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Abstract: Under low energy ion irradiation, periodic features (ripples) can develop on the surfaces of semiconductor 
materials, with typical sizes in the nanometric range. Recently, a theory of pattern formation has been able to account for 
the variability with the ion/target combination of the critical angle value separating conditions on ion incidence that 
induce the presence or the absence of ripples. Such a theory is based in the accumulation of stress in the damaged 
irradiated layer and its relaxation via surface-confined viscous flow. Here we explore the role of stress, and its competition 
with purely erosive mechanisms, to deter-mine the sign of the velocity with which the ripple pattern moves across the 
target plane. Based on this theory, we discuss different situations and make specific testable predictions for the change of 
sign in that velocity.

1. Introduction

Fully-controlled surface nanopatterning by ion-beam irradia-
tion has been an elusive goal, specially in monoelemental semicon-
ductor materials like Silicon [1] or Germanium. The fact that
recrystallization is almost negligible at room temperature makes
the accumulation of defects (and, consequently, of stress) a major
actor in the evolution of the damaged material. This important role
for stress has been recently implemented into a continuum model
for the evolution of the surface [2], which for Si irradiation has
received experimental support with respect to e.g. the ion-energy
dependence of the typical sizes of the patterns appearing [3,4].
From a physical viewpoint, stress generation coexists with sputter-
ing in tailoring the resulting process. The former seems to be more
relevant for ion-incidence angles close to the threshold angle for
ripple formation [4]; the latter becomes relatively more important
as the width of the amorphous layer (and hence the accumulated
stress) is reduced, namely, at grazing incidence [5].

Experimentally, for the important case of Si targets, several
results are consistent with the predictions of the theory in [2],
namely, the existence of a critical value hc of the ion-incidence
angle h, below which the pattern cannot appear [6,7,3,8], the diver-
gence of the pattern wavelength when h approaches hc [6,7], or the

scaling of the wavelength with ion energy [3]; see further refer-
ences in [1,8]. However, to date only a few experiments have
focused on the velocity characterizing the in-plane motion of the
ripple pattern. We can highlight the work by Alkemade in glass
[9] or, more recently, the work by Hofsäss and collaborators on
Si [10].

Interestingly, one of the predictions of the ion-induced solid
flow theory is that different states of stress involve different sce-
narios for pattern formation [4]. Namely, depending on the relative
values of stress at the free and amorphous–crystalline (a–c) inter-
faces, the pattern formation process can occur in such a way that
either: (i) Ripples form only for h > hc as for the experiments men-
tioned on Si; since this behavior cannot be predicted by the classi-
cal Bradley–Harper (BH) theory [11], this is termed a non-BH type
scenario. (ii) Patterns form for all angles which are smaller than a
different critical value h�c , and in particular at normal incidence.
Experimentally, pattern (dot) formation at h ¼ 0 does occur under
impurity co-deposition or for irradiation of compound targets, see
e.g. [1,12,13]. Indeed, the classic BH theory allowed for pattern for-
mation (so-called parallel mode ripples) for any value of h from
normal incidence up to a critical value, beyond which parallel
mode ripples disappear. Hence, we term this as a BH-type scenario.

In Ref. [4] the solid flow model has been formulated in the light
of Molecular Dynamics (MD) simulations of stress generation, and
contrasted with experiments on Si. The focus was to describe the
onset of ripple formation at h ¼ hc through the properties of the⇑ Corresponding author.
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ripple wavelength, in order to account for the variation of hc with
the ion/target combination. The values of h explored are suffi-
ciently non-glancing that so-called perpendicular mode ripples
do not form, see [1]. Here, we present and discuss the implications
of the ensuing solid flow theory for the velocity of the ripples. The
remainder of the paper is organized as follows: In Section 2 we
review the main ingredients of the theory and derive the ripple
velocity. In Section 3 we present the main results and discuss their
experimental implications. Finally, in Section 4 we conclude and
point to future developments.

2. Continuum approach

We next review briefly the continuum model of viscous flow
driven by ion-induced stress, see further details in Refs. [2–4]. A
damaged amorphous layer is assumed to have formed, with sta-
tionary mechanical properties (in our experimental context [1] this
happens prior to pattern formation, after a few seconds of irradia-
tion). As suggested byMD simulations, the amorphous layer relaxes
as Newtonian fluid with a high viscosity g, ultimately due to the ion
impacts [4]. Under incompressible flow, r � v ¼ 0, one has

@xuþ @zw ¼ 0; ð1Þ
� @xpþ g 2@2

xxuþ @2
zzuþ @2

xzw
� �þ @z0szz sin h ¼ 0; ð2Þ

� @zpþ g 2@2
zzwþ @2

xxwþ @2
xzu

� �� @z0szz cos h ¼ 0: ð3Þ
where p is hydrostatic pressure, v ¼ ðu;wÞ is the velocity field in the
amorphous layer, and s is a stress tensor comprising the cumulative
effect of the damage produced by irradiation, z0 being a coordinate
along the ion-beam direction. In Eqs. (2) and (3) ion damage occurs
through the space variation of s, which depends on the distance to
the surface. It is difficult to obtain analytical results for the func-
tional form of @z0szz from e.g. MD data [4]. However, we can approx-
imate this term as a finite difference between the amorphous–
crystalline (a–c), hac , and the free, h, interfaces, as

@z0szz ’ szzðhÞ � szzðhacÞ
dz0

� Dszz
dz0

; ð4Þ

where dz0 � R0= cosðc0Þ is the distance between both interfaces
along z0, and R0 is the average layer thickness, c0 being the local inci-
dence angle [4].

The boundary conditions at the free interface z ¼ hðx; tÞ imple-
ment both surface tension and the effect of the ion-induced stress
[2,3,14]. Moreover, the dynamics of the height fields hðx; tÞ and
hacðx; tÞ are dictated by the fluid motion through

Dz
Dt

����
z¼h

¼ wðz ¼ hÞ þ jer; ð5Þ
Dz
Dt

����
z¼hac

¼ wðz ¼ hacÞ þ jam; ð6Þ

where jer and jam account for the rates of erosion and amorphization
at the free and a–c interfaces, respectively. Setting jer ¼ jam guaran-
tees a stationarity density for the layer. Additionally, the tangent
component of the fluid velocity is set to zero (no slip) at z ¼ hac .

Using the standard theory of pattern formation [15], the infor-
mation at the early stages of the dynamics can be extracted from
the linear dispersion relation xq characterizing periodic perturba-
tions of a flat solution,

hðx; tÞ ¼ �h1exqtþiqx; ð7Þ
hacðx; tÞ ¼ �R0 þ hðx� R0 tan h; tÞ

¼ �R0 þ �h1exqtþiqðx�R0 tan hÞ: ð8Þ
Note that, as observed in the experiments [4], the a–c interface is
vertically and horizontally displaced by �R0 and �R0 tan h,

respectively, with respect to h. A more elaborate relation can be
written; however, Eq. (8) suffices up to the present order of
approximation.

Near the onset of ripple formation, e.g. at hJ45� for Si, it is
believed that purely erosive effects can be neglected [1]. In view
of this fact and for simplicity, we set jer ¼ jam ¼ 0. As indicated,
the linear dispersion relation can be obtained from the equations
above, its imaginary part controlling the pattern propagation for
the unstable modes. Since the ripple wavelength is typically much
larger than the thickness of the amorphous layer, namely R0q � 1,
we can expand xq in powers of q. Its imaginary part yields

ImðxqÞ ¼ �3½Dszz þ 2szzð0Þ	 þ cosð2hÞ½5Dszz þ 12szzð0Þ	
6g tan h

R0q

þ rR2
0

3g tan h
q3 þOðq5Þ: ð9Þ

2.1. Patterns and ripple velocity

The existence or absence of pattern is controlled by the real part
of xq, as discussed elsewhere [2,4]. E.g., the non-trivial form of hac

in Eq. (8) is seen to lead to values of hc which depend, as in exper-
iments, on the ion/target combination [4]. This contrasts with pre-
vious predictions on an universal hc ¼ 45� value [14].

Likewise, the velocity at which the linear ripple structure trav-
els across the substrate equals the phase velocity of a wave mode,
being given by [16]

V stress ¼ � Imðxqm Þ
qm

¼ VcSac½�99þ 339g þ 32ð4� 13gÞ cosð2hÞ
þ ð3� 51gÞ cosð4hÞ	= tanðhÞ; ð10Þ

where qm is the wave-number at which ReðxqÞ takes its maximum
positive value. Positive velocity values indicate that ripples propa-
gate in the same direction as the ion projection on the surface. In
Eq. (10) the dimensionless parameter g � szzð0Þ=szzðhacÞ describes
the inhomogeneity of the ion-induced stress distribution,
Vc � R0szzðhacÞ=192g is a characteristic velocity scale in the prob-
lem, and Sac � sign szzðhacÞð Þ.

We next include the effects of sputtering within the simplest
approximation: similarly to the classic BH derivation [11], to linear
order in height derivatives one can simply add the corresponding
prediction of Sigmund’s theory [17], where the ripple velocity is
given by [9,18]

V sputtering ¼ J
n

YðhÞ sin h� dYðhÞ
dh

cos h
� �

; ð11Þ

where J is the ion flux, n is the surface atomic density, and the sput-
tering yield YðhÞ is given by,

YðhÞ ¼ Yð0Þ exp � a2=r2

2 1þ b2l2=r2
� �þ a2=2r2 � R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

q2
4
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2

1þ b2l2=r2

vuut ; ð12Þ

where b ¼ tan h; R is the Yamamura coefficient and a; l, and r
parameterize Sigmund’s Gaussian distribution [18]. Thus, the total
ripple velocity is the sum of Eqs. (10) and (11). The relative weights
of each contribution will depend on Vc and J=n. For the sake of clar-
ity, we introduce a new dimensionless parameter,

B � Vc

J=n
¼ R0szzðhacÞn

192Jg
: ð13Þ
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When B � 1 (B � 1), only the effects of sputtering (stress) are taken
into account. As an illustration, in Fig. 1 we compare the velocity of
the ripples according to our theory with g ¼ �0:5, Eq. (10), and ero-
sive contributions coming from Eq. (11).

3. Results

As discussed in Ref. [4], the sign of the real part ReðxqÞ controls
the value of the critical angle, hc , that separates two regions in the h
axis corresponding to different morphologies, either rippled of flat
(shaded areas in Fig. 2). This sign depends on the distribution of
ion-induced stress, which is primarily determined by the ion/target
combination. As mentioned in Section 1, two scenarios are found in
[4]: (i) non-BH type scenario for g < 1=4, which is the one usually
observed in semiconductor materials, where ripples only form for
angles h > hc; (ii) BH type scenario for g > 1=4, in which parallel
mode ripples occur only for h < h�c . We discuss both scenarios
separately.

3.1. Non-Bradley–Harper type scenario

In Fig. 2 we show the predictions of the ion-induced solid flow
theory in combination with the Sigmund–Yamamura prediction for
the ripple velocity, for different relative weights (through the
parameter B) between both mechanisms. When the ripple velocity
is dominated by stress, Fig. 2a, the theory predicts ripple propul-
sion (namely, ripple motion is parallel to the projection of ion inci-
dence) for all incidence angles above a new critical value, ĥc. This
value is independent of hc and is located around 20

�
, hence outside

the h-region in which ripples actually form. Moreover, ĥc is robust
with respect of the values of g while, as shown in Ref. [4], hc
depends strongly on the distribution of ion-induced stress, perhaps
as in experiments. In Fig. 2c we show the case where sputtering is
the dominant mechanism behind ripple propagation. In this case,
using the parameters in Ref. [6,7] we obtain a transition in the sign
of the ripple velocity around 65–70�, akin to recent experiments
[10].

3.2. Bradley–Harper type scenario

In this case, and depending on the specific values of g and B, the
situation is more peculiar. For instance, for g ¼ 1 the patterns
would be observable for h < h�c ¼ 65

�
and the ripple velocity would

be as in Fig. 3. Again, depending on the values of g and B, there can

Fig. 3. Ripple velocity under a BH type scenario g ¼ 1 for B ¼ 5. In this case, the sign
of the contribution due to stress is opposite to the one it takes in the non-BH type
scenario. The dashed vertical line indicates the value of the critical angle h�c below
which ripples form. Dashed blue lines and shaded area correspond to the region
where there are no ripples. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 1. Comparison between the velocity of the ripple due to stress for g ¼ �0:5
(dotted blue line) and the prediction from sputtering alone (solid blue line). The
vertical red dashed line shows the critical angle hc above which the patterns can be
observed (the surface is flat below that value). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. Ripple velocity under a non-BH type scenario g ¼ �0:5 (as in Ref. [4]) for
B ¼ 5 (a), B ¼ 0:75 (b), and B ¼ 0:2 (c). In each panel the total ripple velocity
V stress þ V sputtering is plotted vs incidence angle h. The dashed vertical line indicates
the value of the critical angle hc above which ripples form. Dashed blue lines and
shaded areas correspond to regions where there are no ripples. Positive values
indicate that ripples propagate in the direction of the ion projection. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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be two transitions from positive (ripple propulsion) to negative
velocity and, finally, again to positive. This re-entrance could be
tuned to fit into the range of angles where the pattern can be
observed (not shown).

4. Discussion and conclusions

We have presented a qualitative account of the relevance of the
competition between stress and erosive effects in the propagation
of ripples. While it had been previously shown [4] that stress
explains the lack of patterns below/above a certain critical angle
hc that depends on the state of stress, here we have shown that ero-
sive mechanisms (that emphasize the role of surface effects) need
to be weighted with respect to stress in order to account for tran-
sitions in the sign of the ripple velocity.

Further improvements of the work presented here will be con-
sidered along two alternative pathways. On the one hand, a more
detailed theory that includes all the effects of erosion (through
the erosion and amorphization currents jer and jam) is required to
produce more quantitative predictions. On the other hand, the sim-
ple heuristic description of the amorphous–crystalline interface as
a translation of the free surface, through Eq. (8), can be improved
using a more mechanistic physical description of the stress con-
fined in the amorphous layer in top of a crystalline tensionless
material. Finally, from a mathematical viewpoint, we want to
emphasize that the shallow-water approximation might be inaccu-
rate in some cases and, hence, a fully non-local dispersion relation
[2] (or refined expansions) is mandatory to capture the complexity
of the process.
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