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Nonuniversality due to inhomogeneous stress in semiconductor surface nanopatterning by
low-energy ion-beam irradiation
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A lack of universality with respect to ion species has been recently established in nanostructuring of
semiconductor surfaces by low-energy ion-beam bombardment. This variability affects basic properties of the
pattern formation process, like the critical incidence angle for pattern formation, and has remained unaccounted
for. Here, we show that nonuniform generation of stress across the damaged amorphous layer induced by
the irradiation is a key factor behind the range of experimental observations, as the form of the stress field
is controlled by the ion/target combination. This effect acts in synergy with the nontrivial evolution of the
amorphous-crystalline interface. We reach these conclusions by contrasting a multiscale theoretical approach,
which combines molecular dynamics and a continuum viscous flow model, with experiments using Xe+ and Ar+

ions on a Si(100) target. Our general approach can apply to a variety of semiconductor systems and conditions.
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I. INTRODUCTION

Mechanical stress has been recognized, and even
exploited, as a main actor in pattern-forming systems. From
nanostructures [1–3] to macroscopic sandy dunes [4,5], many
patterns emerge from the interplay between driving-induced
stress and competing mechanisms. For swift-ion irradiation
of solid targets, plastic deformations due to thermal spikes [6]
are known to produce surface features measuring tens of
micrometers. However, for low- to medium-energy ion-beam
sputtering (IBS) of monoelemental semiconductor targets,
in which pattern features conspicuously reduce to a few
nanometers [7–9], the relevance of stress has been highlighted
only recently [10,11].
In most of these examples, the time scales for pattern

formation are set by the external driving. However, in surface
erosion by IBS, events induced by the ion beam, like relaxation
of collision cascades, last a few picoseconds [12], while
the patterns emerge on time scales of seconds [8]. Despite
intensive inquiry into this nanostructuring technique, many
basic questions remain open [13]. Their elucidationwill impact
materials science, due to a high potential for applications [14],
and condensed matter physics at large, as multiscale systems
like this [15] defy our current capabilities to understand their
collective behavior [16].
In particular, low-energy IBS of silicon has become a

paradigmatic system, due to the importance of this material for
technological applications [17]. Its pattern-forming properties
are widely regarded as representative of targets that are, or

*Corresponding author: ana.moreno@iit.upcomillas.es

become, amorphous under this type of irradiation, like semi-
conductors [12]. Thus work on Si has recently highlighted [11]
substantial differences between the experimental (ripple)
pattern formation process at nonglancing ion incidence angles
θ and the classic Bradley-Harper (BH) mechanism [18] based
on the interplay between a curvature-dependent sputtering
yield and thermal surface diffusion. While the BH theory
predicts ripple formation for any value of θ , experiments with
Ar+ ions [11,19–21] have determined a critical value for the
incidence angle, θc � 45◦, below which the surface remains
flat, and above which ripples emerge. Akin to continuous
phase transitions, the morphological transition at θ = θc is
type II [22], since the typical length-scale, namely, the ripple
wavelength λ, diverges as

λ ∼ |θ − θc|−n, (1)

with a critical exponent value n = 1/2. Remarkably, for IBS
in presence of metallic impurities, or of compound targets, the
role of phases seems somehow reversed, since patterns form
for small angles starting at θ = 0, see, e.g., Refs. [9,23,24],
and other therein.
These crucial features are driving recent improvements over

BH’s theory throughmore sophisticated approaches, like crater
functions [15,25] or hydrodynamic frameworks [10,26,27],
which reproduce the transition at θc = 45◦ and suggest this
value to be energy- andmaterial independent. Thus experimen-
tal reports on θc values which differ from this result question
the physical assumptions behind such models. For example,
experiments on Si lead to θc � 60◦ for ions heavier than Ar+,
like Xe+ [28], or Kr+ [29], or to θc � 62◦ for Ge bombarded
with Kr+ [30,31]. In analogy with a critical temperature, the
value of θc should not be expected to be universal, in contrast
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TABLE I. Experimental critical angles for Si IBS with different
ions and energies. For all cases θc ∈ [45◦,70◦], consistent with the
predictions of Eq. (25) for a non-BH scenario, as supported by MD.
Experiments on Ge are given for reference, suggesting generality of
results for amorphizable materials.

System θc Reference

Ar+ → Si (250 eV–1 keV) 48◦ [20,21]
Ar+ → Si (300 eV–1.1 keV) 45◦–50◦ [11]
Kr+ → Si (2 keV) 60◦ [29]
Ar+ → Si (500 eV–1 keV) 46◦ [11]; this work
Xe+ → Si (500 eV–1 keV) 58◦ this work
Kr+ → Ge (1 keV) 62◦ [30]
Kr+ → Ge (1.2 keV) �65◦ [31]
Xe+ → Ge (1.2 keV) �70◦ [31]

with critical exponents like n in Eq. (1). Table I summarizes
these and other experimental results.
In this paper, we elucidate the ion-induced stress field

that builds up throughout the damaged amorphous layer
evolving on top of the solid target, as the key physical effect
driving pattern formation in low-energy IBS of semiconductor
surfaces. In line with recent work in the context of surface
nanostructuring of IBS (see a recent review in Ref. [17]), we
focus in the case of silicon targets, which is widely believed to
be important for potential applications, while being representa-
tive of semiconductor targets.Within the current revision of the
basic mechanisms for pattern formation that improve upon the
classic BHview [17], additional important classes ofmaterials,
like metals, are expected to differ substantially. Metals do
not become amorphous under similar conditions [8,32], their
pattern formation processes being possibly controlled by
different mechanisms of material transport.
For the case of silicon targets, we specifically show that it

is the nontrivial space distribution of ion-induced stress, as a
function of the ion/target combination, which is responsible for
the variety of experimental observations. This is a promising
insight into the physical mechanism that controls similarities
and differences in ripple formation by IBS for different
semiconductors. We reach these conclusions via a multiscale
description of the Si system by molecular dynamics (MD)
simulations, combined with a generalization of the stress-
driven viscous flow model in Refs. [10,11], both of which
are contrasted with experiments with Xe+ and Ar+ ions.

II. METHODS

A. Overview of the methodology used in this work

One of the goals of our work is to integrate different
approaches, from experimental to theoretical, passing through
molecular dynamics simulations. In order to illustrate the
complexity of such an integration, Fig. 1 provides a graphical
summary of the methods we have employed and how they
are put together to provide testable predictions that allow to
validate the theory against experiments.
Given the insufficiency of BH theory to predict nonzero

values of the critical angle θc, we need to resort to alternative
continuum descriptions. For instance, the so-called crater

FIG. 1. (Color online) Schematic summary of the methods and
approaches employed in this work.

functions replace the space distribution of energy deposition
employed in the BH model by a kernel which is directly eval-
uated by MD [15,25] or by binary-collision Monte Carlo [33]
simulations. However, the consistency of some approaches of
this class has been recently questioned [34–36], while depen-
dencies of pattern properties with physical parameters are not
predicted. An alternative continuum framework is provided
by hydrodynamic models of IBS ripple formation, based on
the generation of ion-induced stress [10,26,27]. Actually, these
models yield predictions on, e.g., the energy dependence of the
ripple wavelength, which have been validated recently [11].
However, as mentioned above basically all these models lead
to θc = 45◦, irrespective of conditions on energy or ion/target
combination. Our goal is to improve these continuum models
through a more detailed implementation of results from MD
simulations and/or experiments. In turn, analytical predictions
will be contrasted back with experimental results. This is the
combined approach, which is illustrated in Fig. 1.

B. Sample preparation

Our experimental data are obtained from commercial p-
type Si(100) targets (380-μm thick, 1–10 m�cm), which
have been sputtered with Xe+ and Ar+ beams for different
incidence angles within the 300–1100 eV energy range, as
in Ref. [11]. The ions were extracted from a commercial
Kaufman source [Veeco(c)]with a 3-cmgrid system. Particular
care has been taken to avoid metal contamination, which has
been checked by Rutherford backscattering spectrometry. The
angle of incidence has an overall resolution of±2◦. The current
density at the sample position in the plane parallel to the
source grids (J0) was set in the 30–50 μA/cm2 range. Low J0
values were aimed at assessing the early-stage linear regime,
following the criteria reported in Ref. [11].

C. Sample analysis

The surface morphology was imaged ex-situ with an AFM
Nanoscope IIIa equipment (Bruker) operating in intermittent-
contact mode, using Si cantilevers (Bruker) with nominal
radius of curvature of 8 nm. A sample topography is shown in
Fig. 2(a).We have also employed high-resolution transmission
electron microscopy (HRTEM) for microstructural analysis
of the ripple features. Special care has been taken during
the specimen preparation for HRTEM observations in order
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FIG. 2. (Color online) (a) AFM top view of experimental ripples
obtained by Xe+ IBS of Si forE = 500 eV and θ = 65◦. (b) HRTEM
cross-sectional high-resolution image along the 〈110〉 direction. The
free interface is marked by dots. (c) MD simulation after one Xe+

impact under the same conditions as in (a). Different colors stand for
different values of the temperature, which decreases with distance
from the ion entry.

not to modify the original Si-amorphous surface layer that
develops under low-energy irradiation. Regarding this point,
lamellae for electron transparency were prepared using a
focused ion beam (FIB), protecting the sample surface through
pre-deposition of a Pt layer, and milling with Ga+ ions close
to normal incidence. Samples are examined in a Philips Tecnai
F20 operated at 200 keV.An example is shown in Fig. 2(b). The
focus and contrast conditions of the multibeam image are se-
lected to magnify the amorphous crystalline interface contrast.
Note that, akin to experiments atmediumenergies [37], the free
and the amorphous-crystalline (a-c) interfaces that bound the
amorphous layer both exhibit similarly rippled topographies
with a horizontal shift, motivating hypothesis to be made in
our continuum model below.
The contrast variations observed in crystalline Si in the

low magnification image are associated with small thickness
variations and damage, induced through FIB besides the
cross-section surface. In order to reduce this damage in
semiconductor samples prepared for TEM, commonly post-
FIB Ar+ ion milling is employed at an incidence grazing
angle. However, in this work, no FIB post-treatments were
employed, so that the irradiated sample surface could be
protected. The size of the Si amorphous layer (which appears
brighter in the image), the amorphous-crystalline interface,
and the Pt-deposited layer are analyzed using HRTEM images
along the 〈110〉 direction. An example is shown in the bottom
larger image of Fig. 3, where the thickness variation of the
amorphous layer associated with the topography is clearly
visible, ranging from 3 to 6 nm.

D. Molecular dynamics simulations

Collision cascades induce permanent displacement of target
atoms and damage [8,9,12]. Sustained irradiation creates

FIG. 3. (Small, upper image) Cross-sectional multibeam image
along the 〈110〉 direction, corresponding to Fig. 2(a). The bar
corresponds to 20 nm. (Large, lower image) Corresponding HRTEM
image of the area marked with a square in the center of the upper
image. The HRTEM image allows to appreciate the characteristic
{111} Si-lattice fringes of the crystalline phase. Thickness variations
in the amorphous-Si layer are also visible, together with the Pt layer.
The bar corresponds to 5 nm.

a well-defined amorphous layer on top of a crystalline
bulk [11,38–40]. The residual stress thus built up throughout
the layer is partially relaxed by defect motion and sput-
tering [41,42], and is described by a stress tensor τ . Thus
microscopic defect creation produces macroscopic stress. As
an illustration, the amorphous layer that develops on Si under
oblique incidence pattern forming conditions as in the ripple
structure of Fig. 2(a) can be clearly identified in a HRTEM
cross-sectional view like the one provided by Fig. 2(b). In
Fig. 2(c), we show a representative view of the simulated
(microscopic) target after a single ion impact, for ion energy
E and incidence angle θ as in Fig. 2(a). Accumulation of such
damage will eventually lead to an amorphized layer like the
one produced in the experiments.
In order to characterize the stress distribution generated

under irradiation, we have performed MD simulations us-
ing the LAMMPS software [43] as follows. A crystalline
4.89× 4.89× 10.83 nm3 Si target is bombarded with Xe+ at
300 eV-1keV Xe+ ions. The interaction potential used in this
work is Tersoff, interpolated with a Ziegler-Biersack-Littmark
potential [44–47]. As the collision cascade is around two unit
cells width (�1 nm), we have used a system size large enough
to avoid that the periodicity of the boundaries (where the
thermostats are located) affects the computation of stress.
We have reproduced one of the simulations by doubling
the lateral size and, within the error bars, the results (not
shown) are unchanged. Besides this, we compute the stress
only for a subset of the atoms that are far apart from those
boundaries.
Each simulation corresponds to 1000 consecutive impacts,

allowing to describe the build-up of stress inside the target.
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FIG. 4. (Color online) MD simulations of Xe+ → Si. (a) Diagonal element of the excess (ion-induced) stress tensor in the normal direction,
τzz, forE = 300 eV. Note the nonuniform distribution of stress across the amorphous layer. (b) Dependence of the total stress τ̄ with ion energy
(circles are simulation data). In this range of energies, the numerical results are compatible with different models for defect relaxation [48], as
detailed in the legend (nonsolid lines). Simple Davis’ scaling [41] (solid line) seems to capture the simulation results better.

This contrasts with most of the standard MD approaches
in which averaging is performed over different impacts on
the same pristine material. All the presented simulations
were performed using normal incidence A simulation was
performed at θ = 60◦ to confirm that the stress tensor at
oblique ion incidence can be obtained (within numerical error)
as a tensorial rotation of that at 0◦.
Between impacts, the system is relaxed so that the impact-

induced mechanical oscillations are damped out (�10 ps) and
the temperature is rescaled to 300 K in order to preserve the
experimental, almost isothermal, initial conditions for the next
impact. Also, in order to reduce computation time, we have
employed an adaptive time-step with a positive feedback when
particles start to move slowly. Besides, sputtered atoms were
removed from the system.
In order to simulate an infinite solid, periodic boundary

conditions have been considered in the X-Y directions while
free surfaces have been set perpendicular to the Z axis. We
surround the central part of the system with one-unit-cell layer
of silicon, with a velocity viscous damping in order to remove
sound waves that create artificial oscillations in the stress
tensor. We used an NVE ensemble that allows temperature
and pressure to react and adapt to the momentum and energy
exchange between every incident ion and the target material.
The location of the amorphous-crystalline interface (a-c)

is subtle as one has to define a surface from a collection of
atoms. We have used three alternative ways to compute it
that result into the horizontal error bar (of around 0.5 nm) in
the shaded area in Fig. 4(a). One is to interpolate between
the density of the crystalline (large z) and damaged regions
(averaged close to the surface) and perform a Maxwell
construction between them. Alternatively, either by computing
the average coordination number for every atom and or
performing a similar calculation as with the density but for the
zz component of the stress tensor. For the three observables
(density, coordination number or stress), it is simpler to work
with the cumulative integral of these observables as it reduces
numerical noise. In all cases, the location of the a-c interface
is similar.
Finally, the stress tensor is computed without the virial

term arising from kinetic energy contributions, see Ref. [43]

for details. Throughout our present work we consider negative
(positive) total stress to be compressive (tensile).

III. THEORY

A. Hypothesis extracted from molecular dynamics simulations

Our MD simulations allow us to check quantitatively pre-
vious assumptions [10,11] on the stress distribution generated
under IBS. In particular, the analysis of the simulations
imply the following. (i) The ion-induced stress tensor τ

has a negligible trace, with the components perpendicular
to the ion direction being equal; hence, overall the damaged
amorphous layer can be assumed to be an incompressible fluid.
(ii) As postulated in Ref. [10], the value of τ at an arbitrary
incidence angle θ is approximated well by the rotation of
the tensor obtained under normal ion incidence (θ = 0).
(iii) Beyond earlier simplifications [10,11], the τij components
depend nontrivially on the distance to the free surface, see
τzz in Fig. 4(a). In particular, the ion-induced stress takes
different values at the free interface and within the bulk of
the amorphous layer. (iv) The energy dependence of the total
stress τ̄ = Trace(τ + τF ), where τF is the standard fluidic
contribution to stress [see Eq. (4) below], follows closely
Davis’ scaling [41], being insensitive to details in the stress
relaxation mechanism by defect motion. Namely, different
alternatives for the functional dependence of total stress with
ion energy [48] are also compatible with our simulation data
in the range of energies considered, see Fig. 4(b), although
the simpler Davis’ scaling seems to suffice, as experimentally
verified recently [11]. Although the original model formulated
by Davis was based on spike formation, later results [49]
showed that binary collisions,more relevant at the low energies
we are considering, lead to the same scaling of stress with
ion energy for E � 1 keV. Our MD results imply that the
interplay between ion-induced stress, viscous flow dynamics,
and sputtering leads to partial defect relaxation, which is the
basic idea of Davis’ model for stress evolution in irradiated
materials. We note that very recent measurements [42] of
stress evolution during low-energy argon ion bombardment
of Si seem to favor specifically a bimolecular recombination
mechanism for individual flow defects [50].
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B. Model equations

In spite of the relevance of the information provided byMD
simulations, this computational framework cannot describe
quantitatively by itself the time evolution of the ripple patterns,
which takes place in time scales of seconds andminutes, and in
length scales of tens of nanometers [17]. Comparison between
Figs. 2(a) and 2(c) illustrates the huge scale separation between
experiments and MD simulations.
In order to bridge between our MD results and the typical

scales of the patterns, we formulate a hydrodynamic model
for the damaged layer, assumed to be an incompressible fluid,
basing the assumptions to be made on the MD results (i)–(iv)
described above. Assuming further that the layer has a high
(uniform) viscosity, the equations of motion read [51]

∇ · v = 0, (2)

∇ · τ̂ = 0, (3)

where v is the velocity field in the amorphous layer and the
global stress tensor, τ̂ = τF + τ in Eq. (3), is the sum of a
fluidic contribution τF and the external contribution, τ, that
comprises the cumulative effect of the damage produced by
irradiation. The mathematical expression for τF reads [51]

τF
ij = −pδij + μ

(
∂vi

∂xj

+ ∂vj

∂xi

)
, (4)

where p is the hydrostatic pressure and μ is the viscosity of
the damaged amorphous layer. For simplicity, since we are
mainly interested in behavior close to the critical angle for
ripple formation, we will neglect the space dependence along
ripple ridges and consider a two-dimensional system. Taking
x and z to denote the coordinates along the substrate and along
the growth direction, respectively, τF can be written as

τF =
(−p + 2μ∂xu μ(∂zu + ∂xw)

μ(∂zu + ∂xw) −p + 2μ∂zw

)
, (5)

where u(x,z,t) and w(x,z,t) are, respectively, the horizontal
and vertical components of the fluid velocity at time t .
Determining the precise local values of the components

of the ion-induced stress distribution, τ , would require
experimental measurements and/or a highly accurate MD
parametrization. In absence of such type of high-resolution
data, we consider the main qualitative conclusions from our
MD simulations. Thus we assume the trace of the τ tensor to
be negligible, and its components to depend on the distance to
the free surface. In a coordinate system (x ′,z′) in which z′ is
oriented along the ion beam direction, see Fig. 5, the simplest
form for the ion-induced stress tensor compatible with these
assumptions reads

τ ′ = τzz(z
′)

(
1 0

0 −1
)

, (6)

its divergence in this coordinate system reducing to �∇′ · τ ′ =
(0,−∂z′τzz(z′)).
Coordinates in the laboratory system are related with (x ′,z′)

through (x,z) = (x ′,z′) · R(θ )T , where R(θ ) is the rotation

FIG. 5. (Color online) Laboratory coordinate system and geo-
metrical quantities defined in the main text. We illustrate the
geometrical relations between the distance along the ion beam
trajectory, dz′ , and the thickness of the amorphous layer, R0; and
between the laboratory and local ion incidence angles, θ and γ0,
respectively, and the local inclination angle, γ . The amorphous layer
is represented as the grey area, being bounded by the free and the
amorphous-crystalline interfaces, which are denoted by h and hac,
respectively.

matrix through the ion incidence angle θ , which reads

R(θ ) =
(
cos θ − sin θ

sin θ cos θ

)
. (7)

Thus, in laboratory coordinates, �∇ · τ = (∂z′τzz sin θ, −
∂z′τzz cos θ ).
Using the above relations, the continuity condition, Eq. (2),

and the Navier-Stokes equation, Eq. (3), reduce to the
following system for u(x,z,t), w(x,z,t), and p(x,z,t):

∂xu + ∂zw = 0, (8)

− ∂xp + μ
(
2∂2xxu + ∂2zzu + ∂2xzw

) + ∂z′τzz sin θ = 0, (9)

− ∂zp + μ
(
2∂2zzw + ∂2xxw + ∂2xzu

) − ∂z′τzz cos θ = 0. (10)

From Eqs. (9) and (10), we observe that the cumulative effect
of the ion damage in the bulk enters through the gradient of the
stress tensor along the ion beam trajectory, and depends only
on the distance to the surface. It is difficult to obtain analytical
results for a general functional form of this gradient, while
current MD data do not allow to determine it accurately either.
However, we can approximate such a derivative as a finite
difference between the amorphous-crystalline (a-c), hac, and
the free, h, interfaces, namely,

∂z′τzz � τzz(h)− τzz(hac)

dz′
, (11)

where dz′ is the distance between both interfaces along the
ion beam trajectory. This distance depends on the average
thickness of the damaged amorphous layer, R0, and the
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local angle of incidence γ0, see Fig. 5. Using trigonometry
we have that, for small slopes, dz′ ≈ R0/ cos(γ0). The local
angle of incidence is γ0 = θ − γ where γ = tan−1 ∂xh is the
angle between the local surface normal and the z axis in the
laboratory coordinate system.
Considering now Eqs. (9) and (10), we can rewrite the

components of the stress gradient acting in the bulk of the
fluid layer as those of an effective body force b = (bx,bz),
which contains relevant physical information for the layer
motion and had been introduced earlier in Ref. [10] on a more
phenomenological basis. Under the approximation in Eq. (11),
these components reduce to

bx = 	τzz

R0
cos(θ − γ ) sin θ, (12)

bz = −	τzz

R0
cos(θ − γ ) cos θ, (13)

where	τzz ≡ τzz(h)− τzz(hac) denotes the difference in stress
between the free and the a-c interfaces.
We now need to supplement Eqs. (8)–(10) with proper

boundary conditions [10] at the free surface, z = h(x,t),

Dz

Dt

∣∣∣∣
z=h

− w(z = h) = jer, (14)

n̂ · τF · n̂ − σκ = n̂ · τ · n̂, (15)

n̂ · τF · t̂ = n̂ · τ · t̂, (16)

and at the a-c interface, z = hac(x,t),

u(z = hac) = 0, (17)

Dz

Dt

∣∣∣∣
z=hac

− w(z = hac) = jam, (18)

where D/Dt is a convective derivative [51], n̂ =
(−∂xh,1)/

√
1+ (∂xh)2 and t̂ = (1,∂xh)/

√
1+ (∂xh)2 are the

unit normal and tangent vectors, respectively, σ is surface
tension, and κ = ∂2xxh/[1+ (∂xh)2]3/2 is the local curvature at
the free surface.
The currents jer and jam in Eqs. (14) and (18) account

for the rates of erosion and amorphization at the free and a-c
interfaces, respectively, and depend on the local geometry of
the surface, h, and the amorphous-crystalline interface, hac.
Considering that the amorphous layer has reached a stationary
density and average thickness, and taking into account the
observation that purely erosive contributions are less relevant
than the transport of matter in order to account for the critical

angle for pattern formation, we approximate jer = jam = 0.
The ensuing Eqs. (14) and (18) thus become kinetic equations
that implement the time evolution of h(x,t) and hac(x,t) as
being due to the motion of the amorphous layer. In particular,
this allows us to neglect the dynamics of the crystalline phase
underneath the a-c interface. Beyond this approximation, a
simple choice is to set both rates equal to the erosion velocity
due to sputtering as in, e.g., the BH theory [10,18]. We will
return to this issue later when considering the velocity of in-
plane propagation for the ripples.
The right-hand sides (rhs) of Eqs. (15) and (16) are the

normal and tangential components of the stress created by
the ion at the free surface. Consistent with our MD results,
the stress tensors in the laboratory and in the ion trajectory
coordinate systems are related by

τ = R(θ ) τ ′ R(θ )T = τzz(h)

(
cos(2θ ) sin(2θ )

sin(2θ) − cos(2θ )
)

. (19)

Equations (8)–(10) are nonlinear and cannot be solved
analytically. Nevertheless, they are amenable to standard
perturbative methods as the linear stability analysis, whose
details are provided inAppendix. Themain idea of this analysis
is to obtain planar (i.e., x-independent) solutions for p, u, w,
h, and hac, and then study the evolution of small perturbations
around them which are periodic in space. The amplitude of
these perturbations is exponentially amplified or damps out in
time, at a rate ωq (linear dispersion relation), where q is space
wave vector.
Let us note at this point that, beyond the derivation of the

body force, Eqs. (12) and (13), which is grounded in results of
our present MD simulations, the hydrodynamic model just put
forward is not far from previous formulations [11,27]. A next
crucial difference with these is the nonflat boundary condition
set in our linear stability analysis, whereby the a-c interface is
a vertical and horizontal shift of the free interface, as observed
in our experiments [see Figs. 2(b) and 3], see Eq. (A14). This
provides the a-c interfacewith a nontrivial role,which is behind
a number of the novel results discussed in the next section.

IV. LINEAR STABILITY ANALYSIS RESULTS

The linear stability analysis in Appendix takes its simplest
form by noting that, as derived from the experiments [see again
Figs. 2(b) and 3], the thickness of the damaged amorphous
layer is much smaller than the ripple wavelength, R0/λ � 1,
as in the so-called shallow-water approximation to the flow of
thin fluid films [51]. In this limit, and denoting s ≡ sin(2θ )
and c ≡ cos(2θ ), we finally find that the imaginary and real
parts of the linear dispersion relation, ωq , are given by

Im(ωq) = R0 {−3[	τzz + 2τzz(0)]+ [5	τzz + 12τzz(0)] cos(2θ )}
6μ tan θ

q + R20σ

3μ tan θ
q3 + O(q5) (20)

and

Re(ωq) = −R20{3[	τzz + 16τzz(0)]s2 + 16[	τzz + 3τzz(0)]c}
96μ sin2 θ

q2 − σR30

6μ sin2 θ
q4 + O(q6). (21)
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A. Real part of the dispersion relation: Pattern formation

In order to have amorphologically unstable system inwhich
a pattern appears with a characteristic long wavelength, a
positive real part of the dispersion relation is required for
small values of the wave vector q. By inspection of Eq. (21) we
see that since 	τzz = τzz(0)− τzz(hac), this can only occur if
the expression 3[17τzz(0)− τzz(hac)] sin2(2θ )+ 16[4τzz(0)−
τzz(hac)] cos(2θ ) is negative. In such a case, Re(ωq) reaches its
maximum positive value for q = qm, where

qm =
√
3[τzz(hac)− 17τzz(0)]s2 + 16[τzz(hac)− 4τzz(0)]c

32σR0
.

(22)

We can further characterize the conditions under which
ripples formby considering two complementary cases, namely,
when 4τzz(0) > τzz(hac) and when 4τzz(0) < τzz(hac). Thus we
obtain that the system is unstable (pattern-forming) if

cos(2θ )

sin2(2θ )
< − 3

16

17τzz(0)− τzz(hac)

4τzz(0)− τzz(hac)
for

4τzz(0) > τzz(hac) (ripple formation for θ > θc), (23)

or if
cos(2θ )

sin2(2θ )
> − 3

16

17τzz(0)− τzz(hac)

4τzz(0)− τzz(hac)
for

4τzz(0) < τzz(hac) (ripple formation for θ < θ∗
c ). (24)

It is useful to note that the function cos(2θ )/sin2(2θ ) is an
unbounded decreasing function which becomes negative for
θ > 45◦. For fixed values of τzz(0) and τzz(hac), the system
will be pattern-forming for any angle larger than a critical
value, θc, when 4τzz(0) > τzz(hac) (non-BH scenario), and for
any angle which is smaller than a critical angle, θ∗

c , when
4τzz(0) < τzz(hac) (BH-like scenario). These critical angles
are obtained when the inequalities appearing in (23) and (24)
become equalities. We then get


c = 1

2
cos−1

(
−1+

√
1+ 4f 2
2f

)
with

f ≡ −3(17g − 1)
16(4g − 1) , (25)

where g has been defined as the ratio between the stress
values at the free and a-c interfaces, g ≡ τzz(0)/τzz(hac). The
value of the critical angle predicted for each g is depicted
in Fig. 6, according to Eq. (25). In terms of this parameter,
g < 1/4 leads to the non-BH scenario in which the system
undergoes ripple formation for any angle larger than a critical
value, 
c(g < 1/4) ≡ θc. This is the situation expected for
the experimental cases discussed here. As implied by the left
branch of Fig. 6, the value of this critical angle ranges from
θc = 0◦ up to θc = 61.8◦. Meanwhile, the BH-like scenario
applies if g > 1/4, namely, the system is pattern-forming for
angles smaller than a critical value,
c(g > 1/4) ≡ θ∗

c , which
ranges in turn between 61.8◦ and 90◦, see the right branch of
Fig. 6.
It should be also noted that, in the limiting case in which

g = 1/4, namely when 4τzz(0) = τzz(hac), the system will
be pattern-forming (respectively, nonpattern forming) for any
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FIG. 6. (Color online) Dependence of the critical angle 
c with
the stress ratio g, Eq. (25). The horizontal gray bar indicates the
experimental critical angle range for Xe+ → Si (θc = 58± 2◦). The
symbols show values fromMD simulations, see legend. The inset is a
zoom to show the weak dependence of θc with E. The orange dashed
horizontal line is a guide to the eye with asymptote θ = 61.8◦.

incidence angle if the stress at the surface τzz(0) is negative
(respectively, positive).
Once stress conditions are such that ripples form, their

characteristic wavelength is given by

λ = 2π/qm. (26)

Hence a power expansion of Eq. (22) close to the type-II
transition leads to

lim
θ→θc

λ ∼ |θ − θc|−1/2, (27)

where the critical angle is to be understood as θc or θ∗
c

depending on the relative values of τzz(0) and τzz(hac), as just
discussed. Note that the value of the critical exponent in Eq. (1)
characterizing the divergence of λ at the transition is robust to
the conditions on stress, and hence universal within the present
model. This is not the case for the critical angle. Namely, we
obtain that the value of the critical angle for pattern formation
depends explicitly on the form of the space distribution of ion-
induced stress, as described by parameter g within the present
approximations. Such a distribution is expected to change
when comparing, e.g., different ion species for fixed target and
energy, see Sec.Vbelow.Moreover, our results even allow for a
novel pattern forming scenario which differs from the non-BH
behavior commonly found under impurity-free conditions on
Si. Such BH-like scenario within which ripples form for small
incidence angles, including normal incidence, is analogous to
the situation under impurity co-deposition or for irradiation of
binary targets [17]. This suggests considering the relevance of
ion-induced stress in such complex experimental setups.

B. Imaginary part of the dispersion relation:
Ripple propagation

The full linear dispersion relation (A22) still provides
further detailed information on the ripple structure, valid
within the early-time evolution dominated by the linear
instability. Specifically, under pattern-forming conditions, the
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ensuing ripple structure travels coherently across the surface plane [8,9,17], with a velocity V determined by the imaginary part
of ωq , Eq. (20) [52,53]. In our case, to lowest order,

V = − Im(ωqm
)

qm

= R0{3[3τzz(0)− τzz(hac)]− [17τzz(0)− 5τzz(hac)]c}
6μ tan θ

− R20σ

3μ tan θ
q2m

= R20

96μ tan θ
{48[3τzz(0)− τzz(hac)]− 48[7τzz(0)− 2τzz(hac)]c + 3[17τzz(0)− τzz(hac)]s

2}

= VcSac[−99+ 339g + 32(4− 13g) cos(2θ )+ (3− 51g) cos(4θ )]/ tan θ, (28)

where Vc ≡ R0τzz(hac)/(192μ) is a characteristic velocity
scale for the system, and Sac ≡ sign [τzz(hac)]. Positive veloc-
ity values indicate that ripples propagate in the same direction
as the ion projection on the surface. We see that the magnitude
and sign of the ripple velocity both depend on experimental
conditions through parameters τzz(h), τzz(hac), R0, etc. Hence,
V is another nonuniversal quantity, in the same sense as θc is.
To date, not many experimental reports are available on the

velocity of ripple motion and its dependence on experimental
conditions. Experiments on Si [54] and glass [55] obtained
positive values for the ripple velocity (a fact termed ripple
propulsion [55]), opposite to the predictions of the BH
model for the corresponding angles of incidence. Monte Carlo
simulations of atomistic models [8,56] similarly contradicted
the BH predictions. This disagreement suggested the relevance
of physical mechanisms beyond those considered in the BH
theory for this type of systems [8]. However, more recent
experiments on Si are available [57] in which, contrasting
with ripple amplification, BH-like erosive effects are argued
to be relevant for ripple propagation at non glancing in-
cidence angles. In particular, for increasing θ the sign of
the ripple velocity is seen to change from positive to the
negative value expected within a BH description. We can
explore this change in the sign of the ripple velocity within our
continuum model. As we are considering only linear effects,
we take into account sputtering by simply adding to (28) the
BH prediction theory for the ripple velocity, namely [18,55],

Vsputtering = J

n

[
Y (θ ) sin θ − dY (θ )

dθ
cos θ

]
, (29)

where J is the ion flux, n is the surface atomic density, and
Y (θ ) is the sputtering yield. For the latter, in principle, one
can employ the approximate expression deduced by BH from
Sigmund’s distribution for energy deposition [18]. Here we
employ Yamamura’s corrected expression for Y (θ ), given by

Y (θ ) = Y (0) exp

[
− a2/σ 2

2
(
1+ b2μ2/σ 2

)
+ a2/2σ 2 − �

√
1+ b2

]√
1+ b2

1+ b2μ2/σ 2
. (30)

Here, b = tan θ ,� is the Yamamura coefficient, and a, μ, and
σ are the parameters of Sigmund’s Gaussian distribution [58].
Hence the total ripple velocity will be the sum of Eqs. (28)
and (29). The relative weight of each contribution will be
controlled by the prefactors Vc and J/n. For the sake of clarity,

we introduce a new dimensionless parameter

B ≡ Vc

J/n
= R0τzz(hac)n

192Jμ
, (31)

in such a way that, when B → ∞ (B → 0), only the effects
of stress (sputtering) are taken into account.
In Fig. 7, we show the predictions of the present ion-induced

solid flow theory in combination with the Sigmund-Yamamura
prediction for the ripple velocity, for different values of
B, considering regimes dominated by each one of the two
mechanisms considered, stress and sputtering. In that figure,
we plot the normalized total velocity,

Vripple = V + Vsputtering

Vc

where V and Vsputtering are given by Eqs. (28) and (29) with
� = 0.046, a/σ = 2.04, and μ/σ = 0.66 (see Ref. [59]). We
have used these values as a proof of concept of our ideas
although we do not intend to describe quantitatively a specific
experimental system at this point.When the ripple propagation
is dominated by stress (B = 1 in Fig. 7), the theory predicts
ripple propulsion, i.e., ripplemotion is parallel to the projection
of ion beam on the target plane, for all incidence angles above
a new critical value, θ̂c, see blue line in Fig. 7. This value is

0 20 40 60 80
θ

-2

0

2

4

6

8

10

v rip
pl

e (a
rb

. u
ni

ts
)

θc

θc

θc

^

~

FIG. 7. (Color online) Ripple propagation velocity vs incidence
angle under a non-BH scenario for ripple formation with g = −0.5
[the value obtained in Fig. 4(a)],� = 0.046, a/σ = 2.04 and μ/σ =
0.66 (see Ref. [59]), for B = 1 (blue solid line) and B = 0.1 (red
circles). The red dotted line is a guide to the eye. The shaded area is
the region where the surface is morphologically stable (there are no
ripples), delimited by the critical angle for pattern formation (vertical
black dashed line) at θ = θc. The values of the transition angles
mentioned in the text, θ̂c and θ̃c, are indicated.
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independent of θc and is located around 20◦, hence outside the
θ region in which ripples actually form. Moreover, θ̂c is robust
with respect to the value of g while, as shown in the previous
section, θc depends strongly on the distribution of ion-induced
stress, possibly as in experiments. Figure 7 also shows a case
in which sputtering is the dominant mechanism responsible for
ripple propagation (B = 0.1), see red circles and dotted line in
Fig. 7. In this case, using the parameters in Refs. [19,21], we
obtain a transition in the sign of the ripple velocity for a value
of the incidence angle θ̃c around 65◦–70◦, akin to the recent
experiments mentioned above [57].
A more detailed theoretical study of ripple propagation

can be performed along similar lines, exploring in particular
the (to date, unobserved) BH-like scenario for pattern onset
that has been discussed in the previous section, and has
been submitted elsewhere [60]. While in the next section we
restrict experimental validation of our present model to ripple
formation, systematic assessment of predictions on ripple
propagation seems interesting indeed, and will be the subject
of future work.

V. COMPARISON WITH EXPERIMENTS AND
DISCUSSION

The results presented in the preceding sections allow to
understand the experimental observations in Table I within
an unified framework. Thus our MD results for Xe+ yield
different signs for the ion-induced stress at the free and a-c
interfaces, namely, τzz(0) > 0 and τzz(hac) < 0, see Fig. 4(a).
Hence g < 0, and a non-BH scenario takes place, with θc <

61.8◦. Interestingly, for the case of Si targets, we are aware of
no reported θc value to date which exceeds 62◦. From Table I,
heavier ions induce higher values of θc, suggesting a larger
value of the ion-induced surface stress τzz(0), as compared
to the stress at the a-c interface τzz(hac). Our MD values for
stress imply a value of θc which is compatible (within error
bars) with our experimental result, see Fig. 6. As previously
observed [11,19,21], θc depends weakly with E, see the figure
inset.
In Fig. 8(a), we show the experimental θ -dependence of

the ripple wavelength for θ > θc in the case of Ar+ (adapted
from Ref. [11]) and Xe+ ions, and compare it with the

predictions from Eq. (26). Indeed, θXe
+

c � 58◦ > θAr
+

c � 46◦,
the nonrippled phase beingmore dominant forXe+, as reported
in Refs. [11,20,21,28], hence the value of the critical angle is
nonuniversal with respect to ion species. In contrast, Fig. 8(a)
confirms the independence with respect to the ion species
(universality) of the exponent value 1/2, which characterizes
the divergence of λ for θ → θc.
Regarding the role of the ion energy in the pattern

properties, note that Eqs. (22) and (26) allow to infer the
dependence of λ with physical parameters other than the
incidence angle, and in particular with E. Assuming E-
independent surface tension σ , using MD data from Fig. 4(b)
for Xe+, and similarly to the case of Ar+ [11], linear scaling
λ ∼ E is approximately obtained, in good agreement with our
experimental observations, see Fig. 8(b). While the classic
BH theory with thermal surface diffusion leads to a decrease
of λ with E [8], a detailed account of the dependence of
collision cascades with energy does allow for an increasing
wavelength in the form λ ∼ Ep for appropriate values of
p > 0, still within an essentially sputtering-dominated view
of the IBS process [61,62]. However, such a refinement does
not avoid the failure of erosive approaches to predict θc �= 0,
hence the experimental increase of the ripple wavelength with
energy requires justification beyond the BH paradigm. Our
hydrodynamic model predicts approximately linear scaling for
the case of Si, as observed, even if the theoretical prefactor
overestimates the experimental value. Interestingly, close-to-
linear scaling has also been reported for other amorphizable
targets like SiO2 [63], graphite [62], or amorphous carbon [64].
This suggests the generality of viscous flow relaxation of
ion-induced stress as a mechanism for ripple formation also in
this class of systems.
It is uncertain whether other materials that also lead to

nanopatterning under IBS can be accounted for along similar
lines, especially metals. The main difference is that for metals
no proper amorphous layer forms under low energy IBS [8,32],
so that material transport at the surface is dominated by
diffusion, rather than by viscous flow. For this class of
systems, we expect reaction-diffusion models (specifically,
the so-called two-field models in this context [9,13,17]) to
be more indicated, whereby the evolution of the surface height
is coupled to that of the concentration field of diffusing
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FIG. 8. (Color online) (a) Experimental ripple wavelength vs θ for Si at 500 eV, using Ar+ (black circles, from Ref. [11]) and Xe+ (red
squares) ions. The solid black and the dashed red lines are fits to Eq. (27) for θc = 46◦ and 58◦, respectively. (b) λ vs E for Xe+ according to
Eq. (26) using MD data (red squares) and experiments (black circles). Straight lines are linear fits.
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species. Actually, this type of models have recently shown
quantitative agreement with IBS nanopatterning experiments
on, e.g., gold surfaces [65,66]. Experience with analogous
(albeit macroscopic) ripple formation systems like Aeolian
or underwater sand dunes suggests that two-field models
can provide good shallow-water approximations of full-fledge
hydrodynamic systems [67]. Hence suitable extensions of our
present hydrodynamic model to encompass metallic systems
might be envisaged.

VI. CONCLUSIONS

In summary, we have shown that the combination of
MD simulations for the microscopic stress generation with a
hydrodynamic theory accounting for its mesoscopic relaxation
provides a robust framework that can explain the experimental
variability of IBS nanopatterning of Si, and possibly other
important targets that become amorphous under the present
type of irradiation, typically semiconductors.
Our approach can predict the values of quantities that

characterize the ripple formation process, like the critical
angle, the divergence of the ripple wavelength at the type-II
transition, and the scaling of the ripplewavelengthwith energy,
including their universality or lack thereof with respect to, e.g.,
a change in the ion species. We obtain good agreement with
our own experiments with Xe+ and Ar+ ions, as well as with
other as summarized in Table I. Our predictions include even
the maximum value of the critical angle that can take place
within a non-BH scenario for ripple formation, appropriate
for Si. As improvements in our approach over previous
recent models, we can stress the experimental assessment and
continuum description of the corrugation of the a-c interface,
which has a nontrivial effect in the pattern formation and
dynamics.
Nevertheless, unavoidably our modeling requires approxi-

mations that are related, on the one hand, with computational
feasibility in connection to MD simulations; on the other
hand, with analytical tractability in the case of the continuum
description. Relaxation of such approximations may possibly
affect, e.g., the numerical values obtained for a number model
predictions, like the 61.8◦ upper bound for θc under non-BH
scenarios, the value of the ripple in-plane velocity, etc. In
the process of improving upon our current approximations, it
would be interesting to make contact with kinetic descriptions
like rate equations for flow defect dynamics [50], which have
been recently validated against stressmeasurements on Si [42].
Still, we believe that our general approach and conclusions
can apply to a wide range of systems and experimental
conditions. Thus one can consider the effect on the value of θc

of experimental parameters other than ion/target combination
through changes in the space distribution of stress, and thus
identify similarities and differences among different cases.
Our results also allow for the possibility of critical angles
smaller than 45◦, as, e.g., for silica [68], which have not been
reported too frequently, and even suggest a potential role for
stress in the BH-like scenarios occurring in the irradiation
of binary compounds or in the presence of impurities. We
have also found that both, the velocity and the direction of
ripple propagation can be affected by the incidence angle, as
recently observed in experiments [57]. It would be interesting

to compare our results with similar experiments performed
for other ion species, in order to assess the influence of
the stress distribution on the in-plane propagation of the
pattern. All these aspects seem to deserve future attention,
with the ultimate goal to reach full understanding of the basic
physical principles underlying this fascinating route to surface
nanostructuring.
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APPENDIX: LINEAR STABILITY ANALYSIS

1. Flat solution

In order to perform a linear stability analysis of the problem,
we first need to obtain its flat (i.e., x-independent) steady-
state solution. This will provide a reference (zeroth order)
configuration, whose stability under periodic (first order)
perturbations will be later assessed. For such a flat solution, the
profiles of the steady pressure,p0(z), and horizontal, u0(z), and
vertical,w0(z), velocities will be functions of the depth z only;
their shapes are governed by the reduced form of Eqs. (8)–(10),
which read

∂zw0 = 0, (A1)

μ∂2zzu0 + 	τzz

R0
cos θ sin θ = 0, (A2)

− ∂zp0 + 2μ∂2zzw0 − 	τzz

R0
cos2 θ = 0. (A3)

If we consider an inertial frame of reference inwhich the planar
free interface h is located at z = 0 while the a-c interface hac
is located at z = −R0, the boundary conditions Eqs. (15)–(18)
reduce to

−p0(0)+ 2μ∂zw0(0) = −τzz(0) cos(2θ ), (A4)

μ∂zu0(0) = τzz(0) sin(2θ ), (A5)

u0(−R0) = 0, (A6)

w0(−R0) = 0. (A7)

We can easily integrate Eqs. (A1)–(A3) using Eqs. (A4)–(A7)
to obtain the steady, planar profiles. From the incompressibility
condition, Eq. (A1), and using (A7), we obtain that to this order
of approximation there is no vertical component of the flow,
w0(z) = 0. The pressure and the horizontal flow velocity take
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the form

p0(z) = −	τzz

R0
z cos2 θ + τzz(0) cos(2θ ), (A8)

u0(z) =
(

−	τzz

2R0
z2 + 2τzz(0)z + 	τzzR0

2
+ 2τzz(0)R0

)

× sin(2θ)

2μ
, (A9)

where we have used that the integral of the stress gradient
across the amorphous layer only depends on its difference,
	τzz, between the free and the a-c interfaces, namely, we are
considering a constant body force. Equations (A8) and (A9)
imply a linear profile for the pressure and a parabolic profile
for the horizontal velocity, which reduce to a constant pressure
and to a linear horizontal velocity profile, respectively, when
	τzz = 0 as in Ref. [27]. In such a case, at the free surface
(z = 0) the pressure only depends on the stress created by
the ions there, τzz(0), being maximum for θ = 0◦. For larger
angles of incidence the pressure decreases monotonically,
being negative for θ > 45◦. On the other hand, the flow
velocity at the free surface isminimumat normal and at grazing
incidence, and maximum for θ = 45◦.

2. First-order solution and linear dispersion relation

We can study how the stability of this planar solution is
altered by adding a small perturbation which is periodic in the
substrate coordinate x with wave vector q. Up to first order
in a small parameter ε, the pressure, horizontal and vertical
velocities, and the free and a-c interfaces take the form

p = p0(z)+ εp1(z)e
ωq t+iqx, (A10)

u = u0(z)+ εu1(z)e
ωq t+iqx, (A11)

w = w0(z)+ εw1(z)e
ωq t+iqx, (A12)

h = εh1e
ωq t+iqx, (A13)

hac = −R0 + εh1e
ωq t+iq(x−R0 tan θ), (A14)

where ωq is the amplification rate (linear dispersion relation)
for the amplitude of the perturbation. It should be noted that we
have simply considered that the a-c interface is vertically and
horizontally displaced with respect to h by the amounts −R0
and −R0 tan θ , respectively, as observed in our experiments
[see Figs. 2(b) and 3]. A more elaborate relation between
both interfaces can be written; however, Eq. (A14) is enough
up to the present order of approximation. As compared with
previous works [10,27], it already endows the a-c interface
with a nontrivial form and dynamics.

Substituting expressions (A10)–(A14) into Eqs. (8)–
(10) and expanding cos(θ − γ ) ≈ cos θ + γ sin θ ≈ cos θ +
(∂xh) sin θ , we obtain, to first order in ε,

iqu1 + ∂zw1 = 0, (A15)

−iqp1 + μ
( − 2q2u1 + iq∂zw1 + ∂2z u1

)
+ iq

	τzzh1

R0
sin2 θ = 0, (A16)

−∂zp1 + μ
(
2∂2z w1 + iq∂zu1 − q2w1

)
− iq

	τzzh1

2R0
sin(2θ) = 0. (A17)

Working similarly with the boundary conditions at the top
interface (z = h), we obtain

p1(0)− h1q
2σ − 2μ∂zw1(0)− 	τzzh1

R0
cos2 θ = 0, (A18)

μ[iqw1(0)+ ∂zu1(0)]+ iq2τszz(0)h0 cos(2θ )

− 	τzzh1

2R0
sin(2θ ) = 0, (A19)

while those at the bottom interface (z = hac) [Eqs. (17)
and (18)] lead to

u′
0(−R0)+ u1(−R0) = 	τzz + 2τzz(0)

2μ
h1 sin(2θ )e

−iqR0 tan θ

+ u1(−R0) = 0, (A20)

e−iqR0 tan θh1ω − w1(−R0) = 0. (A21)

From Eq. (A15), we can express u1 through the first
derivative of w1 and substitute it into Eq. (A16) to get an
expression of p1 as a function of w1 and its derivatives. If
we now write down Eq. (A17) as a function of w1, we get
a fourth-order equation in terms of derivatives of w1 only.
Such an equation can be solved using the boundary conditions,
Eqs. (A18)–(A21).
Expanding Eq. (14) to first order in ε, we get an expression

for the linear dispersion relation ωq as a function of u0 and w1
at z = 0, which reads

ωq = −iqu0(0)+ w1(0). (A22)

This result can be simplified further by assuming that the
thickness of the damaged amorphous layer, R0, is much
smaller than the ripple wavelength, λ, and performing a power
expansion in wave-vector q. This finally leads to Eqs. (20)
and (21) in the main text. Note, within the present description,
ripples form if there exist wave-vector values for which the real
part of the dispersion relation, Re(ωq), takes positive values.
In such a case, the ripple wavelength λ = 2π/qm, where qm is
the value for which Re(ωq) reaches its (positive) maximum.
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[49] B. Abendroth, H. Jäger, W. Möller, and M. Bilek, Appl. Phys.

Lett. 90, 181910 (2007).
[50] T. M. Mayer, E. Chason, and A. J. Howard, J. Appl. Phys. 76,

1633 (1994).
[51] A. Oron, S. H. Davis, and S. G. Bankoff, Rev. Mod. Phys. 69,

931 (1997).
[52] R. M. M. Mattheij, S. W. Rienstra, and J. H. P. ten

Thije Boonkkamp, Partial Differential Equations: Modeling,
Analysis, Computation (SIAM, Philadelphia, 2005).
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