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ABSTRACT

Malaria caused by Plasmodium falciparum infection is one of the major threats to world health
and especially to the community without proper medical care. New approach to cost-efficient,
portable, miniaturized diagnostic kit is needed. This work explores electric impedance
spectroscopy (EIS) on a microfluidic device as a means of malaria diagnosis. This work
introduces a microfabricated probe with microfluidic channel, and a high speed impedance
analyzer circuit board. Combination of microfluidic device and circuit board resulted in a small-
sized EIS system for micro-particles such as human red blood cell (RBC). After invasion by the
parasites, RBC undergoes physiological changes including electrical property of cytoplasm and
membrane. Detection of infected RBC is demonstrated as well as differentiation of micro-beads
by surface charge density using EIS-based diagnostic system. Diagnosis based on EIS has merits
over other diagnostic methods since it is label-free and quantitative test and applicable to whole
blood, and also the test does not need bulky optical and electrical equipments.
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Chapter 1

Introduction

1.1. Impact of Malaria on Global Health

Malaria is a parasitic disease which infects human red blood cells (RBCs), and it

is life-threatening unless treated immediately. Though malaria is preventable and

curable, the disease prevails mainly in the countries where there are lack of proper

medical facilities, killing about a million people worldwide a year [1].

Malaria Related Deaths
1.3% 0.9% *Based on reported cases in 2009

2.7% M E0.0%
NAfrica

E South-East Asia

m Eastern Mediterranean

mWestern Pacific

0 Am ericas

* Europe

Figure 1. Regional distribution of malaria-related deaths in 2009



Scrutinizing the losses, 95% of malaria deaths reported in 2009 occurred

in Africa (Figure 1) and most of them were children. Human immunity developed

among adults in the endemic areas over years of exposure reduces the risk that

malaria infection will cause severe disease. However, young children with low

immunity are at serious risk. For this reason, malaria causes a great number of

childhood deaths in Africa, it fact a fifth of total childhood deaths. Although

human loss is uncountable, the economic loss in Africa due to the disease is

estimated as $12 billion every year [2]. The health cost of malaria including both

personal and public expenditures on prevention and treatment in Africa varies

between countries. Particularly in some heavy-burden countries, the disease

accounts for up to 40% of public health expenditures, 30% ~ 50% of inpatient

hospital admissions, and up to 60% of outpatient health clinic visits [3].

World Health Organization claims that early diagnosis and treatment of

malaria prevents deaths and reduces malaria transmission. However, the first

symptoms, such as fever, headache, chills and vomiting, may be mild and difficult

to recognize as malaria [3]. Incorrect diagnosis and treatment can lead to drug

resistance of malaria parasites and loss of disease control. It has happened before

with chloroquine and sulfacoxine-pyrimethanmine. Thus, the best available

treatment, particularly for P. falciparum malaria, artemisinin-based combination

therapy (ACT) may not be effective to control the disease in the future. Therefore,

parasite-based diagnosis in early stage is highly in demand.



1.2. Methods and Issues of Malaria Diagnosis

Various types of diagnostic tests are available (Figure 2), but drawbacks exist in

practical applications.

The standard diagnosis of malaria is a microscopic test. Since malaria

parasites are visible, optical examination of infected RBC is direct diagnosis of

malaria. Once blood sample is collected, a medical expert can stain and examine

it under microscope. A Giemsa-stained thick blood film (G-TBF) is usually used

to screen for the presence of parasites quickly [4], and 100 fields of G-TBF can

screen approximately 1,300,000 RBCs in 0.25p1 of whole blood. The process of

G-TBF is easy, but it always requires experienced personnel, a microscope, and

the chemical dye.
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Figure 2. Current diagnostic methods:

(a) G-TBF microscopic test, (b) fluorescent flow cytometry, (c) antigen-based

rapid diagnostic test and (d) deformability-based flow cytometry [18].

With automated machines, fluorescent flow cytometry does the same job

as the standard test. After fluorescent chemical is attached to the infected RBCs,

automated microscope can count the number of infected cells found optically.

Similar to G-TBF method, larger sample volume reduces the chance of missing

infected cells. After checking millions of erythrocytes, red blood cells, medical

personnel can determine that the blood sample is a negative case. Flow cytometry

reduces human labors in the repeated examinations of blood. However, the

diagnostic time is not very short as the sample preparation and equipment setup



time is added in reality. Another drawback, which is critical, is that automated

flow cytometer costs a lot and consumes large amount of energy.

In summary, microscopic test and flow cytometry require experienced

personnel and microscopes which are hard to transport to very remote areas.

These optical methods can also take long time to examine enough volume of

blood sample to find infected RBCs at early stage when parasitemia, the presence

of parasites in the blood, is very low as shown in Table 1. Therefore, rapid

diagnostic tests are getting popular in the area where a large number of suspected

malaria patients reside but there are not many well-organized medical facilities.

Rapid diagnostic tests (RDTs) are able to test a blood sample within an

hour or less. The test kits detect special proteins, antigens, produced by parasites,

utilizing antigen-antibody reaction. Two common antigens are histidine-rich

protein 2 (HRP-2) and lactate dehydrogenase from malaria parasites (pLDH). The

test kits are usually as simple as commercial pregnancy test kits. Depending on

products, the selectivity and sensitivity to parasites vary. The cost, however, is

Table 1. Parasitemia and clinical correlates [4]

0.0001-0.0004% 5-20 Sensitivity of thick blood film test

0.002% 100 Patients may have symptoms below this level,
where malaria is seasonal.

0.2% 10,000 Level above which immunes show symptoms

2-5% 100,000-250,000 Hyperparasitaemia/
severe malaria, increased mortality.

10% 500,000 Exchange-transfusion may be considered/
high mortality
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mostly high, so not many patients in malaria-prevalent areas can afford RDT

unless supported [4]. Though there are the issues of cost and sensitivity, antigen-

based RDT still seems to be an attractive alternative thanks to its size and speed

of diagnosis. But it is a qualitative test that cannot give information of how high

the parasitemia is and of pathological stage of malaria parasites.

Malaria diagnosis based on the mechanical property of RBC is also

proposed. [18] explored microfabricated deformability-based flow cytometry and

showed the possibility to detect early state P. falciparum-infected RBC within

abundant uninfected RBCs. Blood flow in a channel with microfabricated

obstacles showed that the average velocities of uninfected RBCs and of infected

RBCs are significantly different. However, significant overlap in terms of their

dynamic deformability degraded sensitivity of the test. In addition to the

sensitivity issue, the test requires video recording of microscopic view, which

means it needs microscope, camera, and high computing power. Though

deformability-based flow cytometry introduced another approach, more study is

still desired.

It is important to take into account that many of malaria-prevalent areas

are limited in medical experts, electricity, and proper equipments for medical care.

Considering the circumstance, another effective rapid diagnostic tool thus should

be investigated to reach out to the resource-limited areas. In this study,

microfluidic electric impedance spectroscopy (EIS) is investigated as an

alternative approach to malaria diagnosis. The proposed method electrically

detects infected cells within a microfluidic device, so it can have advantages over



Table 2. Summary of malaria-diagnostic methods

GMem-ta iCareestc
TicskBlood + Low cost, easy, standard method

(G-TBF) - Requires experienced personnel, microscope

Fluorescent + Automated test

flow cytometry - Requires expensive equipment
- Pre-process of sample

Antigen-based + Easy and fast diagnosis
Rapid Diagnostic Test - Qualitative test
(RDT) o Sensitivity and cost vary depending on product.
Deformability-based - Low sensitivity
flow cytometry - Requires video analysis

other diagnostic tests. First, it does not require optical equipments such as

microscope, camera, or flow cytometer. Second, it is a quantitative test which

gives parasitemia information. Third, the device for this method can be very small

in size so that transportation to remote areas is possible. Forth, the device can be

as low power as solar- or battery-powered with low power IC design. Fifth, EIS is

a label-free analysis which does not require extensive pre-process on the target

sample. Lastly, the manufacturing cost can be very low, thank to the grown IC

fabrication business.

Chapter 2 and 3 describe the method more in detail.
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Chapter 2

Background

This chapter reviews previous works as background for the EIS-based malaria

diagnostic system which will be introduced in the following chapter.

2.1. Pathology of Malaria

The cause of malaria is Plasmodium parasites. There are four types of

Plasmodium which infect human among more than 120 species. Plasmodium

falciparum is the most common, causing more than 90% of the deaths, while P.

vivax is geographically more widespread. P. ovale and P. malariae are the other

two but far less common.

Mosquito in endemic area is the media of parasite. A bite of an infected

female mosquito transfers a few hundreds of sporozoites and one or two of them

infect the liver cells, or hepatocytes, within hours. Within 2 weeks, the parasite

has produced thousands of daughter merozoites in a single liver cell. As cell

bursts, the infective merozoites flow into the bloodstream beginning the rapid

asexual replication (binary fission of malaria parasite) as well as invasion of

erythrocytes or red blood cells. Inside erythrocytes, the parasite produces 16 to 32



daughters by binary nuclear fissions, and they are released when the red blood cell

bursts. Released parasites continue to infect other red blood cells [5].

The symptoms of malaria such as fever, sweats, rigors, chills and even

coma and death are related to the reproduction of infected RBCs. A newly

infected erythrocyte comes through three stages: a ring stage, a trophozoite stage

and a schizont stage. At the schizont stage, the cell releases merozoites. These

stages can be optically examined as shown in Figure 3.

(a) (b)

Figure 3. Three stages of P. falciparum-infected RBC [5]:

(a) Ring stage. (b) Trophozoite stage. (c) Schizont stage.

After the parasites take up Giemsa stain, the ring stage is the most

commonly seen (Figure 4). The parasite cytoplasm forms an incomplete ring.

Chromatin, a part of the parasite nucleus, is usually round in shape and stains a

deep red. The trophozoite stage is a growing stage, so the parasite within the red

blood cell may vary in size from small to quite large. Malaria pigment (hemozoin),

a by-product of the growth or metabolism of the parasite, appears as the parasite

grows. The pigment has own color ranging from pale yellow to dark brown. At

the schizont stage, the malaria parasite starts asexual reproduction. Parasites with

a number of chromatin dots and definite cytoplasm can be seen at this stage.



cytoplasm (blue)

stippling i -. *,.:
hst*.d*.'* chromatin (red)

host red .--
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Figure 4. Illustration of a malaria parasite in a host red blood cell

While P. falciparum develops in host RBC, RBC undergoes pathological

modifications. Parasites consume hemoglobin and form biocrystal called

hemozoin, or malaria pigment [5]. During the process, cytoplasm and membrane

of RBC change: optical property such as refraction index [6], mechanical property

such as membrane fluctuation [6] and cell deformability [18], magnetic

susceptibility [7], and also electrical property classified as cell impedance [8].

Among those physiological changes, EIS-based test focuses on the electrical

property change.

2.2. Biological Cell Impedance Analysis



A biological cell has its membrane and cytoplasm, and each of them has electric

conductance and capacitance. Thus, biological cell can be modeled as a circuit, or

a network of passive elements, and even a simplified circuit model can represent

its electrical property well [9]. Figure 5a depicts a simple circuit model for RBC

and its concordant transfer function to measured data. Using the impedance

information of cells, cells can be sorted by their types. Immobilizing cells

between the microfabricated electrodes, they differentiated fish red blood cell and

(a) R,, (b)
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0.00

006

0.04

S0.02
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Figure 5. Impedance analysis of immobilized biological cell: (a) equivalent circuit

model for RBC [9], (b) cell differentiation by impedance measurement [10] , (c)

Nyquist plot showing the impedance change after parasite invasion [8].



human leukocyte which are similar in size [10]. Figure 5b shows microfabricated

channel with electrodes (top) and magnitude (middle) and phase (bottom) of

impedance of target cells. Impedance analysis of biological cells can also detect

physiological change of a single red blood cell after invasion by malaria parasites

[8]. To survive within a red blood cell, the malaria parasite alters the permeability

of the host's plasma membrane to accomplish nutrient uptake and disposal of

waste products. Thus, in addition to hemoglobin consumption [19], the parasites

perturb the ionic composition of its host cell [11] resulting changes in the film

resistance, rendering the cellular layer less insulating. Figure 5c is Nyquist plot

for impedance of a trapped RBC showing that a significant change is observed

after invasion by P. falciparum.

These studies suggest cell impedance analysis as a possible mean to

diagnose malaria. However, other disease can also impact impedance of RBC.

Unless other possibilities are ruled out, the result of cell impedance analysis can

only give supplementary information about RBC. Low throughput of the method

used in [8] also limits the feasibility of the impedance analysis as a diagnostic test.

Trapped cell impedance spectroscopy demands lots of effort by an expert, taking

long time to investigate each cell. Recalling that malaria parasitemia reaches up

only to 10% in severe malaria and it is far less than that in the earlier or mild

stages, it can take impractically long to find 10 infected RBC in a million. Thus,

the small throughput highly limits the practicality of trapped cell impedance

analysis unless time and efforts for diagnosis are unlimited.



2.3. Microfluidic Impedance Spectroscopy

To perform impedance analysis on single cell with high throughput, microfluidic

impedance spectroscopy has been studied for many years. While various designs

have been studied [20], underlying physics is mostly similar as shown in Figure 8.

An impedance analyzer equipment continuously measures electric impedance of a

pair of electrodes spaced apart, facing each other or in parallel, in a fluidic

channel. When a cell or particle passes between the electrodes, the equipment

measures the impedance of the cell or particle in parallel and series to the medium

of channel. Since the measurement is conducted in flowing condition, throughput

can drastically increase relative to trapped-cell analysis.

The Coulter counter [21], named after its inventor, is the first device that

demonstrated the concept of counting flowing cells by impedance measurement.

Drive Flow Pronie El Line

Figure 6McTitr t

Figure 6. Microfluidic impedance spectroscopy technique [12].



Illustrated in Figure 7, the device measures DC current which is reduced when a

less conductive particle blockades the fluidic channel, and count and/or size

individual particles. However, DC resistance measurements could only provide

size information assuming known conductivity of particle and medium.

Afterwards, a number of microfabricated Coulter counters and its

innovations have followed with increased sensitivity to smaller biological targets

and higher throughput. Applications include spermatozoa counter chip [13] which

has a microfluidic channel of 38gm width and 18gm depth with two 200 nm thick

and 20gm wide platinum electrodes. Measuring impedance at 96 kHz to take into

account the double layer capacitance between electrodes and fluid medium and

the parasitic capacitance, the device is capable of differentiation of small cells in

semen by their size. By adding micro-beads, whose size is different from the

electrodes

flo
particle

suspension

Figure 7. Illustration of the Coulter counter: electric DC current is reduced as a

particle or a cell passes through, so that they can be counted and sized.
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Figure 8. Applications of microfluidic impedance spectroscopy: (a) spermatozoa

counter chip [13] and (b) B. bovis-infected bovine RBC detection [14].

spermatozoon, of known concentration into the semen sample, it can measure

spermatozoon concentration from the ratio of spermatozoon count and bead count

in the mixture.

Another application is B. bovis infected bovine erythrocyte detection chip

utilizing the phase information of RBC impedance [14]. Using high frequency

electric impedance spectroscopy, the intracellular property is probed. As the

parasites modify the electrical properties of host cells, the infected red blood cells

can express phase shift of impedance. Obtained from EIS measurement on

28



thousands of cells, Figure 8b shows the histogram and scatter plots of the mixed

sample and uninfected blood sample. However, the detection method proposed in

this work may not be label-free. The work did not account for the effects of

fluorescent dyes for visual inspection of infected cell. Fluorescent label may have

affected the impedance of the infected cells and that might have shown up in

phase shift.
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Chapter 3

Proposed Solution and Methods

3.1. Microfluidic EIS-based diagnostic test

This work proposes a new malaria diagnostic test based on electric

impedance spectroscopy. A MEMS-IC hybrid system is designed to conduct

single cell analysis over millions of RBCs with high speed electronics. The

proposed system illustrated in Figure 9 consists of a microfluidic probe device

and a data collecting electronics. On the MEMS side, blood sample is injected to

the device and then RBCs flow along narrowing microfluidic channel. The

electronic part of the system continuously measures the electric impedance of

inlet

.electrode

Figure 9. Proposed malaria diagnostic system utilizes

microfluidics and electronics.

PDMS

glass --



microfluidic channel with or without red blood cells passing through. Malaria can

be diagnosed based on gathered impedance data of red blood cells from whole

blood without labeling chemicals.

This approach can results in great reduction in manufacturing cost of rapid

diagnostic test kits, since detection of infected RBC does not rely on any chemical

reaction which usually raises production and research and development cost.

Moreover, the microfluidic part made of transparent material for visual

observation at research level can be made of opaque plastic material for consumer

products lowering the cost. Besides, the size of EIS-based RDT can be smaller

than commercial antigen-based RDT, and EIS technique does not require optical

equipment which is usually bulky and heavy. Therefore, this small test kit can

easily access to very remote areas and can be even more useful.

However, speed of the system would be slow in single channel system.

Assuming that flow rate of 10 nl/min and 50x diluted whole blood is prepared,

then it takes 1000 minutes to detect 0.0001% parasitemia. Once single channel

system functions correctly, the diagnostic speed can be increased by multiplexing

microfluidic channels. Multiplexing is one of the greatest merits of microfluidic

system, which can increase throughput drastically. For example, a single-channel

microfluidic system has active area of 0.04 mm2. Assuming 900% space margins

between the single channels, 50 channels can be placed on a 2 cm by 1 cm

microfluidic device. By putting fifty replicas in one chip, the result is in 20

minutes. Therefore, microfluidic EIS-based malaria diagnostic system can be a

possible solution for developing an effective malaria diagnostic device.



3.2. Design of Microfluidic Device

3.2.1. Description of Function

MEMS part of the system is a micro-scale probe to measure electrical property of

tiny biological cell. Basically, the probe is a pair of metal electrodes in which a

RBC can reside between. To guide blood cells to pass through the space between

two electrodes, microfluidic channel is fabricated and accurately placed on the

electrodes.

Dimensions of microfluidic channel and electrodes are carefully tested and

chosen to investigate each cell at a time and to achieve enough sensitivity to tiny

(<10 tm in diameter) human RBC. Figure 10 depicts active region of the MEMS

device consisting of a microfluidic channel and micro-electrodes.

Microfluidic channel dimension is determined to 30m x 5gm x 160m.

Cross-sectional area of the channel is fit to RBCs so that the cell flows without

much of flow resistance. With this design, cells have to be as small as the height

RBC
microfluidic channel

e flow

Figure 10. Illustration of microfluidic channel with a pair of electrodes.



of the channel or disk-shaped like RBC to flow into the device. Other large

particles or cells such as leukocyte will be filter at the inlet. Length of the channel

accommodates three electrodes with 1 Opm margin. The longer channel eases the

alignment; however, it increases fluidic resistance of the channel and high fluid

pressure to overcome the fluidic resistance can cause breakage of the device.

Therefore, microfluidic channel width is designed to wide except the active region

of the microfluidic channel with electrodes.

There is a constraint in the wide microfluidic channel design. Since the

depth of channel is only ~5um but width is 200 times of that, PDMS ceiling of

channel can easily attach to the bottom glass substrate as shown in Figure 11. To

support the ceiling, 40 gm by 40 pm square-shaped pillars were placed with 80

pm spacing.

A

PDMS A Original design

Ceiling blocks channel

glas
Channel with pillars

Figure 11. Pillars support ceiling not to block the channel.



Though a pair of electrodes is required for the given impedance converter,

three electrodes are drawn first to ease alignment of PDMS cell and glass

substrate, and second to utilize the third electrode in future application such as

differential sensing of impedance change. The width of and space between

electrodes are 20 pm. To make it smaller or larger causes alignment problems or

degrades sensitivity of probes, respectively. Length of electrodes is elongated to

have alignment margin over the width of microfluidic channel. Electrodes of outer

of the active area have width of 1mm. Titanium and gold are used for material of

electrodes. Thickness of gold layer is 100 nm to ensure low series resistivity.

1Onm-thick titanium layer is used to help adhesion between gold and glass.

3.2.2. Fabrication Process

Figure 12 shows the overall process of microfluidic device fabrication and every

step is conducted at TRL in MTL, MIT. While photopatternable silicon (PPS) and

an epoxy-based negative photoresist (SU-8) are widely used in microfluidic

device fabrication in growing phase, standard silicon photolithography and

reactive ion etching process are applied in this study. PPS and SU-8 are preferable

methods to make patterns on wafer since they require fewer fabrication steps

without silicon etching process. However, the resolutions are limited to -10pm

and ~-6m, respectively [22]. In this study, standard photolithographical

techniques are applied to achieve higher resolution, better control on the depth of

microchannel, and better yield.
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Figure 12. Illustration of MEMS fabrication: (a) mask design of 1" by 1" glass

substrate with electrodes (left) and center zoom-in (right), (b) mask design of 1"

by 0.5" silicon mold for microfluidic channel (top) and center zoom-in (bottom),

(c) illustration of overall fabrication process, (d) microscopic view of the channel

and (e) full view of the microfluidic device.
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Firstly, electrode parts are fabricated on 0.500mm-thick 6-inch Pyrex glass

wafer (Sensor Prep Service Inc.) Wafers are dehydrated on hot plate at 11 50C for

3 minutes to get rid of moisture that degrades resolution of photo resist (PR).

Wafers then spin coated with a negative PR, NR71-3000P (Futurrex Inc.), at 3000

rpm for 40 seconds. 3-mininute prebake at 1400 C is followed by 10-second UV

(365nm) exposure. After 3.5-minute post exposure bake at 110 0C, wafers are

developed for 25 seconds in RD6 developer solution. Then, wafers are washed by

DI water and dried with nitrogen gas. Next, 10-nm titanium adhesion layer and

100nm gold electrode layer are deposited on the wafers. Lift-off process follows.

A 6-inch wafer makes 16 electrode parts of the microfluidic device.

6-inch silicon wafer is used to make the master mold for the microfluidic

channel. After developing PR, AZ5214 (Clariant Corp.),wafers are etched in

depth of 5gm by reactive ion etching (RIE). PR is stripped out after RIE, and then

the silicon mold is ready. The microfluidic channel is fabricated of polymers

called Polydimethylsiloxane (PDMS) on a silicon mold. PDMS is widely

preferred and used material in microfluidic fabrication in terms of its transparency,

low cost, biocompatibility and ease of fabrication. First PDMS base gel is mixed

with PDMS curing agent in ratio of 10:1. After de-gassed in a vacuum chamber

for 1 hour, PDMS mixture is poured on the silicon mold whose surface is coated

by trichlorosilane (HSiCl3) to prevent adhesion to silicon surface. Baked on hot

plate at 95 0C for 2 hours, PDMS is solidified. Peeling off PDMS and cutting by

each 1-inch-by half inch cell, 32 microfluidic channel parts are ready for the next

step and the silicon mold is reusable to produce more PDMS cells.
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After fabrication of electrodes and PDMS cells, oxygen plasma is used to

bond both fabricated electrodes and microfluidic channel. After plasma excitation

of the surfaces, two parts are aligned and bonded within a minute under

microscopic observation. Two hours of heat treatment afterwards results in strong

covalent bonding between PDMS and glass substrate. After bonding two

substrates, gold pads at the end of electrodes are soldered with AWG-22 copper

wires and ready for the connection to impedance converter circuit.

3.3. Circuit Board Design

A printed circuit board is designed to perform EIS. The board consists of a

commercial integrated circuit (IC) chip, passive components and other peripherals

for connections to power source and FPGA module. The commercial chip is

impedance to digital converter over the frequency range up to 100 kHz. FPGA

board plays a role of a bridge of instructions and data between PC and the

impedance converter. Overall block diagram of electronic part of EIS-based

malaria diagnostic system is shown in Figure 13. The user inputs parameters and

commands for EIS at PC side, the data are transferred to FPGA via USB. Because

the USB controller utilizes virtual I/O ports, the user can assume that there are a

number parallel links for inward and outward data transfer. FPGA runs a finite

state machine that interprets the data from PC and control an I2C master module

to communicate with the impedance converter chip. Parameters settings and

commands are sent to the impedance converter chip after several cycles of
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Figure 13. Overall block diagram of electronic part of the system.

bidirectional communication. At given settings, the impedance of the device

under test connected to the probes is measured, and the result is sent back to

FPGA. FPGA collects the data and send them to PC via USB again.



3.3.1. Description of the Function
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Figure 14. Functional block diagram of AD5933 [15]

Electric impedance is measured by a 1 MSPS, 12-bit impedance converter chip,

AD5933 (Analog Devices Inc.), and its functional block diagram is shown in

Figure 14. Sinusoidal excitation signal is applied to one of a pair of electrodes in

the microfluidic device. Circuit board reads the resulting current and calculates

discrete Fourier transform (DFT) of it. Since DFT measures energy of signal at a

frequency, impedance at certain frequency can be obtained as following equations.

The DFT of a sequence of N complex numbers x0 , ... , xN-1 is given by:

N-1

Xk = xne-i7 kn

n=0

= R+jI

AA=|Xk|=f)24h
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The magnitude and phase of impedance Z is obtained by following

equations:

ZII 4- (PO
jo 10 (

Gain Factor
= 4 -2 tan~~(IIR )4IR2 +I2

where v1 , io, V, Ioq V, o, Rfb, RA, VO are sinusoidal input voltage, output

current, input voltage magnitude, output current magnitude, phase of input signal,

phase of output signal, feedback resistance, internal amplifier gain, output voltage

magnitude, respectively. The impedance converter chip stores the real (R) and

imaginary (I) codes of DFT at two 16-bit registers. The two data registers can be

accessed by FPGA or a user via 12C protocol.

In practice, the gain factor and the system phase offset are calibrated first

by measuring a resistor of known impedance. With the calibrated parameters,

unknown impedance can be measured. The gain factor and the system phase

offset may change at different frequencies, so calibration is required at each

frequency of interest to obtain accurate data.



3.3.2. Printed Circuit Board Design

Once the circuitry is confirmed to work in a prototype board, a two-layer PCB

size of 2" by 1.5" shown in Figure 15 is designed to ease electrical connection

between hardware. Electrodes at microfluidic device are connected to VOUT and

VlN ports of AD5933 through RG-316/U coaxial cable and SMA connector on

the PCB. A 20-pin connector is placed at the side of PCB for connections to

power lines and 12C clock and data lines of FPGA board. Feedback resister bank

can select a proper resistor or combination of resistors according to the target

impedance. With this bank, adjustment of feedback resistor is much easier at PCB.

For analog supply voltage of AD5933 (AVDD), external voltage source can be

supplied via a BNC connector. The PCB has option to use the external power

source or 3.3V supply from XEM300lv2 FPGA board.

Figure 15. A 2" by 1.5" printed circuit board (PCB) for impedance converter.



3.3.3. FPGA Programming

An Opal Kelly XEM300lv2 board featuring Xilinx Spartan FPGA connects the

impedance converter circuit board and user interface software. It decodes

commands from the user interface (UI), controls the impedance converter,

receives data from AD5933 chip, and sends them back to the user. Verilog

hardware description language (HDL) is used to program those functions.

Communication between FPGA and UI is carried out via USB cable.

XEM3001v2 has a USB controller module, and Verilog codes for instructions and

data transfer are supported by its own library called FrontPanel [16]. Using the

library, UI transfers instructions and configuration data to the master module in

FPGA.

Communication to AD5933 is trickier compared to UI side. AD5933 only

supports I2C serial bus interface. 12C is a two-wire interface able to connect

multiple masters and slaves using one data line (SDA) and another clock line

(SCL). To ease the job of being compliant to the protocol, a sub-module

(WISHBONE in Figure 13) is integrated in FPGA. The master module in FPGA

controls AD5933 chip and retrieves impedance data from it through the sub-

module.

Contrary to instructions and configuration data, the impedance data from

continuous measurements take up a large volume. 4-byte impedance data point

can be stacked in rate of up to 4 kB/s. Therefore, data transfer should be carried

on in speed of 4 kB/s or above. While general purpose data transfer functions,



Wireln and WireOut, ars slow (up to 1.6 kB/s), the block data transfer function,

PipeOut, has higher data transfer rate ranging from 100 kB/s for small data block

size and up to 38 MB/s for lager block size [17]. Bulk data transfer reduces

overhead such as several layers of setup including those at the firmware level,

API level, and operating system level, required at each data transfer. To do bulk

transfer of impedance data, a FIFO is added using built-in block RAM of Spartan

3 FPGA.

Another function is necessary in FPGA because of the slow data rate of

WireIn and WireOut. During continuous measurements, the impedance converter

is repeatedly triggered and sending data to FPGA. If the repeating trigger

command is called by the UI, it degrades the speed of overall system due to the

bottleneck of the data transfer rate. Therefore, this function is implemented in the

FPGA. Master module is programmed to trigger AD5933, retrieve data, and

repeat for the given number of times from UI, so that overall system throughput is

determined by the performance of AD5933.



3.4. User Interface Software
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Figure 16. User interface for impedance measurement

A custom MATLAB GUI program shown in Figure 16 is built for user interface.

The GUI does jobs listed below:

- Download Verilog codes to FPGA.

- Set clock frequency for 12C protocol and initialize master module.

- Set parameters of impedance converter such as excitation signal frequency,

frequency increment in frequency sweep function and number of settling

cycle in ADC.

1

E

6

5



- Command FPGA to conduct continuous measurement for given number of

measurement and send bulk data in given buffer size.

- Calculate and plot magnitude and phase, and show statistics.

- Calibrate the gain factor and the system phase with resistor measurement.

- Save the received data in MATLAB workspace for post-process.

3.5. Sample Preparation

Human blood samples were prepared with and without the malaria

parasites at Nanomechanics Laboratory (MIT, Cambridge, MA). Plasmodium

falciparum parasites were cultured in leukocyte-free human RBCs (Research

Blood Components, Brighton, MA) under an atmosphere of 5% 02, 5% C02 and

95% N2. The blood samples were cultured at 5% haematocrit in RPMI culture

medium 1640 (Gibco Life Technologies, Rockville, MD) supplemented with 25

mM HEPES (Sigma), 200 mM Hypoxanthine (Sigma,St. Louis, MO), 0.20%

NaHCO3 (Sigma, St. Louis, MO) and 0.25% Albumax I (Gibco Life

Technologies,Rockville, MD). Parasite cultures were routinely synchronized in

ring stage by using Sorbitol lysis 2 h after merozoite invasion and a Midi MACS

LS magnetic column (Miltenyi Biotech, Auburn, CA). Parasites and RBCs are

cultured in body temperature (37 *C) then cooled down to room temperature (20

*C) before every experiment. As human RBCs stay in a very narrow pH range

from 7.35 to 7.45, a buffer solution, phosphate buffered saline (PBS), was used to

maintain pH of blood at around 7.4. The osmolarity and ion concentration of the
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buffer solution matches those of the human body (isotonic) [23], so blood samples

were diluted with PBS.

In addition to red blood cells, polystyrene microspheres (Phosphorex, Inc.,

Fall River, MA) are prepared. Theses microspheres have variety in their size,

color, and surface function coating. To simulate blood sample, PBS with the same

concentration was used to buffer the microsphere solution and dilute it. Before

each use, the microspheres were sonicated to avoid cluster of microspheres.
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Chapter 4

Results

4.1. Preliminary results

Before the overall system tested blood sample for malaria, preliminary

experiments below were conducted at MicroNanofluidic BioMEMS laboratory

(MIT) to verify that each part of the system worked correctly and that the concept

of EIS-based malaria infected cell detection is feasible. In all of these EIS

experiments, the microfluidic channel and particle flows were monitored at an

inverted microscope (IX-71, Olympus), and were recorded by the attached CCD

camera (SensiCam, Cooke Corp). Live observation and video using Image Pro

Plus 5.0 (Media Cyberneteics Inc.) were used to correlate target cells or beads to

their EIS data. The blood samples and microsphere solutions were fed into the

microfluidic device from a syringe pump (PHD 2200, Harvard Apparatus)

through a tube. Figure 17 shows the setup of the microscope, the syringe pump,

and the electric probe connection.



Figure 17. Experiment setup: the syringe pump is located next to the microscope

(left); one of lightings system of the inverted microscope shines from the top (top

right); tube is connected to inlet, and mini-grabber style probes are connected to

the electrodes of the microfluidic device (bottom right).

4.1.1. RBC Counting with Impedance Measure Equipment

An experiment with impedance measurement equipment was conducted to verify

that the fabricated microchannel and electrodes were working as designed.

Electric impedance spectroscopy on a healthy human blood sample (uninfected

RBC) was performed with 4980A LCR meter (Agilent Technology, Inc.) over a

frequency range from 100 kHz to 1 MHz. The LCR meter was connected to PC

via GPIB protocol, and fully controlled by a custom LabVIEW (National

Instruments, Inc.) program. With a pair of electrodes, it was possible for the



experiment setup to measure continuously the electric impedance of the

microfluidic channel of MEMS device with or without RBC.

Showing 35.8 dB signal-to-noise ratio (SNR) in terms of the ratio of RBC

signal and noise in reference signal, it could measure the number of RBCs passing

from the collected impedance data (Figure 18). From the experiment, the design

of the microfluidic channel and the electrodes was confirmed to work for EIS.

Starting from 50x diluted blood and up to 4x diluted blood, RBCs flowed without

clogging in the micro channel. Higher concentration was not tested since the

spacing between each cell was too close and the analysis on single cells was

inaccurate. Another important aspect is the throughput of the system. The

maximum output data rate of continual measurement by the LCR meter was 19.4

Hz, which is limited by the GPIB protocol. In practice, the system could detect up

to only around 100 cells per minute because of non-uniform spatial distribution of

the cells.
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Figure 18. RBC counting experiment with LCR meter



4.1.2. EIS with Printed Circuit Board and Shielded Probes

A similar experiment to 4.1.1 was performed using the printed circuit board

described in 3.3. Instead of human RBCs, 5.1pgm-diameter (a = 0.4gm)

polystyrene microspheres whose volume is similar to human RBC were used in

the measurement. The reason of using non-bio beads is to characterize effects of

surface charge of particles in the following experiment.

Raw Impedance Data

-200

-100 00.5 6 2 2.5
x 10

Low Pass Filtered Data

Samples X i04

Figure 19. Plain polystyrene beads counting with impedance converter PCB in

unshielded two-terminal configuration

Figure 19 shows the raw impedance data of plain micro-bead and filtered

data measured by the circuit board in unshielded two-terminal configuration. The



impedance measurement result seemed very noisy, and sensitivity of the printed

circuit board was very low compared to that of the LCR meter. After applying a

FIR low pass filter to suppress noise in high frequency, SNR (in terms of the ratio

of bead signal to noise in the reference) of single bead was only 20.0 dB and lager

of a cluster of multiple beads. Despite low SNR, the result first showed particle

volume dependency of impedance. Second, the result promises that a PCB can

replace bulky electrical equipment, so that entire EIS system can be miniaturized

in a small board or even in a chip. Third, the PCB enhanced data rate of the

impedance measurement from 19.4 Hz to 500 Hz. The increased speed of

impedance measurement can lead to a high throughput EIS device for biological

cells unless it is resulted from the sacrifice of SNR.

However, the sensitivity of EIS by PCB could be significantly improved in

shielded two-terminal configuration. The reason of low sensitivity at the first

measurement was the stray capacitance between two probe lines, and the problem

was solved by shielding those lines. As depicted in Figure 20, stray capacitance

introduces bypass path of current. The ADC at the end of the VIN port reads

consequently the sum of the current through the device under test (DUT) and the

bypass current, resulting the sensitivity of admittance (AY/YDUT) to be degraded

by a factor of YDUT
(YDUT+Ystray)
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Figure 20. Stray capacitance between two probe lines

To eliminate the stray capacitance and interference by conductor near

DUT, such as microscope or human body, the circuit board was modified to

shielded two-terminal configuration [25] as shown in Figure 21. By putting

grounded shields on the probe lines, stray capacitance can be minimized. The EIS

measurement on the 5pm micro-beads showed that SNR, in terms of bead signal

and reference noise, was improved by -15.0 dB. Thus, the circuit board could be

used in the following experiments.



Figure 21. Shielded two-terminal impedance measurement configuration

Estimated from the impedance measurement of a resistor, the noise of the

impedance converter board was as low as 0.1% (-60dB). The source of the noise

is the DDS of the AD5933 impedance converter chip. The SNR of the excitation

signal of the chip, the ratio of the root-mean-square (rms) value of the measured

output signal to the rms sum of all other spectral components below the Nyquist

frequency, is 60dB [15]. During the impedance measurement, -60dB noise in the

sinusoidal excitation signal induces -60dB noise in the current over the DUT. The

noise is collected by 12-bit (72dB) ADC, and DFT is calculated from the ADC

outputs. Thus, the SNR of the circuit board is limited to 60dB.



4.1.3. Micro-beads Differentiation

Before the investigation of blood cell with and without malaria parasites,

the effect of surface charge of particle on EIS was studied. Two types of

microspheres (beads), plain one without any surface function and another coated

to have carboxyl (-COOH) surface function, are prepared. COOH-coated beads

have negative surface charge in aqueous solution as the carboxyl function loses

proton (H*) by water molecules and remains attached to the bead with negative

charge. Figure 22a illustrates two microspheres. Since the size of two is same,

they cannot be visually differentiated by size and one has to be dyed. Thus,

COOH-coated beads are made to be fluorescent for visual differentiation to plain

ones. The fluorescent beads absorb 460nm blue light and emits 500nm green light.

Figure 22b depicts that fluorescent beads are distinguishable from the other plain

beads though they are similar in their size.
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Figure 22. Illustration (a, left) and differentiation of micro-beads (b, right)

The size of the beads is chosen to imitate the volume and flow dynamics

of RBC. Two types of beads have nominally 5pm diameter, but there were

variations in their size. The plain micro-beads have mean diameter of 5.1pgm with

standard deviation of 0.4gm. The carboxyl beads have mean diameter of 4.6pm

with standard deviation of 0.4pm, -10% smaller in mean diameter. The effect of

their size difference on electric impedance was taken into account in data analysis

afterwards.

Figure 23 shows snapshots of an EIS measurement on plain and carboxyl

beads. The carboxyl beads are emitting fluorescent light so distinguishable from

dark plain beads.
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Figure 23. Real-time monitoring of micro-beads in the microfluidic channel

and their impedance spectroscopy: plain (dark) and carboxyl (bright) beads.
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Figure 24. Electric impedance spectroscopy on two types of microspheres: the

large peaks are plain beads and the small peak is a carboxyl bead.

Comparing the resulted peaks in Figure 24, both magnitude and phase

have significant difference in two types of beads. Plain beads made larger change



in impedance than carboxyl beads at the tests in two microfluidic devices. Figure

25 and Table 3 summarize the experiment data, showing the ratio of mean

magnitude peak values to be 185% and 170% at each device and of mean phase

peak values to be 2.

Before jumping into the conclusion that the carboxyl surface function

lowered the impedance of beads, the difference in the sizes of beads has to be

considered here. Knowing that polystyrene beads are highly resistive (a

= 10-16 S/m ) and PBS solution is rather conductive (a = 1.2 S/m ), the

microchannel can be modeled as a conducting cylinder with an insulating sphere

inserted in it. Then, the Maxwell's approximation equation can be applied to the
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Table 3. Summary of EIS on micro-beads

Magnitude Phase Magnitude Phase

7 (a) (0) (A (4)

Plain Mean (A) 133.73 -0.0870 455.17 -0.1778

STD 10.30 0.0030 34.86 0.0114

Carboxyl Mean (B) 72.118 -0.0437 267.27 -0.0890

STD 3.026 0.0023 28.87 0.0108

Ratio A/B (%) 185.43% 199.08% 170.30% 199.78%

model, and the increase in impedance of the channel is proportional to the volume

fraction of the micro-beads [24]. The ratio of the volume fraction of two beads is

only 1.324 which is 0.520 and 0.379 less than the ratio of magnitude means at

each device, respectively. Therefore, the difference of peak heights is also

resulted from the surface charge of carboxyl coated beads which makes the beads

more conductive. In conclusion, EIS with the circuit board in shielded two-

terminal configuration could differentiate two groups of micro-spheres.

Though the groups of beads with different surface charge could be

differentiated in a device, the same beads resulted in different impedance values

at another device. The reason for the difference was the device dimensions which

varied in each device due to the process variation in photolithography, silicon

etching, PDMS fabrication, and wiring. The width of the electrodes and channel

were different. Some parts were more etched and others less, thus the depth of

channel was different for each device. Alignment and fluid access hole were made

by hand, and those also caused the difference. In addition to the device variation,

the ion concentration variation of the sample affected the impedance as well.



4.2. P. Falciparum-Infected RBC Detection

Human blood with -1% malaria parasitemia was tested. This experiment used an

inverted microscope equipped with both a 40x lens and a 2.5x magnifier at

Nanomechanics Laboratory (MIT) to achieve enough resolution to visualize the

parasites inside of RBC. lOx diluted blood sample was fed into the microfluidic

device. The flow rate was accurately limited to 5nl/min or less to make the cell

flow recordable. The circuit board in shielded two-terminal configuration
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Figure 26. Scatter plot of EIS data of RBCs (n=55): three of them were invaded

by P. falciparum parasites. Among three, two were at ring stage (blue) and the

other is at trophozoite stage (red).



measured the electric impedance of flowing cells.

EIS data of 55 RBCs are presented in Figure 26. Because the blood sample

was in the early stage of malaria, the portion of infected cell data was small.

Among 55 measured cells, three cases were confirmed as malaria-infected cells

by visual inspection. Before passing through the channel and over the probe

electrode, the cells were inspected by 100x magnification as shown in Figure 27.

Two of the infected cells were in their ring stage, the very early stage of malaria

parasite infection, and the other one was in its early trophozoite stage, the

following stage after the ring stage.

ring stage (#1) ring stage (#2) uninfected early trophozoite

Figure 27. Visual inspection of three malaria infected RBCs

The scatter plot shows a cluster and an isolated point of EIS data. The

cluster contains EIS data of uninfected RBCs and ring stage RBCs, and the

isolated point is the trophozoite stage RBC. While uninfected RBCs and ring

stage RBC are indistinguishable from the scatter plot of their EIS data, EIS data

of the trophozoite RBC appeared separate at high magnitude and phase region in

the plot.
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Chapter 5

Conclusions

This chapter concludes this master degree study on malaria-diagnostic system

based on electric impedance spectroscopy.

5.1. Miniaturized Microfluidic EIS System

First of all, a small-sized circuit board to conduct continual impedance

measurement in the speed of 500 Hz is built. Combined with the fabricated

microfluidic device, the EIS system could count red blood cells or tiny particles

(D < 10 jm) flowing in the microfluidic channel. The system could also see the

effect of surface charge of the micro-sized particles on the electric impedance,

promising the sorting ability of various particles and biological cells.

The speed of the electrical probing is a great merit of EIS. It easily

exceeds the limit of ordinary video recording speed, so that the electronic probe

sensed the fast particles while the video missed them in the experiments (data not

shown). Therefore, it can get rid of the necessity of high-speed video camera in



high throughput optical probing system, and EIS can provide new observing

methods for high-throughput microfluidic system.

The frequency range of the circuit board is limited by the spec of the

commercial impedance converter whose maximum is 100 kHz. Because of the

cell membrane capacitance, higher frequency is required to probe intracellular

properties. Thus, this study more focused to investigate cell membrane properties

such as surface charge.

5.2. Malaria Diagnosis

As reported by [8], malaria parasites perturb the ion composition of its host cell

affecting host cell's membrane, and the impedance change was measurable after

invasion at the low frequency range below 50 kHz. From the motivation that the

proposed EIS system would probe the electrical properties of RBC membrane in

flowing condition, malaria-infected blood sample in its early stage was tested.

The EIS result of malaria-infected blood is well summarized in Figure 26,

and it was a preliminary measurement in detection of P. falciparum-infected RBC

at a microfluidic device. Comparison to the bead experiment concludes that the

surface charge of RBC was significantly different between two groups, one group

of uninfected and ring stage RBCs and another group of the trophozoite stage

RBC. Though there were only few data of infected cells, the experiment result can

be explained in the sense that the malaria parasites in the ring stage had not

changed or made little change yet of host cell membrane, so the membrane



property was similar to other healthy uninfected RBCs, and in the sense that the

parasite grew in the host cell (trophozoite stage), so it perturbed the membrane

property in measureable degree.

Following the preliminary measurement, more analysis is needed to

understand malarial effect on electric impedance of RBC and to develop a rapid

diagnostic tool based on EIS. The trend for the later stage malaria-infected RBCs

has to be investigated to accurately model malarial impedance change: whether

other trophozoite stage cells express the similar impedance, whether malaria

causes monotonic increment of impedance, and whether the schizont stage cells

can be differentiated from the other stage cells. More importantly, EIS at high

frequency needs to be studied to see if it can probe intracellular modification or

the malaria parasite, for detection of ring stage malaria which is important for

early diagnosis.

To pursue label-free detection of malaria-infected RBC, verification of

correlation between cell type and impedance data fully relied on visual inspection.

Some difficulties have come up from that condition. First, the flow rate of RBCs

has to be slow enough for visual inspection while or before they pass through.

When the flow rate came down as low as 5nl/min, it is very difficult to control the

flow by pump. Slow flow rate introduces the second difficulty. As time goes,

water evaporates from PBS solution and it causes RBCs to squeeze by osmosis.

Therefore, the maximum experiment time is limited unless adding water in during

the measurement. Also, the EIS measurement always has to run simultaneously

with live observation of RBCs. These difficulties should be considered in the



following studies. Once the correlation is proved, EIS can be conducted in high

throughput manner without caring the difficulties mentioned above.

5.3. Applications and Future Directions

Ultimately, a mobile miniaturized malaria rapid diagnostic kit, on chip or on

board, is the most favored application. To be practical, massive parallelism has to

be adopted to diagnose early when the fraction of infected RBC is only 0.0001%

or less within an hour or a few minutes. The kit can be partitioned to reduce the

chip waste as one part is disposable microfluidic device and the other part is

diagnostic IC chip. This kind of diagnostic tool is easy to be transported to remote

areas and can be effective in use since the kit does not need bulky optical

equipments in diagnosis. With low power circuit design technology, the system

can be powered by tiny battery or solar cell where source of electricity is limited.

In these ways, electronics can reach out to people exposed to malaria but lacking

of proper medical service, and so the research contributes to the world health.

On the other hand, the EIS system can be utilized in other studies.

Microfluidic EIS can target on other parasitic disease of RBC or other cells rather

than RBC. Besides, supported by high speed circuitry, single cell analysis such as

cell differentiation and sorting can be done in high speed manner. Since EIS can

provide new parameter additional to optical information in biological cell analysis,

it can also get rid of the need for optical equipment.
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