
Stochastic Dynamic Optimization of Consumption

and the Induced Price Elasticity of Demand in

Smart Grids

by

Ali Faghih
B.S., Electrical Engineering (2009)

University of Maryland, College Park

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUN 17 2011

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2011

© Massachusetts Institute of Technology 2011. All rights reserved.

A uthor ..............................................................
Department of Electrical Engineering and Computer Science

May 12, 2011

Certified by. .........
Munther A. Dahleh

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by.......
\ L~li&/A. Kolodziejski

Chair, Department Committee on Graduate Students

ARCHIVES



2



Stochastic Dynamic Optimization of Consumption and the

Induced Price Elasticity of Demand in Smart Grids

by

Ali Faghih

B.S., Electrical Engineering (2009)

University of Maryland, College Park

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2011, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

This thesis presents a mathematical model of consumer behavior in response to
stochastically-varying electricity prices, and a characterization of price-elasticity of
demand created by optimal utilization of storage and the flexibility to shift certain
demands to periods of lower prices. The approach is based on analytical charac-
terization of the consumer's optimal policy and the associated value function in a
finite-horizon stochastic dynamic programming framework. A general model is first
presented, which incorporates both load-shifting and storage, and then, the model is
decoupled into two subproblems, one for load-shifting and the other for storage.
The study of optimal utilization of storage, which is performed analytically and in the
presence of ramp constraints, reveals, as a particularly compelling finding, that the
value function is a convex piece-wise linear function of the storage state. Moreover, it
is shown that the expected monetary value of storage increases with price volatility,
and that when the ramping rate is finite, the value of storage saturates quickly as
the capacity increases, regardless of price volatility. Furthermore, it is shown that
although the demand for electricity is often deemed to be highly inelastic, optimal
utilization of local storage capacity induces a considerable amount of price elasticity
of demand.
The study of the load-shifting problem is performed under both perfect and partial
information about price distribution. It is shown that load-shifting induces consid-
erable consumer savings that increase with price volatility. Furthermore, it is shown
that the opportunity to optimally schedule the shiftable loads creates a considerable
amount of price elasticity, even when the aggregate consumption over a long period
remains insensitive to price variations.
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Chapter 1

Introduction

Using demand response and real-time pricing in electricity networks is considered to

have numerous positive impacts on the operation of the future grid. Among these

impacts is the reduction of the peak demand, which would help system operators

reduce the maximum required capacity and the high costs of capacity expansion.

The reduction in the peak demand would result in mitigation or even elimination

of the need for high carbon emission power plants that are brought in to the grid

for only a very short period of time per year just to meet the annual peak demand.

Another notable impact is minimization of the reserve capacity needed for meeting

the demand in the event of contingencies. Hence, the study of demand response in the

presence of time-varying electricity prices should be of utmost importance to system

designers and system operators.

Characterization of demand response, however, requires the study of the technologies

that are directly related to, or highly influence, the qualitative and quantitative char-

acteristics of demand response. The rapidly growing demand for electricity and the

urge to reduce green-house emissions necessitate incorporation of a large number of

renewable energy sources and highly efficient sustainable technologies in the future

grid. Toward this end, a substantial number of consumers are expected to adopt real-

time demand response technologies to minimize the expected costs. However, the



anticipated large-scale integration of sustainable technologies will considerably add

to the uncertainty faced by the system operators. Hence, there is a need for devel-

opment of econometric models of consumer behavior that enable system operators to

characterize the responsiveness of demand to stochastically-varying electricity prices

in the presence of these technologies.

Availability of such econometric models to the system operators is of considerable

importance, particularly for maintaining the stability of the system. For instance, it

was shown in [21] that in real-time priced power grids with information asymmetry,

the stability and robustness of the system to disturbances are greatly affected by the

consumers' valuation of electricity, whereas in electricity markets in which the central

market operator has full information about the consumers' valuation of electricity, the

situation is quite different. In these markets, if the demand becomes even moderately

price responsive, the magnitude and frequency of price spikes would be substantially

mitigated, and the average spot price of electrical energy would decrease [14], [6], [9];

on the other hand, low price-elasticity of demand could cause large price spikes in

spot electricity markets [14], and pave the way for generation companies to exercise

market power [7].

Nevertheless, the demand for electricity has often been considered to be highly in-

elastic. In this regard, [23] and [11] have asserted that demand decreases in response

to a short-term price increase only to a relatively small extent. Hence, having a

modern and more efficient power grid calls for integration of real-time demand re-

sponse technologies that would considerably increase the responsiveness of demand

to stochastically-varying prices.

Two such technologies are energy storage and load-shifting, which are the focus of

this thesis. Characterization of the limitations and implications of optimal manage-

ment of storage and load-shifting, and how they affect the price elasticity of demand

would be of importance to various entities, from consumers to system designers and

system operators. This thesis seeks to provide such characterization by presenting



a model for optimal utilization of storage capacity and load-shifting in response to

stochastically-varying electricity prices, and characterizing the price-elasticity of de-

mand induced by adoption of this model. In this thesis, the load-shifting and the

storage management problem are formulated in a finite-horizon stochastic dynamic

programming framework, and analytical expressions are given for the optimal policy

and the corresponding value function, particularly, revealing that the value function

in the storage problem is indeed a convex piece-wise linear function of the storage

state. An important feature of the model formulated and solved in this thesis is that

it takes the physical ramp constraints of storage into account. The physical ramp

constraints, which limit the storage system's ability to move between different oper-

ating levels over short periods of time, make characterization of analytical solutions

particularly difficult. Consumer savings induced by optimal load-shifting and the

monetary value of storage for the consumer, as well as the price elasticity of demand

induced by optimal load-shifting and storage management, are all analyzed within

the same mathematical framework.

Shiftable loads are situated in a variety of forms for various consumers. Across the

full spectrum of residential, commercial and industrial consumption, at any given

time, a considerable portion of the generated power is supplied to shiftable loads that

are deferrable for a few minutes, or possibly hours, at little or no cost [19]. Examples

include electric vehicle charging, heating, ventilation, air conditioning, refrigeration,

agricultural pumping, laundry and dishwashing. Some loads such as refrigeration,

air-conditioning and heating can also be viewed as thermal storage via pre-cooling or

pre-heating. Electric vehicle charging can be viewed as both electrical storage and

shiftable load. Battery energy storage systems and hydro-electric storage systems

are two other examples of electrical energy storage systems that could be optimally

managed.

Related quantitative frameworks generally appear in the literature that address the

consumer energy management problem, and are mostly based on stochastic dynamic

programming. Some earlier works such as [10],[5] have laid the groundwork and



introduced the general concepts, and some recent studies [17], [19], have delved deeper

into the concepts, and obtained results that are more related to this work.

Livengood and Larson's work [17] proposes the design of a software energy manage-

ment system for the typical small consumer of electricity. This software consists of

a set of algorithms that use stochastic dynamic programming for optimal schedul-

ing and management of the consumer's electricity consumption, storage, and selling

back to the grid in the face of uncertain electricity prices and weather conditions.

Although the idea behind the formulation of their model is very similar to that of

this thesis, their approach is quite different. In contrast to their model, the model

presented in this thesis is more abstract, which allows us to derive analytical ex-

pressions for the optimal solution of the underlying dynamic programming problem.

The results obtained through the analytical approach of this thesis give an abstract

description of a complicated behavioral model, which not only provides a model for

optimal management of consumption, but also allows us to develop simplified models

that effectively highlight the essential structural features of consumer behavior from

the system operator's point of view.

Regarding load-shifting, a closely related work by Papavasiliou and Oren [19] pro-

poses a direct coupling of renewable generation with shiftable loads to mitigate the

imbalances caused by the unpredictable and uncontrollable fluctuation of renewable

energy supply. Their approach too, is based on stochastic dynamic programming.

In particular, the results presented in this thesis on the affine structure of the value

function associated with the optimal load-shifting problem were partially obtained in

[19].

The literature covering the topic of energy storage is extensive. Different variations

of the storage problem have been addressed in various contexts and from different

aspects, to serve different objectives. Formulating optimization models for scheduling

electricity storage devices has been the topic of several previous works such as [1] and

[18]. Lee and Chen [15, 16] study industrial customers with time-of-use rates and



determine optimal contracts and optimal sizes of battery storage systems for such

consumers in a dynamic programming framework. Moreover, Bannister and Kaye

in [3] focus their study on optimizing the operation of a single storage connected

to a general linear memoryless system in the presence of ramp constraints. Their

approach is based on linear optimization and deterministic dynamic programming.

Although their model is somewhat similar to the model in this thesis in the sense that

it deals with optimal utilization of storage in the presence of ramp constraints, the

deterministic nature of their approach makes the mathematical framework of their

model, and hence their conclusions, quite different from those of this thesis. The

economic benefits of electricity storage to the end consumer have also been reported

in previous studies such as [2]. In contrast, several other works such as [13], [8], [22],

[4], and [12] have studied the idea of employing energy storage for efficient integration

of renewable sources.

In particular, in [12], the optimal storage investment problem for efficient integration

of renewable sources is studied in an infinite-horizon stochastic dynamic programming

framework. The storage management problem presented in [12] is formulated and

solved from the point of view of a renewable generation owner who wants to fulfill

her on-site (local) demand using her renewable generator. At each time step, if the

on-site demand is lower than the renewable generation, the generation owner uses a

storage device to store any generation that is in excess of her on-site demand; on the

other hand, if the renewable generation is lower than the on-site demand, any excess

demand that is not satisfied from renewable generation is fulfilled by purchasing from

other generators connected to the main grid at prices which are stochastic and revealed

right before consumption. Hence, the purpose of the storage model in [12] is to store

local renewable generation only and not store energy from the main grid (selling back

to the grid is not allowed either). Particularly, the focus of [12] is on the case when the

renewable generation owner is given either a low price or a high price each with known

probabilities, and then, from various perspectives, optimal sizing of energy storage is

characterized in the presence of this price distribution. Although the underlying idea



of optimally utilizing limited storage capacity in response to stochastically varying

prices and characterizing the value of storage capacity to the consumer presented in

[12] is similar to that of this thesis, there are fundamental differences between the

objectives, formulation, approach, and hence, the results of the two works, which put

the contributions of the two studies in quite different frameworks. First, in contrast

to [12], the model in this thesis allows selling stored energy back to the main grid,

which creates a considerable difference in the value of storage compared to the one

studied in [12]; the model in this thesis, however, assumes that the consumer only

interacts with the main grid and does not have access to on-site renewable generation.

Second, the model in this thesis does not assume a specific distribution on prices, and

instead, provides analytical expressions for the consumer's optimal threshold policy

that could be applied to any price distribution, which allows this thesis to compare

and contrast the value of storage under different price distributions. In contrast, in

[12], the presented policy is not based on deriving thresholds, and is optimal only for

pricing schemes that have at most two price levels. This approach, in turn, has allowed

them to derive very specific bounds for optimal sizing of storage in the presence of

such two-level pricing schemes; their findings reveal that any investment in storage

is profitable only if the ratio of the amortized capital cost of storage to the higher

price-level of energy is less than 1/4. Another very important difference between the

two studies is that this thesis analytically characterizes the effect of ramp constraints

on the structure of the value function, and illustrates how the ratio of the storage

capacity to the physical ramp constraints affects the value of storage; though, such

characterization of the effects of ramp constraints has not been a topic of interest in

[12]. Hence, considering all the aforementioned differences between the value functions

of the two problems, the upper-bound derived on the cost of storage in [12] is not

applicable to the storage problem presented in this thesis. In summary, the possibility

of selling back to grid, absence of local renewable generation, allowing arbitrary price

distributions, and the piece-wise linearity of the value function resulted from ramp

constraints, which are all incorporated into or highlighted by the model presented in

this thesis, put the two works in different frameworks, both from the mathematical



and the qualitative point of view.

Another closely related work is presented in [4], in which Bitar et al. study the impact

of energy storage capabilities on revenue of a wind power producer. While the main

focus of their study, and hence their results and conclusions are quite different from

those of this thesis, their formulation of the underlying stochastic optimal control

problem is fairly similar to the one presented in this thesis.

The existing literature on price-elasticity of the demand for electricity are mostly

based on empirical evidence and qualitative reasoning, see, for instance, [14], [23],

and [11]. One of the goals of this thesis is to address price-elasticity in a quantitative

framework, and illustrate that a considerable increase in the price-elasticity of de-

mand could be obtained through optimal utilization of storage capacity and optimal

scheduling of shiftable loads.

In the following chapters, a mathematical model of consumption is first formulated,

and then this model is decoupled into two subproblems: the storage problem and

the load-shifting problem. Chapters 3 and 4 study each of these two sub-problems

separately.

The contributions of this thesis regarding the storage problem can be summarized as

follows:

e A behavioral model of the consumer is proposed, which is based on an optimal

policy for managing storage in the presence of ramp constraints. The solution of

the underlying stochastic dynamic program is analytically characterized, and as a

particularly interesting finding of this thesis, it is shown that at each instant of

time, the value function is a convex piece-wise linear function of the storage state.

* It is shown that the expected monetary value of storage capacity increases with

price volatility. Moreover, it is shown that when the ramp constraint is finite,

the value of storage saturates quickly as the capacity increases, regardless of price

volatility



* Finally, a behavioral model that represents the aggregate response of a large number

of consumers is provided, and an expression for the price-elasticity of the aggregate

demand is presented, which highlights the fact that an individual consumer's re-

sponse to a price signal is dependent on both the price and the internal state of the

consumer. It is shown that optimal scheduling of local storage capacity induces a

considerable amount of price elasticity of demand.

The contributions of this thesis regarding the load-shifting problem can be summa-

rized as follows:

* A behavioral model for load-shifting is characterized based on analytical expressions

of the optimal threshold policy, under both perfect and partial information about

price distribution.

" The model is used to show that consumer's expected savings from optimal load-

shifting is an increasing function of price volatility. The relation between expected

savings and price volatility is examined through analytical bounds for simple distri-

butions and through simulations when analytical bounds could not be established.

" Finally, it is shown that optimal load-shifting can create a considerable amount

of short-term price elasticity, even when the cumulative consumption over a long

period remains insensitive to price variations.
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Chapter 2

Formulation of the Dynamic

Consumption Management Model

In this chapter, a model for dynamic optimization of consumption in the presence

of stochastically-varying electricity prices, load-shifting, and storage capacity is pre-

sented. This model is formulated based on the principles of stochastic dynamic pro-

gramming, and it provides a behavioral model of the consumer, which will be exploited

in the following chapters to characterize the intertemporal utility of consumption in-

duced by load-shifting and storage.

An important feature of this model is that it takes the physical ramp constraints of

storage into account. Moreover, a parametric upper bound is imposed on the amount

of storage available to the consumer, and the effect of positive storage capacity on

the net consumption is investigated from an Input/Output behavioral point of view.

Negative storage or backlogging is allowed for certain types of flexible loads that are

shiftable in time, while a deadline is imposed for fulfilling the shifted loads.

The notations and model components are defined in the first section, and the optimization-

based model is presented in the second section.



2.1 Model Components

The consumer's energy management problem is formulated as an inventory control

problem over a finite time-horizon. The following subsections define and character-

ize the components that will be used in the next section to formulate the energy

management problem.

Notations

The set of positive real numbers (integers) is denoted by R+ (Z+), non-negative real

numbers (integers) by R+ (Z+), and similarly for their negative and non-positive

counterparts.

Demand

The consumer's total demand at time k E {0, ... , N} is denoted by dk. It is assumed

that the demand consists of two components:

dk = df + ds

where df is the firm component and ds is the shiftable component.

At time k = 0, both d- and df are perfectly known to the consumer for all periods

k c {0, ... , N}. The shiftable demand dZ can be satisfied at any time t E {k, ..., N},

whereas the fixed demand df must be satisfied at time k.

Note: Both d9 and df are assumed to be inelastic. Hence, the results obtained on

price-elasticity of demand in chapters 3 and 4 of this thesis characterize the price-

elasticity of demand induced solely by storage and shifting, respectively.



The Decisions

The decision set of the consumer is characterized by a triplet

(uk,n v t ) E [0, U) x [0, V"] x [0, out] (2.1)

where, Uk is the amount of electricity that, at time k, the consumer allocates to

fulfilling some or all of the shiftable demands, and vi" and vi"t are, respectively, the

amount of electricity that the consumer stores in, or withdraws from the storage. The

corresponding upper bounds (Ti" and Uout) represent the physical ramp constraints

on storage.

A simplified model can also be obtained, in which the decision set is characterized by

a pair

(Uk, Vk) E [OJU) x [--"outin] (2.2)

where, Uk is defined as before and Vk can represent both storing energy (when Vk > 0)

and withdrawing energy from the storage (when Vk < 0).

The net consumption (total purchase or sell-back to the grid) is then given by

Yk -- V i +Uk+ d (2.3)

or, alternatively, by

Yk V Vk + Uk + df (2.4)

In either case, it is assumed that Yk is constrained as:

yk E [-Y, F], y, y E [0, oo) (2.5)

Hence, yk < 0 is associated with selling electricity back to the grid, and y = 0

corresponds to the situation where selling electricity back to the grid is not allowed.



The Price

The price process Ak is assumed to be an exogenous Markovian process driven by an

independently distributed random process Wk according to

Ak+1 g 9 (Ak, Wk)

where the function g and the distributions of Wk are assumed known for each k.

The support of the price distribution is assumed to be non-negative, and is denoted

by Amin and Amax (i.e. the prices are distributed between Amin and Amax, such that

0 < Amin Amax). It is assumed that at the beginning of each discrete time interval

[k, k + 1], the random variable Ak is materialized and revealed to the consumer. A

specific scenario where this model is readily applicable is where the distributions of

the prices for the next 24 hours are computed in the day-ahead market and made

available to the consumer. In this case, one may choose g (Ak, wk) = Wk, where the

distribution of Wk is known.

It is also assumed that the feed-in and usage tariffs are the same. That is, for each

pricing interval, Ak is the price per unit for both consumption (corresponding to

Yk > 0) and production (i.e. negative consumption, corresponding to yk 5 0), and

there are no transaction costs.

The States

It is assumed that the consumer holds an energy inventory characterized by a pair

(Xk, sk) E (-oo, 0] x [0,~5] (2.6)

where Xk represents the amount of backlogged/shifted demand, and sk represents the

energy stored in the local storage.



Note that we impose a deadline on backlog by constraining XN = 0. Also, the

parameter - is the physical upper bound on the amount of storage available to the

consumer (hence, -= 0 corresponds to the case of no storage capacity).

The states Xk and Sk evolve according to:

Xk+1 = Xk + Uk - (2.7)

Sk+1 = Sk +in i - out out

where, Uk,Vi", and vU%" are defined as in (2.1), # 1 is the decay factor, qi" < 1 and

" > 1 are charging and discharging efficiency factors. Note that although in this

model the efficiency factors and the ramp rates are assumed to be constants, they

might, in general, be complicated functions of the operating point (i.e., the storage

level) in certain practical scenarios.

The idealized model of the dynamics of storage can be written as:

Sk+1 = Sk - Vk, Vk E [--UoutTUi] (2.9)

which corresponds to #= 1, qi" = 1, and qout = 1.

Disutility and Penalty

It is assumed that in general, there is a disutility associated with backlogging the

demand. This disutility is characterized via a cost function Pk(-) which essentially

represents, in an abstract sense, the inconvenience that the consumer experiences for

fulfilling some of her shiftable demands at a future time.

Furthermore, there is a penalty associated with storage via cost function hk(-), which

characterizes certain costs that the consumer may incur for access to and/or use of

storage.



2.2 The Optimization-Based Model

Using the components defined in the previous section, the consumer's energy manage-

ment problem can be formulated as a finite-horizon stochastic dynamic programming

problem as follows:

m E Pk (Xk) + hk (Sk) ± AkYkl (2.10)

s.t. k+1 - Xk -|Uk - ds, xN = 0

- + 7inin _out outsk+1 sk k -~7 Vk

Ak+1 - 9 (Ak, Wk)

Yk - Uk ± k ~ VUu t ± k

( i, n, ou~t) E[0, U) X [0, i"] X [0, Uo"t]

(xk, Sk) E (-oo, 0] x [0, 3

yk E [-y, V1, y, E[0, 00)

This optimization problem can be decoupled into two subproblems. Consider the

following optimization problems:

1. The storage problem:

min E hk(sk) ±Akvk (2.11)

s.t. sk+1 = sk ± Vk

Ak+1 = g (Ak, Wk)

Sk [0,3]

Vk E [-out, uin]



2.. The load-shifting problem:

min E;[ 2 .' Pk (Xk) + Akuk (2.12)

s.t. xk+1 Xk - uk --d xN

Ak+1 9 (Ak, Wk)

Xk G (-oo,0]

Uk E [0,U)

Proposition. Let -yc, *, and 7,* be, respectively, the optimal solutions to the con-

sumer's optimization problem (2.10), the load-shifting problem (2.12), and the storage

problem (2.11). Let If be the expected cost of the firm demands:

i = E [E Akdf]

Then, for sufficiently large Ti:

'c* 7* + 7* +

Furthermore, suppose that both V and -i are sufficiently large, and that the storage is

lossless, i.e., 3 1, r/i" = 1, and r/* = 1. Then

7c*='Y* + Y* + if

The implication of the above proposition is that when the feeder limits (V and U)

are sufficiently large, the storage is ideal, and the feed-in and usage tariffs are the

same, then, the consumer is indifferent to satisfying the demand by withdrawing

from the grid, or from the storage. Hence, not only the problems of storage and load-

shifting can be solved separately, but also, the demand profile df becomes irrelevant

in decision-making. Since the goal of this thesis is to develop simplified models

that effectively highlight the essential structural features of consumer behavior, the



idealized model of storage will be adopted in this study.

Remark 1. Although in the formulation of the storage problem (2.11) it was assumed

that the storage is ideal, a storage penalty component hk(sk) has been incorporated into

the cost function, which, in an abstract sense, could be used as a proxy to account for

the losses due to non-ideal storage.

Remark 2. The storage problem is formulated and solved only for the finite-horizon

case. Considering that it is somewhat unrealistic to assume a certain distribution for

prices far in the future, the infinite horizon case may not yield a realistic model of

consumer behavior. However, the finite horizon problem will be solved in such a way

that the ongoing process of storage after the end of stage N is taken into account. In

other words, the finite time horizon of the storage problem is not treated as a deadline;

rather, a value of A is assigend to each unit of energy left in storage by the end of the

time horizon (i.e. at stage N), based on the idea that the consumer will be able to use

the energy in her storage in the period that follows the current time-horizon.
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Chapter 3

The Storage Problem

This chapter studies the storage problem defined in (2.11). An analytical character-

ization of the optimal policy and the associated value function is presented in the

first section, and then, in the next two sections, these analytical results are used to

evaluate the expected monetary value of storage and the induced price-elasticity of

demand.

3.1 The Optimal Policy

In this section, the consumer's policy for optimal utilization of storage capacity is

characterized based on principles of stochastic dynamic programming and optimal

control. This allows us to develop a mathematical model for the intertemporal utility

of consumption, induced by storage capacity. It is assumed that the price distribution

is perfectly known.

In particular, in this section, it is shown that the value function is a convex piecewise

linear function of the storage state. This result is quite compelling, but non-trivial.

Theorem 1. Assume that the price distribution has finite support. Consider the



storage problem (2.11) with

-:n - out -u

where s = nU, n E Z+ , and the penalty functions hk : [0, oo) -+ [0, oo), k = 0,.., N

are piecewise linear convex functions of the form:

hk (s) =hi,ks + Ci,k, 8 E [iU, (i + 1)U) , i E Z+

0 < hi,k :5 hi+1,,k,

(3.1)

Vk, i

Then

(i) The value function is a convex piecewise-linear function of the form:

(3.2)

where

ti+1,k ti,k, Vk, i

(ii) The optimal policy is a threshold policy characterized by:

if 0 Sk <T (i.e. i 0), then

tO,k+1

tl,k+1

Ak

< Ak

< Ak tO,k+1

< tl,k+1

if sk > 7, such that sk C [iU, (i + 1)U), i C 1, 2, ..., n - 1, then

XU - Sk

(i+ 1)T - sk

ti-l,k+1 < Ak

ti,k+1 < Ak ti-1,k+1

ti+1,k+1 < Ak < ti,k+1

Ak < ti+1,k+1

where

-Sk

ok -sk

Vk -

Vk (S) = -ti,ks + ei,k, S E [iu, (i -+ 1)p) , i E Z+



and the thresholds are given by the recursive equations:

ti,N =A,

ti,N =-hi,N,

i E 0, 1, 2,..., n - 1

i > n

for k < N and i Z+:

tO,k tl,k+1FA (tl,k+1) - ho,k + OPA(O)
t1,k+1<0< Amax

ti,k - ti-1,k+1 (1 - FA (ti-1,k+1)) + ti+1,k+1FA (ti+1,k+1) - hkk +

where, PA(-) and FA(-) denote the probability mass function (pmf) and the cumulative

distribution function (cdf) of prices, respectively. Note that the above results are

expressed in the form of discrete probability distributions, but they extend naturally to

continuous distributions.

Proof. This proof proceeds by induction. Let us for the moment assume that the

value function, Vk(-) = E [Jk (-)], has the form defined in (3.2).

From the dynamic programming algorithm, for k < N, we have

Jk (sk) =hk (sk) + min {AVk + E [Jk+1 (sk ± Vk)]}
vkE[max(-sk,--),vl

(3.3)

where the penalty functions hk(sk) are as defined in (3.1).

Then, using the general form in (3.2) for E [Jk (sk)] and the state evolution equation in

(2.6), and by applying the induction step to (3.3), for iU < sk +Vk < (i+1)U, i E Z+,

we obtain:

JA(sk) = hi,kSk + Ci,k + min {AkVk - ti,k+1(sk ± Vk) + ei,k+1} (3.4)
VkElmax(-sk,--U),v

E OPA(O)
ti+1,k+1 <0-<ti-1,k+1



Hence, if 0 < Sk < (i.e. i 0), then

-sk

Uk U- sk

T

if tO,k+1 < Ak

if tl,k+1 < Ak < tQ,k+1

if Ak : tk+1

and if Sk >_ U, such that Sk E [iU, (i + 1)U), i E1 ,2, ...,n - 1, then

-U if

V- Sk if
ok -

(i + 1)U - sk if

if

ti-l,k+1 < Ak

ti,k+1 < Ak ti-1,k+1

ti+1,k+1 < Ak K tik+1

Ak ti+1,k+1

Therefore, if 0 Sk < U:

(ho,k - Ak)sk + eo,k+1 + CO,k

(Ak - tl,k±1)V + (ho,k - Ak)Sk + el,k+1 + CO,k

(Ak - tl,k+1)V ± (ho,k - tl,k+1)sk + el,k+1 + CO,k

tO,k+1 < Ak

tl,k+1 Ak K tOk+1

Ak t1,k+1

and if sk ; U, such that Sk E [in, (i + 1)T), then

-(Ak - ti-1,k±1)V+ (hi,k - ti-1,k+1)Sk + ei-1,k+1 + Ci,k

k (Sk) = (Ak - ti,k+1)iV + (h,k - Ak)sk + ei,k+1 + Ci,k

(Ak - ti+1,k+1)(i + 1)u+ (hi,k - Ak)sk + ei+1,k+1 + Ci,k

(Ak - ti+1,k+1)U + (hi,k - ti+1,k+1)Sk + ei+1,k+1 + Ci,k

Let us recall that for a function

f 1 (r)x+g1 (r) if r < a

f 2 (r) x + g 2 (r) if r > a

ti-1,k+1

ti,k+1

ti+1,k+1

Ak

< Ak

< Ak ti-l,k+1

< Ak ti,k+1

ti+1,k+1

k (sk) {



we have

E [f (x)] E [f (x) Ir < a] P (r < a) + E [f (x)|r > a] P (r > a)

E [fi (c) x + gi (r) jr < a] P (r < a) + E [f2 (r) x + g 2 (c) Ir > a] P (r > a)

x [E [fi (r) Ir < a] P (r < a) + E [f2 (r) r > a] P (r > a)]

+ E [gi (r) |r < a] P (r < a) + E [g2 (r) Ir > a] P (r > a) (3.5)

where,

E [f (r) |r < a] P (r < a) = f (r) PR (6)
O=rmin

Now, let us apply the method described in (3.5) and (3.6) to the equations derived

above for JA (Sk), and compute E [Jk (sk)] for k < N, which leads to the following

results:

if 0 < S& < U, then

E [Jk (sk)] = eo,k - Sk[tl,k+1FA (tl,k+1) - ho,k + E OPA(6)]
t1,k+1<O Amaz

if sk > U, such that Sk E [iX, (i + 1)U), i E Z+, then

E [k (sk)] =e,k - Sk[ti-1,k+1 (1 - FA (ti-1,k+1)) + ti+1,k+1FA (ti+1,k+1) - k+

OPA()]
ti+1,k+1<0<_ti-1,k+1

where ei,k denotes the sum of the terms that have not been multiplied by Sk. Hence,

the thresholds for k < N and i E Z+ are:

tO,k = tl,k+1FA (tl,k+1) - ho,k ± 5: OPA(9)
t1,k+1<O Amax

ti,k - ti-1,k+1 (1 - FA (ti-1,k+1)) + ti+1,k+1FA (ti+1,k+1) - hi,+

ti+1,k+1<<ti_.1,k+1
OPA(O)

The next step is to verify, using induction, that the thresholds at each stage (i.e. ti,k)

are a non-increasing function of i. In order to do so, considering that tok-_ has a

(3.6)



different general form than ti,_1 for i > 0, we first need to show that tik_1 k- to,_1

assuming that tik was a non-increasing function of i. Then, we need to use induction

to show that ti+1,k-1 < ti,k-1 for i E Z+, assuming that ti,k was a non-increasing

function of i. Hence, we start by showing that ti+i,N < ti,N, and then, based on the

assumption that ti, was a non-increasing function of i, show that ti+1,k-1 < ti,k_1 for

i E Z+.

As the first step, let us verify that to,k_1, tlk1, assuming that ti,k was a non-

increasing function of i. Hence, we want to show that

t1,k (FA (ti,k)) - ho,k -+- OPA (0) tok (1 - FA (to,k)) ± t2,k (FA (t2,k)) -

hi,k + OPA (0)
t 2 ,k<O<tOk

Knowing that hik > ho,k, we can remove -hl,k and -ho,k from both sides; then,

by taking the negative terms from each side to the other side to make all the terms

positive on both sides, and by writing the cumulative distribution functions as sum-

mations, the above can be rewritten as:

tO,k S PA (0) ± - PA (0) t1,k
Amin<Ot 0 ,k Amin<Oi6t1,k

± EA 0o(0) >t 0 ,c+ PA(0) t2,k+ OPA (0)
ti,k<O Amax AminO<t 2 ,k t2,k<O<tOk

By breaking each summation into disjoint intervals, and factoring all the terms in

the same interval and merging them into one summation, the above can be rewritten

as:

tOk PA (0) (to,k ~ tl,k - t2,k) - PA (0) (to,k ± tl,k - 0)~
AminO6<_t2,k t2,k<Otl,k

PA (0) to,k + OPA (0
tlk<O<tO,k to,k<e Amaz

We can see by inspection that the above inequality is true. We can see that in

the equation on the right hand side (RHS) of the inequality shown above, all the

terms that have been multiplied by PA (0) inside the summations are greater than or



equal to to,k; we also know that Am PA (0) = 1. Hence, we can clearly see that

the RHS equation in the inequality shown above is always greater than or equal to

tO,k.

Now we can use induction to show that ti+1 ,k-1 < ti,k-1 for i E Z+, assuming that ti,k

was a non-increasing function of i. We assign a non-positive cost of -A to each unit of

energy left in storage at stage N (i.e. E [JN (SN)] -ASN for SN 5 ), where A could,

as a reasonable choice, denote the mean of the price distribution (for the remainder

of this thesis, it is assumed that A denotes the mean of the price distribution). Also,

a very small (negative) value is assigned to the thresholds for i > n at stage N, to

make sure we will not exceed the storage capacity in this stage. Hence, ti,N is a

non-increasing function of i, and ti+1,N ti,N is satisfied. It is now time to verify

that ti+1,k-1 5 ti,k-1 for i E Z+ assuming that ti,k was a non-increasing function of i.

So, we want to verify:

ti,k (1 - FA (ti,k)) ± ti+2,k (FA (t+2,k)) - hi+1,k

+ E OPA (0) 5 ti_1,k (1 - FA (ti1,k)) + ti+1,k (FA (ti+1,)) +
ti+2,k<O<ti,k

S OPA (0) - hi,k
ti+1,k <0<_4-1,k

Knowing that hi+1,k > hi,k, we can remove -hi+1,k and -hi,k from both sides. Then,

by taking the negative terms from each side to the other side to make all the terms

positive on both sides, and writing the cumulative distribution functions as summa-

tions, the above can be rewritten as:
i-1,k ti+2,k

ti,k + ti_1,k 1 PA (0) + ti+2,k 1 PA (0)
O=Amin O=Ami.

ti,k

+ OPA(0) < ti_1,k - ti,k PA (0)+
ti+2,k<O-ti,k 6=Amin

ti+1,k

ti+1,k PA (0) + 5PA (0)
S=Amin f+1,k<O<fi-1,k

By taking all the summations to the right hand side and taking ti,k to the left hand

side of the inequality, breaking each summation into disjoint intervals, and factoring



all the terms in the same interval and merging them into one summation, the above

can be rewritten as:
ti+2,k

ti-1,k ~- ti,k >- PA (0) (4i-1,k - ti,k -(4i+1,k - ti+2,k))

PA (0) (t_1,k - ti,k - (ti+1,k - 0)+

ti+2,k<O<ti+1,k

E PA (0) (ti_1,k - ti,k) + PA (0) (ti_1,k - 0)
ti+lk<6<tik tik<O<ti-1,k

We can see by inspection that the above inequality is true. We can see that in

the equation on the RHS of the inequality shown above, all the terms that have been

multiplied by PA (0) inside the summations are less than or equal to til,k - ti,k; we

also know that IPA () < 1. So, given that the summations in the RHS do

not overlap, we can clearly see that the RHS equation in the inequality shown above

is always less than or equal to ti_1,k - ti,k.

The last step is to show, by induction, that the value function is a continuous func-

tion. We have defined E [JN (SN)] in such a way that it is convex. We also have

defined hk(sk) to be convex for all k. Looking at the equations of JA(sk) in (3.3) and

(3.4), given that E [Jk+l (Sk+1)] was convex, one would observe that the continuity of

Jk(sk) is trivially satisfied, because v* will be a continuous function of sk. Similarly,

considering the equations obtained for v*, the continuity of E [Jk (sk)] for all k also

becomes evident and can be easily verified by inspection. This completes the proof.

0

Remark 3. The convex piecewise linear structure of the value function is non-trivial,

but compelling. An outcome of this piecewise linear structure is that the corresponding

thresholds have a piecewise constant structure, within the same partitions as in the

pieces of the value function. The plot shown in Figure 3-1 illustrates an example of

how the thresholds vary as a function of state for a given stage. Note the decreasing

trend of the thresholds, which was proved above.

Remark 4. The upperbound s on the storage capacity can be enforced by choosing
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Figure 3-1: An example of how thresholds vary as a function of state for a given stage

hi,k in (3.1) sufficiently large for i > n, so that it would never be optimal to store

energy beyond the capacity -.

Remark 5. The ei,k terms in the value function can be derived using the same ap-

proach as in the proof of Theorem 1 (described in (3.5) and (3.6)). These terms

are given by the following recursive equations, the derivation of which is omitted for

brevity:

ei,N 0,

ei,N (ti,N -

i e 0,1, 2, ... , n - 1

i > n

for k < N and i Z+:

eo,k cok + eo,k+1(1 - FA(to,k+1))+ (e1 ,k+1 +U( - tl,k+1))PA(O)

Amin OtO,k+1

ei,k = ci,k + ei-1,k+1(1 - FA(ti-1,k+1))+ > ei,k+1PA(O) + ei+1,k+1FA(ti,k+1)+

ti,k+1<0_<ti-1,kc+1

U(9 - ti+1,k+1)PA(O) + Y, (i + 1)U(9 - ti+1,k+1)PA(O)
Amin:5d_<i+1,k+1 ti+1,k+1 0$$fi'k+1

+ E i1(6 - ti,k+1)PA(O) + 5 U(ti-1,k+1 - O)PA(O)

ti,k+1<0_ti-1,k+1 ti-1,k+1<0<_Ama(
(3.7)

s--
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3.2 Monetary Value of Storage

The baseline for characterization of the value of storage is the cost incurred in the

absence of storage, i.e. 0. Therefore, the quantity of interest in this section is how well

the consumer does in bringing her expected storage costs below zero. This quantity is

the expected monetary value of storage for the consumer, which is denoted by E[S].

Therefore, E[S] = 0 - Vo (so), where Vk(.) is the value function defined in (3.2).

Throughout this section it is assumed that N is fixed, and that so = 0, which means

that the consumer starts with an empty storage. This implies, using (3.2), that the

expected monetary value of storage in this case is:

E[S] = 0 - Vo(O) = -e 0 ,0 . (3.8)

and its exact value can be found using the recursive equations in (3.7).

For convenience, let us define the following distributions.

Definition. A 3-point (high, medium, low) symmetric distribution, is a mixture of

impulses, where the high and low prices have probability 1/4 each and the medium

price m = A is also the mean, and has a probability of 1/2. The probability mass

function (pmf) of the 3-point symmetric distribution is:

1/4 ; 0 =rm

PA(0) = /2 ; O-m (3.9)
1/4 ; O=m+ $

0 ; otherwise

which has a standard deviation of o-= --A-. Let us also define a discrete uniform dis-2v't

tribution that is distributed between non-negative integers a and b, and, for simplicity



of notation, set M = b - a + 1. This distribution has the following pmf:

PA(O) 1/M ; a<69<b OcZ+ (3.10)
0 ; otherwise

with standard deviation o- = 1.

In this section, using the above definition, the following classes of distributions are

considered:

- Discrete uniform distribution, with a fixed mean of 50,

- 3-point symmetric distribution, with a fixed mean of 50,

and for each of these distributions, all quantities in the model are fixed, other than

o-, the standard deviation of price distribution, and n, the ratio of storage capacity

- to physical ramp constraint of storage T. Also, n = §/U is varied by fixing U at

T = 10 and changing -. Note that as defined in Theorem 1, n only takes on integer

values. Using these quantities, let us examine how E[S] varies as a function of o-

and n, once for the case of no storage penalties, and another time in the presence of

storage penalties.

3.2.1 Without Storage Penalties

Let us set hi,k = 0,i E 0, 1, 2, ..., n- 1,Vk so that there is no penalty on storing energy

as long as the storage is not filled up. Then, for a fixed time horizon of N=20, let us

examine how E[S] varies with o- and n, for each of the following price distributions:

Discrete uniform prices

Figure 3-2 illustrates how E[S] changes as a function of o- and n, for a discrete uniform

distribution. The plots show that E[S] increases linearly with o-. As one would ex-



pect, E[S] also increases as the ratio of storage capacity to ramp constraint increases.

However, an important observation here is that for a fixed standard deviation, E[S]

becomes almost constant as n increases, starting at a certain value of n. This par-

ticular value of n increases as the standard deviation increases. This shows that for

a given time horizon, a fixed ramp constraint, and a fixed o-, there exists a certain

storage capacity beyond which E[S] will no longer change noticeably, implying that

expansion of the storage capacity beyond that point would practically not bring any

further profit to the consumer.

3-point symmetric distribution

A 3-point symmetric distribution was used, and the behavior of E[S] as a function

of o and n was identical to the case of the discrete uniform distribution. Hence, for

conciseness, the corresponding plots are not provided and the reader is referred to

the interpretation for the discrete uniform case.

3.2.2 With Storage Penalties

Let us set the storage penalty to h,k 0.1A, i 0, 1, 2,..., n - 1, Vk as long as the

storage is not filled up. Then, for a fixed time horizon of N=20, let us examine how

E[S] varies with o and n, for each of the following price distributions:

Discrete uniform prices

Figure 3-3 illustrates how E[S] changes as a function of a- and n, for a discrete uniform

distribution. In contrast to the previous case, the plots show that E[S] is no longer

a linear function of o-; however, it is still an increasing function of o-. The compelling

observation here is that for a fixed standard deviation, there exists a unique optimal

value of n that maximizes E[S]. This optimal value of n increases as the standard



deviation increases. This implies that for a given time horizon, a fixed ramp constraint

and a fixed a, there exists an optimal storage capacity. Comparing this result to the

case of no penalties with discrete uniform distribution, one would observe that the

existence of storage penalties would encourage the consumer to invest in a relatively

smaller storage capacity.

3-point symmetric distribution

Figure 3-4 illustrates how E[S] changes as a function of a and n, for a 3-point sym-

metric distribution. The 3-D plot of E[S] vs. o and n, and also, the 2-D projection

plot portraying E[S] vs. a for this case are very similar to the ones for the discrete

uniform distribution with storage penalties shown in Figure 3-3. As illustrated in

Figure 3-4, the notable difference between the results for this distribution and the

discrete uniform case is that the unique optimal value of n that maximizes E[S] is

not necessarily a non-decreasing function of the standard deviation. Comparing this

result to the case of no penalties with 3-point symmetric distribution, one would

observe that the existence of storage penalties would discourage the consumer from

investing in large storage capacity, even if the prices are quite volatile.

3.3 Price-Elasticity

The previous sections characterized a model of an individual consumer's optimal

policy for managing storage and the induced monetary value of storage. This section

will introduce a simple model of aggregation, in which each individual uses the storage

management model. This model is based on giving consumers randomized initial

states, and then, computing their consumption, and clustering these as a function of

the real-time prices, in order to characterize the price-elasticity of demand. In other

words, the objective is to study the expected aggregate consumption as a function of

price.
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Figure 3-2: The expected monetary value of storage vs. standard deviation of prices
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jections for a few samples (middle and bottom plots), for the case of no storage
penalties, using a discrete uniform distribution.



5 10 15 20

n=-
25 30 35 40

Figure 3-3: The expected monetary value of storage vs. standard deviation of prices
and capacity to ramp constraint ratio, in 3-D (top), and the corresponding 2-D pro-
jections for a few samples (middle and bottom plots), in the presence of storage
penalties, using a discrete uniform distribution.
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3.3.1 Aggregation Model

The number of consumers is denoted by L, and the aggregation model is specified

as follows. Assume that there is a fixed time horizon for all consumers, which is

denoted by N. At every time k {O, ... , N}, all consumers are given the same price

signal Ak. However, to model random initial states, consumer j E {1, -- - , L} starts

her interaction with the grid at time k = 0 with a random amount of energy in her

storage that is uniformly distributed over [0, s]. In other words, at time k, the local

state for each consumer is thus sj. The total consumption of all consumers at time k

is the ensemble average of the individual vk values.

To make the notion of price-elasticity accurate, one needs a measure of consumption

that depends only on price. In the model, however, the consumption depends on

price, stage, state, storage capacity, and ramp constraint. Assume the same time

horizon for all consumers. In Section 3.2, it was shown that for a fixed time horizon

and a fixed standard deviation for a certain distribution, there exists a certain storage

capacity beyond which the value of storage will no longer change by much. Also, the

physical ramp constraint is usually a known physical parameter. Hence, it is plausible

to assume that the storage capacity and physical ramp constraints are fixed for all

consumers within the same sector. Moreover, state-dependence can be eliminated by

taking expectations. In particular, define:

v7 (k IA) -kls [E*IX -A]

In order to eliminate stage-dependence, think of the consumption-measuring observer

as sampling a random time r uniformly over {0,--- , N}. By averaging over this

randomness, dependence on prices alone is maintained. More precisely, the quantity

of interest is:

vaMegate(A) = E, [vi(r, A)],
j=1

which is easily captured in numerical simulations by clustering real-time prices, and



averaging over each cluster.

3.3.2 Simulations

Aggregation Parameters

In these numerical simulations it is assumed that the number of consumers is L = 50,

and the average is taken over 20 random instances of prices and consumer initial

states. All consumers initiate their interaction with the grid at time k = 0 each with

a random initial state si, as described above, and end their interaction with the grid

at a global time horizon of N 288. This might correspond to, for instance, a period

of 24 hours, where real-time prices are updated once in every 5 minutes. They each

make optimal utilization of storage according to the proposed model. The physical

ramp constraint is set to U = 10 for all consumers, and a discrete uniform distribution

with mean 10 and standard deviation 6.055 is simulated. Using the results in Section

3.2 one would infer that with these model parameters, a storage capacity of s = 50 is

a reasonable choice for all consumers, which is the value used in the simulations for

price-elasticity.

In order to investigate how storage penalties affect the price-elasticity of demand, two

different scenarios are examined: (a) hi,k = 0 Vk, i < n or (b) hi,k = 0. 1A Vk, i < n.

Numerical Results

Figure 3-5 illustrates how the aggregate demand changes as a function of price for

(a), i.e. when hi,k = 0 Vk, i < n

Figure 3-6 illustrates how the aggregate demand changes as a function of price for

(b), i.e. hi,k = 0.1A Vk, i < n.
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Figure 3-6: Aggregate demand vs. price, with storage penalty.



Interpretation

As the plots for both cases suggest, the aggregate demand for electricity seems to

be responsive to prices that fall in the mid-portion of the aggregate demand curve,

i.e. those values of A that are within one standard deviation of the mean. For the

case of no storage penalties, this portion serves as a relatively steep transition region,

in which the consumer quickly switches from the "buy it all" policy to the "sell it

all" policy. The situation is slightly different when storage penalties are imposed.

Considering the cost of storing energy, the "buy it all" region has become narrower,

and the transition region has instead become wider. The selling policy has practically

been reduced to "sell it all if prices are above average" with the exception that due

to the high risk of keeping a lot of energy in inventory, the expected sell-back to the

grid has been reduced to almost half of the ramp constraint, for practically any price

that is greater than average.

To characterize price elasticity of demand in a more quantitative way, one needs

to bear in mind that the overall price elasticity should have the firm component of

demand in it. That is, the overall price elasticity depends on the amount of storage

relative to the firm demand. More storage yields higher elasticity. Similarly, a smaller

firm demand results in higher price-elasticity. For instance, in the above simulations

for scenario (a), by setting the firm demand, denoted by d1 , equal to 3 times the

ramp constraint (i.e. d = 3U = 30), the average price elasticity of demand would

be -0.35, whereas setting df = 5U = 50 yields an average price-elasticity of -0.20.

Also, in the above simulations for scenario (b), by setting df = 3U 30, the average

price elasticity of demand would be -0.27, whereas setting df = 5T = 50 yields an

average price-elasticity of -0.15. Both of these scenarios support the idea that a lower

fixed demand relative to storage level yields higher elasticity. However, one would

also observe that the average price-elasticity of demand in this case is lower in the

presence of storage penalties.

Although a consumer-aggregate model was presented, because the stochastic behavior



of each user is the same, the ensemble average provided in this section is equivalent

to a single-user expectation. Moreover, if the storage capacity is relatively small

compared to the time horizon, then the initial state so only affects the optimal policy

of a consumer for the first few stages. Hence, within a short period after the consumers

start their interaction with the grid, the states for all the consumers will become the

same.



to



Chapter 4

The Load-Shifting Problem

4.1 The Optimal Policy

This chapter studies the load-shifting problem defined in (2.12). The optimal policy

and the associated value function are analyzed in the first section, and then, in the

next two sections, the expected consumer savings and the induced price-elasticity of

demand are characterized within the same mathematical framework.

4.1.1 Perfect Information about the Price Distribution

In this section, the consumer's optimal policy is characterized for scheduling the

shiftable loads based on principles of dynamic programming. This allows for devel-

oping a mathematical model of the intertemporal utility of consumption, induced by

this optimal load-shifting. It is assumed in particular that the price distribution is

perfectly known.

Definition. Given a distribution function PA with support over a discrete set E E

[Amin, Amax] C R+, the modulated expectation function associated with PA is a concave



function FA- [Amin, oo) -+ R_ defined according to

min(Am.,x)

rA (x) = (0 - x) PA (0) (4.1)
e=A.in

This definition extends naturally to continuous distributions, by replacing the sum-

mation with an integral.

Remark 6. The modulated expectation function can be simplified using the method

of summation by parts. For x > A,ax, we can easily see that 1(x) A - x. However,

for the case of Amin <_ x < Awax, we need to use summation by parts to simplify 1(x).

We know that random variable A is distributed between Amin and Amax. Let us sort in

ascending order the values that random variable A can take on, and denote the k-th

element of this ordered set by Ok (e.g. using this notation, Amin will be denoted by 01).

Also, denote by 0; the value in random variable A that is equal to x. Finally, let us

define gA = FA( 0k_1) so that PA(Ok) = gk+1 - 9k. Then, we can rewrite 1(x) as:

i-I

7(x) Z E(Ok - Oi)(gk+1 - gk)

k=1

which, using summation by parts, can be written as

i-1

1(x) [((i - 0)9i ~- (01 - O0i91] - gk+(Ok+l ~ Ok)
k=1

But g1 = 0 and gk+1 = FA(Ok). Hence, we conclude that

i-1

1(x) = -Z (Ok+1 - Ok)FA(Ok)

k=1

Now, if random variable A consists of N equally spaced elements on the interval

[AminAmax] (i-e. 0 k+1 - 0 k is the same for all k), then we can further simplify the

above:

IF(x) = N- 1  Z FA(Ok)

k=1



Similarly, for the continuous case, using integration by parts, we obtain:

X

1(x) =- FA(0)dO
Amin

Consider the load-shifting problem (2.12) with linear disutility of delay (i.e. pk(xk) =

-Pkxk) and an infinite U. The optimal policy for this problem can be obtained using

the same approach that was used for the storage problem in the previous chapter. As

shown in [20], for the load-shifting problem,

(i) The value function is affine, and is characterized by:

V(xk) = E[Jk(xk)] - -tkXk + e/, Xk 0, (4.2)

(ii) The optimal policy is a threshold policy characterized by

0

d- x

Ak > tk

Ak < tk
(4.3)

where, the thresholds tk can be computed via the following recursive equations:

tN Amax, tk Pk ± tk+1 + FA (tk+1) (4.4)

where, IA (-) is the modulated expectation function (4.1).

(iii) The constant terms ek in (4.2) can be computed recursively via the following

equations:

eN = AdN, e/k = ek+1 ± ds(tk+l ± IPA (tk+l)) (4.5)

4.1.2 Partial Information about the Price Distribution

One might argue that perfect information about the price distribution is not available

to the user in practice. Therefore, in this section, this assumption is relaxed, and



instead, an approximation to the modulated expectation function PA is proposed,

which embodies the dependence of the optimal policy on the price distribution. As

shown in [20], if we let Ami = 0 and Amax = 1, then, given a mean IL E [0, 1] and an

achievable variance o.2 , with P as the set of all distributions supported on [0, 1] that

have mean y and variance o.2, we can bound FA as follows:

A (X) FA (X) fA (X), VX E [0, 1],

where:

0+j ; 0 E0, p -/1

LA ~ ) 2±( X±' )2 a 2(1L

rA (X)= (1-0( )- o2 . G: ,p-

p - ; E +

- ( 1 -2 ;_1G 1 _A 2 _,2

(J_p)2+a2 + pL - ,X I 2(1-A) ,

It was also pointed out that both of these bounds are tight pointwise, in the sense that

for every x E [0,1] there exists a distribution PA E P under which FA(x) = I (X)

and another distribution _A E P under which A (x) = LA(x).

Furthermore, it was shown that the bounds for the general case of [Amin, Amax] can be

obtained via the following transformation:

EA(x; Amn, Amax, yt, .2 )

(Amax - Amjn)F:A X-e 07,1, AnaArn ~amY,

It is worth noting that the upper bound PA is piecewise linear, whereas the lower

bound FA is piecewise linear except in the middle segment. To illustrate the usefulness

of these bounds, an abstract notion of worst-case optimality was given, by adopting

a pointwise min-max notion of optimality for an approximation FA(X) of FA(x) at a



given point x E [Amin, Ama]. More precisely,

IA(X) = min max IFA(x) -- f.
e PAEP

Then it follows that

f'A(X) = . (4.6)

Remark 7. The conclusion that this thesis draws from the above results is that the

optimal cost of the load shifting problem is bounded above and below by the cost that

results from adopting FA and LA respectively, instead of IPA, for the computation of the

policy thresholds as in (4.4). This conclusion relies on the fact that the optimal cost

is an affine expression of the thresholds with non-negative weights, and that adopting

the upper or lower bounds results in larger or smaller threshold values respectively.

To illustrate these approximations, consider the case where P represents distributions

over [0,1], with mean 1/2 and variance 1/12. In Figure 4-1, IA is plotted for the

special case of a uniform distribution with these parameters, given the upper and lower

bounds over P, as well as the min-max approximation of equation (4.6). Considering

the fact that the upper and lower bounds are not too far apart, one would expect that

partial information should not drastically change the overall behavior of the consumer

and her consumption. This theme will be revisited in the next two sections, where

individual savings and aggregate price elasticity will be studied.

4.2 Consumer Savings

One would expect the ability to shift loads to help the consumer bring down her

costs, and do so even more effectively when the volatility of prices, measured by the

variance, is high. The results in this section support this intuition and characterize

it analytically.

The baseline should be the cost that the consumer incurs if the ability to shift loads

is taken away from her. In this case, the consumer is forced to purchase the exact



0 0.5 1
x

Figure 4-1: FA of the uniform distribution, as well as partial information upper and
lower bounds, and the min-max approximation, for distributions over [0, 1], with mean
1/2 and variance 1/12.

amount of her demand from the grid at each stage. The expected cost of consumption

for that consumer will then be Lk dA. Therefore, the quantity of interest in this

section is how well the consumer does in going below this cost. Let us call this the

expected savings of the consumer, and denote it by E[S], which can be defined as

follows:

E[S] = d A - E[Jo(xo)]. (4.7)
k

4.2.1 Savings under Perfect Information

In this section, three known distributions are considered. For simplicity, it is assumed

throughout that N is fixed, xo = 0, pA = 0, and dZ = 1. Generality is not lost,

however, because these terms would principally contribute deterministic scales and

shifts, which would not impact the order of dependence that will be derived.

Theorem 2. Consider the load-shifting problem given in (2.12). Let N be fixed,

xo = 0, pk = 0, and di = 1. Then, for the following classes of distributions



- 3-point symmetric distributions, fixed mean, and

- Discrete uniform distributions, fixed mean,

all quantities other than the variance o.2 being constant, we have that E[S] = O(o-).

Proof. Consider the 3-point symmetric distribution. The probability mass function

of the 3-point symmetric distribution was defined in (3.9), which has a standard

deviation of o- = . In particular, we have A O(o-). Using equations (4.4), (4.2),

and (4.5), we have:

E[Jo(xo)] = ei + ti + l'A(t1) = eo

Therefore, the total expected cost in this case is equal to eo. Now, by substituting

the recursive equations of ek (4.5), 1 < k < N, into the equation for eo, we have:

E[Jo(xo)] = eo= to + ti + ... + tN-1 + A (4-8)

We know from (4.1) and (4.4) that for k < N and pk = 0,

tk = tk+1 ±
min(Amaxt+1

(0 - tk+ 1 ) PA (0)

Using the distribution of prices as defined in (3.9), and noting that the thresholds are

an increasing function of k as defined in (4.9), which implies tk < m + " for k < N,

we can rewrite (4.9) for k < N as follows:

3 tk+1±+m A
4 4 8

tk~j +3m A
4 4 8

Now note that tN-1= A = m is a constant, and therefore

M 3mA

tN-2 = - -- = m --
4 4 8 8

60

(4.9)

tk{
m - tk+1 < M

M - tk±1 Km ±n 2
(4.10)



is 0(-A). From (4.10), it follows by induction that tk is 0(-A) for all k. Hence, the

total expected cost, shown in (4.8), is also O(-A). It follows that the total expected

cost is 0(-u), and thus the expected savings are O(-).

Now consider the case of the discrete uniform distribution defined in (3.10). For

this distribution, o- M-1, which means, M O(o-). Also, the prices have mean

A = f. Hence, a = - M-1 and b = A + M-1. Using this distribution, we can

rewrite (4.9) for k < N as

1- M±+1

tk = tk+1 (1 M ([Ltk+1] -- I+ 2 +kk1 MLkl 2

L [tk+1](Ltk+1J + 1) (A - 0 - M+1) (4.11)
M 2 2

Therefore, as shown in (4.11), considering that M > 1 and assuming that tk+1 was

O(-M), we can see by induction that tk is 0(-M). To complete the induction, we

need to note that tN-1 =A is a constant, and

tN 2 A(1 M(LAA+ .1LJ(LAJ +1) ( 2 1 _M2)
tN-2 - 2 2

is 0(-M). Hence, the total expected cost shown in (4.8) is also 0(-M). Considering

that M = O(-), we conclude that the total expected cost is 0(-o-). Thus, the

expected savings are O(u).

0

Remark 8. For the purpose of comparison, consider a continuous exponential dis-

tribution. Such distribution has equal mean and standard deviation, and hence, it is

not possible to fix the mean and vary a. To characterize the case of this distribution,

let us define an exponential distribution as follows:

fA(0) = (4.12)
0 otherwise



which has mean and standard deviation equal to - (where we have a > 0). We can

rewrite (4.9) for the exponential distribution using an integral (for k < N):

ftk+1

tk -- tk±1 (1 - (1 e-etk±1)) ± ] OeOdO

which simplifies to
1

tk = -(1 - e-atk+1) (4.13)
a

Let us look at the last four thresholds for k < N:

tN-1

tN-2

tN-3 -1+e-

1_e-1+e-+e-l
N-4 a

As can be seen above, given that tN-1 is a constant, the (1 - e-tk+1) term in (4.13)

will be only a function of k and is independent of a for all k. Hence, we can rewrite

(4.13) as follows:
ak

tk= for k<N-2 (4.14)

where ak = 1 - e-tk+1 is independent of a because the a in the exponential term is

always cancelled out by the a in the denominator of tk+1. Therefore, as shown in

(4.14), assuming that tk+1 was O(a-1), we can see by induction that tk is O(a-).

To complete the induction, we need to note that tN-1 = A is a constant, and tN-2 =

(1 - e- 1) a- 1 is O(a-1). Hence, the total expected cost shown in (4.8) is also O(a- 1).

Now, consider the equation for the expected total savings defined in (4.7). Using this

equation and the assumptions of this subsection, we have:

N
E[S|= - - eo

ae



where, using (4.8) and (4.14), we obtain

1 N-2
eo= o (2+ ak)

k=O

So,
N-2

E[S] - (N - 2 - Zak) (4.15)
k=0

As can be seen in (4.15) above, for a fixed time horizon, the expected total savings is

O(a-1). Now, if we fix a and vary N, then, considering that for large values of N the

sum of ak's will be negligible relative to N, we can see that the expected total savings

will be 0(N).

4.2.2 Savings under Partial Information

Now consider the case when we only have partial information about the price dis-

tribution, in that it lies in a set P of distributions with known support, mean and

variance. We know that the upper and lower bounds discussed earlier bound the

consumer's expected cost and, consequently, her expected savings.

The behavior of the expected savings can be illustrated numerically using these

bounds. Consider the case when [Amin, Amax] = [0, 75] and the mean is A = 50.

In Figure 4-2 the upper and lower bounds on the expected savings are plotted, as the

standard deviation o varies from 0 to 35. Once again, one can observe that the larger

the volatility of the prices, the more the consumer is expected to save, even if she

has only partial information. This figure also shows the savings under the min-max

approximation, which, whilst not being linear, preserves, to some degree, the order

of growth that was found under perfect information.
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Figure 4-2: Expected savings of a consumer with partial information, as the standard
deviation varies.

4.3 Price-Elasticity

In the previous section, an individual consumer's optimal policy for managing shiftable

loads was characterized. In this section, a simple model of aggregation will be in-

troduced, where each individual behaves as before. Consumers are given randomized

operation periods, and their behavior is simulated. In particular, their consumption

is computed over time, and these are clustered as a function of the real-time prices,

in order to characterize the price- elasticity of demand. In other words, the quantity

of interest is the aggregate consumption (u) as a function of price (A).

4.3.1 Aggregation Model

The number of consumers is denoted by L, and the aggregation model is specified

as follows. Assume that there is a global time horizon for all consumers, which is

denoted by T. At every time t E {0, -. - T}, all consumers are given the same

price signal At. However, to model random consumption periods, consumer j E



{1, ... , L} starts consumption at a random time Ttart (j) that is uniformly distributed

over {,- , T - 1}, and has a random deadline N(j) that is uniformly distributed

over {1,--- , T-Tstar(j)}, conditional on Tstart(j). In other words, at time t, the local

stage for each consumer is thus ki(t) = t - Tstart(j). However, to simplify notation,

indexing is performed by the global time only. The total consumption of all consumers

at time t is the ensemble average of the individual u-' values, which is taken to be

zero if ki(t) V {0, ... , N(j)}.

To make the notion of price-elasticity accurate, one needs a measure of consumption

that depends only on price. In the proposed dynamic model, however, the consump-

tion depends on price, stage, and state. State-dependence can be eliminated by taking

expectations. In particular, define:

u3 (t, A) = E,~~N [t *At -A]

In order to eliminate stage-dependence, think of the consumption-measuring observer

as sampling a random time r uniformly over {o, ... , T}. By averaging over this ran-

domness, dependence on price alone can be maintained. More precisely, the quantity

of interest is:
L

Uaggregate(A) = L E [uj (r, A)]
j=1

which is easily captured in numerical simulations by clustering real-time prices, and

averaging over each cluster. Although a consumer-aggregate model is presented,

because the stochastic behavior of each user is the same, this ensemble average is

equivalent to a single-user expectation.



4.3.2 Simulations

Aggregation Parameters

In these numerical simulations it is assumed that the number of consumers is L = 500,

and the average is taken over 50 random instances of price and consumer arrival.

Consumers initiate and end their consumption randomly, as described above, over a

global time horizon of T = 720. This might correspond to, for instance, a period of

24 hours, where real-time prices are updated once in every 2 minutes. To manage

their electricity consumption, they each perform optimal load-shifting according to

the proposed model.

Load-Shifting Model Parameters

Assume that each consumer starts her consumption with no backlogged demand, i.e.

zo = 0. Also assume that di = 1 for all k.

In order to investigate how load-shifting penalties affect the price-elasticity of demand,

two different scenarios are examined: (a) PA 0 Vk or (b) Pk = 0.1A Vk.

Three distributions are simulated: a discretized uniform distribution, the 3-point

symmetric distribution defined in (3.9), and a discretized and truncated log-normal

distribution, using the same mean A 0.5 across distributions.

Numerical Results

Figure 4-3 illustrates how the aggregate demand changes as a function of price for each

of the three distributions in scenario (a), i.e. when Pk = 0 Vk. Each plot contains two

graphs; one graph represents the aggregate consumption for the load-shifting problem

(2.12) where consumers have perfect information about the price distribution and the

other represents the same quantity where users substitute the true threshold function



with the min-max optimal approximation (4.6) under partial information.

Figure 4-4 illustrates how the aggregate demand changes as a function of price for

each of the three distributions in scenario (b), i.e. when PA = O.1A Vk. As before,

each plot contains two graphs, corresponding to perfect or partial information about

the price distribution.

Interpretation

In the absence of load-shifting penalties (i.e. when pk, = 0 Vk), the aggregate con-

sumption varies as a relatively smooth function of price. One can readily interpret

this as the aggregate demand for electricity being highly price-elastic.

However, when even a small penalty is assigned to load-shifting, (i.e. when pk = 0.1A

Vk), the price-elasticity of demand decreases and the shape of aggregate demand

graphs reduce to the policy of purchasing from the grid only when prices are below A.

This means that the price-elasticity of demand is very small nearly everywhere, except

when the price is close to a certain threshold, where the demand shows significant

elasticity.

The actual amount of price-elasticity would depend on the ratio of shiftable loads to

firm loads, which is time-varying and depends on the temporal characteristics of the

load. However, it follows that if at any given time a certain portion of the overall load

is shiftable, ternary pricing could induce a price elasticity that is proportional to this

shiftable portion at the middle and lowest prices, and zero at the highest price. This

implies that in situations where shiftable loads comprise a substantial portion of the

overall load, a considerable price-elasticity of demand is expected at the middle and

lowest prices.
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Figure 4-3: Aggregate demand vs. price, with no backlog penalties, for the uniform
(top), 3-point symmetric (middle), and truncated log-normal (bottom) distributions.
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Chapter 5

Conclusions

This thesis presented a dynamic model of intertemporal utility of consumption in

response to stochastically-varying electricity prices. It also provided a characteriza-

tion of price-elasticity of demand created by optimal utilization of storage and the

flexibility to shift certain loads to periods of lower prices. The approach was based

on analytical characterization of the consumer's optimal policy through a finite hori-

zon stochastic dynamic program. A general model of consumer behavior was first

presented, which combined both load-shifting and storage. The model was then de-

coupled into two subproblems, one for load-shifting and the other one for storage,

and each subproblem was studied separately. The proposed models and the findings

regarding consumer behavior and price-elasticity can be very useful to various enti-

ties, including transmission system operators, utility companies or distribution grid

control centers.

On Storage

For the dynamic model of storage management, optimal threshold policies, including

analytical expressions for the corresponding thresholds were derived. It was shown,



as a very compelling finding, that the value function is a convex piece-wise linear

function of the storage state and analytical expressions for this value function were

obtained.

Analytical expressions were also provided for the expected monetary value of storage

for the consumer. Moreover, it was shown that the expected monetary value of

storage increases with the volatility of the prices: larger price variance results in

higher expected monetary value of storage. It was also shown that when the ramping

rate is finite, the value of storage saturates quickly as the capacity increases, regardless

of price volatility.

Finally, it was shown that optimal utilization of storage can induce a considerable

amount of price-elasticity of demand. An immediate observation that one could

make in these results is that if all the consumers optimally schedule their utilization

of storage capacity in the presence of bi-directional meters, a considerable amount of

power will be fed back into the grid when the prices are above the mean price. This

implies that the consumers' utilization of storage capacity may need to be regulated

by the system operator to maintain system balance and stability.

On Load-Shifting

The analytical expressions of the optimal threshold policies and the value function

for this problem were used to characterize the total expected savings induced by op-

timal load-shifting; this characterization was performed using perfectly known price

distributions, and also, using analytical bounds that were used to give an approxima-

tion to the thresholds in the realistic case when the price distribution is not perfectly

known, but rather only its support, mean, and variance are given. It was reported

that the total expected savings induced by implementing the optimal load-shifting

policies could be considerable, and would increase with volatility of the prices.



Perhaps a deeper finding is that although the demand for electricity is often deemed

to be highly inelastic, the introduction of load-shifting mechanisms and the ability

to optimally reassign loads to later times can induce a considerable amount of price-

elasticity. The characterization of price-elasticity also highlighted the fact that an

individual consumers response to a price signal is dependent on both the price and

the internal state of the consumer. From the system operation point of view, this de-

pendency on the internal state raises new challenges for adoption of real-time pricing

schemes.
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