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Abstract

Brain tissue is highly vulnerable to unbalanced oxygen demand and supply. A few
seconds of oxygen deficit may trigger neurological symptoms, and sustained oxygen
deprivation over a few minutes may result in severe and often irreversible brain dam-
age. The rapid dynamics coupled with the potential for severe injury necessitate
continuous cerebrovascular monitoring in the populations at greatest risk for devel-
oping or exacerbating brain injury. Intracranial pressure (ICP), which is the pressure
of the cerebrospinal fluid, is a vitally important variable to monitor in a wide spec-
trum of medical conditions involving the brain, such as traumatic brain injury, stroke,
hydrocephalus, or brain tumors. However, clinical measurement of ICP is highly inva-
sive, as it requires neurosurgical penetration of the skull and placement of a pressure
sensor in the brain tissue or ventricular spaces. Measurement of ICP is thus cur-
rently limited to only those patient populations in which the benefits of obtaining the
measurement outweigh the significant attendant risks, thus excluding a large pool of
patients who could potentially benefit from ICP monitoring. The primary goal of our
work is to address the non-invasive monitoring of ICP. A secondary aim of this work
is to develop methods for the assessment of cerebrovascular autoregulation, which is
the innate ability of the vasculature to maintain cerebral blood flow in the face of
changes in cerebral perfusion pressure. Cerebrovascular autoregulation is often im-
paired in patients with brain trauma or stroke, and also in pre-term neonates, as their
cerebrovascular system is not fully matured.

We develop methods for non-invasive, continuous, calibration-free and patient-
specific ICP monitoring. Specifically, we present a model-based approach to providing
real-time estimates of ICP and cerebrovascular resistance and compliance, for each
cardiac cycle, from non- or minimally-invasive time-synchronized measurements of
arterial blood pressure and cerebral blood flow velocity in a major cerebral artery.
In the first step, our approach exploits certain features of cerebrovascular physiology,
along with model reduction ideas, to deduce a simple mathematical model of the
cerebrovascular system. In the second step, we develop algorithms to compute robust
estimates of model parameters by processing the measured waveforms through the



constraints provided by the models dynamic equation.
For validation, our non-invasive estimates of ICP were compared against invasive

measurements from 45 comatose brain-injury patients, with a total of 35 hours of data

(over 150,000 beats), providing more than 3,500 independent ICP estimates. Our
estimates track measured ICP closely over a range of dynamic variations. Pooling all
independent estimates resulted in a mean estimation error (bias) of less than 2 mmHg
and a standard deviation of error of about 8 mmHg. We also suggest how variations
in estimated cerebrovascular resistance and compliance in response to variations in
cerebral perfusion pressure may be used to provide novel approaches for assessment
of cerebrovascular autoregulation.

Thesis Co-supervisor: Professor George C. Verghese
Title: Professor of Electrical Engineering

Thesis Co-supervisor: Dr. Thomas Heldt
Title: Research Scientist
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Chapter 1

Introduction

1.1 Background

Blood is responsible for carrying oxygen and nutrients to tissue throughout the body,

and taking away metabolic waste products. Most organs can survive a short interrup-

tion in their blood supply. Skeletal muscle, for example, can survive a disruption of

blood flow for minutes. Brain tissue, however, cannot withstand ischemic conditions:

neurological symptoms appear within seconds, and if ischemic conditions prevail for

a few minutes, there is a high risk of irreversible damage to brain function [11.
Even though the brain accounts for only around 2% of total body weight, it ac-

counts for almost 20% of the body's oxygen demand under resting conditions [1].

The stringent constraint of meeting the brain's blood supply requirements is pri-

marily achieved by sophisticated local regulatory mechanisms to control blood flow,

referred to in aggregate as cerebrovascular (or cerebral) autoregulation. (Mean arterial

blood pressure, by contrast, is fairly uniform throughout the body, and not controlled

locally.) To maintain the desired local blood supply, the cerebral vasculature has the

innate ability to adapt to pressure, flow and metabolic changes by altering the diam-

eters of the blood vessels to achieve vasoconstriction or vasodilation, and by altering

the compliance of the arteries.

A key factor in determining perfusion to the brain is intracranial pressure (ICP),

which is the pressure of the cerebrospinal fluid (CSF) that bathes the brain tissue



and spinal canal. While ICP is a pulsatile waveform, in the context of this document

we will use the acronym ICP to denote the mean (or beat-averaged) value of the

waveform. Particular references to instantaneous values or morphological features of

the underlying waveform will be made clear.

ICP affects cerebral perfusion through the Starling resistor mechanism [11, 12]

acting at the level of the cerebral veins: since ICP is usually higher than the far-end

venous pressure, it collapses the veins and thereby acts as the effective downstream

pressure [13,14]. Thus, mean blood flow through the cerebral vasculature is deter-

mined by the difference between mean arterial blood pressure (MAP) and ICP, rather

than between MAP and venous pressure. This difference, MAP - ICP, is therefore

termed cerebral perfusion pressure (CPP). An increase in ICP, for instance in brain

injury, causes CPP to drop, which is initially compensated by alterations in the cere-

brovascular resistance through cerebral autoregulation, as long as the autoregulatory

reserve is not exhausted, to maintain a steady cerebral blood flow (CBF). However,

a continued rise in ICP, and thus drop in CPP, can outrun the cerebral vasculature's

autoregulatory capacity, causing CBF to drop, and hence compromising oxygen sup-

ply to the brain. Cerebral autoregulation in humans maintains a steady blood flow in

the face of CPP variations, caused by variations in either MAP and ICP or both. The

typical range of operation of autoregulation is specified in terms of MAP, with lower

and upper limits of autoregulation at about 60 mmHg and 150 mmHg, respectively [1].

ICP is normally 7-15 mmHg in the supine position in adults, but it is elevated

in brain injury. An ICP above 20-25 mmHg sustained for a period of even a few

minutes can be dangerous and requires immediate intervention to bring it back to

normal [15,16]. It is also important to maintain a steady CPP of at least 60-70 mmHg

to avoid brain ischemia that may result from damage to, or exhaustion of, cerebral

autoregulation [17 20]. Elevated ICP signals compression of the neural tissue, and

a continued increase can ultimately lead to sudden death. For example, in severe

traumatic brain injury (TBI), brain swelling leads to increased ICP and consequent

obstruction of blood vessels, causing hypoxic and hypercapnic conditions [21], and can

have fatal consequences [15,22,23]. In the case of intracranial hemorrhage, bleeding



into the cranial cavity can cause the intracranial volume to increase, thereby causing

ICP to rise dramatically, leading to a reduction in CPP and consequently poor cere-

bral tissue perfusion. ICP is elevated by brain tumors and in hydrocephalus (literally

'water on the brain', a condition with an abnormally high CSF volume). Accumula-

tion of CSF in the cerebrospinal space is sometimes caused by vascular disease that

affects intracranial compliance or blocks the absorption of CSF into the cerebral veins.

In ischemic strokes, blockage of an artery by a clot interrupts or stops blood supply

to some brain tissue, and in many cases cerebrovascular autoregulation is partly or

completely lost [24]. Disease of the cerebral arteries may also impair cerebrovascular

autoregulation. It is also hypothesized that very premature neonates lack a fully

developed cerebral autoregulation mechanism, hence cannot buffer cerebral blood

flow under changing perfusion pressure or metabolic needs [25,26].

1.2 Motivation

The primary aim of critical care for patients suffering from brain injury or cere-

brovascular disease is to closely monitor the patient state and provide appropriate

therapeutic intervention. A key component of such monitoring involves continuously

tracking ICP and the state of cerebral autoregulation [17,20,27,28]. However, current

methods for direct measurement of ICP are highly invasive, as they require neuro-

surgical penetration of the skull to place a pressure sensor, and carry risks of tissue

damage and infection [29]. They are, therefore, not part of routine clinical procedures

in this broad patient population and are applied only in the sickest cases. Thus, there

is a clear and compelling need for developing procedures to monitor and track ICP

and cerebrovascular autoregulation as a function of time with minimal invasiveness.

A method for minimally- or non-invasive monitoring of ICP would be a semi-

nal improvement in the diagnosis and treatment of brain trauma and neurological

diseases. It will open up the possibility for use in several settings where ICP mon-

itoring would improve care, but is currently avoided because of the highly invasive

nature of available methods. For instance, non-invasive monitoring of ICP will have



impact on diagnosis and monitoring of the early non-symptomatic stages of TBI, in

mild and moderate TBI, as well as for repetitive concussions (e.g., sports injury),

hydrocephalus, brain tumor, stroke, post-neurosurgical care, or even in abnormal eye

exams. Another potential application is the monitoring and programming of CSF

shunts in chronic hydrocephalus patients. Non-invasive monitoring of ICP could also

be informative in a still broader population in which elevated ICP may be involved

in specific pathophysiological pathways, possibly even in such common conditions as

migraine. The technology could well eventually replace the invasive procedures that

are currently employed, saving patients from the risks and complications associated

with current measurement modalities.

Estimation of ICP will make CPP available, which can then be used along with the

estimates of the resistance and compliance properties of the vasculature to quantify

the state of autoregulation. This will enable rational assessment and better treat-

ment. Current methods of autoregulation assessment are mostly within the realm

of research, are based on indirect indicators and correlations rather than directly on

the physiology; there is no commonly accepted method of clinical assessment of au-

toregulation [301. A physiologically based assessment of autoregulation is expected

to meet greater clinical acceptance, because it will enhance the understanding of the

functioning of the cerebral vasculature and can potentially lead to guided therapeutic

interventions.

1.3 Approach

We adopt a model-based approach to develop methods for non-invasive and continu-

ous monitoring of ICP and autoregulation. We develop a reduced-order mathematical

model that is rooted in fundamental cerebrovascular physiology, and that represents

the relationships among the essential physiological variables involved in cerebrovas-

cular dynamics. The model then provides dynamic constraints for processing of clin-

ically accessible non-invasive measurements to obtain continuous estimates of the

unmeasured variables of interest. Our simplified mechanistic model of the relevant



cerebrovascular physiology is critical to the development in this work, so we provide

below a brief overview of mathematical modeling approaches for the cerebrovascular

system, and discuss what distinguishes our development from others.

The understanding of cerebrovascular physiology has been captured in the litera-

ture in the form of various mathematical representations, or models, at different levels

of detail [31]. These models relate blood pressures and flows in various segments of

the cerebral vasculature, as well as pressures and flows of CSF in the intracranial

space. These representations are helpful in understanding system behavior, as they

can mimic the actual human physiology in ever greater detail, and are the basis for

further study of pathological scenarios and exploration of desired therapeutic inter-

ventions. However, most of these models are too large and complex to be suitable for

use in real-time clinical inference. They contain dozens of unknown parameters, which

are difficult to identify robustly from a few measurable quantities, such as arterial

blood pressure (ABP) and CBF. Therefore, the use of physiologically-based mathe-

matical models has been limited to computer simulations for academic illustrations

and exploratory studies.

Statistical and machine-learning type approaches for estimating and then using

empirical relationships among the desired cerebrovascular quantities have been re-

ported [32--34], as we discuss in detail later in this document. These modeling ap-

proaches rely on empirically learning relationships among the physiological variable

of interest (e.g., ICP) and observable data (e.g., ABP, CBF), and training on relevant

population data. Generally, the models in this category are partially or completely

blind to the physiological dynamics that govern these variables. Even though useful

relationships may be extracted by these models, the richness of the cerebrovascular

system, particularly under various pathologies as well as in patient-specific situations,

means that there is a significant penalty to be paid for not taking account of what is

known of the underlying physiological mechanisms and processes.

We believe that simple but physiologically-based models of the cerebrovascular sys-

tem can be developed. Such models would be aimed at overcoming the disadvantages

of each of the two categories above: models in the first category are physiologically



meaningful but complex; models in the second category may be simpler but lack a

physiological foundation and interpretation. Models of the type we are aiming at

need to be well-suited for integrating and interpreting clinical data and allowing one

to infer physiological variables of interest in patient monitoring. We are also moti-

vated and inspired by the success of similar model-based efforts in other physiological

systems, such as cardiovascular, respiratory, and renal physiology. A very pertinent

example, for what we aim to obtain and use for cerebrovascular monitoring, is the

Windkessel model (and its several variants) for the cardiovascular system [35, 36]. It

is a simple two- or three-element model that elegantly represents the system-level dy-

namics, relating ABP and cardiac output through peripheral resistance and arterial

compliance. The Windkessel model has been extensively used to study and illustrate

cardiovascular dynamics, as well as for application in patient monitoring [37].

In this thesis we make key observations about cerebrovascular physiology and use

model-reduction ideas to obtain a simple mathematical model of cerebrovascular dy-

namics. We validate the reduced model via simulation against a well-established (but

more elaborate) model of the cerebrovascular system. Based on our reduced model,

we develop algorithms for combining clinical measurement waveforms of peripheral

ABP and cerebral blood flow velocity (CBFV), obtained via transcranial Doppler

(TCD), to provide continuous estimates of ICP and cerebrovascular resistance and

compliance.

1.4 Thesis Contributions

The work in this thesis has four major contributions.

" We develop a simple and physiologically-based mathematical model of cere-

brovascular dynamics, aimed at the task of ICP monitoring. The model rep-

resents essential cerebrovascular dynamics with minimal complexity, as it has

only three unknown parameters.

* We develop a calibration-free and patient-specific method for non-invasive and



continuous estimation of the model parameters, including ICP (and hence CPP),

that can be performed in real-time. No training on population data is involved.

The algorithm interprets clinical measurements of radial ABP and CBFV, ex-

tracting the intrabeat features of the time-synchronized waveforms, and uses

the constraints provided by our model to obtain robust estimates. The model-

based intrabeat analysis of TCD waveforms, time-synchronized with ABP, is a

novel feature of our approach.

" We validate our ICP estimates by comparing against invasively obtained mea-

surements of ICP in 45 patients, a total of more than 150,000 beats, and more

than 3,500 independent estimates. The ICP estimates track measured ICP

closely over a range of dynamic variations. Comparison of aggregate mean ICP

for each record, i.e., time-averaged over an entire patient record, yields a bias

of 1.8 mmHg and a standard deviation of error of about 6 mmHg. Comparison

of all independent estimates yields a mean estimation error (bias) of less than

2 mmHg and a standard deviation of error of about 8 mmHg. The standard

deviation of error across all patient records is about 6 mmHg. These error statis-

tics are not yet within the 4-5 mmHg error tolerance that would be a worthwhile

practical goal, but are still comparable to some of the current invasive method-

ologies for ICP measurement. Estimation performance is expected to improve

by upgrading the data acquisition for a higher signal quality of the input mea-

surements, better noise and artifact elimination strategies, and possibly further

refinements of the pre-processing algorithms.

" The method provides beat-by-beat estimates of cerebrovascular resistance, com-

pliance and CPP. Temporal profiles of resistance and compliance estimates,

possibly independent estimates for the left and right hemispheres, along with

measurements of CBFV, reveal much about the state of the cerebral vascula-

ture. Appropriate variations in the resistance, or a lack thereof, in response to

abrupt changes in CPP can be used to form a non-invasive and continuous as-

sessment of cerebral autoregulation. The approach has two key advantages over



the majority of current indices: the assessment is based on CPP (rather than

MAP alone), and it is derived from a physiologically-based model. Preliminary

results are encouraging enough to suggest that further analysis and validation

are warranted.

1.5 Organization of Thesis

The thesis is organized as follows. The first section, titled Cerebrovascular Physi-

ology and Neuro-critical Monitoring, comprises the next two chapters and provides

background on cerebrovascular physiology and monitoring in neuro-critical care. The

importance of ICP monitoring, its current measurement methodologies, and need for

a non-invasive method of ICP estimation are discussed. The section also provides an

overview of cerebral autoregulation and its assessment.

The second section of the thesis, Mathematical Models and ICP Estimation, deals

with mathematical modeling of the cerebrovascular system, and approaches for non-

invasive estimation of ICP. Chapter 4 summarizes various mathematical models of the

cerebrovascular system that have been proposed and studied in the last four decades.

It then presents and develops our reduced-order model. In Chapter 5, we describe

parameter estimation algorithms for our cerebrovascular model.

The third section of the thesis, Validation and Performance Analysis, contains

estimation results and validation of our ICP estimates against invasive measurements

in a pool of severe traumatic brain injury patients (Chapter 6). Finally, in Chapter 7,

we discuss a few case studies related to assessment of cerebral autoregulation, which

indicate the potential for forming an index that can be used in clinical settings. How-

ever, much of this autoregulation work remains for future exploration and validation.

Chapter 8 summarizes and concludes the thesis.



Part I

Cerebrovascular Physiology and

Neuro-critical Monitoring
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Chapter 2

Cerebrovascular Physiology and

Brain Injury

In this chapter we provide a very brief overview of the relevant anatomy and phys-

iology of the cerebrovascular and cerebrospinal systems, and the pathophysiology of

brain injury. This overview will be helpful in understanding the peculiarities of this

physiological system and the problem of cerebrovascular monitoring. Physiological

understanding will be particularly useful in the development of various mathematical

models that we will discuss in Chapter 4. In Section 2.1, we describe the details of the

brain tissue, cerebral vasculature, and cerebrospinal fluid spaces. Section 2.2 gives an

outline of the epidemiology of brain injury. Finally, Section 2.3 provides details on

cerebral edema and other pathophysiological conditions following TBI, which is one

of the main settings in which ICP monitoring is indicated.

2.1 Physiology

The brain is a soft tissue enclosed inside the rigid skull and bathed by CSF. The

volume of the cranial cavity is taken up by three distinct components: the brain tissue,

the cerebral vascular network, and the CSF spaces. Figure 2-1 shows a view of the

intracranial space and CSF circulation pathways. Since, to a first approximation, the

skull is a closed system, expansion of one component must therefore be accompanied
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Figure 2-1: Intracranial space and CSF circulation [1].

by compression of one or both of the other two. This is termed the Monro-Kellie

doctrine [38-40]. As we will detail in Section 2.3, such compression has direct adverse

functional consequences. In the following, we provide an overview of each of the three

constituents of the cranial cavity.

2.1.1 Brain tissue

As shown in Figure 2-1, the brain tissue is surrounded by three layers of connective

tissue. The dura mater is the outermost membrane of the three, and is attached

directly underneath the skull. The arachnoid membrane, the second layer, separates

the dura mater and the subarachnoid space, which is bounded internally by the third

membrane, pia mater. The cerebral cortex which is the outermost layer of the brain,

lies beneath and in direct contact with the pia mater.

The brain consists of four major anatomical divisions: the brain stem, the dien-

cephalon, the cerebellum, and the left and right cerebral hemispheres (also collectively

called the telencephelon). Figure 2-2 shows the detailed anatomical structure of the

brain. The brain stem consists of the medulla, pons, and the midbrain. It is an

- ----------



extremely important part of the brain because the nerve connections of the major

sensory and motor systems from the brain to the rest of the body pass through the

brain stem. It also plays an important role in the regulation of the central nervous

system, cardiac and respiratory function, and sleep cycle.

The diencephalon is part of the forebrain, and comprises the thalamus, hypotha-

lamus, and posterior portion of the pituitary gland. The cerebellum is a separate

structure, a tightly folded and crumpled layer of cortex, attached to the posterior-

inferior surface of the brain. It has an important role in motor control, motor learning

and possibly cognitive function. Above the cerebellum are the left and right hemi-

spheres, which make up the bulk of the brain and consist of an outer layer of grey

matter (cell bodies) and an inner layer of white matter (the axonal connections). Var-

ious parts of the two hemispheres are commonly labeled as lobes (the frontal, parietal

and occipital lobes are marked in Figure 2-2). The spinal cord extends from the base

of the skull down to the first lumbar vertebra.

The human nervous system comprises two parts: the central nervous system

(CNS), and the peripheral nervous system (PNS). The CNS consists of the brain

and the spinal cord; the PNS includes sensory receptors, nerves, and ganglia outside

the CNS. Neural activity is the result of a close communication between the CNS

and the PNS. The spinal cord has 31 pairs of spinal nerves that are used to collect

sensory information from the peripheral organs such as muscle, joint, skin, and vis-

ceral organs, and to send motor information from the spinal cord to the periphery.

There are ascending and descending pathways (i.e., a series of neurons and synaptic

relays) within the spinal cord for the purpose of carrying information to and from

the higher levels of the CNS, where the information-processing unit - the brain

lies. Different parts of the brain perform specific neuro-cognitive functions, including

processing sensory information (vision, hearing, etc.), motor control (limb movement,

speech, etc.), learning, and memory. A lot more detail is known about each part of

the brain and its specific functional role; however, we do not go into this because it

is not directly relevant to the development in this work.
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2.1.2 Cerebrovascular physiology

The second constituent of the cranial space is the vascular network that supplies

oxygen, glucose and nutrients to the brain, and removes C0 2, lactic acid and other

metabolic waste products. The consumption of oxygen and glucose depends on the

local cerebral activity level. In normal conditions, CBF is 45-50 ml min-' 100g-1

tissue, and is about 3 to 4 times higher in the grey matter than in the white matter.

Physiological electrical function of the neural cells begins to fail if CBF drops below

18-20 ml min-' 100g- 1 tissue [4]. The blood circulation within the brain is accom-

plished through a network of cerebral arteries, arterioles, capillaries, and veins. We

describe these components next.

Cerebro-arterial system

Figure 2-3(a) shows a view of the main arteries originating from the aortic arch

and carrying blood to the cerebral region. A pair of internal carotid arteries arises

from the common carotid arteries, and together this pair is responsible for supplying

almost 80% of cerebral blood flow (CBF). Another pair of arteries, called the vertebral

arteries, originates from the right and left subclavian arteries, travel upwards along
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the vertebral column, enter the skull through the foramen magnum, and fuse to

become the basilar artery. Together, the basilar and internal carotids form a ring-like

structure at the base of the brain, called the Circle of Willis, shown in Figure 2-3(b).

Three main arteries branch out from the left and right sides of the Circle of Willis to

supply the corresponding cerebral hemispheres. They are the middle cerebral artery

(MCA), the anterior cerebral artery (ACA), and the posterior cerebral artery (PCA),

shown in Figure 2-3(b). The right and left MCAs can be seen prominently on each

hemisphere in Figure 2-3(b).

The MCA is responsible for the majority of the blood supply in each hemisphere.

It feeds the bulk of the lateral surface of the hemisphere, except for the superior

aspect of the parietal lobe, which is supplied by the ACA, and the inferior part of

the temporal lobe. It also covers the latero-inferior frontal lobe and lateral temporal

lobe. The ACA supplies the medial surface of the frontal lobe and parietal lobes, the

olfactory bulb and tract, and the anterior aspect of the base of the brain. Finally,

the PCA supplies blood to the posterior aspect of the brain, namely the occipital

lobe. These main arteries branch into smaller arteries and arterioles, which further

subdivide to capillaries where most of the oxygen and nutrients are exchanged. An

exclusive property of those capillaries inside the brain ventricles (to be discussed in

the next subsection) is that their epithelial walls allow the water and ions to escape

from the plasma, albeit mediated by the blood-brain-barrier, to constitute CSF [42].

Cerebro-venous system

The capillaries combine downstream into relatively larger blood vessels of the cerebral

venous system. For organization purposes, the cerebral venous system can be divided

into a superficial and a deep system. The superficial system comprises the sagittal

sinuses and cortical veins; they drain blood from superficial surfaces of both cerebral

hemispheres. The deep system comprises the lateral sinus, the straight sinus, and the

sigmoid sinus; they drain blood from the deeper cortical veins. The blood in both of

these systems mostly drains into the internal jugular veins. Figure 2-4 shows impor-

tant superficial veins in the system. The superior sagittal sinus (a superficial vein)
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is located around the middle of the two hemispheres. Venous lacunae are located

on each side of the superior sagittal sinus. For cerebrovascular dynamics, we do not

need to delve into the details of the inherently complex, three-dimensional network of

cerebral veins, but we want to underline two aspects of it. Firstly, the veins draining

blood from the brain do not follow the same course as the arteries that supply them.

Generally, venous blood drains to the nearest venous sinus. However, in the case of

the deepest structures, blood first drains into the deep veins, and from there into the

venous sinuses [43). Secondly, cerebral veins are collapsible vessels, and the pressure

of the blood inside is lower than the external pressure, namely ICP, acting on them.

The physiological consequences of this second observation are described next.

Starling mechanism and cerebral perfusion pressure

Since ICP is typically higher than the cerebral venous pressure, and the cerebral

veins are collapsible vessels, ICP becomes a key determinant of cerebral blood flow

through the cerebral vasculature. More specifically, ICP acts as external pressure

to the blood vessels, and at the level of the cerebral veins this external pressure (7-

15 mmHg normally, in the supine position) exceeds the internal luminal pressure in

the large cerebral veins (around 5 mmHg) [13,14]. Smaller cerebral veins join in to



larger cerebral veins, which then ultimately connect to the venous sinuses. The mean

luminal capillary pressure is normally about 30 mmHg, which decreases along the

flow in the venous system, reduces to less than 10 mmHg in the large veins, and is

only about 5 mmHg in the venous sinuses. The collapse occurs at the large cerebral

veins, as they are like flexible tubes, while the venous sinuses do not collapse due to

the rigidity of their walls [13]. ICP thus causes the veins to collapse, and effectively

acts as the downstream pressure for blood flow through the cerebral vasculature [14].

This phenomenon is reminiscent of a Starling resistor [11, 12], whose operation we

summarize in Appendix A.

For a constant cerebrovascular resistance (as would be the case over a time that

is shorter than autoregulation time scales), CBF is proportional to the difference of

MAP and ICP, i.e., proportional to what was defined as CPP. Therefore, it is critical

to monitor CPP, not just MAP, in patients with cerebrovascular injury or disease.

Medical guidelines require CPP to be above 60-70 mmHg to maintain the desired CBF

and avoid inadequate cerebral perfusion [16,20], though optimal thresholds for CPP

are not fully established [17,44]. As noted earlier, variations in CPP are compensated

by variations in cerebrovascular resistance, the primary mechanism for autoregula-

tion. We discuss this in detail next.

Cerebrovascular autoregulation

As briefly mentioned in the introduction, the cerebral vasculature has an innate ability

to maintain a close match between the demand for and supply of oxygen to the brain

tissue. Cerebral arteries and arterioles respond to changes in CPP (due to changes

in MAP or ICP or both) by varying their diameters, thus altering the resistance to

blood flow. If the pressure drops, these vessels dilate to reduce their resistance to

flow and maintain enough CBF to protect the brain tissue against hypoxic-ischemic

conditions; conversely, during hypertension, they constrict to raise resistance (and

also protect against edema). This sophisticated control mechanism is at the core of

cerebral autoregulation, which is normally responsible for maintaining a steady CBF

for CPP variations over a range of about 90-100 mmHg in humans [1,4].
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Figure 2-5 shows a graphical view of autoregulation. Steady-state CBF is constant

as MAP varies over a wide range. (It is customary to state autoregulation in terms of

MAP only, perhaps assuming a constant, normal ICP. However, it is CPP that drives

flow through the vasculature, and ICP interacts with autoregulation [30].) Outside of

this regulatory range, i.e., in extreme hypotensive or hypertensive situations, or when

an abnormally high ICP leads to extremely low CPP, CBF varies almost linearly

with pressure. In normal circumstances, CPP is between 70 and 100 mmHg, and the

vasculature operates around the central, flat part of the autoregulation range.

The diameter variations in the arteries and arterioles are caused by the action of

smooth muscle cells inside these vessel walls. It is believed that the arterial smooth

muscle responds to changes in the transmural pressure, CBF, oxygen content in the

blood, cerebral metabolic rate, neural stimuli, and possibly even other factors [45].

However, the relative contributions of these various mechanisms to cerebrovascular

autoregulation are incompletely understood and might be dependent on the partic-

ular stimulus. One of the primary modes of action is thought to be mediated by

changes in transmural pressure that trigger the release of vasoactive substances from

the endothelium and peri-adventitial nerves, which then modulate changes in vas-

cular smooth muscle tone and alter the vessel diameters [451. In vitro experiments

confirmed that the arterial diameter starts to change within a few seconds of pressure



perturbations and completes a response in about 15-30 seconds. Similarly, metabolic

regulation is mediated by changing concentrations in K+ and H+ ions, which in turn

are thought to affect the arterial smooth muscle and cause relaxation or contraction.

The details of this pathway are still being actively investigated.

2.1.3 Cerebrospinal physiology

Figure 2-1 shows a set of connected spaces, the cerebral ventricles, that communicate

with each other, with the subarachnoid spaces, and with the spinal canal. A clear

water-like fluid resides in all these spaces. It is, therefore, appropriately called the

cerebrospinal fluid (CSF). CSF is secreted at the boundary of the lateral ventricles by

a specialized capillary network, the choroid plexus, shown in Figure 2-1. CSF flows

from the lateral ventricles, through the inter-ventricular foramina of Monro, into the

third ventricle, as shown by arrows in Figure 2-1. From here it flows into the fourth

ventricle through the cerebral aqueduct of Sylvius and then into the subarachnoid

space through the foramina of Magendie and Luschka. Within the subarachnoid

space, CSF flows down the spinal canal and also upward over the convexity of the

brain into the subarachnoid space, where it is reabsorbed in the venous system through

granules called arachnoid villi.

Equal rates of formation and reabsorption in steady-state maintain a constant CSF

volume [42,46]. The total CSF volume has not been measured accurately but is esti-

mated to be between 140 ml and 250 ml. It gets replenished about three to four times

during the course of 24 hours [47], which amounts to a rate of formation/reabsorption

of less than 0.1 ml per minute. As can be noticed from the respective volumetric flow

rates of CSF and blood (which is about 1000 ml per minute in a normal adult [48]),

the formation and reabsorption pathways for CSF have much higher resistance than

that of the cerebral blood vessels. These disparate flow rates give rise to different

time scales in the dynamics of the cerebrovascular system.

CSF has several functions. It provides buoyancy to the brain, reducing its effective

weight and thus allowing it to float within the cranial vault without compressing the

more caudal structures of the CNS. It also provides a mechanical cushion to protect



the brain from impact with the bony skull. The CSF does not come in direct con-

tact with the neurons or the glial cells, due to the action of the blood-brain-barrier,

however it plays an important role in the exchange of materials between the neural

cells and the interstitial fluid, whose composition is critical to provide a constant,

controlled environment for the brain cells, to protect it against neurotoxins, and to

prevent escape of local neurotransmitters [2, 42]. The constituents of CSF and blood

are carefully retained in their respective spaces by the blood-brain and blood-CSF

barriers. Some components common to both CSF and blood are in almost the same

concentration (Na+, Cl-, HCO3 ), while others are found in higher concentration in

either blood or CSF. ([K+] and glucose are higher in blood, while [Mg+] and creatine

are higher in CSF [2].)

CSF pressure and volume relationship

The CSF pressure inside the ventricles, sometimes referred to in the literature as

the ventricular fluid pressure (VFP), is considered the gold standard for ICP, and

normally measures 7-15 mmHg for a supine adult. A practical assumption common

to various models and monitoring methods is to take CSF pressure to be essentially

uniform in the entire intracranial space, from the ventricles to the subarachnoid space

and also into the spinal column. However, the flow of CSF through the cerebrospinal

space requires a pressure gradient to overcorne the resistance to flow along the path-

way, and CSF pressure therefore becomes location-dependent, being higher at the

brain ventricles and lower at the downstream end of CSF flow, e.g., in the subdu-

ral space. The pressure gradient and associated spatial variation of ICP is more

pronounced when CSF flow is increased, as may arise when a lumbar puncture is

performed to extract CSF in conditions such as 'normal pressure hydrocephalus' [49].

(The opening pressure on such a lnmbar puncture, before flow is established, is thus

more reflective of ICP.)

Due to its rigidity, the skull is assumed to be a fixed-volume compartment. There

is very little compliance associated with the cranial cavity: the pressure may change

inside the cranium but there is negligible change in volume of the total cranial con-
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Figure 2-6: An approximate graph for the CSF pressure-volume relationship. (Figure
is adapted from [4].)

tent. As summarized in the Monro-Kellie doctrine, any change in volume of one of

the constituents of the cranial compartment must be compensated by an opposite

change in volume of the others [38 40]. For example, if there is any increase in the

volume of CSF, it causes a compression of the brain tissue and cerebral vasculature,

with a concomitant increase in pressure due to the compliance of this combination

of tissue and vasculature. Similarly, if the brain swells due to cerebral edema, ICP

rises, possibly well above normal. The relationships between the CSF system and ICP

have been studied in great detail, and a nonlinear pressure-volume relation between

CSF volume and ICP is observed [50 52]. In animal experiments, this relationship

is studied by injecting fluid into the brain ventricles and recording the corresponding

steady-state increase in ICP. Figure 2-6 shows the response of ICP to changes in the

CSF volume. Initially, for the part between Points 1 and 2, an increase in CSF volume

causes very small change in ICP. However, the pressure-volume curve gets steeper at a

higher CSF volume (between Points 2 and 3). At further increase in volume (between

Points 3 and 4), ICP increases dramatically in response to a small injected volume.

The possible causes of high ICP in clinical settings are discussed next.

Causes of elevated ICP

An ICP above 15 mmHg is termed intracranial hypertension, and immediate inter-

vention is indicated for ICP above 20-25 mmHg [16], though precise guidelines depend



on the involved pathology. An elevated ICP is dangerous primarily because it affects

cerebral perfusion and may lead to irreversible brain damage and fatal consequences.

An increase of ICP above normal generally involves an increase in the volume of at

least one major cerebral component. The following are a few major causes [53].

e Cerebral edema or brain swelling: In traumatic brain injury, the brain swells

and occupies a larger space than usual, thus causing ICP to rise. In the absence

of an external intervention, the edema can build up and lead to dangerously

high ICP, well above the 15 mmHg threshold, with possibly fatal consequences.

o Increase of CSF volume: This happens when something blocks the normal

drainage of CSF, for example slow absorption due to high sagittal pressure,

or a disease causing increased formation or impaired reabsorption of CSF. Hy-

drocephalus is an example of excess CSF. The increase in CSF volume generally

results in a higher ICP. The build-up in this case generally occurs over longer

time periods than in cerebral edema.

* Hemorrhage: Bleeding inside the cranial cavity adds fluid volume, which raises

the level of ICP. There are various types of hemorrhage, involving different

pathophysiological mechanisms and response of the cerebral vasculature, so the

exact dynamics of intracranial hypertension vary.

* Tumor lesions: Brain tumors take up space and hence cause an increase in

ICP. A big enough lesion can, in fact, gradually shift the brain from its normal

position.

Other causes of typically mild intracranial hypertension may also be observed. An

increase in CO 2 content in the blood will make the cerebral vessels dilate, thus re-

ducing space for CSF and increasing ICP [54]. Finally, Valsalva maneuvers, noxious

stimuli, and seizure activity also cause ICP to rise, though usually well below the

point of danger [53]. Below we discuss a few clinical interventions aimed at lowering

an elevated ICP.



Treatment for elevated ICP

Immediate actions to bring ICP down include the following.

" Head elevation: Simply changing the head-of-bed angle of a patient can ame-

liorate intracranial hypertension somewhat [55]. In hyper-volemic conditions, a

head-up tilt causes the fluid volume in the cerebral region to decrease, due to

the top-down pressure gradient, leading to a small drop in ICP.

" Hyperventilation: The hypocapnic conditions induced by hyperventilation quickly

lead to vasoconstriction of the cerebral arteries, creating more space for CSF

and thus decreasing ICP [54].

" Hyperosmolar agents: Administration of hyperosmolar therapy is a common

practice in the treatment of elevated ICP in traumatic injury to the head,

and is usually more effective than hyperventilation [56]. Immediately after

bolus administration of a hyperosmolar agent, such as mannitol or hypertonic

saline, the circulating blood volume expands, blood viscosity decreases, and

CBF and cerebral oxygen delivery increase. The action of an osmotic diuretic

takes effect in about 15-30 minutes, when it sets up an osmotic gradient between

the intravascular and the extravascular spaces, in the regions where the blood-

brain-barrier is not damaged during the brain injury. This gradient causes water

to be drawn out the interstitial fluid spaces into the capillaries, thus reducing

the intracranial fluid volume. The reduction in volume leads to lowering of

ICP [57].

" CSF drainage: Draining CSF through the brain ventricles reduces the CSF vol-

ume and thus lowers the ICP. The process is called ventriculostomy; it entails a

hole to be drilled in the skull and an external ventricular drain or intraventric-

ular catheter to be placed into the brain ventricles. A desired amount of fluid

is extracted via the catheter to reduce the CSF volume and thus decrease ICP.

(The same catheter may also be used for ICP monitoring, which we discuss in

more detail in the next chapter.) In chronic hydrocephalus patients, in whom



CSF draining is required quite often to reduce the excess amount, CSF shunts

are sometimes implanted inside the skull that drain fluid from the ventricles

into a peritoneal cavity. (Detail on CSF shunts and their effectiveness can be

found in [58].)

e Decompressive craniectomy: A part of the skull is removed, allowing the brain

to swell outwardly, hence reducing ICP. After swelling subsides, the skull is

closed again.

2.2 Epidemiology of Brain Injury

Stroke is a cerebrovascular accident that leads to severe consequences, including both

life-long morbidity and mortality. According to the American Heart Association,

about 780,000 Americans suffer a new or recurrent stroke each year [59]. Stroke is

the cause of death in more than 150,000 people in the U.S. annually, and it is the

third leading cause of death in the U.S., behind only heart disease and cancer; about

one of every 16 deaths is due to stroke [59].

Traumatic brain injury (TBI) ranks among the top health-care challenges we face

today, as it often results in persistent neurological and psychiatric morbidity and is

associated with significant health-care expenditure. Annually about 420,000 Amer-

icans suffer a traumatic injury to the head, and about 50,000 deaths are attributed

to such injuries each year; about 6 million Americans, or 2% of the population, live

with the effects of TBI [60]. Diagnosis and management of these patients remains an

elusive challenge even after decades of scientific and technological development.

Attention to TBI has increased recently, prompted in part by the large fraction of

combat casualties from the wars in Iraq and Afghanistan, injuries in military and civil-

ian populations alike caused by explosive blasts, and repetitive concussions in contact

sports. In fact, TBI has been called the 'signature injury' of the Iraq War [61,62],

as Improvised Explosive Devices generate shock waves that cause traumatic injuries

of various kinds and severity. Exposure to such blasts has been correlated with the

development of post-traumatic stress disorder and psychological and neuro-cognitive



impairment, leading to life-long disability [60]. In sports, evidence suggests that

repeated, mild injuries to the brain can lead over time to depression and other psy-

chological and neuro-cognitive problems [63]. The realization is growing that TBI is

not merely an event, but a process that has lasting effects on the central nervous sys-

tem and other organ systems, and is associated with long-term mortality, disability

and higher incidences of various neurological disorders [64].

In extremely premature neonates, hypoxic-ischemic and hemorrhagic brain injury

are major causes of mortality and permanent disability [65]. Due to insufficiently

developed blood vessels and immature cerebral autoregulation in these pre-term in-

fants, bleeding into the peri-ventricular space damages fragile brain tissue, causing

permanent and quite often severe loss of function. About 40-50% of children with

cerebral palsy, for example, are survivors of pre-term birth [66]. Brain injury in pre-

maturely born babies is a primary concern, and leads to long-term medical and social

consequences [67].

2.3 Pathophysiology of Brain Injury

The pathophysiology of brain injury consists of the initial insult, generally termed as

primary injury, and occurs over the time span of only a few milliseconds. The primary

injury is commonly followed by a physiological response, possibly leading to secondary

injury that ensues within minutes to hours and that tends to exacerbate the effects of

the primary injury [68,69]. During the transition to secondary injury, cerebral edema

can develop, which causes ICP to rise, possibly to critical levels, thereby decreasing

CPP and potentially compromising blood flow to the brain. Decreased perfusion

exacerbates the neurological deficit, which leads to further injury; the vicious cycle

can ultimately lead to fatal consequences. The work by Miller et al. suggests that

elevated ICP is responsible for the majority of deaths in severe TBI [15]. Mild and

moderate TBI also pose serious concerns. Though their exact mechanisms are not

fully understood, recent results from animal experiments demonstrate that ICP shows

a dose-dependent increase even in response to low-intensity blast exposures at levels



commonly considered non-injurious [70]. A hemorrhagic stroke occurs when a blood

vessel inside the cranium ruptures, cutting down blood supply to the arteries down-

stream and thus compromising perfusion to associated tissue. The blood spilling in

the intracranial space causes ICP to increase, which leads to a drop in CPP, which

may then lead to ischemia.

2.3.1 Cerebral edema

Cerebral edema is one of the most common consequences of TBI and ischemia. Un-

less an external control stops the cascade of events, it leads to raised ICP and may

eventually lead to brain herniation. Development of cerebral edema contributes to

brain swelling, and it is well established that this swelling causes ICP to increase.

Increased ICP leads to obstruction of blood vessels, causing hypoxic and hypercapnic

conditions, and increased ICP [21]. For this reason, cerebral edema remains a critical

problem for which no effective solution has been identified.

Cerebral edema is classified into two types, defined on the basis of its cause: cyto-

toxic or vasogenic. In both cases, an abnormal situation arises in which plasma con-

stituents and proteins leave the blood vessels (i.e., capillaries), enter the parenchyma,

and finally spread into the cerebral interstitium. The spread is into white matter

alone in the case of vasogenic edema, or into both white and grey matter in the case

of cytotoxic edema. The fundamental cause of this abnormal transport of plasma is

either the destruction of endothelial membranes due to brain injury, or some other

pathology of the blood-brain-barrier [71]. The accumulation of plasma leads to the

edematous situation. These transport processes are governed by osmotic pressures

inside and outside the capillaries, as well as the hydrostatic pressure differences. A

physiologic representation of the processes will include a unidirectional flow from

blood capillaries into the cerebrospinal space or interstitial and then CSF com-

partments - where the flow is modulated by capillary pressure, external (interstitial)

fluid pressure, osmotic pressures inside and outside the vessels, and permeability of

the membranes.



2.3.2 Intracranial hemorrhage

In an intracranial hemorrhage, such as subarachnoid or epidural hemorrhage, blood

joins the CSF space. Bleeding in the cranial cavity causes the intracranial blood

volume to rise slowly, which may not always manifest itself immediately. Develop-

ment of a hematoma after a physical impact is a common cause, for example. The

accumulation of blood volume leads to increase in ICP, which causes CPP to drop.

Autoregulation attempts to compensate for the drop in CPP, but the hemorrhage

may eventually exhaust the autoregulatory capacity and cause ischemic conditions.

2.3.3 Moderate and mild TBI

Severe and penetrating TBI are easily diagnosed, and treatment is generally initiated

expeditiously, including transfer of the affected individual to highly specialized treat-

ment facilities. The majority of TBI cases in the civilian and military populations,

however, fall into the category of mild TBI, which can also lead to significant long-

term impairment [72,73]. Unfortunately, mild TBI is notoriously difficult to diagnose.

In the military population, mild TBI is strongly associated with post-traumatic stress

disorder and physical health problems following deployment [61,621, while repeated

concussions in professional athletes have been associated with cognitive impairment,

depression, and dementia [63,74]. Recent evidence suggests that mild TBI might also

involve cerebrovascular and brain injury, and low-intensity blasts in animal studies

were shown to cause a dose-dependent elevation in ICP [70].



Chapter 3

Cerebrovascular Monitoring

Diagnosing, monitoring and managing patients suffering from or suspected of having

sustained brain injury requires continuous, real-time monitoring of their cerebrovas-

cular state. ICP is a central variable a vital sign in cerebrovascular monitoring

because of its importance in intracranial dynamics, its direct effect on cerebral per-

fusion, and its correlation with prognosis and outcome in head-injury patients. ICP

measurements are also required in conditions such as hydrocephalus, tumor, pseudo-

tumor cerebri, and in management of CSF shunts. Similarly, we noted in the previous

chapter that autoregulation plays a central role in cerebrovascular dynamics, and ICP

interacts with autoregulation in determining the patient's cerebrovascular state and

its evolution. Therefore, assessment of cerebrovascular autoregulation along with ICP

adds critical information in diagnosis and management of patients after neurotrauma,

stroke, or at risk of developing brain injury.

In this chapter, we describe the current state of the art in cerebrovascular moni-

toring. In Section 3.1, we cover the current clinical methodologies for measurement

of ICP. Section 3.2 discusses various approaches for the assessment of autoregulation.

We give an overview of existing research on developing non-invasive ICP estimation

in Section 3.3. Finally, in Section 3.4, we discuss the need and potential impact of

clinically acceptable methods for non-invasive monitoring.
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Figure 3-1: Various methodologies available for clinical monitoring of ICP; all of them
require penetration of the skull and placement of a catheter or a sensor to measure
ICP. (Figure is adapted from [5].)

3.1 Methods of ICP Measurement

A detailed study on ICP monitoring was presented in 1960 by Lundberg [75]. It

described several records of continuous ICP measurement, labeled as "ventricular

fluid pressure" because CSF pressure was measured in the brain ventricles. Since

then, various devices have been designed to continuously measure and record ICP.

However, even today, the methodologies applied for clinical measurement of ICP

and CPP remain highly invasive [29]. They require drilling a hole in the skull and

passing a catheter or pressure transducer into the brain ventricles or parenchymal

space, or (with some sacrifice in measurement accuracy) into the subarachnoid or

subdural spaces. They thus require neurosurgical expertise and are considered a

surgical intervention. There is an associated risk of infection, hemorrh.age and injury

to brain tissue. A schematic of ICP monitoring methodologies is shown in Figure 3-1.

Below, we discuss the measurement approaches depicted in the figure.

A fluid-filled catheter placed inside the lateral ventricle and connected to an ex-

ternal strain-gauge has been used as the most reliable and common measurement

mechanism for several decades, since its first use in the 1950's. This is still considered

the "gold-standard" ICP measurement, though it can sometimes have problems due

...... ........ ..................... ........ ....



to the catheter getting clogged or the ventricles being compressed [29, 76]. Placing

a ventricular probe requires a significant degree of care and precision. The catheter

has gone through various design improvements, but the basic methodology remains

the same. In addition to being the most accurate method of ICP measurement, the

intraventricular catheter has the advantage that it allows for sampling and therapeu-

tic drainage of CSF. However, this is also the most invasive of all the measurement

modalities, and has greater risk of hemorrhage and infection, particularly when the

continuous measurement is made over several hours or days. A fiber-optic catheter-tip

transducer has increasingly replaced the fluid-filled column method. Unlike the fluid-

filled catheter with external calibration, the catheter-tip transducer gets calibrated

only once before insertion and cannot be re-calibrated in vivo.

Figure 3-1 also shows the intraparenchymal method for ICP monitoring. A pres-

sure transducer placed in the brain parenchyma is the second-fnost accurate method

of ICP measurement. The parenchymal probe is placed more easily than the ven-

tricular probe. The method still poses risks of infection and bleeding, and unlike the

ventricular catheter, it does not allow draining of CSF for therapeutic or diagnostic

purposes. The Codman MicroSensor (Codman and Shurtleff Inc., Raynham, MA)

and Camino (Camino Laboratories, San Diego, CA) probes are the two most popular

devices in this category in current clinical use [77].

Other measurement methods do not pass the pressure sensor into the ventricles or

the brain parenchyma, but rather access CSF in, or around, the subarachnoid space.

Though, they still penetrate the skull. For example, a hollow subdural 'bolt' measures

pressure in the subdural space. This approach, however, lacks the desired accuracy.

At high pressures, for instance, the subdural bolt provides a lower reading of ICP

because of the pressure drop associated with CSF flow from the ventricles to the

subdural space. The bolt also has a tendency to become blocked [78]. Nevertheless,

the bolt is still quite widely employed due to its relative ease of placement, particularly

in situations where cannulation of the ventricles may not be possible. Finally, an

epidural sensor is the least penetrating of the devices that access CSF in the cranium;

however, it is also the least accurate of the methods currently in use.



Another approach for ICP measurement, albeit intermittent, is to access CSF in

the spinal canal via lumbar puncture. A small needle, commonly called a spinal tap,

is inserted into the spinal canal below the first lumbar vertebra, and a pressure trans-

ducer is connected at the other end of the needle to measure CSF pressure. Under

normal conditions, the pressure measurement through this approach is a reasonably

accurate estimate of ICP. This method of measurement is used in cases where ICP

is not believed to be much higher than normal, for example in patients suspected of

suffering from normal-pressure hydrocephalus, where ICP may be slightly increased

towards the higher end of its normal range. However, in brain injury, ICP can be

markedly different from the pressure in the spinal canal, and therefore other mea-

surement procedures have to be used. Moreover, lumbar puncture during intracranial

hypertension is very risky, as a high pressure gradient between the cranial fluid and

the point of spinal tap can lead to sudden downward flow of CSF, pushing the brain-

stem towards the foramen magnum and thus causing fatal brain herniation. Lumbar

puncture is also not suitable for continuous monitoring [1].

Accuracy of invasive methods

Out of the several available ICP measurement methodologies, only two are generally

considered for routine application in clinical settings. These are the ventricular probes

and the parenchymal microsensor probes. Even for the ventricular measurement of

ICP, a catheter that does not allow external re-calibration (e.g., the Camino catheter-

tip transducer) suffers from an accumulated zero-drift error of up to 3 mmHg in 24

hours [79].

Although the parenchymal measurement of ICP is a popular choice in clinics, it is

not clear that this method provides the desired clinical accuracy. Laboratory testing

of the Codman probe shows a maximum absolute error of 6 mmHg, and the sensor

measurement has a drift of about 2 mmHg in a period of 24 hours, reaching up to

4 mmHg over a few days [80]. In one study involving simultaneous measurement

of ICP by the Codman and Camino parenchymal probes, it was found that in cases

where the two probes mostly agree, the difference between them is less than 10 mmHg



in 99% of the comparisons; however, in cases of larger disagreements, the two probes

can differ by more than 15 mmHg [77]. Chambers et al. compared parenchymal mea-

surements of ICP by the Spiegelberg transducer (B Braun Ltd.) against simultaneous

ventricular measurements in 10 patients for several hours. The two methods provide

reasonably close measurements, with a 96% agreement limit of ±10 mmHg [81]. An

important aspect of the Spiegelberg system is its unique capability of performing regu-

lar automatic zeroing in situ, which removes the accumulated drift and thus improves

its measurement accuracy.

Subarachnoid space measurements of ICP using a bolt device were shown to

have large errors, even sometimes completely inconsistent with the intracranial condi-

tions [78]. Epidural measurement of ICP also contains significant error. Comparison

of simultaneous measurements via epidural and parenchymal (or ventricular) sensors

reveals a difference of 10 mmHg or larger for at least 10 minutes in 33% cases [82,83].

3.2 Assessment of Cerebrovascular Autoregulation

Another important aspect of cerebrovascular monitoring is assessment of cerebral

autoregulation. As discussed in the previous chapter, a sophisticated and rather

poorly understood control mechanism maintains an appropriate CBF by altering the

diameters of the cerebral arteries and arterioles, thereby varying their resistance to

blood flow to compensate for any change in CPP and metabolic demand. The regu-

latory mechanism is believed to be primarily myogenic; the smooth muscle responds

to changes in transmural pressure. However, metabolic and neural mechanisms are

also involved, making cerebral autoregulation a complex phenomenon [45]. Despite

the complex nature of the underlying system, it is important to monitor the state of

cerebral autoregulation in patients who might have exhausted their autoregulatory

mechanisms due to cerebral artery disease, stroke, or TBI [84]. Such monitoring will

help guide the choice of appropriate therapeutic strategy.

Due to the nature of the mechanism, assessment of autoregulation has to rely on

indirect observation of cerebrovascular hemodynamics. The basic idea is to form a



qualitative or quantitative assessment by analyzing the response of CBF to abrupt

changes in CPP, which may be endogenous or externally induced. An actively con-

trolled CBF indicates a fully functional cerebral autoregulation. With the devel-

opment of technology for cerebrovascular monitoring, researchers have applied such

approaches to different clinical measurements in various types of neurological condi-

tions. For instance, in an early effort, Aaslid et al. pioneered the use of transcranial

Doppler (TCD) ultrasound to examine the cerebral arteries in order to study the

autoregulation behavior of the vasculature [24,84]. These studies remained qualita-

tive, limited to observing the response of CBFV to a change in ABP induced by the

thigh-cuff pressure method.

Mathematical modeling of cerebral blood circulation and autoregulation has been

an active area over the last two decades [7, 85 -88]. Models of the complete cere-

brovascular system include autoregulation by incorporating control mechanisms to

adapt cerebrovascular resistance and/or compliance properties to perturbations in

CBF and CPP. One can study various scenarios of interest by simulating these mod-

els. Validation of these models using clinical data provides further insight into the

working and dynamics of the control mechanisms.

A plethora of indices of autoregulation have been coined and analyzed [30, 89].

Most approaches discussed in the literature as potential avenues to clinical assess-

ment of autoregulation are simply based on examining the 'black-box' input-output

relationship between ABP and a measure of CBF, e.g., cerebral blood flow velocity

(CBFV) or near-infrared spectroscopy (NIRS) measurements of oxygenated and de-

oxygenated hemoglobin. These approaches can be categorized into two groups, one

pursuing a transfer function analysis (TFA) of the input and output measurements,

and the other computing an autoregulation index (ARI) by analyzing the response of

the system to a step change in the input. We discuss these two approaches in more

detail now.

TFA assumes a linear and time-invariant relationship between the input, ABP

and output, CBF (or CBFV), for the duration of an analysis window. A time-

domain or frequency-domain analysis then aims to capture the dynamics of autoreg-



ulation. Various metrics of autoregulation are developed based on the input-output

response [89 92]. In a typical time-domain analysis, computations may estimate the

input-output cross-correlation function, as an indicator of the regulatory response of

the system. In frequency-domain analysis, both gain and phase responses are com-

puted, and it is generally noted that the phase response contains more information

about autoregulation. A small phase at the desired frequency is taken to indicate

lack of active control, and thus an impaired autoregulation system.

In [26], a cerebral autoregulation index is computed from the group-delay of a

numerically evaluated transfer function between CBFV and a resistance-area product.

The authors present a slightly adapted approach in [93], based on MAP and mean

CBFV. A linear regression analysis is performed using MAP-CBFV slopes, computed

only during the intervals of fluctuations in MAP. Statistics are collected for pre-term

and term infants in critical-care, and results are compared in the high-risk and control

groups. In [91], a transfer function between CBFV and ABP is identified using the

input and output measurements.

A fundamental issue that plagues the TFA approach is that the assumption of

a linear and time-invariant relation between MAP and CBFV may not universally

hold [89]. It is only when the input-output coherence function [94] is close to unity that

one can postulate a simple linear, time-invariant system relating input and output,

and meaningfully consider its frequency response. Various examples in the literature

point to the contrary, namely that the coherence function is not close to unity, though

studies continue to use linear system theory in their analyses. Only a few studies ad-

dress this issue by limiting the frequency-domain analysis to a certain narrow range

of frequencies, e.g., to less than 0.1 or 0.15 Hz, assuming the time scale of autoreg-

ulation resides below these upper limits. Clinical data do not always adhere to this

assumption, and produce low coherence in this proposed frequency range as well.

The ARI approach is based on identifying the response of CBFV to a small step

in ABP, usually using an ABP perturbation induced by thigh-cuff release, though the

same idea has been explored using head-up tilt or spontaneous ABP fluctuations [95].

The step response is derived from the measurements of ABP and CBFV waveforms.



An ARI index then classifies the step response into one of 10 categories, based on

how rapidly and completely the response returns to zero. For a well-functioning

autoregulation system, the CBFV is supposed to settle back in 6-8 seconds for a step

change in ABP. As we noted earlier, however, the time scale of autoregulation is

not completely known, and various hypotheses (myogenic, metabolic, neurogenic) are

believed to contribute at slightly different time scales. This analysis suffers from the

same problem of low input-output coherence over the range of frequencies involved in

a step change, while the step response computation assumes a linear time-invariant

system. Nevertheless, despite these issues, both ARI and TFA have been used in

studies investigating cerebrovascular dynamics in various clinical scenarios.

Another index, Mx, proposed by Czosnyka et al., is based on computing the

correlation coefficient between slow spontaneous variations in CPP and CBFV [961.

A correlation coefficient close to unity is believed to be the result of a passive, or less

active, system response, and therefore indicates relative loss of autoregulation. On the

other hand, a negative or zero correlation is suggested to indicate good autoregulation.

The analytical approach to computing Mx may be considered as intermediate between

the ARI method described above and the phase analysis associated with TFA. The

authors later suggested the same approach based on ABP instead of CPP [97].

Several other indirect methods to assess the state of cerebral vasculature have

been proposed and analyzed. We describe one of them, which has been sometimes

quoted along with Mx. A 'pressure-reactivity index', denoted as PRx, is proposed

as a measure of the cerebral vasculature's ability to respond to changes in CPP [98].

It is calculated as the correlation coefficient between six-second averages of MAP

and ICP. A negative or zero PRx indicates a reactive vasculature. However, it is

not an exclusive measure of autoregulation, as a good PRx (negative or zero) points

to an intact reactive vasculature, which does not always mean an effective cerebral

autoregulation.

Another idea for indirect assessment of cerebrovascular state was described in [99],

where latency between systemic and intracranial pulses, measured as the interval

between the onset of the QRS complex (in the electrocardiogram) and the peak



CBFV, is related to the vascular condition of a patient. The idea appears to utilize

the approach of TFA, where the group-delay or phase of the ABP to CBFV transfer

function is associated with autoregulatory status. However, it is not clear if the

latency can consistently provide an assessment of autoregulation, as there are several

other important variables, ICP for example, that are ignored in this rather simplistic

view.

A common problem with all theses indices of autoregulation is that they entail

comparison with specific thresholds, based on empirical calculations and observations

on a set of patient data, for the assessment of autoregulation. Lack of a clear physio-

logical basis for these criteria makes them difficult to apply for assessment in a wider

patient population involving different pathologies.

For physiologically-based assessment of autoregulation, the idea is to work with

a model of the cerebrovascular system, perhaps along with its control mechanisms,

and use the variation of estimated model parameters to evaluate autoregulation. We

describe various cerebrovascular models in detail in the next chapter. However, we

note here that there have been very few instances of carrying these models forward

to the study of autoregulation. An example of research along this line is [100]. The

authors present a simple three-component representation of the cerebral vasculature,

and estimate resistance and compliance elements in the model for CBF regulation.

However, the procedure ignores ICP estimation, and the method is not aimed at

real-time monitoring.

Finally, we note that most proposed indices of autoregulation base their analysis

on MAP or ABP rather than CPP which actually determines CBF (recall that CPP

= MAP-ICP), and should be the basis for the autoregulation assessment. This

substitution of MAP for CPP is understandable, because the invasiveness of ICP

measurement makes CPP inaccessible in most scenarios. However, replacing CPP

with MAP can lead to erroneous judgments, and a sound assessment should be based

on CPP [30]. In other cases, such as PRx, access to ICP is required for computation

of the corresponding index.

In summary, there is no clinically accepted and generally used method for au-



toregulation assessment, which consequently is still an area of active research. Vari-

ous indices proposed in the literature suffer from three problems. First, even though

the cerebral vasculature's state is indirectly reflected in the computed indices, their

characterization criteria often lack a clear physiological basis, relying instead on cor-

relations between indirect measures of CPP and CBF. Second, the associated com-

putations are often based on MAP as the driving pressure, and are thus prone to

systematic error; autoregulation assessment should be based on CPP rather than

MAP. Third, clinical validation of these indices remains a subjective topic without

any available gold standard. Our work in this thesis opens the door to some novel

approaches to model-based assessment of autoregulation. It overcomes the first two

flaws outlined above, in that it is based on a physiological model, and a CPP estimate

is available (via our ICP estimate) for use in the characterization for autoregulation.

3.3 Approaches to Non-invasive ICP Estimation

The need for ICP monitoring for diagnosis and management in a wide spectrum of

injuries to the brain is well-established. However, the treatment of such neurological

conditions remains severely handicapped by the lack of non-invasive access to ICP. In

recent years, brain trauma and the recognition of the hazards of repetitive concussions

in the civilian and military populations have amplified the need for non-invasive ICP

estimation. Various ideas for non-invasive estimation of ICP have been proposed and

tested in the last three decades, and the field has been progressing. More than 40

patent applications related to non-invasive assessment of ICP have been filed in the

last 30 years, half of them in the last decade, though no non-invasive method has

yet made it into routine clinical use. We present a brief review here of some of the

relevant literature.

Some of the initial ideas for non-invasive assessment of ICP involved using the

pulsatility index (PI) and resistivity index (RI) - as well as other similar indices

derived from transcranial Doppler (TCD) ultrasound measurements of CBFV [101].

Another approach was based on relating displacement and vibrations of the tympanic



membrane to ICP [102]. Yet another procedure sought a correlation of ultrasound

time-of-flight measurements, performed by sensors placed across the skull, with fluc-

tuations in ICP [103]. However, these approaches did not give absolute measures of

ICP with desired accuracies.

Over the last 15 years, several new avenues for non-invasive estimation of ICP

have been explored. Schmidt et al. [32,104,105] introduced an approach using ABP

and TCD-based measurement of CBFV. The method utilized TCD data to improve

a linear transformation between ABP and ICP, with the goal of predicting ICP. How-

ever, as pointed out by Raksin et al., it is unclear whether such a linear mapping

from ABP to ICP is meaningful, and what the physiological basis for such a mapping

might be [106]. Furthermore, the method relates CBFV to ICP in a highly nonlinear

manner: a linear function of ABP-to-CBFV transformation coefficients, these coeffi-

cients divided by ABP, P1 and pulse length is used to adapt the coefficients of the

ABP-to-ICP transformation, where the weights of the linear function are calibrated

using invasive measurements of ICP [104]. As a result, the selection of various al-

gorithm parameter values, such as the number of coefficients in each regression and

the number of input data samples, lacks motivation. Another aspect of the method

is that the mapping has to be trained on data (including invasively obtained ICP)

derived from a relevant population of patients. The resultant ICP estimates would

therefore only be patient-specific in the sense that patient-specific ABP is utilized as

the input to their linear transformation. The estimation performance, therefore, is

going to depend critically on whether the test case is sufficiently represented in the

training set. Partly for that reason, the method was upgraded by allowing it to adapt

to the autoregulation status of the particular patient, thus essentially switching the

algorithm choices between versions trained on one of two populations, namely those

with intact and impaired autoregulation [104]. In yet another modification [105], the

authors demonstrated that calibration of their non-invasive ICP estimates against

true (invasively measured) ICP for a given patient reduces the prediction error [105].

However, it is in fact precisely in situations where true ICP is not available that

accurate and robust non-invasive ICP estimates are most needed.



Utilizing ABP and TCD-based measurements of CBFV has been tried by others

as well, but in more elaborate machine-learning and neural network settings. Mourad

and co-workers [33] utilize ABP and CBFV as input variables to a neural network

for predicting ICP. The coefficients of the neural network are learned via training

on a relevant patient population for which invasive ICP measurements are obtained

as a reference output. After the training phase, the coefficients are frozen and the

network is applied to predict ICP in patients from measurements of ABP and CBFV

on them. As the relationship between ICP and the given inputs is not learned in

a patient-specific way (i.e., the neural network parameters are not patient-specific),

there is no reason to expect that the method will perform well in a patient whose

pathology is not well represented in the training set. Furthermore, there is no clear

physiological basis to understand the structure and parameter values for the neural

network, which is a serious impediment to clinical acceptance and use.

Various other approaches based on machine-learning or observing empirical corre-

lations between ICP and physiological features of ABP and/or CBFV have been ex-

plored, for example in [34,107], but with limited success in producing patient-specific

estimates. Hu et al. [34] process these input measurements using a data-mining

approach to extract features of ABP and CBFV waveforms, and employ a support-

vector-machine approach to relate them to ICP. The learning is performed over a

training set of patient records containing invasive measurement of ICP. However, the

estimation performance degrades when tested on a general population.

In another empirical approach, Swoboda et al. [107] present a method for predict-

ing ICP from certain features of the ABP pulse alone. Several carotid artery pressure

measurements are obtained (via a tonometry sensor attached to the skin) at various

levels of ICP, and a quantitative relationship is investigated between ICP and each

of the several candidate waveform features, such as wave amplitude, wave systolic-

diastolic gradients, ratios of harmonics after Fourier analysis, times between waveform

features, distances between waveform features in the phase plane, area of the cycles

on the phase plane, power of the reflected waveform, and amplitude of the reflected

waveform. Only the feature(s) showing strong relationship with ICP are retained in



the ICP predictive algorithm. For example, the approach finds a strong relationship

between ICP and the interval between the systolic peak and the dicrotic notch in

an ABP pulse. The rationale behind this approach is that ICP affects the reflection

properties of the pressure pulse by changing the 'transmission line impedance', as a

change in ICP affects the intracranial compliance.

Another approach to non-invasive, albeit intermittent and resource-intensive, ICP

monitoring is described by Alperin et al. in [106], and is based on the use of magnetic

resonance imaging (MRI) to determine (incremental) intracranial compliance through

an elaborate computation of incremental volume and pressure changes over the cardiac

cycle, from which ICP is inferred. In [106] the authors also review several other

approaches to non-invasive ICP estimation, most of which seem unsuited for routine

use in a clinical environment. The most robust approaches of those reviewed involve

measuring ABP and CBFV (using TCD ultrasound), but these are faulted in the

paper for lacking a theoretical basis or physiological principles that relate CBFV to

ICP.

Wakeland and co-workers [31,108] have introduced somewhat elaborate simulation

models to demonstrate various clinically interesting scenarios. The model in their

recent work contains a rather large set of parameters, most of which need to be

supplied a priori. ICP is estimated from transient changes in clinical data streams

in response to changes in the elevation of the head. It is also unclear to what extent

the resultant ICP estimates are robust against variations in these pre-set parameter

values, given the large set of parameters. As the parameters are expected to change

from patient to patient, and also in different conditions for the same patient, the

model is not aimed at real-time application in standard clinical settings.

A number of research efforts have explored using intraocular pressure and

variants of the same idea, possibly combined with some measures of blood flow in

the ophthalmic artery to infer ICP [109, 110]. A recent approach along this line

was proposed by Ragauskas et al. in [110], and is based on applying an increasing

external pressure (via pressure on the eyeball) on the extra-cranial segment of the

optical artery, until a Doppler ultrasound analysis of the flow in the extra-cranial



segment matches that of the intracranial one, thus indicating that applied pressure

has "balanced" the internal pressure, which is ICP. The approach has been verified

against lumbar puncture-based ICP measurements, which is performed only in less

severe cases of intracranial hypertension. Furthermore, the application of pressure

externally to the eye is not suited to continuous monitoring, and there are also limits

on the external pressure that can be applied to the eye. It also requires a high level

of technical expertise to perform the procedure, as two ultrasound beams need to be

focused simultaneously on two different anatomical structures.

Overall, the proposed approaches for non-invasive ICP estimation are either un-

suited for routine use in a clinical environment, or require training data and/or cal-

ibration against invasively obtained ICP from patients with similar pathology and

characteristics, and/or lack physiological interpretability. Our work in this thesis

addresses precisely these gaps. It develops an approach for non-invasive ICP esti-

mation based on a physiological model to interpret the accessible ABP and CBFV

measurements and thereby infer ICP, CPP, and cerebrovascular properties, which can

potentially lead to an assessment of autoregulation. The approach is paticnt-specific,

as it does not require any training on population data, and does not need calibration

using invasive measurements of ICP. The method is computationally simple enough

to run in real-time and provide continuous ICP estimates at the patient-bedside, and

even in ambulatory settings.

3.4 Potential Impact of Non-invasive ICP Moni-

toring

Currently, monitoring of ICP and CPP is performed only in the most severe cases, due

to the invasiveness of measurement methods. The primary impact of a non-invasive

method of ICP monitoring will be on a large patient pool in which ICP monitoring

is currently avoided, but in which the availability of a clinically reliable ICP esti-

mate would improve the timeliness and accuracy of diagnosis, and open up treatment

options. In this pool are patients who transition from primary brain insult to sec-



ondary injury [69,71], for example in an epidural hemorrhage, in which intracranial

blood volume increases or a hematoma develops quietly over a few hours after the

initial impact, and eventually leads to extremely severe situations and all too often

- death. A non-invasive ICP monitoring modality would allow emergency medical

technicians (EMTs) or medics to assess and track ICP for patient management on

route to a properly equipped trauma center. It can also prove vitally important in

emergency care, for faster diagnosis and titration of therapeutic intervention.

Non-invasive ICP monitoring can also be very valuable in mild and moderate cases

of TBI, in which ICP is typically not monitored currently, but in which diagnosis and

management remain a difficult challenge. Enough evidence has accumulated showing

the potential benefit of ICP measurement in such cases [61,62,70,72]. Furthermore,

a non-invasive ICP technology might help us distinguish between mild, moderate

and severe TBI, and understand the physiological links that may underlie psycho-

cognitive disorders after various degrees of exposure to brain trauma. Currently

patients diagnosed with post-traumatic stress disorder (PTSD) are treated as having

a psychological impairment, rather than a potential physical injury to the brain,

as might be indicated by ICP and cerebral autoregulation abnormalities. However,

growing evidence suggests that a blast wave may cause injuries to the brain at the

cellular and tissue level - due to impact of the tissue with the cranium and shear

along it, and also due to the sudden variations in blood pressure and flow; these

insults may well damage cerebrovascular function in subtle ways [62].

Another benefit of a non-invasive and thus a less risky method of ICP monitoring

is the possibility of early diagnosis and tracking of hydrocephalus, and also in pro-

gramming of CSF shunts in chronic hydrocephalus patients. One might also expect

such monitoring to be beneficial in post-neurosurgery monitoring of patients.

Finally, non-invasive ICP estimation can potentially provide useful information in

a still broader population in which elevated ICP may be involved in the relevant patho-

physiological pathways, possibly even in such common conditions as migraine, where

studies indicate a correlation between intracranial hypertension and migraine involv-

ing bilateral transverse sinus stenosis [111], as well as in chronic daily headache [112].
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Part II

Mathematical Modeling and

Estimation
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Chapter 4

Models of the Cerebrovascular

System and Intracranial Dynamics

In this chapter, we discuss mathematical modeling of the cerebrovascular system.

We first provide an overview of various modeling approaches, and then provide a

literature review of cerebrovascular models that are based on physiological under-

standing of the system. These models represent relevant physiological relationships

in a mathematical and computational form, which can be used to mimic and analyze

the system's behavior. We then develop a simple model of the cerebrovascular sys-

tem that is particularly suited for robust, real-time ICP estimation and is radically

simpler than other cerebrovascular models. Our simplified model provides dynamic

constraints that link clinically available measurements to the desired cerebrovascular

quantities.

Section 4.1 describes two common modeling approaches and provides examples in

each category. In Section 4.2, a review of cerebrovascular models is given, leading

in Section 4.3 to our modifications of a well-studied model. Finally, we describe our

simple cerebrovascular model in Section 4.4.



4.1 Background on Modeling Approaches

Mathematical modeling of the cerebrovascular system has been an active area of

research in the past four decades, and several developments have been made over these

years [6,8,31,52,87,88,113]. We can classify the models into two categories, based on

the approach used to build them or the rationale behind the relationships provided by

these models. In the first category are approaches that attempt to identify top-level

statistical correlations, or transfer function relationships, among key cerebrovascular

variables. These models rely on data-mining or machine-learning methods applied to

observed data, and extract relationships by training or learning on a patient database.

Such models are usually aimed at supporting statistical inference. In the second

category, models are based on physiological understanding of the interaction of the

system components, and are typically obtained by synthesizing the results of many

detailed studies of the components and their interactions. These models therefore

represent fairly detailed structural or mechanistic knowledge of the physiology, and

understanding about mechanisms at play at various levels of detail and at different

time scales. Such models are generally aimed at supporting simulation studies. We

describe these two categories of models below.

4.1.1 Black-box and statistical models

In this category, models are derived by observing statistical correlations of some of the

quantities of clinical interest, and then extracting relationships among them. Gen-

erally, such relationships are blind, completely or partially, to the physiology of the

system that contains these variables. Therefore, these models are often called black-

box models as they merely provide empirical relationships connecting their input to

their output variables. In certain settings, this approach reduces to obtaining a trans-

fer function representation connecting output to input variables. The complexity of

models in this category varies from simple linear regression to complicated, multi-

layer neural networks involving nonlinear processing elements. The task of learning

or training model parameters involves minimizing some measure of the error between



the model output and observed data (the training set). Neural networks and other

machine-learning models are examples of this approach, where the unknown relation-

ships are estimated by training on available data, and the learned relationships are

applied to the test data to obtain performance statistics.

These models can sometimes expose simple empirical relationships, but in these

cases it is often true that such relationships reflect well-understood physiology. These

models are generally 'physiology-blind' mathematical relationships that can fit the

observed data streams, but are limited in their ability to yield clinical insight.

In the context of the cerebrovascular system, this modeling approach has been

used to seek relationships between specific variables, rather than representing the

complete system. For example, a transfer function between ABP and CBF may be

sought for the assessment of autoregulation [89, 91, 92], or a correlation coefficient

between slow fluctuations in CPP and mean CBFV may be computed as an indicator

of autoregulation [96]. Similar approaches can be found in [26,28,84,114,115]. We

have already discussed a few examples of this type of model in Sections 3.2 and

3.3, in the context of non-invasive approaches for ICP monitoring and assessment of

autoregulation. Here we briefly review only two of them, to illustrate this approach

further.

In [33], a machine-learning approach is used to relate ICP to ABP and TCD-based

CBFV. A neural network is trained on a relevant patient population (the training set),

for which invasively obtained measurements of ICP have been obtained. Parameter

weights in the neural network represent the estimated relationship between the two

model inputs, ABP and CBFV, and its output ICP. This empirically learned model

is assumed to remain the same in a broader population, as the parameters of the

neural network are frozen after the training phase, and the model is used to predict

ICP in other patients (the test set). Even though the model allows complex nonlinear

relationships to be extracted, there is no guarantee for its accuracy in patients with

a pathology that is not well represented in the training set. Furthermore, the model

lacks the sort of interpretability required to facilitate understanding and acceptance

by clinicians. Another machine-learning approach for ICP estimation is proposed



in [34], and a relationship between ICP, ABP and CBFV is extracted via correlating

these measurements in a training set of patient data.

Sometimes, a model provides a relationship between certain selected features of

the input waveforms and a cerebrovascular quantity. For example, in [107] several

morphological features of the carotid artery blood pressure waveforms are tested for

correlation with ICP via a linear regression analysis. In some cases, the interval

between the systolic peak and the dicrotic notch in the ABP pulse shows a significant

correlation with ICP, and is therefore used as a relationship for prediction of ICP.

The success of this model, however, is limited to situations similar to the ones used

in performing the regression analysis.

4.1.2 Physiological models

In the second category, mathematical models are formulated using what is under-

stood about the underlying physiology of the cerebrovascular system. A compelling

example of this approach, though in the cardiovascular domain, is the work of Arthur

Guyton [48]. He illustrated several human physiological mechanisms via their mech-

anistic representations, usually comprising an interconnection of components that

each capture the physiological behavior of a particular functional unit. Guyton's

representations can often be conveniently cast into mathematical form.

Models of this kind represent the system behavior at varying levels of detail,

through components and associated parameters that have physiological interpreta-

tions, and the relationships among these that are governed by the relevant physi-

ology. It is rather natural to analyze these models, and relate them to the clinical

measurements at various points in the system. Unlike the statistical or black-box

models described in the previous section, correlations among various system variables

do not come as surprises, as one can, in principle, trace the relationships (though this

can be non-trivial in a large and complex model). An important attribute of these

models is that they can resonate well with clinicians, who routinely think in similar

physiological terms and are the end-users of these models or developments based on

them.



Such mechanistic models are attractive from many points of view, including for

purposes of instruction and simulation [116. However, one problem is the context

of their application to real-time monitoring is that they can often (as in the Guyton

model) have many more parameters than can be reliably estimated from clinical data.

Strategies such as subset selection 117] or careful model reduction will then need to

be employed for parameter estimation [118].

The Windkessel model of the cardiovascular system is an example of a much sim-

pler physiologically-based model [35,36]. It provides a dynamic-system representation

relating ABP and cardiac output through aggregate properties of the vasculature. The

two model parameters are an aggregate compliance (representing primarily the com-

pliance of the large arteries) and aggregate resistance, the total peripheral resistance,

(representing primarily the resistance of the arterioles and capillary beds). Due to

its elegant simplicity, Windkessel-type models have been extensively used to study

and illustrate cardiovascular dynamics, as well as for application in patient moni-

toring [37]. The paucity of parameters in this model makes it particularly suited to

estimation from data.

A few examples of physiologically-based models of the cerebrovascular system

can be found in [8,52,87,88,108]. Typically, various functional-anatomical units are

represented by lumped-parameter system models, and interconnections of these com-

partments build up the whole system. The level of anatomical and physiological detail

determines the model complexity: models that represent detailed structure involve a

large number of compartments [7,113]. However, as already noted, the limited avail-

ability of physical data at various spatial resolutions means that these models cannot

generally be fully validated. Currently, such models are mainly restricted to teach-

ing, demonstration and simulation purposes only. Nevertheless, simpler models in

this category are amenable to parameter estimation in clinical settings. Since models

in this category are physically meaningful, observations made on these models can be

readily related to the clinical environment.

The work in this thesis revolves around this category of models. We next provide

a detailed review of various cerebrovascular models in this class in the next section.



4.2 Review of Cerebrovascular Models

Several mechanistic mathematical models have been developed based on the anatomi-

cal structure and physiology of the intracranial and cerebrovascular system. Lumped-

parameter models are one class of models that aggregate various anatomical segments

of the system into a single functional unit. In the context of modeling the hemody-

namic system, these models are commonly formulated in terms of electrical analogs,

with pressure corresponding to voltage and blood flow to current. Resistors then

represent resistance to blood flow, capacitors represent the compliance of vascular

segments, and inductors represent the inertial properties of the blood and vascular

wall (though inertial effects are often ignored). Resistance to flow depends on the

radius of a vessel (in the case of blood flow) or the permeability of the membrane

(in the case of CSF formation and reabsorption); compliance of a structure depends

on its elasticity. The desired resolution of these anatomical segments controls the

number of resistance and compliance parameters in a particular model. A relatively

comprehensive review of models developed to characterize the dynamics of the cere-

bral vasculature and the CSF system is provided in [31]. In the following, we provide

a brief review of some of the salient model development efforts.

A three-compartment model, comprising the brain, blood, and CSF, has been the

basis for our understanding of the intracranial system for about 150 years [38- 40].

Around four decades ago, models of intracranial dynamics started to go into more

anatomical detail, paying attention to the distributed nature of the system, and ex-

amining the dynamics of each compartmental sub-system. Based on the involved

physiological mechanisms, the cerebrovascular system can be divided into at least

the following major compartments: the cerebral arterial compartment, the cerebral

venous compartment, the CSF generation and reabsorption system, and the cere-

brospinal compartment. The last two are sometimes studied as one system. Most

of the early mathematical modeling efforts focused on only one of the compartments

rather than the complete cerebrovascular system. We provide a brief summary of

each sub-system before discussing the more comprehensive models.



Cerebrospinal compartment

Mathematical models to characterize the CSF volume and pressure relationship fo-

cused on the CSF system, independently of the vasculature and cerebral hemody-

namics [50-52]. In these models, the key variables are the flow of CSF, the resistive

drop along its pathways, and the intracranial compliance (due to the brain tissue

and vasculature that bounds CSF). These models were used to study the dynamics of

ICP, which by then could be measured in clinical settings. An important contribution

of these models was the analysis of the nonlinear relationship between ICP and the

CSF volume. The work in [51] presented a mechanical perspective of the intracra-

nial system and represented its dynamics in a mathematical model. The authors

employed their model to simulate and analyze hydrocephalus and normal-pressure

hydrocephalus. Further developments in regard to CSF dynamics and hydrocephalus

were presented using a two-compartment model in [119].

Two important observations can be made on the terminology used in models re-

lated to intracranial physiology. First, the space containing CSF inside the cranium

is often termed the intracranial space, which we think can possibly be mistaken as the

entire space inside the cranium. We instead call it the CSF space or ventricular space.

(The latter term ignores the relatively smaller volume of the subarachnoid spaces.)

Second, with the exception of some detailed models of CSF flow, the literature in this

area does not distinguish between the ventricular fluid pressure (VFP) and the CSF

pressure elsewhere, and summarily labels as ICP any measurement of CSF pressure,

irrespective of measurement location. We use ICP to denote VFP.

CSF generation and reabsorption

Generation of CSF from specialized capillaries (the choroid plexus) inside the brain

ventricles and its reabsorption in the veins through the arachnoid villi have been stud-

ied through experiments in humans and animals [46,47]. CSF formation is known to

be an active process, and the CSF production rate is affected by variations in ICP and

CBF. Mathematical models either represent this by a constant source of flow from

the capillaries to ventricular space ignoring the pressure-dependent variations [120],



or by a unidirectional flow through a resistance element that connects to the capillary

pressure at one end and ICP at the other [87]. Pathway for the reabsorption of CSF is

also modeled as a resistance element, and the outflow is determined by the difference

of ICP and venous pressure. This is shown in detail in the models below.

Cerebro-arterial compartment

Similar to models of the arterial vasculature elsewhere in the body [116, 117], the

dynamic relationship between ABP and blood flow through cerebral arteries is rep-

resented by a system comprising resistance and compliance elements. The arterial

bed can be represented by one or more sub-compartments, depending on the desired

resolution. Again, the models introduced later in this subsection provide examples

and more details.

Cerebro-venous compartment

The dynamics of the cerebro-venous system gained particular attention due to the

peculiar property of collapse of the larger cerebral veins (before entering the dural

sinuses). This phenomenon is due to external pressure, ICP, being higher than the

luminal blood pressure [13]. Typically, ICP is above 7 mmHg, and blood pressure

at the large veins is about 5-6 mmHg, dropping further to less than 5 mmHg at

the sinuses. The collapse behavior led to adoption of the Starling-resistor model for

representing blood flow through the cerebral veins [13,14]. The Starling model for

the cerebro-venous system is employed in several cerebrovascular models. We have

discussed this briefly in Chapter 2, and more detail is given in Appendix A.

Models of the complete system

Representations for the complete cerebrovascular system have also been proposed.

For instance, Sorek et al. proposed a lumped-parameter compartmental model of

the cerebrovascular system to represent the dynamics of cycle-averaged pressures

and flows in the cerebrovascular system [6]. As shown in Figure 4-1, the system

comprises seven compartments: brain tissue, arteries, capillaries, veins, venous sinus,
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Figure 4-1: A compartmental model of the cerebrovascular system by Sorek et al. [6].
The nominal pressure and flow values at different compartments are specified inside
braces and parenthesis, respectively.

jugular bulb, and CSF. The pressures and flows in the system are related by nine

resistance elements and five compliance elements. A prime objective of the authors

was to estimate the model parameters from the nominal values of various pressures

(including ICP) and flows, and thus demonstrate clinically interesting profiles of these

parameters. Conversely, the model was simulated to predict pressure changes as the

resistances and compliances were changed.

However, it was Ursino and Lodi's model in 1988 that, for the first time, com-

bined almost all the essential compartments and relevant dynamics. They proposed

a series of mathematical models of the cerebrovascular system, validating via simu-

lations, refining, elaborating and also simplifying their models. A key aspect of the

first Ursino-Lodi model [87] is that it combined the CSF dynamics with the cerebral

blood circulation, included a Starling resistor for venous collapse, and also introduced

a mathematical, albeit phenomenological, equivalent of autoregulation. The CSF dy-

namics were represented by introducing CSF generation and reabsorption pathways,

and a notion of compliance of the bounding surfaces of the ventricular space was

borrowed from previous studies. A simulation study of the model was carried out to

replicate clinical waveforms [88]. These models represented the cerebral vasculature
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Figure 4-2: An elaborate model of the cerebrovascular system proposed by Ursino et

al. [7], shown in the form of an electrical circuit. The variables labeled as G, C, P
and q denote conductance, capacitance, voltage and current, respectively. The arrows
indicate time-varying components to accommodate autoregulation.

in an elaborate manner, separating the arteries from arterioles, and large from small

veins. These models contained certain nonlinear elements, making their analysis and

parameter estimation challenging. In order to represent cerebrovascular autoregula-

tion, an external control mechanism was used to vary certain resistance and compli-

ance elements in the model in response to variations in mean arterial blood pressure

(MAP) and mean CBF, though several variants of the feedback mechanism and the

time-constant of its action were tried in later publications [7, 9,121].

An example of this type of model is shown in Figure 4-2 in an electrical circuit

analog. A model of autoregulation using pressure-dependent compliance and flow-

dependent resistance was adopted in [9], about a decade after the introduction of

their first mathematical model. During these several revisions, the authors developed

simpler versions with fewer compartments of their initial mathematical model,

and also included interaction of ICP dynamics and CO 2 reactivity [7]. Another vari-

ation of these models was aimed at mathematical characterization of ICP dynamics,

which the model represented through a nonlinear dynamical system. Various simula-

tions were carried out to demonstrate the effects of injecting fluid into the ventricular

space, varying the intracranial compliance, and controlling the gain of the autoreg-

ulation loop. This model is relatively simple, yet characterizes the cerebrovascular

dynamics fairly accurately, as shown in several simulation studies. It has been used in

further studies and investigations into cerebrovascular dynamics [122]. After Ursino
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Figure 4-3: An elaborate model of the cerebrovascular system proposed by Stevens
et al. [8].

Lodi models, the cerebrovascular models developed by others retained the four nec-

essary compartments and important aspects, such as the Starling-resistor mechanism

and CSF formation and reabsorption.

The development of compartmental models of the cerebrovascular system is still

an active area of research. These models aim to either illustrate certain clinical sce-

narios of interest or to relate the clinical data-streams that are now available rather

conveniently and abundantly. For instance, Stevens et al. recently proposed a model

to represent idiopathic intracranial hypertension [8]. This work derives from earlier

work on ICP dynamics by the authors [113]. Figure 4-3 shows a mechanical descrip-

tion of their model. The approach looks strikingly similar to the models discussed

above, and in particular the model by Sorek et al. [6]. However, the focus of this mod-

eling exercise is to study idiopathic intracranial hypertension and its various modes.

In another recent development [108], Wakeland et al. presented a six-compartment

simulation model, and demonstrated that with pre-set model parameters (nominal

values from the literature are used as the baseline values) the simulated waveforms



can be made to match clinically measured data. They used the model to replicate

ICP in response to two external interventions: variations in the head-of-bed angle,

and respiratory rate. The authors use a nonlinear optimization routine to estimate a

small set of model parameters. The routine is used to predict ICP from the pre-set

model parameters, though the parameters are allowed to change from one intervention

to the next.

In summary, compartmental models of the cerebrovascular system have been em-

ployed to represent relevant dynamics and explain clinical scenarios. As access to

clinical data has become easier due to the advances in technology, further develop-

ments in the area of cerebrovascular models are expected.

4.2.1 A Simple Ursino-Lodi model

As described above, mathematical models developed by Ursino and Lodi captured

the cerebrovascular and intracranial dynamics, and also included control mechanisms

to represent autoregulation. These models are easy for simulation studies, and hence

were adopted by various other researchers as the basis of further explorations. How-

ever, these models contained too many unknown parameters to be robustly identified

from clinically accessible measurements. After several simplifications, Ursino and

Lodi proposed another model, containing only 8 unknown parameters [9]. We de-

scribe this model in more detail below, and refer to it as the Ursino-Lodi model in

the remainder of this thesis.

Figure 4-4 shows the structure of the Ursino-Lodi model [9]. Various important

segments of the model are labeled by associated pressure (P), flow (q) - both in terms

of their cycle-averages and intrinsic vascular properties, such as resistance (R) and

compliance (C). Anatomical segments are indicated by subscript letters: 'a' de-

notes arterial, 'c' denotes capillary, and 'v' denotes venous. Sub-compartments in the

venous region are distal ('d') and proximal ('p') to the arterial side. Intracranial pa-

rameters are indicated by 'ic'. Resistance to CSF formation and reabsorption/outflow

are indicated by Rf and Ro, respectively, and Ii denotes external injection (or with-

drawal) of fluid into (or from) the ventricular space. Arrows at the arterial compliance



Figure 4-4: A mechanical view of
and flows [9].

cic

the cerebrovascular system in terms of pressures

Figure 4-5: The Ursino-Lodi model of the cerebrovascular system, given in an elec-
trical circuit form.

and resistance indicate their dynamic nature, which is responsible for autoregulation.

The Starling resistor phenomenon is captured by the condition Pv = Pic. Finally, Ps

denotes pressure at the venous sinus.

In Figure 4-5, we redraw the Ursino-Lodi model as an electrical circuit model.

The original model is formulated in terms of average or mean pressure, flow and

volume. Mean pressure at the inlet of a main artery into the cerebral section - right

or left MCA - is represented as Pa, and is almost the same as mean ABP measured

elsewhere in the arterial tree. Mean CBF is represented as flow through the arterial

resistance, and is shown as q. Mean pressure inside the ventricular space is denoted



as pic, and the compliance of the bounding surfaces of the ventricular space (which

is commonly termed as intracranial compliance) is denoted as Cic. The Ursino-Lodi

model adopts a nonlinear relationship between CSF volume and ICP [52], and specifies

the incremental compliance as
1

Cic =E_, (4.1)
kEpic

where kE is a coefficient representing elastance of the ventricular space. This Cic

yields an exponential dependence of pressure on volume, consistent with the so-called

Monro-Kellie principle [40]; (see Section 2.1.3 , and in particular Figure 2-6).

Vic = Vico + 1In Ac (4.2)
kE PicO

Pic = icoe e-ico) (4.3)

The arterial-arteriolar segment is represented by a single compliance Ca and resis-

tance Ra, lumping together the properties of large and small arteries and arterioles.

Both Ra and Ca are modeled as time-varying parameters, to implement autoregula-

tion. Larger arteries have more elastance than small arterioles and capillaries, which

are almost purely resistive.

The venous space is divided into two resistive segments, Rpv and Rd, respec-

tively, to distinguish proximal veins from the collapsible lateral lacunae and bridge

veins. The model assumes that the last section of the venous system is collapsed and

therefore mean cerebral venous pressure at the interface between un-collapsed and

collapsed veins is essentially equal to mean ICP. Furthermore, the venous resistances

are kept constant, since they play no role in autoregulation. Compared to arteries,

cerebral veins store more blood volume, and their blood volume drops only when

ICP rises or the pressure at the venous sinuses decreases. These variations in the

venous blood volume occur at relatively long time scales, and therefore their effect

on compliance is not important in modeling short-term blood flow dynamics. Mean

pressure at the venous sinus is denoted as constant, pvs. CSF formation occurs at the

capillaries and is captured by a unidirectional flow with a high resistance Rf, while

CSF reabsorption or outflow is represented by R0 at the level of the large veins. Both



Rf and R0 are large compared to Ra, Rp, or Rd,. Furthermore, the time constants

for CSF formation and reabsorption are large compared to the time constants of flow

through the arterio-venous system. External injection of fluid into the ventricular

space is shown by a current source Ii.

The model has two different control (autoregulation) mechanisms postulated for

the arterial compliance and arterial-arteriolar resistance, respectively. Compliance

is varied in response to flow changes above or below its nominal value. Positive

or negative change in flow is passed through a first-order negative feedback loop to

compensate for the flow change. This is expressed in the following mathematical

relationships:

S=0o- G q-(4.4)
qn

dCa 1
da= - (-Ca + X) , (4.5)
dt 7

where q represents mean CBF, go represents the nominal value of mean CBF, G is

the autoregulation gain with a nominal value of 1.5, o- is a sigmoidal function with

different lower and upper saturations, and T is the time constant of the regulation,

which is set to a nominal value of 20 sec.

The second postulated mechanism adapts arterial resistance. A change in perfu-

sion pressure due to a change in MAP, ICP or both - induces immediate variations

in Ra to result in vasoconstriction or vasodilation. This behavior is implemented with

the following relationships:

Va = Ca(Pa - Pic), (4.6)

Ra = 2 y -Q2'(4.7)

where Va is the volume stored in the arterial compliance, kR is a constant parameter,

and Can is the nominal value of the arterial compliance. Details of the parameter

values and the particular sigmoidal function can be found in [9].



35- "''"
- - - gain: 0.45

30. -- gain: 0.15

-25-

E
-20-

o15-

10-

01

40 60 80 100 120 140
MAP [mmHg]

Figure 4-6: Typical autoregulation plateau observed from our implementation of the
Ursino-Lodi model. For each value of the autoregulation gain, MAP was increased
linearly over 20 minutes (quasi steady-state simulation) and the corresponding mean
CBF was recorded.

We implemented the model using the nominal values for the model parameters

reported in [9] and supplied the model with a synthetic MAP time-series as input.

Simulation of the model generated mean CBF. Figure 4-6 shows the autoregulation

displayed by the model at various values of the control gain. Typical autoregulation

response is observed for the normal autoregulation (gain value of 1.5) over MAP

variations in the range 60-130 mmHg; as MAP gradually increases from 30 mmHg

to 180 mmHg (in a period of 20 minutes), the CBF remains almost constant at

the selected nominal value of 12.5 ml/s. Weakening the model's autoregulation by

decreasing the gain value demonstrates gradual loss of autoregulation.

4.3 Modified Ursino-Lodi Model

As pointed out above, the Ursino-Lodi model is specified in terms of mean quantities.

However, hemodynamic waveforms have morphological features that contain informa-
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Figure 4-7: Modified Ursino-Lodi model.

tion about the properties of the dynamic system they are derived from. From a system

identification perspective, it is prudent to extract information from these intrabeat

variations in hemodynamic quantities, due (primarily) to cardiac pulsation, and gain

possible advantage in estimation of the desired parameters. Therefore, we need the

model to reproduce pulsatile behavior. To achieve this, we modify the Ursino-Lodi

model by providing it with a pulsatile ABP waveform as the input. We also define

the input flow, q(t), to the model as pulsatile CBF, measured at the large elastic cere-

bral arteries (rather than in the arterial resistance). The control mechanisms remain

implemented in terms of the average quantities, as this is physiologically more likely.

Since the input as well as the internal quantities now assume instantaneous values,

rather than average values, running-window averages are computed for the pressure

and flow, for updating the resistance and compliance through the control loop at

every time-step. The step-size for evolving the model is also chosen appropriately for

producing waveforms at high temporal resolution.

The modified model is shown in Figure 4-7, where we have used Pa(t), q(t) and

pic(t) to indicate the pulsatile nature of the model quantities. Also CBF, q(t), is

shown at the arterial side of the model.

Simulated data for the modified model

We simulate the modified model to mimic interesting clinical scenarios. The wave-
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Figure 4-8: The modified Ursino-Lodi model was simulated to synthesize ABP, CBF,
and ICP. Beat-to-beat averages (or means) of ABP (top), CBF (second row) and
ICP (third row) are shown. The last window shows the perturbation Ii(t) that causes
sudden rises in ICP. A pulsatile ABP waveform is used as an input to drive the model,
and the simulated CBF and ICP waveforms are recorded as model outputs.

forms generated by this model are later used as a first step to test the parameter

estimation scheme that we shall develop. A set of sample beat-to-beat averages of

ABP, CBF and ICP is shown in Figure 4-8, and Figure 4-9 shows the pulsatile wave-

form behavior of these signals over a period of 20 seconds.
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Figure 4-9: Simulated ABP (top) and CBF (bottom) waveforms obtained from the
modified Ursino-Lodi model. Figure highlights the intrabeat pulsatility in these sig-
nals.

4.4 Reduced Model for ICP Estimation

We note that even the simplest realistic models of cerebrovascular dynamics generally

involve about a dozen unknown parameters and state variables. On the other hand,

direct clinical measurements are possible for only a very few variables, primarily

due to limited access to probe the closed cranial system. That makes the challenge of

uniquely and robustly identifying model parameters from actual data very hard, if not

impossible. For example, the adapted model presented in Figure 4-7 is a second-order

system with nonlinear components, has eight parameters, and two state variables. We

can hope to get only two measurement signals, ABP and CBF.

This prompts us to devise simpler or reduced-order models for the system under

study, with the objective of making them amenable to system identification. Our

primary objective is to obtain a model that can be used for estimation of ICP and

cerebrovascular autoregulation. We also want the model to have physiologically in-
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Figure 4-10: Compartmental view of the intracranial space (adapted from [4]). Red
arrows indicate circulation of CSF.

terpretable parameters. Starting from a compartmental view of the cerebrovascular

space in the next section, we make a few key observations about the physiology and

time scales of dynamics to derive a reduced model. We then highlight important

features of the model that are exploited in the next chapter for developing parameter

estimation schemes.

4.4.1 Simple compartmental view of cerebrovascular system

A schematic view of the cerebrovascular system is shown in Figure 4-10. It displays

the three major compartments of the intracranial system, namely brain, the vascula-

ture, and the ventricular space. Blood enters the cerebral space through the arteries,

branches into smaller vessels and is collected back by the veins. Arrows in the ven-

tricular compartment indicate the flow of CSF, which is formed at special capillaries

in the choroid plexus, and is reabsorbed into the venous system through arachnoid

villi or granules. The pressure of CSF inside the ventricular space is ICP, and acts as

the effective downstream pressure for cerebral perfusion.



4.4.2 Model

We make the following observations from the compartmental view shown in Figure 4-

10; these are key to our simplified mathematical model.

" Starling resistor for venous collapse: As mentioned above, ICP acts as the effec-

tive downstream pressure for flow through the cerebral vasculature, because it

leads to venous collapse in regions where it exceeds venous pressure. This phe-

nomenon is sometimes described by a simple model, the Starling-resistor [11,12],

and is the reason for defining cerebral perfusion pressure as CPP = MAP - ICP.

" Slow and fast dynamics: The second observation utilized in our model reduction

is that the dynamic response of the system comprises both fast (on the order

of a beat period) and slow (about two orders of magnitude longer than a beat

period) time-scales, which can be separated. CSF formation and reabsorption

pathways have resistances to flow that are at least two orders of magnitude

higher than the dominant cerebrovascular resistances. Thus intracranial CSF

volume changes and the associated changes in mean ICP occur at a much slower

time-scale (several minutes) than a cardiac beat period (normally less than a

second). For the duration of a beat period, the contribution of these slow

variables is negligible and can be ignored. After a beat period, any cumulative

effect on the system is reflected by the new values for R, C, and ICP.

" Intrabeat variation in instantaneous ICP: We note that under normal condi-

tions, intrabeat variations in instantaneous ICP are small relative to the vari-

ations in ABP only about 5 mmHg in ICP compared to about 50 mmHg

or more in ABP and any physiological changes in the baseline or mean ICP

occur over several beats (as noted in the previous paragraph). Moreover, pro-

viding only one ICP estimate every beat still meets the clinical requirement of

ICP monitoring sufficiently well, and intrabeat pulsation is not generally re-

quired to be monitored. Therefore, to make the estimation task easier, ICP can

be assumed constant during a beat period.
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Figure 4-11: Our simplified model obtained from an aggregate mechanistic view of
the intracranial space. By exploiting some key physiological features, the compu-
tational model provides a dynamic relationship between ICP and the measurable
quantities [10].

We exploit these observations to propose a reduced model with only three beat-to-

beat varying parameters, namely resistance R, compliance C, and ICP [10]. Figure 4-

11 shows our model in a electrical circuit form, where the arrows on the components

indicate their time-varying nature due to autoregulation. However, the figure does

not show the control mechanisms that govern the variation of these parameters. The

model provides a dynamic constraint relating ICP, ABP and CBF.

In the above model, ICP is denoted as pic, ABPmca as pa(t), and CBF as q(t).

The parameter R represents the overall resistance to cerebral blood flow as seen

from the inlet, and C captures the combined compliance of the vascular walls of the

arterial bed and compressibility of the brain tissue surrounding these vessels. The

net transmural pressure is the difference of ABP and ICP. Beat-to-beat variations

in R and C represent the dynamic response of the cerebral vasculature -- such as

changes in the vessel diameter in order to regulate cerebral blood flow - and changes

in effective compliance under different intracranial conditions. For the duration of a

beat period, the dynamic relationship described by the model is given by

dpa(t) pa(t) - Pic
q(t) = C + . (4.8)

dt R

Since the model parameters vary from one beat to the next, the correct notation

is R., C., and pic, where n indicates the beat number. However, we assume this will

be clear from the discussion, and omit the subscript to avoid notational clutter.



4.4.3 Validation via simulation

Though our simplified model is derived from a mechanistic representation of the cere-

brovascular system, employing our observations about the relevant physiology, we

can validate the behavior of the model by comparing some of the common variables

against larger models. We employ a simulation approach to validate our simplified

model by synthesizing waveforms from the modified Ursino-Lodi model and then us-

ing the reduced model to estimate model parameters from the simulated waveforms of

ABP and CBF. Clinically interesting scenarios are generated by appropriate pertur-

bations during the simulation. The parameters of the reduced model are estimated

(by the algorithm we describe in the next chapter). Over a wide range of simulated

ABP changes, the parameter estimates follow dynamic changes in ICP, usually to

within 10% of the reference values. Estimates of arterial compliance and cerebrovas-

cular resistance tend to fall within 5% to 10% of the references values. These results

suggest that our reduced model captures the dynamic relationship among ABP, CBF

and ICP quite well. More detail of the simulation study is given in Appendix B.

4.5 Salient Features of the Reduced Model

Physiologically-based model parameters

Our development of a reduced mathematical model is rooted in the physiology of the

cerebrovascular system, instead of statistical correlations or black-box models that

provide limited insight into the system. A direct result of this approach is that all

our model parameters have a physiological interpretation. This distinguishes our ap-

proach, and model, from empirically learned relationships, where one does not know

what the model parameters might represent in the physiological system. Despite its

low complexity, our model represents the cerebrovascular system quite well for the

purpose of monitoring of ICP and autoregulation (see Chapters 6 and 7).

Starling resistor model for venous collapse

Our model exploits the Starling-resistor like behavior of the cerebral vasculature and



blood flow through it. This allows us to reduce the complexity of the model, and

provide a simple first-order dynamic relationship between the pressures and flows in

the cerebrovascular system.

Constraints vs. complete representation

The model does not capture all the relevant mechanisms/dynamics of the cerebrovas-

cular system. It rather provides constraints relating the observations and the desired

quantities. Furthermore, our model is aimed at characterizing the cerebrovascular

system at an aggregate level.

Despite this, our model can be thought of as representing the behavior of whatever

portion of the cerebral vasculature the blood flow variable q(t) is channeled through.

This q(t) may be just the blood flow in the left MCA, for example, or in the right

MCA, rather than the entire aggregate arterial inflow to the cerebral vasculature.

If it is the left MCA flow, for instance, then R and C in the model represent the

resistance and compliance experienced by this particular portion of the flow. Crucial

to the relevance of our reduced model for ICP estimation (and to the success we have

had with it) is that ICP is essentially uniform in the ventricular space, and thus serves

as the downstream pressure on whatever arterial channel q(t) is measured in. Simi-

larly, ABP is essentially uniform across all arterial inlets to the cerebral vasculature.

Some validation of this picture is provided later in the thesis, when we show rather

consistent agreement between ICP estimates computed separately from left MCA and

right MCA flow measurements.

Interpretation of compliance

The compliance C in our model captures the elastically distensible nature of various

layers between blood in the arterial vessels and CSF in the ventricles. It thus rep-

resents the aggregate compliance due to the elasticity of the arterial walls and the

brain tissue. The pressure at one end of this compliance element is ABP or pa(t),

while the CSF pressure is ICP, so the compliance represents the relationship between

the transmural pressure (ABP - ICP) and cerebral blood volume (CBV).



4.6 Concluding Remarks

In this chapter we have provided a brief review of mathematical models of the cere-

brovascular and intracranial system dynamics. We also presented our explorations

and modifications of the Ursino-Lodi model, which we simulated to generate pul-

satile dynamics of ABP, CBF and ICP. Finally we developed a simple physiological

model of the cerebrovascular system for the purpose of ICP estimation. We exploited

several key features of the relevant physiology to obtain a drastically simpler rep-

resentation than those in the literature. Specifically, the model contains only three

patient-specific parameters, namely R, C, and ICP, which are allowed to vary from

beat to beat, and which we hope to estimate in a robust manner by processing the ac-

cessible clinical measurements of ABP and CBF. Parameter estimation is the subject

of the next chapter.
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Chapter 5

Model Parameter Estimation

In the previous chapter, we described our reduced-order model of the cerebrovascu-

lar system. A key feature of this model is that it captures relationships among the

essential cerebrovascular variables in a simple mechanistic form. If we can acquire

measurements corresponding to some of the variables in the model, we can develop

strategies for identifying the model parameters. We can in fact acquire continuous

waveforms that are good approximations of the blood pressure and flow at the arte-

rial inlets to the cerebral vasculature. As the reduced model has only three unknown

parameters (R, C, and ICP), it is very suited to estimation of these unknown param-

eters.

We have developed a suite of possible algorithms for real-time processing of clin-

ical measurements of ABP and CBFV waveforms, to obtain continuous estimates of

the unmeasured parameters. The various algorithms incorporate different strategies,

including the use of modulating functions, estimation of parameters in a single stage

or in two and three stages, and estimation from the cycle-averaged pressure and flow

measurements. In this chapter, we describe one of these algorithms in detail, and

discuss the others in Appendix C. The algorithm described in this chapter is the one

we focused on for validation and further investigations.

In Section 5.1, we describe the estimation algorithm, stage by stage. Section 5.2

describes the accessible clinical measurements and the challenges they pose. We dis-

cuss the issue of ABP phase-offset estimation in Section 5.3 and also give a summary



of the required pre-processing steps. Section 5.4 then lays out the full estimation algo-

rithm. We conclude this chapter by summarizing the salient features of the estimation

algorithm in Section 5.5.

5.1 Estimation Algorithm

The dynamic relationships given by the reduced model allow computational process-

ing of the ABP and CBF measurements to identify the model parameters, including

ICP (which is considered constant within a beat, just as R and C are). Recall the

differential equation relating the measured variables q(t) and pa(t) to the parameters

R, C, and pic:

d pa(t) pa(t ) -pic
q(t) = C + . (5.1)

dt R

We develop a two-step algorithm to identify the model parameters. The algorithm

processes non-invasive, time-synchronized clinical waveform measurements of radial

ABP and CBFV at the MCA, to provide beat-by-beat estimates of R, C, and ICP.

An important feature of our approach is that the algorithm extracts intrabeat infor-

mation from the beat morphology to identify the model parameters, including ICP,

from the two measured waveforms (ABP and CBFV) for each cardiac beat. We now

describe the steps of the algorithm.

Step I: Compliance estimation

Sharp transitions in pa(t) induce a large flow into the arterial compliance, and a

comparatively negligible flow through the resistance branch during such transitions.

The typical ABP waveform does indeed contain a sharp rise in every beat - within

about one-tenth of a beat period from diastolic pressure to systolic pressure. Hence,

during that short transition period, the input flow can be primarily attributed to the

compliance branch:

0dpa(t)
q(t) t C * . (5.2)

dt
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Figure 5-1: Graphical description of the idea for compliance estimation: when arterial
blood pressure has a steep gradient, capacitance (or compliance) offers the smallest-
impedance path for the current (or flow) q(t), storing charge (volume) on C. The
points marked as tb and t, correspond to the 'begin' and 'stop' times of the diastolic-
to-systolic transition of ABP within the indicated beat, and the stored volume is
equal to the area under the flow over this interval.

A graphical description of the situation is given in Figure 5-1. Let tb and ts

correspond respectively to the begin-time and stop-time of the sharp diastolic-to-

systolic transition, in a particular beat of the ABP waveform pa(t). We can estimate

C by integrating (5.2) over the transition period, obtaining

f f q(t)dt
C = b (5.3)

pa(ts) - Pa(tb)

where we use a 'hat' to indicate an estimate.

Step II: Estimation of R and ICP

Using the result of the estimation in Step I, we can calculate the flow through the



resistance as

dpa (t)
qi(t) = q(t) - Oa t (5.4)

dt

Note that direct computation of the derivative may accentuate noise in the ABP

waveforms. In our simulation experiments, we used an experimental ABP waveform

as the input, and a simple finite-difference scheme over the sampling interval of 8 ms

(sampling frequency is 125 Hz) provided an adequate approximation of the derivative.

In more noisy cases, a more careful approximation scheme will need to be used.

As the resistance R and ICP are assumed to stay constant over a beat interval,

ICP can be described in terms of q1(t) as

Pic = Pa(t) - Rq\(t). (5.5)

This equation has two unknown quantities, R and Pic. Since pa(t) and 1 (t) vary freely

during a beat period, we can write (5.5) for at least two different time instants t to

eliminate one of the unknowns. For example, picking ti and t2 within a beat period

and subtracting the two equations yields

Pa(t2 ) - Pa(t1)R_ = , (5.6)qi(t 2 ) - qi(t1)

Finally, substituting R for R in (5.5), and taking the average over a beat period

provides the desired ICP estimate:

Pic =Pa - R q, (5.7)

where the bar indicates the beat-averaged quantity, i.e., T= - 1 , -1 x(t)dt, and

t. marks the onset of the nth beat.

Remark on least-squares set up: In order to mitigate the effects of noise in

the measurements and reduce dispersion in the estimates, the algorithm employs a

sliding window of several consecutive beats of the measured waveforms, and computes



a least-square-error solution for the estimates in (5.3), (5.6) and (5.7). For example,

estimation using (5.6) over N consecutive beats involves least-squares solution to a

system of equations of the form

R [6q1[n] Sq1[n + 1] --q 1[n + N - 1]] [6pa[n] 6pa[n + 1] -... pa6[n + N - 1]

(5.8)

where

6x[n] = x(t 2 [n]) - x(ti[n]) , (5.9)

and t1 [n] and t2 [n] are the points chosen in the nth beat. The resulting least-squares

estimate is
n+N-1

E oq1[k]6pN[k]
R= =" (5.10)

n+N-1

E 6q [k]
k=n

Remark on selecting ti and t2 : To reduce sensitivity to noise in qj (t), it is advan-

tageous to pick ti and t2 such that d a 0 at ti and t2 , e.g., near the maximum anddt

minimum of the ABP beat. With this choice, q-1(t) in (5.4) is least affected by errors

in C, and therefore estimates of R and ICP are also minimally affected. Specifically,

consider the estimate qi(t):

dpa(t)
q1(t) = q(t) -C O a

dt

qi(t) + (C - ) dt (5.11)

That is, the error in the estimate of C scales the derivative of pa(t) and adds as error

in the estimate of qi(t). In (5.6), we compute the difference of qj at ti and t2, hence
daP tI dpa2t) One obvious choice of t1

we need to pick ti and t2 such that "FJtlt, ~ .v

and t2 that meets this criteria is the local minimum and maximum points on pa(t)

within each beat, where t = 0.dt



Remark on beat onset detection and signal quality: Our algorithm processes

the measured data on a beat-by-beat basis. Therefore, a necessary pre-processing

step before the algorithm can run is to mark the start time for each cardiac beat.

We include this in our pre-processing module. Various other essential pre-processing

steps are performed to remove measurement or equipment noise and artifact from

the acquired signals, to detect beat onsets, and to compute an index of input signal

quality that is used in the subsequent computational steps. Details of the signal

quality assessment and utilization are discussed separately; it suffices to say here

that parameter estimates are computed only during periods when the associated

signal quality of the input measurements is deemed good enough for performing the

computational steps.

5.2 Clinical Measurements

5.2.1 Arterial blood pressure

Peripheral ABP in a critical care setting is most easily obtained via an intra-arterial

catheter at the radial artery. Alternatively, a non-invasive method for continuous

ABP measurement is based on the volume-clamp method, and is commercially avail-

able as the Finapres, Portapres and Finometer [123]. These devices calculate pressure

in the arterial bed of the finger via a pressure-cuff method, in which a control mech-

anism maintains the blood volume in the finger constant by applying pressure exter-

nally. Measurement of blood volume is made through an infrared light sensor, and

the applied pressure is considered as mirroring the ABP inside the arteries. Detailed

descriptions of the volume-clamp method are in [123, 124]. Measurement accuracy

of this method, as compared against intra-arterial catheter measurements, is typi-

cally good enough for clinical application [125]. Our algorithm uses peripheral ABP

(measured at the radial artery or at the finger) as a proxy for the cerebral ABP in

the model, though we shall shortly describe a phase-offset correction we make to the

peripheral ABP waveform to get a better proxy.
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Figure 5-2: Radial ABP (blue, top) and CBFV at the MCA (red, bottom) recordings
shown over a period of almost two cardiac beats. ABP is measured in units of mmHg
and CBFV in cm/s.

5.2.2 Cerebral blood flow (velocity)

To measure CBFV, we utilize a transcranial Doppler (TCD) ultrasound device, which

provides continuous and non-invasive measurement of CBFV. The ultrasonic trans-

ducer is typically focused on the left or right middle cerebral artery (MCA) for a

unilateral measurement, but a simultaneous or bilateral recording with two trans-

ducers is also possible. Besides being the major cerebral artery, the MCA is also

accessible via a convenient insonation window at the temple. The measurements are

performed by an expert technician, as training and skill are needed to localize the

target blood vessel. Aaslid et al. demonstrated that a TCD ultrasound exam of the

cerebral arteries can be routinely performed in clinical settings [24].

The device performs Doppler-based computations on the backscattered ultrasound

wave to determine the speed of the moving (flowing) blood in the targeted artery. A

detailed description of the operation of the device involves various parameters, includ-

ing operating frequency, absorption coefficients of bone, tissue, and blood, acoustic

power, and interference sources; see [24,126].

Taking into account the cross-sectional area of the artery, velocity can be converted

into volumetric flow. It turns out, as we shall shortly show, that our ICP estimate

does not depends on the cross-sectional area, so CBFV rather than CBF suffices. On
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the other hand, our R and C estimate do depend, in reciprocal ways, on the assumed

area. Figure 5-2 provides a snapshot of the measurement waveforms to show typical

pulse shapes and features of the ABP and CBFV waveforms. It is desirable for the

continuous waveforms to be sampled at a rate high enough (100 Hz or above) to

capture the beat morphology well, and to allow robust time-domain analysis of the

measurement waveforms.

5.2.3 Discrepancy between available and desired measure-

ments

So far we have paid little attention to the discrepancies between the accessible mea-

surements of radial ABP and CBFV respectively, and the desired cerebral ABP and

CBF. Below we discuss the problems caused by these differences.

I. Radial artery ABP in place of cerebral artery ABP

Clinical measurement of ABP is obtained at a peripheral location, e.g., via a

radial artery catheter or a Finapres device on the finger, but the associated

CBF is measured at a cerebral artery, generally the MCA. This discrepancy

requires translating the measured pressure, ABPrad, into pressure at the level

of the cerebral vasculature, ABPmca, before it can be associated with CBF by

the model.

Ideally, the radial ABP measurements should be transformed to cerebral ABP,

perhaps via a transfer function relating the measurements at the two locations,

applying ideas similar to those in [127, 128]. However identification of such

a transformation is not obvious without any reference cerebral ABP measure-

ment. Therefore, we resort to using an approximate translation. Mean arterial

pressure, in the supine position, is about the same at the radial and cerebral

arteries. We ignore the differences in the pulse morphology. However the prop-

agation times of the pressure wave to these two sites are quite different, and, as

might be expected, the difference significantly affects our parameter estimates.

Therefore, it is critical to compensate for the relative time-shift of ABPrad with
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respect to ABPmca. We shall invoke the relationships provided by our model

and utilize physiological features of the waveforms to develop an estimation al-

gorithm in Section 5.3 for this phase-offset, as part of the pre-processing phase

in our method.

II. CBFV in place of CBF

A second issue regarding the clinical measurements is that TCD ultrasound

provides CBFV, which needs to be converted to CBF by taking into account

the cross-sectional area of the artery. However, we show below that our ICP

estimate is independent of any constant scale factor for CBFV. To see this, we

re-arrange the dynamic relationship (5.1) provided by the reduced model as

pic =Pa(t)+ RC dPa - Rq (t), (5.12)
dt

and recall that q(t) represents CBF. Let v(t) denote the CBFV measurements

used by the algorithm in place of q(t) in the model, and assume the two are

related by q(t) = av(t), where a is the unknown scale factor that converts

CBFV into CBF (e.g., cross-sectional area of the insonated cerebral artery), or

any other scaling required to get true q(t). Re-writing (5.12) in terms of v(t),

Pic = pa(t) + RC dpa(t) _ R (av(t)) , (5.13)
dt

= pa(t) + (a R) - a - (a R) v(t) , (5.14)

= pa(t) + RCdt Rv(t) , (5.15)
dt

where

R a R, (5.16)

C
C (5.17)

Thus, our ICP estimate is not affected by a, but the resistance and compliance
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estimates are scaled (in reciprocal ways). We therefore use CBFV measure-

ments in our algorithm, without converting them to CBF. Despite scaling by

a, the estimates R and C will capture trends in the underlying resistance and

compliance, as long as the scale factor is relatively constant over an observation

interval.

1I1. Correction in ABP measurement for patient posture

As we described above, the estimation algorithm uses radial measurement of

ABP as a surrogate for cerebral ABP, without any translation except the time-

delay. Depending on the position of the subject, however, the radial measure-

ment may be different from the cerebral ABP, due to the effect of the hydrostatic

fluid column between the MCA and the location of the pressure transducer.

When a subject is in the supine position, and the pressure transducer is cali-

brated at the level of the heart, mean ABP at the cerebral arteries is about the

same as that in the aorta or the radial artery. However, in the head-up position,

mean ABP at the cerebral arteries is lower than ABP at the level of the heart,

and this must be corrected before feeding into the estimation algorithm. Gen-

erally, for a normal-height adult, the length of the hydrostatic column is about

15-20 cm, which translates to about 15-20 cmH 20 or 10-15 mmHg correction

in ABP. If this posture change is not accounted for in the ABP measurement,

which is usually calibrated to the level of the heart, a bias in the ICP estimate

will result when using the given (uncorrected) ABP measurement.

5.3 Pre-processing and Phase-offset Estimation

The estimation algorithm processes data on a beat-by-beat basis. This requires the

beat boundaries in the input waveforms to be marked before carrying out the esti-

mation steps described above. Also, the recorded waveform data stretches from a

few minutes to several hours, and almost invariably contains various recording ar-

tifacts, noise, and signal-interrupts, which calls for noise removal and labeling the

waveforms for signal quality. Furthermore, as already noted, the radial ABP needs
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to be time-shifted for aligning with the CBFV measurements. These steps are part

of the pre-processing stage of the algorithm.

5.3.1 Pre-processing steps

A few necessary pre-processing steps are performed before applying the estimation

algorithm of Section 5.1 on the clinical waveform measurements.

" Noise removal: A simple finite-impulse response low-pass filter with cut-off

frequency at 16 Hz is applied in cases where the clinical measurements are

significantly contaminated with wide-band high-frequency noise. The cut-off

frequency was chosen to remove the kind of noise in some of the available mea-

surements, however a different choice of cut-off or filtering method may be

desirable in other settings.

" Re-sampling: The patient data were acquired at different sampling frequencies

(20, 30, 50 and 70 Hz). Instead of tuning the algorithm to receive data at varying

sampling frequencies, we introduce an up-sampling step. Before subsequent

processing by the estimation algorithm, the input ABP and CBFV waveforms

are up-sampled at a higher rate of 125 Hz, to aid the beat onset detection and

the extraction of the intrabeat features by the algorithm.

" Beat onset detection: To be able to process each beat of data individually,

the algorithm needs to mark the beat boundaries, or beat onsets. We employed

an algorithm that detects beat onsets for a given ABP waveform [129. The

algorithm is based on computing a weighted 'slope-sum' function over a running

window of the ABP signal, and then comparing its value against certain adaptive

thresholds.

" Beat annotation and signal quality assessment: All ABP and CBFV

beats were labeled according to the quality of data acquisition, noise, artifact

and no-recording period. These labels are combined to form a signal quality
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metric, which is then used by the estimation algorithm to select the estimation

windows.

* Phase-offset correction in ABP: To compensate for the relative time-shift

of ABPrad with respect to ABPmca, we develop a routine that exploits the model

constraint between CBF and ABPmca to provide candidate phase-offsets. The

suggested offsets are applied to ABPrad before further processing by the esti-

mation algorithm.

5.3.2 Phase-offset estimation

The ABP and CBFV measurements are made at different anatomical sites, so there

is an unknown phase-offset between the measured and desired pressure waveforms.

This offset must be compensated for prior to application of the estimation algorithms.

Our offset selection mechanism makes use of the physiological relationships that exist

between cerebral pressure and flow. We describe two different methods to estimate

the phase-offset that should be applied to radial ABP to get a better approximation

to ABP at the MCA.

Method 1: Recall that our model relates cerebral ABP and CBF as

dpa(t) pa(t) - Picq(t)=C + .(5.18)
dt R

Note that near the inflection point of the rising ABP pulse, the term ) has itsdt

maximum value, which then rolls off to zero by the peak systolic point, where dp (t)
dt

0. Thus, within a given beat period, the maximum value of q(t) must occur close

to the time corresponding to the inflection point of the rising pa(t) waveform. To

estimate the time-shift between ABPrad and ABPmnca, we determine the time-shift

that is required to align the maximum of the CBFV pulse with the inflection point

of the ABPrad pulse. The resulting phase-offset is then used to shift the measured

ABPrad. The time-shifted version of ABPrad is then taken as ABPminca, which is labeled

as pa(t) in the model.
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The phase-offset estimation is performed over a window of several consecutive

beats to mitigate the effects of noise and timing jitter, and an offset value is com-

puted for each beat by sliding the window by one beat. Finally, a sanity check is

performed to see if the estimated phase-offset sequence has a low dispersion. If the

sequence has a narrow range of values, a single phase-offset, taken as the median of

the offset sequence, is applied to the complete record rather than a phase-offset for

every new beat. Other approaches may be tried, where a new phase-offset is esti-

mated every few beats or minutes.

Method 2: We note that during each cardiac cycle, the ABP pulse goes through

regions where its derivative is close to zero. During these time intervals, near the lo-

cal maxima and minima, the compliance-related term in (5.18) can be safely ignored.

That simplifies the relationship between CBF and cerebral ABP to a purely resistive

one, determined by R and ICP only. Exploiting this, we develop a procedure to iden-

tify the time-intervals where dt is relatively small in each cycle, and to determine

a linear relationship between CBFV and the shifted ABP in those intervals. The

procedure is repeated for various phase-offsets applied to the radial ABP, and the

offset that results in the smallest residual error with a linear fit is selected. Figure 5-3

depicts, for two candidate phase-offsets, the fit of a least-squares line to the selected

points, based on the dp-() 0 rule, chosen from CBFV and the shifted radial ABP.

Several phase-offsets are applied; the worst (left) and the best (right) are shown in

Figure 5-3, and the one corresponding to the smallest residual error is selected as the

best phase-offset. As in the previous method, a sliding window of several consecutive

beats is employed and a sequence of phase-offsets is obtained.

Based on the above methods, we implemented a routine that constructs a set of

offset candidates, and ICP estimation results are obtained for each of the candidate

offsets. All the candidate results may be displayed, or the algorithm may choose from

among them according to some criterion (for instance, a minimal dispersion of ICP

estimates, or to keep the estimates within a physiologic range). When all candidate
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Figure 5-3: A method for the phase-offset estimation: various candidate phase-offsets
are applied until a linear model well approximates the relation between CBFV and
the shifted ABP (at the selected low-" points in a cardiac cycle). The left paneldt pit
shows the case of an offset for which a linear model has a large residual error, while
the right panel shows the case of an offset for which a line is a good fit to the data.

ICP estimates appear plausible, we compute their arithmetic average and report a

single estimate.

5.4 Summary of Estimation Algorithm

Summarizing all the processing steps, Figure 5-4 provides a flow chart of the overall

estimation set up. The algorithm processes clinical measurements of ABP and CBFV

and provides beat-by-beat estimates of R, C, ICP, and thus CPP for the entire

duration of recording of the input waveforms. It is evident from the description

of the estimation algorithm that the computational and memory requirements are

modest enough to run the algorithm in real-time.

5.4.1 Utilizing input signal quality in estimation algorithm

The estimation algorithm runs a check on the input data within each estimation

window, to determine if the signal quality is good enough to carry out the estimation.

It keeps track of the signal-quality labels assigned in the pre-processing stage and

applies certain logic to form a signal quality index for the given window of data. If
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Figure 5-4: A flow-chart description of the estimation algorithm and pre-processing
steps. An optional step of low-pass filtering the input waveforms is added in cases
where significant high-frequency noise is present.

the labels indicate a signal-break or loss of data (e.g., due to mal-positioning of the

radial artery catheter or intermittent calibration) or artifact, the estimates are not

computed during that interval. Else, it performs a majority vote based on the labels

of the input data, and carries out the estimation steps if at least half the beats have

a 'good' label. A signal quality index proportional to the percentage of good beats

is formed as an output, which may be displayed as an indicator of reliability of the

estimates.
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5.5 Key Features of Estimation Approach

Certain features of our approach distinguish it from previous work on non-invasive

ICP estimation. Furthermore, some processing aspects are unique to our analysis of

the given waveforms. We summarize them below.

* Model-based estimation: Our ICP estimate is obtained by processing clin-

ical measurements using the dynamic constraints provided by a mechanistic

model of cerebrovascular physiology. The model parameters are physiologically

meaningful and the dynamic relationships are guided by the relevant physiol-

ogy, rather than extracted by any method of learning from observed data. The

model does not need any training or a priori determination of parameter values.

" Calibration-free and patient-specific: The estimation algorithm does not

need any calibration data. It produces patient-specific estimates from the ABP

and CBFV measurements. Furthermore, the algorithm does not perform any

learning within the patient record, beyond its own estimation window (usually

10-60 beats).

" Immunity against discrepancies in TCD measurements: Our approach

utilizes TCD-based measurements of CBFV as an input signal for computing the

ICP estimate. The TCD technology has faced criticism that its measurements

do not accurately represent CBF in the insonated artery. First, TCD measures

flow velocity. Because the cross-sectional area of the MCA is not known, con-

version from velocity to flow is not determined. Secondly, the measurements of

velocity are scaled by the cosine of the insonation angle between the Doppler

transducer and flow velocity vector. These sources of error are surely important

if the goal is to measure CBF. However, as we showed above, our ICP estimates

are unaffected as long as the TCD measurements provide a signal proportional

to CBF. Discrepancy in translating CBFV to CBF, as well other inaccuracies

in the TCD technology that result in multiplicative factors do not affect our

ICP estimate. While the estimates of resistance and compliance are scaled re-
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ciprocally by such multiplicative factors, their dynamic variations can still be

used to form an assessment of autoregulation.

" Intrabeat analysis: An important characteristic of our approach is the use of

both intrabeat and beat-to-beat features of the measured waveforms to obtain

robust estimates of our model parameters. This approach is analogous to what

is more routinely done in the setting of cardiac output estimation, where models

such as the Windkessel are used to relate arterial pulse morphology and beat-to-

beat variations to model parameters [130]. Such an approach is rather lacking

in the literature on cerebrovascular dynamics, though our results suggest that

a payoff is eminently achievable.

" Time-synchronized processing of ABP and CBFV: We have not yet seen

any other work that performs time-synchronized analysis of ABP and CBFV

measurements. Similarly, to the best of our knowledge, extracting morpholog-

ical information from the TCD signal has not been reported before. We hope

our work prompts further development in TCD technology to provide waveforms

at higher amplitude resolution and sampling frequency to facilitate intrabeat

morphological analysis.

5.6 Concluding Remarks

In this chapter we described the processing of the time-synchronized measurements

of radial ABP and TCD-based CBFV waveforms using our reduced model, to pro-

vide beat-by-beat estimates of ICP, cerebrovascular resistance and compliance. At

the heart of the computation lies our two-step algorithm that exploits intrabeat vari-

ability in the waveforms to compute robust estimates of the model parameters. Pre-

processing of the input waveforms and phase-offset correction for the radial ABP are

also specified. We analyzed the effect of discrepancy in TCD measurements of CBF,

and concluded that the ICP estimates are independent of a constant scaling of CBF.
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Part III

Validation and Performance

Analysis
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Chapter 6

ICP Estimation Performance

We described our ICP estimation algorithm in the previous chapter. Here, we re-

port on its performance by comparing its estimates against invasively measured ICP.

Validation of our ICP estimation algorithm requires access to both the required in-

put measurements and (invasively obtained) reference ICP measurements, all in a

time-synchronized manner. It is important to point out, however, that information

from the invasive ICP measurements is not being fed into our estimation algorithm

in any manner, to tune parameters or provide calibration or improve prediction. The

parameters in our algorithm are determined directly from the ABP and CBFV mea-

surements, and are set in a patient-specific, calibration-free way. We use invasive ICP

only for validation of our method.

In this chapter we apply our method on data obtained from severe TBI patients. In

addition to plotting the time-series of estimates against the invasive measurements,

we also compute various statistical measures of estimation performance, including

root-mean-squared error and Bland-Altman analysis, to gauge agreement between

the non-invasive estimates and invasive measurements. Finally, we discuss the vari-

ous possible causes of dispersion and bias in the estimates.

In Section 6.1 we describe the patient data used for validation of our method.

Section 6.2 provides the ICP estimation results, their comparison against the mea-

sured ICP, and the associated error analysis. In Section 6.3, we discuss the extent to
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which the accuracy of our estimates falls in the clinically acceptable range, and we

explore error trends as a function of the input ABP and CBFV measurements. We

also analyze the degree of concordance between estimates from right and left-sided

TCD measurements. The last section describes the possible sources of error in the

estimates.

6.1 Validation Data

For validation of our approach, we needed to compare our non-invasive ICP esti-

mates against invasive measurements. The validation data were collected (as part

of a data collection effort spanning several years) at Addenbrooke's Hospital, Uni-

versity of Cambridge, UK, and kindly made available to us by Dr. Marek Czosnyka.

Each patient record consists of simultaneous and continuous recordings of bilateral

CBFV via TCD ultrasound, radial ABP via an intra-arterial catheter, and ICP via

an indwelling parenchymal probe. For the validation presented here, we analyzed 45

records from patients with severe TBI (mostly closed-head injuries). The recordings

were obtained over a continuous stretch of time that varied from 10 minutes to 4

hours. We used a total of about 35 hours of recorded data or more than 150,000

cardiac beats. All three signals (ABP, CBFV and invasive ICP) were recorded in a

time-synchronized manner and sampled at the same sampling frequency. However,

the sampling frequency for data from different patients varied between 20 and 70 Hz.

Other patient information, including age, gender, Glasgow Coma Scale (GCS) score,

and Glasgow Outcome Score (GOS), were also provided.

The subjects included 33 male and 12 female patients with a median age of 29

years, a median GCS score of 5 (indicating severe TBI on admission), and GOS

in the range of 1-5, with a median of 2 (indicating very poor outcome six months

after admission). Seventeen of the 45 patients died within 6 months after the initial

hospitalization. In 5 patients, injury led to severe disability, and 16 patients lived

with only moderate disability. Only 6 patients had a good outcome. The outcome

score was not available in one case.
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When running our estimation algorithm, we only used the ABP and CBFV mea-

surements, i.e., we were blinded to the invasively measured ICP. This 'ICP-blind'

analysis of the input waveforms provided our ICP estimates for all 45 patient records.

In fact, in 35 patient records, the measured ICP waveforms were revealed to us only

after the estimates were computed using the ABP and CBFV signals. In an initial

set of 10 patient records, ABP, CBFV and ICP were available simultaneously, which

allowed some initial exploration and orientation to the data. However, no parameters

from this exploratory phase were carried over into our later studies. The estimation

results presented here were obtained in an 'ICP-blind' manner for the initial set of 10

records as well.

6.2 ICP Estimates and Error Statistics

We applied our estimation algorithm to the ABP and CBFV waveforms of the 45

patient records, and computed continuous (beat-by-beat) non-invasive ICP estimates

(nICP) for each case. To assess the quality of fit for each patient record, we compute

the root-mean-squared error (RMSE) as

IN
RMSE = (nICP(i) - ICP(i))2 , (6.1)

where N is the total number of estimates in the patient record.

Bland-Altman analysis is a standard approach for comparing two methods for

measuring the same quantity [131,132]. It is based on a plot of the difference of (or

error between) the measurements made by the two methods against their average. The

sample mean of the error is indicated as the bias. The limits of agreement, which

delineate a 95% confidence interval on the error, are drawn by assuming the error

to be normally distributed and are therefore at about twice the (sample) standard

deviation of error (SDE) on either side of the bias level. In addition to the conventional

Bland-Altman plot, we add a histogram of the error on the vertical axis.

It is worth noting the connection between the RMSE in (6.1) and the bias and
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SDE used in the Bland-Altman plot. Let b = Z (nICP(i) - ICP(i)) denote the

sample mean error or bias, and s2 denote the sample variance of the error around this

sample mean. Then the quantity under the square-root sign in (6.1) can be re-written

as (b2 + s2 ), so RMSE = v/b2 - s2 . The number thus serves as a useful aggregate

summary of the more detailed information contained in the Bland-Altman plot.

6.2.1 Comparison of beat-by-beat estimates

Continuous estimates of ICP allow us to compare nICP and ICP on a beat-by-beat

basis. We are particularly interested in the estimation performance when the underly-

ing ICP goes through dynamics changes. In this subsection we present a collection of

representative results, to convey a general sense of the performance of our estimation

algorithm. A fuller summary is given in the next subsection.

Figure 6-1 shows a comparison of beat-by-beat estimates in three examples. The

first row in Figure 6-1 shows a case of severe progressive intracranial hypertension

in a 30-year old male, with GCS = 3, and GOS = 5 (the patient did not survive).

The mean ICP increased from 60 mmHg to 120 mmHg over the course of an hour'.

(MAP in this patient also rose steadily from about 125 mmHg at the beginning to

145 mmHg during this interval, so the lowest CPP was still about 45 mmHg, despite

the extraordinarily high ICP.) The nICP estimates remain close to the measured ICP

and closely track the slow upward trend. The total RMSE in this patient is 6.5 mmHg.

A Bland-Altman plot and the histogram of error are also shown, and indicate a bias

of -5.7 mmHg, and an SDE of only 3 mmHg.

The second row in Figure 6-1 shows a case in which the patient's ICP displays

plateau waves a phenomenon characterized by rapid increase in ICP, generally

above 20 mmHg, followed by a relatively stable period of high ICP for at least 5

minutes, and then a spontaneous drop to a lower level [75, 133,134]. The subject is

a 17-year old female with GCS = 5, and GOS = 5. Over the duration of about 100

'Recall from Chapter 2 that normal ICP ranges between 7-15 mmHg, and that aggressive treat-
ment is indicated if ICP exceeds 20-25 mmHg.
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minutes, nICP tracks the transient ICP changes quite well. The RMSE in this record

is 8 mmHg. Bland-Altman analysis reveals a bias of 3.8 mmHg and SDE of 7 mmHg.

While significant dispersions exist in nICP, the sharp transitions in ICP are captured

exceedingly well, both in duration and amplitude.

The last row in Figure 6-1 shows a 15-minute recording of normal ICP in a 32-

year old female (GCS = 1, and GOS = 2). Our nICP estimate tracks the actual

measurement reasonably well in the normal range. The RMSE is 4.7 mmHg, bias is

4.3 mmHg, and SDE is 2 mmHg. In Figure 6-1(c), we also show two thin traces, one

below and one above the nICP. Each of these is the nICP estimate corresponding

to a candidate phase (or timing) offset between the measured radial ABP and the

required ABP at the MCA. Our phase-offset determination (see Section 5.3) in this

case identifies two candidate offsets, and the estimation algorithm computes nICP for

each of the candidates. The nICP estimate shown in the red (darker line) is actually

the point-by-point average of the two candidate estimates.

One estimate every 60 beats

Our estimates are computed for each cardiac beat, which allows us to compare nICP

and ICP for every beat. However, most clinical applications only require ICP every

few minutes or at most every few beats. Therefore, we can report an ICP estimate

after several cardiac beats or minutes by averaging our beat-by-beat estimates over

appropriate window sizes. Such averaging may also be expected promises to reduce

part of the dispersion between ICP estimates and measurements, in particular those

that stem from respiratory modulation of ICP. In the following, we perform a com-

parison of nICP and ICP by taking averages over non-overlapping 60-beat windows,

which is equivalent to averaging over slightly less than a minute in most cases.

Three examples of 60-beat averages of nICP and ICP are shown in Figure 6-2.

(We take this as an opportunity to compare nICP estimates in patients different from

those yielding the estimates presented above.) The first row in Figure 6-2 shows a

plateau wave in a 15-minute recording for a 23-year old male subject (GCS = 7, and

GOS = 5). Our nICP tracks the transients in ICP closely. The RMSE is 5.4 mmHg.
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The Bland-Altman analysis is also shown, and reveals a bias of -4.9 mmHg and SDE

of 2.2 mmHg. The second row in Figure 6-2 shows a comparison in a case of slowly

increasing ICP in a 17-year old female (GCS = 4, and GOS = 3). The recorded ICP

gradually increases from a level of about 30 mmHg to about 60 mmHg. The RMSE

is 4.9 mmHg, the bias is 2.9 mmHg, and the SDE is 4 mmHg. Another such example

is shown in the third row in Figure 6-2 for a 17-year old female with GCS = 5, and

GOS = 5 (death within six months after hospitalization).

The six patient records shown as examples in this subsection demonstrate the gen-

erally good performance of nICP in tracking trends and sharp transients in invasively

measured ICP.

Two extreme examples

In the above six examples we compared nICP and ICP in individual records and

analyzed the estimation error. These are representative cases from the available

pool of 45 patient records, and are selected to show a range of ICP variations from

the database (low or normal ICP, high ICP, abrupt variations, and both short and

long recording durations). To round out the examples, we now include beat-by-

beat comparison for two more patient records, the first being the worst of all nICP

estimates and the second a representative case of very good estimation performance.

Figure 6-3(a) shows an example (37-year old male, GCS = 12 and GOS = 1) where

nICP is quite far away from the measured ICP; the bias is about 22 mmHg. Possible

reasons for this level of discrepancy are considered in Section 6.3.3. On the other

hand, Figure 6-3(b) shows a case (16-year old male, GCS = 5 and GOS = 5) of

very good estimation performance; the bias is only about 1.5 mmHg and SDE is

about 3.5 mmHg. Visual inspection reveals that the estimation performance is quite

remarkable.

6.2.2 Comparing independent estimates across all records

In this section we choose to analyze the nICP estimation error in a manner which

makes the statistics more meaningful, though it is not how a clinical test of accuracy
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comparing nICP (red) and the invasively measured ICP (blue). The top row shows a
case of poor estimation performance. The bottom row presents a case of very good
ICP estimation, which picks up even small variations in the underlying ICP as well
as tracking the baseline ICP. The left panels show beat-by-beat ICP and nICP. The
right panels show Bland-Altman plots to assess agreement between the two methods.
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will be designed as the estimates do not have to be independent of each other. We

summarize the performance of our estimation algorithm over all the patient data

that we have analyzed by comparing only the nICP values that are independent of

each other. For that purpose, we selected nICP values that are estimated over non-

overlapping windows of 60 beats, and compared with the measured ICP averaged over

the same windows. This yields a total of 3,529 points across all 45 patient records

(out of about 150,000 total estimates). The Bland-Altman plot in Figure 6-4 shows

that all pooled independent estimates have a bias of 2 mmHg, and an SDE of about

9 mmHg. Although the computation of statistical means and variances is made easier

by our self-imposed condition of independence of nICP values, it makes the estimation

error go up, and clinical application of the method will not require the estimates to

be independent.

A further averaging of the above independent estimates over 10-point, non-overlapping

windows yields 353 independent comparisons, corresponding to an estimate over 600

40 i i i
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Figure 6-4: Bland-Altman plot
over a distinct 60-beat window.
is 9 mmHg.

of all 3,529 independently obtained estimates, each
The bias is 2 mmHg, and standard deviation of error
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Figure 6-5: Bland-Altman plot of 10-point average of independent estimates, provid-

ing one comparison for each 600-beat window, hence 353 points total. The bias is
2 mmHg, and standard deviation of error is 8.2 mmHg.

beats, or about every 6-9 minutes in most patient records. The Bland-Altman analy-

sis of the estimation error is shown in Figure 6-5. The bias remains unchanged while

the SDE reduces to 8.2 mmHg.

For yet a more condensed set of comparisons, we compute the time-averages of

measured ICP and of estimated nICP over each entire patient record, generating a

single comparison for each patient, and a total of 45 comparisons. A Bland-Altman

plot for the 45 points is shown in Figure 6-6. The overall bias is 1.8 mmHg, and

SDE is 6.8 mmllg. The absolute error is less than 6 mmllg in 33 records (73%), less

than 10 mmllg in 39 records (87%), and less than 15 mmHg in 44 subjects. As can

be seen in Figure 6-6, one patient record has a large positive error, with a bias of

about 22 mmllg. If we exclude this case and re-calculate the error statistics, the bias

reduces to 0.9 mmHg and the SDE is 6 mmHg. The outlier is the same patient record

that we discussed in Figure 6-3(a).
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Number of independent estimates with error below a certain threshold

To obtain another view of the performance of estimation, we construct a cumulative

distribution showing the fraction of the 3,529 independent estimates with absolute

error less than a specified threshold, see Figure 6-7. About 80% estimates have an

absolute error less than 10 mmHg. An estimation error of 5 to 6 mmHg (or higher)

can be critical at an ICP level around 15 mmHg, as the threshold for intracranial

hypertension is at about 20 mmHg; an ICP above 20-25 mmHg calls for an immediate

intervention. Therefore, ideally we would like to see the error to be less than 6 mmHg

for about 90% of our estimates. There are several factors that contribute to the error

in estimates, as we discuss in Section 6.3.3.

6.2.3 Correlation analysis of ICP estimation error

Having compared nICP against ICP in a number of ways, we want to assess whether

the estimates are systematically influenced by other physiological variables. Figure 6-

8 shows a scatter plot of ICP estimation error against the average of measured and

estimated ICP, for all 3,529 independent data windows used in earlier plots. A least-

squares linear fit between them is also superimposed. The slope of this line is -0.09±

0.02, and the R2-statistic is equal to 0.032. This analysis indicates that the linear

model has a large residual error and is therefore a poor fit to the data. No significant

relationship is evident between the estimation error and mean ICP.

Figure 6-9 shows a scatter plot of estimation error against the mean arterial blood

pressure (MAP) values for all independent estimates across all patient records (3,529

points). A least-squares linear fit between the estimation error and MAP is also

superimposed. The slope of this line is -0.13 ± 0.02, and the R2 -statistic is equal to

0.048, which again indicates a poor fit of the data by the line. The predictive value

of the linear model is therefore quite low. Regressions of the estimation error against

diastolic and systolic ABP provided similar results.

A further analysis is performed for ICP estimation error against mean CBFV.

Figure 6-10 shows the scatter plot and the best-fit least-squares line. The slope

of this line is -0.07 ± 0.01 mmHg/(cm/s), and the R 2-statistic is equal to 0.047,
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Figure 6-9: Exploring correlation between ICP estimation error and MAP: the scatter
plot and best linear fit of the data indicate that error has no significant relationship
with MAP.

128

I 10-
E
E

0~

o -10-

-20-

-30-
60



E10 -
E
E

C)0
a.

S-10 -

-20-

-30
0 20 40 60 80 100 120 140 160

Mean CBFV [cm/s]

Figure 6-10: Exploring correlation between ICP estimation error and mean CBFV:
the scatter plot and best linear fit of the data indicate that error has no significant
relationship with mean CBFV.

indicating - once again - a large residual error and a poor fit of the data by the

linear model. The analysis shows no significant relationship between the estimation

error and mean CBFV.

Our overall impression from this set of regression studies is that the reduced

dynamic model we have employed in our estimation algorithm has largely captured

the dependence of ICP on ABP and CBFV, at least in the sense that the estimation

residual does not display any significant correlation with ABP and CBFV.

6.2.4 Estimates using bilateral TCD

In the majority of the patient records available to us, bilateral TCD measurements

were made and CBFV waveforms for both the left and right sides were recorded. Our

ICP estimation algorithm needs and uses only one of the CBFV measurements, as ICP

is expected to be uniform across left and right hemispheres. The estimation results

presented above are obtained using CBFV data from one side only (left-side, for the

129



E
E 60-

40-

20--

0
0 100 200 300 400 500 600 700 800 900

time [sec]

Figure 6-11: Left (blue) and right (red) nLCP estimates obtained from the bilateral
TCD measurements: estimates from the two sides generally agree within a close range.
The invasively measured ICP (green) is also shown as a reference.

sake of consistency). However, to test the reliability of our ICP estimation method,

we can compute the left and right-sided ICP estimates using CBFV measured from

the corresponding side in each patient (with the same ABP measurement used in both

computations). The representative results in Figure 6-11 for a particular patient show

the left and right ICP estimates agreeing well in their time course, both tracking the

trends in the underlying ICP quite remarkably, though they differ slightly near the

end of the rise in ICP, between 300 and 400 seconds but lock with each other again.

(A similar difference is seen for about 100 seconds when the ICP starts to decline.)

This example aptly sums up our observations in the overall analysis of the patient

records, where bilateral nICP estimates could be computed. In almost all cases in

which CBFV measurements from the left and right are of comparable signal quality,

the estimates from the two sides are consistent, contain the same dynamic trends and

variations, and are within a 4-5 minHg of each other.
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6.3 Discussion

The above comparisons show that our non-invasive estimates of ICP track the inva-

sive measurements of ICP rather well. The estimates are obtained continuously, as

frequently as one for each cardiac beat of the input waveforms, which is desirable

for continuous monitoring. The bias in the estimates is very low, and the associated

standard deviation of error is around 8 mmHg. The natural question now is whether

this estimation performance is adequate for clinical application.

6.3.1 What is acceptable clinical accuracy?

The question of acceptable clinical accuracy does not have a simple answer. Even

though one might wish to have a very small tolerance limit for the error, the actual

requirement is rather loose. For example, respiration-induced rhythmic oscillations

in mean ICP are typically 3-4 mmHg. Therefore, any deviation of less than 4 mmHg

between mean ICP measurement and an estimate is not particularly significant. How-

ever, even invasively obtained ICP measurements in current practice are less accurate

than that.

As discussed earlier in Section 3.1, the ventricular catheter with external calibra-

tion is the most accurate method of ICP measurement and is considered the clinical

'gold standard', though it is not without problems [29]. Certain ventricular measure-

ment devices cannot be calibrated in vivo and may encounter drift. For example,

the Camino (Camino Laboratories, San Diego, CA) catheter-tip transducer has a re-

ported drift of 3 mmHg over a 24-hour period [79]. Parenchymal sensor probes have

been a very popular choice for ICP monitoring. The popular Codman MicroSen-

sor (Codman and Shurtleff Inc., Raynham, MA) has a maximum absolute error of

6 mmHg [80] when tested in a laboratory setting to measure the pressure of a water

column. When used for continuous measurement, this device has a maximum drift

of about 2 mmHg in 24 hours, and a total drift of 4 mmHg over several days [80].

Another device for parenchymal measurement of ICP is the Spiegelberg transducer
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(B Braun Ltd.), which has the unique capability to automatically re-calibrate itself

at regular intervals to improve its measurement accuracy. Comparison of parenchy-

mal measurement of ICP by the Spiegelberg device against ventricular measurements

showed that a 96% agreement limit of the two methods is ±10 mmHg [81].

Simultaneous measurements by two parenchymal sensors in the same brain can

show large differences. In a study by Banister et al., comparing Camino and Codman

MicroSensor devices, good agreement was observed between the two probe readings

in 11 out of 17 patients, and 99% of the 'good' measurements were within an abso-

lute difference of 10 mmHg [77]. However, in the remaining 6 patients 40% of the

comparisons had absolute errors larger than 10 mmHg, and differences in excess of

15 mmHg were also observed.

Other invasive methods such as the subdural bolt are even less accurate, particu-

larly when they are blocked, and tend to underestimate ICP [78]. ICP measurements

in the subarachnoid and epidural spaces have also been shown to contain significant

error [82,83]. Comparison of simultaneous measurements via epidural and parenchy-

mal (or ventricular) sensors reveal a difference of 10 mmHg or larger for at least 10

minutes in 33% cases [82, 83]. In an investigation focused only on hydrocephalus

cases, subarachnoid measurements of ICP were found to have misleading measure-

ments, reading below 15 mmHg when the intracranial conditions indicated a high

pressure [78]. By measuring ICP much closer to the region of CSF reabsorption

rather than generation, these devices will read lower than ventricular ICP, because of

the pressure drop associated with CSF circulation.

Noting that these invasive devices, currently widely used in practice, have appar-

ently significant measurement errors, one wonders if what is accepted should define

what is clinically acceptable. Ideally, an acceptable error should be based on physio-

logical variability of ICP and the thresholds for clinical decision-making. From this

viewpoint, an error tolerance of at most 4-5 mmHg may seem to be acceptable.
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6.3.2 Estimation accuracy

Comparison of our ICP estimates against the tolerances quoted above indicates that

our estimates appear reasonably close to the clinically accepted methods. Given that

the difference between simultaneous measurement by two parenchymal probes can

range as high as 10 mmHg (or even higher), our estimates in fact track parenchymal

ICP quite well. As noted earlier, 39 out of 45 estimates (time-averaged over each

entire patient record) have an absolute error less than 10 mmHg with our estimation

algorithm.

Although our ICP estimates have an error comparable to the deviation in parenchy-

mal probes, the 'gold standard' method is intraventricular measurement of ICP. Our

method does not yet show the accuracy range of 4-5 mmHg associated with such mea-

surement. However, the low bias and generally remarkable tracking of sharp trends in

measured ICP by our nICP estimates are quite striking. Our approach offers promise

for improvement performance if we can address the sources of error in the estimates

and reduce the standard deviation of error by a half. These sources of error are

discussed next.

6.3.3 Sources of error in our nICP estimation

Several sources contribute to performance degradation of our nICP estimates, and we

describe the major ones below.

" Discrepancy in ABP: Our algorithm uses radial measurements of ABP, in

place of cerebral ABP, applying an estimated phase-offset to synchronize the

peripheral ABP measurements with the CBFV measurements at the MCA. An

estimation error in phase offset causes significant bias in the ICP estimates.

Furthermore, differences in the morphology of the ABP waveforms measured at

a radial artery and those at the middle cerebral artery are not compensated in

our estimation algorithm and may have some effect on estimation performance.

" Issues with TCD signal: As noted earlier, our ICP estimate is indepen-

dent of any constant scaling of CBF, which justified our directly using CBFV
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Figure 6-12: Signal quality of the recorded ABP (blue) and CBFV (red) waveforms
varied across patient data. Both sampling frequency and amplitude resolution have
a significant effect on the intrabeat analysis performed in our estimation algorithm.

measurements as a proxy for CBF. However, if scaling factors, such as the

cross-sectional area of the MCA or the angle of insonation vary quickly within

the estimation window, the ICP estimate will be affected. In addition, arti-

facts in TCD measurements are reflected in the ICP estimates. For example,

dispersion and quantization errors in the TCD signal cause the intra-beat anal-

ysis to be noisy, and result in large beat-to-beat dispersion. In our analysis we

noted that the ABP waveforms had a smoother beat morphology than the TCD

waveforms, as the latter were often contaminated by abrupt variations. These

quantization effects and dispersion in the CBFV waveform are a major source

of dispersion in the ICP estimates. A comparison of relatively good-quality and

poor-quality TCD waveforms is shown in Figure 6-12. Even though the signal

quality in the left panel is less than optimal for extracting the morphological

features required by our estimation algorithm, the CBFV waveform at least has

the expected time-course. In the right panel, we see how artifact, and possibly

a shallow insonation angle, can lead to unphysiological CBFV waveforms. In

our experience, patient records with better TCD signal quality produce ICP

estimates with less fluctuations and smaller variance. The quality of the TCD

signal may be the reason why TCD measurements have received little attention
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in the literature for detailed intrabeat analysis of the kind that our algorithm

performs. Improvements in this technology can lead to better morphological

analysis and reduce the variance of ICP estimates, and we are optimistic that

such improvements will come (particularly if manufacturers recognize that there

is value in better capture of the intrabeat flow morphology).

9 Sampling frequency: Since we employ time-domain analysis of the ABP and

CBFV waveforms to extract morphological features and their variations, the

sampling rate of the waveforms has a direct impact on performance. It deter-

mines, for example, the timing jitter in the discrete-time indices for beat-onset

detection and for extracting such features as end-diastolic and systolic times.

A low sampling rate adds more noise to these marker locations and introduces

both bias and dispersion in the estimates. The estimation performance is ex-

pected to improve by increasing the sampling rate to 125-200 Hz. Again, it

is quite reasonable to expect TCD instrumentation to move in this direction.

Returning to Figure 6-12, we note that the left panel shows a comparatively

better quality signal, but even here the ABP waveform exhibits rather sharp

artifacts (piece-wise linear segments) during systole, indicating that the sam-

pling frequency is too low for the corresponding heart rate. This problem is

exacerbated in the waveforms shown in right panel. Low sampling frequency

makes the extraction of the intrabeat features challenging, and leads to higher

dispersion in the final ICP estimates. We believe that state-of-the-art data-

acquisition technology will allow us to collect data at much higher fidelity than

what was available in the data we used.

* Signal quality: Estimation performance depends directly on the input signal

quality. Signal quality depends on noise and other artifact in the waveforms.

Noise in the measurements degrades the estimation performance, e.g., it makes

the approximation of the derivative in (5.4) poorer. We applied a simple low-

pass filter only in the cases that were affected severely by high-frequency noise.

Other appropriate signal processing steps may be applied to remove noise and
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artifact from the input signal waveforms.

" Inaccuracy in beat-onsets: The beat-onset detection algorithm provides

time-instants (sample numbers) to mark the start of each cardiac beat. Any

jitter in these markers (in integer multiples of the sampling interval), directly af-

fects the subsequent selection of points by the algorithm, such as the markers of

sharp transitions in the ABP pulse, and deteriorates the results of computation.

" Lack of patient information: As discussed in Section 5.2.4, a change in

the patient posture, for example a head-up tilt, can cause discrepancy between

the radial measurement of ABP and cerebral ABP, as the ABP measurement

is usually calibrated at the level of the heart. Our analysis showed that this

discrepancy in ABP measurement appears directly in our nICP estimate. There-

fore, it is important to record any posture changes that the patient might be

going through, maybe for therapeutic reasons, and perform the correction in

measured ABP before feeding into the estimation algorithm. However, our pa-

tient data did not have this sort of information available, and it might have

contributed to significant bias in the estimates, such as the one seen in the case

of Figure 6-3(a).

* Algorithm choices: Dispersion in the estimates can be controlled by some

algorithm choices, such as the number of consecutive beats (or window length)

used to set up the least-squares formulation for a robust estimate of the param-

eters. A larger window serves to average out the noise better but can degrade

tracking of the transients. A window length of 10 to 60 beats was used in the

results reported here.

6.4 Concluding Remarks

We have presented the validation of our ICP estimates against invasively measured

ICP in 45 patient records, consisting of a total of about 35 hours of recorded data

(>150,000 cardiac beats) and more than 3,500 independent ICP estimates. Compar-
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ison of beat-by-beat estimates shows that nICP tracks the trends and even abrupt

variations in ICP remarkably well. The overall bias in independent estimates is about

2 mmHg and the standard deviation of error is 8-9 mmHg. These numbers do not

yet meet the accuracy target of about 4-5 mmHg error, but the estimates show the

promise of the approach. If the issues causing bias and dispersion in the estimates

are addressed, estimation performance is expected to improve to clinically acceptable

levels.
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Chapter 7

Exploring Model-Based

Assessment of Cerebrovascular

Autoregulation

As described in Chapter 5, our non-invasive model-based estimation algorithm pro-

vides continuous beat-by-beat estimates of cerebrovascular resistance (R) and com-

pliance (C), in addition to an estimate of ICP. Temporal profiles of resistance and

compliance estimates, possibly obtained separately for the left and right hemispheres,

along with (measured) ABP, CBFV and (estimated) ICP, reveal much about the state

of the cerebral vasculature. For one thing, we are then able to estimate CPP. Fur-

thermore, the estimate of R and CPP can be used for a non-invasive and continuous

assessment of cerebral autoregulation. Specifically, appropriate variations in R in

response to abrupt changes in CPP suggest an effective autoregulation; lack of such

adaptation suggests loss of autoregulation capacity.

An assessment of cerebrovascular autoregulation will aid in characterizing injury

and recovery processes, and guide therapeutic action, for example in head trauma,

stroke or cerebral artery disease. Furthermore, continuous and non-invasive model-

based monitoring of cerebrovascular properties can help track a patient's cerebrovas-

cular state more frequently and conveniently than current imaging-based analysis.

There is also growing evidence suggesting that pre-term neonates might lack a fully
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developed cerebral vasculature and hence the ability to regulate their cerebral blood

supply [25,135]. Tools for assessing autoregulation will potentially add to our under-

standing of such issues in this population.

Section 7.1 presents a few examples of autoregulation from the estimates of R

and CPP, using the patient data we analyzed for validating our ICP estimates in

Chapter 6. In Section 7.2, we describe our exploratory study on a data set comprising

seven stroke patients and control subjects, who underwent a protocol of controlled

interventions; we qualitatively validate our R and C estimates on the basis of their

adaptation to the interventions. We discuss these results and possibilities for future

work in Section 7.3.

7.1 Using R and CPP Estimates to Assess Au-

toregulation

Recall that the mean CBF (which we denote simply by CBF here, for notational

simplicity) is given by

CBF = , (7.1)
R

where R is the cerebrovascular resistance represented in our model. Cerebrovascular

autoregulation compensates for variations in CPP (within the operational range of

autoregulation) by altering R. Our estimation algorithm provides estimates of CPP

(= MAP - nICP) and R for each cardiac beat. Actually, as was shown in (5.16), our

estimates of R are scaled by the unknown conversion of CBFV to CBF (e.g., the cross-

sectional area of the MCA); recall from (5.16) that if CBF = aCBFV, then R = aR.

However, our interest is only in reliable variations in R, so with the assumption that

the scale factor does not change significantly over the time scales of interest, we shall

use our estimated R as a reasonable proxy for cerebrovascular resistance. Similarly,

we shall (under the same assumption) use CBFV as a proxy for CBF.

From our estimates of CPP and R, and using the measured CBFV, we can attempt

to infer the status of the cerebral autoregulation. Specifically, we can analyze the
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dynamic trends in R during endogenous or exogenously induced variations in CPP,

to determine whether cerebrovascular resistance adapts in a timely manner and in

proportion to the change in CPP, in order to keep CBFV at the desired level. Such an

analysis of the variables that are directly at the center of the physiological regulatory

mechanism provides more insight and is easier to interpret, than the rather indirect

existing approaches to assessment of autoregulation (as we pointed out in Chapter 3;

see [30,89] for a review of various existing approaches). Below, we demonstrate the

sort of analysis we envision, by showing examples of some relevant patient records

from our ICP validation data set, for which we have computed estimates of both ICP

(and thus CPP) and R.

7.1.1 Example 1

We present an example first of how the estimates of R and CPP depict the effectiveness

of cerebrovascular autoregulation. The top two panels in Figure 7-1 show MAP and

ICP measurement, and the third panel shows the corresponding CPP. Note gradual

fall in CPP (due to an underlying drop in MAP and rise in ICP) over 500 seconds

in a patient (17-year old female, GCS = 5; the patient did not survive). The fourth

panel in Figure 7-1 shows the corresponding beat-averaged CBFV (as our discussion

about autoregulation in this chapter will refer to beat-averaged quantities, including

MAP, ICP, and CPP). We observe that that while CPP drops from about 95 mmHg

to 60 mmHg, CBFV is tightly maintained around 37 cm/s. This remarkable control

suggests the compensatory action of cerebrovascular autoregulation in this duration

of more than 4 minutes. The last panel in Figure 7-1 confirms this conjecture, as

the estimated R decreases by about 40% of its initial value to mute the deficit in

CPP, which is also about 40% of its starting point. Furthermore, the adaptation

of resistance is fast enough to maintain CBFV close to its baseline throughout this

initial interval.

The CPP continues to drop below 60 mmHg, but at that point the compensatory

drop in resistance is not sufficient to maintain the CBFV, which starts to fall as well

around t = 360 seconds. Ultimately, the CPP falls to less than 40 mmHg, and CBFV
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Figure 7-1: Cerebral autoregulation in action, as revealed by concomitant variations
in CPP (actual) and R: while CPP falls by more than 30 mmHg, between 100
and 360 seconds, (mean) CBFV is remarkably maintained about its baseline (about
37 cm/s), which is explained by the accompanying drop in resistance. After CPP
falls below 60 mmHg, CBFV also starts to drop.
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Figure 7-2: Time scale of autoregulation: the estimate of R has a fast response
to variations in CPP, particularly in the most active region of autoregulation,
CPP > 60 mmHg.

also drops to about 30 cm/s; however, the latter drops only about 20% in the face

of an almost 35% drop in CPP (from 60 mmHg to below 40 mmHg), thanks to a

continuing decrease in the resistance.

Figure 7-2 shows CPP and R superimposed for the complete duration of the record

(15 minutes). During the initial period between 100 and 350 seconds, when CPP is

above 60 mmHg, the response time of the resistance is very quick, as it seems to

drop at a faster rate than CPP. This is perhaps the region where autoregulation is

most effective in this patient. The region above 60-70 mmHg is generally known as

the flat part of the autoregulation plateau. When CPP is less than 50 mmHg, the

resistance response is slightly slower, though it still tracks the CPP variations, and

the autoregulatory capacity seems to be more limited.

This example lays down the basic ideas of a novel approach to form a non-invasive

and continuous assessment of autoregulation. The next example shows similar fea-

tures, but on a much slower time scale.
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7.1.2 Example 2

Figure 7-3 shows another example involving a sudden drop in CPP, caused by a

plateau wave in ICP. CPP drops from its baseline of 70 mmHg to about 35 mmHg

and stays low for nearly 12 minutes. However, the corresponding CBFV, shown in

the second panel, returns to its baseline much before the return of CPP. The last

panel in Figure 7-3 shows the estimate of R provided by the estimation algorithm. It

can be seen that the resistance starts to decrease immediately following the decline in

CPP, and reduces to less than half of its baseline value, thus explaining the recovery

of CBFV. The resistance stays at a lower level for the duration of the plateau wave.

Finally, when CPP recovers (around t = 45 minutes) and subsequently increases above

its baseline (beyond t = 47 minutes), the resistance first returns to its initial baseline

and then increases, which brings CBFV down. This indicates an active response of

the cerebral vasculature to compensate for the changes in CPP.

The dynamic behavior of CPP, mean CBFV and R in this example presents some

issues and questions. First, cerebrovascular autoregulation is usually formulated in

terms of CPP and CBF, rather than CBFV. If the scale factor for transformation of

CBFV to CBF over the episode shown in Figure 7-3 is strongly pressure dependent,

then the dynamic change seen in R might not truly reflect the action of a regulatory

mechanism. Second, pressure autoregulation usually operates on the time scale of tens

of seconds, while here the full response of R is not attained until after 10 minutes. At

about 45 minutes, CBFV has an over-shoot type behavior, which perhaps indicates an

episode of reactive hyperemia, as the CPP returns to its baseline. One should keep in

mind, however, that the patient of Figure 7-3 is severely sick, which could conceivably

impact not only the magnitude but also the time course of autoregulatory processes.

Furthermore, the CPP falls to an extremely low level, less than 40 mmHg, where

autoregulatory capacity is minimal. Irrespective of the particular situation of this

patient, we feel that the variations of R in Figure 7-3 give credence to our argument

that our model-based approach can be used for assessment of autoregulation.
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Figure 7-3: An assessment of autoregulation can be made by combining measurements
of mean CBFV and estimated CPP and resistance. An example of a patient record
is shown.

7.1.3 Why MAP alone fails to tell the story?

Most of the current approaches to characterize cerebral autoregulation suffer from

the lack of access to ICP (due to the invasiveness of its measurement) and therefore

rely on MAP only, rather than CPP, as a measure of the driving pressure for cerebral

perfusion. Such an assessment can be misleading, as shown in Figure 7-4, in which an

increase in (measured) ICP results in a decrease of CPP, even though MAP increases

above its baseline (normal) range. If autoregulation assessment were based on MAP

alone, one would be misled into thinking that the perfusion pressure has increased.

After around the 40-minute mark, while MAP is increasing from about 80 mmHg to

over 100 mmflg, yet we see a slight decrease in mean CBFV. This would probably

suggest an increased resistance of the cerebral arteries. However, if we include ICP

into our analysis, we see a plateau rising from about 20 mmHg to above 60 mmHg

(the third panel in Figure 7-4 shows the measured ICP and our nICP estimate). Even

though MAP has risen, too, the net change in CPP (measured CPP shown in the last
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Figure 7-4: Characterization of autoregulation based on MAP alone, rather than
CPP, can lead to erroneous conclusions (see text for a detailed discussion).
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panel in Figure 7-4) is a drop of about 20 mmHg, which will lead to the opposite con-

clusion, namely that the resistance either decreased or stayed the same. Therefore,

this example shows that ignoring ICP in autoregulation assessment can be grossly

misleading.

Our model-based estimation algorithm provides continuous estimates of ICP, hence

CPP, as well as R, allowing more accurate assessment of autoregulation. Further-

more, as the model parameters are the dominant cerebrovascular properties actively

involved in the control mechanism, interpretation of autoregulation in terms of these

parameters has a physiological basis. A direct patient-specific analysis of the variables

central to autoregulation, i.e., CPP, R and CBFV, reveals the cerebrovascular state

in a more meaningful way than a correlation-based index, calibrated using empirical

calculations or observations on a set of population data, as is common to the majority

of currently proposed indices of cerebrovascular autoregulation discussed in Chapter

3. Further work is needed to develop and refine the approach outlined here, and to

generate an associated quantitative index of cerebrovascular autoregulation, which

can then be tested in laboratory and clinical settings.

7.2 Exploratory Study Involving Stroke Patients

Although no gold standard measurements are available to validate our R and C esti-

mates, we can supply some degree of qualitative validation by examining the response

of these estimates to specific interventions that alter cerebrovascular resistance and

compliance properties. We can also compare bilateral estimates of R and C in patients

who might have asymmetric vasculature properties, for example due to a unilateral

stroke or infarct in a carotid or cerebral artery. We were able to carry out such cor-

roboration of our estimates using data from stroke and control subjects, courtesy of

Dr. Vera Novak, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA. We

now describe these experiments and results.
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7.2.1 Data and interventions

The data were collected at the BIDMC's Syncope and Falls in the Elderly (SAFE)

Laboratory under the supervision of Dr. Vera Novak, and include records for stroke

and diabetes mellitus patients, as well as elderly subjects studied under controlled

interventions in a laboratory environment. The database contains over 300 continu-

ous recordings of CBFV via bilateral TCD, radial ABP, end-tidal CO 2 and 02, and

information on interventions, age, gender, race, ethnicity and anthropometric mea-

surements (height, weight), along with anatomical and perfusion MRI studies of the

brain. Although ICP was not measured for patients in this study, the other informa-

tion is available and valuable for our investigation of autoregulation.

The data were collected in a laboratory setting before and during a set of inter-

ventions performed according to a fixed protocol. The interventions included hyper-

ventilation for 200 seconds, hypoventilation for the next 200 seconds, and a head-up

tilt for 10 minutes.

7.2.2 Cerebrovascular estimates

The estimates of C, R and ICP were computed from the CBFV and ABP waveforms

using our model-based algorithm described in the previous chapters. The data from a

total of 7 subjects (3 stroke and 4 control cases). The ABP measurement is calibrated

to the level of the heart, so we applied a correction to the measured ABP to correct

(approximately) for the relative height between the heart and the MCA during head-

up tilt. Below, we describe the estimates in two representative cases: one is a stroke

patient (with a left-sided infaret) and the other a control.

The measurement data and our estimates of ICP, resistance R and compliance

C are shown in Figure 7-5, for the stroke patient in the left column and the control

subject in the right column. The top two panels contain MAP and bilateral CBFV

measurements for the left (blue) and the right (red) hemispheres. Note the asymmetry

of the left and right CBFV in the stroke patient, and remarkable symmetry in the

control subject. The lower three panels contain the estimates; each panel shows

148



ILxa 120- 1201

100 - 100 -

80 80

SO i

40  A 40

20_ 20

hyper- hypo- head-uptin hyper- hypo- head-up181

0 a n0 80 ventilation

201 20

18 16

12

0.08 Le 08-

ypr hypo-head-up tlt hyper- head-up 0il

0 01

2.5- 
2.5-

2.0-- 20

0 101 2101

Tim 

Time

Fiur8-51Cmarn MAPa andU mea CBV eaurmet alon8 wihedp 0h8 IP

reitneadcm limne esiae olsrk lfiolm)adcnroe rgtcl

umn) cases. Mean CBFV and the estimates are shown for both the left and right
hemispheres, in blue and red respectively. The dashed markers indicate the intervals
of the various interventions.

149



estimates for the left and right hemispheres. The following observations can be made

from these results.

" The responses in estimated ICP, R and C to the various interventions are consis-

tent with what one would expect to find, given the nature of the interventions.

Specifically, the changes in these quantities line up well with the markers for the

interventions. Hyperventilation is expected to cause cerebral vasoconstriction,

marked by an increase in resistance and a drop in compliance, while hypoven-

tilation has exactly the opposite response. These are indeed observed in the

fourth and fifth panels, for both subjects, for both the left- and the right-sided

estimates.

ICP is expected to respond to hyperventilation (and hypoventilation) by a small

upward (downward) shift, which is observed in the estimate for the stroke

subject. The estimate in the control case does not agree with this expecta-

tion, though its overall variation is somewhat muted (remains between 8 and

10 mmHg, and the little variations are not synchronized with interventions),

particularly when compared with the variations seen in the stroke case. Such

aspects need further exploration. During the head-up tilt, ICP is expected to

drop and to come back at the end of the tilt, and this again is observed in the

ICP estimates.

" Figure 7-5 shows that the ICP estimates obtained using left-side and right-

side data coincide to a remarkable degree, both for the control and the stroke

subjects. This alignment is despite the fact that CBFV for the stroke patient

differs by more than a scale factor between the left and right hemispheres, as

can be seen in the top panels of Figure 7-5.

" The resistance and compliance estimates in the left and right hemispheres match

closely for the control case but they are different in the stroke patient. With

the stroke patient, the resistance estimate for the left hemisphere is higher than

for the right, which would seem to be consistent with the infarct on the left

side (reduced blood flow), though of course there may also be differences in

150



the respective scale factors for transformation from CBFV to CBF. A similar

discrepancy can be noted in the compliance estimate for the stroke patient,

where the side with infarct (left) has a lower compliance estimate.

These are just preliminary results in an exploratory study of the application of

our model-based estimation to stroke patients. However, these add credibility to the

approach and demonstrate the plausibility of our R and C estimates.

7.3 Discussion

Continuous resistance and compliance estimates in parallel with estimated CPP pro-

vides a dynamic profile of the cerebral vasculature, which can be helpful in various

clinical circumstances. Firstly, the temporal variations in R and C in response to

administration of a drug or other intervention can be revealing about the status of

cerebral vasculature. Secondly, the response of these vascular properties to variations

in MAP or ICP or both can be an indicator of the effectiveness of autoregulation.

Thirdly, an asymmetry between the left and right estimates of R (and, similarly

C) can be a useful indicator of the state of recovery after a cerebrovascular disease,

infarction, or vasospasm.

A current limitation in autoregulation assessment is the lack of a gold standard

measure of autoregulation. Therefore, our estimates, or the assessment based on

them, cannot be directly validated. This is a current shortcoming of the field of

cerebrovascular autoregulation. Nevertheless, the preliminary results presented in

this chapter show the potential of forming clinically useful methods for the assessment

of autoregulation.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

We have developed a model-based approach for continuous and non-invasive estima-

tion of ICP, CPP, cerebrovascular resistance, and cerebrovascular compliance. Being

able to non-invasively track trends in these quantities opens the door for novel ap-

proaches to neuro-critical care and improved assessment of cerebral autoregulation.

Our algorithms interpret available clinical data using the constraints provided by

a reduced-order mathematical model of cerebrovascular dynamics, to relate CBFV

(in the MCA, acquired by TCD ultrasound) and ABP to ICP. The model provides a

simplified mechanistic view of the relevant cerebrovascular physiology. The estimation

algorithm then solves for the unknown model parameters using the time-synchronized

measurements of radial ABP and CBFV. To obtain robust estimates, the algorithm

extracts information from the intrabeat variations in the input waveforms, as well

as their variations across cardiac beats. Furthermore, our estimation approach is

immune to discrepancies in translating TCD measurements of CBFV to CBF, as our

ICP estimates are independent of the unknown scale factors required for translating

TCD measurements into CBF. To our knowledge, such a model-based approach to

interpreting the ABP and CBFV waveforms has been missing.

Our ICP estimates track invasive ICP measurements in 45 patient records with

promising accuracy. While there is no unanimous agreement on the desired clinical
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accuracy for a non-invasive ICP monitoring method, we believe an absolute error of

less than 4-5 mmHg can be tolerated without affecting clinical decision-making. Our

non-invasive estimates have a small bias of about 2 mmHg, and the standard deviation

of error in independent estimates is about 8 mmHg. The standard deviation of error

across all patient records is about 6 mmHg. These tolerances are currently larger than

the target range of 4-5 mmHg. However, the accuracy of our model-based method

is already comparable with some of the invasive approaches for ICP measurement 1.

Furthermore, we believe that several characteristics of the current input data cause

deterioration of estimation performance. Addressing these issues is likely to improve

the error statistics.

In summary, the distinguishing features of our estimation method are as follows:

" Our non-invasive continuous ICP estimation approach is based on a mechanistic

model of the cerebrovascular physiology and therefore provides estimates of

clinically interpretable and actionable parameters. Our three-parameter model

is a highly reduced representation of cerebrovascular physiology, which retains

the association of its parameters to the underlying physiological variables.

" The estimation algorithm combines time-synchronized measurements of ABP

and CBFV, using the model constraint to compute beat-by-beat estimates of

ICP, R and C, which can be provided in real-time.

" The estimation algorithm exploits intrabeat variations in the ABP and CBFV

waveforms, as well as their beat-to-beat variations, to compute robust estimates.

* Our ICP estimates are independent of the unknown scale factor between CBF

and the TCD measurements of CBFV.

" Our model-based estimation approach does not require any training on popu-

lation data or specification of any external parameters.

'While evaluating the estimation performance of our method, we did not exclude any outliers.
However, evaluations of different ICP measurement modalities have been more liberal in removing
such cases [77, 79,81).
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" The estimates do not depend on the history outside the estimation window of a

few consecutive cardiac beats, as the estimation algorithm does not learn within

a specific patient.

" The method does not require any calibration data.

8.2 Future Work

The following items are natural next steps of this project, and can be part of future

research and development.

" Improvements in data acquisition

As pointed out earlier, sampling frequency and quantization artifacts in the

input measurements significantly affect estimation performance. The patient

data used for validation of our ICP estimates was collected in the 1990's, with

the limitations of technology at that time. With better instrumentation, im-

provements in the data acquisition are easily possible nowadays. For example, a

sampling frequency of 200 Hz or above is quite common in biomedical equipment

and data recording. Similarly, the TCD signal quality needs to be improved to

reduce dispersion in the estimates. Data acquisition should also take into ac-

count patient posture, to account for the hydrostatic offset from the measured

ABP, which is usually calibrated at the level of the heart, to ABP at the level

of the MCA.

* Expansion to a diverse patient population

Our validation was primarily centered on of one particular pathology, namely

comatose patients with closed-head TBI. The next step should be to apply our

approach to data representing a diverse set of pathologies, including hydro-

cephalus, brain tumor, and other forms of TBI.

" Further refinement and validation of ICP estimates

With improvements in data acquisition, our method might be able to incorpo-

rate certain enhancements in its specific computational steps, benefiting from
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the higher quality of signals. For example, an increased sampling frequency

will allow the phase offset estimation to be performed at higher time resolution,

and accuracy in the offset estimate will likely reduce the bias in the estimates.

Similarly, filtering to remove noise, numerical approximation of the derivative

of ABP in the algorithm, and signal-quality assessment should be revisited, to

leverage improvements in data acquisition.

As the method is tested in a diverse patient population, we might also need

to revisit our mathematical model. Our estimation performance with a simple

model has been very encouraging. It is conceivable, however that in a particu-

lar pathophysiological scenario, a revised version of the model better captures

the corresponding cerebrovascular dynamics, and thus improves the estimation

performance.

* Prototype system development

We foresee establishing a dedicated data acquisition infrastructure at a neuro-

critical care unit of a collaborating hospital. A logical next step in support

of this effort is to build a component-based prototype system and use it for

prospective, real-time validation of our method.

* Quantifying and validating autoregulation

Our qualitative analysis of CPP and R estimates in Chapter 7 in order to assess

the status of autoregulation shows sufficient promise to warrant further explo-

ration. In a future project, our model-based estimates may be quantitatively

analyzed in order to develop an index of cerebrovascular autoregulation, and to

consider approaches to the subtle task of clinical validation. Our exploratory

study in stroke subjects also suggests the possibility of using non-invasive con-

tinuous estimates of resistance and compliance in monitoring the cerebral vas-

culature.

" Improvements in hardware and integration

Finally, the innovation laid out in this thesis provides opportunities for hardware

integration and sensor improvements. Improvements in the TCD technology are
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Figure 8-1: An example of very striking estimation performance, particularly be-
cause no invasive measurement was used to train or calibrate the estimation method.
Estimation performances like these point to the promise of our model-based patient-
specific approach.

required to provide measurements at higher amplitude resolution and sampling

frequency to facilitate intrabeat morphological analysis of its waveforms (of the

type employed by our estimation algorithm). Furthermore, the TCD sensor

technology can be enhanced, perhaps through development of self-focusing ar-

rays, to reduce the expertise required to perform the CBFV measurements at

the target cerebral artery, as well as to improve signal quality. Finally, the

Finapres-type device may be combined with TCD to reduce the footprint of the

ICP estimation hardware.

We plan to build upon this work in the near future and address some of the above

items. Our enthusiasm rests on the promise provided by the overall estimation results,

and especially results such as that shown in Figure 8-1, in which our non-invasive

ICP estimate tracks exceedingly well even the minute fluctuations in measured ICP,

without using any calibration data. The compelling motivation for our work is the

prospect of helping to reduce the morbidity and mortality associated with brain injury

and cerebrovascular disease.
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Appendix A

Cerebral Venous System and

Starling Resistor Model

Veins are thin-walled, collapsible vessels with very little capacity to withstand neg-

ative transmural pressures. The cerebral veins in the cranial space are surrounded

by CSF, and its associated fluid pressure (ICP) provides an external pressure that

exceeds the internal (luminal) venous pressure of the larger cerebral veins. These

cerebral veins therefore will be in a partially (or fully) collapsed state [13,14]. Col-

lapse of flaccid vascular structures is a common occurrence in biological fluid flow,

and underlies respiratory flow limitation or our understanding of the venous return

curve, for example. Here, we describe a very simple model, the Starling resistor, that

accounts for some of the observed characteristics of such vessels. The topic of fluid

flow through collapsible vessels is still an active area of research in computational

fluid dynamics. A review of the dynamic behavior of such vessels is well beyond the

scope of this appendix. The interested reader might consult [136] or [137] for detailed

treatments of this subject.

A.1 The Starling Resistor Model

The Starling resistor model is often used to capture the pressure-flow relationships

in vessels that can collapse. Common examples of this in biological system are blood

161



PeP
PP2

t
Figure A-1: Flow through a collapsible tube: P1 and P2 are the upstream and down-
stream pressures, respectively, and Pe is the external pressure. Flow is denoted by
Q.

flow through peripheral veins, and air flow through the respiratory system. We first

present the Starling resistor model and then elaborate on it.

Figure A-1 shows a collapsible tube with a steady flow Q through it, an inlet

pressure P 1, an outlet pressure P2, and an external pressure Pe. We assume a uniform

external pressure along the tube length. Furthermore, we assume that both ends of

the tube are connected to rigid vessels so that there is no possibility of a collapse

upstream of the inlet or downstream of the outlet.

In the Starling resistor model, three conditions are distinguished, based on the

values of the steady state pressures P1, P2 and P [11, 137].

Case I: (P1 > P 2 > Pe) In this case the tube is completely open. As long as the

tube is distended/open, flow is proportional to the pressure difference Pi - P2 . The

constant of proportionality is the inverse of the resistance of the tube, 1/R. Pressure

drops steadily along the length of the tube, from P1 to P2. At all points along the

tube, the inside pressure is greater than the external pressure and hence the tube

stays open. Flow is independent of Pe.

Case II: (P1 > P, > P2) As Pe is increased from below P2 to above P2 , the tube

starts to collapse due to the higher external pressure, with the cross sectional area

of the tube decreasing in the region where inside pressure is less than the external

pressure. This causes the flow to drop relative to the flow in Case I, because the

downstream pressure is now effectively P. The Starling resistor model in fact assumes

that flow in this region is independent of P2 hence, also known as the "vascular
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Figure A-2: Behavior of the Starling resistor model. The heavy black line corresponds
to flow in the uncollapsed state, with Q = (P1 - P2)/R). Different external pressure
conditions lead to collapse of the tube at different values of P2 , causing different net
flow in each case.

waterfall". At any given P2, the effective resistance of the tube is given by

Rcollapsed = , (A.1)
Qcollapsed

and Rcollapsed > R. Since decreasing P2 does not increase the flow, which stays at the

same Qcoiapsed, the effective resistance of the tube increases.

Case III: (Pe > Pi > P2) Finally, when the external pressure is equal to the inlet

pressure, the tube is completely collapsed and there is no flow; the tube offers infinite

resistance.

The behavior of the model is graphically shown in Figure A-2. The Starling

resistor model clearly gives a simplified view of the pressure-flow relationships in

collapsible tubes. A more realistic model that takes account of the elastic properties

of the tube, the viscosity of the fluid and the flow velocity profile (or the Reynold's

number) will have characteristics more like those shown in Figure A-3. However, the

simple view is still good enough to closely study various practical scenarios, such as

blood flow through peripheral cerebral veins that are generally in collapsed state, and

flow of air through the respiratory system.
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Figure A-3: Pressure-flow relationships for a more realistic representation of collapsi-
ble tubes than the Starling model.

A.2 Collapsibility of Cerebral Venous System

Due to ICP being above venous pressure in most situations of interest, the cerebral

veins are believed to be in a collapsed state. The invocation of a Starling resistor

model is thus quite natural, as has been used in the models of the cerebrovascular

dynamics [14,87]. Experimental studies in dogs also concluded that a Starling resistor

model is an accurate representation of the cerebral venous blood flow [138]. Depending

on the local pressure and the vessel radii, veins are either in a collapsed state or in a

distended state. We term this as 'distributed venous collapse', and it warrants a more

careful description of the flow through the venous system. Smaller cerebral veins join

in to larger cerebral veins, also called bridge veins, which then ultimately connect to

the venous sinuses. The mean luminal capillary pressure is normally about 30 mmHg,

which decreases along the flow in the venous system, reduces to less than 10 mmHg in

the large veins, and is only about 5 mmHg in the venous sinuses. At an intermediate

point on the large cerebral veins, ICP (7-15 mmHg normally; higher in intracranial

hypertension) exceeds the internal luminal pressure (around 5 mmHg) [13,14] and

causes the veins to collapse, the segment proximal to the arterial side being open,

and the distal segment being collapsed. Due to the rigidity of their walls, the venous

sinuses do not usually collapse, even though their luminal pressure is less than ICP.
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Appendix B

Validation of Estimation Algorithm

Using Simulated Data

In Chapters 4 and 5, we developed our reduced model and the algorithm to estimate its

parameters. Before applying our algorithm to the clinical data described in Chapter

6, we validated our estimation algorithm on simulated ABP, CBF and ICP waveforms.

To generate these signals, we simulated the modified Ursino-Lodi model of Chapter

4, and recorded the pressure and flow waveforms throughout the model, including

ICP and CBF. We then analyzed these waveforms in the context of our estimation

algorithm (based on our reduced model) and obtained the estimates of R, C and

ICP. Comparison of the estimates against the chosen values shows good agreement

between simulation and estimation. The results of these studies formed the basis

for an initial publication [10], and patent disclosure [139] that has now resulted in

a patent application [140]. Success in simulation studies encouraged us to test our

method on real clinical measurements, the estimation results for which were presented

in Chapter 6. In this appendix, we present the results of two simulation studies in

detail.
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B.1 Model Simulation for Data Synthesis

To generate data for our analysis purposes, we supply an experimental ABP wave-

form as input to the modified Ursino-Lodi model (see Section 4.3). The control loops

are kept operational and model parameters are set to the nominal values specified

in [9]. To represent some of the phenomena of clinical interest, such as intracranial

hypertension and plateau waves [75,133,134], we choose appropriate perturbations

on 1 (see Figure 4-7). We simulate the model and record the model output (pressure

and flow waveforms), including ICP and CBF. An example of these simulated wave-

forms was presented in Figure 4-8, and Figure 4-9. These waveforms are then used

to analyze the performance of our estimation scheme. We present two such cases and

discuss the performance of our estimation algorithms for these data sets.

B.2 Analysis of Data for Estimation Results

Example 1

In one of the simulation runs, a perturbation Ii of 1 ml/sec was applied at t = 10 sec

for a duration of 10 seconds, and then at t = 40 sec for a duration of 5 seconds.

The model was simulated for an experimental ABP waveform provided as the input.

Cycle-averaged ABP, CBF and q1 (i.e., the flow through Ra) are shown in Figure B-1.

We also record cerebrovascular resistance and arterial compliance, whose variations

represent the autoregulatory mechanism.

The dashed lines in Figure B-2 show the beat-by-beat values of compliance, re-

sistance and ICP obtained from the simulation for this particular run. ICP increases

rapidly to about 40 mmHg at t = 10 see, and to 45 mmHg at t = 40 sec due to the

perturbations in _1. Another observation to be made here is that the resistance shows

a dramatic change at about t = 160 sec. This variation corresponds to a sudden drop

in the input MAP around that time.

Taking the simulated ABP and CBF waveforms, the estimation algorithm com-

putes beat-by-beat estimates of C, R, and ICP. Figure B-2 shows that the estimates
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Figure B-1: Simulation data set 1: cycle-averaged ABP, CBF, and qi (flow through
Ra) obtained by simulating the modified Ursino-Lodi model are shown (top to bot-
tom).
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Figure B-2: Estimation performance: beat-by-beat values of C, R and ICP are shown,
where the blue (dashed) lines correspond to the simulated values in the Ursino-Lodi
model, and the estimates are shown in red (solid) lines.
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Figure B-3: Simulation data set 2: cycle-averaged ABP, CBF, and qi (flow through
Ra) generated by simulating the modified Ursino-Lodi model are shown (top to bot-
tom).

(solid lines) agree with the simulation values (dashed lines) quite closely. Note that

the simulated ICP contains significant dynamic variations throughout the simulation

period, which are tracked by the estimated ICP quite well.

Example 2

In a second simulation study, we again use an experimental ABP waveform as the

driving input for numerical simulation of the modified Ursino-Lodi model. Cycle-

averaged ABP, CBF and qi are shown in Figure B-3. A perturbation was applied to

simulate variations in ICP by injecting CSF into the cranial space at t = 10 sec at a

rate of 1.5 ml/sec for 10 seconds, and at t = 60 sec at a rate of 3 ml/sec for 5 sec-

onds. Corresponding to these time instants, the simulated ICP rises to approximately

40 mmHg, then drops below 40 mmHg and rises again to approximately 45 mmHg as

shown in the last panel in Figure B-4 by the dashed line. The simulated compliance

and resistance are shown in the first and second panel, respectively.
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Figure B-4: Estimation performance: beat-by-beat values of C, R and ICP are shown,

where the blue (dashed) lines correspond to the simulated values in the Ursino-Lodi

model, and the estimates are shown in red (solid) lines.

Taking the simulated waveforms of ABP and CBF as the available data, our

estimation algorithm produced estimates of C, R and ICP as shown in Figure B-

4. As seen in the previous example, the estimates (solid lines) generally show good

agreement with the simulated values (dashed lines) for all three parameters. However,

note that for a period of about 30 seconds around t = 80 sec, the simulated (reference)

resistance is very high and contains huge dispersion. This is caused by the mean

CBF being close to zero during this time interval (see Figure B-3). We also observe

a relatively large estimation error in R and an unusual deviation in the ICP estimate

during this period. Another episode of similar behavior, though much shorter than

the first one, can be seen at about t = 175 sec. The estimated resistance tracks this

rather abrupt variation in the simulated resistance remarkably well.

The input CBF recovers from zero after t = 250 sec, as also seen by the resistance

dropping very low. In this period of about 100 seconds, the input MAP and CBF

contains prominent dynamic variations, which induces variability in the ICP estimate.

Note that the ICP estimate also captures the sudden rises in simulated ICP, caused
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by the intended perturbation I, at t = 10 sec and t = 60 sec, respectively. Again

a higher variability in the input ABP and CBF near the end of simulation period

induces variations in our ICP estimates.

Our simulation studies show that the estimates of our reduced model agree with

the reference values specified in the simulations. In particular, the ICP estimates

track the simulated ICP closely. These results encouraged us to apply our estimation

algorithm to real clinical measurements.
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Appendix C

Other Parameter Estimation

Approaches

In Chapter 5, we described a two-step algorithm to estimate the parameters of our

reduced model. That is however only one of several possible approaches to parameter

estimation. Applying different system identification ideas, we developed at least three

other estimation strategies: single-step estimation, estimation via modulating func-

tions, and estimation from cycle-averaged ABP and CBFV measurements. In this

appendix, we first provide a brief description of these approaches, and then highlight

the key features of our two-step estimation algorithm, which make its performance

superior to the ones described here.

I. Single-Step Direct Estimation

Recall the differential equation for the reduced model, which relates the measured

variables q(t) and pa(t) to the parameters R, C, and pic:

q(t) = C dpa(t) pa(t) - Pic (C.1)
dt R

From the available continuous measurements (or their approximations) of pa(t) and

q(t), we can develop a direct estimation scheme, which solves for all three unknown

parameters in a single step. Choosing K data points over an interval possibly spanning
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several consecutive beats, we write the above constraint on the measurements in the

following linear form:

q(ti) pa(ti) pa(t1) -1 -

q(t 2 ) __ a(t 2 ) pa(t 2 ) -1 1 (C.2)

Pic

q(tK) Pa(tK) Pa(tK) -1 L_ R _

Appropriate selection of the data data points is required to capture sufficient

variability of the measured signals, so that the matrix in (C.2) has columns that

are numerically (i.e., robustly) independent. We then obtain a least-squared error

solution for the unknown parameters C, 1/R, and pic/R. The process is repeated

for the next selection of K data points, usually obtained by advancing to the next

cardiac beat.

Stability of the computed estimates strongly depends on richness of the data, as

this determines the degree of linear independence of the columns of the coefficient

matrix in (C.2)), or condition number. Furthermore, in our experiences with this ap-

proach we found the estimate of C to be highly sensitive to the variations and noise

in the measurements. This is partly related to the need in this approach to compute

derivative of ABP measurements, which is generally a source of numerical instability.

II. Modulating Function Approach to Estimation

The modulating function (or mod-function) approach to system identification is usu-

ally applied to alleviate problems due to differentiation of the measurements that may

be involved in system identification, as was the case in the above approach. Taking

the derivative of a measurement also differentiates any additive noise, amplifying the

resulting noise in parameter estimates. We explain the mod-function approach in the

context of our model parameter estimation.

A direct time-domain identification process using (C.1) involves computing dt.(t)

which amplifies noise in the measured pa(t). The mod-function approach suggests

multiplying both sides of the equation by a smooth function (which is easy to dif-
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ferentiatc), and integrating over a fixed time interval. Exploiting the principle of

integration by parts, the derivatives of the measurement signals can be replaced by

the derivative of the mod-function, thus avoiding the problem of accentuating noise

in the measurements. More detail on system identification based on the mod-function

approach can be found in [141].

A particular mod-function approach to estimate our model parameters uses a

rectangular pulse as the mod-function. Now choosing a window of appropriate size,

usually a fraction of the beat duration, and integrating (C.1) over the window yields

an equation with the three desired unknown variables,

q[n] = CAp[n] + ( R[n] pic) (C.3)
R

where q[n], p[n], and Ap[n] are defined as:

q[n] = rnq(t)dt,

Tn - Tn -1 Tn_1

p[n] = I 1 Pa(t) dt ,
Tn ~~ Tn-1 T"-1

pa(Tn) - pa(Tn_1)
Ap~n] = Tn - Tn_1

Advancing the window to the next beat-segment, we can write another similar equa-

tion. Repeating the process for several consecutive beats yields a system of linear

equations, which we solve by a least-squared error approach, as described in the

single-step estimation. The computed estimates are associated to the middle beat of

the estimation window, and the process is repeated starting over at the next cardiac

beat.

III. Estimation Using Beat-Averaged Measurements

It seems desirable to explore whether our model parameters can be reliably estimated

from only the mean ABP and mean CBFV. We accordingly developed a set-up sim-

ilar to (C.1), but specified in terms of beat-averaged pa(t) and beat-averaged q(t).
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The system of equations looks quite similar to the one obtained in Section I here.

However, since the measurements are specified as beat-by-beat averages, which vary

far less than the pulsatile waveforms, the system tends to have poorer numerical con-

ditioning. We found the estimates obtained via this scheme approach somewhat close

to the expected parameter values only when the means of the measurements showed

appreciable variations.

Summary

The two-step algorithm described in Chapter 5 provided more robust estimates than

the three approaches described in this appendix, and therefore was used to analyze

patient records. By exploiting particular intrabeat features of the time-synchronized

ABP and CBFV waveforms, the two-step algorithm represents the reduced model by

two distinct dynamic constraints, and obtains a least-squared-error solution for the

parameters involved in each constraint. Furthermore, careful selection of the data

points to be processed within each cardiac beat reduces the effects of noise in the

measurements, and minimizes the propagation of error in the estimate computed in

the first step to the next step. Attention to these specific details proved crucial to

robust estimation of our model parameters.
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Appendix D

Summary of Clinical Data and

Estimation Performance

The table below provides a record-by-record summary of the clinical data and the

estimation error in our nICP estimates in all 45 patient records that were analyzed

for validating the estimates. Clinical measurements are summarized by their time-

averages, computed over the entire record for MAP, mean CBFV, ICP, and heart rate

(HR); HR is derived from the ABP waveform, and has the units of beats per minute

(bpm). Estimation error (nICP-ICP) in each record is summarized by root-mean-

square-error (RMSE), bias, and standard deviation of error (SDE).

Patient ID MAP

(mmHg)

CBFV

(cm/s)

HR
(bpm)

ICP

(mmHg)

RMSE

(mmHg)

Bias

(mmHg)

SDE

(mmHg)
A 80.1 49.4 73 11.8 3.7 1.5 3.4
B 103.1 83.7 78 7.5 7.1 3.3 6.4
C 90.7 54.9 98 6.2 8.6 7.9 3.5
D 76.2 85.0 90 8.5 5.7 5.5 1.5
E 86.7 42.6 59 13.6 3.2 2.7 1.7
F 101.6 47.0 87 22.2 6.5 5.6 3.3
G 96.2 86.6 76 13.2 2.5 -0.5 2.5
H 87.1 133.7 81 17.4 2.6 -1.4 2.2
I 86.7 76.9 57 1.4 3.6 2.3 2.8

75.4 66.7 102 14.6 3.6 2.2 2.9
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Patient ID MAP

(mmHg)

CBFV

(cm/s)

HR
(bpm)

ICP

(mmHg)

RMSE

(mmHg)

Bias

(mmHg)

SDE

(mmHg)
K 85.4 87.5 86 9.5 6.1 3.1 5.3
L 81.5 82.3 87 9.8 4.3 3.7 2.3
M 89.4 84.2 91 11.2 3.5 -2.6 2.2
N 93.9 27.3 91 8.2 3.1 2.7 1.5
0 80.5 43.2 96 11.0 2.2 2.2 0.5
P 80.1 59.4 86 22.1 14.5 -14 3.9

Q 77.9 45.6 92 15.3 4.8 -1.9 4.5
R 84.4 81.5 92 19.7 10.3 5.4 8.8
S 89.1 50.1 96 22.9 7.9 6.8 4

T 99.2 51.0 79 25.8 5.5 1 5.5
U 85.3 40.7 70 17.4 22.4 21.9 4.8

V 93.5 59.5 73 25.2 6 -3.8 4.9
W 80.3 69.4 90 24.8 11.1 -10.2 4.5
X 79.5 73.6 94 19.6 7 5.1 4.8

Y 89.2 34.1 76 5.0 11.4 -0.2 11.5
Z 74.6 24.5 79 12.9 3.4 -1.5 3.2

AA 77.7 31.4 84 13.9 8.2 6.5 4.9
AB 94.6 29.4 80 32.8 10.3 7.4 7.4
AC 99.6 40.7 69 34.6 11.8 -11.4 2.9
AD 112.6 115.3 100 19.8 6.6 -0.9 6.6
AE 107.9 146.3 67 20.2 5.8 5.3 2.5
AF 108.1 146.7 67 20.2 4.3 3 3.2
AG 100.5 113.1 81 21.2 3 0.3 3
AH 85.3 42.8 53 10.4 6.8 5.8 3.6
Al 95.8 34.2 110 13.4 15 14.2 4.5
AJ 78.1 32.5 74 35.5 9.3 9.1 1.9
AK 130.1 75.0 121 77.2 6.1 -5.7 2.1
AL 130.8 85.6 110 71.9 7.4 -6.7 3.2
AM 78.7 58.6 89 47.6 12.6 -12.5 1.9
AN 96.0 50.7 92 57.2 9.7 -9.6 1
AO 94.4 47.7 76 27.3 12.4 10.9 6
AP 86.1 30.1 80 27.3 7.8 3.8 6.8
AQ 87.1 24.5 107 43.4 5.4 -4.9 2.2
AR 80.8 66.2 55 14.8 4.4 4.3 1.3
AS 83.3 40.5 72 39.6 4.9 2.9 4

Table D. 1: A record-by-record summary
in all 45 patient records.

of clinical data and the ICP estimation error
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Appendix E

Correlation Coefficient Fails to

Quantify Agreement

As argued in detail by Bland and Altman in their seminal papers [131,132,142], cor-

relation or regression analysis is not the appropriate way to compare the agreement

of two methods of measurement for some common underlying quantity. We use an

expression for the correlation coefficient R between the results of the two methods of

measurement to show that R can be low (near 0) even when agreement is good, and

conversely, that R can be high (near 1) even when agreement is poor 1. These con-

clusions are illustrated by testing agreement between an invasive ("gold-standard")

measurement of ICP and a non-invasive estimate of it.

Perhaps part of the tendency in the literature to measure agreement using the

correlation coefficient R (rather than a direct mean-square-error, for instance) results

from inadequate recognition that the (unfortunately named) correlation coefficient is

actually a normalized measure of covariance rather than correlation. Specifically, R is

a measure of how the deviation from the mean for one variable relates to (or helps in

linear prediction of) the deviation from the mean in the other variable. Thus R says

nothing about how close or far apart the mean values themselves are (as Example 3

below makes abundantly clear).

'Apologies for the dual use of R, which everywhere in the document denotes cerebrovascular
resistance but in this appendix stands for the correlation coefficient, following the convention used
in the statistics literature. This appendix makes no reference to cerebrovascular resistance.
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E. 1 Assessing Agreement Between Two Measure-

ment Modalities

For conceptual and notational simplicity, the analysis below is stated in terms of

random variables, with their associated means, variances, covariances and correlation

coefficients. However, all the expressions have direct counterparts in terms of sample

means, variances, covariances and correlation coefficients.

Let P be the underlying random variable of interest (for instance, true ICP in

a randomly chosen patient at a randomly selected time), and let G be the current

clinical gold-standard measurement of P (or, more generally, a measurement of P

obtained using a particular measurement modality, whose agreement with another

measurement modality is to be assessed). We assume that G and P are related

through the expression

G = P +W,

where W is a random variable denoting measurement noise. Let us assume W has

mean 0 and variance uk, while P has mean tp and variance as,. Then G has mean

PG =PP

and if we assume for simplicity that P and W are uncorrelated, then G has variance

a2 =02 +72

G Up +

(The various assumptions can be relaxed, but the issues with correlation analysis can

be illustrated even under these simplifying assumptions.) Using E[X] to denote the

expected (or mean) value of the random variable X, we can most directly assess the

agreement of G and P by the mean-square-error:

E[(G - p) 2] = E [W2] = U
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Now let F be a different measurement (or estimate) of P, obtained using a second

measurement modality. We assume the relation

F = P +V,

where V denotes the measurement (or estimation) noise associated with this modality,

with mean iv that may be nonzero (if F is a biased measurement or estimate), and

variance oa. We again assume for simplicity that the noise V is uncorrelated with

P, and also that it is uncorrelated with the noise W of the first (gold-standard)

measurement modality. Then the mean and variance of F are respectively given by

pF ~ pP + PV

and

o2 = 2 + ,

F P + ov,

while the covariance of F and G is

9F,G = p

The agreement of F with P is assessed by the mean-square-error

E[(F - P) 2] = E[V2 2 + 2

We would consider F to be a

agreement is comparable with

good measurement (or estimate) of P if this level of

that of the gold standard, i.e., if

It2 +02 ,a2
p'y + o ~v oUw.

The agreement of the two measurement modalities F and G is given by the mean-

square-error

E[(F -G0)2] = E[V 2 ]+ E[W 2] 2y - +o7 .
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If this is not much more than 2a2, i.e., twice the variance of the gold-standard

measurement, then we have an indication that the measurement F may be essentially

as good as the gold standard G.

E.2 The Inadequacy of Correlation Analysis

Now examine the correlation coefficient of F and G, defined by

PF,G- OTG -
9Fo-G (, + u )(o4 + oW)

When this is computed as a sample correlation coefficient, it is denoted by r or R.

The problems with using the correlation coefficient as a measure of agreement

become immediately evident from the above expression. Consider the following two

scenarios, both of them very likely to be encountered in practice:

(1) If oT is small compared to either oj or g (or both), then the correlation

coefficient PF,G will be small (near 0), even if F and G track P and each other

well. (For our ICP estimation example, if - over the given data window

the excursions in underlying or true ICP are small compared to the standard

deviations of either the measurement or estimation noises, then R will be small,

even if the estimate tracks the measurement well. This is illustrated in Example

1 of the next section.)

(2) At the other extreme, if o2 is large compared to both the variances o2 and

oS, then the correlation coefficient PF,G will be large (near 1), even when F

and G do not track P or each other well. (For our ICP estimation example,

if over the given data window the excursions in underlying or true ICP

are large compared to the standard deviations of both the measurement and

estimation noises, then R will be large, even when the estimate does not track

the measurement well. This is illustrated in Example 2 of the next section.)
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E.3 Examples

We now illustrate the above analysis with the help of three examples. In the first

two examples below, both taken from our nICP estimation results (with G = ICP

and F = nICP), we have estimated the required variances o', o' and o, using the

following expressions, which are easily derived:

2
op = UF,G,

o2 = U2 ~

o= 2 - UF,G

The quantities on the right are in turn estimated directly from the data for F and G,

by using the appropriate sample variances in place of the probabilistic variances.

Example 1 (Good Agreement, But Low Correlation)

To illustrate the first way in which a correlation analysis fails, we consider a pair of

nICP estimate and measured ICP in a particular patient from our set of 45 patient

records. The nICP estimate was computed over 7446 beats (total duration just above

two hours). Given F and G for this patient, we compute the following quantities

directly from the data vectors:

U12 -4.9 r 2 -99Up 1v1

16 = 4. , -. , 'FG = 3-4 p v = 0-13.-

The derived variances obtained for P, W and V are

oS =3.4 U2 = 1.5 U o 6 .

All variances are given in mmHg 2. Thus, the estimation noise has a standard de-

viation of 2.5 mmHg, compared with 1.2 mmHg in the gold-standard measurement.

Comparing the mean-square-error of the two methods also shows good agreement
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Figure E- 1: Waveform comparison
ICP (blue) for Example 1.
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of non-invasive ICP estimate (red) against invasive

between the two methods, only a difference of about 5 mmHg 2:

p+ = 6.52 , while o 2 = 1.5.

The correlation coefficient works out to be R = 0.49, which would suggest a somewhat

poor agreement between the two modalities for ICP determination. However, visual

inspection of the measured and estimated ICP in Figure E-1 shows close agreement

between the two modalities.

A Bland-Altman analysis and the difference/error histogram are shown in Fig-

ure E-2, which agree with visual inspection of the signals, and the story told by the

comparison of mean-square-error: the bias is only 0.13 mmHg and the standard de-

viation of the difference is 2.8 mmHg (i.e., UF-G, where aF-G - + aV2).

Example 2 (High Correlation, But Poor Agreement)

To illustrate the second way in which the correlation coefficient fails as a measure
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Figure E-2: A Bland-Altman plot and a histogram of error for the nICP estimate and
invasive measurement of ICP in Example 1.

of agreement between two methods, we consider a different pair of nICP estimate

and measured ICP. Given F and G for this patient record, we compute the following

quantities directly from the data vectors

2 2 FG= '
OG = 234.2 , (b = 218.3 , UFG = 204.9 , py = 12.9-

The derived variances are then

o2 = 204.9 , 02 = 29.3 u 2 = 13.4 .

Comparing the mean-square-error of the two methods shows a relatively poor agree-

ment, a difference of about 150 mmHg2:

ip2 + o = 179.8 , while o7 = 29.3.

Comparison of our nICP estimate against invasively measured ICP yields a correla-

tion coefficient R = 0.91, which seems to suggest very good agreement. Figure E-3

shows waveforms of the measured and estimated ICP. While the correlation coefficient

improved (0.91 compared with 0.49), visual inspection, the Bland-Altman analysis in
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Figure E-4: A Bland-Altman plot and a histogram of error for the nICP estimate and
invasive measurement of ICP in Example 2.
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Figure E-4, and the mean-square-error all suggest that the estimation performance is

inferior to the previous example: it has a larger bias of 12.9 mmHg, and the standard

deviation of the difference is 6.5 mmHg.

Example 3 (Two extreme scenarios)

Examples 1 and 2 used the actual measurements of ICP and our nICP estimates in

two patient records in order to show inadequacy of R to correctly evaluate the esti-

mation performance (against the "gold standard" ICP). To conclude the discussion,

we consider a final example by creating two extreme scenarios. Imagine two methods

of assessing a common quantity. The first scenario is shown in Figure E-5(a), where

the two methods agree with each other quite well, only differing due to a small fluc-

tuation around a common mean. The bias is zero, and the mean-square-error is only

1 unit-squared, which indicate a very good agreement. However, the correlation coef-

ficient R for the two time-series is 0. The second scenario is shown in Figure E-5(b).

Visually it is clear that the two methods have a large difference between them. The

bias and the mean-square-error, which are 20 units and 400 unit-squared respectively,

also point to a large disagreement between the methods. However, the correlation

coefficient R is 1. In both these scenarios, R clearly does not represent the level of

40 40
- method method 1

35-. method 2- 35-.-- method2.

30 - 30

200

015 -11r20 1 0 -5 25
C20

15- 15 -

10- 10

5 -- 5 -

0 2 4 6 8 10 0 2 4 6 8 10
time [sec] time [sec]

(a) Good agreement, but R 0. (b) Large difference, but R = 1.

Figure E-5: Two examples to show how the correlation coefficient R completely fails
to quantify agreement between two methods of assessing a common quantity.
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agreement between the two methods.

Summary

We hope that these examples have illustrated that the correlation coefficient is not

a good summary statistic/measure to quantify agreement between two time-series,

particularly when evaluating two methods to assess the same underlying variable.
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