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Abstract

This thesis addresses problems fundamental to the creation of interactive 3D graphics appli-
cations which feature real-time simulations carried out on distributed networks of computer
workstations. Sufficient lag exists in present day hardware configurations to stifle realism, even
when the computer simply mimics the sensed actions of users with rendered graphics. This
problem is compounded when real-time physical simulations and more remote users are added.
Even if the simulation algorithm is efficient enough to provide a timely and realistic reaction
to inputs, the system must still further overcome subsecond lags in the sensor and rendering
pipelines, to achieve spatio-temporal realism.

First, a framework for distributing the real-time execution of non-rigid physical simulations
is presented. This framework has been demonstrated to have an efficiency that increases nearly
linearly as a function of the number of processors. To achieve this scaling behavior one must
minimize network and processor contention; in our system this is made possible by replacing
synchronous operation by the weaker condition of bounded asynchrony, and by use of compact
modal representations of shape and deformation. The system also allocates computational
resources among networked workstations using a simple, efficient "market-based" strategy,
avoiding problems of central control.

Second, to further combat the problem of lag on the subsecond level, a technique for
predicting and accounting in advance for the actions of the user is presented. The method is
based on optimal estimation methods and fixed-lag dataflow techniques. An additional method
for discovering and correcting prediction errors using a generalized likelihood approach is also
presented.
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Chapter 1

Introduction

This thesis describes methods for dealing with the construction of simulated environments on

computer networks in which multiple users can interact comfortably with each other through

real-time physical simulation. The possible applications for distributed real-time physical simu-

lation include joint CAD/CAM with interactive stress testing, visual information environments

and physically-based animations or puppet shows. Unfortunately, tremendous computational

resources are required to compute object dynamics, detect collisions, calculate friction, etc.,

in order to simulate complex multibody environments in interactive time. Consequently, most

physically-based modeling and simulation has been confined to the domain of batch processing

or to simulations which are simple and uninteresting.

In order to be convincing and natural, however, interactive graphics applications must

correctly synchronize user motion with rendered graphics and sound output. The exact syn-

chronization of user motion and rendering is critical: lags greater than 100 msec in the rendering

of hand motion can cause users to restrict themselves to slow, careful movements while dis-

crepancies between head motion and rendering can cause motion sickness [14, 23]. In systems

that generate sound, small delays in sound output can confuse even practiced users.

This thesis attempts to tackle this problem on two levels. First, a successful effort was made

to speed an existing modal dynamics simulation package called ThingWorld [24, 26, 31, 8]

through a distribution of the collision detection and resolution. On the second level, optimal



estimation techniques were applied to the problem of further synchronizing input signals with

system reactions such as rendered graphical and sound outputs is shown. These two projects

were carried out separately, but they share the common goal of building well-synchronized

simulated dynamic environments with process load distributed among a network of participating

workstations.

1.1 Background

For applications not requiring physical simulation, large scale computer-simulated environ-

ments are already in operation. Simulation Network (SIMNET) [30], a nation-wide effort in

the U.S.A., is a large scale "virtual reality" carried out over a computer network involving up

to several hundred specialized computer workstations. It is a distributed system that can be

upscaled to handle very large, complex environments and hundreds of users in interactive time.

SIMNET was not designed to be capable of providing physically-based simulation on a

large scale (or even to be capable of running on vendor supplied hardware). Users only move

around and view each other from their positions, but do not interact in dynamic simulation with

each other or with their environment. SIMNET has demonstrated that current-day network

communications, computer workstations, and graphics hardware are capable of supporting large

simulated environments. Also, there are software efforts presently underway to port SIMNET

functionality to standard graphics hardware, and to include physical simulation capabilities

[6, 36]. The goal of this work is to effectively address fundamental technical problems facing

these efforts, rather than to attempt to build a system capable of running with existing standard

protocals and specialized hardware platforms.

Many algorithms exist for dynamic simulation. The most common of these, the Finite

Element Method or FEM is well suited to illustrate complexity. It is a standard, accurate and

well known method for approximating the physical behavior of articulate solids by splitting

primitives into small elements or nodes. However, using the FEM to compute the effects

of a load on an object requires O(n ) calculations and 0(n 2 ) storage locations, where n



is the number of object nodes. When using the FEM, objects are generally represented using

polygonal meshes requiring O(nm) operations for collision detection, where n is the number of

polygons on one surface and m is the number of points from the other surface being considered.

For such collisions the calculation of repulsion forces is also computationally intensive, because

typically more than one set of polygons will be found to intersect at each collision.

Recently, however, a "hot" topic in computer vision research has been the representation

of shape as low order modal deformations applied to simple implicit functions [28, 29, 32].

It has also been shown, that a fast approximation to the FEM called modal dynamics can be

derived using deformed superquadrics [24,27]. This method requires only linear time and space

complexity to compute the effects of load on an object. This is achived by precomputing the

Jacobian matrix characterizing the relationship between modal and nodal changes. This result

has been generalized to include more articulated shapes not possible with ordinary deformed

superquadrics, by displacing the surface of the implicit along its normal, something similar to

a bump-map [31, 32].

Implicit functions are accompanied by normalized inside-outside functions D(,x, y, z),

where the point (x, y, z) is relative to the object's canonical reference frame. To test a point

against a deformed implicit function, the point must be transformed with the inverse defor-

mation into the object's canonical reference frame and then substituted into the inside-outside

function. Collision detection becomes a simple task, because the value of D (x, y, z) charac-

terizes the degree to which the point intersects the implict surface. When D(x, y, z) < 1.0

the point lies inside the surface, and when D(x, y, z) > 1.0 the point lies outside the surface.

Thus the computational complexity of collision detection of a polygonal surface of n points

with with an implicit surface is only 0(m), which is a factor of n less than with standard

methods. Collisions with implicit surfaces are also easier to characterize, because the normals

at the points of collision are easy to calculate from the functions implicit definition, and because

D(x, y, z) is known. Using this method, the computation of the non-rigid physical behavior of

several objects becomes possible in real-time on present day workstations.

Although the modal dynamics algorithm is fast for computing collision and the effects



of loads on objects, actually detecting all of the collisions between n separate objects still

scales as 0(n2 ). The entirely of chapter 2 is devoted to splitting this problem of quadratic

complexity among a network of participating workstations. The idea of breaking large tasks

into multiple smaller tasks is a familiar one in computer science and is naturally embodied in

physics, chemistry and biology. The natural world around us is a rich parallel, distributed and

asynchronous environment. It seems entirely natural that computations of such environments

should also take place in distributed and asynchronous computational environments.

Concurrent with this thesis research, investigators Lin and Dworkin [19, 7] have separately

pursued another approach to reducing this On2 problem. Their approach, instead of checking

every object pair for collisions at each timestep,maintains a schedule of forseen future collisions.

Then, assuming that this schedule contains all possible collision pairs in the near future, it is

simply read like a queue to find the next collision.

There are, however, severe problems with this approach with respect to interaction. For

instance, if an object is receiving constant outside forces from a sensor or human user, it must be

checked against others to schedule future collisions at each timestep anyway. These algorithms

also do not include provisions for the changing shape of objects in non-rigid simulation, nor

for the dynamic changing of force constraints between objects. But, in cases where there is

no outside input from users, and object composition is kept extremely simple (i.e. rigid and

spherical) [7] has claimed impressive timing results for large simulations. Also, interesting

results in the distance computations between, and consequently the collision detection of, two

arbitrary convex polygonal objects is presented by Lin [19].

1.1.1 Allocation of Computational Resources

Many systems which allocate multiple processes among remote processors or process servers

apply theories of economics and perform variations of cost benefit analysis. A simple yet

powerful system, the Enterprise system [20], treats idle processors as contractors, and those

requesting assistance as clients. Clients broadcast requests for "bids" from contractors on

executing certain tasks. These requests contain information about the size and nature of the



task at hand. A process server evaluates this information given its ability to handle tasks and

replies with a bid corresponding to the estimated completion times for the task, and in a sense

conveys the localized price that the client would pay for choosing that processor for that task.

Problems with this system arise because all clients will naturally choose the minimum bidder

and no central mechanism is available which attempts to maximize the global throughput of the

system. For example, a high priority process needing special hardware could become "locked

out" or unknowingly priced out of using a badly needed server because a greedy and low

priority client got there first.

Systems applying more complex market mechanisms such as those of price, trade and trust

to the software domain, are dubbed agoric systems for the greek word agora meaning market

place [22]. Agoric systems are able to combine local decisions made by separate agents into

globally effective behavior through the use of more complex bargaining schemes. For instance,

process spawners can willingly offer a higher price to process servers with special hardware

capabilities able to "get the job done right". Similarly, special purpose contractors can refuse or

charge higher rates to those customers who could fare just as well "doing business" elsewhere.

This is a rich area of research, with obvious interdisciplinary parallels. Malone is currently

developing a unified coordination theory [21] which can be applied to many areas of research,

including work in distributed and parallel processing. All of these market-based ideas work

because they do not attempt to formulate the "golden rule", or the "perfect loop", instead they

allow the simultaneous decisions of multiple and remote rational actors to converge on a global

behavior that is for the common good, hence the term Computational Ecology [15].

The ideas presented in chapter 2 draw from these works by having the processors involved

in the distributed simulations balance their own load with respect to the others. No centralized

mechanism is used to load balance the processors, and each processor acts independantly with

a simple set of localized rules.



1.2 Overview

Chapter 2: This chapter describes an extension of the existing ThingWorld dynamics package

into the realm of parallel and distributed processing [5]. The computational task of large

interactive multi-body simulations is split across several workstations where input is taken

from position sensors and simulation results are displayed in real-time. Parts of this chapter

are taken from a paper presented at the third annual eurographics workshop on animation and

simulation [12].

Chapter 3: In chapter 3, a method is presented for the further fine tuning of coupling between

user motions and rendered simulation response based on optimal estimation and fixed-lag

dataflow techniques. Most of this chapter also appears in one or both of [10, 11].



Chapter 2

Distribution of Physical Simulation

To provide a distributed simulation environment where remote users can interact with the

same physically-based models, this chapter presents a framework for distributing the real-time

execution of non-rigid physical simulations. This framework has been demonstrated to have an

efficiency that increases nearly linearly as a function of the number of processors. To achieve

this scaling behavior one must minimize network and processor contention; in the test system

this is made possible by replacing synchronous operation by the weaker condition of bounded

asynchrony, and by use of compact modal representations of shape and deformation. The

system also allocates computational resources among networked workstations using a simple,

efficient "market-based" strategy, avoiding problems of central control.

The concept of extending algorithms into the domain of distributed processing is, of course,

not new. A wide variety of distributed algorithms and architectures exist for high quality

and real-time image rendering. The goal of this work is similar; to obtain large, shared,

physically-based simulated environments which run in interactive-time.

The task of distributing the workload among involved processors is simple. Instead of

having one central workstation simulate all moving objects and broadcast updates to other

workstations for display, as in figure 2-1, each processor becomes responsible, as in figure 2-2,

for simulating an exclusive subset of moving objects within a usually larger set of apparently

static objects. These surrounding "static" objects are, of course, also moving and deforming
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because their behaviors are simulated simultaneously on one of the other processors involved.

The result of distributing the computational load of physical simulation can be a large perfor-

mance improvement. Unfortunately, a straightforward implementation of distributed physical

simulation produces little speedup, because of network overhead and network/processor con-

tention. Consequently, to achieve substantial gains from a parallel implementation one must

first solve several problems:

2.0.1 Too Much Data

Non-rigid simulations typically require changing every polygon vertex, however such large

amounts of data cannot be broadcast sufficiently quickly over current networks. Consequently,

a concise description of non-rigid behavior and geometry is required.

My approach is to adapt the technique of modal dynamics [24, 31, 8] to the realm of

parallel and distributed processing [5]. All rigid and non-rigid motion can be described by the

linear superposition of the object's free vibration modes. Normally only a few such modes are

required to obtain very accurate shape descriptions; in fact, vibration modes are the optimally

compact description assuming that external forces are uniformly distributed.

By using a modal description framework, one can avoid broadcasting polygons and instead

broadcast only a few modal coefficients. In my system this typically reduces network traffic

by more than an order of magnitude.

2.0.2 Synchronous Operation

Physical simulation requires that all of the processors remain at least approximately in lockstep,

so that no part of the physical simulation lags behind some other part. Unfortunately, this means

that all of the processors are trying to communicate with each other at the same time, leading

to significant network contention. As a consequence, a large fraction of each processor's time

is wasted while waiting for updates to arrive.

To solve this problem I introduce the concept of bounded asynchrony, and prove that a

limited amount of asynchrony can be allowed without degrading overall simulation accuracy.



This small amount of asynchrony allows interprocessor communication to proceed more or less

continuously, significantly reducing the problems of network and processor contention.

2.0.3 Variable Loading

The computational load imposed by physical simulation varies over time, due to collisions,

changing geometry, and external factors such as external fluxtuations in processor availability

due to paging and processor contention. This causes difficult problems concerning resource

allocation and task migration.

To address this problem I have adopted an approach based on the use of simple localized

mechanisms such as cost and wealth. Such an approach is known as an agoric system [22], and

has been shown capable of combining local decisions made by separate agents into globally

effective behavior. I have found that in my application such simple mechanisms perform quite

satisfactorily.

2.1 Communications

Standard physical simulation requires that the state of all objects be updated in lockstep. In a

distributed system this requires all processors to wait while they trade state changes between

steps of simulation - a serious loss of efficiency. Similarly, standard physical simulation of

nonrigid objects requires modification of all polygon vertices. In a straightforward distributed

implementation, this requires large amounts of data to be traded among all processors, quickly

saturating the network.

Two conditions required for this communications scheme to be successful are that the

packet size be small, so that network bandwidth is not exceeded, and that state changes be

asynchronous, so that network contention is minimized. Unfortunately, both of these conditions

are at odds with the standard methods for physical simulation.

Clearly in simulated environments depicting very large spaces, where participants see and

interact with only a relatively small portion of the world model at any one time, it would be



advantageous to partition the work of simulating objects based on their positions in space. This

would be similar to zone defense as opposed to man-to-man defense in the sport of football or

soccer, and would greatly reduce the needed network traffic and collision computation because

processors handling wholly disjoint zones would have little need to exchange object state

changes or to compare each others objects for collisions.

This approach was not undertaken in this work because our group is not altogether concerned

with the specific problems of such large virtual spaces and because of the desire to have a

dynamic load balancing scheme included in the system. If we were paritioning workload based

on object location, processor loads would be quite unpredictable as objects moved from one

processor's zone to another's. To perform load balancing using "zone defense" we would have

to figure out where to move the zone boundries using some sort of space quantization algorithm

(i.e. Heckbert's median cut). This could not be easily achieved with localized rules carried out

by decentralized actors, and thus would not fit well into the framework being built here.

My solution to the network saturation problem is to employ a concise parametric rep-

resentation to represent nonrigid object deformations. In most situations this allows one to

avoid sending polygon vertices between machines, and instead send only a short parametric

description that converts the old shape into the new deformed shape. The use of a parametric

description of shape also has the advantage that it can be used to obtain a generalized implicit

function representation [31], thus allowing fast collision detection and characterization [34].

This approach is described further in the next section.

The second part of my solution to the problem of network saturation is to allow bounded

asynchrony in the simulation. By allowing a small amount of asynchrony in the physical

simulations, I have been able to simultaneously improve both the accuracy and the efficiency

of the system. This is described in section 2.3.



2.2 Parametric Representation

The physical simulation algorithm used in my implementation is a modal representation of

nonrigid deformation (see references [24, 31, 8], the most up to date work being presented by

Irfan Essa in the main session of Eurographics '92). The modal representation is the optimally

efficient parameterization over the space of all physical deformations, as it is the Karhunen-

Loeve expansion of the object's stiffness matrix. However any set of standard parametric

deformations [2] can be used as long as they span the space of nonrigid deformations expected,

and can be calculated from the results of the physical simulation. An example of describing

nonrigid physical behavior using standard deformations can be found in reference [32].

2.2.1 Modes as a Parametric Representation

In the finite element method (FEM), energy functionals are formulated in terms of nodal

displacements U, and iterated to solve for the nodal displacements as a function of impinging

loads R:

MU + CU + KU = R (2.1)

This equation is known as the FEM governing equation, where U is a 3n x 1 vector of the

(Ax, Ay, ZAz) displacements of the n nodal points relative to the object's center of mass, M,

C and K are 3n by 3n matrices describing the mass, damping, and material stiffness between

each point within the body, and R is a 3n x 1 vector describing the x, y, and z components of

the forces acting on the nodes.

To obtain a physical simulation, one integrates Equation 2.1 using an iterative numerical

procedure at a cost proportional to the stiffness matrices' bandwidth. To reduce this cost one can

transform the problem from the original nodal coordinate system to a new coordinate system

whose basis vectors are the columns of an n x n matrix P. In this new coordinate system the

nodal displacements U become generalized displacements U:

U = PU (2.2)



Substituting Equation 2.2 into Equation 2.1 and premultiplying by pT transforms the governing

equation into the coordinate system defined by the basis P:

MU+CU+KU=R (2.3)

where

M = PTMP; C = PTCP; K = PTKP; N - PTR (2.4)

With this transformation of basis, a new system of stiffness, mass, and damping matrices can

be obtained which has a smaller bandwidth then the original system.

The optimal basis # has columns that are the eigenvectors of both M and K [3]. These

eigenvectors are also known as the system's free vibration modes. Using this transformation

matrix we have

TKl = rM = I (2.5)

where the diagonal elements of p2 are the eigenvalues of M-'K and remaining elements

are zero. When the damping matrix C is restricted to be Rayleigh damping, then it is also

diagonalized by this transformation.

The lowest frequency vibration modes of an object are always the rigid-body modes of

translation and rotation. The next-lowest frequency modes are smooth, whole-body defor-

mations that leave the center of mass and rotation fixed. Compact bodies - solid objects

like cylinders, boxes, or heads, whose dimensions are within the same order of magnitude -

normally have low-order modes which are intuitive to humans: bending, pinching, tapering,

scaling, twisting, and shearing. Some of the low-order mode shapes for a cube are shown in

Figure 2-3. Bodies with very dissimilar dimensions, or which have holes, etc., can have very

complex low-frequency modes.

The bandwidth advantages of using such a parametric representation can be enormous. In

a typical case in my system, the complete parametric representation of shape and nonrigid

behavior requires only 120 bytes, whereas the vertex, polygon and normal representation with

no non-rigid behavior information requires at least 4704 bytes.



Figure 2-3: A few of the vibration mode shapes of a 27 node isoparametric element.

2.2.2 Combination with Implicit Function Geometry

A further advantage is that such parametric representations may be combined with an implicit

function surface to obtain extremely efficient collision detection [31, 24, 8]. In object-centered

coordinates r = [r, s, t}T, the implicit equation of a spherical surface is

f(r) = f(r, s, t) = r 2 + s2 + t2 - 1.0 = 0.0 (2.6)

This equation is also referred to as the surface's inside-outside function, because to detect

contact between a point X, = [X,, 1,, Z,]T and the volume bounded by this surface, one

simply substitutes the coordinates of X into the function f. If the result is negative, then

the point is inside the surface. Generalizations of this basic operation may be used to find

line-surface intersections or surface-surface intersections.

A solid defined in this way can be easily positioned and oriented in global space, by

transforming the implicit function to global coordinates, X = [X, Y, Z]T we get [31]:

X = Rr + b (2.7)



where R is a rotation matrix, and b is a translation vector. The implicit function's positioned

and oriented (rigid) inside-outside function becomes (using Equation 2.7):

f(r) = f(R~-'(X - b)). (2.8)

Any set of implicit shape functions can be generalized by combining them with a set of

global deformations D with parameters m. For particular values of m the new deformed

surface is defined using a deformation matrix Dm:

X = RDmr + b (2.9)

In my system the deformations used are the modal shape polynomial functions, defined by

transforming the original finite element shape functions to the modal coordinate system (see

[28]). These polynomials are a function of r, so that Equation 2.9 becomes:

X = REm)11 (r)r + b (2.10)

Combining the non-rigid deformation of Equation 2.10 with this inside-outside function we

obtain,

f(r) = f(D-'(r)R-'(X - b)) (2.11)

This inside-outside function is valid as long as the inverse polynomial mapping D-1 (r) exists.

In cases where a set of deformations has no closed-form inverse mapping, Newton-Raphson

and other numerical iterative techniques have to be used.

This method of defining geometry, therefore, provides an inherently more efficient mathe-

matical formulation for contact detection than geometric representations such as polygons or

splines.



2.2.3 Additional Considerations for Displaying Graphics

Virtually all modem 3-D graphics libraries, such as the Programmer's Hierarchical Interactive

Graphics System (PHIGS/PHIGS+), have only simple linear transformation capabilities, in

order to allow for translation, scaling and perspective viewing of scenes composed of rigid

objects. Because these library standards are optimized for storing static objects in a fixed

display list they are poorly suited to the task of interactively displaying non-rigid simulations.

Consequently, when using Equation 2.10, the entire vertex/polygon representation of all moving

objects must be uploaded from the simulation engine into the graphics display list at each frame

update.

But by considering only the whole-body deformations which are not functions of r, namely

those of linear scale and shear, one is able to, as in Equation 2.9, compose a single 4x4

transformation matrix describing both the rigid and non-rigid motion of the simulated object.

This allows one to preload the object's undeformed shape r into the display list, and obtain

impressively fast displays of non-rigid dynamic simulation using standard graphics software

and hardware.

To accomplish this the object's parameters of deformation is restricted to be

M = [Scaler, Scaley, Scale2 , Shear,, Shear,, Shear2] giving the deformation matrix,

Scale, Shear. Shear,

D = Shear2 Scale., Shear, . (2.12)

Sheary Shearx Scale,

This restricted deformation matrix also simplifies the computation necessary for collision

detection in Equation 2.11, because the object's global inverse deformation matrix D- I (r) is a

single matrix that is not dependent on r.



2.3 Bounded Asynchronous Operation

Synchronizing physical simulations of heterogeneous objects and situations intrinsically re-

quires wasting a substantial amount of network bandwidth and CPU processing time. This is

because each processor must wait until every other processor has broadcast its results the pre-

vious time step before it can begin processing the next. Consequently, it is extremely desirable

to allow some sort of asynchronous operation.

In the following, synchronous and asynchronous operation modes are mathematically an-

alyzed by proving that the operation of an asynchronous network is equivalent to that of a

particular type of synchronous network whose update rule considers the Hessian of the energy

function. This result will then allow a formulation of a type of bounded asynchronous operation

that results in faster and more stable network performance.

2.3.1 Energy Minimization

Physical simulation can be stated as a energy minimization problem. A time-varying three-

dimensional potential field is defined by the sum of gravity, collisions, internal elasticity and

damping, as well as the artificial potentials contributed by user-defined constraints. Objects

act to minimize their potential energy by descending along the gradient of this potential energy

surface.

Designating the system state by the vector U (T) and the potential field by the scalar-valued

function E(U(T)), then the system evolution obeys:

U(T) = -VuE(U(T)) (2.13)

The system's state parameters "roll" down this energy surface until a collision occurs or a local

minimum or "rest state" is reached. When a collision occurs, the potential energy surface warps

in response to the new forces acting upon the colliding objects. The state parameters of these

objects then begin to evolve along the new gradient direction.

To simulate this physical behavior on a computer, I discretize time into units A T, calculate



the energy gradient of the entire physical system as a function of its parameters U at each

time step, and then iteratively update the system parameters along the gradient direction by an

amount proportional to the product of the gradient magnitude and the time step. If A.T is kept

sufficiently small, then the true gradient direction will be accurately tracked and the simulation

will accurately mimic the behavior of a real physical system.

2.3.2 Equivalent Operation Mode

In the preceding I assumed synchronous operation where the system state U(Ti) is updated at

each time Ti+I = T + A T , for example,

U(T+1 ) = U(Ti) + AU(T) (2.14)

where

AU(Ti) = -Vu-E(,U(Tj))A T (2.15)

In asynchronous operation, each processor broadcasts the state changes of the objects it

is simulating as soon as it has finished a time step. Thus each processor will receive state

changes from other processors during each time interval A T. To describe asynchronous

operation, therefore, the time interval A T is further divided into K smaller steps t1, such that

t1+1 = t, + A t where At = A T/K, to = 0 and K is large, thus obtaining the following update

equations [16]:

U(Tj+1 ) = U(T) + AU(T) , (2.16)

where U and AU are now the time averaged update equation, which is related to the detailed

behavior of the network by the relations

K

A U(T ) = E AU(Tj ti (2.17)



A U(T + tI-1 ) = -VUE(U(Tj + ti_1))At

and

U(Tj + ti) = U(Tj + ti_1 ) + AU(T + t 11 ) . (2.19)

Equations (2.16) to (2.19) describe "micro-state" updates that are conducted throughout each

interval Tj whenever the gradient at subinterval t, is available, that is, whenever one of the

network's processor's broadcasts the state changes of the objects that it is simulating.

2.3.3 Synchronous Equivalent to Asynchronous Operation

First, define the gradient and Laplacian of E at asynchronous times t, to be

Ai = VUE Br = V2E (2.20)
U=U(t1 ) U=U(tt)

and define that all subscripts of A, B, and t are taken to be modulo K.

Next, note that the gradient at time t 1 can be obtained by using the gradient at time Il and

Laplacian at times ti ... t, as below:

Ai+ = Ai + BiAUj (2.21)

= I - /A tBI) Al (2.22)

H I - i/A tBk) A1  . (2.23)
k=1\

Assuming that A T is small, and thus that At is also small, then at time T, the K-time-step

time-averaged gradient is

1 K
VUE - Ai (2.24)

U=U(T,) K 11

(2.18)



K

~P K1 (1I - 7/ At (Bk) A1 (2.25)
1=1 k=1

t-/A T(I - B) Ai (2.26)

2

= I - TVE U=UT,))A1 . (2.27)

Thus the time-averaged state update equation for an asynchronous network is

U- - V2E A1  . (2.28)
di U=U(T.) 2 U=U(T,)

This update function is reminiscent of second-order update functions which take into account

the curvature of the potential energy surface by employing the Hessian of the potential energy

function [4]:

dUU-- = -i;(I + pVjE-'VUE (2.29)
dT

where the identity matrix I is a "stabilizer" that improves performance when the Laplacian is

small.

Taking the first-order Taylor expansion of equation (2.29) about V2 E = 0,

dIU
-- ~ -r/(I - pVJE)VUE (2.30)
dT II V

is obtained, and setting p = rIAT/2 equations (2.28) and (2.29) are shown to be equivalent

(given small A\T so that the Taylor expansion is accurate).

Thus equation (2.30) is a synchronous second-order update rule that is identical to the

time-averaged asynchronous update rule of equation (2.28). This proves that the bounded

asynchronous operation of such networks using a gradient update rule is equivalent to using

a synchronous second-order update rule that considers the Hessian of the potential energy

function.

The first condition required to obtain this equivalence is that the time step AT is small



enough, so that the approximations of equations (2.26) and (2.30) are valid. This condition is

required of any physical simulation.

The second condition maintained is of bounded asynchrony: all parameters U must be

updated once (on average) during every interval A T. The assumption of bounded asynchrony,

however, requires distributing the computational load so that each object's behavior is, on

average, being simulated at the same rate. Such resource allocation is a difficult problem in its

own right, and is addressed in the following section.

2.4 Resource Allocation

Most systems which allocate tasks among multiple processors are based on some sort of cost-

benefit analysis. Often such analyses require solving difficult nonlinear optimization problems.

In recent years, however, simple distributed systems that use simple, localized mechanisms

such as price, trade, and competition have been found to provide surprisingly good performance.

Such systems are dubbed agoric systems for the greek word agora meaning market place [22].

Agoric systems are able to combine local decisions made by separate agents into globally

effective behavior. These market-based ideas work because they do not attempt to formulate

the "golden rule," or the "perfect loop," instead they set up a Computational Ecology [15], in

which the simultaneous decisions of multiple and remote rational actors to converge on a global

behavior that is for the common good.

A simple yet powerful example of such a system is the Enterprise system [20]. This

system treats idle processors as contractors, and those requesting assistance as clients. Clients

broadcast requests for "bids" from contractors on executing specific tasks. These requests

contain information about the size and nature of the task at hand. A process server evaluates

this information given its ability to handle tasks and replies with a bid corresponding to the

estimated completion times for the task, and in a sense conveys the localized price that the

client would actually pay for choosing that processor for that task.

To visualize my resource allocation problem, imagine each processor as a contractor who



wants to work with others in the colony to complete an infinite series of physical simulation

iterations. Each iteration is completed with an integral amount of work from each contractor,

and must be completed roughly within the global time interval AT in order to maintain the

condition of bounded asynchrony.

If the ith processor is lagging behind others, so that the time AT' for that processor to

complete an iteration of the simulation loop is longer than the average, then the condition

of bounded asynchrony is jeopardized. Such delinquent processors must give part of their

workload to processors that have below-average completion times, so that the simulation will

not fall too far out of lock-step.

To determine whether they are delinquent and how much work they need to offload, all

processors compare their iteration timing with the average iteration timing of all processors

involved. If a processor P has an average elapsed timing that is greater than the average, it

will try to offload a fraction Wt" of its own work to others where,

iAT' - AT a
W = .. (2.31)

But to which processor does this extra work go? And how can one processor offloading work

be sure that it is not inadvertently combining with another offloading processor to overburden

a below average processor? The key idea behind Huberman's [15] work is that there is no easy

answer to these questions. They are the wrong questions, as they assume the existence of some

perfect answer or "golden rule." A far more effective and elegant solution is to do something

simple now, and then again later if needs be.

In this spirit, my system offloads work at any one interval only to the processor P"," with

the lowest timing (i.e., the one with the most time to spare). One must, however, be conservative

about this: suppose that P"'" was the only processor with a below-average timing and all other

processors P' have above-average timings. In this case every Pt will transfer some work to

P ...! To prevent this sort of computational catastrophe, one can divide I4 by the total number



of other processors (N - 2) to obtain the the percentage of work

W( = (2.32)
A Ti(N - 2)

that each above-average P' should give to P".

To execute this rule each timestep the processor needs to know only how many objects it is

currently simulating, their relative computational cost, and the timings of the other processors.

The timings can be easily transferred along with the object updates, adding negligible network

bandwidth and communications overhead.

2.5 Experimental Results

This system has been implemented in C, and runs on DECStation 5000/200 and Sun 4 work-

stations. The user interface processes are separate C processes and are derived from the

ThingWorld modeling system [24, 26, 31, 8]. The underlying network code layer handling

connections, byte swapping, and client/server requests is similar to that found in the X Win-

dow System. This method was chosen because of its familiarity to users, and because of its

demonstrated portability and efficiency.

2.5.1 Performance versus Number of Processors

Graphs 2-4 and 2-5 show timings from the physical simulation of the non-rigid dynamics of 25

objects, including collision detection and response characterization. Twelve modes of deforma-

tion were used for each object, and each object's geometry consisted of 360 polygons and 182

vertices. Also included were some point-position and point-to-point-attachment constraints on

the objects being simulated.

Figure 2-4 shows the elapsed time for 500 time steps of the physical simulation as a function

of the number of processors used and the mode of operation (synchronous versus asynchronous

versus ideal scaling). This data is replotted in Figure 2-5 to illustrate speedup of the physical
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Figure 2-4: Non-rigid physical simulation execution times versus the number of processors
used in the simulation
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Figure 2-5: The same timings expressed as the amount of speedup achieved in the simulation

codes by adding additional processors.

simulation versus number of processors.

In this experiment all the processors were of the same type (DECStation 5000/200 work-

stations), to simplify comparison. Simulation timings do not include graphics rendering or

object processing overhead, including non-rigid polygon mesh regeneration, z-buffer render-

ing, and camera transformations, as these costs depend upon individual camera viewpoints and

the specifics of the graphics hardware employed. Also, when graphics hardware and camera

viewpoint are constant among processors involved, this overhead is constant for all processors,

and can thus be subtracted off to better illustrate speedups gained in the physical simulation

codes. The average graphics processing overhead in this example was 85.37 CPU seconds over

the 500 time steps, so that total execution time for computing and displaying 500 time steps of

this physical simulation is the time graphed in Figure 2-4 plus 85.37 seconds.

As can be seen, when using an asynchronous update rule the simulation time decreases

quite nicely as the number of processors increases. For comparison, the ideal linear scaling

function - where total execution time is equal to 1/n times the single processor execution

time - is plotted as a solid line in Figures 2-4 and 2-5. The measured performance of the

asynchronous network is qualitatively similar to that of the ideal linear scaling function, with



increasing network overhead accounting for most of the differences between ideal and observed

execution times.

For comparison, the dotted line in Figures 2-4 and 2-5 shows the performance using a

synchronous update rule. It can be seen that much worse performance was obtained. This

is due to increasing numbers of wait states occurring as more and more processors are added

and synchronized, always waiting for the slowest processor to finish. In the current system

synchronous performace plateaus between five and ten processors. Asynchronous operation

does not suffer from this problem, as the additional wait states are not introduced as more

processors are added.

2.5.2 Load Leveling and Task Migration

One of the most important characteristics of the system is its ability to adapt to variable system

loading. Such variable loading can occur because of user input (e.g., adding a new object),

or collisions, or events external to the system (e.g., other users running jobs on the same

processor). Whatever the cause, the system must quickly adapt its load distribution in order to

maintain the condition of bounded asynchrony.

Figures 2-6 and 2-7 show a case of load distribution of 30 like objects among three computer

workstations. In this example each workstation is responsible for a physical simulation process

and a user interface / graphics process. Figure 2-6 shows the number of objects being handled

by each of the three workstations, and Figure 2-7 shows the time each workstation requires to

simulate one time step for all of its objects.

This example simulation starts by adding all 30 objects to one processors list and runs for

500 timesteps. In this example the resource allocation code is not activated until the 50th

timestep; when it is engaged the three processors quickly (within five to ten iterations) equalize

their workloads using the allocation scheme described above.

Sometime around the 1 5 0 th iteration a command to spawn a new, outside, process was

typed into a shell on the processor represented by the solid line. By the 2 5 0th iteration, the new

process was up and running. As can be seen, the resource allocation scheme quickly adapted to
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the changes in actual workstation processor load. While the system was paging and spawning

the new process, the processor affected acted independently to adjust the three workloads

accordingly for the remainder of the simulation. The allocation scheme works similarly well

in a variety of other configurations.

2.6 Examples

This section illustrates three examples of the modeling situations possible using the system

described above. All of the simulations shown below were computed at interactive rates (i.e.

10-20 physics iterations/second).

In the first example, a simple human figure is modeled using ten rigid superquadrics and

nine point-to-point energy constraints. Shown in figure 2-8 is the system's response when the

constraint holding up the head is deleted and the human model undergoes the transition between

two rest states. Each superquadric is represented by 48 polygons with the exception of the head

which has a higher sampling between 200 and 300 polygons.

In the second example, shown in figure 2-9, the system computes the rest state of a two

dimensional 5x5 lattice of various superquadric objects strung together with energy constraints,

and its rest state after twelve of the constraints are deleted. Again, each superquadric is

represented by 48 polygons.

The third example shows the non-rigid response of 3 generalized superquadrics to object-

object and object-floor collisions. Each superquadric in this example is sampled at between

200 and 300 polygons. See figure 2-10 and note how the spiked model rests on its spikes when

sitting on the floor.

2.7 Summary

I have presented a system for distributed interactive simulation of complex, multi-body situa-

tions using either rigid or non-rigid dynamics. The system's efficiency has been demonstrated
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Figure 2-8: Interactive model of a human figure.
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Figure 2-9: A lattice of superquadrics reacts to deleted constraints.
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Figure 2-10: Non-rigid response of a generalized object to a squashing collision.



to increase significantly as a function of the number of processors, up to five processors, the

maximum number tested. The system makes use of a novel bounded asynchronous operation

mode allowing it to more fully utilize processor and network resources. It maintains this effi-

ciency by allocating computational resources among networked workstations using a simple,

efficient "market-based" strategy, thus avoiding problems of central control.



Chapter 3

Synchronization of Input and Output

In the preceeding chapter I addressed the problem of reducing the CPU time necessary to

produce dynamic simulations of non-rigid objects. This reduction, although necessary, is not

enough to ensure the synchronization of user motion and corresponding system response. Even

in systems which simply mimic the sensor inputs with rendered graphical output, sufficient lag

exists to muddle the synchrony and destroy the impression of realism.

This chapter proposes a suite of methods for accurately predicting sensor position in order

to more closely synchronize processes in distributed virtual environments. An example system

named MusicWorld employing these techniques is described.

Problems in synchronization of user motion, rendering, and sound arise from three basic

causes. The first cause is noise in the sensor measurements. The second cause is the length of the

processing pipeline, that is, the delay introduced by the sensing device, the CPU time required

to calculate the proper response, and the time spent rendering output images or generating

appropriate sounds. The third cause is unexpected interruptions such as network contention or

operating system activity. Because of these factors, using the raw output of position sensors

often leads to noticeable lags and other discrepancies in output synchronization.

Unfortunately, most interactive systems use raw sensor positions, or they make an ad-hoc

attempt to compensate for the fixed delays and noise. A typical method for compensation

averages current sensor measurements with previous measurements to obtain a smoothed



estimate of position. The smoothed measurements are then differenced for a crude estimate

of the user's instantaneous velocity. Finally, the smoothed position and instantaneous velocity

estimates are combined to extrapolate the user's position at some fixed interval in the future.

Problems with this approach arise when the user either moves quickly, so that averaging

sensor measurements produces a poor estimate of position, or when the user changes velocity,

so that the predicted position overshoots or undershoots the user's actual position. As a

consequence, users are forced to make only slow, deliberate motions in order to maintain the

illusion of reality.

A solution to these problems is presented which is based on the ability to more accurately

predict future user positions using an optimal linear estimator and on the use of fixed-lag

dataflow techniques that are well-known in hardware and operating system design. The ability

to accurately predict future positions eases the need to shorten the processing pipeline because

a fixed amount of "lead time" can be allotted to each output process. For example, the positions

fed to the rendering process can reflect sensor measurements one frame ahead of time so that

when the image is rendered and displayed, the effect of synchrony is achieved. Consequently,

unpredictable system and network interruptions are invisible to the user as long as they are

shorter than the allotted lead time.

3.1 Optimal Estimation of Position and Velocity

At the core of this technique is the optimal linear estimation of future user position. To

accomplish this it is necessary to consider the dynamic properties of the user's motion and of

the data measurements. The Kalman filter [17] is the standard technique for obtaining optimal

linear estimates of the state vectors of dynamic models and for predicting the state vectors

at some later time. Outputs from the Kalman filter are the maximum likelihood estimates

for Gaussian noises, and are the optimal (weighted) least-squares estimates for non-Gaussian

noises [9].

In my particular application I have found that it is initially sufficient to treat only the



translational components (the x, y, and z coordinates) output by the Polhemus sensor, and to

assume independent observation and acceleration noise. This section, therefore, will develop

a Kalman filter that estimates the position and velocity of a Polhemus sensor for this simple

noise model. Rotations will be addressed in the following section.

3.1.1 The Kalman Filter

Let us define a dynamic process

Xk+1 = f(Xk, At)+ ((t) (3.1)

where the function f models the dynamic evolution of state vector Xk at time k, and let us

define an observation process

Yk = h(Xk, At) + r;(t) (3.2)

where the sensor observations Y are a function h of the state vector and time. Both ( and qj are

white noise processes having known spectral density matrices.

In this case the state vector Xk consists of the true position, velocity, and acceleration of the

Polhemus sensor in each of the x, y, and z coordinates, and the observation vector Yk consists

of the Polhemus position readings for the x, y, and z coordinates. The function f will describe

the dynamics of the user's movements in terms of the state vector, i.e. how the future position

in x is related to current position, velocity, and acceleration in x, y, and z. The observation

function h describes the Polhemus measurements in terms of the state vector, i.e., how the next

Polhemus measurement is related to current position, velocity, and acceleration in x, y, and z.

Using Kalman's result, one can then obtain the optimal linear estimate Xk of the state vector

Xk by use of the following Kalman filter:

Xk = X* + Kk(Yk - h(X*, t)) (3.3)

provided that the Kalman gain matrix Kk is chosen correctly [17]. At each time step k, the filter



algorithm uses a state prediction X*, an error covariance matrix prediction P*, and a sensor

measurement Yk to determine an optimal linear state estimate Xk, error covariance matrix

estimate Pk, and predictions X* 1 , P*I for the next time step.

The prediction of the state vector X*i at the next time step is obtained by combining the

optimal state estimate Xk and Equation 3.1:

X+I = Xk + f(Xk, iAt)At (3.4)

In my graphics application this prediction equation is also used with larger times steps, to predict

the user's future position. This prediction allows synchrony with the user to be maintained by

providing the lead time needed to complete rendering, sound generation, and so forth.

Calculating The Kalman Gain Factor

The Kalman gain matrix Kk minimizes the error covariance matrix Pk of the error ek =

Xk - Xk, and is given by

Kk = P*Hk T(HkP*Hk T + R.~' (3.5)

where R = E[r,(t)p(t)T] is the n x n observation noise spectral density matrix, and the matrix

Hk is the local linear approximation to the observation function h,

[Hk]l; = ahi/Ox, (3.6)

evaluated at X = X*.

Assuming that the noise characteristics are constant, then the optimizing error covariance

matrix Pk is obtained by solving the Riccati equation

0=P* = FkP* + P*FT - P*HR -'1 HkP* + Q (3.7)

where Q = E[ (t)((t)T] is the n x n spectral density matrix of the system excitation noise (,
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Figure 3-1: Output of a Polhemus sensor and the Kalman filter prediction of that
lead time of 1/30th of a second.

and Fk is the local linear approximation to the state evolution function f,

[Fklij = ofC/Ox

output for a

(3.8)

evaluated at X = Xk.

More generally, the optimizing error covariance matrix will vary with time, and must also

be estimated. The estimate covariance is given by

Nk = (I - KkHk)P* (3.9)

From this the predicted error covariance matrix can be obtained

(3.10)Pk+ = Ikpkek + Q

where #4 is known as the state transition matrix

i = (I + F/_) (3.1

150

100.

-50.

(3.11)



3.1.2 Estimation of Displacement and Velocity

In my graphics application I use the Kalman filter described above for the estimation of

the displacements Ps, P., and P, the velocities V7, 1, and 1V, and the accelerations Ax,

Ay, and A, of Polhemus sensors. The state vector X of the dynamic system is therefore

(Px, Vx, Ax1, Py, Vy Ay, P2, V, A2)T, and the state evolution function is

f(X, At) =

V" + Ax At

Ax

0

Vy + Ay2

AY

0

V2 + AA

2

0

(3.12)

The observation vector Y will be the positions Y = (P', P', P,')T that are the output of the

Polhemus sensor. Given a state vector X the measurement using simple second order equations

of motion is predicted:

h(X, At) =

+ 1.At + Ax A"

+ V At+ A ""

z 2

(3.13)



Calculating the partial derivatives of equations 3.6 and 3.8 we obtain

0 1

0

0 1

0

0 1

0

and

Finally, given the

time k + Ai by

1 t A2

H1

state vector Xk at time k

2t (3.15)

1 At t

one can predict the Polhemus measurements at

Yk+At = h(Xk, At') (3.16)

and the predicted state vector at time k + A t is given by

Xk+At = Xk + f(Xk, At)At (3.17)

The Noise Model

I have experimentally developed a noise model for user motions. Although the noise model

is not verifiably optimal, I find the results to be quite sufficient for a wide variety of head and

hand tracking applications. The system excitation noise model $ is designed to compensate for

(3.14)



large velocity and acceleration changes; I have found

((t)T = 1 20 63 1 20 63 1 20 63] (3.18)

(where Q = $(t)(t )T) provides a good model. In other words, I expect and allow for positions

to have a standard deviation of 1mm, velocities 20mm/sec and accelerations 63mm/sec2.

The observation noise is expected to be much lower than the system excitation noise. The

spectral density matrix for observation noise is R = 71(t)71(t)T; I have found that

11(t) = [ .25 .25 .25 (3.19)

provides a good model for the Polhemus sensor.

3.1.3 Experimental Results and Comparison

Figure 3-1 shows the raw output of a Polhemus sensor attached to a drumstick playing a musical

flourish, together with the output of the Kalman filter predicting the Polhemus's position 1/30/ h

of a second in the future.

As can be seen, the prediction is generally quite accurate. At points of high acceleration

a certain amount of overshoot occurs; such problems are intrinsic to any prediction method

but can be minimized with more complex models of the sensor noise and the dynamics of the

user 's movements.

Figure 3-2 shows a higher-resolution version of the same Polhemus signal with the Kalman

filter output overlayed. Predictions for 1/30, 1/15, and 1/10 of a second in the future are

shown. For comparison, Figure 3-3 shows the performance of the prediction made from simple

smoothed local position and velocity, as described in the introduction. Again, predictions for

1/30, 1/15, and 1/10 of a second in the future are shown. As can be seen, the Kalman filter

provides a more reliable predictor of future user position than the commonly used method of

simple smoothing plus velocity prediction.
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Figure 3-2: Output of the Kalman filter for various lead times.
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Figure 3-3: Output of a commonly used velocity prediction method.

3.2 Rotations

With the Polhemus sensor, the above scheme can be directly extended to filter and predict

Euler angles as well as translations. However with some sensors it is only possible to read

out instant-by-instant incremental rotations. In this case the absolute rotational state must be



calculated by integration of these incremental rotations, and the Kalman filter formulation must

altered as follows [1]. See also [18].

Let p be the incremental rotation vector, and denote the rotational velocity and acceleration

by V and a. The rotational acceleration vector a is the derivative of V which is, in turn, the

derivative of p, but only when two of the components p are exactly zero (in some frame to

which both p and O are referenced). For sufficiently small rotations about at least two axes, V

is approximately the time derivative of p.

For 3D tracking one cannot generally assume small absolute rotations, so an additional

representation of rotation, the unit quaternion Q and its rotation submatrix R, is employed. Let

qo

Q = , (3.20)
q2

q3

be the unit quaternion. Unit quaternions can be used to describe the rotation of a vector v

through an angle # about an axis n, where n is a unit vector. The unit quaternion associated

with such a rotation has scalar part

qo = sin (4/ 2 ) (3.21)

and vector part

q2 =n cos(4/2). (3.22)

q,

Note that every quaternion defined this way is a unit quaternion.

By convention Q is used to designate the rotation between the global and local coordinate



frames. The definition is such that the orthonormal matrix

q2 + q' - q2 - q' 2 (qlq2 - qoq3) 2 (qlq3 + goq2)

R 2 (qlq2 + qoq3) q - q + q' - q' 2(q2q3 - qoq1) (3.23)

2 (qq 3 - qoq2) 2 (q2q3 + qoq1) q - - gI + q I
transforms vectors expressed in the local coordinate frame to the corresponding vectors in the

global coordinate frame according to

Vglobal = Rviocal. (3.24)

In dealing with incremental rotations, the model typically assumes that accelerations are

an unknown "noise" input to the system, and that the time intervals are small so that the

accelerations at one time step are close to those at the previous time step. The remaining states

result from integrating the accelerations, with corrupting noise in the integration process.

The assumption that accelerations and velocities can be integrated to obtain the global

rotational state is valid only when Pk is close to zero and Pk+1 remains small. The latter

condition is guaranteed with a sufficiently small time step (or sufficiently small rotational

velocities). The condition Pk = 0 is established at each time step by defining p to be a correction

to a nominal (absolute) rotation, which is maintained externally using a unit quaternion Q that

is updated at each time step.

3.3 Unpredictable Events

I have tested the Kalman filter synchronization approach using a simulated musical environment

(described below) which tracks a drumstick and simulates the sounds of virtual drums. For

smooth motions, the drumstick position is accurately predicted, so that sound, sight, and motion

are accurately synchronized, and the user experiences a strong sense of reality.

The main difficulties that arise with this approach derive from unexpected large acceler-

ations, which produce overshoots and similar errors. It is important to note, however, that



overshoots are not a problem as long the drumstick is far from the drum. In these cases the

overshoots simply exaggerate the user's motion, and the perception of synchrony persists. In

fact, such overshoots seem generally to enhance, not degrade, the user's impression of reality.

The problem occurs when the predicted motion overshoots the true motion when the

drumstick is near the drumhead, thus causing a false collision. In this case the system generates

a sound when in fact no sound should occur. Such errors detract noticeably from the illusion

of reality.

3.3.1 Correcting Prediction Errors

How can one preserve the impression of reality in the case of an overshoot causing an incorrect

response? In the case of simple responses like sound generation, the answer is easy. When

one detects that the user has changed direction unexpectedly - that is, that an overshoot

has occurred - then one simply sends an emergency message aborting the sound generation

process. As long as one can detect that an overshoot has occurred before the sound is "released,"

there will be no error.

This solution can be implemented quite generally, but it depends critically upon two things.

The first is that the correct response must be able to be quickly substituted for the incorrect

response. The second is that one must be able to accurately detect that an overshoot has

occurred.

In the case of sound generation due to an overshoot, it is easy to substitute the correct

response for the incorrect, because the correct response is to do nothing. More generally,

however, when it is detected that the motion prediction was in error one may have to perform

some quite complicated alternative response. To maintain synchronization, therefore, one must

be able to detect possible trouble spots beforehand, and begin to compute all of the alternative

responses sufficiently far ahead of time that they will be available at the critical instant.

The strategy, therefore, is to predict user motion just as before, but that at critical junctures

to compute several alternative responses rather than a single response. When the instant arrives

that a response is called for, one can then choose among the available responses.



3.3.2 Detecting Prediction Errors

Given that one has computed alternative responses ahead of time, and that one can detect that a

prediction error has occurred, then the correct response can be made. But how is one to detect

which of (possibly many) alternative responses are to be executed?

The key insight to solving this detection problem is that if one has the correct dynamic

model then one will always have an optimal linear estimate of the drumstick position, and there

should be nothing much better that one can to do. The problem, then, is that in some cases the

model of the event's dynamics does not match the true dynamics. For instance, accelerations

are normally expected to be small and uncorrelated with position. However in some cases

(for instance, when sharply changing the pace of a piece of music) a drummer will apply large

accelerations that are exactly correlated with position.

The solution is to have several models of the drummer's dynamics running in parallel, one

for each alternative response. Then at each instant one can observe the drumstick position and

velocity, decide which model applies, and then have the response based on that model. This is

known as the multiple model or generalized likelihood approach, and produces a generalized

maximum likelihood estimate of the current and future values of the state variables [35].

Moreover, the cost of the Kalman filter calculations is sufficiently small to make the approach

quite practical.

Intuitively, this solution breaks the drummer's overall behavior down into several "proto-

typical" behaviors. For instance, one might have dynamic models corresponding to a relaxed

drummer, a very "tight" drummer, and so forth. The drummer's behavior is then classified by

determining which model best fits the drummer's observed behavior.

Mathematically, this is accomplished by setting up one Kalman filter for the dynamics of

each model:

X W= X*W + K)(Yk - h()(X*(t)) (3.25)

where the superscript (i) denotes the ith Kalman filter. The measurement innovations process



for the ith model (and associated Kalman filter) is then

IF = Y, - h()(X*), t) (3.26)

The measurement innovations process is zero-mean with covariance R.

The itl measurement innovations process is, intuitively, the part of the observation data that

is unexplained by the ith model. The model that explains the largest portion of the observations

is, of course, the most model likely to be correct. Thus at each time step calculate the probability

PO) of the m-dimensional observations Yk given the ith model's dynamics,

Pi)(Yk) = exp - k - (3.27)
(27r )ml/ 2Det(R)1/2  2

and choose the model with the largest probability. This model is then used to estimate the current

value of the state variables, to predict their future values, and to choose among alternative

responses.

When optimizing predictions of measurements At in the future, equation 3.26 must be

modified slightly to test the predictive accuracy of state estimates from At in the past.

Fi) = Yk - h ()(X*()t + f()(X()A, At)At, t) (3.28)

by substituting equation 3.17.

3.4 MusicWorld

My solution is demonstrated in a musical virtual reality, an application requiring synchronization

of user, physical simulation, rendering, and computer-generated sound. This system is called

MusicWorld, and allows users to play a virtual set of drums, bells, or strings with two drumsticks

controlled by Polhemus sensors. As the user moves a physical drumstick the corresponding

rendered drumstick tracks accordingly. The instant the rendered drumstick strikes a drum



Figure 3-4: A rendering of MusicWorld's drum kit.

53



Application
Control Process

Kalmano
Filter Process

Position Data

Device
Query Process

/Ouerv (& 30Hz

Figure 3-5: Communications used for control and filtering of the Polhemus sensor.

Rendering Commands
With 1/30 Second

Lead Time

Application
Control
Process

Sound Commands
With 1/15 Second

Lead Time

Rendering
Process

1/30 Sec. Delay

Estimated Positions
At Times t 1, t 2 ---

Sound
Generation

Process
1/15 Sec. Delay

Figure 3-6: Communications and lead times for the MusicWorld processes.

Polhemus
Filter

Processes



surface a sound generator produces the appropriate sound for that drum. The visual appearance

of MusicWorld is shown in Figure 3-4, and a higher quality rendition is included in the color

section of these proceedings.

Figure 3-5 shows the processes and communication paths used to filter and query each

Polhemus sensor. Since I cannot insure that the application control process will query the

Polhemus devices on a regular basis, and since I do not want the above Kalman loop to enter

into the processing pipeline, I spawn two small processes to constantly query and filter the

actual device. The application control process then, at any time, has the opportunity to make

a fast query to the filter process for the most up to date, filtered, polhemus position. Using

shared-memory between these two processes makes the final queries fully optimal.

MusicWorld is built on top of the ThingWorld system [24, 25], which has one process

to handle the problems of real-time physical simulation and contact detection and a second

process to handle rendering. Sound generation is handled by a third process on a separate host,

running CSound [33]. Figure 3-6 shows the communication network for MusicWorld, and the

lead times employed.

The application control process queries the Kalman filter process for the predicted positions

of each drumstick at 1/ 15 and 1/30 of a second. Two different predictions are used, one for each

output device. The 1/15 of a second predictions are used for sound and are sent to ThingWorld

to detect stick collisions with drums and other sound generating objects. When future collisions

are detected, sound commands destined for 1 / 15 of a second in the future are sent to CSound.

Regardless of collisions and sounds, the scene is always rendered using the positions predicted

at 1/30 of a second in the future, corresponding to the fixed lag in the rendering pipeline. In

general, it would be more optimal to constantly check and update the lead times actually needed

for each output process, to insure that dynamic changes in network speeds, or in the complexity

of the scene (rendering speeds) do not destroy the effects of synchrony.



3.5 Summary

The prediction of the user's future position is necessary to provide synchronization of graphics

and sound with user motion in the face of the unavoidable processing delays in computer sys-

tems. I have shown how to construct the optimal linear filter for estimating future user position,

and demonstrated that it gives better performance than the commonly used ad-hoc technique

of position smoothing plus velocity prediction. The ability to produce accurate predictions can

be used to minimize unexpected delays by using them in a system of multiple asynchronous

processes with known, fixed lead times. Finally, I have shown that the combination of optimal

filtering and careful construction of system communications can result in a well-synchronized,

multi-modal virtual environment using distributed computation.



Chapter 4

Conclusion

This thesis presents two pieces of work dealing with the construction of distributed simulated

dynamic environments. One effort produces a healthy boost in the performance of complex,

dynamic multi-body simulations after distributing the collision detection and response compu-

tations. The other demonstrates that a well-synchronized and comfortable virtual drumming

environment can be achieved through the application of recursive estimation techniques to the

basic problem of lag in the pipeline from input sensors to rendered audio and graphical outputs.

A system for distributed interactive simulation of complex, multi-body situations using

either rigid or non-rigid dynamics is presented in chapter 2. The system's efficiency increases

significantly as a function of the number of processors. The system makes use of a novel

bounded asynchronous operation mode allowing it to more fully utilize processor and network

resources. It maintains this efficiency by allocating computational resources among networked

workstations using a simple, efficient "market-based" strategy, thus avoiding problems of

central control.

In chapter 3, methods are presented to construct optimal linear filters for estimating future

user position, as well as methods for detecting past prediction errors in order to recover more

gracefully. The predictions of future input signals are used to account for small fixed delays by

processing predictions reflecting the state of the input signals after computation is completed.

This results in a well-synchronized simulated environment.



It would be interesting to try reducing network overhead in the distributed system by

considering work done in hidden object pruning for fast scene navigation [13]. The method

of scheduling all future collisions presented by Lin and Canny [19] could possibly help to

eliminate unnecessary object-object collision checks, as well as help to reduce unnecessary

network transmissions of object state between machines. This would not be a problem identical

to the one addressed by [19], because graphical workstations may need to display an object

even if they do not need the current state of that object for the calculations of collisions with

their objects.

Further research in this project will focus on the construction of a distributed system which

combines both methods presented here. I envision building, in the near future, a network of

musical workstations similar to MusicWorld where several performers can collaborate to play

a musical piece or virtual chamber music recital.
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