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Abstract

In the last decade, cellular networks are undergoing with a radical change in their basic design

foundations. The huge increase in traffic demand requires a novel design of future cellular net-

works. Driven by this increase, a network densification phenomena is occurring thereby, which in

turns requires to devise efficient and reliable mechanisms to deal with the interference problems

resulting from such densification. The architecture and mechanisms resulting from such drastic

re-design of the network are commonly referred under the term ’5G network’.

In this context, this work unveils that current networking solutions are no longer sufficient to

(i) provide the required network spectral efficiency, and (ii) guarantee the desired level of qual-

ity of experience from the user side. In order to address this problem, in this thesis we propose

a novel SDN-like framework that incorporates the needed mechanisms to improve spectral effi-

ciency while delivering the desired quality of experience to users. In particular, our architecture

includes the following two approaches:

Our first approach addresses the intercell interference issues resulting from high net-

work densification. To this end, we propose novel mechanisms to mitigate the inter-cell

interference problem. We address the design of such schemes from two angles: (i) a

controller-aided mechanism, which gathers all the information of the network at a cen-

tralized point and, based on this information, optimally schedules the transmission from

different users, and (ii) a semi-distributed mechanism, which limits the signaling overhead

involved in sending the information to a centralized point while providing close to optimal

performance. One of the key novelties of our scheduling algorithms is that they are based

on the Almost Blank SubFrame (ABSF) scheme; indeed, this scheme has been standardized

only recently and very little work has addressed the design of algorithm to use it.

Our second approach addresses spectral efficiency from a complementary angle: cel-

lular traffic offloading for content update applications. This approach leverages high user

mobility to offload the cellular downlink traffic through a device-to-device communica-

tion. In this context, we propose an adaptive algorithm to decide how to optimally transmit

content to base stations in order to maximize traffic offload. By relying on control theory

techniques, our approach delivers near optimally performance.

A third key contribution of this thesis is the design of a solution that combines the
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above two approaches. In particular, our solution takes into account that traffic offload is

taking place in the network and addresses the design of an optimal scheduling algorithm

that leverages on the Almost Blank SubFrame (ABSF) scheme. Indeed, the combination of

these kind of approaches has received little attention from the literature.

The feasibility and performance of the approaches described above are thoroughly evaluated

and compared against state-of-the-art solutions through an exhaustive simulation campaign. Our

results show that the proposed approaches outperform conventional eICIC techniques as well as

standard offloading mechanisms, respectively, and confirm their feasibility in terms of overhead

and computational complexity.

To the best of our knowledge, this thesis is the first attempt to design an unified framework

which is able to optimally perform offloading for content-update distribution applications while

boosting the network performance in terms of spectral efficiency
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Chapter 1

Introduction

The rapid growth of mobile data traffic in conjunction with the increasing expectation for high

network performance is dramatically pushing network operators to speed-up the introduction of

future cellular technologies, termed as 5G future networks. In particular, the steady increase of

traffic demand in current cellular networks requires new technologies and network architectures

able to handle such demands [6]. The growth foreseen cannot be only sustained by increasing the

spectrum assigned to mobile radio networks. In fact, spectrum availability is already scarce in

the ranges of practical interest, and spectral efficiency achieved by today’s technologies, such as

Long Term Evolution (LTE and LTE-A), is already close to Shannon’s capacity limit. This leads

to a huge densification of wireless networks, which seriously degrades the network performance

due to the high interference and the low efficiency in the utilization of spectrum in Radio Access

Networks (RANs) [6]. Therefore, support for densification of interference control is the key-

enabler for future 5G networks.

In this context, it has been shown that frequency-reuse-1 can provide substantial improve-

ments in terms of efficient utilization of the scarce and expensive wireless resources. This implies

that neighboring base stations (BSs) should be allowed to transmit on all available time-frequency

resource blocks simultaneously, thus causing strong interference to each other’s users. To this aim,

several techniques have been proposed to independently cope with interference or low spectral ef-

ficiency in RANs, such as beamforming, MIMO or many others, as shown in [18]. None of them

assume that these issues are highly intertwined because reducing the impact of either one strongly

affects the others, thus seriously impairing the cellular network performance. This contrasts with

interference mitigation and/or cancellation techniques that have been used for many years in the

past, which basically exploited orthogonality of frequency and/or spatial resources [19]. More re-

cently, advanced solutions have been designed which actively reduce or cancel interference when

orthogonality cannot be guaranteed [15, 87].

3
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Figure 1.1: Future cellular network architecture based on CROWD Project [33].

1.1. New Software Defined Wireless Network Architectures

To cope with all the above mentioned issues, a novel framework is required to provide op-

timization mechanisms, dynamic and high-density proof provisioning of resources. The recent

Software Defined Network (SDN) paradigm [57] is therefore a natural candidate to design an

architecture able to provide and manage the required network solutions. To this aim, we rely on

a novel architecture, presented in the FP7 CROWD Project [33] 1. In particular, due to density of

the network and the expected computational overhead, a dynamic two-tier SDN controller hier-

archy is proposed, as envisaged in Fig. 1.1. The architecture is structured into two logical tiers:

districts with a limited, but fine grain scope for short time scales, and regions with a broader but

more coarse grain scope for long time scales. Thus, two types of network controller are defined,

as follows:

CROWD Local Controller (CLC or LC), which can take fast, short-time scale deci-

sions on a limited but fine grain scope;

CROWD Regional Controller (CRC), which can take slower, long time scale deci-

sions with a broader but more coarse grain scope.

The architectural proposal works with a network where LTE (macro/pico/femto) and WiFi cells

are deployed. LTE and WiFi cells are assumed, without loss of generality, to be reconfigurable
1We use the CROWD proposal as reference architecture in the PhD dissertation since I was involved in the European

Project FP7 CROWD (agreement 318115) along the duration of the PhD programme.
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via some open protocol, e.g., OpenFlow (OF) [68]. Operations within a district are optimized by

applications connected to the CLC via a set of APIs, called North Bound (NB) interface in the

SDN terminology. Finally, all the network elements belong to the same administrative domain

and we neglect the security measures which must be implemented in practice to prevent malicious

access of the control functions and to avoid unauthorised disclosure of sensitive information from

customers. Our aim is to present novel optimization mechanisms as CLC applications, aimed at

enhanced wireless MAC operations in a district, which perfectly comply with the CROWD future

network architecture requirements.

1.2. SDN applications

SDN approach represents a powerful solution to implement CLC applications defined in the

CROWD architecture to take care of radio and MAC operation control. We structure our pro-

posals into two main categories: (i) Enhanced Inter-Cell Interference Coordination (eICIC) for

conventional cellular networks and (ii) Advanced Offloading Techniques for future heterogenous

networks.

The former application focuses on a set of advanced solutions which aim at abating the in-

tercell interference while boosting the spectral efficiency of the system. Our idea is to build a

SDN application which aims at orchestrating base stations transmission activities within a local

area covered by multiple base stations and pico/femto/small cells. After requiring monitoring and

filtering of interference statistics, scheduling decisions are taken to coordinate transmissions. As

a guideline, 3GPP recently proposed the Almost Blank Sub-Frame (ABSF or ABS [88]) scheme

to implement efficient inter-cell interference coordination (ICIC). Initially suggested to enable

small-cell transmissions within heterogenous environments, it has been smartly extended to pro-

vide acceptable results even when applied to homogenous scenarios, where only macro base sta-

tion are involved. The scheme temporarily inhibits transmissions at a particular macro cells,

as shown in Fig. 1.2. Specifically, macro base stations may silent a specific set of subframes

where vulnerable users could be suffered from high neighbouring interference. However, for

those blanked subframes, cell reference symbols (CRS) must be active to provide channel mea-

surements. Most interestingly, the ABSF paradigm is simple enough to be accepted for inclusion

into technically entangled 3GPP specifications and at the same time it has found rather wide

acceptance among the standardization institutions [26].

Cellular offloading mechanisms are also required to enhance the overall spectral efficiency

through a Device-to-Device (D2D) opportunistic communication. In particular, the second ap-

plication is in charge of deciding how conventional cellular transmissions should be offloaded

to users adopting the D2D paradigm. Moreover, the D2D offloading application could also de-

cide whether users can form clusters whose cluster leader relays the cellular traffic for all cluster

members using WLAN connectivity (e.g., WiFi Direct).
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Figure 1.2: Almost Blank SubFrame (ABSF) explanation scheme [88].

1.3. Enhanced Inter-cell Interference Coordination: centralized vs
distributed

A high-speed backhauling enables the CLC to correctly gather all cellular user information,

such as channel status (CSI), in real-time and to properly take scheduling decisions, which are

promptly translated into ABSF patterns which each base station must apply for the next trans-

mission period. As extensively proved by the literature, such centralized solutions achieve near-

optimal solutions in terms of system spectral efficiency and thus, energy efficiency. However,

this condition holds only when simplistic assumptions are taken into consideration. The huge ex-

plosion of mobile applications we are witnessing requires that network operators must introduce

traffic guarantees for their customer contracts, burdening the network capacity. The compound

effect of including traffic constraints with user and base station network densifications could be

even further dramatic when considering complexity and delays. That is the reason why we are

forced to consider a distributed approach, which must be enabled when network conditions are no

longer under the CLC control. A distributed eICIC proposal with local decisions would not only

be aligned with the well accepted self-organizing network concepts [78], but also allows to make

ABSF and user scheduling decisions jointly—rather than assuming worst case conditions for the

user scheduling process—which allows for further improving performance. Note that one critical

aspect in the design of the distributed scheme is to limit the amount of information exchanged

between base stations as well.

Therefore, we design a semi-distributed mechanism, which reduces the computational burden

from a centralized controller (CLC) while drastically abating the signaling overhead. In particular,

the ABSF coordination of local schedulers (base stations) is aided by the local controller, which

supervises the ABSF decisions and drives the system to the best possible performance without

requiring overall statistics and imposing centralized decisions. This makes our approach a first

step towards a practical and effective solution of ABSF that can be implemented in real networks.
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1.4. How to offload conventional cellular network: Device-to-Device
Communication

A huge volume of traffic for mobile devices seems to be strictly required by the appearance

of a great number of web and smartphone applications. This popularization of smartphones and

the ensuing explosion of mobile data traffic [7] lead to conventional cellular networks which are

currently overloaded, and even worse in the near future [6]. A large portion of that traffic consists

in the distribution of content updates such as social network updates, road traffic updates, map

updates, and news feeds (e.g., waze, an app for a social network for navigation, includes all the

above mentioned features).

Along with the appearance of such applications, some schemes have been recently proposed

to offload the traffic generated by them in the cellular network. In particular, the device-to-device

(D2D) paradigm has been proposed to assist the base station in the content distribution [20, 96,

104]: with D2D communications enabled, the base station delegates a few interested mobile users

(content injection) to carry and opportunistically spread the content updates to others interested

upon meeting them (content dissemination). Indeed, opportunistic communication exploits the

daily mobility of users, which enables intermittent contacts whenever two mobile devices are

in each other’s proximity. These contacts are used to transport data through the opportunistic

network, which may introduce substantial delays. However, the type of content concerned by

cellular offloading may not always be entirely delay-tolerant. In many applications, it is indeed

critical that the content reach all users before a given deadline, lest it lose its relevance or its

usability. Therefore, the design of opportunistic-based cellular offloading techniques faces serious

challenges from the intermittent availability of transmission opportunities and the high dynamics

of the mobile contacts. In order to find the best trade-off between the load of the cellular network

and the delay until the content reaches the interested users, any opportunistic-based offloading

design must answer crucial questions such as, how many copies of the content to inject, to which

users and when.

While most of the currently available offloading proposals focus on the characterization of

content dissemination and the design of content injection strategies, they largely neglect the op-

timization of radio resources in the injection phase, i.e., the process of injecting a content in

a subset of the mobile user population, which produces bursty and periodic traffic. Some ex-

isting work partially considered the impact of opportunistic resource utilization in the content

injection strategies but their analysis is restricted to a single cell and does not consider the in-

terference caused by other cells, which is a key limiting factor for the deployment of dense and

heterogeneous networks that are expected to appear in 5G cellular systems [79]. In line with the

5G networks view, we leverage the heterogeneity of technologies in the network to implement a

novel D2D-based offloading mechanisms, which also tackles the cellular traffic offloading issue

from a different and unexplored perspective: the intercell interference coordination problem. The

rationale behind our approach is twofold: (i) interference is a key factor in future networks, where
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the single cell study case is not representative of a real network; (ii) content injection operations

are impacted by network speed, which, in turn, strongly depends on intercell interference.

1.5. Outline of the thesis

In this work we provide in details a set of novel optimization solutions for enhanced MAC

operations, which aim at analyzing and proposing enhanced Intercell Interference coordination

mechanisms (eICIC) for drastically reducing the inter-cell interference problem while improving

the spectral efficiency through a D2D opportunistic offloading of conventional cellular traffic.

Our research thesis starts with a survey of the current technological features applied to cellular

networks, such as LTE or LTE-Advanced networks. Then, we study in details how centralized

solution for eICIC may severally impact on the network performance in terms of aggregate sys-

tem throughput. When network densification phenomena is no longer negligible, we present our

findings on a distributed architecture where the number of exchanged messages between different

base stations is kept very low. Later, we mathematically analyze the cellular offloading proce-

dure through D2D opportunistic transmissions for content dissemination applications, providing

a smart tool to properly reduce the cellular burden while keeping reasonable the content delivery

delays. Lastly, we focus on the injection phase during the content dissemination process, where

inter-cell interference issue may impair the system performance, if no accurately managed.

The remainder of this thesis is structured as follows:

In Chapter 2, we provide a detailed study of the state of the art. We structured the

chapter to show existing solutions for each of the topics addressed by this thesis. In ad-

dition, we point out a set of significant works which are considered as benchmark in our

performance evaluation sections.

In Chapter 3, the inter-cell interference problem is properly presented from a central-

ized perspective. The CLC collects user channel statistics and makes decisions, which rely

on the ABSF patterns, as explained above. A low-complexity algorithm is devised to gen-

erate ABSF patterns based on collected user data. Simulation results are shown by means

of a commercial network simulator, such as Opnet Modeller 17.1.

In Chapter 4, we face the densification problem by showing that centralized solutions

are no longer reliable in terms of complexity and signalling overhead. In addition, we intro-

duce a new class of downlink guaranteed traffic characterized by bit-rate constraints. There-

fore, we propose a novel lightweight semi-distributed solution, which optimally scales with

the number of users placed in the entire network. We propose a convergence study based

on game theory notions. Finally, we benchmark our proposal against other existing solu-

tions, ranging from very complex power control schemes to simple and affordable ICIC

techniques.
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In Chapter 5, we introduce the downlink cellular traffic offloading principles when

content update applications are in place. Based on control theory paradigm, we propose an

adaptive algorithm to minimize the cellular transmissions in order to deliver the required

contents to all intended users within the content lifetime. We compare our approach with

other state-of-the-art solutions, showing the validity and the feasibility of our novel mech-

anism.

In Chapter 6, we mainly target the injection phase during the content dissemination

process by shedding the light on how to optimally perform the content updates distribu-

tion when inter-cell interferences are caused by neighbouring base station transmissions.

Specifically, we analytically and empirically prove that minimizing injection phase through

an efficient eICIC mechanism leads to outstanding dissemination results and in turn, to

near-optimal cellular downlink traffic offloading performance.

In Chapter 7, final remarks and conclusions are drawn and some open issues are

discussed.





Chapter 2

Related Works

We deeply investigated the state-of-the-art works, previously suggested in the literature, to

provide a valid benchmark for our proposal. We structure this chapter by following the main

topics addressed in this thesis.

2.1. Intercell Interference Coordination

Intercell interference issues have been addressed by several researchers and still play a key

role in the future network requirements definition. For instance, the authors of [19] provide an

overview of techniques that can be exploited to mitigate inter-cell interference in OFDM-based

networks. Interestingly, they do not identify base station scheduling as a possible tool to reduce

interference, and limit their discussion to beamforming, coding and decoding techniques, op-

portunistic spectrum access, interference cancellation, power control and (fractional) frequency

reuse. CoMP shows a very good gain by mitigating interference exploiting cooperation between

sector transmitters or different base stations [46]. CoMP proposals range from complex dis-

tributed MIMO solutions to advanced beamforming mechanisms. E.g., Multi-Cell Joint Trans-

mission [65] proposes to share the same data to transmit across multiple base stations, while

Coordinated Beamforming Scheduling [56] proposes a method to choose transmission beam pat-

terns in coordination between base stations. In both cases, a large backhaul capacity is required

for inter-base station communication, over both data and control planes, which realistically pre-

vents implementation in real systems. Most of the work available in the literature focuses on user

scheduling, in terms of beamforming, CoMP, and power allocation. For instance, random beam-

forming has been proposed to reduce the need for BS-to-BS CQI information exchange [87]. It

enhances the per-cell throughput at limited cost, at least in small networks. Fast distributed beam-

forming in multi-cell environments was also proposed in [15], in which scheduling is performed

in two steps: first each base station chooses the proper beamforming that minimizes intercell

interference and then a particular user is scheduled in each cell. However, none of these two

works address fairness. The authors of [55] propose to leverage power control mechanisms to

11
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achieve frequency reuse 1 in multicellular environments. Joint scheduling, beamforming, power

allocation with proportional fairness is the objective of [101]. In that work, the three problems

are disjointly and iteratively addressed, so that the proposed algorithm requires several optimiza-

tion iterations, for which the authors do not provide complexity analysis. The authors of [17]

use dynamic programming to optimize the transmission probability of base stations in a TDMA

network. Their analysis only yields a probabilistic scheduling model for base stations and cannot

be realistically applied to existing cellular technologies. Additionally, their solution can only be

used in case of networks consisting of two base stations, or with homogeneous topologies. Al-

though originally proposed for WiMAX systems, RADION represents another valid approach to

intercell interference mitigation [98]. RADION is a distributed resource management framework

that manages interference across femtocells and enables femtocells to opportunistically find the

available resources in a distributed manner, by performing three different actions: client catego-

rization, resource decoupling and two-phase adaptation and allocation. A similar and interest-

ing approach is presented in [8] where a management system, called FERMI, is introduced for

OFDMA-based femtocell networks. It performs a clients classification in order to identify which

clients need resource isolation and those that require just link adaptation, then it incorporates a

frame zoning structure that supports the coexistence of clients from both categories. Afterwards,

the system allocates orthogonal sub-channels of the OFDMA spectrum in a fair manner. The

authors of [75] describe a vertex coloring technique to schedule frequencies among femto-base

stations while mitigating inter-femtocell interference. The schema proposed in [75] is based on

user rather than base station scheduling, and does not provide quality guarantees to any of the

users. As for the work focusing on base stations instead of users, proposed solutions are avail-

able for frequency reuse and fractional frequency reuse schemes where the entire available set of

frequencies is divided a priori and assigned to adjacent cells, or portions of cells, to avoid strong

interference between neighbouring cells. The disadvantage of such schemes lies in their scarce

flexibility to adapt to changing cell load conditions. A scheme proposed in [83] suggests to di-

vide the cell into two zones, namely edge and center, and assigns users to each zone dynamically

based on their channel state information; however, the gain is limited due to the low number of

available frequency bandwidths. The authors of [32] present a game theoretical approach to ICIC.

Their approach addresses the coordination among base stations over a set of finite resources as a

non-cooperative game. However, they only target the minimization of the perceived interference,

and do not take into account user scheduling. All in all, none of the above proposals embodies

the set of features that characterize our approaches: in Chapter 3 a centralized solution is envi-

sioned to boost the system network performance while in Chapter 4 a distributed scheme exhibits

outstanding results when compared to some of the above-mentioned approaches. At best of our

knowledge, there is no literature on the use of ABSF techniques for properly serving inelastic

traffic.
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2.2. Almost Blank SubFrame

Recently, 3GPP has standardized the ABSF (almost blank subframe) technique [69], which

allows base stations to blank data transmissions over one or several subframes. However, the

standard does not specify the algorithm to decide which base stations remain silent and which

ones do not in a given subframe. The algorithm that we propose here addresses precisely this

question, and can be used to drive the ABSF mechanism. The ABSF technique is becoming pop-

ular because it is suitable for eICIC in LTE, it requires minimal changes in the operation of base

stations and offers flexible tools to trade-off between performance improvement and implementa-

tion complexity ( [36,95]). However, designing a mechanism to drive ABSF decisions has turned

out to be challenging and multifaceted. For instance, the authors of [26] have studied quantitative

approaches aiming to determine the best density of blanked subframes as a function of the traf-

fic distribution. Other studies focus on heterogeneous scenarios where a macro base station and

several small base stations have to coordinate their activities using ABSF patterns ( [47, 50, 51]).

Other proposals include access selection in the loop and introduce the concept of Cell Selection

Bias ( [31]), which improves network spectral efficiency ( [48, 84]). However, existing ABSF

solutions either require a central entity to gather per-user CSI or need additional and continuously

updated information on, e.g., topology and propagation environment, which goes well beyond

current base station’s features and capabilities. As a result, existing ABSF solutions are not scal-

able and do not adapt quickly when network conditions change. Some other solutions for resource

management behave similarly to ABSF. For instance, a recent proposal for ODFMA femtocells

has been presented in [99]. Although the authors do not explicitly use the ABSF paradigm, their

work is based on detecting the best region of the time-frequency space where base stations can

transmit, like in ABSF. However, they propose a probe-and-adapt algorithm to decide whether to

use or blank resources. Moreover, they do not require coordination between base stations, which

would yield performance limitations. Similarly, the authors of [85] propose the concept of reuse

patterns for base station activities, which clearly mimics ABSF operations. However, their work

focuses on finding the best temporal duration of reuse patterns (in order to maximize the total user

throughput) but it does not explain how to generate reuse patterns.

2.3. Content updates Dissemination

While the unsustainable increase in cellular network traffic negatively affects the conventional

cellular system in terms of spectral efficiency, several works have been already proposed to cope

with this issue. For instance, [61, 94] are aiming to exploit the relatively large number of existing

WLAN access points, as well as cellular diversity. A different approach, based on new infrastruc-

ture, is introduced in [66], in the context of vehicular networks. In that work, the authors advocate

the deployment of fixed roadside infrastructure units and study the performance of the system in

offloading traffic information from the cellular network. Slightly different are the proposals inves-
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tigating the use of infrastructure-free opportunistic networking as a complement for the cellular

infrastructure. In particular, the studies in [40,45,54,63,96] propose solutions based on this idea.

In [45], the authors propose to push updates of dynamic content from the infrastructure to sub-

scribers, which then disseminate the content epidemically. The distribution of content updates

over a mobile social network is shown to be scalable, and different rate allocation schemes are in-

vestigated to maximize the data dissemination speed. Han et al. investigate, in [40], which initial

subset of users (who receive the content through the cellular) will lead to the greatest infection ra-

tio. A heuristic algorithm is proposed, that uses the history of user mobility of the previous day to

identify a target set of users for the cellular deliveries. In [54], an architecture is implemented to

stream video content to a group of smartphones users within proximity of each other, using both

the cellular infrastructure and WLAN ad-hoc communication. The decision of who will download

the content from the cellular network is based on the phones’ download rates. However, the focus

of [54] is on the implementation rather than the model and the algorithm. Indeed, the algorithm

proposed is a simple heuristic, which does not guarantee optimal performance. Another study

where opportunistic networking is used to offload the mobile infrastructure is [63]. Here, some

chosen users, named “helpers”, participate in the offloading, and incentives for these users are

provided by using a micro-payment scheme. Alternatively, the operator can offer the participants

a reduced cost for the service or better quality of service. Thus, the focus of [63] is on incentives,

which is out of the scope of our work. Most interesting is the Push-and-Track solution, presented

in [96]. There, a subset of users initially receive content from a content provider and subsequently

propagate it epidemically. Upon reception of the content, every node sends an acknowledgment

to the provider, which may decide to re-inject extra copies to other users. Upon reaching the

content deadline, the system enters into a “panic zone” and pushes the content to all nodes that

have not yet received it. Specifically, Push-and-Track relies on a heuristic to choose when to feed

more content copies into the opportunistic network, which does not guarantee that the load on the

cellular network is minimized. Other works focus on content dissemination solutions in purely

opportunistic networks [42, 44]. However, most of these studies focus on finding the best ways

to collaborate or contribute to the dissemination, under various constraints (e.g., limited “public”

buffer space). Evaluation is usually based on the delay incurred to obtain desired content or the

equivalent metric of average content freshness over time. In contrast, we build our analytical

model and propose a dynamic and adaptive algorithm to guarantee near-optimal performance in

the content distribution process, as explained in Chapter 5.

All the previous works on offloading cellular networks through opportunistic communications

assume that all the transmissions over the cellular network are unicast. There are several key

reasons that limit the usage of multicast messages in a cellular network. First, multicast cannot be

easily combined with opportunistic transmissions, as this would require that the Content Server

is aware of the cell of each node and can dynamically select the subset of nodes at each cell that

receives the multicast message, which is not possible with current cellular multicast approaches.

Second, in urban scenarios users will likely be associated to different base stations (there are
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hundreds/thousands of them in the city, each covering some sector, and in dense urban areas

femtocells have started to be deployed). Thus, there is a low probability that users subscribed

to a specific content are associated to the same cells at the same time, and hence multicast may

collapse to unicast. Finally, transmissions with multicast would occur at the lowest rate to preserve

users in the edge of the cell, which degrades the resulting performance.

Finally, none of the above works tackle the impact of interference in dense scenarios, in

presence of offloading traffic strategies. The authors of [80, 81] design a heuristic to allocate

resource blocks when adjacent cells interfere with each other. Their approach allows the reuse

of resource blocks in cell centers, while users at the cell edge, which suffer higher interference,

cannot be allocated specific resource blocks, as figured out by the proposed heuristic. Indeed, that

work only considers avoiding the interference of the two most interfering base stations. Similarly,

the proposal in [62] assigns resource blocks via a central entity while [102] solves the problem

in a distributed manner. However, they allocate resources not only to base stations but also to

users, based on backlog and channel conditions. The author of [71] uses graph theory to model

network interference. That work proposes a graph coloring technique to cope with interference

coordination, based on two interference graphs: one outer graph using global per-user interference

information, and an inner graph using local information, available at the base station, and global

constraints derived from the global graph. To reduce complexity, [71] uses genetic algorithms

to seek a suboptimal resource block allocation. Conversely, we provide an efficient and low-

complexity solution to boost the cellular traffic offloading by significantly reducing the inter-cell

interference during the content injection phase, as explained in Chapter 6.
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Chapter 3

Central Coordinator-aided eICIC
Mechanism

In this chapter, we tackle the problem of inter-cell interference mitigation from a centralized

viewpoint. In particular, a central network controller (CLC) is in charge of scheduling base

stations rather than users. We propose to coordinate base station downlink activities in order to

mitigate the interference caused to neighboring cells. To do this, we propose a method to map

base stations’ activities onto subframes with regular patterns. We aim to mitigate interference by

limiting the activity of a given base station to some subframes while forcing it to remain silent

in the other subframes. Noticeably, our work is suitable for driving subframe blanking decisions

in self organising networks, e.g., as per the ABSF (almost blank subframe) technique recently

defined by 3GPP [69]. A key feature of our proposal is that it incurs a very reduced signaling

load between base stations. Indeed, we propose to coordinate base station downlink activities in

order to limit the interference caused to any possible user in the system under any possible user

scheduling decision taken by the base stations. Therefore, base stations do not need to exchange

information with a per-user granularity but rather on a much coarser basis. Another key feature

of our design is that we decouple the problem of mitigating downlink inter-cell interference from

the problem of optimizing the user scheduling. While the focus of this chapter is on the first

problem, our proposal can easily be combined with existing user scheduling schemes to further

improve spectral efficiency (as we show in the performance evaluation section). By means of

numerical and packet-level simulations, we prove the effectiveness and superiority of our solution

as compared to the state of the art of inter-cell interference mitigation schemes.

The key features can be summarized as follows:

we formulate a novel base station scheduling problem and show that it is NP-hard in

strong sense;

we design an algorithm, called BASICS (BAse Station Inter-Cell Scheduling), that

runs in polynomial time and scales with the number of users;

19
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we show that BASICS not only achieves better throughput performance with respect

to state of the art schedulers, but also significantly improves fairness among users.

3.1. Scheduling Problem

In this section, we describe in details the considered system, and formulate our base station

scheduling problem for this system. We then prove that this problem is NP-hard by mapping

it onto a well-known NP-hard optimization problem, namely the Multidimensional Vector Bin-

Packing Problem. Finally, we derive some bounds for the problem’s solution.

3.1.1. System Model

We consider a multicellular LTE-like environment with N = |N | base stations and U = |U|
mobile users. We address only downlink transmissions, for which no power control is adopted, as

in the majority of state of the art proposals. Each base station schedules its users across subframes,

as specified in LTE systems [93], each subframe lasting 1 ms. The duplexing scheme adopted

is FDD, with 20MHz bandwidth for each transmission direction. Unless otherwise specified,

all base stations use the same frequencies. Users associate to the base station from which they

receive the strongest signal, and transmission rates are selected, in each subframe, according to

the Signal-plus-Noise Interference Ratio (SINR), see Table 3.1. The SINR for a certain user

u ∈ U is defined as follows:

SINR :=
Sub

N0 +
∑

j 6=b I
u
j

,

where N0 is the background noise, Sub is the useful signal received by the current user u from the

serving base station b (hereafter defined as Su) and Iuj is the interference sensed by the user u

from any other base station j in the system, when that base station is scheduled. Signal and inter-

ferences received by each user are affected by Rayleigh fading, and user channels are assumed to

be independent.

In our system, we focus on mitigating interference by deciding whether a base station can

transmit during a given subframe. We refer to this decision as base station scheduling, to be

distinguished from legacy user scheduling which occurs at each base station when it is allowed to

transmit.

3.1.2. Base Station Scheduling Optimization Problem

We aim at guaranteeing a minimum SINR to every user in the system by allocating in each

subframe a subset of the available base stations while minimizing the number of subframes needed

in order to schedule the complete set of base stations. We will discuss in Section 3.4.1 how to

select that minimum SINR. Meanwhile, here we focus on the first part of the problem: decide

whether a base station can transmit in a given subframe.
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The goal of our proposal is to schedule base station transmissions in each subframe so that

the SINR is greater than a threshold Th for every user u in the network (i.e., for any user that can

receive a transmission from a scheduled base station):

Sub
N0 +

∑
j 6=b I

u
j

≥ Th. (3.1)

For convenience of notation, we now call Iub the signal received by user u from its BS, i.e.,

Iub = Sub = Su, therefore Eq. (3.1) can be rewritten as follows:

n∑
j=1

Iuj ≤
Su

Th
−N0 + Su , Thu. (3.2)

With the above, the problem of minimizing the total number Z of subframes used to sched-

ule once all N base stations in the system1, for a given minimum SINR (or threshold Th), is

formulated as follows:

Problem BS-Scheduling:

minimize Z = number of subframes needed to

allocate all base stations once,

subject to
∑

j I
u
j xij ≤ Thu, u ∈ U , i ∈ {1, . . . ,Z},∑

i xij = 1, j ∈ N ,
xij ∈ {0,1}, i, j ∈ N ;

where

xij =

1, if base station j is scheduled into subframe i,

0, otherwise.

Note that Z is the analogous in the time domain of the frequency reuse factor. However,

our approach has two main advantages over frequency reuse schemes. First, we need only one

frequency allocated to the system, which is less expensive than using frequency reuse. Second,

differently from the frequency reuse factor, which is static, Z can vary from time to time when

network conditions change (i.e., with users’ arrival or departure).

Theorem 3.1.1. Minimizing Z as defined in Problem BS-Scheduling is NP-hard in strong

sense.

Proof : The number of subframes needed to allocate all base stations at least once is upper

bounded by the number of base stations, i.e., Z ≤ N . Consider now the problem of scheduling

1For sake of simplicity, we assume that each base station has to be scheduled only once per scheduling cycle.
However, our approach can be easily extended to schedule base stationBi ni times in a scheduling cycle by increasing
the set of the candidate base stations with Ni replicas of base station Bi, where replicas have an infinite interference
between each other.
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each base station exactly once in Z consecutive subframes. If Z<N , then N − Z subframes are

left empty. Let us define a set of N binary variables yi, which indicate whether a subframe i ∈ N
is used or empty:

yi =

1, if subframe i = 1, . . . , N is used,

0, otherwise.

Note that the concept of empty subframe is only an abstraction to simplify the description of

the problem. In fact, Z < N means that the scheduling of base stations over Z subframes is

repeated cyclically, with period Z subframes. With the above notation, we can re-write Prob-

lem BS-Scheduling as follows:

Problem kD-VBP:

minimize Z =
∑

i yi,

subject to
∑

j I
u
j xij ≤ Thu yi, u ∈ U , i ∈ N ,∑

i xij = 1, j ∈ N ,
yi ∈ {0,1}, i ∈ N ,
xij ∈ {0,1}, i, j ∈ N .

(3.3)

The above is the formulation of a k-dimensional vector bin-packing problem (kD-VBP) with

k = U being the number of mobile users in the system [67].

Our problem is therefore equivalent to a k-dimensional vector bin-packing problem, in which

knapsacks represent subframes, items to be allocated are base stations, and the number of dimen-

sions is given by the number of users, each imposing a constraint on its SINR as expressed in Eq.

(3.2). Since our problem has been mapped onto kD-VBP, it can thus be classified as an NP-hard

problem in strong sense. �

3.1.3. Lower Bound

The value Z in Problem BS-Scheduling determines the portion of time during which a

base station is prevented from transmitting (i.e., each base station is scheduled with frequency

1/Z). Therefore, the lower bound for Z in our problem represents the highest scheduling fre-

quency that can be associated to base stations in the system with SINR not lower than Th for any

of the users. Thus, in order to have high efficiency in the utilization of resources, our goal is to

design an algorithm that finds the smallest possible value for Z.

In the following, we obtain a lower bound for Z, which bounds the best possible performance

that we can achieve. This bound provides a benchmark against which we can evaluate the perfor-

mance of our solution, as we do in the performance evaluation section.

Theorem 3.1.2. The lower boundL ≤ Z for Problem BS-Schedulingwith k users distributed

over N base stations, and a guaranteed SINR ≥ Th for all users, is given by the following equa-
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tion:

L = max
u


N∑
j=1

Iuj
Thu


 . (3.4)

Proof : Our proof follows the same approach used in [52]. First, we recall that in vector bin-

packing problems items cannot be rotated, i.e., the constraints are defined on a per-dimension

basis, and dimensions cannot be rearranged. In our case, a dimension represents the interference

caused to a given user, which justifies why dimensions cannot be rearranged. In particular, the

minimum number of subframes (bins) needed to accommodate all the base stations (items) in

such a way that the max interference (constraint) on the uth dimension is not violated is given

by the ratio between the sum of all interferences caused by N base stations in the uth dimension,

i.e., for the uth user, divided by the threshold Thu, which represents the capacity of the bin in

the uth dimension. Of course, only integer numbers are allowed, hence we need
⌈∑N

j=1 I
u
j /Thu

⌉
bins to satisfy the constraint in the uth dimension. Since all dimensions are independent, the

result follows. �

3.2. Algorithm Design

To solve the problem formulated in Section 3.1.2, we next propose a heuristic consisting in

a greedy algorithm for the mapping of base stations to subframes. The algorithm is designed

to dynamically mitigate inter-cell interference caused to any possible user in the system under

any possible user scheduling decision taken by the base stations. As a result, our algorithm is

user-scheduling-agnostic and does not require coordinated scheduling among base stations.

We propose a new heuristic rather than using existing heuristics for two main reasons. First,

existing heuristics for multidimensional vector bin-packing problems are simple extensions of

solutions designed for the one-dimension problem. Second, existing heuristics do not take into

account the nature of the dimensions that describe the items to be allocated. In particular, they

assume that the size of an object is the same in any of the possible combinations of items in a bin.

In contrast, in our case, the size of an object is the interference caused to mobile users belonging

to the scheduled base stations only. Therefore, the weight associated to a base station (i.e., its

size) changes any time a base station is removed from the list of candidate transmitters (e.g., since

it is allotted to a subframe).

In the following, we first briefly discuss existing algorithms for solving multidimensional

vector bin-packing problems, then we present our novel solution and highlight the difference

with existing proposals. Later, in Section 3.4, we prove, by means of empirical results, that our

approach outperforms existing algorithms.
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3.2.1. State of the art algorithms for bin-packing problems

The most commonly adopted algorithms for solving the bin-packing problem belongs to the

family of FFD-based algorithms. The First-Fit Decreasing Algorithm (FFD) was proposed to

solve the one-dimensional bin-packing problem [67]. With FFD, items are sorted by size, in

decreasing order, and a number of empty bins–equal to the total number of items–is set. Then,

items are inserted sequentially from the largest to the smallest in the first available bin with enough

capacity left.

To cope with the case of multidimensional vector bin-packing problems, various greedy FFD

extensions have been proposed in the literature [28]. Available heuristics collapse all dimensions

into one, and then apply the FFD algorithm proposed for the resulting one-dimensional version

of the problem. The name of each algorithm depends on how the dimensions are collapsed.

When all dimensions are multiplied in order to get one unique monodimensional size for each

item, the algorithm is called FFDProd, whereas the algorithm FFDSum uses a weighted sum

of the original dimensions. Other algorithms such as FFDAvgSum or FFDExpSum use similar

approaches to FFDSum [28].

As described in [73], the above algorithms can be classified as FFD item-centric since all

items are allocated until there are no items left to be placed. Another group of algorithms are

classified as FFD bin-centric. The latter are algorithms which start with a single bin, and a new

bin is initialized when there are no more items which can fit the previously used bins. As proved

by empirical evaluations in [73], bin-centric algorithms (such as Dot-Product and Norm-based

Greedy) outperform item-centric algorithms and they can sometimes reduce the number of re-

quired bins by up to 10%.

A common assumption of FFD-based algorithms is that the dimensions of an item do not

change. In contrast, in Problem BS-Scheduling, dimensions (i.e., interferences caused by a

base station transmission) do change with the set of items (i.e., base stations) that are included

(i.e., scheduled) in the same bin (i.e., subframe). Indeed, the set of base stations scheduled in

a subframe affects the set of mobile users that can receive interference, and therefore affects the

number of dimensions of the problem in a given algorithm iteration. Therefore, legacy FFD-based

approaches are not suitable for solving our problem, so we propose a novel approach, as described

in the reminder of this Section.

3.2.2. BASICS

Interferences sensed by users play the role of dimensions in the Problem BS-Scheduling.

Thus, we propose BASICS (BAse Station Scheduling Inter-Cell Scheduling), a sum-based algo-

rithm which solves kD-VBP problems by collapsing all problem dimensions (i.e., the interfer-

ences to different users) into one unique value. This value is computed for each base station, and

consists in the total interference caused by the base station to users belonging to other scheduled

base stations.
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However, in our problem, the size of the items (base stations) to be allocated into bins (sub-

frames) changes at any iteration of the algorithm. In particular, BASICS represents a modification

of the FFDSum algorithm in which (i) the size of each item to be accommodated changes at each

iteration, and (ii) items are accommodated into bins in order, beginning with the smallest one.

As in bin-centric approaches, BASICS allocates a new bin only when there is no more room left

in the old bins to accommodate the remaining items. Note that existing algorithms for kD-VBP

would rather sort items from the largest to the smallest.

The rationale behind our approach is as follows. First, when we start allocating base stations

from the least interfering one, we have a chance to schedule together the highest number of not-

previously-allocated base stations in the same subframe. This eliminates the highest number of

base station candidates for the next subframe allocation. In turn, considering a uniform distri-

bution of users, this procedure eliminates the highest number of users from the set of interfered

users in the next iteration of the algorithm. As a result, the cumulative interference over the re-

maining users, due to the remaining candidate base stations in the next iteration, is likely to be

much lower than in the previous iteration. In contrast, if we removed a base station generating

less interference, we would have a high probability that that base station interfered fewer users.

Thus, removing the least interfering base station would not only bring less benefit to the current

subframe, but also we would not reduce much the impact of that base station in the next subframe

allocation (since the set of potential interfered users did not change much). Interestingly, our

interference sorting approach is similar to the one presented in [70], which focuses on groups of

interfering users.

The details of the BASICS algorithm are presented in Algorithm 1, and described in the

following. Initially, the algorithm computes the interference generated by any base station to

any user in the system (lines 1 to 6). This computation is performed by means of a simple free

space propagation model accounting for the transmission power of the base stations as well as

the position of base stations and mobile users. Then, the algorithm checks whether the entire set

of base stations can be active in the same subframe, i.e., the entire set of base stations forms the

initial base station candidate set. This check is performed by comparing users’ SINR thresholds

against the SINR experienced when all base stations are active (line 10). At this point, if all

SINR constraints are met, then all base stations are allocated into the current subframe, and the

algorithm ends. Otherwise, the algorithm computes the overall interference figure due to each

base station, and sorts the base stations in decreasing order. The overall interference figure of a

base station is computed by summing up all interferences caused by that base station (line 11).

Once base stations are sorted, the algorithm removes the most interfering base station from the

set of candidate base stations (lines 12-13). The algorithm then re-checks SINR constraints for

the subnetwork obtained by removing the most interfering base station and all its users from the

original network. The procedure is repeated by removing the most interfering base station (and

its users) at each iteration, until all SINR constraints are met. The resulting set of candidate base

stations is allocated to the first subframe. Next, the algorithm has to run again for the subnet
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Algorithm 1: BASICS: heuristic to allocate base stations into subframes guaranteeing a minimum
SINR for each user.

Input and variables
W: set of all base stations in the system
A: set of base stations not yet allocated
Ti: candidate set for subframe i
U : set of all users
N0: background noise
Th: minimum SINR
i: subframe index
Initialization
A ←W
Procedure

1: for each u ∈ U do
2: Compute Thu from N0, Th, and Su
3: for each j ∈ W do
4: Compute the signal strength Iuj at user u from base station j
5: end for
6: end for
7: i← 0
8: while |A| > 0 do
9: Ti ← A

10: while ∃u |
∑
j∈Ti I

u
j > Thu do

11: ∀j ∈ Ti, Ij ←
∑
u I

u
j

12: k ← arg max{Ij}
13: Ti ← T \ {k}
14: end while
15: A ← A \ Ti
16: i← i+ 1
17: end while

consisting of the base stations not previously allocated, i.e., the set of base stations that were

removed during the first algorithm loop (line 15). The output of the ith algorithm loop is the list

of base stations to be scheduled in the ith subframe. When all base stations are allocated, the

algorithm ends returning the complete base station scheduling plan.

3.2.3. Optimal Setting of the Threshold

One of the key parameters upon which BASICS relies is the SINR threshold Th, i.e., the min-

imum SINR guaranteed to each scheduled user in the system. If we set this threshold to a very

low value, this means that we do not impose minimum SINR requirements, which corresponds

to the normal network operation without BASICS. Conversely, if we set a very high value, this

implies that the constraint on minimum SINR can be fulfilled only by scheduling no interfering

base stations at all, which corresponds to a pure TDM system in which each base station transmits

in isolation. In the following, we address the issue of finding the optimal threshold which lies in

between these two extremes. Specifically, we provide a method to efficiently compute an approx-

imation to the optimal threshold Th and we later empirically prove our finding in Section 3.4.1.

In order to find the threshold setting, we look for the threshold value that maximizes the

average downlink throughput in the network (fairness is already ensured by allocating the same
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number of subframes to all base stations). The average downlink throughput over all users in the

system depends on Th through the following relation:

Ravg(Th) =
1

Z(Th)

∑
b∈B

∑
u∈Ub

1

|Ub|
Ru(Th), (3.5)

where Z(Th) is the total number of subframes needed to allocate all base stations, B is the set of

all base stations, Ub is the set of users of base station b, and Ru(Th) is the average transmission

rate to user u.

In order to obtain the total number of subframes needed to allocate all base stations as a

function of the threshold, Z(Th), we assume that the bin packing algorithm executed by BASICS

works perfectly and is able to completely fill all bins. In this case, the number of bins required

is proportional to the size of the items, which in its run is proportional to Th (see Theorem 3.1.2

and the relation between Th and Thu expressed in Eq. (3.2)). Thus,

Z(Th) = K Th, (3.6)

where K is a constant term.

Similarly, in order to obtain the transmission rates as a function of Th, we assume that all

the users of a given cell suffer a similar level of interference (
∑

j 6=b Ij). In this way, if user v

is the user of base station b with the smallest Su value, we can compute
∑

j 6=b Ij by imposing
Sv

N0+
∑
j 6=b Ij

= Th.

Once we obtain
∑

j 6=b Ij from the weaker user of base station b, we can then compute the

SINR of all the users as a function of Th, and from these one can further obtain the transmission

rates Ru(Th).

With the above, we have characterized all the terms of Eq. (3.5) as a function of the threshold

Th. The optimal threshold value can then be obtained simply by finding the Th value that max-

imizes Ravg(Th), which can be easily done by running a numerical search. Note that this value

does not depend on the constant term K of Eq. (3.6).

3.2.4. Computational complexity of BASICS

Next, we evaluate the computational complexity of the proposed algorithm. Let N be the

number of base stations in the system and U the number of users (i.e., the number of dimen-

sions for a multi-dimensional bin packing problem). Before the first round of checking for SINR

constraints, the algorithm computes all signal strengths from N base stations to U users. This

operation has computational cost O(N · U) (see lines 1-6 of the Algorithm 1). Then, each sub-

frame is inspected in order to check if the candidate base stations meet the SINR constraints for

each of their users. For the first subframe allocation, the algorithm will perform, for each user,

N multiplications, N − 1 sums, and 1 division. In the worst case, each round of checking fails,

which leads to the elimination of the most interfering base station and its users, which we assume
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to be uniformly spread over the set of base stations, i.e., we eliminate U/N users at each round.

The largest number of rounds is N − 1. Henceforth, the number of complex operations to be

performed (i.e., multiplications and divisions) for the first subframe allocation is at most z1, as

computed in the following equation:

z1 = U ·N + U

(
1− 1

N

)
(N − 1) + · · ·+ U

(
1− N − 1

N

)
· 1. (3.7)

The following algorithmic step consists in allocating base stations for the second subframes.

In the worst case, there are now N − 1 candidate base stations, with U(1− 1/N) users. Thereby

the algorithm performs at most z2 operations for this subframe:

z2 = U

(
1− 1

N

)
(N − 1) + · · ·+ U

(
1− N − 1

N

)
· 1. (3.8)

Similarly, for the allocation in the kth subframe, the algorithm performs at most zk operations:

zk = U

(
1− k − 1

N

)
(N − k + 1) + · · ·+ U

(
1− N − 1

N

)
· 1. (3.9)

Then, the following result is derived by taking into account the worst case, in which exactly N

subframes are used:

N∑
k=1

zk = 1(N · U) + 2

[
(N − 1) · U

(
1− 1

N

)]
+ 3

[
(n− 2) · u

(
1− 2

n

)]
+ . . .

+ N

[
1 · U

(
1− N − 1

N

)]
= U ·

N∑
k=1

k(N − k + 1)2

N
.

(3.10)

Recalling the results for well-known sums
∑n

k=1 k = n(n+1)
2 ,

∑n
k=1 k

2 = n(n+1)(2n+1)
6 , and∑n

k=1 k
3 = n2(n+1)2

4 , the computational complexity for our algorithm is O(U ·N3). Therefore,

our solution scales with the number of users, and, although it grows with N3, it can be used to

optimize the scheduling of realistically small groups of interfering base stations (e.g., up to ∼10

neighboring base stations).

3.3. Evaluation Tools

In this section we present the two software tools used to evaluate BASICS: (i) a mathematical

tool, namely MATLAB, that gives a first evaluation of the impact of BASICS in multi-cellular

environments without going into the intricacies of LTE detailed implementation,2 and (ii) the

OPNET Modeler simulator, which allows to evaluate the specific impact of LTE protocols onto

2Available online:http://people.networks.imdea.org/˜vincenzo_sciancalepore/MATLAB_
LTE_23072012.zip



3.3 Evaluation Tools 29

our results, although such simulations can only be carried out in small network scenarios only due

to the computational cost and time required by the simulator.3

3.3.1. MATLAB implementation

MATLAB provides a suitable set of mathematical tools to implement and evaluate BASICS

and scheduling mechanisms without going into packet level simulations. Our MATLAB imple-

mentation operates as follows. In the first step, the system is initialized, i.e., the positions of base

stations are chosen at random in a square area, and mobile stations are dropped in the same area

according to a uniform spatial distribution. Users are associated to base stations based on the

strongest average received power, i.e., based on distance, and do not change base station during

the simulation. The average received power depends on the transmission power set at each base

station and on the pathloss, according to the classical Free Space formulation. Fading is consid-

ered in the numerical simulations in addition to pathloss, through a random variable, expressed in

dB, distributed as a zero-mean Gaussian with standard deviation equal to 2 dB.

The second phase is to run the BASICS algorithm to decide which base station has to transmit

in which subframe. In the algorithm, we use a unique SINR threshold for all the users.

Eventually, in the last phase, we calculate the throughput received in 1000 consecutive frames

by each user. We repeat the simulation with different random seeds, averaging the results.

Note that the throughput depends on the channel state simulated, which affects the transmis-

sion rate achievable in the current frame, and on the user scheduling mechanism adopted by the

base station. As for transmission rates, LTE specifications define 16 different CQI indexes, which

correspond to different Modulation and Coding Schemes (MCS’s), as described in Table 3.1. The

mapping of SINR values onto CQI and transmission rates is done as follows. First, we compute

the spectral efficiency η corresponding to the SINR using the Shannon’s formula:

η = log2

(
1 +

SINR

Γ

)
, (3.11)

where Γ is a coefficient that depends on the target BER (which is equal to 0.00005 in our case):

Γ = −ln(5 ·BER)/1.5 [13]. Second, using Table 3.1, we find the interval for η that corresponds

to the SINR, and use the efficiency reported in the rightmost column as the net rate per allocated

symbol used in the subframe. Since each subframe is divided in 2 time slots, each time slot

contains 100 Physical Resource Blocks (PRBs) and each PRB is structured in 7·12 = 84 OFDMA

symbols, the maximum number of OFDMA symbols assigned to one user in a single subframe

is 84 · 100 · 2 = 16800. The maximum throughput we can get in this case will be exactly

16800·5.5547 = 93318.96 bit/subframe, i.e., 93.318 Mb/s as the subframe lasts 1 ms. Eventually,

taking into account the adopted user scheduling scheme, MATLAB computes the number of PRBs

to be allotted to each user, and computes the corresponding throughput.

3Available online:http://people.networks.imdea.org/˜vincenzo_sciancalepore/OPNET_
patch_23072012.zip
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Table 3.1: LTE CQI index and efficiency

Modulation Approximate CQI Interval for Efficiency
Scheme code rate Index η (bits/symbol)

No transm. – 0 0 –

QPSK

0.076 1 0÷ 0.15 0.1523
0.12 2 0.15÷ 0.23 0.2344
0.19 3 0.23÷ 0.38 0.3770
0.3 4 0.38÷ 0.60 0.6016
0.44 5 0.60÷ 0.88 0.8770
0.59 6 0.88÷ 1.18 1.1758

16QAM
0.37 7 1.18÷ 1.48 1.4766
0.48 8 1.48÷ 1.91 1.9141
0.6 9 1.91÷ 2.40 2.4063

64QAM

0.45 10 2.40÷ 2.73 2.7305
0.55 11 2.73÷ 3.32 3.3223
0.65 12 3.32÷ 3.90 3.9023
0.75 13 3.90÷ 4.52 4.5234
0.85 14 4.52÷ 5.12 5.1152
0.93 15 ≥ 5.12 5.5547

As for the scheduling of users, we implement a basic round robin scheme, allotting equal

airtime to each user in round robin order, and a state of the art proportional fairness scheduler [14].

The latter allots resources according to user priorities computed at the beginning of each subframe

as the ratio between the achievable rate in that frame, and the average throughput received in the

past.

Although the MATLAB implementation misses the impact of detailed LTE and network-layer

protocols, e.g., the impact of mechanisms used for generating realistic traffic, or for computing

link adaptation and physical resource allocation in OFDMA, it does provide a platform that allows

to efficiently simulate large network scenarios while providing a reasonable level of accuracy.

3.3.2. OPNET Modeler

To evaluate the impact of real protocols on our proposal, we also modified the well-established

OPNET simulator4.

Figure 3.1: OPNET LTE scenario with 5 base stations and 40 users.

OPNET already implements several LTE scenarios, for which nodes and functionalities are
4OPNET University Program, http://www.opnet.com/university_program/
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designed in a modular way. We modified the modules specifying the behavior of the base station,

to simulate the control traffic needed to run BASICS, and the behavior of the physical channel,

to account for dynamic fading effects not yet implemented on the simulator. Most importantly,

we have implemented our base station scheduling into a central entity called Evolved Packet

Core (EPC), which collects global interferences reported by users to their base stations (CQI

messages). For each simulation module, new layers and process model states have been added in

order to perform the newly required operations.

Furthermore, to simulate the dynamic capabilities of our proposal, we have programmed an

internal interrupt for each base station, in order to collect all interferences reported by the users,

prepare a control message containing such information, and send it to the EPC component. The

EPC component runs BASICS periodically, and enforces a new base station scheduling with a

refresh interval of 2s, i.e., 2000 subframes. The refresh interval has been selected to track channel

quality variations, while keeping the signaling overhead low.

For our scope, we need an LTE scenario with several users associated to a group of base

stations served by an EPC interface. To this end, the EPC is connected to a general gateway by a

serial connection (providing a speed up to 2488 Mb/s), and a server is added to serve the users’

demands.

We use an OPNET-predefined video conference application to generate traffic. Specifically,

all users are adjusted to request a video streaming through a UDP connection characterized by 30

frames/s, where every frame has a resolution of 352x240 pixels (i.e., 253440 bytes). The server is

able to respond to each demand thereby reaching the saturation in the transmission. According to

LTE specification, a single user served by a base station can reach a very high throughput, about

90 Mb/s.

As OPNET is a very complex packet simulator, each simulation takes several minutes to run

over our server, which is a Dell Optiplex 990 with a Intel(R) Core(TM) i7-2600 CPU at 3.40 GHz

with 8 cores, 8 GB of RAM and Windows 7 Professional SP1 64 bit. That is the reason why it is

not possible to use OPNET for a very large number of base stations. Therefore, we use OPNET

for small network topologies only, while we use MATLAB for larger scenarios.

3.4. Performance Evaluation & Discussion

In this section, we evaluate the performance of BASICS by using the evaluation tools pre-

sented in the previous section and show that it achieves near-optimal results and outperforms

existing solutions.

3.4.1. Selection of the BASICS Threshold Th

Since the most suitable threshold can fall in a continuous range of values, while the achiev-

able rates are a discrete set corresponding to the available MCS values, we search the threshold Th

















Chapter 4

Lightweight Distributed eICIC
Mechanism

While a centralized approach could significantly improve the network efficiency, this dramat-

ically burdens on the complexity. Specifically, when guaranteed traffic is also considered, we

need to boil down the computational effort and resort to a distributed solution. Such distributed

approach with local decisions would not only be aligned with the well accepted self-organizing

network concepts, but also allow to make ABSF and user scheduling decisions jointly—rather

than assuming worst case conditions for the user scheduling process—which allows for further

improving performance. Note that one critical aspect in the design of the distributed scheme is

to limit the amount of information exchanged between base stations as well. To achieve this

goal we present in this chapter a Distributed Multitraffic Scheduling (DMS), a scheme providing

a lightweight ABSF coordination of local schedulers (base stations) with the help of a central

coordinator, which supervises ABSF decisions of the base stations and drives the system to the

best possible performance without imposing centralized decisions on ABSF patterns. Hence, our

proposed solution relies on a semi-distributed approach that offloads and reduces the computa-

tional burden from a centralized controller while drastically abating the signaling overhead. This

makes our approach a first step towards a practical and effective solution to ABSF that can be

implemented in real networks.

We validate the proposed scheme via simulation and show that, despite its low complexity and

the very limited amount of control messages required, DSM achieve near-optimal performance in

terms of:

maximizing radio resources reuse;

providing sufficient quality for guaranteed traffic;

minimizing the time used to guaranteed traffic to leave room for best-effort traffic;

maximizing resource utilization efficiency for best-effort traffic.

39
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DSM also exhibits significant advantages over existing schemes in terms of efficiency, complexity,

fairness, and throughput. In addition, valuable comparisons with existing power control schemes

reveal that complex approaches like [97] bring little additional gain with respect to DMS and be-

have less fairly, whereas low-complexity solutions like [86] exhibit lower efficiency with respect

to our proposal.

4.1. Centralized problem formulations

The goal of ICIC solutions is to improve system spectral efficiency by significantly limiting

base station mutual interference. To this end, our mechanism optimally orchestrates base station

activities and performs user scheduling on a time-slot basis, i.e., per Transmission Time Interval

(TTI). Here, we cast the ICIC problem into a 5G network, where the ABSF standard technique

is implemented. Therefore, our solution instructs each base station to use a given ABSF time-

pattern, which is a bitmap that specifies which TTIs must be blanked. For the sake of simplicity,

problem formulations presented in this section consider downlink traffic only. However, an ex-

tended model could be straightforwardly derived for uplink transmissions. Additionally, our net-

work model addresses two distinct traffic classes: (i) GBR traffic and (ii) best-effort traffic. While

the former is subject to a strict rate constraint and it is accommodated with higher priority, the

latter (i.e., traffic for which there are no stringent requirements in terms of latency and bandwidth)

represents the most common traffic type in mobile data networks and it is gradually served with

the remaining resources. Specifically, the above problem can be reformulated as finding a global

time-allocation strategy for different base stations to accommodate, first, GBR traffic demands

into a minimum number of TTIs, and, in the TTIs left, to serve best-effort traffic by maximizing

the network spectral efficiency and guaranteeing a good level of fairness. A fundamental aspect

for GBR traffic is represented by the amount of data to be transmitted within a fixed and periodic

time horizon. In our problem formulation, the considered time horizon corresponds to the ABSF

pattern, which is used to transmit both inelastic and best-effort traffic. Therefore, the final ob-

jective of the optimization strategy is to squeeze the GBR traffic period (i.e., TTIs used for GBR

traffic) as much as possible, so as to maximize the time left for best-effort traffic demands.

In what follows, we first formulate the ICIC problem from a centralized scheduling perspec-

tive for both traffic types, partially recalling what has been presented in the previous chapter. We

show that an optimal centralized approach, although being practically unfeasible due to compu-

tational and signaling overhead, provides us with a benchmark corresponding to the best possible

performance of any implementable algorithm.

4.1.1. Optimizing GBR Traffic Period

We formalize the problem of optimizing the GBR traffic period length as follows. Let us

assume that each base station i ∈ N = {1, 2, . . . , N} has a fixed set of users, denoted as

Ui = {1, 2, . . . , Ui}. Let the GBR traffic demand of each user be known at the base station
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side, expressed in volume of traffic to be periodically served, and denoted as Du, u ∈ Ui. Let W

denote the available time horizon (in TTIs), i.e., the length of ABSF patterns, which means that

the user demand guaranteed rate is Du/(W · Tslot) bps, where Tslot is the duration of a TTI. Let

us further assume that a base station can schedule at most one user in each TTI, and some TTIs

can be blanked by means of the ABSF pattern.

The GBR traffic period devoted to serve the GBR traffic demands will be no than a given

portion of the W TTIs; without loss of generality, let us assume that this period is a set of consec-

utive TTIs, T = {1, 2, . . . , T}. If no a-priori bound on the GBR traffic is needed, then T = W .

The objective of the optimization problem is to allocated user demands in the smallest possible

number of TTIs possible, L < T , satisfying channel quality constraints. This allows best-effort

traffic to be scheduled both in the remaining W − T TTIs and in those unused in the GBR traffic

portion, T − L. Each TTI not used by a BS within the L TTIs is seen by that BS as blanked time

slot, using the ABSF terminology.1

Since the system has limited capacity, the above problem may not be feasible as it may not

be possible to allocate the entire user demand set within T assigned slots. In order to ensure that

the problem is always mathematically feasible, we define a per-user penalty pu, which represents

the unserved demand. As long as no penalty is accumulated, the solution tries to minimize the

GBR traffic period l, leaving more room (e.g., W − l TTIs) for best-effort traffic. We formulate

the optimization problem for the GBR traffic period as follows

Problem GBR:

minimize L+ α
∑
u∈U

pu,

subject to tst ≤ L,∀t ∈ T ;∑
i∈N

yi,t ≤ st,∀t ∈ T ;∑
u∈U ,m∈M

xmu,t ≤ yi,t, ∀i ∈ N , t ∈ T ;∑
u∈U ,m∈M

xmu,t ≤ 1,∀t ∈ T ;

P Gu,i
N0+

∑
k∈N :k 6=i

P Gu,k·yk,t ≥ γ
m · xmu,t,

∀i ∈ N , u ∈ U , t ∈ T ,m ∈M;∑
m∈M,t∈T

Rmxmu,t + pu ≥ Du, ∀u ∈ U ;

st, x
m
u,t ∈ {0; 1},∀u ∈ U ,m ∈M, t ∈ T ;

yi,t ∈ {0; 1},∀i ∈ N , t ∈ T ;

pu, t ≥ 0,

where α > 0 measures the relative importance of penalties over utilized TTIs,2. Variables st are

1In a blanked slot only control information (e.g., pilots) is transmitted, and no user data.
2To give priority to GBR traffic requirements over efficiency in the cost function of Problem GBR, α needs to be

designed in order to have α
∑
u∈Ui pu � T as soon as any of the pu values is non-zero. To achieve this, it is sufficient

to set α ∼ 1000, as long as we have a resolution of 1 bit per time horizon in pu and time horizons in the order of a few
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binary variables indicating with value 1 whether TTI t is used for transmissions, l is a positive

real variable storing the highest index of used TTIs within T , yi,t are binary variables taking 1

whether BS i is scheduled in TTI t, 0 otherwise, and xmu,t are binary variable that take the value of

1 if user u is scheduled into TTI t with modulation and coding scheme (MCS) m ∈M, in which

case it receives a rate Rm ∈ R, in bits per-TTI.

The first set of constraints force the correct value to be assigned to l. The second and third

sets of constraints impose the coherence between, respectively, (i) active BSs and used TTIs, (ii)

scheduled users and active BSs. The fourth set of constraints impose that at most one user may be

scheduled in each TTI. In the signal-to-interference-plus-noise ratio (SINR) expression, Gu,k is

the channel gain between user u and the base station k, P is the base station transmission power,3

and N0 is the background noise. The use of transmission rate Rm is subject to the availability of

a SINR value greater than the corresponding threshold γm. Although the SINR constraints are

not linear, they can be easily linearized. The main assumption behind the centralized model is

that users’ CSI is perfectly known. Such information is gathered and updated by a centralized

controller, which uses it to compute SINR constraints. The last constraint is used to set penalty

values in order to compensate the unserved traffic demands. With this, the Problem GBR is a

Mixed-Integer Linear Programming (MILP) and can be solved with state-of-the-art solvers.

4.1.2. Optimizing Best-effort Traffic Period

Once a feasible GBR traffic period L is found, the remaining ABSF pattern TTIs Z (e.g.,

Z = W − L) will be used for accommodating best-effort traffic demands. Differently from

the GBR case, here the goal is to obtain a user scheduling and BS activation that can efficiently

exploit the remaining network resources, aim both at spectral efficiency and at user fairness. We

can formulate the centralized optimization problem with an Integer Linear Programming (ILP)

model. The objective function to be maximized, η̂, is the sum of the utilities of the individual

base stations. Following the widely accepted max-min fairness criterion, we define the utility of

base station i as the minimum rate of all the users in the base station 4 and formalize as follows:

Problem BE:

maximize η̂ =
∑
i∈N

(
min

(u,t)∈Ui×Z
Rm · xm,tu

)
,

subject to
∑

u∈Ui,m∈M
xm,tu ≤ yi,t, ∀i ∈ N , t ∈ Z,

P Gu,i
N0+

∑
k∈N :k 6=i

P Gu,k·yk,t ≥ γ
m · xm,tu ,

∀i ∈ N , u ∈ Ui,m ∈M, t ∈ Z,
yi,t, x

m,t
u ∈ {0; 1}, ∀i ∈ N , u ∈ Ui,m ∈M, t ∈ Z;

hundreds of TTIs, which is a reasonable length under dynamic traffic conditions.
3Following current cellular deployments, we assume that base stations transmit at a constant power.
4Note that the selected objective function provides a trade-off between maximizing the spectral efficiency and

guaranteeing a minimum level of service quality, as pointed out, e.g., in [2]. Nevertheless, different objective functions
can be considered as well, without substantially changing the proposed approach and the following analysis.
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where variables and parameters are defined exactly as in Problem GBR. The two sets of constraints

correspond to the third and fourth ones in Problem GBR. Problem BE can be reduced to a bin-

packing problem in which the sum of interferences cannot exceed a threshold. Therefore, this

problem is NP-hard [37].

As initially stated, the centralized solution of Problem GBR and Problem BE involves a very

high overhead to deliver CSI information to the centralized controller, which needs this informa-

tion to select the ABSF patterns and compute the user scheduling. In addition, due to problem

complexity, while the centralized approach can be an attractive option for small networks, a less

complex and more distributed approach is required to deal with the case of very dense wireless

networks consisting of hundreds of base stations and thousands of wireless nodes. In the follow-

ing section we present a distributed approach to this joint problem in order to abate and distribute

the computational load over the base stations. We first analyze the two problem individually,

starting from Problem GBR, then we propose a joint framework for both problems.

4.2. Guaranteed Traffic requests

As explained in the previous section, an optimal centralized approach to solve the interfer-

ence coordination problem for all base stations would be unfeasible due to the large number of

exchanged messages to collect user channel state information from all users to a centralized con-

troller. We therefore formulate the problem in a distributed way by splitting it into local problems

that are solved by each base station. The local optimization problem consists in minimizing a cost

function fi, which accounts for both the number of locally used TTIs and the total penalty related

to unsatisfied local demands.

The distributed approach distributes the computational burden of the original problem over

the base stations present in the network. Specifically, to reduce complexity, in the distributed

problem each base station only optimizes the scheduling of its own users and considers that other

base stations use fixed ABSF patterns. However, this approach needs an iterative mechanism

to find the optimal ABSF pattern of all base stations. Note that, with the distributed approach,

the complexity of the problem to solve is dramatically reduced, while the number of iterations

required to converge will be shown to grow at most quadratically with the network size.

In order to design a distributed version of Problem GBR, we formulate a local problem with a

modified objective function such that, once included in the framework described in Section 4.4,

provides a final solution quality close to the one directly computed by solving Problem GBR

in a centralized way. We replace the objective function, which includes the global variable L,

with a local function that aims at minimizing the total number of transmissions to local users.

The minimization of the number of occupied TTIs is iteratively obtained by trying to reduce the

cardinality of set T considered in the local problem. Numerical results in Section 4.5.1 show this

approach yields indeed a very good performance.

The local problem of the distributed version can be formulated as follows:



44 Lightweight Distributed eICIC Mechanism

Problem GBR-DISTR:

minimize fi =
∑

u∈Ui,t∈T
xmu,t + α

∑
u∈Ui

pu,

subject to
∑

t∈T ,m∈M
Rm · xmu,t + pu ≥ Du, ∀u ∈ Ui;∑

u∈Ui,m∈M
xmu,t ≤ 1, ∀t ∈ T ;

P Gu,i
N0+

∑
k∈N\i

P Gu,k·Skt
≥ γm · xmu,t,

∀u ∈ Ui, t ∈ T ,m ∈M;

xmu,t ∈ {0; 1}, ∀u ∈ Ui, t ∈ T ,m ∈M;

pu ≥ 0, ∀u ∈ Ui.

Variables and constraints are the same as in the centralized formulation, except for two aspects:

(i) the local formulation considers only the users of the local base station, (ii) the activity of

interfering stations in the SINR constraint is no longer optimized, but given as input. The key

idea behind the distributed approach indeed affects only this constraint. Since just the base station

activity is enough to compute SINR values, the exact knowledge of which users are scheduled by

other base stations is not needed to solve the local problem, thus, it is sufficient to know the

activity patterns of neighboring base stations provided by binary vectors {Skt }. Those are ABSF

patterns (actually, the inverse of them) collected by other base stations. Base station b will deliver

in turn its ABSF pattern, computed as {Sbt = 1 if
∑

u∈Ub,m∈M xmu,t ≥ 1, 0 otherwise, ∀t ∈ T }.
Note that channel gain values Gu,k to neighboring base stations can be easily derived by RSS

values commonly collected by UEs.

As stated above, each base station i is in charge of solving Problem GBR-DISTR, by comput-

ing the optimal user scheduling into available TTIs. Note that the solution of this problem depends

on the solutions computed by the other base stations, since the SINR of each user is given by the

interference generated by the other base stations in the system when they are active. Therefore,

in the distributed approach formulation, each base station simply schedules local users in order to

maximize the objective function defined in Problem GBR-DISTR. However, the schedule defines

the activity of the base station, and the interference generated towards other base stations, which,

in turn, can react readjusting their scheduling in order to adapt to changed interference conditions.

A new scheduling may cause new interference levels, therefore each base station must iteratively

solve Problem GBR-DISTR, until the system converges to a stable solution.

Ideally, the iterative process will converge to a quasi-optimal solution where base stations

agree on their respective ABSF patterns. However, the process could not converge at all. In

the next sections we derive convergence properties and provide conditions on the guaranteed

convergence by casting the distributed approach into a game where base stations act as players in

order to maximize the local objective function. Once the convergence is guaranteed, we finally

present a practical distributed scheme that implements the distributed approach.
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4.2.1. Game theoretical analysis

We introduce a new class of games, called Distributed Inelastic Games, to model the in-

terference coordination problem. We define our game Γ and is represented by a tuple Γ =

(N , (Ri)i∈N , (fi)i∈N ), where N = {1, . . . , N} is the set of players. For each player i ∈ N ,

Ri is a family of user strategies and fi is a cost function that expresses the cost associated to

the implementation of each strategy. The game consists of N base stations acting as players,

where each player i plays her move in order to minimize the game cost function fi (the terms

“player” and “base station” are used interchangeably in the text). In particular, a valid move cor-

responds to choosing a strategy that satisfies that satisfies constraints, i.e., a user scheduling, in

Problem GBR-DISTR. Let us consider the familyRi ∈ 2Ui×T of all possible moves for player i,

where Ui is the set of users associated to base station i and T is the total number of available TTIs.

Then, the set of valid moves for player i is given by Si = {S ⊂ Ri : (ui, ti) ∈ S, (uj , tj) ∈ S →
ti 6= tj}. We also define the cardinality of a strategy S, namely |S|, as the number of (u, t) pairs

selected in the strategy. Finally, note that the cost of each strategy depends on the other players’

moves, as their activities may create interference towards a specific user u for a particular TTI t

at base station i.

Given the above definitions, the Best Response (BR) for game Γ is defined as the strategy

that produces the smallest cost function for player i, taking the other players’ strategies as given.

Analytically, S∗i ∈Si is defined as BR if and only if

f(S∗i , S−i) ≤ f(Si, S−i), ∀Si ∈ Si. (4.1)

4.2.1.1. Convergence properties and guarantees

In the following, we present a convergence analysis of game Γ, which is essential to ensure

the feasibility and implementability of the distributed version. Indeed, due to the nature of the

game, the arbitrary best responses taken by each player may not necessarily lead to an equilibrium

(i.e., a Nash equilibrium); this is the case of game Γ and it is shown in the proof of Theorem 4.2.1,

where players following the BR strategy do not reach an equilibrium.

Theorem 4.2.1. Distributed Inelastic Game Γ does not possess a finite improvement property in

best-response improvement dynamics.

Proof : Consider a scenario with T = 2 TTIs andN = 3 base stations, each of them associated

with |Ui| = 1 user. For each player i, the strategy space Si is defined as

S1 = {{u1, t1}; {u1, t2}; {(u1, t1), (u1, t2)}},

S2 = {{u2, t1}; {u2, t2}; {(u2, t1), (u2, t2)}},

S3 = {{u3, t1}; {u3, t2}; {(u3, t1), (u3, t2)}}.
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Let assume a traffic demand Du = 5 bits and a user gain cu,t(S−i), in bit/TTI, according to the

following table:

S∗1 = {u1, t} S∗2 = {u2, t} S∗3 = {u3, t}
cu1,t (5.55) 5.11 2.73
cu2,t 2.73 (5.55) 5.11

cu3,t 5.11 2.73 (5.55)

Now we consider the sequence of strategies taken by each player, described by Table 4.3. When-

ever a player i chooses a new strategy at step k, in order to minimize the cost function (bold-

marked), the cost function assigned to the other players may increase. This leads to a cycle of

equal strategies, such as strategies at step k and strategies at step k + 6. Hence, players playing

arbitrary best responses do not necessarily converge to a Nash equilibrium in distributed inelastic

games. �

Table 4.1: Dynamics of game states for a Distributed Inelastic Game Γ by adopting Best Response
(BR)

S
∗(s)
i ,

f(S∗
i ,S−i)

s = k − 1 s = k s = k + 1 s = k + 2

BS 1 {u1, t1}, 1 {u1, t1}, (228) {u1, t2}, 1 {u1, t2}, 1
BS 2 {u2, t2}, 2 {u2, t2}, 1 {u2, t2}, (228) {u2, t1}, 1
BS 3 - {u3, t1}, 1 {u3, t1}, 1 {u3, t1}, (228)
S
∗(s)
i ,

f(S∗
i ,S−i)

s = k + 3 s = k + 4 s = k + 5 s = k + 6

BS 1 {u1, t2}, (228) {u1, t1}, 1 {u1, t1}, 1 {u1, t1}, (228)
BS 2 {u2, t1}, 1 {u2, t1}, (228) {u2, t2}, 1 {u2, t2}, 1
BS 3 {u3, t2}, 1 {u3, t2}, 1 {u3, t2}, (228) {u3, t1}, 1

While the symmetric scenario considered in the above proof is quite unlikely in realistic LTE-

Advanced environments, the theorem does nonetheless point out that the game Γ may not con-

verge in some critical scenarios, which may create applicability problem if not fixed.

Although, as stated by Theorem 4.2.1, players iteratively playing their best response do not

necessarily reach a Nash equilibrium, we are able to prove that, using a particular class of best

responses, they eventually reach the equilibrium. This particular best-response set consists in

selecting among all possible best responses only those which just add or remove at most one

(u, t), (user,TTI) pair, to the strategy of the previous step. We call such set Single-step set, SSSi ,

and define it formally as follows. Starting from any strategy S(p)
i taken at the previous step p,

SSSi (S
(p)
i ) = {S ∈ Si : (|S \ S(p)

i | ≤ 1) ∨ (|S(p)
i \ S| ≤ 1)}, where the ∨ symbol is the OR

operator. Now we can define a Single-step Best Response (SSBR) move:

Definition 1. At step k, the Single-step best response Ŝi
k

selected by player i is defined as a best

response strategy S∗(k)i such that S∗(k)i ∈ SSSi (S
(k−1)
i ).

The cardinality of the set set SSSi (S
(p)
i ) is exactly equal to

|SSSi (S
(p)
i )| = 1 + |S(p)

i |+ [T − |S(p)
i |] · |Ui|. (4.2)
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The above definition states that player i will play her single-step best response by taking into

consideration her strategy played at the previous step and (i) removing one of the (user,TTI) pair,

(ii) adding just one additional (user,TTI) pair, or (iii) following the previous strategy (if the cost

function is minimized for that particular strategy).

In order to prove that the convergence is guaranteed by following the SSBR approach, we

next introduce the concept of strategy profile. Given a state of the game Γ at a particular round,

the strategy profile σ is the set of strategies played by each player in that round. When a player

changes her strategy, the strategy profile is updated. In the following, we define a particular

strategy profile, which we call saturation strategy profile.

Definition 2. The saturation strategy profile is defined as a strategy profile σ = [S1, ..., SN ]

belonging to a set of saturation strategy profiles ΣSAT , σ ∈ ΣSAT , where each player’s strategy

Si either returns a cost function with a zero penalty or occupies all available T TTIs with a

non-zero penalty.

Assuming that the players play their SSBR strategy for a game Γ, we are ready to prove the

following theorem: Game Γ has a Nash Equilibrium, which can be reached by playing SSBR

moves. In order to do that we rely on the following Lemmas, whose formal proofs are reported in

the Appendix.

Lemma 4.2.1. Given that the players’ strategies belong to whatever strategy profile σ, after a

finite number of single-step best responses (SSBR), all players’ strategies will belong to a satura-

tion strategy profile σ.

Lemma 4.2.2. At a certain point in time, given that the strategies played by any player in the

system belong to a saturation strategy profile σ if each player chooses a single-step best response

(SSBR), the game will converge to a Nash equilibrium.

Theorem 4.2.2. Game Γ possesses at least one Nash equilibrium and players reach an equilib-

rium after a finite number SSBR moves.

Proof : We prove it by constructive proof. Players start playing a game Γ. Regardless of the

starting strategy profile σ, after playing a finite number of SSBR, the players’ strategies belong

to a saturation strategy profile σ, as stated by Lemma 4.2.1. Upon all players play a strategy

belonging to a saturation strategy profile, keeping choosing a SSBR strategy, they will converge

in a finite number of steps to a Nash equilibrium according to Lemma 4.2.2. Therefore, we can

state that each game Γ admits a Nash equilibrium, and players can reach such equilibrium. �

The proof of the theorem is also confirmed by readily applying the SSBR to the scenario pre-

sented in Theorem 4.2.1, where players keep playing their BR without never reaching a Nash

Equilibrium. In that example, choosing the SSBR for all players leads to fully schedule all avail-

able TTIs for every base station. Interestingly enough, Theorem 4.2.2 also proves that players

can easily adopt a general best response strategy S∗i during the game, with no convergence guar-

antees. However, if at a certain point in time, they switch to SSBR, they converge to a Nash
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equilibrium with probability equal to 1. Clearly, if at least one player is not playing SSBR, the

game convergence is no longer guaranteed.

4.3. Best-Effort Traffic requests

We next present a distributed formulation of Problem BE, which aims at reducing of the peak

computational burden at a centralized controller by distributing the load among BSs. To formulate

the distributed approach, the original problem is split into several smaller instances, which are

solved locally by each base station. To solve a problem instance, the base station is provided with

the activity pattern declared by other base stations. This is given by ABSF patterns, Si,t, which

are exchanged among base stations (Si,t = 0 if base station i blanks TTI t). With the above

information, and without explicitly forcing any additional constraint, each base station i would

schedule users selfishly in the entire set of T TTIs, in order to optimize the local utility. Therefore,

to avoid that base stations use all available TTIs, in the distributed problem formulation, we grant

a single base station i access to up to Mi TTIs over T available TTIs; such Mi value plays a key

role in the distributed mechanism, as it will be clarified in Section 4.4.2.

The above description corresponds to the following instance of the local problem for base

station i, which can be formulated as an ILP model as follows:

Problem BE-DISTR:

maximize η̂i = min
(u,t)∈Ui×T

Rr · xr,tu · au,i,

s.t.
∑
u,r
xr,tu · au,i ≤ 1, ∀t ∈ T ,

P Gu,i
N0+

∑
k∈N :k 6=i

P Gu,k·ABSFk,t ≥ γ
r · xr,tu ,

∀u ∈ Ui, r ∈ R, t ∈ T ,∑
u,t,r

xr,tu ≤Mi,

xr,tu ∈ {0; 1}, ∀u ∈ Ui, r ∈ R, t ∈ T ;

where all parameters and constraints have the same meaning as in Problem BE, except for the

third constraint, which limits the number of usable TTIs to Mi. Note that a feasible solution of

Problem BE-DISTR can be computed by using any available max-min scheduling heuristic (see,

e.g., [16]).

Following the local optimization problem presented above, the interference coordination

problem is solved in a distributed fashion: each base station receives as input the ABSF pat-

terns (i.e., {Skt } bitmaps), solves Problem (4.3) and provides in turn to other base stations its

ABSF pattern. Other base stations update their choices depending on the new ABSF pattern,

communicate back their new ABSF decisions and the process repeats. However, as happened

with Problem GBR-DISTR, this process may not converge. We investigate this issue relying on

game theoretical tools and the notion of equilibrium, following the approach adopted in the GBR
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analysis.

4.3.1. Game theoretical analysis

In the following, we analyze the (fully) distributed approach formulated above from a game

theoretic standpoint and show that its convergence is not guaranteed. Building on this result, later

in Section 4.4.2 we propose a semi-distributed approach that guarantees the convergence of the

game.

Based on game theory, the distributed approach can be modeled as a game where base stations

iteratively play in order to maximize their utility. Let us define this game as an Interference

Coordination Game Ω, where each base station i acts as a player. Similar to previous game Γ, the

set of strategies of each player Si consists in the set of pairs (user, TTI), (u, t) : u ∈ Ui, t ∈ T ,

available for each base station according to constraints in Problem BE-DISTR, however the two

cost functions differ.

In order to analyze the convergence of the above game, we rely on the concept of Bottleneck

Matroid Congestion Game (for a detailed discussion, we refer the reader to [41]). A Bottleneck

Congestion Game is a class of games where resources are shared among players. The utility

of each player depends on the utility of the resources she chooses and the number of players

choosing the same resources: the higher the congestion, the lower the utility. In particular, the

individual player utility is the minimum of the utilities of the resources chosen in her strategy.

Note that the bottleneck property is related to the max-min objective function, which distinguishes

Problem BE-DISTR from Problem GBR-DISTR.

In addition to the above, regular congestion games can be generalized in player-specific con-

gestion games and weighted congestion games. In the former, every player has her own utility

function for every resource. In a weighted congestion game, every player affects the other players

strategies with a different weight, namely, she causes a different level of congestion. The follow-

ing theorem shows that our game falls in the intersection between the above categories, and hence

existing results on these classes of games can be applied to our problem.

Theorem 4.3.1. The Interference Coordination Game Ω is a Weighted Player-specific Bottleneck

Matroid Congestion Game.

Proof : Here we provide the reader with a sketch of the proof. The Interference Coordination

Game Ω is player-specific since utility is player-specific as it depends on received interference,

and it is a congestion game in which congestion weights are given by the interference caused

by the scheduled users in each TTI. Moreover, strategies’ constraints induced by constraints in

Problem BE-DISTR make the strategy space a matroid, thus Ω is a Matroid Congestion Game.

�

Regular bottleneck congestion games have been proven to satisfy the finite improvement prop-

erty, which states that an arbitrary BR sequence played by each player during the game always

converges to an equilibrium in a finite number of steps [41]. However, the generalizations of
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Table 4.2: Example of weighted player-specific matroid bottleneck congestion game that does not
converge

Rate Alone With BS 1 With BS 2 With BS 3
cu1,t 2.0 − 1.5 1.1
cu2,t 2.0 1.1 − 1.5

cu3,t 2.0 1.5 1.1 −

player-specificity and different congestion weights introduce many degrees of freedom, which

weakens the game structure and its convergence guarantees. Indeed, the following theorem shows

that Weighted Player-specific Bottleneck Matroid Congestion Games do not satisfy the finite im-

provement property.

Theorem 4.3.2. Weighted player-specific matroid bottleneck congestion games do not exhibit the

finite improvement property in best-response improvement dynamics.

Proof : Let us consider a scenario with T = 2 TTIs and 3 base stations, each of them as-

sociated with |Ui| = 1 distinct user. For each player i, the strategy space Si is defined as

Si = {{(ui, t1)}; {(ui, t2)}; {(ui, t1), (ui, t2)}}. Let us assume an upper bound on available

TTIs per base station Mi = 1, ∀i ∈ N and a user rate cu,t, expressed as bits/symb/TTI, accord-

ing to Table 4.2. Now we consider the sequence of strategies taken by each player, described by

Table 4.3.

Table 4.3: State evolution for a weighted player-specific matroid bottleneck congestion game that
does not converge (example used in the proof of Theorem 4.3.2)

S
∗(s)
i ,

f(S∗
i ,S−i)

s = k − 1 s = k s = k + 1 s = k + 2

BS 1 {u1, t1}, 2 {u1, t1}, (1.1) {u1, t2}, 1.5 {u1, t2}, 2
BS 2 {u2, t2}, 2 {u2, t2}, 2 {u2, t2}, (1.1) {u2, t1}, 1.5
BS 3 - {u3, t1}, 1.5 {u3, t1}, 2 {u3, t1}, (1.1)
S
∗(s)
i ,

f(S∗
i ,S−i)

s = k + 3 s = k + 4 s = k + 5 s = k + 6

BS 1 {u1, t2}, (1.1) {u1, t1}, 1.5 {u1, t1}, 2 {u1, t1}, (1.1)
BS 2 {u2, t1}, 2 {u2, t1}, (1.1) {u2, t2}, 1.5 {u2, t2}, 2
BS 3 {u3, t2}, 1.5 {u3, t2}, 2 {u3, t2}, (1.1) {u3, t1}, 1.5

Whenever a player i chooses a new strategy at the kth step in order to maximize the utility

function (bold-marked), the value of utility function calculated by the other players may decrease

and they may want to change their strategy. This leads to a loop where players sequentially return

on the same strategies indefinitely, such as strategies at step k and strategies at step k+ 6. Hence,

players playing arbitrary best responses do not necessarily converge to a Nash equilibrium in

Weighted Player-specific Bottleneck Matroid Congestion Games, and thus, a finite improvement

property does not always exist. �

The above theorems prove that the distributed approach may not converge.5 Moreover, the

solution of Problem BE-DISTR ensures a global fairness among BSs, only if Mi values are
5It is worthwhile noting that the somehow pathological scheduling behavior considered in theorem’s proof does

not commonly exhibit in networks; indeed, according to the simulations conducted for typical realistic scenarios, the
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properly tuned. In order to address these shortcomings, in the next section we propose a semi-

distributed two-level mechanism where a local controller drives the behavior of the distributed

game.

4.4. Distributed Multi-traffic Scheduling Framework

In this section we provide complete details on the proposed framework for adaptive

interference-aware scheduling in 5G networks. We name our scheme Distributed Multi-traffic

Scheduling (DMS). DMS is based on the game theoretical framework introduced in Section 4.2

and Section 4.3 incorporates heuristic approaches to jointly adapt the solutions of Problem GBR

and Problem BE to traffic changes. To cope with traffic and network dynamics, a practical strat-

egy consists in periodic scheduling decisions, taken once per time horizon W (e.g., every ABSF

pattern). In turn, inelastic traffic demands and best-effort data traffic are promptly served within

the ABSF pattern W . DMS first accommodates inelastic traffic, which exhibits very stringent

requirements. The remaining time portion is left for best-effort traffic requests.

The first objective of DMS is to smartly optimize the inelastic traffic period scheduling in

order to maximize the resource efficiency while leaving more space for best-effort traffic. To this

aim, DMS includes a mechanism that adaptively seeks the minimal number of TTIs to include in

the inelastic traffic period T , so as inelastic traffic is served with no penalties in the shortest pos-

sible time window. A fully centralized approach to achieve this goal would consist in optimizing

the lengths of all ABSF patterns in one single step at a central controller, resulting in intractable

computational effort. However, in the following we show that, within the game theoretical ap-

proach proposed, a lightweight local controller suffices to solve the inelastic period minimization

problem by leveraging a simple dihcotomic search algorithm over several time horizons. Then,

DMS fully exploits the remaining time portion (e.g., best-effort traffic period W − T = Z) to

maximize the aggregate system throughput for serving best-effort traffic. This is automatically

performed using a distributed mechanism without incurring in a heavy centralized channel statis-

tics collection.

4.4.1. Inelastic traffic scheduling

For inelastic traffic demands, DMS focuses on two different objectives. While the first ob-

jective is to fully accommodate the guaranteed traffic demands into the available time horizon T

(Resource Allocation), the second objective is to iteratively reduce the number of used TTIs in

order to make an efficient use of the time resources (Time Squeezing).

Resources Allocation is completely executed into base stations, each of which is in

charge of jointly scheduling local users and making ABSF pattern decisions, which are

interference coordination game Ω reaches an equilibrium with very high probability. Nevertheless, we still need to
design an algorithm whose convergence is guaranteed.
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exchanged with the other base stations through the local controller (LC). Game Γ is used

for the base stations to accomplish this task in a coordinated way.

Time Squeezing is executed at the LC. The LC collects the traffic demand offered to

the base stations and iteratively adjusts the length of the time period based on the ABSF

patterns announced by the base stations at the end of game Γ, and on penalties they could

have incurred.

Practically speaking, DMS operation starts when user traffic demand changes 6 because of

users leaving and/or joining the cellular network, as illustrated in in Fig. 4.1. User traffic de-

mands are expressed as the volume of bits to be guaranteed in a fixed time horizon. Initially,

each base station provides the LC with its cumulative traffic demand. The LC selects the initial

time period as the one that would guarantee traffic constraints without adopting any interference

coordination mechanism (W). As a consequence, the computation of assigned time resources is

initially overestimated. After that, DMS operation consists in the interaction between the two

aforementioned processes: the Resources Allocation process and the Time Squeezing process.

Resources Allocation process: guaranteeing user demands. During Resource Allocation,

the number of available TTIs T is fixed. Base stations cooperatively schedule their own users into

available TTIs in order to satisfy their traffic demands. It is very important to note that the mech-

anism perfectly complies with the requirements of the Distributed Inelastic Game Γ presented

in Section 4.2. In particular, each base station schedules its own users and communicates corre-

sponding ABSF pattern to the other base stations. Each base station limits its activity and reduces

the interference caused to the other base stations by reducing the number of occupied TTIs, as

stated in Problem GBR-DISTR. The process ends when a steady-state is reached, which always

occurs, as proved in Section 4.2. Eventually, a steady state ABSF pattern for each involved base

station is notified to the LC. In addition, the Resource Allocation process may output a set of

non-zero user penalties, e.g., due to a too large traffic to be accommodated in the time horizon or

to critical interference conditions. This event is promptly handled by the Time Squeezing process

described next.

Time Squeezing: adapt time period to demand. Time Squeezing is based on a binary search

scheme, as illustrated in Fig. 4.1. The initial time period T is set equal to the ABSF pattern length

W , chosen as the number of TTIs needed to guarantee the entire demand. Then, a binary search

is used to adapt the inelastic time period. At each step of the search (e.g., at the beginning of each

ABSF pattern W ), a new value is chosen for the time period and it is applied by invoking the

Resource Allocation process. The Resource Allocation process runs and returns ABSF patterns

and penalties. If the sum of the obtained penalties is equal to zero, meaning that user traffic

demands are completely satisfied and the time period may not fully utilized, Time Squeezing

reduces the time period T for the next ABSF pattern. If penalties occur, the process increases the

6We suppose that inelastic traffic demands are negotiated on a long-time window.
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Figure 4.2: Hybrid two-level mechanism for best-effort traffic demands. In the short-term level
(bottom side of the figure), game is played amongst the base stations, while in the long-term level
(top side) the controller decides the number of available TTIs per base station.

Problem BE-DISTR (where the set T of available TTIs defined in Problem BE-DISTR

corresponds to traffic period Z). In addition, adapting Mi is used to react to traffic changes

in the system.

At a shorter timescale, base stations play the Interference Coordination Game Ω by

sequentially exchanging their scheduling decisions in terms of ABSF patterns.8 As de-

scribed in the following, the local controller does not directly participate in the game, but it

controls its convergence by limiting the number of iterations.

The remaining challenge for coordinator-aided approach is the design of the algorithms ex-

ecuted by the local controller to (i) ensure convergence, and (ii) adjust the values Mi. In the

following we address the design of those algorithms, which aim at driving the system behavior to

an optimal state in the long run.

Convergence control of game Ω. In order to guarantee the convergence of the game, the

central coordinator imposes a deadline of Ẑ TTIs, with Ẑ < Z < W : if the game has not finished

by this deadline, it is terminated by the LC.

When the game finishes before the deadline, the resulting scheduling corresponds to an equi-

librium of the game, which ensures that resources are fairly shared among base stations. In con-

trast, when the game is terminated by the central coordinator, base stations use the scheduling that

they computed in the latest iteration of the game, which does not correspond to an equilibrium.

Thus, in the latter case some base stations could potentially have a better scheduling (i.e., more

8Note that there is no need to announce which specific user will be scheduled in a specific TTI, since base stations
transmit at a fixed power and thus their activity causes the same level of interference independently of the scheduled
user. Therefore, it is sufficient to propagate a binary string of T bits containing the ABSF pattern.
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resources) than the others. However, as shown by our results of Section 4.5, we have observed

that in practice the game can be interrupted after only a very few iterations without negatively

impacting fairness or performance in a significant manner.

The deadline Ẑ has been chosen in order to have a valid scheduling before the current period

Z finishes: the resulting scheduling (and the corresponding ABSF pattern) will then be used for

the next period. During the game, transmissions and users are scheduled according to the result

of the previous period. Note that the iterations of game Ω, as it is in game Γ, do not need to

be synchronized with the TTIs; they can be much faster, allowing for more than Z iterations

within Z TTIs. Indeed, the execution of one iteration only requires passing the “current” ABSF

patterns from one base station to another. As shown in Section 4.5.2, Ẑ can be chosen in the range

[|N |, |N |2].

Dynamic adjustment of TTI bounds Mi. One critical aspect for the performance of the

proposed mechanism is the setting of the Mi parameters, which give the maximum number of

non-blank TTIs available to each base station. Indeed, if theMi values are too small, performance

is degraded because, even if base stations can be scheduled one at a time with low interference, the

number of TTIs available for transmitting can be too small to accomodate all users. Conversely,

if the Mi values are too large, performance is degraded as a result of too many base stations

scheduled together and creating high interference. Thus, performance is maximized when the Mi

parameters are optimally set to values that are neither too large nor too small. In the rest of this

section, we design an adaptive algorithm that follows an additive-increase multiplicative-decrease

(AIMD) strategy [64] to find the optimal Mi setting.

In addition to optimally setting Mi to improve the performance of the network, the adaptive

algorithm also aims at dynamically adjusting the Mi configuration to follow the changes in traffic

and interference. From this perspective, the adaptive algorithm is a long-term process. In contrast,

the distributed game is a short-term process played once per each period of W TTIs. This implies

that the duration of the period W cannot exceed a few hundreds frames, which corresponds to a

few seconds during which traffic and channel conditions remain practically unchanged.

From a high level perspective, the algorithm works as follows. At the end of each period ofW

TTIs, i.e., after the BE traffic serving period Z, the controller gathers from the base stations the

performance resulting from the Mi values (and the corresponding ABSF pattern) used during the

period. The metric chosen to represent the performance of a base station is given by the average

user rate experienced by users of base station i in the period9, i.e.:

ηi =
1

|Ui|
∑

(u,t)∈Ui×Z

cu,t. (4.3)

9Note that, since user allocation is carried out according to Problem LOCAL, the max-min objective tends to assign
rates with limited variance; as a consequence, the average user rate and the rate of the worst-off user are likely to be
similar.
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The controller then uses the sum of the individual performance metrics, η =
∑

i∈N ηi, to

keep track of the global system performance and drive Mi to the setting that maximizes η. The

algorithm to find such Mi setting follows an AIMD strategy: the Mi values are increased as long

as performance is improved, and, when performance stops improving, then the Mi values are

decreased. After each update of the Mi values, these are distributed to the base stations and used

in the following period (i.e., the following iteration of game Ω).

The specific algorithm executed to calculate the new set of TTI bounds Mi is described in

Algorithm 2. Each iteration of the algorithm is identified by an index k. At the initial step

(k = 0), the controller initializes the system performance metrics η to 0 and assigns the initial

TTI bounds M∗i = dT/|N |e for every base station. This initial M∗i setting has been chosen

to allow base stations to schedule their users in disjoint portions of the period, which helps the

convergence of the algorithm in case of very high mutual interference between all base stations.

The M∗i also provide a lower bound for Mi.

Algorithm 2: Resource Sharing Algorithm: Adaptive algorithm to dynamically design Mi.
Called at the end of (k − 1)th ABSF pattern

Input: N , Z,M∗i , η(k−1)

Initialization: η(k) ← 0;Mi ←M∗i ,∀i ∈ N
Procedure

1: V ← {ηi, ∀i ∈ N}
2: Order V non-increasing
3: η(k) =

∑
i∈N

ηi

4: if η(k) > η(k−1) then
5: while V 6= ∅ do
6: e = pop(V)
7: Consider index i of element e
8: if M (k−1)

i < Z then
9: M

(k)
i = M

(k−1)
i + 1

10: break
11: end if
12: end while
13: else
14: while V 6= ∅ do
15: e = pop(V)
16: Consider index i of element e
17: if M (k−1)

i > M∗i then
18: M

(k)
i = max

{
M∗i ;

⌈
M

(k−1)
i /2

⌉}
19: η(k) = 0
20: break
21: end if
22: end while
23: end if

At each step, the controller collects the performance metrics ηi from base stations and checks

whether the performance of this period, η(k), has improved with respect to the previous period,

η(k−1) (line 3). If this is the case, this means that system performance is raising and the controller

increases TTI bounds Mi as follows. The controller increases by 1 unit the Mi of the base station
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with the smallest ηi whose Mi is below Z (lines 8-9). Once one Mi value is increased, step k of

the algorithm terminates (line 10).

If no Mi can be increased, which means that all base stations are active in all TTIs, then no

adjustment of the Mi values is made as long as the system performance does not degrade. In case

performance degrades, i.e., η(k) decreases, (line 13), the controller drastically reduces the Mi.

Specifically, the controller looks at the base station i with the largest ηi whose Mi is above M∗i .

It sets the new Mi value of this station equal to the minimum between the half of the current Mi

value and the lower bound M∗i (lines 17-18). If Mi = M∗i for all i, no change is carried out.

The rationale behind using AIMD to adjust theMi values is that, similar to what happens with

TCP, increasing the utilization of the system (i.e., increasing Mi values) may lead to congestion

(in our case, this corresponds to excessive interference), which causes user rates to drop. In this

case, a quick reaction is required by the controller to drive the system to a safe point of operation,

by properly adjusting TTI bounds Mi. Also similar to TCP, the additive increase of TTI bounds

Mi allows to gracefully approach the optimal utilization of the system. Furthermore, since the

problem may admit more than one local maximum, using multiplicative decrease for the TTI

bounds Mi helps our heuristic to escape from a local maximum where the optimization function

may be trapped in.

As a side comment, we point out that the proposed algorithm could accommodate different

goals, such as, e.g., maximum throughput or proportional fairness, by simply replacing the func-

tion that gives the global system performance, η, by another function that reflects performance

according to the objective pursued.

In general, DMS framework is compatible with the SDN paradigm [1]. Only ABSF patterns

and penalty indicators need to be exchanged in addition to the measure of traffic demands received

by each base station. Therefore, with simple modifications, the X2 interface of LTE could be

adopted as Southbound interface in an SDN implementation of DMS.

4.5. Performance Evaluation

In this section, we use numerical simulations to show that our mechanism performs near opti-

mally and boosts achievable rates in the whole network, not just for topologically disadvantaged

users. First, we present a simulation-based performance evaluation for serving guaranteed traffic

and best-effort traffic in isolation. Then, we show how DMS jointly handles both traffic requests,

exhibiting outstanding results. Lastly, we provide a computational evaluation about the control

overhead introduced by DMS.

All simulations are carried out by means of MATLAB® with all parameters summarized in

Table 4.4. Specifically, the tested network consists of N = 7 base stations regularly distributed

in a rectangular area of size 300 m×500 m. The coverage of each base station is computed as a

Voronoi region, assuming all base stations use the same transmission power P =1 Watt. Users are

randomly dropped in each cell, according to a uniform random distribution. The average quality
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are considered. Table 4.5 summarizes the results in terms of k, denoting the number of rounds

the game needs to converge. The results are averaged over 1000 simulations per each single case.

It is important to note that k inversely grows with the inter-site distance. This is due to the nature

of inter-cell interference. The closer base stations are placed, the more the interference grows and

the higher the number of rounds needed for Γ to converge.

Moreover, it is worth pointing out that only for 3 cases out of 1000 simulations the game Γ did

not reach the convergence by using the Best Response strategy (BR), thus forcing players to use

the Single Step Best Response strategy (SSBR), as explained in Section 4.2. SSBR is supposedly

slow to reach convergence if used from round 1, however, it can readily achieve game convergence

in a few rounds after BR has been played a few times. Specifically, in our simulation, about N2

rounds with BR, followed by at most N rounds with SSBR, were sufficient to reach convergence

in all cases. These results confirm not only that convergence can be always achieved, but also that

the BR strategy typically ensures the game convergence, with no need to instruct the base stations

to use the SSBR strategy since the beginning. In practice, we suggest to use the BR strategy

during the first N2 rounds of the game, and, if the game did not converged before, switch to the

SSBR strategy at round N2 + 1. With the above, the entire game will converge in a number of

rounds in the order of O(N2).

4.5.2. Best-effort traffic Management

Once guaranteed traffic is properly accommodated within the ABSF pattern W , the non-used

TTIs are fully assigned for serving best-effort traffic. In this set of simulations, we show how

DMS handles the best-effort traffic given a fixed number of available TTIs Z ≤W .

First, we benchmark DMS against the optimal solution, obtained by solving Problem BE by

means of an ILP solver. Additionally, we compare DMS to the case of uncontrolled base stations

using the same frequencies (Legacy) and to a traditional frequency reuse 3 scheme, in which the

available band is split into three orthogonal sub-bands. Finally, for the sake of completeness,

we compare DMS with two existing approaches fully based on a power control schemes, show-

ing how DMS can achieve high network performance at a bargain price of complexity. In the

first scheme, namely Utility-Based Power Control (UBPC) [97], base stations are allocated in all

available TTIs by tuning properly the transmitted power to reduce interference. The algorithm

suggested in [97] maximizes the user net utility by ensuring that the signal-to-noise-ratio of each

transmission is greater than a minimum threshold γi (in our simulations we assume γi as the

minimum MCS with nonzero rate). While UBPC provides a rigorous centralized solution for the

power allocation problem at the expense of a huge amount of information exchanged, a second

power control scheme recently developed, namely REFerence based Interference Management

(REFIM) [86], proposes a low-complex distributed scheme by exploiting the notion of reference

user (e.g., the user with the worst channel condition, belonging to the surrounding cells). Al-

though this abstraction leads to a drastic reduction of the control signal overhead and results in a

practical implementation of the power control solution, it exhibits a conservative behaviour.
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Table 4.6: Overhead of centralized and DMS semi-distributed approaches

Interface Centralized approach DMS approach
IC 64 · |U | · |N |+ T · |N | 64 · |N |
IB 0 T · k · |N |

4.5.4. Control overhead

We conclude the analysis with the evaluation of the control overhead introduced by DMS.

Both traffic serving procedures incur in the same amount of overhead except for the BE traffic

service which requires additional 64 bits to notify the base station performance ηi to the local

controller.

We can identify two different interfaces: one between local controller and base stations,

namely IC , and one between distinct base stations, namely IB . They may be both implemented

using, e.g., the LTE X2 interface [88].

In the centralized solution, the local controller requires message exchanges over IC only.

In particular, per each pair (user, base station), it requires the transmission of an average channel

quality indicator (e.g., the RSRP value in the LTE-Advanced networks [92]) which can be encoded

in double precision floating point format, e.g., 64 bits. Then, the controller issues a scheduling

pattern (a string of T bits) per each base station.

In the DMS mechanism, the controller requires to receive the average user rate ηi per base

station over IC at the end of each game Ω for best-effort traffic only, consisting in a binary string of

fixed length (e.g., 64 bits for a double precision floating point number). Regarding the interface IB
between different base stations, DMS needs a sequential exchange of ABSF scheduling patterns

(strings of T bits) during the interference coordination games Γ and Ω, until both games reach a

convergence state or the convergence deadline expires.

We can therefore summarize the total load in terms of bits for each interface as reported in

Table 4.6. In the table, k is the number of rounds the interference coordination game plays before

reaching the convergence, and |U| =
∑

i |Ui| is the total number of users in the system. We can

easily observe that the overhead of DMS is lower than that of the centralized mechanisms when

the following inequality holds:

|U | > 1 +
T

64
(k − 1) ∼=

T |N |2

64
, (4.4)

where we have considered that the number of rounds k in the worst case is a function of |N |
(i.e., at most k = |N |2 iterations are enough to converge, when convergence exists, as proven

mathematically in [41] and empirically shown in Section 4.5.1 and Section 4.5.2) and both T

and |N | are (much) greater than 1. Therefore, our approach is convenient as soon as the number

of users exceeds a threshold that depends on T and |N | (i.e., the threshold is O
(
T |N |2

)
). For

example, in an (sub-)urban environment with T =70 and |N | = 7, DMS results convenient with

as few as 54 users or more, while in a dense-urban environment with |N | = 30, our approach

exhibits a practical implementation starting with∼1000 users in the entire network. Those values
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are pretty low, revealing how our approach drastically reduces the signaling overhead for existing

cellular network sizes.

4.6. Conclusions

In this chapter, we have presented the design of DMS, a practical (distributed and lighweight)

approach to optimize inter-cell interference coordination for both guaranteed traffic and best-

effort traffic. To design this approach, two optimization problems have been formulated, one for

each traffic type, relying on game theory notions. We have then proposed distributed algorithms to

solve these optimization problems, and have further conducted analysis to prove the convergence

and stability of these algorithms. As a result, with the presented approach base stations make

scheduling decisions for serving guaranteed traffic by using as few TTIs as possible, leaving the

room for best-effort traffic, which is efficiently served.

Due to the simplicity of DMS and its limited control overhead, this can be considered as the

first attempt towards a practical, efficient, scalable and adaptive implementation of ABSF in real

networks addressing both traffic types. Numerical results show that DMS achieves near-optimal

results with respect to a centralized omniscient network scheduler, and achieves performance

levels similar to schemes relying on complex power control functionality.
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Chapter 5

Cellular Traffic Offloading exploiting
the Epidemic Dissemination

In the second part of this work, we focus on future heterogenous networks, in which device-to-

device (D2D) technology brings an additional gain to the standard communication way. The target

is to greatly boost the standard network performance by offloading the cellular traffic through

opportunistic communications, performed by means of D2D links. A number of techniques have

been proposed in the literature to offload cellular traffic, which are either based on heuristics (and

hence do not ensure that the load of the cellular network is minimized) or fail to provide delay

guarantees. However, we want to analyze how an efficient opportunistic offloading scheme may

improve the spectral efficiency of the cellular network.

In this chapter, we present the HYPE (HYbrid oPportunistic and cEllular) application, which

minimizes the load of the cellular network while meeting the constraint in terms of delay guaran-

tees. The key features can be easily summarized as follows:

Building on the foundations of epidemic analysis [30], we propose a model to un-

derstand the fundamental trade-offs and evaluate the performance of a hybrid opportunistic

and cellular communication approach. Our model reveals that content tends to dissemi-

nate faster through opportunistic contacts when a sufficient, but not excessive, number of

nodes have already received the content; in contrast, dissemination is slower when either

few users have the content or few users are missing it.

Based on our model, we derive the optimal strategy for injecting content through

the cellular network. In line with our previous findings, this strategy uses the cellular

network when low speed of opportunistic propagation is statistically expected, and lets

the opportunistic network spread the content the rest of the time.

We design an adaptive algorithm, based on control theory, that implements the opti-

mal strategy for injecting content through the cellular network. The key strengths of this

algorithm over previous approaches are that it adapts to the current network conditions

71
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without monitoring the nodes’ mobility and that it incurs very low signaling overhead and

complexity. Both features are essential features for a practical implementation.

5.1. The HYPE approach

In this section, we present the basic design guidelines of the HYPE (HYbrid oPportunistic

and cEllular) approach. HYPE is a hybrid cellular and opportunistic communications approach

that delivers content to a set of users by

sending the content through the cellular network to an initial subset of the users

(which we will call seed nodes), and

letting these initial users or seed nodes share the content opportunistically with the

other nodes.

We aim at designing HYPE so as to combine the cellular and opportunistic communication

paradigms in a way that retains the key strengths of each paradigm, while overcoming their draw-

backs.

HYPE consists of two main building blocks: (i) the Content Server, and (ii) the Mobile

Applications. The Content Server runs inside the network infrastructure, while the Mobile Ap-

plications run in mobile devices that are equipped with cellular connectivity, as well as able to

directly communicate with each other via short range connections (e.g., via WLAN or Bluetooth).

The Content Server monitors the Mobile Applications and, based on the feedback received from

them, delivers the content through the cellular network to a selected subset of Mobile Applica-

tions (the seed nodes). When two mobile devices are within transmission range of each other, the

corresponding Mobile Applications opportunistically exchange the content by using local (short-

range) communications.

5.1.1. Objectives

The fundamental challenge of the HYPE approach is the design of the algorithm that decides

which mobile devices and when they should receive the content through the cellular network. The

rest of this chapter is devoted to the design of such an algorithm. The key objectives in the design

are:

Maximum Traffic Offload: Our fundamental objective is to maximize the traffic of-

floaded and thus reduce the load of the cellular network as much as possible. This is

beneficial both for the operators (who may otherwise need to upgrade their network, if

the cellular infrastructure is not capable of coping with current demand), as well as for the

users (who must pay for cellular usage, either directly or by seeing their data rate reduced).
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Guaranteed delay: Most types of content have an expiration time, arising either from

the content’s usefulness to the user (e.g., road traffic information), its validity after an up-

date (e.g., daily news) or its play-out time (e.g., streaming). Therefore, a key requirement

for our approach is that the content reaches all the interested users before its deadline.

Fairness among users: In order to make sure that all users benefit from HYPE, it is

important to guarantee a good level of fairness both in terms of cellular usage (for which

users have to pay), as well as in terms of opportunistic communications (which may in-

crease the energy consumption of the device).1

Reduced signaling overhead: The signaling overhead between the Content Server

and the Mobile Applications needs to be low. This is important for two reasons: first, to

ensure that HYPE scales with the number of mobile devices (otherwise the signaling traffic

would overload the cellular network); second, to avoid using the cellular interface for small

control packets (which is highly energy inefficient due to the significant tail consumption

after a cellular transmission [12]).

The above objectives involve some trade-offs, making it very challenging to satisfy all of them

simultaneously. For instance, to maximize the traffic offload, we may consider a greedy approach,

where the Content Server sends the content to users with the highest contact rates; however this

would (i) deteriorate the fairness among users, and (ii) increase the signaling overhead to gather

data on user mobility patterns. Another approach may instead minimize the signaling overhead

by injecting content as long as there is enough bandwidth available, avoiding thus any signaling;

however, this will not maximize the traffic offload. In the following, we set the basic design

guidelines of an approach that satisfies all these objectives.

5.1.2. Basic design guidelines

In order to satisfy the above objectives, a key decision of HYPE is how to deliver a certain

piece of content (hereafter referred to as data chunk) through the cellular network. In particular,

this decision involves the selection of the nodes to which the data chunk is delivered via cellular,

as well as the times when to perform these deliveries.

In HYPE, a data chunk is initially delivered to one or more users through the cellular network;

additional copies may be injected later if needed. The decision of when to inject another copy of

the chunk is driven by the number of users that have already received it. As long as the deadline

has not expired, any user with a copy of the chunk will opportunistically transmit it to all the

users it meets, that do not have the chunk. Finally, upon reaching the deadline of the content, the

remaining users that have not yet received the chunk, download it from the cellular network;2 this

1Indeed, an important drawback of certain existing solutions is that they tend to over-exploit the users with high
contact rates [40, 45], thus discouraging the participation of such users.

2An added advantage of this architecture is that the mobile nodes only need to keep the data chunks for forwarding
until their deadline and no longer. The burden on the mobile nodes’ buffers is thus kept very low.
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ensures that the delay guarantees are met and thus we satisfy objective (5.1.1) from Section 5.1.1.

In order to provide a good level of fairness among users, which is objective (5.1.1), HYPE

selects each of the seed nodes uniformly at random. Over the long term, this ensures that, on the

one hand, all users have the same load in terms of cellular usage and, on the other hand, they

also share fairly well the load incurred in opportunistic communications. This is confirmed by

the simulation results presented in Section 5.3, which show that HYPE provides a good level of

fairness while paying a small price in terms of performance.3

The approach sketched above meets objectives (5.1.1) and (5.1.1). In the following, we first

present a model for the opportunistic dissemination of content injected by a cellular network.

Based on this model, in Section 5.2 we derive the optimal strategy for the delivery of a single

data chunk, that minimizes the load of the cellular network fulfilling objective (5.1.1), and then

we design an algorithm to implement this strategy, that incurs very low signaling overhead thus

also satisfying objective (5.1.1).

5.1.3. Model

In order to derive the optimal strategy, with the above approach, for the delivery of data chunks

through the cellular network, we need to determine:

The total number of copies of the data chunk to be delivered by the cellular network.

This is not trivial: for example, an overly conservative approach, that delivers too few

copies before the deadline, may have the side-effect of overloading the cellular network

with a large number of copies when the deadline expires.

The optimal instants for their delivery. The decision of when to deliver a copy of a

data chunk through the cellular network is based on the current status of the network, which

is given by the number of users that already have the chunk.

In the following, we model the opportunistic dissemination of content injected by a cellular

network and analyze the load of the cellular network as a function of the strategy followed. Then,

based on this analysis, in Section 5.2 we obtain the optimal strategy, that minimizes the load of

the cellular network for a given content deadline.

Let N be a set of mobile nodes subscribed to the same content, with N = |N | the size

of this set (total number of nodes). All nodes have access to the cellular network. Any two

nodes also have the ability to setup pairwise bi-directional wireless links, when they are in each

other’s communication range (in contact). Thus, opportunistic communication happens via the

store-carry-forward method, through the sequences of intermittent contacts established by node

mobility.

At time 0, a data chunk is injected in the (opportunistic) network, i.e., copies of the chunk are

pushed via the cellular interface to a small subset of N , the seed nodes. Throughout the model
3This is also supported by the results of [96], which show that the difference in terms of performance between the

random selection and other strategies is very small.
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description, we follow the epidemic dissemination of this chunk of content. We denote by M(t)

the number of mobile nodes holding the chunk at time t (we refer to such nodes as “infected”).

The delivery deadline assigned to a data chunk is given by Tc (its value depends on the mobile

application’s requirements).

5.1.3.1. Opportunistic communication

In the opportunistic phase of HYPE, data are exchanged only upon contacts in the network

N , therefore a mobility model based on contact patterns is sufficient for our analysis. We assume

every pair of nodes (x, y) in the network N meets independently of other pairs, at exponentially

distributed time intervals4 with rate βxy > 0. Then, the opportunistic network N can be repre-

sented as a weighted contact graph using the N ×N matrix B = {βxy}. We further assume that

the inter-contact rates βxy are samples of a generic probability distribution F (β) : (0,∞)→ [0, 1]

with known expectation µβ (various distribution types for F (β) and their effects on aggregated

inter-contact times are investigated in [74]). Additionally, we assume that the duration of a contact

is negligible in comparison to the time between two consecutive contacts, and that the transmis-

sion of a single chunk is instantaneous in both the cellular and the opportunistic network.

The assumptions of exponential inter-contact and negligible contact duration are the norm

in analytical work dealing with opportunistic networks [38, 72, 76]. Studies based on looser as-

sumptions (generic inter-contact models, non-zero contact duration) have, so far, only resulted

in broad, qualitative conclusions (e.g., infinite vs. finite delay), while we aim at obtaining more

concrete, quantitative results. In addition, all our simulations feature non-zero contact duration

and some of them also have non-exponential inter-contact times, thus testing the applicability of

our results outside the domain of these assumptions.

Epidemic dissemination in opportunistic networks is typically described with a pure-birth

Markov chain, similar to the one in Fig. 5.1 (slightly adapted from, e.g., [38]). This type of chain

only models the number of copies of a chunk in the networkN at any point in time, regardless of

the specific nodes carrying those copies. This is only possible when considering node mobility to

be entirely homogeneous (i.e., all node pairs meet at a unique rate: βxy = λ for all x, y ∈ N ),

which allows all nodes to be treated as equivalent.

However, as stated in the beginning of this subsection, we consider node mobility to be het-

erogeneous, with node pairs meeting at different rates βxy with x, y ∈ N . In this case, not only

the number of spread copies must be modeled, but also the specific nodes carrying those copies.

This results in more complex Markov chains, as illustrated in Fig. 5.2 for a 4-node network

N = {a, b, c, d}.

4Though all pairwise inter-contact rates may not always be exactly exponential (preliminary studies of traces [29]
suggested that this is true for subsets of node pairs only), the most in-depth and recent studies [21, 53] conclude that
inter-contact time intervals do feature an exponential tail. This is supported by the recent results of Passarella et al. [74],
which show that the non-exponential aggregated inter-contacts discovered in the preliminary trace studies [29] can, in
fact, be the result of exponentially distributed pairwise inter-contacts with different rates.
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a contact between two nodes (one infected, the other uninfected), which occurs at

rates indicated in the previous subsection, or

the injection of the chunk to one node through the cellular network.

The latter corresponds to an instantaneous transition (since the chain instantly “jumps” to a state of

the next dissemination level), and is represented in Fig. 5.1 with∞ rate5. Finally, upon reaching

the deadline Tc, the chunk is sent through the cellular network to those nodes that do not have the

content by that time.

5.1.4. Analysis

Based on the above model, in the following, we analyze the load of the cellular network

(which is the metric that we want to minimize) as a function of the strategy followed to inject

content (which is given by C = {c1, c2, . . . , cd}). The cellular network load corresponds to the

number of copies delivered through the cellular network, which we denote by D. Let pi(t) =

P[M(t) = i] denote the probability of being at level i at time t. Then, D is given by:

D =
N∑
i=1

(di + d∗i )pi(Tc) (5.1)

where di is the number of deliveries through the cellular network that take place until level i is

reached (di = |{1, 2, . . . , i} ∩ C|) and d∗i is the number of copies delivered upon reaching the

deadline Tc, if it expires at level i (d∗i = N − i).
In order to compute pi(Tc), we first analyze the case C = {c1}6, i.e., when we only inject one

copy of the data chunk at the beginning and do not inject any other until we reach the deadline.

Let pc1i (Tc) denote the probability that, in this case, the system is at level i at time Tc. In order to

compute pcii (Tc), we model the transient solution of our Markov chain as shown in the following

theorem. (The formal proofs of the theorems are provided in the Appendix.)

Theorem 5.1.1. According to the HYPE Markov chain for heterogeneous mobility (similar to

Fig. 5.2), the process {M(t), t ≥ 0} is described by the following system of differential equations:
d
dtp

c1
1 (t) = −λ1pc11 (t), i = 1

d
dtp

c1
i (t) = −λipc1i (t) + λi−1p

c1
i−1(t), 1 < i < N

d
dtp

c1
N (t) = λN−1p

c1
N−1(t), i = N

(5.2)

where λi = i(N − i)µβ . (Recall that µβ is the known expectation of the generic probability

distribution F (β) : (0,∞) → [0, 1], from which the inter-contact rates describing our network

are drawn: {βxy} = B.)
5Note that, for clarity, the Markov chain of Fig. 5.2 does not model transitions caused by chunk injection through

the cellular network. This type of transition would be the same as in Fig. 5.1 (i.e.,∞ rate).
6Note that c1 must necessarily be equal to 0.
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Theorem 5.1.1 has effectively reduced our complicated Markov chain for heterogeneous mo-

bility back to a simpler Markov chain, like the one in Fig. 5.1 (the λ factor being replaced by µβ).

In the simpler chain, each state represents a level of chunk dissemination (i.e., number of nodes

holding a copy of the chunk). This is possible, as shown in the proof, thanks to the fact that our

heterogeneous contact rates βxy are all drawn from the same distribution, F (β) : (0,∞)→ [0, 1],

which means that all the states of a certain dissemination level i: {Ki
1,K

i
2, . . . ,K

i

(Ni )
} are, in fact,

statistically equivalent.

Applying the Laplace transform to the above differential equations, and taking into account

that pc1i (0) = δi1, leads to
sP c11 (s) = −λ1P c11 (s) + 1, i = 1

sP c1i (s) = −λiP c1i (s) + λi−1P
c1
i−1(s), 1 < i < N

sP c1N (s) = λN−1P
c1
N−1(s), i = N

(5.3)

from which 
P c1i (s) =

1

s+ λi

i−1∏
j=1

λj
s+ λj

, i < N

P c1N (s) =
1

s

N−1∏
j=1

λj
s+ λj

, i = N

(5.4)

In case we deliver the data chunk through the cellular network at the levels C =

{c1, c2, . . . , cd}, then the transitions corresponding to those levels are instantaneous, and the

Laplace transforms of the probabilities Pi(s) are computed as:

Pi(s) =



1

s+ λi

∏
j∈Si−1

λj
s+ λj

, i < N, i /∈ C

0, i < N, i ∈ C
1

s

∏
j∈SN−1

λj
s+ λj

, i = N

(5.5)

where Si−1 is the set of levels up to level i − 1, without including those that belong to set C,

i.e., Si−1 = {1, 2, . . . , i − 1} \ ({1, 2, . . . , i − 1} ∩ C). For the levels i ∈ C, we simply have

PCi (s) = 0, since we will never be at these levels.

From Eq. (5.5), we can obtain a closed-form expression for the probabilities pi(t) as follows.

The polynomial Pi(s) is characterized by first and second order poles which have all negative real

values. Let {s = −λn} be the poles of Pi(s). Then, pi(t) for i < N, i /∈ C is computed as:

pi(t) =

 ∏
j∈Si−1

λj

 ∑
{s=−λn}

Res

(
est∏

j∈Si(λj + s)

)
(5.6)
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where Res indicates the residue, which is given by:

Res
s=−λn

 est∏
j∈Si

(λj + s)

 =



e−λnt∏
j∈Si
j 6=n

(λj − λn)
, −λn is a 1st order pole

e−λnt

t− ∑
j∈Si
λj 6=λn

1

(λj − λn)


∏
j∈Si
λj 6=λn

(λj − λn)
, −λn is a 2nd order pole

Additionally, for i < N, i ∈ C we have pi(t) = 0, and for i = N , pN (t) = 1−
∑N−1

i=1 pk(t).

By evaluating pi(t) at time t = Tc and applying Eq. (5.1), we can compute the average number

of deliveries over the cellular network, D.

5.2. Optimal Strategy and Adaptive Algorithm

In this section, we first leverage on the above model to determine the optimal strategy for the

delivery of data chunk, and then we design an adaptive algorithm to implement this strategy.

5.2.1. Optimal strategy analysis

Our goal is to find the best strategy C = {c1, c2, . . . , cd} for injecting chunk copies over

the cellular network, that minimizes the total load D of the cellular network while meeting the

content’s deadline Tc. To solve this optimization problem, we proceed along the following two

steps:

We show that the optimal strategy is to deliver the content through the cellular network

only at the beginning and at the end of the data chunk’s period, and never in-between. The

data chunk’s period is defined as the interval between t = 0 (when we first start distributing

the content) and t = Tc (when the content’s deadline expires).

We obtain the optimal number of copies of the chunk to be delivered at the beginning

of the period such that the average load of the cellular network, D, is minimized.

The following theorem addresses the first step.

Theorem 5.2.1. In the optimal strategy, the data chunk is delivered through the cellular network

to d seed nodes at time t = 0, and to the nodes that do not have the content by the deadline at

time t = Tc.
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According to Theorem 5.2.1, the optimal strategy is to:

deliver a number of copies through the cellular network at the beginning of the period,

wait until the deadline without delivering any additional copy,

deliver a copy of the chunk to the mobile nodes missing the content at the end of the

period.

The intuition behind this result is as follows. When few users have the content, information

spreads slowly, since it is unlikely that a meeting between two nodes involves one of the few

that have already the content. Similarly, information spreads slowly when many users have the

content, as a meeting involving a node that does not yet have the content is improbable.

The strategy given by Theorem 5.2.1 avoids the above situations by delivering a number of

chunk copies through cellular communication at the beginning (when few users have the content)

and at the end (where few users miss the content). As a result, the strategy lets the content

disseminate through opportunistic communication when the expected speed of dissemination is

higher, which allows to minimize the average load of the cellular network.

The second challenge in deriving the optimal strategy is to compute the optimal number of

copies of the chunk to be delivered at the beginning of the period, which we denote by d. To that

end, the following proposition defines the notion of gain and computes it:

Proposition 5.2.1. Let us define Gd as the gain resulting from sending the (d + 1)th chunk of

chunk copy at the beginning of the period (i.e., Gd = Dd − Dd+1, where Dd+1 and Dd are the

values of D when we deliver d+ 1 and d copies at the beginning, respectively). Then, Gd can be

computed from the following equation:

Gd =
N−1∑
j=d

λj
λd
pdj (Tc)− 1. (5.7)

Building on the above notion of Gd, the following theorem provides the optimal point of

operation:

Theorem 5.2.2. The optimal value of d is the one that satisfies Gd = 0.

The rationale behind the above theorem is as follows. When Gd > 0, by sending one addi-

tional copy at the beginning, we save more than one copy at the end of the period and hence obtain

a gain. Conversely, when Gd < 0, we do not benefit from increasing d. The proof shows that Gd
is a strictly decreasing function of d, which implies that, to find the optimal point of operation, we

need to increase d as long as Gd > 0 and stop when we reach Gd = 0 (after this point, Gd < 0

and further increasing d yields a loss).
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5.2.2. Adaptive algorithm for optimal delivery

While the previous section addressed the delivery of a single data chunk, in this section we

focus on the delivery of the entire content, e.g., a flow of road traffic updates, news feeds or a

streaming sequence. We consider that the distribution of content in mobile applications is typ-

ically performed by independently delivering different pieces of content in a sequence of data

chunks. For instance, a streaming content of 800 MB may be divided into a sequence of chunks

of 1 MB. When delivering chunks in sequence, we need to adapt to the system dynamics. For in-

stance, inter-contact time statistics may vary depending on the time of the day [24], which means

that the optimal d value obtained by Theorem 5.2.2 needs to be adapted accordingly. Similarly,

the number of mobile nodes N subscribed to the content may change with time, e.g., based on

the content popularity.

To address the above issues, we design an adaptive algorithm based on control theory, that

adjusts the number of chunk copies d delivered at the beginning of each period to the behavior

observed in previous rounds (hereafter we refer to the sequence of periods as rounds). For in-

stance, in the example above we would have a total of 800 rounds. In the following, we first

present the basic design guidelines of our adaptive algorithm. Building on these guidelines, we

then design our system based on control theory. Finally, we conduct an analysis of the system to

guarantee its stability and ensure good response times.

5.2.3. Adaptive algorithm basics

In order to devise an adaptive algorithm that drives the system to optimality, we first need to

identify which variable we should monitor and what value this variable should take in optimal

operation. To do this, we build on the results of the previous section to design an algorithm that:

monitors how many additional infected nodes we would have at the end of a round, if

we injected one extra copy at the beginning of that round;

drives the system to optimality by increasing or decreasing d depending on whether

this number is above or below its optimal value.

To efficiently monitor the number of additional infected nodes, we apply the following rea-

soning. According to Theorem 5.2.2, in optimal operation, one extra delivery at the beginning of

a round leads to one additional infected node at the end of that round. If we focus on a single

copy of the chunk delivered over the cellular network and consider it as the extra delivery, the

nodes that would receive the content due to this one extra delivery are those that received this

specific copy and could not have received the chunk from any other source. Since this holds for

each of the d copies delivered over the cellular network, in optimal operation there are on average

a total of d nodes at the end of the round, which received the chunk from one source and could

not have received it from any other source. Our algorithm focuses on this aggregate behavior of
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Based on this behavior, it decides whether to increase or decrease d in the next round, in order to

drive the output signal to the reference signal.

A key aspect of the system design is the definition of the output and reference signals. On

the one hand, we need to enforce that by driving the output signal to the reference signal, we

bring the system to the optimal point of operation. On the other hand, we also need to ensure that

the reference signal is a constant value that does not depend on variable parameters, such as the

number of nodes or the contact rates.

Following the arguments exposed in Section 5.2.3, we design the output signal O(t) and the

reference signal R of our controller as follows:O(t) = s(t)− d(t)

R = 0
(5.9)

where d(t) is the number of deliveries at the beginning of a given round t, and s(t) is the number

of signals received at the end of this round. Note that, with the above output and reference signals,

by driving O(t) to R we bring the system to the point of operation given by s = d, which, as

discussed previously, corresponds to the optimal point of operation. Following classical control

theory, we represent the randomness of the system by adding some noise W (t) to the output

signal, as shown by Fig. 5.4.

5.2.5. Control theoretic analysis

The behavior of the proposed system (in terms of stability and response time) depends on the

parameters of the controller C(z), namely Kp and Ki. In the following, we conduct a control

theoretic analysis of the system and, based on this analysis, calculate the setting of these param-

eters. Note that this analysis guarantees that the algorithm quickly converges to the desired point

of operation and remains stable at that point.

In order to analyze our system from a control theoretic standpoint, we need to characterize

the HYPE network with a transfer function H(z) that takes d as input and provides s − d as

output. In order to derive H(z), we proceed as follows. According to the definition given in

Proposition 5.2.1, Gd is the gain resulting from sending an extra copy of the chunk. In one round,

by sending one extra copy of the chunk at the beginning, there are on average s/d additional

nodes that have the chunk at the end. Indeed, s is the total number of nodes that receive the chunk

from only one of the d initial seed nodes, which means that on average each seed node contributes

with s/d to this number. This yields to:

Gd = s/d− 1, (5.10)

from which:

s− d = Gdd. (5.11)
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The above provides a nonlinear relationship between d and s − d, since Gd (given by Eq. (5.7))

is a non-linear function of d. To express this relationship as a transfer function H(z), we lin-

earize it at the optimal point of operation.8 Then, we study the linearized model and ensure its

stability through appropriate choice of parameters. Note that the stability of the linearized model

guarantees that our system is locally stable.9

To obtain the linearized model, we approximate the perturbations suffered by s − d at the

optimal point of operation, ∆(s− d), as a linear function of the perturbations suffered by d, ∆d,

∆(s− d) ≈ ∂(s− d)

∂d
∆d, (5.12)

which gives the following transfer function for the linearized system:

H(z) =
∂(s− d)

∂d
. (5.13)

Combining the above with Eq. (5.11), we obtain the following expression for H(z):

H(z) =
∂(s− d)

∂d
= Gd + d

∂Gd
∂d

. (5.14)

Evaluating H(z) at the optimal point of operation (Gd = 0) yields:

H(z) = d
∂Gd
∂d

. (5.15)

To calculate the above derivative, we approximate λi (given by λi = i(N − i)µβ) by its first

order Taylor polynomial evaluated at level i = d̂, where d̂ is the average value of i at time Tc (i.e.,

the average number of nodes that have the chunk at the deadline). Since the Taylor polynomial

provides an accurate approximation for small perturbations around d̂, and the number of nodes

that have the chunk at time Tc is distributed around this value, we argue that this approximation

leads to accurate results. The first order Taylor polynomial for λi at i = d̂ is:

λi ≈ λd̂ − (i− d̂)(2d̂−N)µβ. (5.16)

8This linearization provides a good approximation of the behavior of the system when it suffers small perturbations
around the stable point of operation [49]. Note that the approximation only affects the transient analysis and not the
analysis of the stable point of operation at which the system is brought by the algorithm.

9A similar approach was used in [43] to analyze the Random Early Detection (RED) scheme from a control theoretic
standpoint.
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Substituting this into Eq. (5.7) yields

Gd =
1

λd

N∑
i=1

pdi (Tc)
(
λd̂ − (i− d̂)(2d̂−N)λ

)
− 1

=
λd̂
λd
− 1 =

d̂(N − d̂)µβ
d(N − d)µβ

− 1 (5.17)

Since at the optimal point of operation we have Gd = 0, this implies that (at this operating

point) d = d̂. Moreover, from Theorem 5.2.2 we have that, when operating at the optimal point,

if we deliver one additional copy at the beginning (i.e., increase d by one unit), this leads to one

additional node with the chunk at the end (i.e., d̂ also increases by one unit). Therefore, at the

optimal operating point we also have ∂d̂/∂d = 1. Accounting for all of this when performing the

partial derivative of Gd yields:
∂Gd
∂d

=
2(2d−N)

d(N − d)
, (5.18)

from which:

H(z) = d
∂Gd
∂d

= −2(N − 2d)

N − d
. (5.19)

Having obtained the transfer function of our HYPE network, we finally address the config-

uration of the controller parameters Kp and Ki, that will ensure a good trade-off between our

system’s stability and response time. To this end, we apply the Ziegler-Nichols rules [34], which

have been designed for this purpose. According to these rules, we first obtain the Kp value that

leads to instability when Ki = 0; this value is denoted by Ku. We also calculate the oscillation

time Ti under these conditions. Once the Ku and Ti values have been derived, Kp and Ki are

configured as follows:

Kp = 0.4Ku, Ki =
Kp

0.85Ti
. (5.20)

Let us start by computing Ku, i.e., the Kp value that ensures stability when Ki = 0. From

control theory [10], we have that the system is stable as long as the absolute value of the closed-

loop gain is smaller than 1. The closed-loop transfer function T (z) of the system depicted in

Fig. 5.4 is given by:

T (z) =
−H(z)C(z)

1− z−1H(z)C(z)
. (5.21)

To ensure that the closed-loop gain of the above transfer function is smaller than 1, we need

to impose |H(z)C(z)| < 1. Doing this for Ki = 0 yields:

|H(z)C(z)| =
∣∣∣∣−2(N − 2d)

N − d
Kp

∣∣∣∣ < 1. (5.22)

The above inequality gives the following upper bound for Kp, at which the system turns

unstable:

Kp <
N − d

2(N − 2d)
. (5.23)
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We want to ensure that the system is stable independently of N and d, that is, the above

inequality holds for any N and d values. Since the smallest possible value that the right-hand

side of Eq. (5.23) can take is 1/2 (when d → 0), the system is guaranteed to be stable as long as

Kp < 1/2, and may turn unstable when Kp exceeds this value. Accordingly, we set Ku = 1/2.

Furthermore, when the system becomes unstable, the control signal d may change its sign up to

every round, yielding an oscillation period of two rounds, which gives Ti = 2. With these Ku

and Ti values, we set Kp and Ki following Eq. (5.20),

Kp =
0.4

2
, Ki =

0.4

2 · 2 · 0.85
, (5.24)

which terminates the configuration of the PI controller.

While the Ziegler-Nichols rules aim at providing a good trade-off between stability and re-

sponse time, they are heuristic in nature and thus do not guarantee the stability of the system. The

following theorem proves that the system is stable with the proposed configuration.

Theorem 5.2.3. The HYPE control system is stable for Kp = 0.2 and Ki = 0.4/3.4.

5.3. Performance Evaluation

In this section, we evaluate HYPE for a wide range of scenarios, including several instances

of a heterogeneous mobility model, as well as real-world mobility traces. We show that:

The analytical model provides very accurate results.

The optimal strategy for data chunk delivery effectively minimizes the load incurred

in the cellular network.

The proposed adaptive algorithm is stable and quickly converges to optimal operation.

HYPE outperforms previously proposed heuristics in terms of the cellular load, sig-

naling load and fairness among users.

From the four design objectives introduced in Section 5.1.1, our evaluation focuses on the

traffic offload, fairness and signaling overhead. Note that, since the delay guarantees are satisfied

by design, we meet the objective on the delay.

Simulation setting. To evaluate the performance of HYPE, we use both real mobility traces

and a heterogeneous mobility model. For the evaluation with real mobility traces, we select the

contact traces collected in the Haggle project for 4 days during Infocom 2006 [24], and the GPS

location traces of San Francisco taxicabs,10 collected through the Cabspotting project [77]. The

number of users for the Infocom 2006 and San Francisco traces are 78 and 536, respectively.

10We assume two taxicabs are in contact when they are within 100 meters of each other.
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As for the heterogeneous mobility model, we generate contacts as follows. For any given

node pair (x, y), the pairwise inter-contact times are exponentially distributed with rate βxy. The

pairwise contact rates, βxy, are drawn from a Pareto distribution11 with mean µβ (which deter-

mines the average frequency of the contacts) and standard deviation σ (which determines the level

of heterogeneity). To account for sparser scenarios, we also run some experiments where a node

pair has a probability p > 0 of never meeting, i.e., βxy = 0 (otherwise the inter-contact rate

for the pair βxy is drawn as above). In addition, we generate contact durations δ from a Pareto

distribution with parameter α = 2, as observed in [23]. Following the findings in [29], we choose

the average contact rate µβ and the average contact duration E[δ] values such that 1/(µβ · E[δ])

is between 100 and 1000.

In all the simulations, we set the throughput of the cellular communication to one mobile

node equal to 600 kb/s [11] and the bandwidth of opportunistic communication to 20 Mb/s. All

the results given in this section are provided with 95% confidence intervals below 0.1%.

Baseline scenarios. For the heterogeneous mobility model, we use the following four base-

line scenarios:

streaming: N = 100, mean contact rate µβ = 13 contacts/pair/day [24] and σ =

0.58 · µβ , Pareto-distributed contact duration E[δ]=66.46 s, Tc = 120 s [82] and chunk size

L = 1 MB,

road traffic update: N = 1000, mean contact rate µβ = 1.2 contacts/pair/day and

σ = 1.5 · µβ , Pareto-distributed contact duration E[δ] = 72 s, Tc = 600 s, L = 1 MB [96],

news feed: N = 100, mean contact rate µβ = 0.69 contacts/pair/day [24] and σ =

2 · µβ , Pareto-distributed contact duration E[δ]= 125 s, Tc = 3600 s [82], L = 0.5 MB,

social data: N = 50, mean contact rate µβ = 3.5 contacts/pair/day [24] and σ = µβ ,

Pareto-distributed contact duration E[δ]= 164 s, Tc = 900 s, L = 4 KB.

5.3.1. Validation of the model

In order to validate the analysis conducted in Section 5.1, we evaluate the total load incurred

in the cellular network (D) as a function of the strategy followed (which is given by the number

of copies of the data chunk delivered at the beginning of a round, d). The results obtained are

depicted in Fig. 5.5 for a scenario withN = 200, σ = 0.04 contacts/pair/day, and different values

of Tc (in seconds) and µβ (in contacts/pair/day). We observe that the analytical results follow

very closely those resulting from simulations, which validates the accuracy of our analysis. We

further observe that, as pointed out in Section 5.2, performance degrades for smaller and larger

values of d, since when either too few or too many nodes have the content, information spreads

11Under these conditions, the tail of the aggregate inter-contact times decays as a power law with exponential cut-
off [74], as observed in traces, in [53].















Chapter 6

Guaranteeing D2D traffic offloading
limiting Intercell Interference

Content dissemination techniques through D2D opportunistic communication for delay guar-

anteed networks have been extensively studied in the previous chapter. While the majority of

those works focuses on the epidemic diffusion, none of them proposes a practical solution for

multi-cellular networks. In particular, in this chapter we focus on how inter-cell interference

coordination affects the overall content dissemination process. When scheduling the transmis-

sion of content updates at base stations, our main objective is to minimize the time required for

these transmissions, since (i) the faster contents are injected, the sooner they can be disseminated,

and thus D2D-based offloading performance is optimized; and (ii) the less time required for the

transmissions, the more resources are freed for other applications. We address this problem by

means of the ABSF paradigm. Therefore, we prove that the problem of finding an ABSF-based

scheduling algorithm that minimises the time required for content update transmissions while

satisfying the content deadlines is NP-Complete and NP-Hard to approximate. Thus, we design

BSB, an algorithm that runs in polynomial time, achieves sub-optimal network performance and

outperforms the state of the art mechanisms proposed in the literature.

The main aspect of this chapter can be summarized as follows:

we formulate a base station scheduling problem and we show that it is NP-Complete;

we design and validate a practical algorithm for the computation of ABSF patterns;

we show that channel-opportunistic D2D schemes are seriously impaired by non-ideal

content injection.

6.1. D2D-assisted content update distribution

In this section, we give a complete overview about the framework of our system and its build-

ing blocks. In addition, we provide a real scenario where our solution handily applies.

95
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Intra-BS optimization: based on the user mobility parameters and the feedbacks received, a

controller needs to select the optimal set of users in a cell that receive the content only from the

base station, to ensure that (i) the content reaches as much as possible subscribers in the cell by

the deadline; and (ii) resources required from the base stations are minimised.

Inter-BS optimization: in addition to determining the transmissions that need to be performed

by each base station, we also need to schedule each of these transmissions among base stations,

taking into account the interference between base stations in such a way that the total time required

by these transmissions is minimised.

In the following, we present the mechanism that we use for the intra-BS part, and the assump-

tions for the inter-BS optimization problem that we tackle in this chapter.

6.1.2. Intra-BS content distribution

The content distribution process for a particular content may be divided into two phases:

(i) content injection and (ii) content dissemination, hereafter described in details. Users placed

under the coverage of base station b get interested in content c randomly, according to a normal

distribution with average µ. Content validity period lasts Tc seconds and users may get interested

only in a valid content c. We assume that the maximum number of interested users is equal to N ,

corresponding to the popularity index of the content c [25]. For the sake of simplicity, we suppose

the same popularity index N for every content provided in the network.1

In the first phase, namely content injection, base stations transmit unicastly contents to each

interested user asking for those updates. Specifically, the BS controller properly decides nbc the

maximum number of unicast transmissions per content c BS b can perform. Then, the phase ends

when exactly nbc interested users, called injected users, have received the content directly from

base station b, e.g., upon nbc users get interested in the content. In the second phase, namely con-

tent dissemination, the content is spread opportunistically into the network via D2D technologies

to those users which could not download the content directly from the base station. Although the

two phases may overlap, this does not affect our analysis as the total time spent to deliver content

replica to interested users does not change, as already proven in [4].

The number nbc of injected users plays a key-role in driving the system to an efficient working

point. On the one hand, the more the number of injected users, the more the time required by

the base station to perform the content update transmission. On the other hand, if the number of

injected users nbc has not been designed properly, most of the users asking for the content update

will not be reached within the content lifetime (Tc).

Therefore, we introduce a bi-dimensional Markov chain, where each state Sj(t) is the total

number of content replica distributed in the network at time t given j users interested in the

content, regardless of the specific users carrying those replica. Assuming a homogeneous mobility

model where users get in touch each other following an average inter-contact rate λ and getting

1Nonetheless, we can readily derive equivalent results for heterogeneous content population indexes Nc depending
on the content c.
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interested in a content according to an average rate µ, we obtain the average number of users with

content at the end of the content lifetime Tc as follows

E[Sj(Tc)] =
N∑
x=1

x px(Tc − din). (6.1)

where px(t) is the probability to stay in the state x at time t. For further details we refer the reader

to Appendix.

Eq. (6.1) provides a function returning the average number of users with the content after the

content lifetime expiration (Tc), based on the number of injected nodes (nbc) and the number of

interested users in that content j. Based on such information, BS b decides the number of injected

nodes nbc per content c by solving the following optimization problem:

Problem Offloading:

maximise
|C|∑
c=1

log(ηc),

subject to
|C|∑
c=1

nbc Lc
Tc
≤ αCb;

nbc ∈ {1...N};

where the content throughput is defined as ηc = Lc
E[Sj(Tc)]

Tc
, while αCb identifies the available

resources at the base station side. In other words, base station b finds the optimal nbc per content

to ensure that the base station capacity constraint is fulfilled. We will further explore how to free

resources for other applications.

The optimization of Problem Offloading can be easily linearised and solved by means of

a commercial solver. Moreover, due to scalability issue, very large instances of the problem can

be approached through a simple heuristic, providing an affordable trade-off between accuracy

and complexity. Specifically, to linearize Problem Offloading we sample the logarithmic

function into a limited number of values, as only a discrete set of nbc values are considered for

the optimization. We obtain a matrix ζ = {ζi,n} of [|C| × |N|] size, where ζc,n = log(ηc), with

n = nbc. Therefore, assuming the same content length L and lifetime T , ∀c ∈ C, we can rewrite

Problem Offloading as follows:

Problem Offloading-Lin:

maximise
|C|∑
c=1

|N|∑
n=1

sc,n ζc,n,

subject to
|C|∑
c=1

|N|∑
n=1

sc,n · n ≤ K;

|N|∑
n=1

sc,n ≤ 1,∀c ∈ C;

sc,n ∈ {0, 1};
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where K = α Cb
T
L , while sc,n is a binary value indicating with 1 whether n nodes are initially

injected with content c, or 0 otherwise. In other words, we aim at choosing the optimal set of in-

jected nodes values nbc (selecting one value per content), guaranteeing that the capacity constraint

of the base station is efficiently fulfilled. When the number of available contents |C| or the content

popularity index |N| tend to huge numbers, solving this problem may take very long time. Given

that Problem Offloading-Lin can be easily mapped into a generalized assignment problem,

as heuristic to solve the problem we can use an extended version of the Hungarian Algorithm [58]

to provide a near-optimal solution in reasonable time.

It is worth noting that the content distribution process can be readily extended to other sce-

narios, such as synchronous content update subscriptions [5], where user interest rate µ tends to

infinite. In such scenarios users covered by base station b subscribe a content update c arrang-

ing distinct content interesting groups per cell (multicast groups), as depicted in Fig. 6.1(b). A

new content update will be issued every Tc seconds to any multicast group by any base station

in the network. Each user subscribes only one single content update and the multicast groups

are disjoint. Given that the multicast operation requires a transmission at the least user rate of

all multicast receivers in the group [91], for a given multicast rate only a part of the users in the

group will be able to decode the message (i.e., those whose channel condition enables them to

receive at the chosen rate). Therefore, during the content injection phase, upon a new content

update is available, the BS controller decides the rate rbc at which multicast transmissions must

be performed. The content dissemination phase starts spreading the content (or part of it) op-

portunistically in the group to reach those users which have not received the content during the

injection phase. Also in this case, the choice of the multicast rate for the initial injection involves

the following trade-off: (i) if the selected multicast rate is too low, the number of bits injected will

be small and thus efficiency will be low, (ii) however, if the selected rate is too high, the initial in-

jection will only involve few users and hence content is unlikely to spread to all subscribed users

by the content lifetime Tc. Therefore, BS b needs to optimally solve Problem Offloading,

where the number of injected nodes nbc is computed as a function of rate rbc, as studied in [20].

6.1.3. Inter-BS scheduling

Following the previous explanations, during the content injection phase, the content update

reaches only nbc users. Moreover, such injections cause interference due to the presence of multi-

ple base stations. To address this problem, we adopt the ABSF paradigm, which has been shown

to provide improved performance in presence of inter-cell interference [2, 3, 27].

On average, if C is the population of active contents, a single base station b needs to perform

db content transmissions, where db =
∑

c∈C n
b
c. Content requests arrive asynchronously, even

though contents are made available at regular intervals Tc, whose duration represents the content’s

lifetime. In addition, a base station serves all its users with unicast transmissions, applying a

scheduler with equal rate, i.e., all users with pending transmissions are scheduled and receive the

same data rate on a per-TTI basis. The achievable throughput tu of each user u in subframe i
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depends on its signal-to-noise-ratio:

tu(i) = BT log2

(
1 +

Sbu(i)

N0 +
∑

j 6=b I
j
u(i)xij

)
(6.2)

where BT is the used bandwidth, Sbu is the useful signal received by user u from the serving base

station b, N0 is the background noise, Iju is the interference created by the base station j toward

user u, and xij is a binary value which indicates whether the base station j is scheduled in the

subframe i. We define wu, u ∈ 1, .., db, as the set of positive coefficients representing the fraction

of resources allocated to active user u in a subframe, such that equal rates are achieved:

wp tp = wq tq, ∀p, q ∈ Ub, (6.3)

subject to:
db∑
p=1

wp = 1. (6.4)

Therefore, the coefficients wu can be computed (in each subframe i) as follows:

wu(i) =

1
tu(i)∑db
k=1

δki
tk(i)

, (6.5)

where δki is 1 if transmission k is ongoing in subframe i, and it is 0 otherwise. With the above,

the throughput of user u is wu(i)·tu(i) in subframe i.

6.2. Base station transmission time minimization

Here, we formulate the inter-BS scheduling introduced before as an optimization problem. We

mathematically prove that such problem is NP-Complete and NP-hard to approximate. Therefore,

we provide a sufficient condition which must be fulfilled to solve the problem. Based on such

condition, we propose an efficient algorithm to automatically generate ABSF patterns, which are

promptly issued to every base station in the network. In addition, we also analytically provide

a lower bound for the problem solution, which will be extensively analyzed in our performance

evaluation. Lastly, we show the maximum number of contents the system is able to work off in a

given content deadline.

6.2.1. Problem formulation

The efficiency of the content dissemination depends on the speed of the content injection

process, and therefore our goal when designing the inter-BS scheduling is to minimise the time

needed to inject the content, as expressed in the following optimization problem:
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Problem BS-Time-Scheduling

Input:

A collection of N base stations B = {1, 2, · · · , N}, and distinct transmission entitiesa O =

{ob1, ob2, · · · , obdb} associated with base station b ∈ B. Positive constants N0, τ , Θ, Lc, BT .

Integer Z > 0. For a generic entity o associated with base station b: Sbo(i), wo(i) and Ijo(i)

for every j ∈ B \ {b} and every i = 1, 2, · · · , Z.

Question: Is there a scheduling of the base stations in at most Z rounds, such that

Ψb
o(Z)=τBT

Z∑
i=1

xibwo(i)log2

(
1+

Sbo(i)

N0+
∑

j 6=b I
j
o(i)xij

)
≥Lc,

∀o ∈ {1, .., db}, b ∈ {1, .., N}, and

N∑
b=1

T bTOT = τ

N∑
b=1

Z∑
i=1

xib ≤ Θ ?

aThroughout all the chapter, we refer with term transmission entity for both unicast user (u) and multicast
group (a), as the same problem formulation can be easily applied to both unicast and multicast transmission
types.

In Problem BS-Time-Scheduling, each term T bTOT = τ
∑Z

i=0 xib = τZb represents the

activity time of base station b (τ is the subframe duration). The term wo(i) is the generic fraction

of resources reserved to a transmission entity o in subframe i. Z is the number of subframes that

correspond exactly to the content lifetime interval Tc, while Θ is the upper bound for the aggre-

gate transmission time of the system. Transmission rates are computed using Shannon capacity

formula.

6.2.2. Complexity of Problem BS-Time-Scheduling

Classical wireless scheduling problems, e.g., scheduling and channel assignment, have been

shown to be NP-Hard [22, 37]. However, we are the first to address the complexity of base sta-

tion resource allocation with deadlines and multicast transmissions using variable rates. Specifi-

cally, we prove through the following theorems, that problem BS-Time-Scheduling is NP-

Complete when Z≥3 for bounded interferences, and for Z=2 for unbounded interferences. (The

formal proofs of the theorems are provided in the Appendix.)

Theorem 6.2.1. Problem BS-Time-Scheduling is NP-Complete, for any Z ≥ 3, even when

all interferences are ∈ {0, 1}.

Theorem 6.2.2. Problem BS-Time-Scheduling is NP-Complete for Z = 2.

These NP-Completeness results apply to very special instances of the problem (db = 1 for

every base station b). When considering the minimization version of the problem (to determine
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a scheduling with smallest number of rounds), we use [103], which shows that for all ε > 0,

approximating the chromatic number of a given graph G = (V,E), |V |=n within n1−ε, is NP-

hard. Since coloring G with n colors is trivial, this means that this result is rather strong. Using it

we show that Problem BS-Time-Scheduling is rather difficult to approximate, as follows:

Theorem 6.2.3. For all ε > 0 , approximating within n1−ε the minimal number of rounds required

to solve Problem BS-Time-Scheduling with n base stations is NP-hard.

6.2.3. Sufficient condition for Problem BS-Time-Scheduling

Since, as we have shown above, Problem BS-Time-Scheduling is NP-complete and NP-

hard to approximate, in the following we provide a sufficient condition that guarantees that the

entire content is delivered before its lifetime, i.e., in Z subframes. Specifically, we can derive the

following inequality from Eq. (6.5), which holds for any subframe i:

wu(i)tu(i) =
1∑db

k=1
δki
tk(i)

≥ tmin(i)

db
; (6.6)

where tmin(i) = mini{tu(i)}. If we now sum over the subframes in which the user is served

within the time horizon Z, we obtain a bound for the volume of traffic Vu received by a user:

Vu = τ
Z∑
i=1

xibwu(i)tu(i) ≥ τ
Z∑
i=1

xib
tmin(i)

db
≥ τ Zb

db
t∗min, (6.7)

where t∗min = mini{tmin(i)} = minu,i{tu(i)} is the minimum instantaneous rate allotted to any

user, and Zb =
∑Z

i=1 xib is the number of subframes in which base station b is active. Since it

is sufficient to guarantee that Vu ≥ Lc to guarantee that user u received the content on time, we

obtain the following sufficient condition for the doability of the scheduling:

t∗min ≥
Lcdb
Zbτ

. (6.8)

In conclusion, inverting the Shannon formula from the minimum value for t∗min given in

Eq. (6.8), we deduce that it is sufficient to schedule a base station when all its scheduled trans-

mission entities have at least the following SINR:

SINR ≥ 2
dbLc
τZbBT − 1

.
= TH. (6.9)

Note that the above equation defines an SINR threshold TH that depends, in addition to some

constants, on the number of subframes Zb in which base station b is allowed to transmit. Next,

we derive a lower bound on Zb for which the inter-BS scheduling guarantees that db content

injections are doable within the deadline.
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6.2.4. Lower bound for Zb

The throughput of a base station b can be bounded by the following expression:

dbLc

τ
∑db

o=1

∑Z
i=1wo(i)xib

=
dbLc
τZb

≤ RMAX, (6.10)

where RMAX is the maximum transmission rate permitted in the network (e.g., RMAX = 93.24

Mbps in an FDD LTE-A network using 20 MHz bandwidth). Therefore, there is a lower bound

for Zb below which the content injection of db contents cannot be guaranteed:

Zb ≥
dbLc
τRMAX

, ∀b ∈ B. (6.11)

Since we aim to minimise the total transmission time, which is given by Θ = τ
∑

b∈B Zb,

it is reasonable to assume that an ICIC algorithm that approximates the solution of Problem

BS-Time-Scheduling will be able to complete the injection of db contents at base station

b in a number of subframes that is close to the bound given above, i.e., Zb = dbLc
τRMAX

. With this

approximation, we can express the threshold TH in (6.9) as a function that does not depend on Zb.

The above provides a sufficient condition to guarantee that db contents are delivered within

their lifetime; in particular, we have found a threshold TH for the SINR of users to be scheduled.

In Section 6.3, we leverage this result for the design of our ICIC algorithm.

6.2.5. Maximum number of contents

Before describing our heuristic for Problem BS-Time-Scheduling in Section 6.3, we

compute the maximum number of content updates that base stations can handle. This result will

be useful in Section 6.4 to evaluate eICIC schemes. To achieve our goal, we assume that all the

base stations have, at least on average, the same number of contents to inject in interval Tc.

If all base stations have the same number of contents to inject, we can derive an upper bound

for Zb. The total number of subframes used by all base stations cannot exceed
∑

b∈B Zb = NZb.

If Z is the total number of subframes in which the content is valid, we have that N Zb ≤ Z and

thus, we can derive an upper bound as Zb ≤ Z
N , ∀b ∈ B, which, jointly with (6.11), yields the

following range for Zb:
dbLc
τRMAX

≤ Zb ≤
Z

N
, ∀b ∈ B. (6.12)

From the analysis above, we can then compute the maximum number of injectable contents

that can be handled by a base station while guaranteeing that all contents are served within the

deadline Tc = τZ. In particular, from (6.12), it is clear that the Zb range is not empty under the

following condition, which gives an upper bound for db:

db ≤ d∗b =
τ Z RMAX

LcN
. (6.13)
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6.3. Base Station Blanking Algorithm

In this section, we propose BSB (Base Stations Blanking), an algorithm to approximate the

optimal solution of Problem BS-Time-Scheduling formulated in Section 6.2. BSB relies on

the sufficient condition given by (6.9). Following this condition, BSB aims to find an optimal

ABSF pattern, i.e., an allocation of base stations to subframes, in which the interfere is limited

and guarantees a minimum SINR to any mobile device that might be scheduled. Note that our

algorithm is meant to allocate ABSF patterns, and does not impose any user scheduling policy.

A schematic view of BSB is reported here. BSB runs in a LTE-A network, and requires the

presence of a central controller, namely the Base Stations Coordinator (BSC), which could be

run on the Mobility Management EntireE) [90]. Our algorithm requires cooperation between the

BSC and base stations, which can be implemented over the standard X2 interface [88]. The main

role of BSC is to collect SINR statistics from the base stations, run BSB, and announce ABSF

patterns to the base stations, as detailed in what follows:

BSB Algorithm

The BSC collects user statistics, puts all active base stations in a candidate set, and

checks whether the resulting SINR for each user is above the SINR threshold TH.

If at least one user does not reach the SINR threshold:

compute the most interfering base station b∗

remove b∗ from the candidate set,

check the SINR of all users of the remaining base stations.

Repeat the check and remove base stations from the candidate set until all remaining

users meet the SINR constraint. The resulting set of base stations is scheduled in the

first subframe and inserted in a priority-1 list. In general, at each subframe, scheduled

base stations are added to the priority-k list, where k is the current number of subframes

enabled for a base station to transmit. All other base stations go to a priority-0 list.

For each successive subframe, populate the candidate set with the priority-0 list and

repeat the operation described for the first subframe until the SINR constraint is met.

Then, for k = 1, 2, . . . , in increasing order:

add to the candidate set all base stations in the priority-k list,

within priority-k list, remove base stations causing SINR below TH.

The algorithm stops when the priority list is empty.

The BSC issues the resulting ABSF pattern to each base station via the X2 interface.
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In the above description, the interference caused by a base station is computed as the aggregate

sum of interferences caused towards all users of all other bees station in the candidate set. The

threshold TH is computed based on db and the lowest possible value for Zb, given by (6.11). The

scheduling pattern computed with BSB can range between 1 and N subframes. However, since

the standard specifies that ABSF patterns should be issued every 40 subframes, the BSB pattern

is repeated in order to cover a multiple of 40 subframes. The obtained sequence of scheduling

patterns represents the ABSF pattern according to [88].

For each subframe, the algorithm starts by selecting the full set of base stations that have not

been scheduled in previously allotted subframes. The rationale behind this choice is twofold: (i)

the aggregate interference caused by a base station grows with the size of the candidate set, and

thus the importance of the interference generated by a base station is more properly quantified by

the full candidate set; (ii) existing ICIC algorithms suggest to mitigate interference by preventing

the transmission of a few base stations, beginning with the most interfering one [2, 71, 81]. BSB

complexity is dominated by the number of base stations, as stated in Theorem 6.3.1.

Theorem 6.3.1. The complexity of BSB is O(U ·N3), where U = max
b∈B
{Ub}, and N = |B|.

Sketch of Proof: The BSB algorithm runs in at most N rounds, corresponding to N allocated

subframes: in the worst case, exactly one base station is allocated in exactly one subframe. At

subframe q = 1, 2, ..., N , there are at most q priority lists. In the worst case, the priority-0 list

contains N − q + 1 base stations and each other priority list contains 1 base station. Evaluating

the SINR for all users of base stations in priority-0 requires checking all reconfigurations with

N − q + 1, N − q, ..., 1 base stations in the candidate set. Checking the possibility to add to the

resulting scheduled set any base station in the other priority lists is at most involving N − q + 2

base stations for considering priority-1 list, N − q + 3 for priority-2 and so on until N base

stations for the last priority list. Overall, the cost per subframe is O(U · N2). Therefore, in the

worst case, in which N subframes are needed, the complexity is O(U ·N3).

6.4. Performance Evaluation

Here we study the impact of BSB on the performance of D2D-assisted content update distribu-

tion. We benchmark the performance achieved with BSB against the one achieved under different

frequency reuse schemes (in particular frequency reuse 1, 3, and 5), and against a state-of-the-art

dynamic resource allocation scheme proposed for ICIC in LTE-like networks [81]. We refer to

the latter as ECE. Differently from BSB, ECE assigns resource blocks rather than subframes, thus

implementing a scheme for soft fractional frequency reuse [39]. Summarizing, we compare five

inter-BS resource allocation mechanisms, as reported in Table 6.1.

As concerns the system parameters adopted in our performance evaluation, we use FDD LTE-

A frame specifications, with 20 MHz bandwidth distributed over 100 frequency chunks, resulting

in 100 resource blocks per time slot, i.e., 200 resource blocks per LTE-A subframe [89]. Trans-

mission power is fixed to 40 W, antenna gain and path loss are computed according to [59], and the
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Table 6.1: Resource allocation mechanisms

BSB ABSF patterns are computed according to BSB
FR1 No interference coordination is enforced
FR3 Base stations are allocated different frequencies, according to a frequency reuse

3 scheme, and each base station uses 1/3 of the band available
FR5 Base stations are allocated different frequencies, according to a frequency reuse

5 scheme, and each base station uses 1/5 of the band available
ECE LTE-A resource blocks are allocated to base stations according to [81].

spectral noise density is 3.98 · 10−21 W/Hz for all nodes [92]. Modulations and coding schemes

are selected according to the SINR thresholds reported in [89], while the ratio between received

power (or interfering signal) and noise, for each user in the network, is computed as for Rayleigh

fading, with average computed from transmission power and path loss.

D2D communications occur outband (i.e., on a channel not interfering with any of the base

stations), and mobile devices exchange data when their distance is 30 m or less. Content updates

occur synchronously for any content c, every Tc = 100 s. Each mobile device is interested in

at most one content (whose size is 8 Mbits). Users get interested in a content at different points

in time, according to a truncated normal distribution function having µ as mean value for the

interesting rate. For the sake of completeness, we have also conducted simulations to evaluate

the case with an infinitive µ corresponding to a content subscription case where base stations

inject beforehand the content updates through multicast transmissions. Background traffic is also

generated in some of our experiments, consisting in uniformly random file requests, with file size

8 Mbits. Background requests are processes as content updates for single users.

As concerns the mobility of users, we use a Random Waypoint mobility model over a regular

grid [100]. Mobile users are initially assigned uniformly over the area, then they choose uniformly

random distributed destinations (waypoints Pu), and speeds (Vn) uniformly distributed in range

[1, 2] m/s, independently of past and present speed values. Then, the mobile user travels toward

the newly chosen destination at constant speed Vn. Upon arrival to destination Pu, the mobile

user randomly chooses another destination and speed. Note that, at the considered low speed, the

resulting contact time is long (several seconds). Therefore, we assume that complete file transfers

are possible during the contact time. This results in a particular contact rate λ.

All experiments refers to a dense LTE-A deployment, with 5 overlapping cells, and several

hundreds of mobile users. Each experiment includes 50 content updates for each content, with

period 100 s (i.e., the experiment simulates 5 000 s), and is repeated 20 times. Average and 95%

confidence intervals are reported in the figures. When using BSB, a specific ABSF pattern is

issued every 40 subframes, which perfectly complies with 3GPP standard specifications [88].

6.4.1. Injection Phase: empirical validation

The injection phase plays a key-role in driving the content dissemination process to extremely

efficient conditions. A wrong decision on the number of injected contents brings the system to

a faulty performance efficiency. Therefore, we show how that decision impacts on the system
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rates µ (expressed in terms of interested users per second), as function of meeting rate λ = 2000

pair/contact/seconds2. Interestingly, we show the amount of system throughput due to the base

station transmissions (both for content injection and for other kinds of traffic) while, on top of the

graph, the throughput due to the dissemination phase. We want to point out two main aspects.

On the one hand, the faster users get interested in the content, the lower the base station load, the

more free time-resources are assigned to other kinds of traffic, the higher the D2D communication

throughput. The rationale behind is pretty intuitive. When users express their interest for a content

at the beginning of the period TC , base stations can promptly inject them the content update,

leaving more time to the users to spread the content. In this way, much more contacts occur in

the network, much more data is exchanged through D2D communication (as also confirmed in

Appendix). The extreme case is modelled when µ = ∞, i.e., when all users get interested at the

beginning of each period TC . On the other hand, BSB shows an incremental gain w.r.t. the other

presented approaches. For the first set of interesting rates µ, FR5 and FR1 are unable to complete

the injection phase, as several transmissions are required (e.g., 97 injections for µ = λ/100 and

65 injections for µ = λ/50) leaving no room for other traffic. When the required injections

decrease to 26 for µ = λ/10, all scheduling schemes exhibit the same base station throughput

except BSB due to the ability of scheduling other traffic. This confirms that an optimal offloading

base stations procedure requires a very fast injection phase, which must be properly designed

through a convenient scheduling scheme.

6.4.4. Impact of background traffic

To show the efficacy of BSB in more generic traffic scenarios, in addition to periodic content

updates, we next simulate background file requests uniformly distributed over time at different

request rates. Note that (6.13) expresses the maximum number of contents that can be distributed

with guaranteed maximum transmission time. That expression can be also interpreted as the

maximum cell load that can be handled by a base station while guaranteeing that content updates

will be delivered within the deadline (with each content unit used for d∗b corresponding to an

offered load Lc/(τZ)). Therefore, we expect that BSB is able to handle a background traffic

equivalent to, at most, (d∗b − db) · Lc/(τZ) bps. With 8-Mbit background files, db = 20, Lc = 8

Mbits for any content c, τZ = 100 s, and 5 base stations, the maximum background traffic is

2.125 requests per second.

In Fig. 6.7, we show the impact of background traffic on the probability to complete the

content update distribution, for various background loads. Similarly to the case in which no

background traffic is injected, BSB outperforms other schemes. Interestingly, BSB is more robust

to background traffic than other schemes, as shown by the fact that content delivery probability

under BSB is barely affected by the background traffic. The performance of BSB starts degrading

only when the offered background exceeds 3 file requests per second, which is well above 2.125

2Please note that if not differently stated, for the sake of simplicity, we assume the same meeting rate λc = λ as
well as the same interesting rate µc = µ, ∀c ∈ C
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Table 6.2: Scenario with 7 base stations, 1000 users and 30 contents to disseminate

ICIC Transmitting Time Throughput Delivery Success
scheme [subframes in Tc] [Mb/s] Probability

FR5 14047 16.90 89.98%
FR3 6024 39.84 87.14%
FR1 11814 20.02 95.50%
ECE 6241 37.87 92.27%
BSB 2912 82.41 97.37%

LTE-A rate (the rate corresponding to perfect channel quality at any time). Moreover, BSB out-

performs all other schemes also in terms of delivered contents. Most importantly, BSB achieves a

97.27% success probability, which means that D2D content dissemination is almost perfect when

combined with BSB.

6.5. Conclusions

In this chapter, we have analyzed the content update dissemination process in cellular net-

works by shedding the light on the potential role of D2D communications while highlighting the

base station interference coordination problem. Specifically, we focused on the injection phase,

that is a key component of the dissemination process, yet it has been so far neglected. We have

cast such a content injection problem into an optimization problem aiming at finding the optimal

number of transmissions to maximise the content replica delivery. Notably, we have proved that

the injection phase critically affects the opportunistic D2D content exchange. Based on this in-

sight, another optimization problem has been formulated to minimize the time required to inject

contents, which has been proven to be NP-Complete and NP-Hard to approximate. Then, we have

proposed BSB, an eICIC algorithm for LTE-A networks that efficiently approximates the solution

of the introduced problem.

The results show that BSB substantially outperforms classical intercell interference ap-

proaches and achieves performance figures better than what achievable with (soft fractional)

frequency reuse schemes. Moreover, BSB boosts the D2D opportunistic communication per-

formance by making the injection phase quasi-ideal, i.e., by minimizing the time needed to inject

content replicas in the network.





Chapter 7

Summary & Conclusions

We have carried out a detailed analysis of the current mobile networking solutions, shed-

ding the light on the main reasons because conventional cellular networks are not suitable for

the coming future. We have analyzed the main problems from a mathematical viewpoint and we

have proposed a set of solutions to provide high level of spectral efficiency while guaranteeing

reasonable user fairness, as required by the future 5G stringent requirements. Our proposals are

SDN-compliant and we have cast them into a novel framework, recently proposed in CROWD

project, where CROWD Local Controllers (CLCs) decide on scheduling policies. Each optimiza-

tion mechanism is developed as a SDN application by targeting two main topics: (i) mitigating

the inter-cell interference problem when multiple base station are simultaneously active and (ii)

supporting downlink cellular traffic offloading by exploiting the device-to-device technologies.

In Chapter 3, we have proposed a novel eICIC scheme which leverages the full knowledge of a

central controller (CLC) in charge of gathering all user channel information. Based on that infor-

mation, the algorithm takes time-scheduling decisions by means of the Almost Blank SubFrame

(ABSF) technique. Once the ABSF patterns are properly issued, each base station schedules its

own users in the next period by following the CLC instructions. In Chapter 4, we have moved

towards a distributed approach due to an intractable complexity of a very-dense scenario. Base

stations automatically exchange each other time scheduling information, e.g., the ABSF patterns,

to reach a steady-state which has been proved to be near-optimal. This improves the network

performance by offering a good level of fairness at both base station and user sides. In Chap-

ter 5, we have focused on the content update distribution, where an adaptive algorithm has been

presented to perform optimally the content dissemination phase. The network dynamics force

to design a time-variant algorithm which aims at finding the optimal number of delegate users,

which must disseminate the content information throughout the network. We have proved that

our algorithm, in line with 5G vision, exhibits outstanding results when compared to conven-

tional approaches in terms of offloading percentage, signalling overhead and stability. Finally, in

Chapter 6, we have studied how to further enhance the offloading process by improving the base

station injection phase, where the inter-cell interference problem is dominant. We have proposed
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a smart and low-complexity algorithm which outperforms state-of-the-art solutions by guaran-

teeing minimum transmission delays. This directly benefits the entire offloading process, as the

more the time to spread the content, the more users are reached through the D2D network rather

than cellular network.
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Appendix A

Proofs of Theorems

This appendix provides the proofs of all theorems, propositions and lemmas in this book.

Additionally, it presents in details the stochastic analysis of the content dissemination process

carried out in Chapter 6. For reading convenience each section restates the theorem proven in it.

A.1. Proof of Lemma 4.2.1

Lemma 4.2.1. Given that the players’ strategies belong to whatever strategy profile σ, after a

finite number of single-step best responses (SSBR), all players’ strategies will belong to a satura-

tion strategy profile σ.

Proof : We prove the lemma by contradiction. Let us define two sets of players that represent

the state of the game at a given point before reaching a saturation strategy profile σ. Specifically,

set P includes all players that have penalties, and set Z includes the remaining players, which

suffer zero penalty. Assume now that all players switch to Single-Step Best Response (SSBR) at

a given point in time, and consider the composition of P and Z at that point.

If the lemma were incorrect, the game could evolve from this state and at least one player

could not reach a saturation strategy profile σ. This possibility implies that sets P and Z are

always nonempty at the end of each round of the game. If not, the evolution of the game would

lead to have either all players using all the TTIs (all players being in P would cause a progressive

increment in the use of TTIs until all TTIs are used by all players), or all players suffering no

penalty (all players in Z would reduce the use of TTIs as much as possible, without incurring in

penalties). In both cases, we would have a saturation strategy profile for all players.

Moreover, there must exist a continuous flow of players moving between P and Z while the

game evolves. In fact, should the flow stop after a finite number of moves, all players in P would

increase the number of TTIs used until they reach the maximum (because they have penalties to

pay), and all players in Z would decrease the number of TTIs used without incurring any penalty.

However, by definition, this would be a saturation strategy profile σ.
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Therefore, to admit that SSBR does not lead to a saturation strategy, we have to admit that

players move continuously between P and Z . Moreover, since the two sets have to remain

nonempty at the end of any round of the game, the flows of players from P to Z and vice versa

have to be balanced. With two possible states, this also implies that the probability to be in P is

the same as the probability to be in Z; therefore, the average sojourn times of a player in P and

Z are the same.

In particular, let us consider a player p that keeps moving between P and Z , and let us call

d the average time spent in each of the two states. Let us consider a cycle of player p, from her

passage to P to her return to Z . In the transition Z → P , p will increase the TTI utilization by

1 unit, to try to come back to Z immediately. Then she will spend d − 1 rounds in P , during

which she increments by d − 1 units her TTI utilization. Afterwards, p goes back to Z , which

can occur with an increase of one TTI or with no changes (because of other player’s changes of

strategy). Eventually, player p will spend d− 1 rounds in Z , during which she will decrement the

TTI utilization by at most d − 1 units. The resulting balance is a net increase in the number of

used TTIs. Therefore, all players moving continuously between P and Z should eventually end

up using all the available TTIs and have no way to further change their strategy profiles. Hence,

the flow between P and Z would stop. This would lead again to a saturation strategy profile σ. �

A.2. Proof of Lemma 4.2.2

Lemma 4.2.2. At a certain point in time, given that the strategies played by any player in the

system belong to a saturation strategy profile σ if each player chooses a single-step best response

(SSBR), the game will converge to a Nash equilibrium.

Proof : We can derive from Problem GBR-DISTR the cost function fi related to a player

strategy Si and the strategies taken by the other players (S−i) as follows

fi(Si, S−i) = |Si|+ α ·
∑
u∈Ui

ρu(Si, S−i), ∀Si ∈ Si;

ρu(Si, S−i) = max

Du −
∑

(u,t)∈Si

cu,t(S−i), 0

 , (A.1)

where ρSi,S−i is the penalty that user u has to pay in order to satisfy its user traffic demand Du.

It is clear that each player chooses her single-step best response in order to minimize fi(Si, S−i).

Due to the saturation strategy profile, if player i presents at step k − 1 a zero penalty, all users’

traffic demandsDu, ∀u ∈ Ui, are satisfied with the current player’s strategy S(k−1)
i . Noticing that

the cost function is not decreasing with users’ strategy cardinality, in the case of saturation with

zero penalty, the only relevant term in the cost function is the cardinality of the current strategy

|Si| (i.e., the number of TTIs used for scheduling the users). Hence, at next step k, player i will

choose a strategy S(k)
i such that |S(k)

i |≤|S
(k−1)
i | due to the single-step best response, which leads
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to

f(S
(k)
i , S−i) ≤ f(S

(k−1)
i , S−i), (A.2)

where f(·) is the cost function defined in (A.1). Given that the player change S(k−1)
i will not

increase the inter-cell interference towards the other cells, it may benefit the other players choices.

Hence, the penalty value in the cost function will not ever be increased by the other players, and

the updated strategy profile σ(k) is still a saturation strategy profile at step k. Therefore, we

deduce that the inequality (A.2) will be satisfied for all players’ moves in the system, at any step

k.

Since we assume a non-decreasing cost function, each player will get the minimum of the

cost function in a finite number of steps. Upon all players choose the particular strategy returning

the minimum of the cost function, they have reached a Nash equilibrium. Furthermore, if player

strategies take all available T TTIs with a non-zero penalty, the players have already reached a

Nash equilibrium. Since they cannot further increase the number of involved TTIs, no further

move will improve their cost function. �

A.3. Proof of Theorem 5.1.1

Theorem 5.1.1. According to the HYPE Markov chain for heterogeneous mobility (similar to

Fig. 5.2), the process {M(t), t ≥ 0} is described by the following system of differential equations:
d
dtp

c1
1 (t) = −λ1pc11 (t), i = 1

d
dtp

c1
i (t) = −λipc1i (t) + λi−1p

c1
i−1(t), 1 < i < N

d
dtp

c1
N (t) = λN−1p

c1
N−1(t), i = N

(A.3)

where λi = i(N − i)µβ . (Recall that µβ is the known expectation of the generic probability

distribution F (β) : (0,∞) → [0, 1], from which the inter-contact rates describing our network

are drawn: {βxy} = B.)

Proof : Recall that we denoted by {Ki
1,K

i
2, . . . ,K

i

(Ni )
} the set of

(
N
i

)
states in the Markov

chain corresponding to level i. Also, B = {βxy} is our network. Then, assuming the Markov

chain starts in initial state K1
m for 1 6 m 6 N (i.e., the chunk was initially injected to a node

m), the probability of still being in this state after a small time interval dt is:

P
[
K1
matt+dt|B

]
= P

[
K1
matt|B

]
·

1−
∑
x∈K1

m

y/∈K1
m

βxy dt

 (A.4)

Then, averaging over all states of this dissemination level, the probability of still being at
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dissemination level 1 after a small time interval dt is:

P [1 at t+ dt | B] =
N∑
m=1

P
[
K1
m at t+ dt | B

]
(A.5)

Finally, considering all possible network realizations:

pc11 (t+ dt) = P [1 at t+ dt]

=

∫
B

N∑
m=1

P
[
K1
m at t+ dt | B

]
P [B] dB, (A.6)

where P [B] is given by the generic distribution, F (β) : (0,∞) → [0, 1], which determines the

inter-contact rates of our network. Combining this last equation with Eq. (A.4) and using basic

probability theory, we obtain Eq. (A.7) below:

pc11 (t+ dt)=

∫
B

N∑
m=1

P
[
K1
matt|B

]
1−

∑
x∈K1

m

y/∈K1
m

βxydt

P [B]dB

=

∫
B

N∑
m=1

P
[
K1
m at t | B

]
P [B] dB −

−
∫
B

N∑
m=1

P
[
K1
m at t | B

] ∑
x∈K1

m

y/∈K1
m

βxy dt · P [B] dB

= pc11 (t)−
N∑
m=1

∫
B

∑
x∈K1

m

y/∈K1
m

βxy dt · P
[
B|K1

matt
]
P
[
K1
m at t

]
dB

= pc11 (t)−
N∑
m=1

P
[
K1
m at t

]
E
[
X | K1

m at t
]

dt, (A.7)

where X =
∑

x∈K1
m

y/∈K1
m

βxy (that is a sum of N − 1 terms).

Since our network’s inter-contact rates forming the matrix B are independent and identically

distributed (with generic distribution F (β) : (0,∞) → [0, 1] of mean µβ), the terms of the sum

forming X are distributed according to F (β), regardless of the specific node combination K1
m.

Hence, E
[
X | K1

m at t
]

= E [X] and Eq. (A.7) becomes:

pc11 (t+ dt) = pc11 (t)− E [X] dt ·
N∑
m=1

P
[
K1
m at t

]
(A.8)

= pc11 (t)− (N − 1)µβ dt · pc11 (t). (A.9)
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Thus, we obtain as desired:

d

dt
pc11 (t) = −(N − 1)µβp

c1
1 (t) (A.10)

The remaining two differential equations are obtained by the same process. �

A.4. Proof of Theorem 5.2.1

Theorem 5.2.1. In the optimal strategy, the data chunk is delivered through the cellular network

to d seed nodes at time t = 0, and to the nodes that do not have the content by the deadline

t = Tc.

Proof : The proof goes by contradiction: we first assume that in the optimal strategy the data

chunk is transmitted to some mobile node at time t 6= {0, Tc} and then we find an alternative

strategy that provides a better performance.

If the chunk is transmitted to some mobile node at t 6= {0, Tc}, this means that C 6=
{1, . . . , d} and hence there exists some missing value smaller than cd in C. Indeed, if C =

{1, . . . , d}, all the first d states are instantaneous states and the data chunk is transmitted to d

nodes at the beginning of the round.

Let us denote the largest value in C (cd) by k and the largest value that is missing by k − l.
Let Dk further denote the value of D for the optimal configuration Ck = {c1, . . . , cd} (where

cd = k), Dk−l the value of D for the configuration Ck−l = {c1, . . . , cd−1, k − l} and Dk+1 the

value of D for the configuration Ck+1 = {c1, . . . , cd−1, k + 1}.1 In the following, we show that

either Dk−l or Dk+1, or both, are smaller than Dk, which contradicts the initial assumption that

the configuration {c1, . . . , cd} is optimal.

If we compare the state probabilities for the configurations Ck and Ck+1, we have that
PCki (s) = P

Ck+1

i (s), i < k

PCki (s) =
λk+1(s+ λk)

λk(s+ λk+1)
P
Ck+1

i (s), i > k + 1.
(A.11)

From the above, we have that the following holds for i > k + 1,

PCki (s)− PCk+1

i (s) =

(
λk+1

s+ λk+1
− λk
s+ λk

) ∏
j∈SCki−1\k

λj
s+ λj

=
λk+1 − λk
λk+1λk

sP
Cd−1

i (s), (A.12)

where SCki−1 = {1, 2, . . . , i − 1} \ ({1, 2, . . . , i − 1} ∩ {c1, . . . , cd}) and PCd−1

i (s) is state i’s

1Without loss of generality we assume that cd 6= N , as it can be easily shown that a configuration with cd = N is
not optimal.
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probability for the configuration Cd−1 = {c1, . . . , cd−1}.

By doing the inverse Laplace transform of the above, we have that

pCki (t)−pCk+1

i (t)=
λk+1 − λk
λkλk+1

dP
Cd−1

i (t)

dt

=
λk+1−λk
λk λk+1

(
−λiP

Cd−1

i (t)+λi−1P
Cd−1

i−1 (t)
)
. (A.13)

Furthermore, we also have

PCkk+1(s)− P
Ck+1

k (s) =
λk − λk+1

λk
P
Cd−1

k+1 (s), (A.14)

and, hence,

pCkk+1(t)− p
Ck+1

k (t) =
λk − λk+1

λk
p
Cd−1

k+1 (t). (A.15)

Combining Eqs. (A.13) and (A.15) with Eq. (5.1), and taking into account that for i > k + 1

it holds that di + d∗i = di+1 + d∗i+1 + 1, we obtain

Dk −Dk+1 = (λk − λk+1)
N−1∑
i=k+1

1

λkλk+1
p
Cd−1

i (Tc). (A.16)

Following a similar approach for the configurations Ck and Ck−l, we obtain

Dk −Dk−l = (λk − λk−l)
N−1∑
i=k+1

1

λkλk−l
p
Cd−1

i (Tc). (A.17)

Since it holds that either λk−λk−l or λk−λk+1 is greater than zero, we have that at least one

of the two alternative configurations (Ck+1 or Ck−l) provides a D value smaller than Ck. This

contradicts the assumption that in the optimal strategy the data chunk is transmitted to some node

at time t 6= {0, Tc}, which proves the theorem. �

A.5. Proof of Proposition 5.2.1

Proposition 5.2.1. Let us define Gd as the gain resulting from sending the (d + 1)th chunk of

chunk copy at the beginning of the period (i.e., Gd = Dd − Dd+1, where Dd+1 and Dd are the

values of D when we deliver d+ 1 and d copies at the beginning, respectively). Then, Gd can be

computed from the following equation:

Gd =

N−1∑
j=d

λj
λd
pdj (Tc)− 1. (A.18)
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Proof : Gd can be expressed as:

Gd =
N−1∑
j=d

(N − j)
(
pdj (Tc)− pd+1

j (Tc)
)
− 1. (A.19)

The term pdj (Tc)− p
d+1
j (Tc) is calculated as follows. From Eqs. (5.5), we have

P dj (s)− P d+1
j (s) = −

sP dj (s)

λd
. (A.20)

Making the inverse Laplace transform of the above for j > d yields

pdj (Tc)− pd+1
j (Tc) = − 1

λd

dpdj (t)

dt

∣∣∣∣
Tc

= (A.21)

=
1

λd
(λjp

d
j (Tc)− λj−1pdj−1(Tc)).

Note that the above equation also holds for j = d since in this case pdj−1(t) = 0 and pd+1
j (t) =

0. Combining it with Eq. (A.19) leads to

Gd =

N−1∑
j=d

λj
λd
pdj (Tc)− 1. (A.22)

�

A.6. Proof of Theorem 5.2.2

Theorem 5.2.2. The optimal value of d is the one that satisfies Gd = 0.

Proof : As long as Gd > 0, we benefit from increasing d, since by sending one additional

chunk at the beginning, we save more than one chunk at the end. Conversely, if Gd < 0 we do

not benefit. It can be seen that G1 > 0 and GN < 0. Furthermore, it can also be seen that Gd
strictly decreases with d:

Gd+1 −Gd =

N−1∑
j=d

λj
λd+1

pd+1
j (Tc)−

λj
λd
pdj (Tc) (A.23)

=

N−1∑
j=d

pdj (Tc)λj(λj+1 − λj − (λd+1 − λd))
λdλd+1

< 0.

From the above, it follows that the value of d that minimizesD is the one that satisfiesGd = 0,

since up to this value we benefit from increasing d and after this value we stop benefiting, which

proves the theorem. �
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A.7. Proof of Theorem 5.2.3

Theorem 5.2.3. The HYPE control system is stable for Kp = 0.2 and Ki = 0.4/3.4.

Proof : The closed-loop transfer function of our system is

T (z) =
−z(z − 1)HKp − zHKi

z2 + (−HKp − 1)z +H(Kp −Ki)
(A.24)

where

H = −2 (A.25)

A sufficient condition for stability is that the poles of the above polynomial fall within the

unit circle |z| < 1. This can be ensured by choosing coefficients {a1, a2} of the characteristic

polynomial that belong to the stability triangle [10]:
a2 < 1

a1 < a2 + 1

a1 > −1− a2

(A.26)

In the transfer function of Eq. (A.24), the coefficients of the characteristic polynomial are

a1 = −HKp − 1 and a2 = H(Kp −Ki). From Eqs. (5.24) and (A.25), we have HKp = −0.4

and HKi = −0.4/(0.85 · 2), from which a1 = −0.6 and a2 = −0.16. It can be easily seen that

these {a1, a2} values satisfy Eq. (A.26), which proves the theorem. �

A.8. Proof of Theorem 6.2.1

Theorem 6.2.1. Problem BS-Time-Scheduling is NP-Complete, for any Z ≥ 3, even when

all interferences are ∈ {0, 1}.

Proof : It is clear that the problem is in NP. For the NP-Hardness we use a reduction from the

problem GCk of graph k-coloring (see [35]). We are given an instance IGCk = H(V,E) of Prob-

lem GCk, and construct an instance IBS-Time-Scheduling of Problem BS-Time-Scheduling.

Assume V = {1, 2, · · · , n}. The base stations are B = {b1, b2, · · · , bn}, and the users

U = {u1, u2, · · · , un}, where for every t base station bt is serving user ut. In addition,

Z = k, N0 = τ = BT = Lc = 1, Θ = n, and Sbtut(i) = wa(i) = 1 for every

i = 1, 2, · · · , Z, t = 1, 2, · · · , n. Last, for every t = 1, 2, · · · , n, every j 6= t and every

i = 1, 2, · · · , Z, Ibjut(i) = 1 if (i, j) ∈ E and is 0 otherwise.

We have to show that there is a k-coloring of IGCk if and only if for IBS-Time-Scheduling
there is a scheduling of the base stations in at most k rounds, with Ψbt

ut(Z) ≥ 1 = Lc, and∑n
t=1 T

bt
TOT ≤ n.



A.9 Proof of Theorem 6.2.2 127

Given a graph k-coloring of IBS-Time-Scheduling, with colors 1, 2, · · · , k. If a node t is

colored p, then we schedule station bt in round p, for p = 1, 2, · · · , k.

Ψbt
ut(Z) =

∑Z
i=1 xib log2

(
1+ 1

1+
∑
j 6=t I

bj
ut (i)xij

)
for every t. Since all base stations bj scheduled

with bt are such that (j, t) /∈E, and since each base station is scheduled in exactly one round,

therefore Ψbt
ut(3) = log2

(
1+ 1

1

)
= 1.

∑n
t=1 T

bt
TOT = n since each station is scheduled in exactly

one round.

Conversely, assume that for IBS-Time-Scheduling there is a general scheduling of at most k

rounds, such that for each user Ψbt
ut(k) ≥ 1 and

∑n
t=1 T

bt
TOT ≤ n. Ψbt

ut(k) > 0 implies that

each user—and thus each station—is scheduled in at least one round.
∑n

t=1 T
bt
TOT ≤ n implies

that each station—and thus each user—is scheduled in exactly one round. Moreover, if user ui is

scheduled with user uj , then (i, j) /∈ E (otherwise Ψbi
ui(Z) < 1 = Lc). Thereby assigning color

p to nodes associated with the stations in round p = 1, 2, · · · , k, results in a k-coloring of graph

IGCk. �

A.9. Proof of Theorem 6.2.2

Theorem 6.2.2. Problem BS-Time-Scheduling is NP-Complete for Z = 2.

Proof : We use a reduction from a variation of the Partition problem. We term this Problem

MPAR. In the Partition problem we are given integersA = {a1, a2, · · · , an}, such that
∑n

j=1 aj =

2S, and have to determine whether there exist {a′1, a′2, · · · , a′k} ⊆ A such that
∑k

j=1 a
′
j = S

(see [35]). In the modified version MPAR (that can be shown to be NP-Complete) we are given

integers A = {x1, x2, · · · , x2n}, S > 0, S < xi < 2S for all i, such that
∑2n

j=1 xj = 2(n+ 1)S,

and have to determine whether there exist {x′1, x′2, · · · , x′n} ⊆ A such that
∑n

1 x
′
j = F , where

F = (n+ 1)S.

We are given an instance I of MPAR, and construct an instance IBS-Time-Scheduling of

Problem BS-Time-Scheduling as follows. The base stations are B = {b1, b2, · · · , b2n},
and the users U = {1, 2, · · · , 2n}; base station bi is serving user i. Z = 2, N0 = F ,

τ = BT = Lc = 1, Θ = n, and Sbtut(i) = 2F , wa(i) = 1 for i = 1, 2, t = 1, 2, · · · , n.

Last, for every t = 1, 2, · · · , n, every j 6= t and every i = 1, 2: Ibjut(i) = xj + xi
n−1 .

We have to show that there is a solution to I if and only if there is a scheduling for

IBS-Time-Scheduling in at most 2 rounds, such that for each user Ψbt
ut(2) ≥ 1 = Lc, and∑n

t=1T
bt
TOT ≤n.

Assume there is a solution to I . Thus we assume the existence of a {x′1, x′2, · · · , x′n} ⊂ A

such that
∑n

1 x
′
j = F . Schedule the base stations bx′1 , bx′2 , · · · , bx′n in the first round and the other

n base stations in the second round. Clearly
∑n

t=1 T
bt
TOT ≤ n.

Every user t is thus scheduled in exactly one round, and thus

Ψbt
ut(2) = log2

1 + 2F

F+
∑{

x′j+
x′
i

n−1

∣∣∣∣j=1,..,n,j 6=i
}
 = log2

(
1 + 2F

F+
∑n

1 x
′
j

)
=
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log2

(
1 + 2F

F+F

)
= 1.

Conversely, assume a solution to IBS-Time-Scheduling. Since each interference is positive,

and since
∑n

t=1 T
bt
TOT ≤ n, it follows that each station is scheduled in exactly one round.

Assume the base stations at the first round are b1, b2, · · · , bk, and in the second round are

bk+1, · · · , b2n. If k 6= n then one of these rounds has more than n base stations. Assume, with

no loss of generality, that k > n. This means that
∑{

xj + xi
n−1

∣∣∣ j = 1, 2, · · · , k, j 6= i
}
>

nS+ nxi
n−1 > F , for every i = 1, 2, · · · , k, thus Ψbi

ui(2) < 1, a contradiction. Therefore k =

n. The interference of each of the users in the first (second) round is log2

(
1 + 2F

F+
∑n
i=1 xi

)
(log2

(
1 + 2F

F+
∑2n
i=n+1 xi

)
). So,

∑n
i=1 xi=

∑2n
i=n+1 xi=F , and all interferences are 1. �

A.10. Proof of Theorem 6.2.3

Theorem 6.2.3. For all ε > 0 , approximating within n1−ε the minimal number of rounds required

to solve Problem BS-Time-Scheduling with n base stations is NP-hard.

Proof : Following the same reduction from GCk, as done in the proof of Theorem 6.2.1,

it is clear that the instance of BS-Time-Scheduling can be scheduled in k rounds if and

only if the given graph can be colored with k colors. Therefore the existence of an algorithm

with approximation ratio n(1−ε) for BS-Time-Scheduling will imply the existence of an

algorithm with the same approximation ratio for GCk. �

A.11. Stochastic analysis of the Content Dissemination process

The content dissemination process is described with the bi-dimensional Markov chain, as

depicted in Fig A.1. We define Sj(t) as the total number of content replica distributed in the

network at time t given j users interested in the content, regardless of the specific users carrying

those replica. An homogeneous mobility model is assumed, users get in touch each other follow-

ing an average inter-contact rate λ and get interested in a content according to an average rate µ.

Therefore, transition rates depend on the j amount of users interested in the content as well as on

the number of users which have already obtained the content. Finally, the number of users which

have received the content directly from the base station is represented by value nbc (number of

injected nodes). Varying the number of injected nodes nbc the Markov chain is slightly affected,

considering as first column only those Sj states whose the number of users with the content is

equal or greater than the number of injected nodes.

Therefore, in order to solve the bi-dimensional Markov chain of Fig. A.1, we write the forward
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to the starting state index, while L and M are square matrices with (N ×N ) size. We define the

structure of those matrices as follows:

L =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0

l2

lJ · · ·
...

...

· · · lN

∣∣∣∣∣∣∣∣∣∣∣∣∣
,where lJ = {liz}, and liz =


(i)(J − i) if i = z,

−(i)(J − i) if i = z + 1,

0 otherwise.

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣

m1

mJ · · ·
...

...

· · · mN−1

0

∣∣∣∣∣∣∣∣∣∣∣∣∣
,wheremJ = {miz}, andmiz =


(N − J) if i = z,

−(N − J) if i = z + J,

0 otherwise.

Note that for matrix indices we use the same order as reported in vector ~K. This is important in

order to have a general scheme to create those matrices. In matrix L we can identifyN−1 square

blocks lJ with [J × J] size. Considering Fig. A.1 as a reference Markov chain, each of those

blocks provides the transition rates of any single row of the Markov chain due to user meetings

(except the first row). The longer the row, the larger the block, the more transition rate values. In

matrix M we can identify N − 1 non-singular blocks with [J × 2J] size, which take into account

the transition rates due to new request from an interested user. Indeed, we obtain the average

number of users with content at the end of the content lifetime Tc as follows

E[Sj(Tc)] =
N∑
i=1

i pi(Tc − din). (A.29)

Neglecting the content transmission time with respect to the time between two users get inter-

ested in the content, the time elapsed after injecting nib content replica is, on average, din =
nbc−1∑
u=0

1
µ(N−u) . Indeed, using (A.28) in (A.29), we obtain

E[Sj(Tc)] = ~V e−(Lλ+Mµ)(Tc−din) ~C (A.30)

where ~V is similar to ~K, except that it includes only states with at least nbc users holding the

content replica.
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