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Abstract

This thesis presents the design and implementation of an analysis system for audit
trails generated by Aeolus, a distributed security platform based on information
flow control. Previous work focused on collecting these audit trails in the form of
event logs. This thesis presents a model for representing these events and a sys-
tem for analyzing them. In addition to allowing users to issue SQL queries over
the audit log, this analysis system provides mechanisms for active monitoring of
events. This thesis introduces a new model for event monitoring called watchers.
These watchers receive updates about events from a watcher manager. This man-
ager allows watchers to specify filters and rules for dynamically modifying those
filters. My results show that this analysis system can efficiently process large event
logs and manage large sets of queries.
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Chapter 1

Introduction

To manage information securely, a system must be able to detect information mis-
use. By tracking relevant security events, we can build audit trails that can be used
for this purpose. By querying and analyzing these trails, we can track information
misuses.

This thesis presents a system to analyze audit trails in Aeolus, a distributed se-
curity platform based on information flow control. Aeolus is designed to facilitate
the development of secure applications that protect confidential information.

Even in secure systems, malicious administrators, users or developers may be
able to launch attacks that tamper with or leak important information. Determin-
ing what information was compromised and who was responsible not only enables
administrators to stop further abuses, but in many instances has legal ramifica-
tions.

Tracking information misuse can be achieved by collecting relevant informa-
tion into audit trails and then analyzing those trails. By actively monitoring certain
processes and events for suspicious activity or violations of high-level policies, ap-
plications can be stopped before more violations occur. And by examining past
events, the source of violations can be determined.

This thesis presents a model for representing events and an interface for analy-

11



sis that supports both monitoring events as they occur and selecting events in the
past. I provide a design and implementation of this interface that prepares audit

trails for querying, accepts query requests, and executes those queries.

1.1 Thesis Outline

The remainder of the thesis is structured as follows. Chapter 2 provides relevant
background information on the Aeolus platform and log collection. Chapter 3
presents a user model for representing events and describes the original storage
format. Chapter 4 presents an interface for directly querying events. Chapter 5
describes the watcher system for active event monitoring. Chapter 6 describes the
various implementation problems involved in creating the user model of events,
executing queries, and running watchers. Chapter 7 evaluates the various com-
ponents of the analysis system in terms of performance. Chapter 8 discusses re-
lated work in event tracing systems, streaming databases, and intrusion detection.
Chapter 9 presents some topics for future work and reviews the contributions of

the thesis. Appendix A details the various attributes of the user event model.
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Chapter 2

Aeolus System Overview

My work on analysis of audit information has been carried out on top of a secu-
rity platform called Aeolus. In this chapter, I present an overview of the Aeolus
security model, and relevant details of log collection. More complete descriptions

of Aeolus and log collection can be found in Cheng [8] and Popic [18].

2.1 Aeolus System Model

Aeolus is a distributed security platform based on information flow control. In
information flow control, all data are tagged with security labels. Security labels
are sets of tags, and these tags become associated with processes as they read data.
Processes can communicate with other processes within the system and the ap-
propriate tags will flow between them. Processes carrying tags are called contam-
inated. Contaminated processes cannot write to arbitrary files or communicate
outside of the system. Tags can be removed from a process only if that process has
authority for that tag.

Aeolus associates each process and piece of information with two labels: se-
crecy and integrity. As information flows through the system, the following con-

straints are imposed on the information and the receiver.
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For example, if a process has secrecy label {SECRET]}, it may only write to files
containing the tag SECRET in their secrecy label. Integrity, however, must flow
towards smaller labels. For example, if a file has integrity label {BOB}, only a
process whose integrity label constains BOB can write to the file.

Certain modifications of a process’ labels require authority. Declassification,
removing a tag from the secrecy label, and endorsement, adding a tag to the in-
tegrity label, both require authority. The opposite modifications, however, do not.
In Aeolus, authority is derived from principals (users or roles) and processes run
on behalf of those principals. Principals gain authority through delegations from

other principals.
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\ i A @
¥ \ )

= intemet______ =,
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Figure 2-1: High level overview of Aeolus system architecture.

The Aeolus system is designed to support distributed applications. Figure 2-
1 shows an overview of the system architecture. Each computer is modeled as
a node and each node may run several virtual nodes. These virtual nodes are re-

sponsible for running user processes. User processes may communicate with other
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processes on the same virtual node using shared state mechanisms and communi-
cate with other virtual nodes using an RPC mechanism. Aeolus manages the flow
of labels over shared state and through RPC calls. The Aeolus library and runtime
also manages authority state — the collection of all of the tags and authority chains
for principals (roles or users) in the system. Additionally, Aeolus provides a file

system where each file has integrity and secrecy labels.

2.2 Log Collection

IAequs Node4| l Aeolus Node l | Aeolus Node | | Authority Server

Log Collector Node

Figure 2-2: Flow of logs to the log collection system.

Aeolus distributes log collection across all nodes in the system. Each node is
responsible for logging any events that occur locally. Nodes submit these logs
periodically to a central log collector that stores the events for later processing and
analysis.

All calls to the Aeolus runtime generate events. For example, when a user de-
classifies a tag from their label, this creates a Declassify event. Events are ordered
to preserve causal relationships. Each event in a single user process holds a de-
pendency to the previous event in that process. Additionally, events may depend
on events in other processes or nodes. For example, a Declassify event depends on
the last authority update seen by that process.

The format of events is described in detail in Chapter 3.
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Chapter 3

Modeling Events

Audit events are represented so that users can write simple queries over simple
structures for most analysis tasks. In this section, I present the event model used

for querying and active monitoring.

3.1 Event Model

Each event is represented to the user as a data object with a large set of attributes.

Events have the following structure:

EventCounter
This is a long integer that is used for determining event dependency. If

e.EventCounter < e’.EventCounter then e is certain to not depend on e’'.

OpName
This is an integer code representing the name of the operation that generated
the event. For example, an event may be a Declassify or Delegate operation.

User-specified events have the OpName UserEvent.

OpAttributes

This is a group of attributes storing additional information about the opera-
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tion that generated the event. For example, a Declassify event contains OpAt-
tributes for the declassified tag and the result of the declassification (accepted

or rejected).

ContextAttributes
This is a group of attributes storing information about the context of an op-

eration.

3.1.1 Operation Attributes

OpAttributes is a group of attributes storing information specific to the opera-
tion that generated an event. These attributes are largely composed of arguments
and results from Aeolus library calls. For example, a Fork operation has a field,
SwitchedPrincipal, that identifies the principal of the forked process.
Different operations store different OpAttributes. For example, file operations
contain an attribute Filename. A Declassify operation does not have this at-

tribute. Appendix A provides a complete listing of operations and attributes.

3.1.2 Context Attributes

ContextAttributes is a group of attributes storing information about the process

and environment of an event. It is composed of the following fields:

Node

This is a long integer that identifies the node that the event ran on.

VirtualNode
This is a long integer identifier for the virtual node of the event. Special

virtual nodes, such as the Authority Server, have reserved identifiers.

Process

This is an identifier for the user process that generated the event. System

18



events such as classloading, occur in a special system process whose identi-

fier is a known constant.

Principal
User processes all run on behalf of a principal. This is an integer identifying

that principal.

Secrecy
This is the secrecy label of anevent’s process at the time it was logged. This is

also the secrecy of the event object when it is used within the Aeolus system.

Integrity

This is the integrity label of the event’s process at the time it was logged.

Predecessors
This holds a list of EventCounter values corresponding to the direct pre-
decessors of this event. All events except the first one depend on the event
immediately before them in the same process. Some events also depend on
events in a different process. For example, file reads will depend on the last
write event to that file. Using these dependencies, the analysis system can

guarantee a causal ordering of events.

Timestamp
This attribute stores the local time at the node where an event was collected at
the time it was collected. Because local clock times can vary between nodes,

this attribute cannot be used to correctly order events.

3.1.3 Information Flow Labels and Context

The secrecy and integrity attributes warrant some additional attention. Because
events themselves may convey sensitive information, each event object carries se-

crecy and integrity labels. For events occurring in a user process, these labels are
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the process labels immediately before the event occurred. So, if a process’ secrecy
label contains a tag T before a Declassify event, the secrecy label of the correspond-
ing audit event contains the tag T, but labels of subsequent events in that process
will not. Events that occur outside of a user process, such as Authority State events,

have empty labels.

3.2 Authority Provenance

Answering a simple question about authority related events can become quite dif-
ficult. For example, “Who authorized this declassification?” could be answered in
a number of ways. If the declassification ran on a process with principal Bob, then
Bob is one answer. But if Bob is not the creator of the declassified tag, he must have
been granted authority by another user, or be acting on behalf of another user. An-
swering these queries requires knowing, at the time of the event, how a process

became authoritative for a particular tag. This is called the authority provenance.

Alice Delegate Delegate
(created tag T) Bob

Figure 3-1: This graph represents the authority provenance for Carol’s declassifi-
cation of a tag T. Alice has authority because she created the tag. Alice delegated
her authority to Bob. Bob then delegated his authority for the tag to Carol.

The authority provenance is the list of principals that records how a particular
principal obtained authority for a particular tag (see Figure 3-1). Declassify and
Endorse events contain a field AuthorityProvenance thatholds the provenance
that event used. This field is represented as a list of principals, beginning with the

creator of the tag and ending with the running principal.
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3.3 Running Principal and the Basis

The Aeolus system allows processes to switch to other principals that they ActFor.
If events only provide information about the current principal, this can be used to
disguise certain uses of authority. For example, an administrator might be inter-
ested in any uses of a principal Bob’s authority. Suppose Bob has authority for a tag
ALICE-SECRET because he has an ActFor delegation from Alice. If Bob switches
to principal Alice and performs a Declassify, the event contains no reference to
Bob. The authority provenance will only store Alice’s provenance and the running
principal will point to Alice.

To solve this problem, the running principal field is actually a stack of princi-
pals, called the basis, that ends with the currently running principal. This way,
when Bob switches to another principal via a Call, the logged event will retain

information implicating Bob’s involvement.
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Chapter 4

Querying Events Directly

In this chapter, I provide the interface for querying past events. The audit trail may
be queried using read-only SQL. Events appear in a single table where each event
attribute is a distinct column. Events lacking certain attributes hold NULL values

in those columns.

4.1 Information Flow Constraints

To prevent queries from overly contaminating the issuing process, each query pro-
vides secrecy and integrity labels. The querying system must make sure that only
events fitting those labels are returned. These events fulfill the following con-

straints:

SECRECYepent € SECRECYqyery

INTEGRITYeyent 2 INTEGRITYyen,

The queries issued against the table see a view of the table containing only those
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events matching the provided labels. This technique is called query by label and
more detail is in Schultz [21]. Figure 4-1 shows an an example of a few different

views of the same event table.

EventCounter Secrecy EventCounter | Secrecy EventCounter | Secrecy
| {} 1 { 1 {
2 {alice} 2 {alice} (©
3 {alice,bob} (b)

(@)

Figure 4-1: Example of returned events for the same query on the same table with
different secrecy labels for the query. Figure (a) shows the results with secrecy label
{alice, bob}. Figure (b) shows the results with secrecy label {alice} and Figure (c)
shows the results with the null secrecy label {}.

4.2 OpName Constants

The event field OpName stores integers that code for specific operations in the
Aeolus System. Rather than having to look up the integer value, however, queries
may use the actual operation name. Therefore, queries may be written like the

following:

SELECT *~ FROM EVENTS WHERE

OpName = DECLASSIFY

4.3 Special Querying Node

Our system uses a special querying node to accept and execute audit trail queries.
Queries are issued via normal Aeolus RPC calls to the method in Figure 4-2.

After running the query, the RPC will return the result set as a QueryResult ob-
ject. This object has only two (final) fields: lastEventCounter and results. lastEvent-

Counter holds the highest EventCounter value that the database has seen when the

24



QueryResult executeQuery (String query,
Label secrecy,
Label integrity);

Figure 4-2: API for executing direct queries.

query was executed. results is a two-dimensional array of Objects storing the re-
sult set of the query. The provided parameters secrecy and integrity are the process

labels and are used for query by label as discussed in Section 4.1.

4.4 Direct Querying Examples

A common pattern in Aeolus applications is to delegate specific roles to users.
For example, in a medical clinic, each doctor may be represented as a separate
principal, but each doctor has been delegated the doctor role. A query to determine
all the doctors currently seen by the logging system would look like the query in
Figure 4-3.

SELECT DelegatedPrincipal FROM EVENTS WHERE

OpName = DELEGATE AND
DelegatingPrincipal = DoctorRole

Figure 4-3: An example query looking for all delegations to DoctorRole.

Another common query is of the form: “What tags has Bob’s authority been
used to declassify?” This query makes use of the AuthorityProvenance field
described in Section 3.2. A query for all declassifications using Bob’s authority
looks like the query in Figure 4-4. That query uses the =ANY statement in Post-
greSQL [20]. This statement is true if any of the elements of the list is equal to the

left operand.

25



SELECT TagRemoved FROM EVENTS WHERE
OpName = DECLASSIFY AND
Bob=ANY (AuthorityProvenance)

Figure 4-4: An example query using the AuthorityProvenance field to find
declassifications.
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Chapter 5

Watchers and Active Monitoring

The active monitoring system is designed to enable Aeolus users to watch events in
the system without excessively burdening them with irrelevant events, requiring
excessive authority, or overly limiting their monitoring capabilities. For this task I
introduce client objects called watchers that receive event notifications from a server

called the Watcher Manager. In this chapter I present the design of watchers and

the Watcher Manager.
‘AeolusNode AeolusNode
(o)
AeolusNode: \ Logging Node / AeclusNode
| Logge \' Log Collector Watcher Manager) kWatcher)
Aeolushode \[Acolustiode
(=)

Figure 5-1: Flow of events from originating nodes to watchers.

Clients wishing to receive updates construct a virtual node implementing the

watcher interface and register this virtual node with the Watcher Manager. The

27



Watcher Manager then begins sending events to the watcher. Figure 5-1 shows
how events travel from source nodes and ultimately to watchers.

A watcher typically starts by running a direct query to gather some initial in-
formation from the audit trail. The watcher then attaches to the Watcher Manager
to receive updates. From the direct query, the watcher learns an EventCounter.
The watcher supplies this EventCounter as an argument to ensure that events

are not missed between attaching and the initial query.

5.1 Controlling Watcher Contamination

As discussed in Chapter 3, events carry information flow labels. These labels con-
taminate the watcher as it receives updates. For the watcher to raise an alert, it
would need authority for its labels. To prevent itself from becoming overly con-
taminated, a watcher must specify its labels when it registers. The Watcher Man-

ager will then filter the events that the watcher receives based on those labels.

5.2 Filtering Unneccessary Events

Even while filtering with labels, watchers would receive a large volume of events.
Watchers may specify an additional set of filters that reduce the events that they
receive.

Each filter represents a set of events of interest to a watcher. At any moment
there is a set of filters associated with a watcher and each event is evaluated with

respect to those filters. If it matches a filter, it will be sent to the watcher.

5.2.1 Abstract Syntax for Filters

Filters are described using the specification language presented in Figure 5-2. This

syntax is defined using an extended BNF grammar. The extension a... denotes a
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list of one or more of a. Reserved words and terminal symbols appear in boldface

font.
<filters> L= <filter> ...
<filter> ..= <filter-primary>
| <joined-filters>
<joined-filters> .i= <filter> <conjunc> <filter-primary>
<filter-primary > .i= <bracketed-filter>
| <filter-component>
<bracketed-filter> := ( <filter>)
<filter-component> .= <event-field> <operator> <value>
<operator> ::= CONTAINS | IN | =
<conjunc> = OR | AND
<value> = <atom-value> ‘ <list-value>

[ <atom-value> ... ]

<list-value>

<atom-value> ..= integer | string t datetime I op-name

Figure 5-2: An abstract syntax in for watcher specified filters.

In this syntax, the event-field may be any one of the event attributes listed in
Appendix A. Figure 5-3 presents an example abstract syntax tree for a watcher’s
filter set.

Not all filters described by this syntax describe satisfiable events. Section 5.4
describes some additional semantic constraints for the language.

The concrete syntax used in this thesis closely follows the abstract syntax.
Watchers submit a specification in a single Java String. This representation is not

ideal. Construction of a more suitable concrete syntax is a topic for future work.
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joined-filters
% bracketed-filters

filter-primary @
filter-component joined-filters

event-field operator value ¥ N
Delegate @ @ fiterprimary

Corerprimay >
N event-field operator
filter-component DelegatingPrincipal @
event-field operator
DelegatingPrincipal =

Figure 5-3: This figure shows an example AST for a watcher filter. This filter selects
an OpName and any of two DelegatingPrincipals. This tree can be represented
with the statement OpName = DELEGATE AND (DelegatingPrincipal =
1 OR DelegatingPrincipal = 2)

5.2.2 Example Filters

An administrator may want to monitor all uses of a particular principal’s authority.
The watcher can be registered with the following filter (assuming the principal is

1):

OpName = DECLASSIFY AND

AuthorityProvenance CONTAINS 1

In a medical clinic, administrators may wish to enforce a policy that doctors
should not delegate their authority to other users. This cannot be enforced using

Aeolus information flow control policies, but can be checked using watchers.
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In a simple system, a watcher may be interested in just a few doctors with well-

known Principal IDs. The watcher specification in this case is just a single filter:

OpName = DELEGATE AND

(DelegatingPrincipal = 1 OR
DelegatingPrincipal = 2 OR
DelegatingPrincipal = 3)

The same filter could also be represented using the IN operator:

OpName = DELEGATE AND

DelegatingPrincipal IN [1 2 3]

In a more complicated system however, new doctors may join the system after
the watcher was registered. In this case, a watcher needs a way to modify its filter

set. The next section describes how this is done.

5.3 Dynamic Filter Modification

Because the events of interest can change as a watcher runs, a static filter set is not

enough. A watcher may additionally specify rules that describe these changes.
Each rule provides a filter that describes what events should trigger the change

and an action. The action either adds some new filter, or removes filters from the

watcher’s filter set.

5.3.1 Abstract Syntax for Rules

Rules extend the watcher specification language with the syntax in Figure 5-4. Us-
ing this syntax, rules define a skeletal-filter. This is similar to a filter except that
it allows filter-components to refer to the trigger event that caused the rule to be

executed.
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<rules> = <rule> ...

<rule> .= ON <filter> <action> <skeletal-filter>
<action> .= ADD | REMOVE
<skeletal-filter> .:= <skeletal-primary> | <joined-skeletons>

]

<joined-skeletons> <skeletal-filter> <conjunc> <skeletal-primary>

I

<skeletal-primary>> <bracketed-skeleton> } <skeletal-component >

<bracketed-skeleton> ::= ( <skeletal-filter>)

<skeletal-component> .= <event-field> <operator> $<event-field>

| filter-component

Figure 5-4: An abstract syntax for watcher specified rules.

5.3.2 Evaluating Rules

Each rule instantiates a filter from the skeletal-filter and the trigger event. If the
triggered rule is an add rule, the instantiated filter is added to the watcher’s filter
set. For a remove rule, the instantiated filter is compared against each of the fil-
ters in the watcher’s filter set and matching filters are removed. A filter matches
if it describes a set of events that is a subset of the events that match the rule’s

instantiated filter.

Filters are instantiated by transforming each skeletal-component into a normal
filter-component. This is done by replacing the event-field following $ with the value
from the triggering event. For example, if a rule contains the action “OpName =
$OpName” and is triggered by a Declassify event, then the rule will instantiate a

filter “OpName = Declassify”.
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5.3.3 Example Rules

In a large medical clinic, doctors are added over the course of a watcher’s lifetime.
So the watcher must use rules to adapt its filter set to these changes. A particular
principal is a doctor if it receives a delegation to the doctor role. This role is a well-
known Principal ID, which is 10 in the following example. The specification must
contain a rule that watches for new doctors and creates a new filter to monitor the

delegations of that new doctor, as in the following example:

ON
OpName = Delegate AND DelegatingPrincipal = 10
ADD

OpName Delegate AND

DelegatingPrincipal = $PrincipalDelegatedTo

5.4 Semantic Constraints

Not all instances of the abstract syntax describe valid specifications. To catch these
bad specifications, the Watcher Manager imposes several additional semantic con-
straints on the watcher specification language. Registration will fail with an error
if there are unsatisfiable specifications.

For example, a filter fails when an event field is not applicable for a given Op-

Name as in the following filter.

OpName = Declassify AND FileName = "/foo/bar/"

Event fields also expect certain types for values and if the wrong type is given,
registration will fail. For example, the Principal field expects an integer. Therefore,

the following specification would fail.

OpName = Declassify AND Principal = "Foobar"
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Additionally, event fields should not be specified twice and joined by an AND.

A simple example is this filter:

OpName = Declassify AND OpName = Endorse

Semantically bad rules also raise errors during registration.

5.5 Watcher Definition and Registration

To monitor events, an Aeolus application creates a virtual node implementing the
interface in Figure 5-5. The Aeolus application then registers with an RPC to the

watcher manager.

public interface Watcher{
public void receiveEvents (List <Event> events)
}

Figure 5-5: Remote interface for watchers.

public void registerWatcher (String watcherSpec,
Label secrecy,
Label integrity,
long startEvent,
long delayTolerance)

Figure 5-6: RPC method used for watcher registration.

The Watcher Manager runs on a special virtual node with a well-known net-
work address and exposes the registerWatcher method (Figure 5-6). The watcherSpec
parameter is used to supply the rules and filters for the watcher. The secrecy and in-
tegrity specify the labels of the watcher as described in Section 5.1. The parameter
startEvent is used to specify the event in the past where the watcher should begin
receiving events.

After the watcher is registered, the Watcher Manager begins dispatching events

by calling the receiveEvents method on the watcher. This method accepts a list of
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events from the watcher manager. A list is used to prevent excessive communi-
cation overhead for watchers receiving large numbers of events. By default, the
Watcher Manager collects batches of events for 30 seconds before shipping them
to the watcher. In some scenarios, this delay is unacceptable. In these cases, the
watcher uses the optional parameter delayTolerance. This specifies a maximum de-
lay in milliseconds for the batches. If the delay is set to zero, the behavior is dis-
abled entirely.

Further, the receiveEvents method is treated specially by the Aeolus runtime in
that only the Watcher Manager virtual node can make calls to this interface. This
ensures that fraudulent events are not received.

Watchers are implemented in Java and therefore can respond to incoming

events as needed.

5.6 Ordering Guarantees

The Watcher Manager provides several guarantees for the ordering of receiveEvents

calls.

1. All events matching a watcher’s filter set will be sent to the watcher.

2. Changes from rules are applied after the triggering event and before the next

event passes through the Watcher Manager.
3. The list of events is ordered by EventCounter.

4. All the events in a call to receiveEvents occur after the last EventCounter of the

previous call.

5. receiveEvents will only be called after the previous call has completed.

These guarantees prevent possible synchronization issues for the watcher.
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The optional parameter startEvent specifies the point in the audit trail where
the watcher should attach. The watcher will receive all the events that match its

filter set and have a higher EventCounter than startEvent.

5.7 Example Watcher Registration

The previous doctor monitoring examples in this chapter assume that all doctors in
the system are created after the watcher registers. Of course, this may not be true.
Capturing all the doctors in the system requires mixing direct querying and active
monitoring. Example code for querying information and registering this watcher

is presented in Figure 5-7.
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Figure 5-7: Pseudocode for using a direct query to gather information prior to
watcher registration. The unbound variable DoctorRole is assumed to be a well
known principal. Lines 13-15 gather all the doctors currently in the logging sys-
tem. Lines 16-26 are format the result to insert it into the watcher specification.
Lines 28-30 register the watcher. Notice that the registration needs to use drRe-
sult.lastEventCounter to ensure that it does not miss any events between the query

String getDRs =
"SELECT DelegatedPrincipal FROM EVENTS " +
"WHERE OpName = DELEGATE AND " +

"DelegatingPrincipal = " + DoctorRole;
String wsl =
"OpName = DELEGATE and (?), " +
"ON OpName = DELEGATE and DelegatingPrincipal ="
+

DoctorRole + " ADD"
"OpName = DELEGATE and " +
"DelegatingPrincipal = \$PrincipalDelegatedTo";

QueryResult drResult = executeQuery(getDRs,
Label .empty,
Label.empty) ;
String startingDoctors = "";
boolean first = true;
for (Object|[] row : drResult.results) {
if (first) {

startingDoctors += "DelegatingPrincipal = ";
first = false;

}else({
startingDoctors += " or DelegatingPrincipal = ";

}

startingDoctors += row[0};

registerWatcher (String. format (wsl, startingDoctors),
Label.empty, Label.empty,
drResult.lastEventCounter) ;

and the registration.

37



38



Chapter 6

Implementation

Log Collector

\ Analysis System
e
Graph Database Q,og Processor (LP)]

(Watchcr Manager) Database Managerj

‘ Relational Database \

Figure 6-1: This is an overview of the various components involved in preparing
events for querying and handling active monitoring.

The complete implementation of the analysis system is composed of over 5,000
lines of Java code, and an ANTLR grammar.

Figure 6-1 presents a high-level overview of the analysis system components.
The Log Collector forwards events to the Log Processor (LP). The LP formats the
events and enforces a proper ordering before shipping events to the Database Man-

ager and the Watcher Manager. The Database Manager stores the events in a rela-
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tional database and the Watcher Manager ships events to watchers.

The Log Collector additionally stores events in a graph database, Neo4] [16].
This is used for producing filtered views of audit data in Popic [18].

This rest of this chapter describes the implementation of the LP, the Database

Manager, and the Watcher Manager components.

6.1 Log Processor

6.1.1 Collected Event Format

During log collection, events are collected and stored using a format that differs

from the user model discussed in Chapter 3. Each event is represented as a tuple:

<EventID, Operation, Arguments, ReturnValue, Timestamp,

Predecessors>
This form differs from what was described previously in two ways:

e The collected events contain ordering information that differs from the
EventCounter. Each event has an Event ID, and events identify other
events that directly precede them by including their IDs in the Predecessors
field. For example, the event recording the start of executing an RPC would
contain the ID of the event recording the sending of that RPC request in this
field.

e The context of an event is mostly missing, in order to keep the overhead low
during log collection. Instead, the context for an event e can be computed by

looking at information in the predecessor events of e.

The LP must perform three tasks before events are ready for either direct query-

ing or watchers:
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1. The EventCounter field of the event model needs to be calculated.

2. Events shipped to users must contain explicit context information, such as
the running principal or the process labels. This must be constructed by

traversing events in the audit trail.

3. Direct querying requires building a second representation of the logging

data, a relational database.

6.1.2 Ordering Events

The LP receives events from the Log Collector in a queue. This queue is ordered by
the time an event is received at the Log Collector and does not respect the ordering
imposed by the Predecessor relationship. The LP, however, must process events

only after the events they depend on.

When new events are received, the LP checks each of its predecessors. If all pre-
decessors have already been processed, the LP processes the current event. Oth-
erwise it adds the event to a table for later processing. When the LP finishes pro-
cessing an event, it checks if any events are waiting on it and tries to process them
again.

As part of processing an event, the LP assigns it an EventCounter, which it
computes by incrementing a counter. This event count is certain to be greater than
that assigned to any events that were predecessors of the current event because the
LP processes events only when they are ready based on their list of Predecessors.
This way the LP ensures that the total order provided by the EventCounter is
consistent with the causal order determined by the predecessors. Popic [18] con-

tains a detailed discussion of this issue.
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6.1.3 Adding Context Information

Each user process has associated security information, such as the authority prin-
cipal it runs on behalf of, or the current secrecy and integrity labels. This informa-
tion is not stored for each event in the user process. Instead, the LP calculates it by
using information in events that preceded the current event.

To gather information about an event ¢, the LP examines the immediate pre-
decessors of that event. Because the LP processes events in a causal order, the
predecessors of e already contain complete context information. The LP derives
the context of e by taking the context of its predecessor and applying any modi-
fications caused by the predecessor. For example, if e is preceded by a Declassify
event d, the context of e is the same as the context of d except with a tag removed
from the secrecy label.

The LP needs a way to quickly find predecessor events. To do this, it keeps a
map from Event ID to the event objects.

Some events do not have predecessors in the same process. For example, the
VirtualNodeStart event has no such predecessor. The LP identifies these events

and constructs the initial context information for a process.

6.1.4 Tracking Authority Provenance through Cache Lines

When an application attempts to declassify (remove a tag from its secrecy label),
the Aeolus system performs an authority check. This check involves finding an
authority provenance for the running principal. This provenance is logged with
the Declassify or Endorse event. However, the Aeolus system caches authority
checks so that subsequent checks do not have to do a full provenance calculation.
In this case, the authority provenance is not readily available to the logged event.
To solve this problem, each node adds a CacheWrite event whenever a cache

line is written. This event holds the authority provenance and a cache line identi-
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fier. Authority related events all depend on the most recent CacheWrite event for
the cache line they use. When the LP sees a CacheWrite, it creates a mapping from
the EventCounter to the authority provenance. Then, as it sees events referenc-

ing that CacheWrite, it fills in the provenance.

6.2 Database Manager

My system supports fast analysis of past events by direct querying of the event log.
Events are stored in a relational database, and indices make most queries efficient.
The Database Manager (DBM) is responsible for storing events in the relational

database. In this section, I outline the implementation of this component.

6.2.1 Storing Events with Different Sets of Attributes

As 1 discussed in Chapter 3, different event types have different sets of attributes.

There are several ways to deal with this problem.

1. Store additional event attributes in separate tables
2. Store different event types in different tables

3. Store all events in a wide table with nullable columns

The first and second approach minimize table width and do not require a large
number of null fields. To support the types of queries described in Chapter 4, the
Database Manager would have to modify incoming queries to do the correct JOIN
and UNION operations. However, I chose to store all the events in the same table.

A concern with using a wide table for storage is space usage. However, Post-
greSQL uses an efficient representation for storing null values that limits the over-
head of null fields [19]. Null fields also affect the performance of indexes in Post-

greSQL, because null values won't be indexed. Queries involving IS NULL oper-
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ators will not be able to use indexes. However, my event model does not require

the use of IS NULL in normal circumstances.

6.2.2 Information Flow Labels and Events

The direct querying interface from Chapter 4 presents a table view based on in-
formation flow constraints. The implementation of this relies on the PostgreSQL
Information Flow Control (PGIFC) database provided by David Schultz [21]. This
is a modified version of the PostgreSQL database that supports label operations.

The DBM inserts events into the database and explicitly sets the labels of those
events. This requires that the DBM pass an additional parameter to the underlying
database.

The DBM also deals with incoming queries. When a query comes in, the DBM
executes the query on a read-only connection. Additionally, it provides a parame-

ter that filters the output based on the supplied labels.

6.2.3 Table Indices

Table indices are an important part of providing an efficient querying structure.

The following fields are indexed:

e EventCounter e DelegatingPrincipal
e OpName e DelegatedPrincipal
e FileName e RunningPrincipal

Because the database is only used for INSERT and SELECT statements, addi-
tional indices do not significantly decrease INSERT performance. Depending on

different use cases, additional indices could be added.
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6.3 Watcher Manager

Watcher Manager

( Watcher |Jedistrationg (g o distration ManagerHEvent Dispatcher [4EveNts

(Shipment Thread [Shipment Thread)
(watcher |, (watcher |

Figure 6-2: This figure provides an overview of the Watcher Manager.

The Watcher Manager is responsible for handling watcher registrations, evalu-
ating rules and filters, and dispatching events to the watchers. Figure 6-2 provides
an overview of the various components involved in the Watcher Manager. Watch-
ers send registration requests to the Registration Manager. This component per-
forms some semantic processing before forwarding the request to the Event Dis-
patcher. The Event Dispatcher receives events from the LP and dispatches those
events to appropriate shipment threads. Each watcher has a shipment thread that
handles calling the receiveEvents method on the watcher.

This section examines the implementation of the three Watcher Manager com-
ponents: the Registration Manager, the Event Dispatcher, and the Shipment
Threads.

6.3.1 Registration Manager

Adding a new watcher to the manager requires parsing the given filters and rules
and performing some semantic processing before passing the request onto the

Event Dispatcher.
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public interface Watcher({
public void receiveEvents (List<Event> events)
}

Figure 6-3: Remote interface for watchers.

The Registration Manager receives registerWatcher RPC’s (see Figure 6-3). It
then uses a parser constructed with ANTLR [17] to generate an abstract syntax tree
(AST) for the provided filters and rules. This AST is a simple Java representation of
the input specification. The Registration Manager then does semantic processing
on this AST and checks it for any bad filter or rule definitions. Finally, it attempts
to forward the registration information to the dispatcher. If this process fails at any
point, the registerWatcher RPC raises an exception and the watcher is notified that

registration has failed.

Semantic Language Processing

The Registration Manager processes watcher specifications to fit a canonical form.
This form is used to simplify semantic checks and the job of the Event Dispatcher.
In this section, I describe this form and provide some of the reasoning for each
added constraint.

First, filters with OR statements are rewritten into multiple patterns. Without
ORs the dispatcher never needs to backtrack when evaluating filters or checking
remove rules. This also allows the next processing step, sorting filter components.

Second, filter components are sorted by the event-field they are matching. This
makes finding specific filter types efficient. For dispatching, this allows the dis-
patcher to quickly determine what operation name a particular filter is interested
in. This also makes remove rules faster to evaluate, as comparing sorted patterns
can be done very quickly.

Finally, redundant filter components are removed so that excess checks are

avoided at dispatch and rule evaluation.
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6.3.2 Event Dispatcher

The Event Dispatcher maintains a table of filters and rules for all the currently ac-
tive watchers. It uses this table to evaluate rules and dispatch events to appropriate
shipment threads.

The Dispatcher serially examines events coming from the LP in a two step pro-
cess. In the first step, the event is evaluated against the active filters. If a filter
matches, the Dispatcher adds the event to the correct Shipment Thread.

In the second step, the Dispatcher evaluates the event against the active rules.
If the event causes a rule to fire, that rule’s action is evaluated and the Dispatcher

modifies the active filter table appropriately.

Accepting New Watchers

The Registration Manager forwards watcher registrations to the Event Dispatcher.
Registration requests provide a StartEvent that specifies where in the event log the
watcher should begin receiving events. The Event Dispatcher has to deal with the
fact that this is in the past.

To do this, the Event Dispatcher manages a buffer of events from the past 30
seconds. If StartEvent is further in the past, the Dispatcher raises an error that
propagates back to the Registration Manager and to the watcher.

If StartEvent is inside the buffer, the Dispatcher stops processing new events
while it catches up the new watcher. The Dispatcher performs the normal two step
event dispatching process except that it only checks one watcher. Once the watcher
is caught up, the Dispatcher resumes normal operation.

Because this behavior slows down the Event Dispatcher, the actual implemen-
tation starts a special thread to handle a new watcher. This thread evaluates filters
and rules the same as the normal dispatcher. Once this thread is within some
small distance of the current event in the dispatcher, the dispatcher stalls while the

watcher finishes getting to the latest event. Finally, the watcher is added to the
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dispatcher, the thread is discarded, and normal dispatching resumes.

Fast Matching for Common Filters

It is important that the Event Dispatcher scale well with many filters. A naive
strategy is to apply each event to every filter and rule. This performs reasonably
well with a small number of filters, but performance can degrade quickly.

To mitigate some of the cost of additional filters, I use a hash table to quickly
select the filters monitoring events with a particular OpName. In the worst case,
many filters can all be watching the same OpName. However, the system will still
have significant performance improvements for events without that OpName. Sec-

tion 7.2 presents the performance impact of this strategy.

6.3.3 Automatic Removal of Unsatisfiable Patterns

Under special circumstances, the dispatcher can determine that certain active fil-
ters are unsatisfiable. For example, when a dispatcher witnesses a process ter-
mination event, any filters looking for that process are unsatisfiable. When this
happens, the dispatcher will automatically remove the filter.

This process can be achieved without too much overhead by adding hash tables
to map from a process number to filters monitoring that process. Then, when a
process termination event passes through the dispatcher, it checks that hash table
for filters to remove. A similar technique is used for monitoring the shutdown of

virtual nodes, the removal of shared state objects, and file deletions.

6.3.4 Shipment Threads

The watcher model requires that events be shipped to watchers in the order they
occur and that each call to receiveEvents complete before the next call. The Ship-

ment Threads are responsible for making these calls.
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Depending on the implementation of particular watchers, this RPC call could
take a long time to complete. Using one thread per watcher prevents watchers
from delaying shipments to each other.

The dispatcher queues events for these threads using concurrency-safe queues.

As new events appear in its queue, the thread sends the events to the watcher.
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Chapter 7

Performance Evaluation

In this chapter I present the results of three experiments to evaluate the perfor-
mance of the analysis system. The first experiment examines the performance of
the Log Processor (LP). Next I present an evaluation of the Event Dispatcher. Fi-
nally, I present the total added latency of the active monitoring system.

I performed these evaluations on a computer with an Intel Q9550 CPU with
four cores clocked at 2.83 GHz, 4 GB of physical memory, and a 7200 RPM hard
drive. The analysis system ran with a 64-bit Open]JDK JVM (build 19.0-b09) on the
2.6.31-22 Linux kernel.

7.1 Log Processor

In this section, I examine some of the performance characteristics of the LP. The
throughput of the log processor is measured as the average number of events pass-
ing through the processor per second. The log processor is evaluated using a queue
of events that resides in memory when the evaluation begins.

The LP is an important bottleneck in the system because it is a sequential pro-
cess and therefore a hard limit for scaling the system. This system should be able to

handle reasonably large systems, though. For example, the Massachusetts General
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Hospital system handles about 4,000 patient visits a day [11]. If we overestimate
the number of events by assuming each of these visits generated 100,000 logged
events, the LP would have to deal with about 5,000 events per a second.

The results in Figure 7-1 show that a single-threaded LP is capable of processing
150-200 thousand events per second. For most systems, this should be enough. I
discuss possible strategies for scaling the LP to multiple processors or machines in
Section 9.2.

The benchmark fuzz-0 is composed of 100,000 CreateTag, AddSecrecy, and
Declassify events. The event log for this benchmark contains a large number of
multiple dependency events - the CreateTag and Declassify events have predeces-
sors in the user process and predecessors at the Authority Server.

10% of the events in the medical-bench benchmark are Call events. This bench-
mark provides a more realistic estimate of an actual workload. Additional work
is done in comparison to the fuzz-0 benchmark because Call events require some

additional processing to calculate a new running principal. Figure 7-1 shows the

decreased throughput.
Benchmark | Throughput (events/second)
fuzz-0 266,180.8
medical-bench 170,622.2

Figure 7-1: Comparison of Processor throughput on several test logs.

7.2 Dispatching Quickly

In this section, I evaluate the Event Dispatcher component and compare the fast
dispatch implementation to a naive implementation where all filters are checked
against all events.

I expect the Event Dispatcher to scale to large numbers of filters with minimal

performance degradation. Scaling is important because large systems could de-
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fine thousands of filters. In the medical clinic example (Section 5.7), a watcher that
monitored each doctor in the system would require one filter per doctor. In Mas-
sachusetts General Hospital, there were over 1,900 clinical staff and 3,700 nurses

in 2009[11]. MGH would require over 5,000 filters for just this watcher.

The system is evaluated with watchers running locally to avoid network
overhead. All of the filters provided to the system are identical and the event
log is entirely loaded into physical memory. The provided filter is OpName =
AddSecrecy AND TagAdded = 30. I examine two separate workloads with
100,000 events each. 1% of the events in the first benchmark are AddSecrecy

events. This increases to 9% in the second benchmark.

I expect real workloads to look more like the first benchmark— watchers are

looking for evidence of misbehavior and so few events should ever match.

Figure 7-2 compares the performance of a naive dispatcher implementation and
an implementation that dispatches based on the OpName field. In this evaluation,
1% of the events in the input log are AddSecrecy events. This figure shows that
both dispatchers scale linearly with the number of the filters. However, the fast
dispatcher experiences much less deterioration. The best-fit slopes show each ad-

ditional filter only costs about 1% of what it does for the naive dispatcher.

Figure 7-3 presents a worst-case scenario for the Event Dispatcher. In this sce-
nario, 9% of the events in the log are AddSecrecy events. The fast dispatcher still
scales better than the naive dispatcher, in this case about 15 times better. This fig-
ure also shows that the naive dispatcher scales more poorly than it did with the
first benchmark. This happens because the naive dispatcher only has to evaluate
the second filter component of the filter when the event is an AddSecrecy event.
Because there are more AddSecrecy events, each additional filter costs more to
evaluate.

Importantly, the slope for the fast dispatcher is about 9 times higher than in

Figure 7-2. This happens because there are about 9 times as many partial matches
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as before, so each additional filter costs about 9 times as much.

The fast dispatcher performs well in the first benchmark. At 5,000 filters, it
takes 248 milliseconds to process 10,000 events. This is a throughput of about
40,000 events per second, which is good for large systems. However, in the second
benchmark, the dispatcher only achieves throughput of 7,800 events per second.
Though I expect workloads to be more similar to the first benchmark, this is still
a problem. However, the Event Dispatcher’s job, unlike the LP’s job, exhibits a
great deal of parallelism. Implementing a concurrent Event Dispatcher could lead

to significant performance gains. I discuss another possible strategy in Section 9.2.
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7.3 Event Detection Latency

The last evaluation I provide for the watcher manager system is the combined
latency of the log processor and the dispatcher. If the time an event is dispatched
to a dispatcher thread is t4, and the time an event entered the log processor’s queue
is t,, then the latency of the eventis t4 — t,.

The table in Figure 7-4 provides the average and maximum latency of events
on several benchmark logs. Each benchmark runs with 100 active filters, each of
which match 10% of the supplied event log.

This data shows that the watcher manager does not add significant latency to
event analysis. Since Shipment Threads hold batches of events for up to 30 seconds
before shipping them to watchers. In light of these variables, if the added latency

of the watcher manager system is on the order of milliseconds, then its effect is

negligible.
Benchmark | Average Latency (ms) | Maximum Latency (ms)
fuzz-0 3.75 28
medical-bench 1.95 14

Figure 7-4: Latency measurements for events moving through the watcher man-
ager on several test logs.
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Chapter 8

Related Work

In this chapter I discuss some related work from the fields of event tracing, stream

databases, and intrusion detection.

Event Tracing and Dynamic Instrumentation Systems

Active log monitoring is closely related to work in tracing and dynamic instrumen-
tation because both require interfaces for specifying events to monitor and actions
to take. There are many dynamic instrumentation and tracing systems such as
Pin [12], Aspect] [13], and DynamoRIO [6], but I will focus on DTrace [7].

The DTrace system allows users to monitor system calls on a single machine.
The authors present a domain-specific language to describe what events should
be monitored and if any processing should be done. This language is particularly
relevant to my system though DTrace differs in some key aspects that affect inter-
face and language design. First, DTrace is designed to monitor events on a single
machine, while Aeolus is a distributed platform. This requires that users be able
to specify somewhat more complex patterns for matching events. Second, DTrace
inserts monitoring code directly into system calls. This requires that monitoring

code have simple event filters and strictly defined memory behavior. In audit trail
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monitoring, on the other hand, applications monitor events as they are added at
the logging server. The performance and behavior of filters, then, does not af-
fect the applications they are monitoring, just the audit trail server. This allows
the system to employ more complex filtering behavior without disrupting applica-
tion performance. Finally, for DTrace to collect information from the environment
when a system call is made, users must provide actions — snippets of code — that
specify how to gather information. In Aeolus, system events are logged automati-
cally with all of the information relevant to that event. In some cases, applications
may wish to log additional events. Applications only need to supply actions in
these cases.

DTrace provides users with useful library functions to perform typical event
analysis tasks, such as collecting the average of some value or summing execution
times. My system provides no such library. Instead, users write plain Java code.
Determining useful functions and libraries for audit trail analysis is a topic for

future work.

Streaming Databases

Systems such as Cayuga [9] [10] and SASE+ [3] use streaming databases for active
filtering. These systems provide a different model from the filters and rules model
presented in this thesis. First, these systems constrain the time between related
events, but watchers are typically interested in events that are very far apart. For
example, a doctor may misuse his authority months after he becomes a doctor.
Second, watchers need to see every event that matches at the time that it matches.
Cayuga and SASE+ wait to collect all events that match before shipping them to
the monitor. A final point is that our system requires a way to remove filters that
are no longer needed, e.g., when a doctor leaves the clinic, we no longer need

to monitor his actions. Cayuga and SASE+ use time to stop filtering events; we
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instead need to recognize events that cause filters to be removed.

However, systems like Cayuga and SASE+ provide more power than we do.
We assume that all computation with events is done in the watcher. By contrast
these systems allow much of this processing to be specified via queries. For ex-
ample if we were monitoring activity on an ATM card, the watcher would need
to see all events concerning use of that card, whereas with the streaming database
approaches, the watcher could be notified only if these events happened too fre-
quently within some time period. Extending the watcher system to allow some

processing to occur at the watcher manager is a possible topic for future work.

In systems such as Aurora [2] and Borealis [1], clients provide queries in the
form of data flow processors. Borealis presents a model similar to the filters and
rules in this thesis. In Borealis, filters are defined using data flow processors and
the user may specify triggers that dynamically modify these processors. How-
ever, this system is designed to handle complex queries involving various com-
putational components. Because of this, they provide weak ordering guarantees
during dynamic changes. For example, when an event triggers a dynamic change,
later events may be seen before that change takes effect. In this case, those events
will be missed. Borealis and my active monitoring system share one major feature,

though: the ability to begin monitoring events at a time in the past.

The streaming databases XFilter [4] provides another querying model. This
system defines a query language where users can specify filters over XML. Can-
didate XML is compared against the filter using graph matching techniques. If
the Aeolus event log is represented as a graph, graph matching techniques could
be used to filter events. In this case, a user could derive some of the context in-
formation of an event from graph matching queries. For example, a user could
filter events based on the principal basis by defining a graph matching query that
searched for principal switches. However, these queries could become excessively

costly as relationships between events could form chains with lengths in the tens of
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thousands. These types of queries work in XFilter because XML typically defines
shallow graphs.

Active log monitoring does share some implementation details with XFilter,
though. For example, both XFilter and my monitoring system optimize dispatches
for particular data attributes, in my case OpNames. This is the mechanism I call

fast dispatching in Section 6.3.2.

Intrusion Detection

There has been some significant recent work in using audit trails for intrusion de-
tection and recovery. RETRO [14] uses audit trails to repair a compromised system
after an intrusion. BackTracker [15] analyzes operating system events to determine
the source of a given intrusion on a single system. The events in these system are
represented as a DAG where each edge represents a causal relationship. Aeolus
treats audit trails similarly. However, the analysis performed in BackTracker is
very different from active monitoring or direct querying. While my analysis tools
are more focused on discovering misuses or violations, BackTracker is concerned
with discovering how a misuse occurred.

When an intrusion is discovered, BackTracker traverses the event DAG back-
wards from that discovery point searching for the source of the intrusion. Because
my system analyzes events occurring across a distributed application, backtrack-
ing graph analysis is more difficult- audit logs may branch significantly. For exam-
ple, a user may want to trace the source of a write to a file. The analysis starts by
examining the process that wrote to the file. Any inputs to that process could have
contributed to the write. These inputs could be file reads, remote procedure calls,
accesses to shared state, or startup parameters. Those inputs require further anal-
ysis of what processes may have affected them. While this thesis does not explore

backtracking analysis over the audit trail, this is a good topic for future work.
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Chapter 9

Future Work and Conclusions

This chapter summarizes the contributions of this thesis and presents some possi-

ble directions for future work in audit trail analysis.

9.1 Contributions

This thesis has presented the design and implementation of an analysis system
for audit trails collected by the Aeolus security platform. I presented a model for
representing events in the system, a method for querying those events, and a new
model for actively monitoring those events.

This thesis makes the following contributions:

1. I define a usable model for events logged by the Aeolus security platform.

2. I present a method for determining the sensitivity of logging information.
This method prevents information leakage through audit trails while using

existing authority and information flow control enforcement.

3. I introduce the concept of watchers. This is a new model for active moni-
toring of an audit trail that allows users to perform complex analysis while

limiting communication overhead.
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4. Iimplemented and tested a full analysis system for the Aeolus security plat-
form. This system enables queries over past events and active event mon-
itoring. It achieves high throughput and low latency for active monitoring

tasks.

9.2 Future Work

There are several possible topics for continuing work in analysis of Aeolus audit
trails. In particular, archiving logged events, building better language tools for
active monitoring, scaling log processing, and examining additional optimizations
for the Event Dispatcher are all areas of interest.

Archiving event logs is a necessary task. Large systems could generate hun-
dreds of thousands of events a day. In such an environment, direct queries will
quickly become infeasible. Further, storage will be extremely costly. However,
removing or archiving old events presents several problems. The primary prob-
lem is that some old information will need to be available to new direct queries.
Differentiating between important events and unimportant events is difficult. For
example, a query for all users having authority for a particular tag should always
return the complete set, but a query that asks for all uses of some particular prin-
cipal’s authority may not necessarily need to return old events.

This thesis presents a language for describing filters and rules that is too cum-
bersome in practice. Users must construct Java Strings using results from direct
queries. The analysis system could instead provide a similar interface to JDBC
Prepared Statements [5], which allow users to specify a query using a combina-
tion of a String definition and other Java Objects. The system could also allow
users to imbed direct queries into the specification itself. Further, as I discussed in
Chapter 8, the system could also provide a library for common analysis functions.

There are a number of issues with respect to the scaling of log processing to
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multiple processors or machines. Importantly, the Log Processor requires that
an event be processed aftér the events it depends on. The LP could potentially
be adapted to run on multiple CPU cores if events were distributed amongst the
cores to minimize cross-core dependencies. Running the LP in a distributed envi-
ronment poses a larger challenge. The cost of sharing information and synchroniz-
ing between different machines could be too burdensome. Properly partitioning
events may be able solve this problem.

The Event Dispatcher implemented for this thesis only optimizes dispatches
based on OpName. When many filters use the same OpName, the performance of
the dispatcher degrades. An implementation that dynamically constructs indices
when large numbers of filters share common features could achieve better perfor-

mance.
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Appendix A

Event Attributes and Context

Information

A.1 Operations

e Endorse e RPCReply ¢ RemoveSharedObj
e Declassify o RegisterRPC o CreateFile
e Removelntegrity e Delegate
¢ ReadFile
e AddSecrecy o ActFor
o Call e RevokeDelegate * Writefile
e Fork e RevokeActFor e RemoveFile
o VirtualNodeStop o CreatePrincipal e ListDirectory
e VirtualNodeStart o CreateTag
o CreateDirectory
e LoadClass o CreateSharedObj
e SendRPC e ReadSharedObj * RemoveDirectory
o AcceptRPC o WriteSharedObj ¢ AppEvent
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A2

OpAttributes

Attribute | Valid Operations
TagAdded | AddSecrecy, Endorse
TagRemoved | Removelntegrity, Declassify

AuthorityProvenance

Endorse, Declassify

Delegate, DelegateRevoke, ActFor,

DelegatingPrincipal | ActForRevoke
Delegate, DelegateRevoke, ActFor,
DelegatedPrincipal | ActForRevoke
TagDelegated | Delegate, DelegateRevoke

SwitchedPrincipal

Call, Fork

Hostname | SendRPC, VirtualNodeStart, VirtualNodeStop
Classname | LoadClass, RegisterRPC, Call, Fork
MergeIntegrity | RPCReply, AcceptRPC, CallReply
MergeSecrecy | RPCReply, AcceptRPC, CallReply
ExtraInformation | AppEvent
CallerPrincipal | AcceptRPC

Filename

ReadFile, WriteFile, CreateFile, RemoveFile,
ListDirectory, CreateDirectory

RemoveDirectory

ReadFile, WriteFile, CreateFile, RemoveFile,

ObjectSecrecy | ListDirectory, CreateDirectory
RemoveDirectory
ReadFile, WriteFile, CreateFile, RemoveFile,
ObjectIntegrity | ListDirectory, CreateDirectory

RemoveDirectory
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A.3 General Attributes and Context Fields

e EventCounter ® Process e Integrity
e OpName e Principal
e Predecessors
e Node e PrincipalBasis
e VirtualNode e Secrecy e Timestamp
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