Events are ordered

to preserve causal relationships. Each event in a single user process holds a de-

pendency to the previous event in that process. Additionally, events may depend

on events in other processes or nodes. For example, a Declassify event depends on

the last authority update seen by that process.

The format of events is described in detail in Chapter 3.

16

Chapter 3

Modeling Events

Audit events are represented so that users can write simple queries over simple

structures for most analysis tasks. In this section, I present the event model used

for querying and active monitoring.

3.1 Event Model

Each event is represented to the user as a data object with a large set of attributes.

Events have the following structure:

EventCounter

This is a long integer that is used for determining event dependency. If

e.EventCounter < e'.EventCounter then e is certain to not depend on e'.

OpName

This is an integer code representing the name of the operation that generated

the event. For example, an event may be a Declassify or Delegate operation.

User-specified events have the OpName UserEvent.

OpAttributes

This is a group of attributes storing additional information about the opera-

17

tion that generated the event. For example, a Declassify event contains OpAt-

tributes for the declassified tag and the result of the declassification (accepted

or rejected).

ContextAttributes

This is a group of attributes storing information about the context of an op-

eration.

3.1.1 Operation Attributes

OpAttributes is a group of attributes storing information specific to the opera-

tion that generated an event. These attributes are largely composed of arguments

and results from Aeolus library calls. For example, a Fork operation has a field,

SwitchedPrincipal, that identifies the principal of the forked process.

Different operations store different OpAttributes. For example, file operations

contain an attribute Filename. A Declassify operation does not have this at-

tribute. Appendix A provides a complete listing of operations and attributes.

3.1.2 Context Attributes

ContextAttributes is a group of attributes storing information about the process

and environment of an event. It is composed of the following fields:

Node

This is a long integer that identifies the node that the event ran on.

VirtualNode

This is a long integer identifier for the virtual node of the event. Special

virtual nodes, such as the Authority Server, have reserved identifiers.

Process

This is an identifier for the user process that generated the event. System

events such as classloading, occur in a special system process whose identi-

fier is a known constant.

Principal

User processes all run on behalf of a principal. This is an integer identifying

that principal.

Secrecy

This is the secrecy label of an event's process at the time it was logged. This is

also the secrecy of the event object when it is used within the Aeolus system.

Integrity

This is the integrity label of the event's process at the time it was logged.

Predecessors

This holds a list of EventCounter values corresponding to the direct pre-

decessors of this event. All events except the first one depend on the event

immediately before them in the same process. Some events also depend on

events in a different process. For example, file reads will depend on the last

write event to that file. Using these dependencies, the analysis system can

guarantee a causal ordering of events.

Timestamp

This attribute stores the local time at the node where an event was collected at

the time it was collected. Because local clock times can vary between nodes,

this attribute cannot be used to correctly order events.

3.1.3 Information Flow Labels and Context

The secrecy and integrity attributes warrant some additional attention. Because

events themselves may convey sensitive information, each event object carries se-

crecy and integrity labels. For events occurring in a user process, these labels are

the process labels immediately before the event occurred. So, if a process' secrecy

label contains a tag T before a Declassify event, the secrecy label of the correspond-

ing audit event contains the tag T, but labels of subsequent events in that process

will not. Events that occur outside of a user process, such as Authority State events,

have empty labels.

3.2 Authority Provenance

Answering a simple question about authority related events can become quite dif-

ficult. For example, "Who authorized this declassification?" could be answered in

a number of ways. If the declassification ran on a process with principal Bob, then

Bob is one answer. But if Bob is not the creator of the declassified tag, he must have

been granted authority by another user, or be acting on behalf of another user. An-

swering these queries requires knowing, at the time of the event, how a process

became authoritative for a particular tag. This is called the authority provenance.

~reated tag T)BoCao

Figure 3-1: This graph represents the authority provenance for Carol's declassifi-
cation of a tag T. Alice has authority because she created the tag. Alice delegated
her authority to Bob. Bob then delegated his authority for the tag to Carol.

The authority provenance is the list of principals that records how a particular

principal obtained authority for a particular tag (see Figure 3-1). Declassify and

Endorse events contain a field Autho r i t yP r ovenan ce that holds the provenance

that event used. This field is represented as a list of principals, beginning with the

creator of the tag and ending with the running principal.

3.3 Running Principal and the Basis

The Aeolus system allows processes to switch to other principals that they ActFor.

If events only provide information about the current principal, this can be used to

disguise certain uses of authority. For example, an administrator might be inter-

ested in any uses of a principal Bob's authority. Suppose Bob has authority for a tag

ALICE-SECRET because he has an ActFor delegation from Alice. If Bob switches

to principal Alice and performs a Declassify, the event contains no reference to

Bob. The authority provenance will only store Alice's provenance and the running

principal will point to Alice.

To solve this problem, the running principal field is actually a stack of princi-

pals, called the basis, that ends with the currently running principal. This way,

when Bob switches to another principal via a Call, the logged event will retain

information implicating Bob's involvement.

22

Chapter 4

Querying Events Directly

In this chapter, I provide the interface for querying past events. The audit trail may

be queried using read-only SQL. Events appear in a single table where each event

attribute is a distinct column. Events lacking certain attributes hold NULL values

in those columns.

4.1 Information Flow Constraints

To prevent queries from overly contaminating the issuing process, each query pro-

vides secrecy and integrity labels. The querying system must make sure that only

events fitting those labels are returned. These events fulfill the following con-

straints:

SECRECYevent

INTEGRITYvemt

SECRECYuery

INTEGRITYqtery

The queries issued against the table see a view of the table containing only those

events matching the provided labels. This technique is called query by label and

more detail is in Schultz [21]. Figure 4-1 shows an an example of a few different

views of the same event table.

EventCounter Secrecy EventCounter Secrecy EventCounter Secrecy
1 {} 1 {} 10{}
2 {alice} 2 {alice} (c)
3 {alice, bob} (b)

(a)

Figure 4-1: Example of returned events for the same query on the same table with
different secrecy labels for the query. Figure (a) shows the results with secrecy label
{alice, bob}. Figure (b) shows the results with secrecy label {alice} and Figure (c)
shows the results with the null secrecy label{}.

4.2 OpName Constants

The event field OpName stores integers that code for specific operations in the

Aeolus System. Rather than having to look up the integer value, however, queries

may use the actual operation name. Therefore, queries may be written like the

following:

SELECT * FROM EVENTS WHERE

OpName = DECLASSIFY

4.3 Special Querying Node

Our system uses a special querying node to accept and execute audit trail queries.

Queries are issued via normal Aeolus RPC calls to the method in Figure 4-2.

After running the query, the RPC will return the result set as a QueryResult ob-

ject. This object has only two (final) fields: lastEventCounter and results. lastEvent-

Counter holds the highest EventCounter value that the database has seen when the

QueryResult executeQuery(String query,

Label secrecy,

Label integrity);

Figure 4-2: API for executing direct queries.

query was executed. results is a two-dimensional array of Objects storing the re-

sult set of the query. The provided parameters secrecy and integrity are the process

labels and are used for query by label as discussed in Section 4.1.

4.4 Direct Querying Examples

A common pattern in Aeolus applications is to delegate specific roles to users.

For example, in a medical clinic, each doctor may be represented as a separate

principal, but each doctor has been delegated the doctor role. A query to determine

all the doctors currently seen by the logging system would look like the query in

Figure 4-3.

SELECT DelegatedPrincipal FROM EVENTS WHERE

OpName = DELEGATE AND

DelegatingPrincipal = DoctorRole

Figure 4-3: An example query looking for all delegations to DoctorRole.

Another common query is of the form: "What tags has Bob's authority been

used to declassify?" This query makes use of the AuthorityProvenance field

described in Section 3.2. A query for all declassifications using Bob's authority

looks like the query in Figure 4-4. That query uses the =ANY statement in Post-

greSQL [20]. This statement is true if any of the elements of the list is equal to the

left operand.

SELECT TagRemoved FROM EVENTS WHERE

OpName = DECLASSIFY AND

Bob=ANY (AuthorityProvenance)

Figure 4-4: An example query using the AuthorityProvenance field to find
declassifications.

Chapter 5

Watchers and Active Monitoring

The active monitoring system is designed to enable Aeolus users to watch events in

the system without excessively burdening them with irrelevant events, requiring

excessive authority, or overly limiting their monitoring capabilities. For this task I

introduce client objects called watchers that receive event notifications from a server

called the Watcher Manager. In this chapter I present the design of watchers and

the Watcher Manager.

Figure 5-1: Flow of events from originating nodes to watchers.

Clients wishing to receive updates construct a virtual node implementing the

watcher interface and register this virtual node with the Watcher Manager. The

Watcher Manager then begins sending events to the watcher. Figure 5-1 shows

how events travel from source nodes and ultimately to watchers.

A watcher typically starts by running a direct query to gather some initial in-

formation from the audit trail. The watcher then attaches to the Watcher Manager

to receive updates. From the direct query, the watcher learns an EventCounter.

The watcher supplies this EventCounter as an argument to ensure that events

are not missed between attaching and the initial query.

5.1 Controlling Watcher Contamination

As discussed in Chapter 3, events carry information flow labels. These labels con-

taminate the watcher as it receives updates. For the watcher to raise an alert, it

would need authority for its labels. To prevent itself from becoming overly con-

taminated, a watcher must specify its labels when it registers. The Watcher Man-

ager will then filter the events that the watcher receives based on those labels.

5.2 Filtering Unneccessary Events

Even while filtering with labels, watchers would receive a large volume of events.

Watchers may specify an additional set of filters that reduce the events that they

receive.

Each filter represents a set of events of interest to a watcher. At any moment

there is a set of filters associated with a watcher and each event is evaluated with

respect to those filters. If it matches a filter, it will be sent to the watcher.

5.2.1 Abstract Syntax for Filters

Filters are described using the specification language presented in Figure 5-2. This

syntax is defined using an extended BNF grammar. The extension a... denotes a

list of one or more

font.

<filters>

<filter>

<joined-filters>

<filter-primary>

<bracketed-filter>

<filter-component>

of a. Reserved words and terminal symbols appear in boldface

<filter> ...

<filter-primary>

<joined-filters>

<filter> <conjunc> <filter-primary>

: .- <bracketed-filter>

<filter-component>

(<filter>)

: . -<event-field> <operator> <value>

<operator>

<conjunc>

<value>

<list-value>

<atom-value>

CONTAINS IN =

OR AND

<atom-value> <li

[<atom-value> ...

integer string da

st-value>

I
tetime op-name

Figure 5-2: An abstract syntax in for watcher specified filters.

In this syntax, the event-field may be any one of the event attributes listed in

Appendix A. Figure 5-3 presents an example abstract syntax tree for a watcher's

filter set.

Not all filters described by this syntax describe satisfiable events. Section 5.4

describes some additional semantic constraints for the language.

The concrete syntax used in this thesis closely follows the abstract syntax.

Watchers submit a specification in a single Java String. This representation is not

ideal. Construction of a more suitable concrete syntax is a topic for future work.

Figure 5-3: This figure shows an example AST for a watcher filter. This filter selects
an OpName and any of two DelegatingPrincipals. This tree can be represented
with the statement OpName = DELEGATE AND (DelegatingPrincipal =

1 OR DelegatingPrincipal = 2)

5.2.2 Example Filters

An administrator may want to monitor all uses of a particular principal's authority.

The watcher can be registered with the following filter (assuming the principal is

1):

OpName = DECLASSIFY AND

AuthorityProvenance CONTAINS 1

In a medical clinic, administrators may wish to enforce a policy that doctors

should not delegate their authority to other users. This cannot be enforced using

Aeolus information flow control policies, but can be checked using watchers.

In a simple system, a watcher may be interested in just a few doctors with well-

known Principal IDs. The watcher specification in this case is just a single filter:

OpName = DELEGATE AND

(DelegatingPrincipal = 1 OR

DelegatingPrincipal = 2 OR

DelegatingPrincipal = 3)

The same filter could also be represented using the IN operator:

OpName = DELEGATE AND

DelegatingPrincipal IN [1 2 3]

In a more complicated system however, new doctors may join the system after

the watcher was registered. In this case, a watcher needs a way to modify its filter

set. The next section describes how this is done.

5.3 Dynamic Filter Modification

Because the events of interest can change as a watcher runs, a static filter set is not

enough. A watcher may additionally specify rules that describe these changes.

Each rule provides a filter that describes what events should trigger the change

and an action. The action either adds some new filter, or removes filters from the

watcher's filter set.

5.3.1 Abstract Syntax for Rules

Rules extend the watcher specification language with the syntax in Figure 5-4. Us-

ing this syntax, rules define a skeletal-filter. This is similar to a filter except that

it allows filter-components to refer to the trigger event that caused the rule to be

executed.

<rules>

<rule>

<action>

<skeletal-filter>

<joined-skeletons>

<skeletal-primary>

<bracketed-skeleton>

<skeletal-component>

<rule> ...

ON <filter> <action> <skeletal-filter>

ADD REMOVE

<skeletal-primary> <joined-skeletons>

<skeletal-filter> <conjunc> <skeletal-primary>

<bracketed-skeleton> <skeletal-component>

(<skeletal-filter>)

<event-field> <operator> $<event-field>

filter-component

Figure 5-4: An abstract syntax for watcher specified rules.

5.3.2 Evaluating Rules

Each rule instantiates a filter from the skeletal-filter and the trigger event. If the

triggered rule is an add rule, the instantiated filter is added to the watcher's filter

set. For a remove rule, the instantiated filter is compared against each of the fil-

ters in the watcher's filter set and matching filters are removed. A filter matches

if it describes a set of events that is a subset of the events that match the rule's

instantiated filter.

Filters are instantiated by transforming each skeletal-component into a normal

filter-component. This is done by replacing the event-field following $ with the value

from the triggering event. For example, if a rule contains the action "OpName =

$OpName" and is triggered by a Declassify event, then the rule will instantiate a

filter "OpName = Declassify".

5.3.3 Example Rules

In a large medical clinic, doctors are added over the course of a watcher's lifetime.

So the watcher must use rules to adapt its filter set to these changes. A particular

principal is a doctor if it receives a delegation to the doctor role. This role is a well-

known Principal ID, which is 10 in the following example. The specification must

contain a rule that watches for new doctors and creates a new filter to monitor the

delegations of that new doctor, as in the following example:

ON

OpName = Delegate AND DelegatingPrincipal = 10

ADD

OpName = Delegate AND

DelegatingPrincipal = $PrincipalDelegatedTo

5.4 Semantic Constraints

Not all instances of the abstract syntax describe valid specifications. To catch these

bad specifications, the Watcher Manager imposes several additional semantic con-

straints on the watcher specification language. Registration will fail with an error

if there are unsatisfiable specifications.

For example, a filter fails when an event field is not applicable for a given Op-

Name as in the following filter.

OpName = Declassify AND FileName = "/foo/bar/"

Event fields also expect certain types for values and if the wrong type is given,

registration will fail. For example, the Principal field expects an integer. Therefore,

the following specification would fail.

OpName = Declassify AND Principal = "Foobar"

Additionally, event fields should not be specified twice and joined by an AND.

A simple example is this filter:

OpName = Declassify AND OpName = Endorse

Semantically bad rules also raise errors during registration.

5.5 Watcher Definition and Registration

To monitor events, an Aeolus application creates a virtual node implementing the

interface in Figure 5-5. The Aeolus application then registers with an RPC to the

watcher manager.

public interface Watcher{
public void receiveEvents (List<Event> events)

Figure 5-5: Remote interface for watchers.

public void registerWatcher (String watcherSpec,
Label secrecy,
Label integrity,
long startEvent,
long delayTolerance)

Figure 5-6: RPC method used for watcher registration.

The Watcher Manager runs on a special virtual node with a well-known net-

work address and exposes the registerWatcher method (Figure 5-6). The watcherSpec

parameter is used to supply the rules and filters for the watcher. The secrecy and in-

tegrity specify the labels of the watcher as described in Section 5.1. The parameter

startEvent is used to specify the event in the past where the watcher should begin

receiving events.

After the watcher is registered, the Watcher Manager begins dispatching events

by calling the receiveEvents method on the watcher. This method accepts a list of

events from the watcher manager. A list is used to prevent excessive communi-

cation overhead for watchers receiving large numbers of events. By default, the

Watcher Manager collects batches of events for 30 seconds before shipping them

to the watcher. In some scenarios, this delay is unacceptable. In these cases, the

watcher uses the optional parameter delayTolerance. This specifies a maximum de-

lay in milliseconds for the batches. If the delay is set to zero, the behavior is dis-

abled entirely.

Further, the receiveEvents method is treated specially by the Aeolus runtime in

that only the Watcher Manager virtual node can make calls to this interface. This

ensures that fraudulent events are not received.

Watchers are implemented in Java and therefore can respond to incoming

events as needed.

5.6 Ordering Guarantees

The Watcher Manager provides several guarantees for the ordering of receiveEvents

calls.

1. All events matching a watcher's filter set will be sent to the watcher.

2. Changes from rules are applied after the triggering event and before the next

event passes through the Watcher Manager.

3. The list of events is ordered by EventCounter.

4. All the events in a call to receiveEvents occur after the last EventCounter of the

previous call.

5. receiveEvents will only be called after the previous call has completed.

These guarantees prevent possible synchronization issues for the watcher.

35

The optional parameter startEvent specifies the point in the audit trail where

the watcher should attach. The watcher will receive all the events that match its

filter set and have a higher EventCounter than startEvent.

5.7 Example Watcher Registration

The previous doctor monitoring examples in this chapter assume that all doctors in

the system are created after the watcher registers. Of course, this may not be true.

Capturing all the doctors in the system requires mixing direct querying and active

monitoring. Example code for querying information and registering this watcher

is presented in Figure 5-7.

1 String getDRs =
2 "SELECT DelegatedPrincipal FROM EVENTS " +
3 "WHERE OpName = DELEGATE AND " +

4 "DelegatingPrincipal = " + DoctorRole;

5
6 String wsl =

7 "OpName = DELEGATE and (?), " +
8 "ON OpName = DELEGATE and DelegatingPrincipal ="

9 DoctorRole + " ADD"

10 "OpName = DELEGATE and " +

11 "DelegatingPrincipal = \$PrincipalDelegatedTo";

12
13 QueryResult drResult = executeQuery(getDRs,
14 Label.empty,

15 Label.empty);

16 String startingDoctors =

17 boolean first = true;
18 for(Object [I] row : drResult.results){
19 if(first){

20 startingDoctors += "DelegatingPrincipal =

21 first = false;
22 }else{
23 startingDoctors += " or DelegatingPrincipal =
24 }
25 startingDoctors += row[O];

26 }
27
28 registerWatcher(String.format(wsl, startingDoctors),

29 Label.empty, Label.empty,

30 drResult.lastEventCounter);

Figure 5-7: Pseudocode for using a direct query to gather information prior to
watcher registration. The unbound variable DoctorRole is assumed to be a well
known principal. Lines 13-15 gather all the doctors currently in the logging sys-
tem. Lines 16-26 are format the result to insert it into the watcher specification.
Lines 28-30 register the watcher. Notice that the registration needs to use drRe-
sult.lastEventCounter to ensure that it does not miss any events between the query
and the registration.

38

Chapter 6

Implementation

Figure 6-1: This is an overview of the various components involved in preparing
events for querying and handling active monitoring.

The complete implementation of the analysis system is composed of over 5,000

lines of Java code, and an ANTLR grammar.

Figure 6-1 presents a high-level overview of the analysis system components.

The Log Collector forwards events to the Log Processor (LP). The LP formats the

events and enforces a proper ordering before shipping events to the Database Man-

ager and the Watcher Manager. The Database Manager stores the events in a rela-

.................

tional database and the Watcher Manager ships events to watchers.

The Log Collector additionally stores events in a graph database, Neo4J [16].

This is used for producing filtered views of audit data in Popic [18].

This rest of this chapter describes the implementation of the LP, the Database

Manager, and the Watcher Manager components.

6.1 Log Processor

6.1.1 Collected Event Format

During log collection, events are collected and stored using a format that differs

from the user model discussed in Chapter 3. Each event is represented as a tuple:

<EventID, Operation, Arguments, ReturnValue, Timestamp,

Predecessors>

This form differs from what was described previously in two ways:

" The collected events contain ordering information that differs from the

EventCounter. Each event has an Event ID, and events identify other

events that directly precede them by including their IDs in the Predecessors

field. For example, the event recording the start of executing an RPC would

contain the ID of the event recording the sending of that RPC request in this

field.

" The context of an event is mostly missing, in order to keep the overhead low

during log collection. Instead, the context for an event e can be computed by

looking at information in the predecessor events of e.

The LP must perform three tasks before events are ready for either direct query-

ing or watchers:

1. The EventCounter field of the event model needs to be calculated.

2. Events shipped to users must contain explicit context information, such as

the running principal or the process labels. This must be constructed by

traversing events in the audit trail.

3. Direct querying requires building a second representation of the logging

data, a relational database.

6.1.2 Ordering Events

The LP receives events from the Log Collector in a queue. This queue is ordered by

the time an event is received at the Log Collector and does not respect the ordering

imposed by the Predecessor relationship. The LP, however, must process events

only after the events they depend on.

When new events are received, the LP checks each of its predecessors. If all pre-

decessors have already been processed, the LP processes the current event. Oth-

erwise it adds the event to a table for later processing. When the LP finishes pro-

cessing an event, it checks if any events are waiting on it and tries to process them

again.

As part of processing an event, the LP assigns it an EventCounter, which it

computes by incrementing a counter. This event count is certain to be greater than

that assigned to any events that were predecessors of the current event because the

LP processes events only when they are ready based on their list of Predecessors.

This way the LP ensures that the total order provided by the EventCounter is

consistent with the causal order determined by the predecessors. Popic [18] con-

tains a detailed discussion of this issue.

6.1.3 Adding Context Information

Each user process has associated security information, such as the authority prin-

cipal it runs on behalf of, or the current secrecy and integrity labels. This informa-

tion is not stored for each event in the user process. Instead, the LP calculates it by

using information in events that preceded the current event.

To gather information about an event e, the LP examines the immediate pre-

decessors of that event. Because the LP processes events in a causal order, the

predecessors of e already contain complete context information. The LP derives

the context of e by taking the context of its predecessor and applying any modi-

fications caused by the predecessor. For example, if e is preceded by a Declassify

event d, the context of e is the same as the context of d except with a tag removed

from the secrecy label.

The LP needs a way to quickly find predecessor events. To do this, it keeps a

map from Event ID to the event objects.

Some events do not have predecessors in the same process. For example, the

VirtualNodeStart event has no such predecessor. The LP identifies these events

and constructs the initial context information for a process.

6.1.4 Tracking Authority Provenance through Cache Lines

When an application attempts to declassify (remove a tag from its secrecy label),

the Aeolus system performs an authority check. This check involves finding an

authority provenance for the running principal. This provenance is logged with

the Declassify or Endorse event. However, the Aeolus system caches authority

checks so that subsequent checks do not have to do a full provenance calculation.

In this case, the authority provenance is not readily available to the logged event.

To solve this problem, each node adds a CacheWrite event whenever a cache

line is written. This event holds the authority provenance and a cache line identi-

fier. Authority related events all depend on the most recent CacheWrite event for

the cache line they use. When the LP sees a CacheWrite, it creates a mapping from

the EventCounter to the authority provenance. Then, as it sees events referenc-

ing that CacheWrite, it fills in the provenance.

6.2 Database Manager

My system supports fast analysis of past events by direct querying of the event log.

Events are stored in a relational database, and indices make most queries efficient.

The Database Manager (DBM) is responsible for storing events in the relational

database. In this section, I outline the implementation of this component.

6.2.1 Storing Events with Different Sets of Attributes

As I discussed in Chapter 3, different event types have different sets of attributes.

There are several ways to deal with this problem.

1. Store additional event attributes in separate tables

2. Store different event types in different tables

3. Store all events in a wide table with nullable columns

The first and second approach minimize table width and do not require a large

number of null fields. To support the types of queries described in Chapter 4, the

Database Manager would have to modify incoming queries to do the correct JOIN

and UNION operations. However, I chose to store all the events in the same table.

A concern with using a wide table for storage is space usage. However, Post-

greSQL uses an efficient representation for storing null values that limits the over-

head of null fields [19]. Null fields also affect the performance of indexes in Post-

greSQL, because null values won't be indexed. Queries involving IS NULL oper-

ators will not be able to use indexes. However, my event model does not require

the use of IS NULL in normal circumstances.

6.2.2 Information Flow Labels and Events

The direct querying interface from Chapter 4 presents a table view based on in-

formation flow constraints. The implementation of this relies on the PostgreSQL

Information Flow Control (PGIFC) database provided by David Schultz [21]. This

is a modified version of the PostgreSQL database that supports label operations.

The DBM inserts events into the database and explicitly sets the labels of those

events. This requires that the DBM pass an additional parameter to the underlying

database.

The DBM also deals with incoming queries. When a query comes in, the DBM

executes the query on a read-only connection. Additionally, it provides a parame-

ter that filters the output based on the supplied labels.

6.2.3 Table Indices

Table indices are an important part of providing an efficient querying structure.

The following fields are indexed:

" EventCounter * DelegatingPrincipal

" OpName e DelegatedPrincipal

" FileName * RunningPrincipal

Because the database is only used for INSERT and SELECT statements, addi-

tional indices do not significantly decrease INSERT performance. Depending on

different use cases, additional indices could be added.

6.3 Watcher Manager

Figure 6-2: This figure provides an overview of the Watcher Manager.

The Watcher Manager is responsible for handling watcher registrations, evalu-

ating rules and filters, and dispatching events to the watchers. Figure 6-2 provides

an overview of the various components involved in the Watcher Manager. Watch-

ers send registration requests to the Registration Manager. This component per-

forms some semantic processing before forwarding the request to the Event Dis-

patcher. The Event Dispatcher receives events from the LP and dispatches those

events to appropriate shipment threads. Each watcher has a shipment thread that

handles calling the receiveEvents method on the watcher.

This section examines the implementation of the three Watcher Manager com-

ponents: the Registration Manager, the Event Dispatcher, and the Shipment

Threads.

6.3.1 Registration Manager

Adding a new watcher to the manager requires parsing the given filters and rules

and performing some semantic processing before passing the request onto the

Event Dispatcher.

............... IIIIIIII- 1111111- _ _

public interface Watcher{
public void receiveEvents (List <Event> events)

Figure 6-3: Remote interface for watchers.

The Registration Manager receives registerWatcher RPC's (see Figure 6-3). It

then uses a parser constructed with ANTLR [17] to generate an abstract syntax tree

(AST) for the provided filters and rules. This AST is a simple Java representation of

the input specification. The Registration Manager then does semantic processing

on this AST and checks it for any bad filter or rule definitions. Finally, it attempts

to forward the registration information to the dispatcher. If this process fails at any

point, the registerWatcher RPC raises an exception and the watcher is notified that

registration has failed.

Semantic Language Processing

The Registration Manager processes watcher specifications to fit a canonical form.

This form is used to simplify semantic checks and the job of the Event Dispatcher.

In this section, I describe this form and provide some of the reasoning for each

added constraint.

First, filters with OR statements are rewritten into multiple patterns. Without

ORs the dispatcher never needs to backtrack when evaluating filters or checking

remove rules. This also allows the next processing step, sorting filter components.

Second, filter components are sorted by the event-field they are matching. This

makes finding specific filter types efficient. For dispatching, this allows the dis-

patcher to quickly determine what operation name a particular filter is interested

in. This also makes remove rules faster to evaluate, as comparing sorted patterns

can be done very quickly.

Finally, redundant filter components are removed so that excess checks are

avoided at dispatch and rule evaluation.

6.3.2 Event Dispatcher

The Event Dispatcher maintains a table of filters and rules for all the currently ac-

tive watchers. It uses this table to evaluate rules and dispatch events to appropriate

shipment threads.

The Dispatcher serially examines events coming from the LP in a two step pro-

cess. In the first step, the event is evaluated against the active filters. If a filter

matches, the Dispatcher adds the event to the correct Shipment Thread.

In the second step, the Dispatcher evaluates the event against the active rules.

If the event causes a rule to fire, that rule's action is evaluated and the Dispatcher

modifies the active filter table appropriately.

Accepting New Watchers

The Registration Manager forwards watcher registrations to the Event Dispatcher.

Registration requests provide a StartEvent that specifies where in the event log the

watcher should begin receiving events. The Event Dispatcher has to deal with the

fact that this is in the past.

To do this, the Event Dispatcher manages a buffer of events from the past 30

seconds. If StartEvent is further in the past, the Dispatcher raises an error that

propagates back to the Registration Manager and to the watcher.

If StartEvent is inside the buffer, the Dispatcher stops processing new events

while it catches up the new watcher. The Dispatcher performs the normal two step

event dispatching process except that it only checks one watcher. Once the watcher

is caught up, the Dispatcher resumes normal operation.

Because this behavior slows down the Event Dispatcher, the actual implemen-

tation starts a special thread to handle a new watcher. This thread evaluates filters

and rules the same as the normal dispatcher. Once this thread is within some

small distance of the current event in the dispatcher, the dispatcher stalls while the

watcher finishes getting to the latest event. Finally, the watcher is added to the

dispatcher, the thread is discarded, and normal dispatching resumes.

Fast Matching for Common Filters

It is important that the Event Dispatcher scale well with many filters. A naive

strategy is to apply each event to every filter and rule. This performs reasonably

well with a small number of filters, but performance can degrade quickly.

To mitigate some of the cost of additional filters, I use a hash table to quickly

select the filters monitoring events with a particular OpName. In the worst case,

many filters can all be watching the same OpName. However, the system will still

have significant performance improvements for events without that OpName. Sec-

tion 7.2 presents the performance impact of this strategy.

6.3.3 Automatic Removal of Unsatisfiable Patterns

Under special circumstances, the dispatcher can determine that certain active fil-

ters are unsatisfiable. For example, when a dispatcher witnesses a process ter-

mination event, any filters looking for that process are unsatisfiable. When this

happens, the dispatcher will automatically remove the filter.

This process can be achieved without too much overhead by adding hash tables

to map from a process number to filters monitoring that process. Then, when a

process termination event passes through the dispatcher, it checks that hash table

for filters to remove. A similar technique is used for monitoring the shutdown of

virtual nodes, the removal of shared state objects, and file deletions.

6.3.4 Shipment Threads

The watcher model requires that events be shipped to watchers in the order they

occur and that each call to receiveEvents complete before the next call. The Ship-

ment Threads are responsible for making these calls.

48

Depending on the implementation of particular watchers, this RPC call could

take a long time to complete. Using one thread per watcher prevents watchers

from delaying shipments to each other.

The dispatcher queues events for these threads using concurrency-safe queues.

As new events appear in its queue, the thread sends the events to the watcher.

50

Chapter 7

Performance Evaluation

In this chapter I present the results of three experiments to evaluate the perfor-

mance of the analysis system. The first experiment examines the performance of

the Log Processor (LP). Next I present an evaluation of the Event Dispatcher. Fi-

nally, I present the total added latency of the active monitoring system.

I performed these evaluations on a computer with an Intel Q9550 CPU with

four cores clocked at 2.83 GHz, 4 GB of physical memory, and a 7200 RPM hard

drive. The analysis system ran with a 64-bit OpenJDK JVM (build 19.0-b09) on the

2.6.31-22 Linux kernel.

7.1 Log Processor

In this section, I examine some of the performance characteristics of the LP. The

throughput of the log processor is measured as the average number of events pass-

ing through the processor per second. The log processor is evaluated using a queue

of events that resides in memory when the evaluation begins.

The LP is an important bottleneck in the system because it is a sequential pro-

cess and therefore a hard limit for scaling the system. This system should be able to

handle reasonably large systems, though. For example, the Massachusetts General

Hospital system handles about 4,000 patient visits a day [11]. If we overestimate

the number of events by assuming each of these visits generated 100,000 logged

events, the LP would have to deal with about 5,000 events per a second.

The results in Figure 7-1 show that a single-threaded LP is capable of processing

150-200 thousand events per second. For most systems, this should be enough. I

discuss possible strategies for scaling the LP to multiple processors or machines in

Section 9.2.

The benchmark fuzz-O is composed of 100,000 CreateTag, AddSecrecy, and

Declassify events. The event log for this benchmark contains a large number of

multiple dependency events - the CreateTag and Declassify events have predeces-

sors in the user process and predecessors at the Authority Server.

10% of the events in the medical-bench benchmark are Call events. This bench-

mark provides a more realistic estimate of an actual workload. Additional work

is done in comparison to the fuzz-0 benchmark because Call events require some

additional processing to calculate a new running principal. Figure 7-1 shows the

decreased throughput.

Benchmark Throughput (events/second)
fuzz-0 266,180.8

medical-bench 170,622.2

Figure 7-1: Comparison of Processor throughput on several test logs.

7.2 Dispatching Quickly

In this section, I evaluate the Event Dispatcher component and compare the fast

dispatch implementation to a naive implementation where all filters are checked

against all events.

I expect the Event Dispatcher to scale to large numbers of filters with minimal

performance degradation. Scaling is important because large systems could de-

52

fine thousands of filters. In the medical clinic example (Section 5.7), a watcher that

monitored each doctor in the system would require one filter per doctor. In Mas-

sachusetts General Hospital, there were over 1,900 clinical staff and 3,700 nurses

in 2009[11]. MGH would require over 5,000 filters for just this watcher.

The system is evaluated with watchers running locally to avoid network

overhead. All of the filters provided to the system are identical and the event

log is entirely loaded into physical memory. The provided filter is OpName =

AddSecrecy AND TagAdded = 30. I examine two separate workloads with

100,000 events each. 1% of the events in the first benchmark are AddSecrecy

events. This increases to 9% in the second benchmark.

I expect real workloads to look more like the first benchmark- watchers are

looking for evidence of misbehavior and so few events should ever match.

Figure 7-2 compares the performance of a naive dispatcher implementation and

an implementation that dispatches based on the OpName field. In this evaluation,

1 % of the events in the input log are AddSecrecy events. This figure shows that

both dispatchers scale linearly with the number of the filters. However, the fast

dispatcher experiences much less deterioration. The best-fit slopes show each ad-

ditional filter only costs about 1% of what it does for the naive dispatcher.

Figure 7-3 presents a worst-case scenario for the Event Dispatcher. In this sce-

nario, 9% of the events in the log are AddSecrecy events. The fast dispatcher still

scales better than the naive dispatcher, in this case about 15 times better. This fig-

ure also shows that the naive dispatcher scales more poorly than it did with the

first benchmark. This happens because the naive dispatcher only has to evaluate

the second filter component of the filter when the event is an AddSecrecy event.

Because there are more AddSecrecy events, each additional filter costs more to

evaluate.

Importantly, the slope for the fast dispatcher is about 9 times higher than in

Figure 7-2. This happens because there are about 9 times as many partial matches

as before, so each additional filter costs about 9 times as much.

The fast dispatcher performs well in the first benchmark. At 5,000 filters, it

takes 248 milliseconds to process 10,000 events. This is a throughput of about

40,000 events per second, which is good for large systems. However, in the second

benchmark, the dispatcher only achieves throughput of 7,800 events per second.

Though I expect workloads to be more similar to the first benchmark, this is still

a problem. However, the Event Dispatcher's job, unlike the LP's job, exhibits a

great deal of parallelism. Implementing a concurrent Event Dispatcher could lead

to significant performance gains. I discuss another possible strategy in Section 9.2.

2000 4000 6000
Number of Filters

8000 10000

(a) Fast Dispatch

2000 4000 6000 8000 10000
Number of Filters

(b) Naive Dispatch

Figure 7-2: Performance comparison of dispatchers as the number of active filters
varies. In this example, the filters match only 1 % of the events in the log.

Y=mX+b

m = 0.0245425

- -. B=141055 -- -- - -

- --------- - - - . - - - -------....... .- ---

800

600

400

200

35000

30000

25000

20000

15000

10000

5000

0:

..

2000 4000 6000

Number of Filters
8000 10000

(a) Fast Dispatch

2000 4000 6000 8000

Number of Filters
10000

(b) Naive Dispatch

Figure 7-3: A comparison of dispatchers as the number of active filters varies. In
this example, the filters match about 9% of the events in the event log.

35000

30000

25000

20000

15000

10000

7.3 Event Detection Latency

The last evaluation I provide for the watcher manager system is the combined

latency of the log processor and the dispatcher. If the time an event is dispatched

to a dispatcher thread is td, and the time an event entered the log processor's queue

is ts, then the latency of the event is td - t,.

The table in Figure 7-4 provides the average and maximum latency of events

on several benchmark logs. Each benchmark runs with 100 active filters, each of

which match 10% of the supplied event log.

This data shows that the watcher manager does not add significant latency to

event analysis. Since Shipment Threads hold batches of events for up to 30 seconds

before shipping them to watchers. In light of these variables, if the added latency

of the watcher manager system is on the order of milliseconds, then its effect is

negligible.

Benchmark Average Latency (ms) Maximum Latency (ms)
fuzz-0 3.75 28

medical-bench 1.95 14

Figure 7-4: Latency measurements for events moving through the watcher man-
ager on several test logs.

58

Chapter 8

Related Work

In this chapter I discuss some related work from the fields of event tracing, stream

databases, and intrusion detection.

Event Tracing and Dynamic Instrumentation Systems

Active log monitoring is closely related to work in tracing and dynamic instrumen-

tation because both require interfaces for specifying events to monitor and actions

to take. There are many dynamic instrumentation and tracing systems such as

Pin [12], AspectJ [13], and DynamoRIO [6], but I will focus on DTrace [7].

The DTrace system allows users to monitor system calls on a single machine.

The authors present a domain-specific language to describe what events should

be monitored and if any processing should be done. This language is particularly

relevant to my system though DTrace differs in some key aspects that affect inter-

face and language design. First, DTrace is designed to monitor events on a single

machine, while Aeolus is a distributed platform. This requires that users be able

to specify somewhat more complex patterns for matching events. Second, DTrace

inserts monitoring code directly into system calls. This requires that monitoring

code have simple event filters and strictly defined memory behavior. In audit trail

59

monitoring, on the other hand, applications monitor events as they are added at

the logging server. The performance and behavior of filters, then, does not af-

fect the applications they are monitoring, just the audit trail server. This allows

the system to employ more complex filtering behavior without disrupting applica-

tion performance. Finally, for DTrace to collect information from the environment

when a system call is made, users must provide actions - snippets of code - that

specify how to gather information. In Aeolus, system events are logged automati-

cally with all of the information relevant to that event. In some cases, applications

may wish to log additional events. Applications only need to supply actions in

these cases.

DTrace provides users with useful library functions to perform typical event

analysis tasks, such as collecting the average of some value or summing execution

times. My system provides no such library. Instead, users write plain Java code.

Determining useful functions and libraries for audit trail analysis is a topic for

future work.

Streaming Databases

Systems such as Cayuga [9] [10] and SASE+ [3] use streaming databases for active

filtering. These systems provide a different model from the filters and rules model

presented in this thesis. First, these systems constrain the time between related

events, but watchers are typically interested in events that are very far apart. For

example, a doctor may misuse his authority months after he becomes a doctor.

Second, watchers need to see every event that matches at the time that it matches.

Cayuga and SASE+ wait to collect all events that match before shipping them to

the monitor. A final point is that our system requires a way to remove filters that

are no longer needed, e.g., when a doctor leaves the clinic, we no longer need

to monitor his actions. Cayuga and SASE+ use time to stop filtering events; we

instead need to recognize events that cause filters to be removed.

However, systems like Cayuga and SASE+ provide more power than we do.

We assume that all computation with events is done in the watcher. By contrast

these systems allow much of this processing to be specified via queries. For ex-

ample if we were monitoring activity on an ATM card, the watcher would need

to see all events concerning use of that card, whereas with the streaming database

approaches, the watcher could be notified only if these events happened too fre-

quently within some time period. Extending the watcher system to allow some

processing to occur at the watcher manager is a possible topic for future work.

In systems such as Aurora [2] and Borealis [1], clients provide queries in the

form of data flow processors. Borealis presents a model similar to the filters and

rules in this thesis. In Borealis, filters are defined using data flow processors and

the user may specify triggers that dynamically modify these processors. How-

ever, this system is designed to handle complex queries involving various com-

putational components. Because of this, they provide weak ordering guarantees

during dynamic changes. For example, when an event triggers a dynamic change,

later events may be seen before that change takes effect. In this case, those events

will be missed. Borealis and my active monitoring system share one major feature,

though: the ability to begin monitoring events at a time in the past.

The streaming databases XFilter [4] provides another querying model. This

system defines a query language where users can specify filters over XML. Can-

didate XML is compared against the filter using graph matching techniques. If

the Aeolus event log is represented as a graph, graph matching techniques could

be used to filter events. In this case, a user could derive some of the context in-

formation of an event from graph matching queries. For example, a user could

filter events based on the principal basis by defining a graph matching query that

searched for principal switches. However, these queries could become excessively

costly as relationships between events could form chains with lengths in the tens of

thousands. These types of queries work in XFilter because XML typically defines

shallow graphs.

Active log monitoring does share some implementation details with XFilter,

though. For example, both XFilter and my monitoring system optimize dispatches

for particular data attributes, in my case OpNames. This is the mechanism I call

fast dispatching in Section 6.3.2.

Intrusion Detection

There has been some significant recent work in using audit trails for intrusion de-

tection and recovery. RETRO [14] uses audit trails to repair a compromised system

after an intrusion. BackTracker [15] analyzes operating system events to determine

the source of a given intrusion on a single system. The events in these system are

represented as a DAG where each edge represents a causal relationship. Aeolus

treats audit trails similarly. However, the analysis performed in BackTracker is

very different from active monitoring or direct querying. While my analysis tools

are more focused on discovering misuses or violations, BackTracker is concerned

with discovering how a misuse occurred.

When an intrusion is discovered, BackTracker traverses the event DAG back-

wards from that discovery point searching for the source of the intrusion. Because

my system analyzes events occurring across a distributed application, backtrack-

ing graph analysis is more difficult- audit logs may branch significantly. For exam-

ple, a user may want to trace the source of a write to a file. The analysis starts by

examining the process that wrote to the file. Any inputs to that process could have

contributed to the write. These inputs could be file reads, remote procedure calls,

accesses to shared state, or startup parameters. Those inputs require further anal-

ysis of what processes may have affected them. While this thesis does not explore

backtracking analysis over the audit trail, this is a good topic for future work.

Chapter 9

Future Work and Conclusions

This chapter summarizes the contributions of this thesis and presents some possi-

ble directions for future work in audit trail analysis.

9.1 Contributions

This thesis has presented the design and implementation of an analysis system

for audit trails collected by the Aeolus security platform. I presented a model for

representing events in the system, a method for querying those events, and a new

model for actively monitoring those events.

This thesis makes the following contributions:

1. I define a usable model for events logged by the Aeolus security platform.

2. I present a method for determining the sensitivity of logging information.

This method prevents information leakage through audit trails while using

existing authority and information flow control enforcement.

3. I introduce the concept of watchers. This is a new model for active moni-

toring of an audit trail that allows users to perform complex analysis while

limiting communication overhead.

4. I implemented and tested a full analysis system for the Aeolus security plat-

form. This system enables queries over past events and active event mon-

itoring. It achieves high throughput and low latency for active monitoring

tasks.

9.2 Future Work

There are several possible topics for continuing work in analysis of Aeolus audit

trails. In particular, archiving logged events, building better language tools for

active monitoring, scaling log processing, and examining additional optimizations

for the Event Dispatcher are all areas of interest.

Archiving event logs is a necessary task. Large systems could generate hun-

dreds of thousands of events a day. In such an environment, direct queries will

quickly become infeasible. Further, storage will be extremely costly. However,

removing or archiving old events presents several problems. The primary prob-

lem is that some old information will need to be available to new direct queries.

Differentiating between important events and unimportant events is difficult. For

example, a query for all users having authority for a particular tag should always

return the complete set, but a query that asks for all uses of some particular prin-

cipal's authority may not necessarily need to return old events.

This thesis presents a language for describing filters and rules that is too cum-

bersome in practice. Users must construct Java Strings using results from direct

queries. The analysis system could instead provide a similar interface to JDBC

Prepared Statements [5], which allow users to specify a query using a combina-

tion of a String definition and other Java Objects. The system could also allow

users to imbed direct queries into the specification itself. Further, as I discussed in

Chapter 8, the system could also provide a library for common analysis functions.

There are a number of issues with respect to the scaling of log processing to

multiple processors or machines. Importantly, the Log Processor requires that

an event be processed after the events it depends on. The LP could potentially

be adapted to run on multiple CPU cores if events were distributed amongst the

cores to minimize cross-core dependencies. Running the LP in a distributed envi-

ronment poses a larger challenge. The cost of sharing information and synchroniz-

ing between different machines could be too burdensome. Properly partitioning

events may be able solve this problem.

The Event Dispatcher implemented for this thesis only optimizes dispatches

based on OpName. When many filters use the same OpName, the performance of

the dispatcher degrades. An implementation that dynamically constructs indices

when large numbers of filters share common features could achieve better perfor-

mance.

66

Appendix A

Event Attributes and Context

Information

A.1 Operations

" Endorse

" Declassify

" RemoveIntegrity

* AddSecrecy

" Call

" Fork

e VirtualNodeStop

" VirtualNodeStart

" LoadClass

" SendRPC

" AcceptRPC

RPCReply

RegisterRPC

Delegate

ActFor

RevokeDelegate

RevokeActFor

CreatePrincipal

CreateTag

CreateSharedObj

ReadSharedObj

WriteSharedObj

67

" RemoveSharedObj

" CreateFile

" ReadFile

" WriteFile

" RemoveFile

" ListDirectory

" CreateDirectory

" RemoveDirectory

" AppEvent

A.2 OpAttributes

Attribute Valid Operations

TagAdded AddSecrecy, Endorse

TagRemoved RemoveIntegrity, Declassify

AuthorityProvenance Endorse, Declassify

Delegate, DelegateRevoke, ActFor,

DelegatingPrincipal ActForRevoke

Delegate, DelegateRevoke, ActFor,

DelegatedPrincipal ActForRevoke

TagDelegated Delegate, DelegateRevoke

SwitchedPrincipal Call, Fork

Hostname SendRPC, VirtualNodeStart, VirtualNodeStop

cla s sname LoadClass, RegisterRPC, Call, Fork

Merge Integrity RPCReply, AcceptRPC, CallReply

Mergese crecy RPCReply, AcceptRPC, CallReply

ExtraInformation AppEvent

CallerPrincipal AcceptRPC

ReadFile, WriteFile, CreateFile, RemoveFile,

Filename ListDirectory, CreateDirectory

RemoveDirectory

ReadFile, WriteFile, CreateFile, RemoveFile,

Object Secrecy ListDirectory, CreateDirectory

RemoveDirectory

ReadFile, WriteFile, CreateFile, RemoveFile,

Object Integrity ListDirectory, CreateDirectory

RemoveDirectory

A.3 General Attributes and Context Fields

e EventCounter

* OpName

" Process

" Principal

e Integrity

e Predecessors

* PrincipalBasis

* VirtualNode e Secrecy e Timestamp

* Node

70

Bibliography

[1] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Mitch Cherniack, Jeong
hyon Hwang, Wolfgang Lindner, Anurag S. Maskey, Er Rasin, Esther Ryvk-
ina, Nesime Tatbul, Ying Xing, and Stan Zdonik. The design of the borealis
stream processing engine. In In CIDR, pages 277-289, 2005.

[2] Daniel J. Abadi, Don Carney, Ugur ;etintemel, Mitch Cherniack, Christian
Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik.
Aurora: A new model and architecture for data stream management. The
VLDB Journal, 12:120-139, August 2003.

[3] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman.
Efficient pattern matching over event streams. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data, SIG-
MOD '08, pages 147-160, New York, NY, USA, 2008. ACM. Available
from: http: //doi.acm.org/10.1145/1376616.1376634, doi:http:
//doi.acm.org/10.1145/1376616.1376634.

[4] Mehmet Altinel and Michael J. Franklin. Efficient filtering of xml documents
for selective dissemination of information. In Proceedings of the 26th Interna-
tional Conference on Very Large Data Bases, VLDB '00, pages 53-64, San Fran-
cisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[5] Lance Andersen. Jdbc 4.0 specification. Technical Report JSR 221, Sun Mi-
crosystems, Inc., 2006. Available from: http: / / j cp. org/about Java/
communityprocess/final/jsr221/index.html.

[6] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastruc-
ture for adaptive dynamic optimization. In Proceedings of the international
symposium on Code generation and optimization: feedback-directed and runtime
optimization, CGO '03, pages 265-275, Washington, DC, USA, 2003. IEEE
Computer Society. Available from: http: / /portal. acm. org/citat ion.
cfm?id=776261.776290.

[7] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic
instrumentation of production systems. In Proceedings of the annual conference
on USENIX Annual Technical Conference, ATEC '04, pages 2-2, Berkeley, CA,
USA, 2004. USENIX Association.

[8] Winnie Wing-Yee Cheng. Information Flow for Secure Distributed Applications.
Ph.D., MIT, Cambridge, MA, USA, August 2009. Also as Technical Report
MIT-CSAIL-TR-2009-040.

[9] Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and
Walker White. Towards expressive publish/subscribe systems. In Proceedings
of the 10th International Conference on Extending Database Technology, EDBT'06,
pages 627-644, 2006.

[10] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun
Sharma, and Walker M. White. Cayuga: A general purpose event monitoring
system. In Conference on Innovative Data Systems Research, pages 412-422, 2007.

[11] Massachusetts General Hospital. Massachusetts general hospital annual re-
port 2009. Available from: http: / /www.massgeneral. org/as sets/
pdf/AR20091r.pdf.

[12] Chi keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-
off Lowney, Steven Wallace, Vijay Janapa, and Reddi Kim Hazelwood. Pin:
building customized program analysis tools with dynamic instrumentation.
In In PLDI '05: Proceedings of the 2005 ACM SIGPLAN conference on Program-
ming language design and implementation, pages 190-200. ACM Press, 2005.

[13] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of aspectj. In Proceedings of the
15th European Conference on Object-Oriented Programming, ECOOP '01, pages
327-353, London, UK, UK, 2001. Springer-Verlag. Available from: http:
//portal.acm.org/citation.cfm?id=646158.680006.

[14] Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Intru-
sion recovery using selective re-execution. In Proceedings of the 9th USENIX
conference on Operating systems design and implementation, OSDI'10, pages 1-
9, Berkeley, CA, USA, 2010. USENIX Association. Available from: http:
//portal.acm.org/citation.cfm?id=1924943.1924950.

[15] Samuel T. King and Peter M. Chen. Backtracking intrusions. ACM Trans.
Comput. Syst., 23:51-76, February 2005.

[16] Neo4j. Available from: http: //neo 4 j . org.

[17] Terence J. Parr and Russell W. Quong. Antlr: A predicated-ll(k) parser gener-
ator. Software Practice and Experience, 25:789-810, 1994.

[18] Victoria Popic. Audit trails in the Aeolus distributed security platform. Mas-
ter's thesis, MIT, Cambridge, MA, USA, September 2010. Also as Technical
Report MIT-CSAIL-TR-2010-048.

[19] PostgreSQL. Database Physical Storage: Database Page Layout. Avail-
able from: http://www.postgresql.org/docs/9.0/interactive/
storage-page-layout.html.

[20] PostgreSQL Development Team. PostgreSQL 9.0.4. PostgreSQL Global Devel-
opment Group, 2010. Available from: http: / /www. postgresql .org.

[21] David A. Schultz and Barbara H. Liskov. Ifdb: Database support for decen-
tralized information flow control. In New England Database Day, NEDBDay
'11, 2011.

