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Abstract

Femtosecond mode-locked lasers are a unique laser technology due to their broad optical bandwidth and
potential for linking the optical and radio frequency domains when these lasers are configured as
frequency combs. Ti:Sapphire based mode-locked lasers offer considerable advantages over other laser
systems by generating both the broadest optical spectrum and highest fundamental pulse repetition rates
directly from the laser cavity. Recent advances in laser diode technology have reduced the cost of pump
lasers for Ti:Sapphire based frequency combs considerably, and the recent demonstration of direct diode
pumping of a narrowband mode-locked Ti:Sapphire laser suggests that Ti:Sapphire frequency combs may
finally be ready to make the transition from an indispensible research tool to a wider set of industrial
applications.

In this thesis, several applications and fundamental properties of Ti:Sapphire based mode-locked
lasers are investigated. To enable more widespread use of Ti:Sapphire based frequency combs, a
frequency comb based on an octave spanning 1 GHz Ti:Sapphire laser is demonstrated. The I GHz
Ti:Sapphire laser is referenced to a methane stabilized HeNe laser, resulting in a frequency comb with a
fractional frequency stability of its optical spectrum of 2x1 0-14 on a 20 second timescale.

A recently identified frequency comb application is the calibration of astronomical spectrographs
to enable detection of Earth-like planets which are orbiting Sun-like stars. In support of this application, a
second frequency comb system was constructed which ultimately was characterized by a 51 GHz pulse
repetition rate and 12 nm bandwidth centered at 410 nm. This "astro-comb" system was deployed to the
Fred Lawrence Whipple Observatory where preliminary results indicate a 40-fold increase in the
spectrograph stability due to calibration by the astro-comb.

Finally, the stability of the optical pulse train emitted from femtosecond mode-locked lasers is
expected to exhibit the lowest phase noise of any oscillator, with theoretical predictions of phase noise
levels below -190 dBc for offset frequencies exceeding 1 kHz. A comparison between the pulse trains of
two nearly identical mode-locked lasers resulted in a measured timing error of less than 13 attoseconds
measured over the entire Nyquist bandwidth.

Thesis Supervisor: Franz X. Kartner
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Background

Ti:Sapphire mode-locked lasers are a unique laser technology due to their broad bandwidth and potential

for wide comb line spacing (high repetition rate) and inherently low noise operation. Maturity of this

technology along with the falling cost of the diode-pumped solid state (DPSS) pump lasers has allowed

advancement of several applications of frequency combs which would not otherwise be practical. This

thesis will pursue compact frequency combs for use as high precision optical clocks, wavelength

calibrators for astronomical spectrographs as well as measurement of the fundamental noise limits of

these devices with respect to their use as ultra low phase noise RF oscillators. These applications benefit

from higher pulse repetition rate lasers (>1GHz) which will also be investigated.

Frequency combs based on octave spanning mode-locked lasers have revolutionized the

measurement of time and frequency over the past ten years. The unprecedented precision and accuracy of

these systems has enabled measurements of fundamental constants [1], searches for extra solar planets [2-

5] as well as enabling development of new technologies such as optical arbitrary waveform generation [6],

non-linear biomedical imaging [7,8] and ultra low phase noise master oscillators [9-12]. High repetition

rate Ti:Sapphire lasers (>1 GHz) benefit nearly all of these applications by simplifying some aspect of

each system's operation.



Increasing the pulse repetition rate of a mode-locked laser has several consequences for the

frequency comb user including lower pulse energy, higher power contained in each comb line and larger

frequency spacing between each comb line. The benefits of a high repetition rate include less damage in

biological tissue for non-linear imaging due to the generally reduced average power. Spectroscopy

benefits from the increased power in each comb line through stronger heterodyne beat signals for

referencing single frequency continuous wave (CW) lasers. Wider frequency spacing of comb lines

simplifies filtering requirements for both optical arbitrary waveform generation and astrophysical

spectrograph calibration [5]. The already low phase noise of high frequency microwave signals generated

by photo detecting a mode-locked laser's pulse train can be reduced even further by using the

fundamental repetition rate tone rather than a harmonic [9].

Building high repetition rate Ti:Sapphire lasers to enable these benefits is challenging. Integrated

techniques are not yet available for the Ti:Sapphire material or the common dispersion compensation

techniques, so the remaining option is optimizing the free space configuration. However, using this

approach it is still possible to achieve mode-locking at 10 GHz [13]. Higher repetition rates may be

possible, though new cavity geometries or integration will be necessary which will likely push up the cost

of development. While Ti:Sapphire is traditionally one of the most expensive solid state laser systems

mainly due to the cost of the pump laser, its optical performance and wavelength coverage has maintained

interest in the material. Fortunately, increasing competition in the diode-pumped solid state laser market

promises to push the cost of a 10 W pump laser down by more than a factor of three. Combined with

continued development of semiconductor laser diodes in the range of 450-550nm [14,15], Ti:Sapphire

lasers are poised to become a truly viable commercial and industrial product in addition to their role as an

indispensable research tool.

1.2 Overview of thesis

This thesis explores the construction, application and noise properties of Ti:Sapphire based frequency

combs and their underlying mode-locked lasers. The constructs used to discuss these broad topics are: the



design and construction of an octave-spanning Ti:Sapphire frequency comb; application of frequency

combs to calibration of astronomical spectrographs, specifically a visible wavelength astro-comb;

measurement of the intrinsic phase noise of optical pulse trains from Kerr lens mode-locked Ti:Sapphire

lasers; an octave spanning Ti:Sapphire laser suitable for optical parametric chirped pulse amplifier

(OPCPA) seeding; and high repetition rate Ti:Sapphire lasers with pulse repetition rates exceeding 1

GHz. Specific practical aspects to successful completion of these three experiments are discussed in

appendices at the end of the thesis.

1.2.1 Frequency comb and optical clock based on an Octave spanning 1 GHz Ti:Sapphire laser and
methane referenced HeNe laser

The growing number of applications for frequency combs can only continue if frequency comb systems

can continue to become smaller, cheaper, and easier to use. The third chapter of this thesis will describe

construction and testing of a simple Ti:Sapphire frequency comb and optical molecular clock, composed

of a commercially-available methane-stabilized helium-neon laser. The resulting stabilized optical

spectrum of the Ti:Sapphire laser could then be used as the source for an optical arbitrary waveform

generation (OAWG) system, which would have the additional capability for precision spectroscopy. The

system as constructed is demonstrated to have a fractional frequency stability of the optical spectrum of

2x10- 4 on a 20 sec time scale. RF domain measurements demonstrate a measurement limited timing jitter

of the optical pulse train from the laser of only 10 fs. The optical portion of the system fits within a 1 m3

volume, with the supporting electronics in half of a standard 19 inch rack. This result demonstrates that

broad distribution of Ti:Sapphire based frequency comb technology is limited more by enabling simple

operation of broadband Ti:Sapphire lasers rather than the complexity and size of frequency comb

systems.

1.2.2 An Octave Spanning Ti:Sapphire laser suitable for OPCPA seeding

A table-top sized source of coherent soft x-rays would enable a wide range of imaging experiments from

biology to crystallography [16,17]. One of the leading candidates for achieving this goal is high-



harmonic generation in noble gases using ultra intense light pulses. Several sources [18,19] have

predicted that using long wavelength pulses to drive such process will result in a significant decrease in

the cutoff wavelength in the resulting harmonic spectrum. A promising route towards generating short

pulses at mid-IR wavelengths is optical chirped pulse amplification (OPCPA). Rather than direct

generation and amplification of short pulses, OPCPA is a parametric process which uses lower intensity,

high average power beams to reduce non-linearity in the amplification process, allowing amplification of

broader bandwidths and ultimately shorter and more intense pulses. Seeding such systems requires a laser

that can directly generate the seed spectrum at mid-IR wavelengths through difference frequency

generation allowing passive stabilization of the fcEo frequency to zero Hertz, which is very important

since the high harmonic generation process is electric field dependent rather than intensity

dependent. The difference frequency spectrum generated by the Ti:Sapphire laser constructed for this

thesis covers nearly 900 nm centered at 2 pim, measured at the -20 dB level.

1.2.3 Frequency combs for astronomical spectrograph calibration

The search for planets in other star systems ("exoplanets") is one of the most exciting areas of research in

astronomy today. Currently more than 500 planets have been discovered, with the majority of discoveries

occurring through the use of the "radial velocity method", also known as Doppler shift

spectroscopy. This technique takes advantage of the fact that stars with planets orbit around the common

center of mass of the two objects. For an observer located in the orbital plane, examination of the stellar

spectrum will reveal periodic shifts in the stellar spectrum corresponding to the period of the planets

orbit. For astronomers interested in finding planets similar to the Earth in orbit around stars similar to the

Sun, the resulting spectral shifts are very small and occur on year long time scales. The orbital velocity

imparted on the Sun by the Earth is estimated to be 5 cm/s, corresponding to a 125 kHz frequency shift in

the stellar spectrum. Current methods for calibrating the spectrographs used for measuring stellar spectra

can only provide precisions of 2.5 MHz or 1 m/s, and this level of stability is only available on a one

month time period. Using frequency combs as calibrators for these spectrographs was suggested by



Murphy et.al. in 2007, with the initial technical complication being that the resolution of astronomical

spectrographs is not high enough to resolve the individual optical components from existing frequency

combs. Currently the best solution is to use a Fabry-Perot filter to remove all but every nth comb line; a

process which leaves an optical spectrum dubbed as an "astro-comb". A portion of the thesis has resulted

in construction of an astro-comb for the visible wavelength region as well as preliminary results from an

attempt to calibrate an astronomical spectrograph.

1.2.4 Phase noise of optical pulse trains

Low phase noise oscillators enable a wide range of applications including secure communications,

Doppler radar, high speed sampling clock for analog to digital conversion, timing synchronization for

synthetic aperture radar observations, and timing systems for next generation free electron laser

facilities. Traditionally, microwave oscillators based on large sapphire cavities have been the standard for

low phase noise signals. Phase noise levels of -175 dBc/Hz (1 kHz) offset have been reported [20], with

even lower levels predicted for next generation systems. Mode-locked lasers on the other hand,

specifically when operated as frequency combs, are generally regarded for their frequency stability. This

stability is entirely derived from the frequency reference used to construct the frequency comb and is

generally only useful at extremely small offset frequencies (<<1 Hz). As low phase noise oscillators,

especially at high offset frequencies (>10 kHz), optical pulse trains from unstabilized femtosecond mode-

locked lasers should have the lowest phase noise of any oscillator [21,22]. The challenge is to

demonstrate these predictions, since at offset frequencies of interest the predicted noise levels are more

than 40 dBc below what is possible with RF domain measurement techniques. Balanced optical cross

correlation offers the opportunity to measure the phase noise of these optical pulse trains directly in the

optical domain without first generating an RF signal by photodetection (which is a non-trivial

task [23,24]). Using the balanced optical cross correlation technique to measure the phase noise between

two 80 MHz Ti: Sapphire lasers, a measurement floor of -203 dBc/Hz is demonstrated, with an integrated

timing error between the two lasers of less than 13 as. As there is still a large portion of the phase error



spectrum consisting of pump laser relative intensity noise converted into pulse train phase noise, this

measurement result merely constitutes an upper limit to the actual pulse train phase noise.

1.2.5 High repetition rate Ti:Sapphire lasers: is there life beyond 1 GHz?

For many applications, including the calibration of astrophysical spectrographs, optical arbitrary

waveform generation, precision spectroscopy and two-photon microscopy, increasing the spacing

between the comb lines or increasing the repetition rate of the mode-locked laser simplifies the design and

operation of these systems. Currently the majority of Ti:Sapphire mode-locked lasers are limited to

repetition rates of less than 1GHz, with only a few examples operating at higher rates, with the current

limit for a laser generating an octave spanning spectrum set at 2.1 GHz [25]. The highest reported pulse

repetition rate is 10 GHz [13], though the spectrum of this laser is very far from octave spanning at only

19 nm. As part of this thesis, mode-locked operation at 10 GHz has been demonstrated in two laser

configurations, though with very limited bandwidths. Along with details of these results will be a

discussion of the current difficulties and some possible ways to increase the bandwidth of such high pulse

repetition rate lasers.



Chapter 2

Frequency combs

2.1 Introduction

The original application envisioned for frequency combs was precision spectroscopy [26]. One of the

most fundamental methods to probe the structure of matter is to shine light on a sample of material and

analyze what is transmitted and reflected. Increasing knowledge of the incident light can only increase

the amount of information to be gathered from the resulting reflection and transmission spectra. As late

as 1996 however, the best technique yet conceived to measure optical frequencies was to build frequency

chains [27]. These are devices which could phase coherently link a low frequency oscillator (100 MHz)

to a microwave transition in Cesium near 9 GHz and then proceed to up-convert this 100 MHz quartz

oscillator to as high as 400 THz. While these systems were able to achieve fractional frequency

accuracies of 10-12 at the ultimate optical frequency, the resulting signal typically could not be tuned more

than a few GHz. Performing an experiment only a few nanometers away could require a major redesign

of the chain.

Theodore Hinsch's revelation [28] was that the mode-locked laser could be used as a ruler in the

frequency domain where knowing the absolute frequency of each mode could allow a link from radio

frequencies to optical frequencies in one step. As will be described in greater detail in the next section, it

turns out that the discrete components of the mode-locked lasers optical spectrum can be described by a

very simple relation,



f+no--f (2.1)fn = fCEO fR 2

wherefR is the pulse repetition rate of the mode-locked laser,fcEo is the carrier-envelope offset frequency,

and n is a large integer. By detecting and defining bothfR andfcEo, every optical frequency in the mode-

locked laser spectrum is defined and the mode-locked laser can be referred to as a frequency comb.

While detection offR is very straightforward, determining fCEo proved much more challenging. It took

until 1997 [29,30] to simply figure out a way to detect the fcEo frequency. The ideas reported in these

publications determined that it was necessary for a laser to emit an optical spectrum of over one octave in

bandwidth to allow detection of the fCEo frequency. Another 2 years was required until in 1999 [31-33]

both Theodore Hinsch's group in Garching Germany as well as John Hall's group at JILA both

demonstrated frequency comb systems. The breakthrough was provided by the development of highly

non-linear optical fibers [34], which allowed a relatively narrowband laser output spectrum (<10 nm) to

be non-linearly broadened to more than 1000 nm, giving the bandwidth necessary to access the fCEO

frequency. Following this breakthrough, there was a barrage of experiments [35-37] aimed at determining

the exactness of Eq. (2.1), several of which were able to provide verification of the regularity of comb

line spacing to a precision of 10-17.

The following years have seen an incredible expansion of applications for frequency comb

technology. Originally envisioned for precision spectroscopy as a way to reference single frequency

lasers, the current list of applications includes: direct frequency comb spectroscopy, dual comb

spectroscopy, cavity ringdown spectroscopy, optical clocks for precision timekeeping, precision range

finding, astronomical spectrograph calibration, low phase noise microwave generation, frequency

translators for tests of fundamental physics, time and frequency transfer, attosecond physics enabled by

direct control offC'EO, and optical arbitrary waveform generation (OAWG). Because of the wide range of

applications currently supported by frequency comb technology after only ten years of life, discovery of a

suite of applications similar to that of the standard CW laser over the next 10 year is highly likely.



2.2 Femtosecond mode-locked lasers

The basic building block for a frequency comb is a mode-locked laser. In principle, any type of mode-

locked laser can be made into a frequency comb, provided fCEO frequency can be determined. As

mentioned previously, this is a non-trivial requirement which currently limits construction of frequency

combs to lasers based on generally three types of gain material: Erbium(Er) doped fiber lasers,

Ytterbium(Yb) doped fiber lasers and Ti:Sapphire free space lasers. Other materials have been

demonstrated; however the vast majority of frequency comb systems have been constructed using these

three material systems. The reason for using these particular materials are the short pulses which can be

generated directly from both Er fiber lasers and Ti:Sapphire allow detection offcEo directly (Ti:Sapphire)

or after nonlinear broadening (Er fiber). Ytterbium fiber lasers are typically much more narrowband than

either Ti:Sapphire or Er fiber lasers; however generating extremely high powers from Yb lasers is much

more straightforward, allowing Yb lasers to reach high intensity for supercontinuum generation through

high average powers rather than short pulse durations.

All three technologies, however, follow the same general rules for operation. On a round trip

basis, the laser cavity has low dispersion allowing propagation of an optical pulse with very little

temporal spreading, as well as a mechanism for forcing the laser to operate in pulsed mode rather than

continuous wave. Additional nonlinear effects can also be included to broaden the optical spectrum

beyond what the gain bandwidth of the laser would normally provide. The mathematical basis for this

process was originally described by Haus in 1991 [38], and has subsequently been used as the foundation

for essentially all work in the mode-locked laser field. This section will review the formalism outlined by

Haus and other to describe the mode-locking process to provide a basis for understanding the operation of

mode-locked lasers as frequency combs. Because the work in this thesis is based on Kerr lens mode-

locked Ti:Sapphire lasers, the following section will focus on the Kerr lens mechanism. However, many

of the concepts are general and can be applied to many other laser systems.



2.2.1 Linear pulse propagation - Dispersion

A reasonable place to start the discussion of mode-locked laser operation is with linear pulse propagation

through dispersive media. An optical pulse can be described by a carrier wave and a complex envelope

function such as

E (z, t) = 91 [A (t) exp (i (cot - koz))] (2.2)

A(t)= ( = A( )exp(iQt)dQ (2.3)

where in this description o0 is the carrier frequency of the optical spectrum, and the spectrum of the

envelope function has been shifted to zero frequency such that Q=w-wo, and |A 2 is the pulse power.

Propagation of the envelope function in space is achieved through multiplying by a complex phase factor

to account for the index of refraction of the intervening media.

A(z,t) = A A(0)exp(i(Ot -k()z)dQ (2.4)

On (Q) 2rn(Q)
k (o - co )- - A (2.5)

with k(i) known as the wave number, n(Q) as the refractive index and A as the wavelength in vacuum.

From these expressions, it is already possible to see that some sort of distortion will occur to the envelope

of the pulse during propagation through a given medium depending on the shape of the index of refraction

function, n(co).

Because n(w,), and ultimately k(w) are generally frequency dependent, it is standard practice to

approximate them as Taylor expansions around the pulse center frequency wo.

Ok 1 8 2k 1 3
k(_)=_k _)+ 2 +__C +0(w ) (2.6)
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This expansion allows an opportunity to explore the effect of each term on the pulse propagation. By

using the standard Fourier Transform relationships, k - k (we) <> -i - and C O-i, and inserting

A(z, t) as an operand, the Taylor series can be re-written as a propagation equation for the pulse envelope.
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This equation describes the evolution of a pulse under the influence of linear dispersion in isotropic

media. Examining each term on the right side of equation (2.7), and transforming back to the frequency

domain as necessary:

aA(z,CO)= - wA (z ) (2.8)
az

The first term on the right side of equation (2.7) generates a linear phase change as a function of

frequency. Using the shift theorem of Fourier transforms, Eq. (2.8) results in a shift in pulse position in

the time domain. This shift is known as the group velocity of the pulse defined as

ak
Vgo = (2.9)a CO00

The second term on the right side of equation (2.7), describes a parabolic phase modulation on the pulse

spectrum.

aA(z,c)= i k 2A (Z ) (2.10)
az 2

A chirped pulse can be interpreted as a super-position of many narrowband sections of the pulse

spectrum, each experiencing its own linear phase. In such a framework it is straightforward to understand

that various sub sections of the pulse will be travelling at different speeds in the time domain, resulting in

a net broadening of the pulse, assuming initially that the pulse phase was linear. Broadening of a pulse

due to the second order frequency dependent phase is known as group delay dispersion (GDD)

GDD = -k L (2.11)
2 am2

with L as the length of material through which the pulse has propagated.

The third term on the right hand side of equation (2.7) also generates a non-linear phase across

the pulse spectrum.
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Notice that Eq. (2.12) term is anti-symmetric in frequency, requiring that the resulting frequency chirp of

the pulse also be nonlinear. It is straightforward to understand now that any contribution to the phase of a

pulse which is not linear in frequency is considered dispersion.

Dispersion terms can be both positive or negative, though all optically transparent materials

exhibit positive dispersion(i.e. Eq. (2.11) is positive in all transparent materials) . To compensate this

normal material dispersion, several techniques have been developed, specifically techniques utilizing

prism pairs [39] and chirped mirrors [40,41]. The method for dispersion compensation most applicable

for construction of high repetition rate Ti: Sapphire mode-locked lasers is the use of chirped mirror pairs.

Chirped mirrors are dielectric Bragg reflector type mirrors where the Bragg wavelength is slowly

varied through the layer structure, typically in a monotonic fashion. The variation in Bragg wavelength

gives two results. First, extremely broad reflectivity bandwidths are possible by satisfying the Bragg

condition for many different wavelengths. Second, because the Bragg condition is varied, the penetration

depth of light into the mirror coating is a function of its frequency. By carefully engineering the rate at

which the Bragg wavelength is varied, it is possible to generate dispersion profiles which are the exact

opposites of those experienced by light travelling through different materials.

Design and construction of chirped mirrors is very challenging due mainly to the large numbers

of layers necessary (70-110) to achieve the desired reflectivity and phase response. Recently a new

technique [42] was developed to streamline the design process; however, due to the complexity of the

mirror structure, having a good starting design to optimize is still necessary. For this thesis, chirped

mirrors will be used as a tool for constructing mode-locked lasers and for pulse compression.

2.2.2 Non-Linear pulse Propagation - Self Phase Modulation

A naive solution to the problem of dispersion in a laser cavity or an optical fiber would be to suggest that

the dispersion be completely compensated by chirped mirrors, prism pairs, etc. As with all manufactured

items however, the compensation provided by all available linear methods is not exact, and cannot



completely remove the effects of dispersion. This becomes a serious problem in a laser cavity where

millions of round trips occur every second, quickly leading to significant pulse spreading for any finite

amount of residual dispersion.

Nonlinear phase modulation of the pulse spectrum can be the inverse phase correction necessary

for exact dispersion balance in a laser cavity. The phase modulation mechanism theory originates from

the optical Kerr effect [43] and is termed self phase modulation(SPM). The Kerr effect describes the

intensity dependent refractive index of a medium as,

n ~- n. (co)+ n2 (2.13)

where n2 is the intensity dependent refractive index, I is the incident light intensity, and there is no linear

dependence on the electric field of the pulse because the medium is isotropic. This causes an important

redefinition of the propagation vector, which is now written as

con c) (0
k (co, I) --- n, + -n21 (2.14)

C C C

The effect on the envelope propagation can be determined by considering the derivative of the

propagation constant k with respect to the pulse intensity

8/k w
=-n2 (2.15)

B1 c
Because the refractive index is essentially an instantaneous response to the power in the pulse, the

response of a pulse during propagation when considering self phase modulation is

A(z = -ik(coo)n 2 A (z,t)2 A (z,t) (2.16)
Bz

where |Al2 is pulse intensity, and noting that SPM is most easily represented in the time domain. As the

pulse intensity is highest at the peak of the pulse and most pulse shapes (sech, Gaussian, Lorentzian, etc.)

are well approximated by quadratics around the center of the pulse, the phase induced by SPM is also

quadratic. This quadratic phase variation in time is the same as a linear frequency variation with red

wavelengths in the front of the pulse and blue wavelengths at the trailing edge of the pulse. The quadratic

phase provided by self phase modulation has the opposite sign from the GDD accumulated by linear



propagation through the remainder of the laser cavity. Because of the difference in sign, self phase

modulation acts as a dynamic mechanism for balancing the round trip laser cavity dispersion. The amount

of frequency shift which occurs due to self phase modulation can be estimated using the following

relationships derived in part from Eq.(2.16)

0 = nk (cow ) z = nkoz

0= (no +n2 A 2 )kOz (2.17)

co =- = n~ko .1A Z
atat

Expressions (2.17) can be used to estimate the bandwidth of frequency components generated in the self

phase modulation process.

Combination of the self phase modulation term and the GDD term from Eq. (2.10) describes

propagation of a pulse through a dispersive medium in a reference frame that is moving with the pulse,

i.e. the effect of the group velocity term in Eq. (2.8) has been subtracted off since there is no contribution

to pulse width.

i '') = - DA(Z') + A (z, t) A (z, t) (2.18)

Equation (2.18) has the form of a non-linear Schr5dinger equation and can be used as a zero order

description of pulse propagation in a laser cavity. To understand pulse propagation further, a solution is

required which drives the left side of Eq. (2.18) to zero implying a pulse which propagates without

spreading. The traditional method for finding the solution to Eq. (2.18) equation is to use an inverse

scattering transform [44]. Rather than derive the solution using this method, the generally accepted

solution will be used which is a sech shaped pulse

A (z, t) = Asech (y)exp (-io) (2.19)

with the full width at half maximum of the pulse defined as r 2=1. 76r, and the nonlinear phase shift

O = ±dA2z, where a constant phase shift across the pulse is assumed for simplicity. A few parameters

which will be useful in later discussions are the pulse energy

w =J A {z,t)j2 dt = 2A r (2.20)



as well as the relationship between Eq.(2.20) and the definition of 0

4|GDD|
,r= - (2.21)

&OP

where if the pulse is to propagate without dispersing, i.e. for the left side of Eq.(2.18) to equal zero,

S=GDD .

The fact that the amount of phase modulation provided by SPM is dependent on the pulse shape

itself allows this mechanism to balance dispersion described by functions more complex than parabolas.

In the simplest case, only the GDD contribution is assumed to be compensated by SPM, but empirically

during the course of this thesis I have found that lasers which are mode-locked with the Kerr effect are

tolerant of much higher order phase errors contributed by residual high-order dispersion as long as either

the amplitude of these errors is small compared to those from the non-zero average GDD over the pulse

bandwidth, or if the fluctuations of the phase errors are very fast on the pulse bandwidth basis.

2.2.3 Self-Steepening effect

As discussed previously, the frequencies of individual components in the optical spectrum of a mode-

locked laser are exactly described by f, = fCEO + fR . The pulse repetition rate is easily controlled

through changes in the length of the optical cavity; however, control of the carrier envelope offset

frequency and an explanation of why such control is possible is more involved. An excellent description

about the dynamics offCEO control has been presented in several places [45,46], so here only a summary

of these results will be presented to allow clear understanding of the results later in the thesis.

The carrier envelope offset frequency is caused by a mismatch between the overall group and

phase velocity in the laser cavity as well as the non-linear phase shift of the pulse envelope in the

Ti:Sapphire crystal. The result is that the electric field of each pulse exiting the laser cavity has a

different phase alignment with the pulse envelope, which evolves at a rate defined asfCEO- Because of the

capability to modulate the pump power to the laser using an acousto-optic modulator, controlling thefcEO

frequency through changes in the intracavity pulse energy is of great interest. The contribution to



changes infcEo from changing group and phase velocities in linear propagation due to shifts in the center

of gravity of the optical spectrum will be ignored. Further, for the octave spanning spectra typically

necessary to simply detect the fcEo signal, the laser spectrum is completely filling both the laser and

mirror bandwidths. Since this filling prevents frequency shifts in the center of gravity of the optical

spectrum, any effect which would attempt to change the relationship between group and phase velocity by

changing the center frequency of the spectrum is significantly reduced.

In deriving the non-linear phase shift described in section 2.2.2 above, the contribution to the

pulse group velocity due to the peak power of the pulse is neglected. Using the definition of k which

includes the peak pulse intensity, Eq. (2.14), the inverse group velocity as a function of peak pulse

intensity can be defined as

ak (co,|A n 1n n2 |A2  c an2 2
= -+ + + |A (2.22)

The first two terms in Eq.(2.22) comprise the inverse group delay from Eq.(2.9). The second two terms

are the first order correction to the group delay due to the Kerr effect. Dispersion of n2 has been found

experimentally to be very small [43] so the last term in Eq.(2.22) can be ignored, leaving only the third

term as the main contributor.

Summing this result into Eq.(2.6) and using the same Fourier transform relationship which

generated Eq. (2.7) yields

aA(z,t) n2, a 2

a z A1 A(z,t) (2.23)
8z C at

which describes self steepening of an optical pulse. The self steepening term redistributes the power of

the pulse in the time domain, putting more of the pulse energy at the back of the pulse resulting in a

steepening of the trailing edge of the pulse and an overall shift in the center of gravity.



2.2.4 Gain and loss in mode-locked lasers

The previous sections dealt only with phase effects on the pulse envelope due to propagation through

dispersive media or due to a power dependent refractive index. To build a laser, gain and loss effects

must be considered to determine the output power, spectral bandwidth, dynamics of the laser power, pulse

train phase noise, etc. The simplest model for both gain and loss during propagation of a pulse through

any material can be expressed as

aA (z, co)
az) =(g -l) A (z, o) (2.24)

where g is the gain experienced by the pulse and / is the loss. Both terms (g and 1) as written above

assume no optical frequency dependence, and no saturation (reduction of either term with increasing

pulse intensity), both of which are fairly imperfect assumptions for a free space solid state laser similar to

those used in this thesis. A better approximation for the finite bandwidth of the laser gain is

A (z t) D 2 A (z,t) (2.25)

where the gain in the frequency domain is limited by approximating the Lorentzian gain line as a parabola.

In most narrowband mode-locked lasers, the gain bandwidth is the limiting element, and all other

optical components can be assumed to have constant reflectivity (loss) as a function of frequency. In

cases where the laser bandwidth exceeds a certain range, it is necessary to consider the exact reflectivity

profile of all optics as they will have a significant effect on the final pulse shape. Generally accounting for

a frequency dependent reflectivity can only be accomplished numerically; however the above expressions

are still valid for understanding the basic dynamics of mode-locked lasers.

2.2.5 Spatial Kerr effect

In section 2.2.2, a temporal intensity dependent refractive index effect was discussed which generated

new frequency components for the pulse. Here, the spatial aspect of the intensity dependent refractive

index is discussed. In Ti:Sapphire lasers, generally the effect is only important in the Ti:Sapphire crystal



itself since this is the only location where the intensity is high enough to consider an intensity dependent

refractive index. It will be found that the intensity dependent refractive index and resulting self focusing

creates the discrimination necessary for determining if the laser operates in a CW or pulsed regime as

well as the lasing bandwidth of the mode-locked laser.

In a real laser resonator, the spatial description of the laser mode in the gain material is different

in the two axes normal to the direction of propagation. For simplicity the beam can be assumed to have a

radially symmetric Gaussian beam whose transverse electric filed can be described by

U(r, z)= ' exp -ik (2.26)

where Uo is the peak electric field divided by the material impedance, r is the radial location on the face

of the beam and q(z) is a complex valued parameter describing the beam waist and wavefront radius of

curvature as

1 1 -

q(z) R (z) wirw2(z)
(2.27)

The spatial description of the resulting beam intensity can be described by

I(r,z)= 2P exp (2r) (2.28)

(2.29)

Definitions for the beam waist, w(z), and the wavefront radius, R(z), have been developed in many places

throughout the literature, and are defined as

w(z)= w0 1+ 1)2  (2.30)

R(z)= z1 + 0 (2.31)

Both wo and the location where R becomes infinite are one in the same and these three facts serve to

anchor any description of the propagation of a Gaussian beam.



Within the framework of an intensity dependent refractive index and the spatial description of a

Gaussian beam, the action of the Kerr effect on the beam becomes clear. The refractive index of a

material is modified by an incident beam of suitably high intensity as

on(r, z)= n2  2P exp(- ( ) (2.32)
rww2 (z)

Approximating the spatial intensity profile of the beam as a parabola and the beam intensity as a constant

across the length of the crystal, the distance traveled by the beam through the laser crystal of length Lc as

a function of the spatial power distribution described in Eq. (2.32) and the intensity dependent refractive

index Eq. (2.13) can be defined as

L(r)=(1-4r2 )n+n 2 P )Lc (2.33)

From this expression, the effect of the spatial Kerr effect can be compared to that of a thin lens. The

central portion of the beam is phase shifted with respect to the outer edges of the beam due to the slightly

longer optical path, causing a weak focusing of the beam as during propagation with high intensity.

By making the diameter of the laser beam used to pump the Ti:Sapphire gain material slightly

smaller than the calculated diameter of the intracavity laser mode when in CW operation, it is possible to

force the laser to operate in a mode which attempts to match the more tightly focused pump beam. With

the correct ratio of beam sizes, a slight perturbation in laser mode intensity will cause a slight increase in

the overlap of the laser mode and the pump mode in the laser crystal due to the non-linear focusing of the

Kerr effect, and more gain for the higher intensity time window. On the following round trip the intensity

will be slightly higher, allowing an even better overlap of the intensity fluctuation with the pumped

volume than on the previous pass. The reduction in mode size continues until the overlap of the pump

mode and laser mode is nearly perfect, Fig 2.1, and in fact cannot become unstable to drive the pulse

energy to a very large value since eventually additional focusing will begin to degrade the overlap of the

pump and laser mode. The dependence of laser intensity on overlap of the laser and pumped crystal

volume is therefore a self stabilizing process.
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Figure 2.1 -- Sketch of the spatial overlap between the pumped crystal volume and the crystal volume occupied by
the Ti:Sapphire laser mode. In the CW case the overlap is poor, and the mode intensity is not high enough to utilize
all of the available gain. The additional focusing provided by the high intensity pulse improves the overlap, utilizing
more of the available gain.

The evolution of the spot size change due to increasing pulse energy accumulated through

improved overlap of the pump and laser mode occurs slowly over many round trips because the pulse

energy in short pulse Ti:Sapphire lasers is not large enough to saturate the gain in a single pass. The

evolution of the overlap of the laser and pump beams is accounted for using a saturable absorber which

reduces the loss affecting the cavity as the pulse energy increases.

q(A)= 20 12 (2.34)
1+ J

where qo is the non-saturable loss of the absorber (i.e. the effect of a poor initial mode overlap) and PA is

the saturation power of the absorber. Typically the saturable absorber response is approximated as

q( A) = q0 -- |Al (2.35)

to allow analytic solutions to be drawn from the master equation of mode-locking, described in Section

2.2.6. This description is consistent with the discussion in the preceding paragraphs if instead of

increasing the gain for the pulsed case, the loss is decreased. As long as a solid understanding of the

limitations of each representation is maintained, either description is acceptable.



2.2.6 Mode-locked laser analysis

Hermann Haus is credited with generating and popularizing the following representation of steady state

pulse propagation in a mode-locked laser [38]. An extensive literature exists for both analytic and

numeric interpretations of linear and non-linear pulse propagation, only a few of which were discussed in

the preceding sections. The general results will only be stated here, leaving specific discussion for the

sections of the thesis where they are necessary.

A pulse circulating in a mode-locked laser will experience all of the effects described above on

each round trip through the laser cavity. The individual terms can be summed together as lumped effects

to achieve a master equation which describes pulse propagation on a round trip basis, while still allowing

each term to be analyzed in turn as necessary to achieve an accurate lumped element effect. The final

equation will be

S,t)=i -ik(oo)n 2 |Al2  A / 1 2 A (T,t) (2.36)

which includes terms, from left to right, for linear group delay dispersion, self phase modulation, self

amplitude modulation, gain and gain bandwidth, frequency independent linear loss and the self steepening

effect. Since each term is now essentially a lumped element to be summed each round trip, the time basis

is now T, representing the round trip time. The timescale associated with the duration of the pulse, t, is

retained to allow analysis of the effect of each component as the pulse passes through. Analytic solutions

to Eq. (2.36) are typically found by assuming steady state operation, which allows simplification to

k i C2 2 +qO 2 [f a2  12a
it ik(azn2 |A2+ |A|2+ D -i- a A ]A(T,t )=0 (2.37)

2 at2i v )n A 4 A at2 C at

In the simplest case, where only self phase modulation and dispersion play a role, the solution can be

shown as a sech shaped pulse, as discussed in the previous section. The additional terms generally lead to

slightly more complex pulse shapes, chirped pulses, etc.

The simplest solution [47] to (2.37) is a repeating pulse shape



A(T,t)= a(T =mTR, exp (i w (t- MTR+ (L- -L)2mL) -j) (2.38)

where a is a function representing the pulse shape(sech, Gaussian, etc.) with a certain round trip average

group velocity, vg, and phase velocity, vp, and soliton phase shift 0 which is defined through Eq.(2.19) as

0=-6A2 z= GDD z (2.39)
2 r

Eq. (2.38) also reports the phase shift between the carrier wave and the envelope of each pulse defined as

A#bCE 0 2L-L ) -0+mod(2;r) (2.40)

For coo=wc which is the center frequency of the resulting optical spectrum. The Fourier transformation of

Eq.(2.38) gives

M=-00 - )

A (co)= a(co -co) Zexp -i-m (2.41)
m=-x R?

1
A(o)=a(co-co) I 58(m-(m2;rfR +AcEfR))

,=cofA

The main result of Eq. (2.41) is the relationship

fm = mfR + JR R +CEO (242)

which is of great importance because Eq. (2.42) enables a direct connection between the frequency of

each mode of the optical spectrum and two RF frequencies,fR andfcEo. By definingfR andfcEo through

stabilization methods to be discussed throughout this thesis, a phase coherent link is established between

the RF domain and the optical domain in a single step.

To understand the startup dynamics of a mode-locked laser, as well as include the frequency

dependent properties of each element in the laser cavity, it is generally necessary to solve Eq.(2.36)

numerically. Solutions are generally found with a split-step Fourier method which allows the propagation

and evaluation of each term in both the time and frequency domain. Switching domains is advantageous



since some terms in Eq. (2.36) are more easily implemented in the time domain and others in the

frequency domain. By slowly stepping through a given piece of material, each of the appropriate

nonlinear terms can be applied in turn for a small propagation distance and incur very little error.

2.3 Free space versus fiber based mode-locked lasers

An equally important question when designing a frequency comb system is what type of laser material to

use. To date, Ti:Sapphire, Er fiber and Yb fiber lasers are the most commonly used laser materials for

frequency combs. There are important general trends in performance and specification between the fiber

and free space lasers which are summarized in the table below.

Unfortunately, it is not yet possible to for any one laser system to display all of the positive traits

listed below. This simply means it is necessary to choose the laser material based on the frequency comb

application and not the other way around.

Broadband Nearly alignment free

Narrow linewidth Insensitive to environment (temp., humidity)

Low timing jitter High output power (narrowband)

High repetition rate (fundamental) Excellent output spatial mode quality

Visible wavelength output Good wall plug efficiency

Low wall plug efficiency Low output power (broadband)

Large pump laser (physical) Narrowband

Large pump laser (total power required) Linewidth

Large pump laser (Cost) Timing jitter

Alignment sensitivity Low repetition rate

Output spatial mode quality Infrared output only

Sensitive to environment (temp., humidity)



2.4 Frequency comb stabilization techniques

Once the laser material has been chosen, the method of stabilizing the comb must be selected. For a

mode-locked laser to be referred to as a frequency comb, both the pulse repetition rate and the carrier

envelope offset frequency must be controlled. Similar to the previous section, there is no one best way to

achieve stabilization of the mode-locked laser's optical spectrum since the best method will depend on

both the final application for the comb as well as the mode-locked laser used. Below is a brief discussion

of several methods for stabilizing the pulse repetition rate, fR, and the carrier envelope offset frequency,

fcEO, along with some advantages and disadvantages of each method.

fR stabilization: Method 1 - The most straightforward way to stabilize the pulse repetition rate of a

mode-locked laser is to simply photodetect the pulse train, and phase lock one of the harmonics to an RF

oscillator by feeding back to the cavity length using a movable mirror (piezo mounted or moveable stage).

While this method is simple, the general problem is that it can easily add significant amounts of phase

noise to the optical spectrum [48]. Within the feedback loop bandwidth, the phase noise of the RF

oscillator will be transferred to the pulse train of the mode-locked laser. The phase noise spectrum of the

reference oscillator will be scaled up by a factor of N2 in the transition from the locking harmonic to an

optical harmonic of interest. Since the harmonic number of the optical components in the laser spectrum

is typically 10', and results in a 100 dBe increase in the phase noise spectrum of the optical line,

potentially increasing the linewidth to several MHz. Careful selection of the feedback loop bandwidth is

therefore necessary to prevent degradation of the optical spectrum.

A significant advantage to this method is that the reference oscillator used in the phase lock can

itself be referenced to a GPS receiver. Assuming thefcEo frequency has been stabilized as well, repetition

rate stabilization by direct photodetection allows all of the optical frequencies of the laser to be defined by

leveraging the existing infrastructure for defining the duration of one second and by virtue of the

frequency comb, any optical frequency. This type of referencing scheme can greatly simplify

comparisons of results from different laboratories [1,3,49] when absolute values are being measured.



fg stabilization: Method 2 - Using intrapulse difference frequency generation (DFG) it is possible to

generate an optical spectrum with nofcEo component. Stabilization of the resulting difference frequency

comb results directly in stabilization of the line to line frequency spacing of the original optical spectrum.

Typically the difference frequency generated is in the mid IR region, with the best known optical

reference in that wavelength region being methane referenced helium-neon lasers operating at 3.39

um [50-54]. This method is also advantageous because it separates detection and control loops forfR and

fCEO, reducing cross coupling between the control loops.

fCEo Stabilization: Method 1 - Currently the simplest and most sensitive way to stabilize the carrier

envelope offset frequency of a mode-locked laser is to use thef-2f method [30]. In this technique, the low

frequency portion of the laser spectrum is frequency doubled and heterodyned against the high frequency

portion.

fCEO =2f-f = 2 fCEO+ 2 fR fCEOmf (2.43)

If the optical components being mixed on the photodiode were originally separated by an octave of

frequency (m=2n), the RF signal appearing at the output of the photodiode will be the carrier envelope

offset frequency. The challenge for f-2f method is the requirement of having more than one octave of

optical bandwidth to begin with. For Ti:Sapphire lasers, this method has been successfully demonstrated

using the spectrum generated directly from the laser for repetition rates up to 2.16 GHz [25]. Ti:Sapphire

is the only material capable of generating an octave of bandwidth directly from the laser cavity, though

broadening the output spectrum of other types of lasers allows use of thef-2f method independent of laser

material. For frequency domain measurements, the broadening process imparts very little noise [55]. In

the time domain, a study is ongoing to determine the possible impact of excess phase noise due to relative

intensity noise converted into phase noise.

Another alternative method similar to the f-2f approach is 2f-3f detection [30,56]. This method

leverages the wavelength dependent power distribution of the laser output to generate spectra at 2f and 3f



to detect the carrier envelope offset frequency. As the 2f-3f process has two non-linear steps rather than

one, the amount of power necessary is not insignificant, limiting the applicability of this method.

Simultaneous fA and feo stabilization - Several methods are possible for stabilizing bothfR and fCEO

simultaneously. One is to reference the laser spectrum to an optical cavity [57,58]. By modulating the

optical spectrum of the laser using a method such as Pound-Drever-Hall [59,60], it is possible to

determine the degree of misalignment of the comb lines from the mode-locked laser with the transmission

fringes of the reference cavity. Excellent levels of stability can be achieved by locking to a reference

cavity; however the absolute frequency of the resulting stabilized spectrum will be unknown and will drift

with the reference cavity, which may not be a problem depending on the application.

Simultaneously locking the mode-locked laser spectrum to two stable single frequency lasers will

achieve essentially the same effect as locking the entire spectrum to a reference cavity. The two single

frequency lasers are both heterodyned against the mode-locked laser spectrum, with the resulting RF beat

signal phase locked to low noise RF oscillators. Similar to referencing the mode-locked laser spectrum to

an optical cavity, the frequency of the optical components are still undefined limiting the usefulness of

this approach.

The other difficulty with stabilizing a mode-locked laser's optical spectrum to a cavity is

crosstalk between control channels. The error signal from both the cavity method and the dual reference

laser method give only weak discrimination between a shift infCEo and a change infR. Fortunately, small

changes in fR can compensate forJCEO shifts, though depending on the long term dynamic range needed to

stabilize the laser, the cross coupling between these signals will likely be too large. Stabilizing to an

optical cavity does have some advantage as the transmission through the cavity can be used as a

discriminator for fCEo drift detection, but this signal is quite susceptible to corruption from relative

intensity noise [61]. No analog exists yet for the dual laser technique.



Chapter 3

Octave Spanning Ti:Sapphire Frequency
comb using a methane stabilized helium-neon
reference laser

3.1 Motivation

Over the last ten years, frequency combs have emerged as powerful tools for molecular and atomic

spectroscopy [62-64], astronomical spectrograph calibration [3,4], and as low phase noise radio frequency

master oscillators [11]. The purpose of this work is to construct a light source suitable for high precision

optical arbitrary waveform generation (OAWG), long distance reflection mode spectroscopy and

precision laser radar and imaging. Spectroscopy requires high accuracy in the frequency comb spectrum,

while fine range resolution is achieved through high stability of the optical spectrum used to generate and

time gate the distance measurement signals. The ultimate precision in frequency comb stability is

achieved using a single trapped ion as the frequency reference [64], though these are the most

sophisticated but least compact types of systems. While it has been shown possible to distribute

frequency stability to the 10-14 level over moderate distances using existing, unstabilized fiber optic

networks [65], widespread distribution is still years away. Further, stabilization to more readily available

standards such as GPS or cesium only gives high stability on timescales much longer than those presented



here. Because of this, development of compact high stability frequency references such as those based on

methane, and to a lesser extent iodine and acetylene, enables high stability frequency combs to be used

both in research and industrial settings. The frequency comb system described here uses a commercially

available methane stabilized HeNe laser [53] along with a home built 1GHz repetition rate octave

spanning Ti:Sapphire laser similar to the one constructed in [66] which in principle can be replaced by a

commercially available laser of equivalent performance, resulting in a nearly turn-key system.

This chapter will review the construction of a frequency comb system based on an octave

spanning 1 GHz Ti:Sapphire laser referenced to a helium-neon laser which has itself been referenced to

an absorption feature in methane. Several methods for designing optical cavities for mode-locked lasers

will be discussed. The operation of the frequency combs system will follow, with a description of how

the final system was characterized.

3.2 Octave-spanning 1 GHz Ti: Sapphire laser

Access to the full capabilities of the frequency comb was limited until 2000 when nearly simultaneously

Theodor Hnsch and John Hall both demonstrated full stabilization of the frequency comb. These early

systems were typically of lower repetition rate, 80-200 MHz, as lower repetition rates afford higher pulse

energies for a given average power reducing the average power threshold to achieve mode-locking and

specifically broadband mode-locking. The first octave spanning spectrum directly from a laser cavity was

demonstrated by Richard Ell [67] who was able to generate an f-2f beat signal using only the spectrum

generated by the laser. This was achieved using a 65 MIHz laser, not a repetition rate suitable for

applications requiring high power in each optical mode and large frequency separation between modes

such as optical arbitrary waveform generation (OAWG).

The following sub-sections will review the design process for broadband Kerr lens mode-locked

(KLM) Ti:Sapphire lasers, specifically optical cavity design for soft aperture KLM as well as design of

the temporal optics. A general discussion of KLM will be followed by descriptions of two methods for

analyzing cavities to optimize KLM operation: the nonlinear ABCD matrix, and a method for rescaling



the beam propagation parameter q. Note that both of these approaches are rather phenomenological, and

don't address the underlying physics directly other than to linearize the material response so it can be

accounted for in an ABCD type analysis of the beam propagation in the cavity. A more complex analysis

than those to be presented here may give more insight into the actual mechanisms bounding operation of

KLM lasers; however here the goal is to develop design parameters which allow rapid construction of

lasers for use in larger systems. Concluding this section will be a discussion of a method for selecting the

optics for control of the temporal portion of laser operation.

3.2.1 Kerr lens mode-locking

Within the realm of solid state lasers, there are three main mode-locking techniques: Saturable absorber

mode-locking, active mode-locking, and Kerr lens mode-locking [68-75]. Mode-locking using the Kerr

lens mechanism produces the shortest pulses of the three methods and therefore is the best choice for

generating a broad optical spectrum necessary for an OAWG system. A survey of the literature will turn

up, among others, at least three themes in the design of optical resonators for Kerr lens mode-locking

(KLM), the first being a non-linear ABCD matrix method [73,74], where utilizing the standard methods

for designing optical cavities [76], a power dependent focusing element is added to the normal ABCD

propagation matrices to find a self-consistent solution. Another method uses a slightly simpler approach

by using feasibility arguments to rescale the beam parameter for propagation through a power dependent

nonlinear element [69,71,72]. By isolating the nonlinear element from the remainder of the cavity it is

possible to modularize the design of the laser into linear and nonlinear elements.

As described in section 2.25 above, the refractive index of all materials shows an intensity

dependent refractive index for suitably high intensity. This dependence can be expressed as

n= no +n2I (3.1)

where no is the linear refractive index ,n2 is the nonlinear refractive index and I is the laser intensity.

Considering now the transverse spatial intensity profile of a TEMoo beam,



I(r, z) = loe'Z (3.2)

The variation in refractive index due to the incident intensity can be linearized to

n(r, z) = no + 2 2(r (2>>2 1no 2 (3.3)
TrW(z) 2 hf

2 ran
2 2n2 P (3.4)

where a is an experimental variable between 2 and 6 used to tune the value of P, to match experimental

values [70]. Inspection of equation (3.3) reveals it to be very similar to the description of the phase shift

produced by a parabolic lens [77]

k 2 _Wnl 0
-(O = -- r = _ n r 2,Z (3.5)

2f 2ch2

where & describes the thickness of the medium and -$ is the radially varying phase shift caused by the

medium.

Kerr lens mode-locking (KLM) refers to using this intensity dependent change in the refractive

index [78] and the resultant change in the beam parameter q to cause a preferential increase in gain or

decrease in loss in the cavity for high power pulses rather than lower power CW operation. In the case of

decreased loss, the usual method is to place an aperture on one of the mirrors to define the size and or

shape of laser mode which will experience reduced loss. Because of the well defined boundary between

high and low loss beam sizes this mode of operation is referred to as hard aperture KLM. In the case of

longitudinally laser pumped media, the Kerr lens action can be arranged to cause an improvement in the

overlap of the laser and pump mode to cause an increase in gain. Since the shape and size of the pump

mode does not have well defined limits, this technique is called soft aperture KLM.

Because the effectiveness of the mode-locking element is directly dependent on changes in the

shape and size of the laser beam in the cavity, the arrangement and alignment of the cavity is very

important. This sensitivity should be contrasted against the other two main mode-locking methods (active



and semiconductor saturable absorber mirror, SESAM) which are not dependent on the configuration of

the laser cavity as long as normal cavity stability requirements are met. Sensitivity to the environment is

a disadvantage since it requires a more careful and thorough optical design, as well as increased

sensitivity to environmental factors and laser construction. The advantage of KLM is the nearly

instantaneous response of the non-linear element to the increased intensity of an optical pulse. The

refractive index changes and recovers directly with the passing of the optical pulse. Much shorter optical

pulses are possible using the KLM technique than with any other mode-locking mechanism. In contrast,

saturable absorbers and active mode-locking mechanisms, both have finite response bandwidths which

limit their ability to window the pulse gain or loss in time, subsequently putting an upper limit on the

possible bandwidth and a lower limit on the duration of the resulting pulses.

3.2.2 The non-linear ABCD matrix

Traditional laser cavity design is based on the ABCD matrix method of beam propagation [76,77]. To

analyze a cavity using ABCD matrices, a reference plane is selected somewhere in the cavity and a matrix

is constructed to represent propagation through the elements in the cavity during one round trip. Using

the round trip matrix and the ABCD rules of Gaussian beam propagation it is possible to determine the

laser beam parameters (beam waist w, or wavefront radius R) anywhere in the laser cavity as well as

whether or not the laser cavity is optically stable, i.e. whether or not a ray launched within the cavity at an

angle nearly parallel to the axis of the resonator will be trapped in the resonator. Further, based on design

parameters such as desired output power, beam size, laser crystal absorption and figure of merit, as well

as available pumping power, among others, the designer can rather readily determine the best

configuration which will give the desired results for a CW laser.
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Figure 3.1--Above is the generalized representation of a resonator for KLM using solid state gain media.
M1 and M2 are plane mirrors, f are lenses, and KM is the gain media which is also used as the Kerr
medium. With appropriate scaling it is possible to replace f with curved mirrors with no loss of generality.
Figure adapted from [74].

When designing a laser for KLM operation, in addition to the previous parameters, it is also

necessary to maximize the non-linear element's ability to differentiate pulsed from CW operation. To

date, most KLM lasers have had a topology which can be represented by that in Fig.3.1. In this standard

configuration, the laser crystal serves as both a gain medium and the non-linear Kerr element. The first

KLM optimization method to be discussed, described by Magni et al in [73,74], uses a matrix in the

description of a laser cavity whose parameters depend on the laser power to describe a non-linear lens

element which will be inserted into the laser cavity (located in the center of the gain medium for

Ti:Sapphire lasers).

To describe the construction of the nonlinear matrix, a formalism similar to the result in Eq. (3.2)

will be used where the transverse spatial intensity profile in the crystal is approximated as a parabola, Eq.

(3.6) and (3.7), and is used to solve the wave equation, Eq.(3.8).

u(r, z) = (U / w) exp[-(r / w(z)) 2 - ikr2 /2R(z) + ip(z)] (3.6)

2 3U 2  2r 2

ul w (1 ) (3.7)

au n~ 2
VTu -2ik-+k2 2ul u=0 (3.8)

az no



In the above expressions, u is the complex field amplitude, and U is a constant to maintain the beam

power P through U2 =4Phrccono. The solution of the wave equation is achieved by breaking Eq.(3.8) into

four differential equations which can be solved to account for propagation through the non-linear medium.

The two differential equations related to beam propagation are solved to give

w2(z) = w2 1+ 2 + 2 1 (3.9)
Ri I-rnow, P

1 2 + Z + Z2 2 1 (3.10)
R(z) w(z), R, Ri /nowl C

Equations (3.9) and (3.10) assume a beam waist and initial wavefront radius of w, and R, respectively and

are scaled by the parameter (1-P/Pc) where P/Pc is the ratio of beam power to the critical power for self

focusing. Using the standard q parameter and the ABCD law of beam propagation, it is possible to use

equations Eq.(3.9) and (3.10) to define a ray transfer matrix for the nonlinear element in the laser crystal

as

(1 de'
Mk = FF d (3.11)

-7 /[(1 -yr)de] 1,

y = 1+- c Ad 2- (3.12)
Ade 2w 4

In the above equations, we is the spot size in the center of the crystal at the Kerr matrix (where R is not

necessarily infinite) calculated using the entire cavity round trip matrix when P=0, and wo is the size of

the beam waist outside of the Kerr matrix Mk if the beam is propagated away from the Kerr medium in

free space assuming an initial spot size of we and an associated Re. So initially a solution is found for wo

with P=0, and then this result is used in Eq.(3.9) to determine the waist at some point away from the Kerr

matrix as if it were in free space, Fig 3.2. With wo and we, y can be specified which allows the final step

to describe the M matrix.



M=( de/21M, 1 de/2J (3.13)
0 1 0 1

where the Kerr material has been placed between equal length pieces of dielectric material and now

taking the first order expansion in gamma of the above result gives

Mk ~ (3.14)
-y Ylde 1

This matrix can be understood directly as the combination of a lens and a negative distance.

Consider the matrix product below of a lens inserted between two negative distances,

D '1 0 DJ 1 ?+ -D -(D 1j' -DJ
M = 2 -1 2 = f ~ 1 (3.15)

11 D
0O I f 0 I y +-- f

f 2f

in the limit of a weak lens (large f), the form of this expression is the same as that of Eq. (3.14),

remembering that y is a dimensionless parameter. From the original discussion, the inclusion of a

focusing element is somewhat expected due to the change in wavefront curvature by the nonlinear

A, B,\ K A2 B2l
(a) C DI) K \ 02)

M1  W01  WC1  wC2  W02  M2

(b)

Figure 3.2--(a) Matrix description of the resonator: the arrows indicate the direction to which the matrices refer, K
is the thin element with the lumped Kerr nonlinearity in the middle. (b) Gaussian beam profiles outside the
nonlinear element K: wez and Wc2 are the spot sizes at the entrances of K and wo and w02 are the beam waists
assuming free space propagation. Figure adapted from [74].

element. The idea of a negative distance can be understood with a physical argument. In the case of

P=Pc, the beam travels through the medium without diffraction because Mk becomes a unity

transformation. The beam emerges on the far side as if the focus had been shifted to coincide with the far



end of the material. The fact that the focus has been shifted does not imply that the physical path length

has been drastically changed, only that the total path over which diffraction can occur has been changed.

In a simpler example, inspection of Eq.(3.10) with P=Pc causes the beam to propagate without change.

For cases when P<Pc, it is reasonable to expect proportionally less self contained propagation through the

material, or stated another way, proportionally more diffraction.

With the nonlinear matrix defined, the beam spot size can be calculated at the desired plane

within the resonator for various values of P. Note that because of the discrete nature of the approximation

of the Kerr media, it is not possible to calculate a meaningful value for the beam parameter during

propagation through the laser crystal. While the discrete nature of the non-linear lens limits the

applicability of the method with respect to analyzing the detailed changed in pump laser overlap in soft

aperture mode-locking, quantifying the changed in waist size due to intensity is still possible. This

limitation is also not a serious handicap for calculations of hard aperture mode-locking since such

apertures are usually placed well away from the nonlinear element.

To analyze the change in laser cavity spot size for very small changes in intracavity power to

determine the best laser configuration for self starting of mode-locking a new parameter will be defined.

The change in beam waist size is used as a proxy for quantifying the overlap of the pump laser beam with

the mode-locked laser beam inside the laser crystal. By defining the change in spot size of the beam

inside the laser crystal as

6 = (3.16)
w BP ,_

the designer can create plots of 5 as a function of up to two parameters, providing immediate insight into

the mode-locking process for different cavity alignments suggesting a relative level of alignment

complexity between cavity configurations. Two important observations will be made from plotting the

result of expression (3.16); first, the beam diameter can be made to change quite quickly at P/Pc=0 for

careful choice of cavity parameters. Specifically, if the slope of the change in beam waist is negative with

respect to increasing laser power the use of a hard aperture on M1 will result in reduced loss for pulsed



operation. From a practical standpoint, because of the small difference in location of the crystal x,

between the stable and possibly bi-stable configuration serves to highlight the empirically determined

sensitivity of the KLM process to the cavity alignment. From inspection of the map of relative spot size

changes for a given laser, Fig. 3.4, it is immediately apparent that the plot contains several of the

empirically understood behaviors of mode-locked lasers: The blank areas in the middle of the plot and on

the sides show the optically unstable regions of the parameter space. The areas where IS is largest are

closest to the edges of the stability region as recorded anecdotally in many experimental references. Each

stability region has its own preferred crystal location for optimal mode-locking stability. Finally, it is

possible though quite difficult to achieve mode-locking at the outer edges of both stability regions.
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Figure 3.4-Contour line plot of don mirror 1 as a function of lens separation, z, and relative crystal

position, x, as defined in Fig. 3. 1. Dashed contour lines are positive values and solid lines are negative.

The stability region with respect to lens separation is defined by the dashed vertical lines. The remaining
cavity values with respect to Fig. 3.1 are-L1=700 mm, L2=900 mm,f-50 mm, d=10 mm, nO=1.76.

Figure adapted from [74].

Of special note is what is not revealed by Fig. 3.5. Most interesting is a lack of distortion of the

stability region due to the nonlinearity. As described earlier in this chapter, it is expected that for certain

non zero values of P the stability region will be distorted. Since d is currently only defined for P=0, it



would likely be of some value to re-derive P for some non zero value and compare the two plots. Re-

evaluating the model at a pair of higher power levels would allow the designer to immediately choose the

position which would give both the best startup alignment and the best operating alignment. In [68,69],

experimental results are plotted on a figure similar to the one above as locations in the parameter space

where mode-locking was achieved and to what level of intervention was required to initiate mode-locking.

These plots indicate a good correlation between the areas of large negative 5r and areas where self starting

of mode-locking was observed, in agreement with the described basis for the definition of 1.

3.2.3 Rescaling the q-parameter

Using a discrete matrix to describe the non-linearity of a Kerr medium within a resonator as presented

above highlights the complexity of such a solution in a self similar fashion over a wide parameter space.

In contrast, the approach taken by Huang et al in [70] and in [71,72] is to simply perform a rescaling of

the q parameter upon entry and exit of the Kerr medium normalized to the critical power for self focusing

P/Pc. As both approaches are formed on a similar basis, Huang's formalism will be used to suggest the

idea for rescaling. Beginning with the parabolic index profile created by the Gaussian transverse spatial

intensity profile of the laser beam in Eq.(3.3) above and assuming a differential section of nonlinear

media as a lens between two pieces of dielectric, a matrix can be constructed as

M = A >L)= n (3.17)
C D, no 2

With the matrix above, the ABCD law of beam propagation, and defining q' as q'+dq', a differential

equation for the q parameter is obtained

dq 1 q 2no= - + 0  (3.18)
dz no hif



2= - (3.19)
q R rnow2

Since the q parameter is a complex quantity, Eq.(3.17) obscures some of the dynamics of interest,

specifically the evolution of the wavefront radius, i.e. diffraction. Performing the same calculation again

but making a few substitutions will help clarify the desired mechanism. Mapping p=1/q, p' as p'+dp'

and most importantly breaking p into its real and imaginary parts yields

dp, p2 2-r - -- )+ (3.20)
dz no no

dp$1  pi 2 Pr (3.21)
dz no

1 - (3.22)

Inspection of Eq. (3.20) and (3.21) reveals that the factor can be accounted for as a simple scale factor

of the imaginary part of the q parameter. Since pi serves to control diffraction in Eq. (3.20) it can be

immediately understood that such a rescaling would allow the beam to focus tighter than would normally

be possible. Because this is a perturbative analysis, values of P approaching P, begin to provide incorrect

results and once P>P, the approximations in the analysis are completely invalid. However, for P/Pe=0.33,

Huang et al reports good agreement with experimental z-scan measurements which directly measure the

amount of self focusing experienced by a beam in a non-linear material.

To use the mapping pj- p, a simple scaling transform, E is developed in reference [70] to be

applied at the input and output of a material. The procedure is to determine the q parameter at the input to

the nonlinear material then apply the forward transform, propagate the beam through the nonlinear

material as if it were linear, and finally apply the inverse transform to the q parameter at the output of the

material.

'= $M$q (3.23)



Re (1/ q)+ jfIm(1/q) (3.24)

q = (3.25)

The resulting q parameter can then be manipulated through the rest of the propagation in the usual manner.

The transformation in the non-linear material has been somewhat separated from the rest of the beam

propagation calculation at the cost of having to determine the q parameter at two extra points in any given

calculation. Because the nonlinearity of the medium is accounted for across the entire medium, it is

possible to use the Etransform to calculate the spot size of the laser across the entire non-linear medium

in addition to all planes of interest outside of the nonlinear medium, which allows both hard and soft

aperture mode-locking to be analyzed with this method.

In both hard aperture and soft aperture mode-locking, as mentioned above, the amount of spot

size modulation as a function of beam power determines the amount of gain or loss modulation. Huang et

al determined that the modulation experienced by a hard or soft aperture mode-locked laser would

be the same using the rescaled q-parameter, allowing further separation of the design of the laser cavity

and the nonlinear medium. Using the arrangement in Fig 3.4(a) and 3.4(b) and simple ABCD matrices it

is possible to determine the expected modulation depth as a function of the normalized beam power and

the normalized thickness of the nonlinear material, Fig 3.4(d). Of special note is Fig 3.4(d) which

illustrates saturation of the nonlinear modulation for a confocal parameter larger than half the length of

the nonlinear media, l/2 <ZR.

The reduction in self focusing can be understood intuitively since the confocal parameter is

defined as the point where the beam intensity has reduced to 1/2 of the value at the waist, meaning that

adding more material outside of the high intensity region will not add to the effect. The result of Fig

3.4(d) can be used as the
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Figure 3.5-(a) and (b) are self focusing modulator designs which are roughly equivalent to hard and soft aperture
arrangements, respectively. (c) Calculated linear transmission and (d) the nonlinear loss modulation versus

normalized aperture size. Given the same parameters, the two modulators in (a) and (b) perform identically. The
four curves in (d) are plotted with nonlinear medium thicknesses of 0.5nob, lnob, 2nob and 4nob. The normalized
beam power is set to P/Pe=0.2, which is equivalent to the following parameters: 2=800 nm, no=1.51, n2=3.45x10-

2 0 m2/W (BK7 glass), a=5.35, PCR= 2 .62 MW, and P=525 kW. Figure adapted from [70].

basis for more detailed analysis to be performed with greater confidence knowing that initial

values are close to the final solution. In contrast to the matrix method presented by Magni et al, Huang's

method does not allow direct determination of the effect of beam power on the stability regions of the

optical cavity. Stability must be determined by interpretation of the q parameter at carefully selected

planes within the cavity, which means a full beam propagation calculation including all elements.

3.2.4 Final design methodology

Of the two methods presented above, rescaling of the q parameter seems to be best suited to propagation

simulations such as a first order simulation of the spatial propagation of a pulse in the laser cavity on an



element-by-element basis. As a dual to the rescaling method, the lumped element method is not suited to

investigations of the evolution of the laser spot size during propagation through the non-linear media.

Some finite distance of propagation is necessary for the discrete nature of the lumped matrix to become

less apparent. The lumped element method though, and specifically the 8 parameter may give the best

practical information with the least complexity arguably considering the ability of waist size modulation

to predict mode overlap change. By making such an analysis near zero intracavity beam power, self

starting can also be analyzed which is arguably more important than steady state operation.

To understand the optics selection for the 1 GHz Ti:Sapphire laser, an analysis of the cavity has

been performed using the delta parameter analysis outlined above, but using a lumped element model

similar to that described in section 3.2.2. The modeled cavity is drawn in Fig. 3.6, which is an expanded

version of an x-folded ring cavity. At the time this laser was designed, the dispersion compensating

mirrors (described in the next sub-section) were only available in two different ROC values suitable for

building a 1 GHz repetition rate laser, 3 cm and 5 cm. To choose between these two options, a delta

parameter analysis was performed to determine which ROC would provide the best

(1 0 1 0 (1 0)
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Reference i * Reference

plane 1 plane 2
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Figure 3.6 - Schematic of the cavity model used to determine the delta parameter for the 1 GHz laser. The ABCD
matrices above and below are the same as those used to generate Fig. 3.7. fNL is determined using Eq. (3.4) and (3.5)
assuming a 1 mm nonlinear region in a 2.2mm long crystal. Duplicate matrices have been omitted for figure clarity.



self starting characteristics. In the delta analysis, the laser spot size was determined at the center of the

Ti:Sapphire crystal, and then propagated to either end of the crystal. This assumes that the beam

propagates linearly, at high intensity and that only the final spot size is modulated due to high intensity.

From the two plots in Fig. 3.7 which report the change in beam size in the Ti:Sapphire crystal for

average powers of 0 and 100 mW, it is clear that the 3 cm ROC mirrors experience similar fractional

waist size modulation to that of the 5 cm ROC mirrors for the same change in peak power. The resulting

larder delta parameter for the 3 cm ROC mirrors is fortunate since these mirrors will allow for a longer

linear propagation length than the 5 cm ROC mirrors would. The extra length of linear propagation

means that addition of necessary intracavity elements for dispersion compensation, as discussed in the

next sub-section, is much simpler.

One other parameter which warrants mentioning is astigmatism compensation. Beams which are

either focused through tilted plates or reflected from curved mirrors at non-normal incidence experience a

shift in both location and size of the resulting focus in one axis of the beam. This is known as

astigmatism and it can significantly reduce the peak intensity in the resulting focus. Fortunately, for the

two examples just given, the focal length shift occurs in opposite directions for the configuration which

occurs in Fig. 3.12 [79]. It is possible to derive a formula for the incident angle which achieves

astigmatism compensation [80]

0a = 7r - arcosf " 3 n -1- n -2n2 +1+ 4R2 n / L (3.26)
2 Rncn V )

where the crystal length and refractive index are Le and ne, and R is the focusing mirror ROC. Using the

incident angles determined by Eq. (3.26) the focus of the laser beam will occur at the same point in the

laser crystal, though the focus will still be slightly elliptic due to the Brewster angled interface of the

Ti:Sapphire crystal. Regardless, astigmatism compensation provided by the curved mirrors is a great

improvement, allowing greatly increased overlap with the pumped mode of the crystal.



3.2.5 Temporal optical design

In addition to the geometric optics design, mode-locked laser design requires consideration of the laser

cavity dispersion to allow buildup of short duration, wide bandwidth pulses. Traditional analysis of

soliton propagation and mode-locked laser operation assumes continuous dispersion and non-linearity,

resulting in zero net dispersion per unit length of propagation. In solid state lasers, the dispersive

elements are distributed, such that the condition of zero net dispersion is only satisfied on a round trip

basis resulting in type of operation known as dispersion managed mode-locking [81].
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Figure 3.7 -Results of a delta parameter type analysis assuming output powers of Pavg=O and Pavg= 00OmW with
100 fs pulses and 5 % output coupling. Close inspection of both plots reveals that the firactional regions of d/ROC
where the delta parameter is maximized are actually quite similar. This suggests that both ROC mirrors should give
similar mode-locking initiation characteristics. While regions of negative delta exist on both sides of the stability
region, experimentally the smaller region at small values of dIROC seems to work best.

Both types of propagation support mode-locking, but dispersion managed mode-locking puts an

additional requirement on the design that the pulse be properly compressed prior to entering the lumped

nonlinear material. This is not a stringent requirement though, and in the case of ring cavity lasers, it is

automatically satisfied by ensuring the round trip linear dispersion is slightly negative (-10-20 fs2 ).

Traditionally, methods such as prisms [39], or even grating pairs have been used to compensate for

dispersion in laser cavities. Given that the cavity of a 1 GI-z mode-locked laser is only 30 cm long, there

simply is not enough space to incorporate traditional dispersion compensating elements. The solution is

to use chirped mirrors.
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Figure 3.8 - Reflectivity and group delay for double-chirped dispersion compensating mirrors used in the 1 GHz
Ti:Sapphire laser. The high reflectivity band extends from 600 - 1200 nm, with a region of extremely low
reflectivity near 532 nm to allow transmission of light from the pump laser. In the lower portion of the graph is the
designed and measured group delay for each mirror as well as the average value. Figure from [82].

Dispersion compensating chirped mirrors are similar to dielectric Bragg type reflectors in that

they both use quarter-wave thickness layers of dielectric materials for generating multiple reflections to

ultimately achieve a high reflectivity. While Bragg reflectors have layers with only one (optical)

thickness through the material, the layer thickness in a dispersion compensating mirror is slowly changed

or "chirped" for each layer, resulting in a wavelength dependent penetration depth into the mirror coating,

Fig 3.8. A subtlety of the mirror design requires that the mirrors be used in pairs. The requirement that

the mirrors be used in pairs is a result of a design modification necessary for broadband operation. Most

wavelengths must penetrate into the layer stack a finite distance before being reflected, so it turns out to

be necessary [41] to use an anti reflection (AR) coating on the front surface of the chirped layer stack.

The AR coating prevents small spurious reflections generated by the impedance mismatch between air



and the first layer from destabilizing the mode-locking process. An elegant solution to the problem of

imperfect AR coatings
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Figure 3.9 Group delay dispersion of common materials used in mode-locked laser cavities as well as the
compensation capability of a single DCM mirror from the 7h generation. The curve for the DCM 7 mirror is a
design goal curve, and so does not show the residual ripples from the imperfect AR coating. The curve also assumes
that the mirror will be used as part of a pair. For the plot of residual dispersion in the 1 GHz cavity, the following
assumptions were used: 30 cm cavity length, 2.12 mm Sapphire crystal, 0.7 +1.6 mm BaF2 tuning wedge and 4
DCM 7 mirrors.

is to insert a quarter wave thickness layer for the central wavelength between the AR coating and the

chirped layer stack. In the frequency domain, these spurious reflections are equivalent to an oscillating

group delay. The addition of the quarter wave layer shifts the oscillations by a phase of x, allowing

cancellation of the reflections when such mirrors are used in pairs. Mirrors designed with the extra

quarter wave layer are referred to as a double chirped dispersion compensating mirror (DCM). Having

determined the method for compensating the normal dispersion in the laser cavity caused by air and the

Sapphire crystal, determining the exact dispersion compensating scheme is simply a matter of summing

the contribution from each element. Figure 3.9 plots the final dispersion compensation scheme used for

the 1 GHz laser. The goal value for the summation process should be about -10 to -20 fs2 residual



dispersion across all wavelengths. Since there is a rather large uncertainty in the summation due to

residual oscillations in the group delay of the DCMs it is better to allow for some tuning of the overall

cavity dispersion value in the construction of the laser than to try to achieve a particular value.

Experience has shown however that summation of the average dispersion values is reasonably reliable for

achieving broadband mode-locking.
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Figure 3.10 -- Output spectrum from the Ti:Sapphire laser using output couplers with Barium Fluoride (600mW avg.
output) and Fused Silica(>1W avg. output) substrates in solid and dotted lines, respectively. The difference in width
of the two spectra and total output power is attributed to uncompensated TOD of the Fused Silica and lower surface
quality of Barium Fluoride.

3.2.6 Construction and performance of final laser design

The final design and constructed configuration of the 1 GHz laser, Fig. 3.12, is as follows. The laser uses

a 2.12 mm long crystal which has an absorption coefficient of 2.25 cm-1. All four mirrors are broadband,

highly reflective DCMs, which overcompensate for the dispersion of the crystal and air path of the cavity.

To correct the overcompensation of group delay dispersion (GDD) provided by the DCMs, two pieces of

Barium Fluoride are used at Brewster's angle, a 0.7 mm plate and a shallow angle wedge of 1.7mm center

thickness, which allows fine tuning of the overall cavity dispersion. The combination of the sapphire

crystal, DCMs and the Barium Fluoride allows tuning of the average overall cold cavity GDD very close

to 0 fs2 between 600 nm and 1100 nm. The wedge is coated on one side to provide nominally 4% output



coupling from 650 nm to 1050 nm, rising to more than 50% for shorter and longer wavelengths. Because

the amplitude and phase of a coating in transmission obey Kramers-Kronig relations and since the
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Figure 3.11 - Optical to optical power conversion for both mode-locked and CW operation for the 1 GHz
Ti:Sapphire laser. The trace for CW operation is not linear because the pump beam size in the crystal has been
optimized for mode-locked operation. Because the pump focus is smaller than optimal for CW operation, at least
three spatial modes are excited as the pump power is increased. In mode-locked operation, 7% optical to optical
efficiency is observed.

transmission profile is constant over most of the spectral range where the laser spectrum is expected to

generate significant power, the GDD introduced by the output coupling is negligible. Mode-locking can

be achieved anywhere between 7.25 W and the 10.5 W, and over this range the output spectrum is

virtually constant with a maximum output power of 600 mW achieved with 10 W of pump power,

Fig.3.1 1.

For additional stability, the laser cavity is constructed on an optical breadboard separate from the

main optical table. The second breadboard was further isolated from the main table using lead filled

acoustical foam, the isolating properties of which cannot be understated [83]. Isolation of the laser from

air currents and acoustic disturbances was provided by a rectangular box consisting of %" thick Lexan

which was constructed to fit tightly around the laser cavity. A second box of %" thick acrylic enclosed

the entire breadboard on which was mounted the pump laser, fcEO detection optics and repetition rate

stabilization optics in addition to the 1 GHz laser itself.



DCM7G 2.18 mm
-30 m ROC Ti:Sapphire crystal

30 mm DCM7B3
PCX 1-30 mm ROC Plezo

0.7 mm BaF2DCM7G plate DCM7B
PL/PL 1.7 mm BaF 2 wedge PL/PL
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Figure 3.12 - Schematic of the final 1 GHz laser. The DCM mirrors used in this laser were generation 7, which
have proven to provide the most ripple free compensation of all succeeding generations. The BaF2 wedge does
introduce some angular dispersion to the beam, though the spatial chirp of the output beam seems to be dominated
by the Kerr lens effect. Overall footprint of the laser cavity is ~20 cm by 8 cm.

3.3 Optical molecular clock and frequency comb system description

For achieving an optical clock and stabilized femtosecond laser frequency comb a methane stabilized

HeNe laser similar to [53] for stabilization of the repetition rate in [51] was used, and because of the

octave spanning spectrum generated directly from the laser the f2f self-referencing technique [63] to

stabilize the carrier-envelope frequency,feo, Fig. 3.13, was employed.

By sending a fraction of the Ti:Sapphire output through a 20 mm long periodically poled

Lithium-Niobate crystal with a 21 im poling period, intrapulse Difference Frequency Generation (DFG)

provides an offset free frequency comb at 3.39 um for locking to the reference laser. To achieve good

conversion efficiency, the beam is first reflected off of 5 DCM mirrors to ensure good temporal overlap of

the 81 Onin and 1064nm components, which differs from earlier work by Foreman [51] due to the more

symmetric output spectrum from the current laser. Because there is no offset frequency in the comb

generated in the DFG process, stabilization of the DFG comb corresponds to direct stabilization of the

frequency spacing between modes in the Ti:Sapphire output spectrum, i.e. the repetition rate [36],

separate from stabilizing the carrier-envelope offset-frequency.

From the DFG process -200 nW of power is generated as measured in a 50 nm bandwidth, giving

-150 pW per mode assuming a uniform distribution. The DFG signal is sent through a HeNe discharge

tube giving a further 20 dB of gain prior to heterodyning with the HeNe laser, resulting in a 30 dB SNR in



a 100 kHz bandwidth. Stabilization of the mode spacing of the Ti:Sapphire laser is achieved by offset

locking the DFG comb to the methane stabilized HeNe laser using a second HeNe laser as a transfer

oscillator and sending the phase error signal to a piezo mounted mirror in the Ti:Sapphire's cavity. The

mirror and piezo are mounted on a small copper cylinder which is massive enough to allow the majority

of the displacement force generated by the piezo to result in displacement of the mirror, yet short enough

that the lowest order compression mode of the cylinder is greater than 100 kHz yielding a piezo/mount

system which can support feedback bandwidths exceeding 60kHz (Appendix B).

HeNe discha e tube

PPLN CH4/HeNe
Laser

To Experiments DCMs Hee paser
InSb In~b

P Z T 
1 1 M H z

-+ BB 570nm A2PBS
DM

398MHz EDAPD

Figure 3.13 -- Schematic of the I Glz Ti:Sapphire laser and CH4/HeNe referenced frequency comb system.
Repetition rate control optics are in the upper right corner andfeco stabilization optics are in the lower right. AOM,
Acousto-optic modulator; LF, Loop filter; PZT, Piezo electric transducer; DM, Dichroic mirror.

For carrier-enve lope offset frequency stabilization, a Michelson type geometry is used to phase the f and

2f components due to the spatial chirp of the output beam from the Ti:Sapphire laser. Because of the

extremely broad bandwidth of the Ti:Sapphire laser, a large amount of power is available at 570 nm and

1140 nm, 300 ptW and 2.5 mW both in 10 nm bandwidths, respectively. Both components are sent

through a 1 mm thick BBO crystal for Type II second harmonic generation, and a 10nm bandpass filter

centered at 570nm for generating a beatnote with a signal to noise ratio of 50 dB in a 100kHz bandwidth

using an avalanche photodiode (MenloSystems APD21 0). This signal is phase locked to a high stability

RF synthesizer by modulating the Ti:Sapphire's pump power using an AOM which changes the



intracavity pulse energy and subsequently the carrier-envelope frequency through the self-steepening

effect.

Figure 3.14 -- Picture of the 1 GHz Ti:Sapphire frequency comb. The mode-locked Ti:Sapphire laser is in the upper
left hand portion of the picture. Carrier Envelope offset frequency stabilization optics are in the lower left hand
portion of the picture. Difference frequency generation and amplification of the DFG signal as well as detection of
the beatnote between the reference laser and the DFG comb all occur on the right hand side of the picture. The
reference laser is not pictured, however this 2 foot deep and 3 foot wide breadboard is the same size as the board on
which the reference laser is mounted.

The entire frequency comb system described above consists of a minimal number of physical

components suggesting the possibility of a truly compact system construction. The Ti:Sapphire and all

frequency stabilization optics fit comfortably on one 2ft by 3ft breadboard, while the reference laser is

contained on another breadboard of the same size. The robust construction of the reference laser should

allow stacking of the two optics boards to save table space if necessary with little to no degradation in

performance. Electronics necessary for stabilization of the Ti:Sapphire laser along with the pump laser

controller and cooling system will fill only half of a standard size electronics rack.



3.4 Characterization of system stability

The reference oscillator used in this work for measuring the Allan Deviation of the frequency comb was a

674 nm laser diode stabilized to a Fabry-Perot cavity using the Pound-Drever Hall locking method [59].

The cavity was constructed using a 10 cm long ultra low expansion glass spacer mounted to its support at

the center of the spacer with the optical axis vertical to minimize the effect of ambient mechanical

vibrations. Optically contacted mirrors provide a measured cavity finesse of 708,000+/-10,000.

The frequency comb and diode laser sources were located in the same building, but were

separated by one floor and -30 m direct distance. Light generated by the stabilized diode was delivered

to the Ti:Sapphire comb by a single mode polarization maintaining fiber which was not stabilized due to

the short length of the fiber (60 m) and the expected level of frequency stability to be measured [65]. A

10 nm bandwidth around 674 nm from the stabilized frequency comb gave ~900 pW was heterodyned

against ~800 [tW of light from the stabilized diode laser generating a 35 dB SNR radio frequency beat

note at -18 MHz. This RF signal was counted using two zero dead time frequency counters (Pendulum

CNT-90) to ensure that adequate signal to noise ratio was maintained during the measurement.
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Figure 3.15 -- Measured Allan Deviation of the heterodyne beat note between the cavity stabilized diode laser and
the Ti:Sapphire frequency comb plotted in triangles, and squares plot the stability of the methane stabilized HeNe
reference laser. The divergence of the two plots at 20 s gate time is due to long term drifts of the cavity stabilized
diode laser.
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The Allan Deviation plot in Fig.3.15 shows that the measured stability of the diode/frequency

comb system as measured at 674 nm directly follows the stability of the methane stabilized reference

laser, which was determined by a direct comparison of two identical HeNe lasers. For gate times longer

than 20 s the Allan Deviation from the current measurement increases while the expected stability of the

methane laser continues to decrease until about 100 s where long term pressure and temperature drifts

take over. Drifts in the current measurement beginning at 20 s originate from the uncompensated

temperature changes of the 674 nm diode laser's reference cavity.

For using the frequency comb in quantum information science or high speed sampling, pulse

repetition rate phase noise is a primary concern. A preliminary characterization of high frequency phase

noise of the optical clock was achieved by detecting the pulse repetition rate of the Ti:Sapphire output

using a GaAs photodiode, filtering the 6 th harmonic and amplifying the signal using a low noise amplifier

before analyzing the signal using an Agilent E5052 Signal Source Analyzer. As is evident from Fig.3.16

the major noise contribution is from the white noise floor of the photodetection process and the noise

floor of the Agilent signal source analyzer [84]. Despite this heavily instrument limited measurement, the

upper bound for the maximum timing jitter when integrating from 10MHz to 40Hz is only 1 Ofs.
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Figure 3.16 -- The solid line plots the single sided phase noise of the 6th harmonic of the Ti:Sapphire laser's pulse
repetition rate, and the dotted line is the integrated timing jitter starting at 10MHz. The dashed line is the published
noise floor of the Agilent 5052 signal source analyzer used for this measurement.



3.5 Conclusion and future work

A compact, transportable frequency comb system based on a 1 GHz octave spanning Ti:Sapphire laser

and a commercially available methane stabilized HeNe laser, using a conceptually simple scheme for

comb stabilization has been presented. A fractional frequency stability of the Ti:Sapphire's optical

spectrum has been demonstrated to be 3x10-4 on a 20 second timescale when the Ti:Sapphire laser is

stabilized as a frequency comb using the HeNe reference laser. A preliminary measurement of the timing

jitter of the Ti:Sapphire laser's pulse train using a simple radio frequency technique suggests an upper

limit of 10 fs, considering a bandwidth of 10 MHz. The system simplicity is highlighted by the octave

spanning output of the Ti:Sapphire laser, the commercial availability and easy operability of the reference

laser, and the separation of control of the Ti:Sapphire's carrier envelope offset frequency and the pulse

repetition rate. The high level of frequency stability provided by this compact and still transportable

system is a distinct advantage enabling widespread deployment of visible frequency comb technology.

The ability to utilize the entire optical bandwidth of this system in an OAWG system will require

significant advances in filter and modulator technology to allow cost efficient construction of massively

parallel components. A modest 100 THz bandwidth of an as yet unrealized 40 GHz frequency comb

could support in excess of 1000 channels. A recent paper [85] has demonstrated that access to 600 comb

lines simultaneously is possible for a 21 GHz comb using a grism based disperser, though such a device

will likely need to be constructed as a solid state device for long term deployment.

To increase the penetration of frequency comb technology into other fields, two hurdles need to

be overcome: operational complexity/reliability and the physical and electrical footprint. The system

presented here is a large step in this direction. With a modest amount of engineering, the optical portion

of the system could be reduced in volume to less than 1 m3 with the supporting electronics occupying less

than one half of a standard 19" rack. A dedicated operator is still unfortunately required due to the

difficulty in operating a Ti:Sapphire laser on a long term basis. New advances in optical components [86]

may reduce the alignment sensitivity related to mode-locking of Ti:Sapphire lasers, however octave



spanning operation will still be challenging since the laser must be operated at such an extreme operating

point. Progress on stable octave spanning operation will only come through dedicated study of the

spatiotemporal dynamics of the mode-locking process.

On the physical and electrical side, exciting advances in laser diode technology [14,15] suggest

that in less than 5 years, laser diodes with spectra centered at 480-490 nm should be commercially

available. While the spatial mode quality of the beams from these lasers is not ideal, their vastly

decreased physical size and electrical requirements make them extremely attractive alternatives to the

pump lasers currently used for octave spanning Ti:Sapphire lasers.



Chapter 4

80 MHz Octave Spanning Ti:Sapphire laser
for OPCPA seeding and high harmonic
generation

4.1 Introduction

Ultra-short pulse lasers have been suggested as a route to generation of soft-x-ray radiation. Specifically,

the use of high energy, short duration and long wavelength pulses has attracted increased attention [18,19]

due to the potential to reduce the wavelength at which significant harmonic generation is produced.

Optical parametric chirped pulse amplification (OPCPA) is an attractive route for generating the

broadband, long wavelength and high power optical spectra necessary to eventually achieve soft-x-ray

sources which could be considered tabletop systems. Using Ti:Sapphire as the seed source for such a

laser system allows for a broadband, long wavelength seed pulse between 1500 nm and 2500nm through

difference frequency generation (DFG). This seed pulse can then be amplified in several stages by as

much as 108 to generate a pulse suitable for soft-x-ray creation.



4.2 Design decisions specific to supporting OPCPA systems and high
harmonic generation

Imaging of biological systems is enabled by generation of light in the 2-4 nm wavelength region. This

region is known as the water window because of a reduction in absorption of radiation, allowing finite

transmission of light into tissue for direct imaging. Short pulse lasers are capable of generating optical

spectra with wavelengths in the water window through a process known as high harmonic generation.

Briefly, the idea is to focus an extremely intense laser pulse into a gas jet to create a non-linear interaction

which emits high frequency radiation. As the pulse propagates through the gas, the large electric field of

the focused laser pulse will partially ionize atoms in the gas, and capture the ionized electrons in the

laser's electric field. There is a small probability that when the electric field reverses, the electrons will

be accelerated back towards the atom and collide with it, releasing photons with energy proportional to

the accumulated kinetic energy. Depending on the strength of the electric field and the time which the

electrons spend in the electric field of the laser pulse, different energy photons will be generated.

By increasing the driving laser wavelength the energy level of the photons generated in the

interaction process can be extended to higher energy levels at the expense of overall conversion

efficiency [87]. Building a high power, short pulse laser system at mid-IR wavelengths can only be

achieved through nonlinear processes, as there are no broadband laser materials in this wavelength region.

For the system constructed here, an OPCPA process was selected for the ability to scale the pulse energy

to very high values with short duration pulses without fear of damage to the pulse generation system. The

center wavelength of the optical spectrum for harmonic generation was chosen at 2.1 Rm due to the

availability of high average power laser sources at 1.064 gm supplied by T.Y. Fan's group at MIT

Lincoln Laboratory. An additional benefit of choosing 2.1 pm as a center wavelength is the anomalously

low group velocity mismatch between 1.064 pm and 1.9 pim pulses in Lithium Niobate. By operating

between 1 jim and 2 Rm allows use of relatively long crystals in the OPCPA system, increasing overall

efficiency of the system for a given number of pulse amplification stages.



The ideal seed pulse for such a system would be a relatively broadband pulse with a stable or

constant envelope to carrier wave relationship. A stable carrier envelope phase, or fCEO frequency is

advantageous for isolated attosecond pulse generation via high harmonic generation experiments since as

described above, the harmonic generation process is electric field dependent [88]. To satisfy both of these

requirements, a broadband Ti:Sapphire laser is a nearly ideal source. The broad optical spectrum from a

Ti:Sapphire laser can be used to perform difference frequency generation to generate a seed spectrum for

the OPCPA system which has nofcEO component, as well as providing the time base for the remainder of

the amplifier chain through photodetection of the pulse repetition rate. A linear cavity, 80M1Hz repetition

rate laser is a good compromise for OPCPA seeding because of the good pulse energy and relatively

small size of the laser cavity versus a 5-10 MiHz laser. The laser system developed in this chapter

ultimately generated 90 mW with a spectrum extending from 625 nm to 1075 nm, as measured at the -10

dB points. Using the output from this laser in a MgO:PPLN crystal, spectrum from 1570 nm to 2470 nm

was generated to seed the OPCPA amplifier chain, Fig. 4.1. Three amplification stages in the OPCPA

system resulted in an amplification of the 1.5 pJ seed pulse to 200uJ and 23 fs duration.

YDFA Nd:YLF regen amp -2 Nd:YLF-MPS amp
110ps, 1 mJ @1kHz 110ps, 7mJ @1 kHz

CFBG stretcher 12 ps, 4.5 mJ

YDFA 1.5 pJ, 6.2 ps 30

DFG A - A OPA 1 14Op 600pJ 3.2 mJ

MgO:PPLN 200 pJ,
OPA 2 OPA 3 220 pJ 23 fs

oscillator AOPDF s uprasilA
9.5 ps MgO:PPSLT MgO:PPSLT

Figure 4.1 -- Schematic of the OPCPA system. OPAl -OPA3 are the three optical parametric amplifier crystals;
AOPDF is an acousto-optic programmable dispersive filter for pre-compensating dispersion in the OPAs; YDFA is
a Ytterbium doped fiber amplifier for amplifying pump seed pulses at 1 um; CFBG is a chirped fiber Bragg grating
for stretching the amplifier pump seed pulses to prevent nonlinearities in the pump lasers; Si is silicon for both
spectral filtering and stretching of the seed pulse prior to amplification by ~108 in the OPCPA system.



4.3 Laser design

The design of this laser will closely follow the methodology outlined in sections 3.2.1 to 3.2.6.

Differences specific to this laser system include the longer cavity length and a requirement for significant

power near 1100 nm. For design purposes, generating significant spectrum near 100 nm is equivalent to

requiring a spectrum capable of supporting f-2f self referencing for fcEo stabilization. The following

sections will outline both a delta parameter type analysis for the geometric optical design and a temporal

optical design specific to linear cavity lasers.

4.3.1 Geometric optical design

A successful cavity configuration typically used for low repetition rate lasers is a z-folded arrangement

similar to that depicted in Fig. 4.3. This type of cavity is used because of the split stability region it

generates. The unequal length arms break the symmetry of the cavity, generating the double stability

region in Fig. 4.2. The large sensitivity of the beam waist to curved mirror separation distance in the

inner edge of the outer stability region is an indicator for a cavity alignment which could favor mode-

locking. The arm length ratio used here of 1.7:1 was selected based on research by Uwe Morgner during

his Habilitation Thesis.
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Figure 4.2 -- Plots of the beam waist in the cavity focus as a function of curved mirror separation (left) and delta
parameter as a function of the fractional mirror separation (right). The delta parameter was analyzed for the
difference between output power P=0 and P=3 mW, for 1% output coupling and 100 fs pulses.



The model used for the delta analysis of the 80 MIz laser is very similar to the one used for the

ring laser. The main difference being due to the fact that the nonlinear medium is transited twice in one

round trip rather than just once as required by the layout. Otherwise the matrix construction process in

identical.

There is an interesting difference between the results of the delta parameter analysis for the 1

GHz ring laser and those found for the 80 MIz linear cavity laser, Fig. 4.2. The portion of the stability

region where mode-locking should occur for the ring cavity is on the inner edge (or left side in Fig. 3.7),

primarily near the focus. However, for the linear cavity laser it appears that spot size reduction should

occur over the entire length of the crystal for the outer stability region. Such a large region of the

parameter space which supports a large spot size change suggests that the linear cavity laser should

experience a much stronger discrimination between CW and mode-locked operation because of the

increased change in overlap between the laser mode and the pumped volume.

1 mm BaF2
plate

Output DCM7B
Coupler DCM7G PL/PL

-100 mm ROC
100

63 mm10
PCX 20mmDCM7B

I :ff 
~Ti:Sapphire crystal -10mRO

DCM7G DCM7B
PUPL PUPIL

1.7 mm BaF2 wedges
DCM7G (0.750 wedge angle) Silver
PUPIL Mirror

Figure 4.3 - General schematic of the 80 MIHz laser. All mirrors are DCM type except for the mirrors at the ends of
the cavity. The output coupler is a multilayer dielectric consisting of only a few layers and so has minimal
dispersion. The silver mirror also contributes nearly zero dispersion, though with a reflectivity of -98% there is
around 2% loss per round trip. Overall length of the laser cavity is 1.875 m, with the ratio of the length of the two
arms set at 1.7. The laser is pumped with 5.5 Watts of 532 nm light from a single frequency Coherent Verdi laser.
With this configuration, 90 mW average output power is possible.



4.3.2 Temporal optical design

As discussed in section 3.2.6., careful control over the round trip cavity dispersion is necessary to support

the broadband spectrum necessary for generating light at 1100 nm to seed the OPCPA system. As before,

dispersion compensation is achieved using discrete dispersion compensating elements, forcing the laser to

operate in a dispersion managed mode-locking regime. The main difference between dispersion

compensation for a ring laser and a linear cavity laser is the manner in which dispersion is summed. In

the ring cavity, there is only one point in the cavity where the cavity dispersion must sum to near zero. In

the linear cavity, the dispersion must sum to just below zero twice per round trip: once per entrance to the

crystal. Figure 4.4 plots the dispersion of various intracavity elements as well as the round trip dispersion

for both the short and long arms, with both summations starting and ending in the center of the crystal.
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Figure 4.4 - Dispersion of common laser materials as well as round trip dispersion of each arm of the 80 MHz laser.
Round trip dispersion experienced for both the long and short arm of the linear cavity laser is plotted to ensure that
when the pulse traverses the crystal in both directions it is properly compressed to maximize the Kerr effect.



Finally, the output coupler used for this laser was designed by Richard Ell as part of his work in

reference [67], and is also described in the PhD thesis of Lia Matos [89]. The output coupler provides 1%

of transmission at 800 nm, with the transmission rising sharply above 900 nm and below 700 nm to more

than 50%. The transition between the low and high transmission regions may play an important role in

the development of short pulses and the stability of the mode-locking process. After the coating run

which created the output coupler used here, several other attempts were made to duplicate this coating

design. None were successful in recreating the performance seen with optics from the original run,

suggesting the sensitive dependence on rate of change of transmission.

4.4 Operating performance of the resulting Ti: Sapphire laser

The performance of the resulting laser is characterized by its output power, efficiency and optical

spectrum. The laser output power was 90 mW average power for 5.5 W pump power, resulting in an

optical to optical efficiency of 1.6%. This low level of efficiency can be at least partially attributed to the

silver mirror at the end of the laser cavity. A silver mirror is used as an end mirror to prevent generation

of uncompensated pre and post pulses which would arise from using a single DCM mirror. An alternative

to using a silver mirror would be to use a slightly less broadband DCM mirror in place of the silver mirror.

By slightly reducing the reflectivity bandwidth, it might be possible to make a higher quality AR coating

thus reducing the amplitude of the pre and post pulses. The optical spectrum from the laser is plotted in

Fig. 4.5. The effect of the output coupler is visible in the structure of the output spectrum as evidenced by

the slight increase in power at just above 700 nm and just below 900 nm. The very slight M-shape of this

spectrum may also indicate that the majority of the optical spectrum beyond the 700-900 nm range is

generated in a single pass through the Ti:Sapphire crystal due to the high pulse energy circulating within

the cavity.
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Figure 4.5 - Optical spectrum from the 80 MHz Ti:Sapphire laser. The large peak near 608 nm occurs due to phase
matching in the laser cavity caused by dispersion of the output coupler.

4.5 Conclusion

In this section, the design and performance of a broadband Ti: Sapphire laser with 80 MHz repetition rate

was described. A design process similar to that used for the 1 GHz laser described in Chapter 3 was used,

and differences between the two laser types were highlighted. The resulting laser system generated 90

mW with a spectrum extending from 625 nm to 1075 nm, as measured at the -10 dB points. Using the

output from this laser in a MgO:PPLN crystal, spectrum from 1570 nm to 2470 nm was generated to seed

the OPCPA amplifier chain, Fig. 4.1. Three amplification stages are required to boost the 1.5 pJ seed

pulse to 200uJ and 23 fs duration.

In addition to increasing the optical bandwidth generated by Ti:Sapphire lasers used in such

seeding applications, increasing the stability and operability of such systems is quite important. The



current system was constructed using discrete optical and mechanical components on an optical

breadboard. Operation of the laser on a daily basis was generally possible with the laser running without

intervention for the entire day. On a semi-monthly basis however, the laser would need to either have the

Ti:Sapphire crystal cleaned or the optics slightly realigned. Construction of an engineered system to

isolate the laser from dust and debris as well as temperature stabilizing all optical components would

provide a large increase in the availability of the laser.
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Chapter 5

Visible wavelength frequency comb for
astrophysical spectrograph calibration

5.1. Introduction

A successful method for identifying planets in other star systems (exoplanets) is the radial velocity (RV)

technique, which exploits small, periodic Doppler shifts in the spectrum of a target star to infer the

existence of orbiting planets and determine characteristics such as orbital period and a lower limit to the

planet's mass. Utilizing the RV method to find small, rocky exoplanets similar to the Earth in the

habitable zone requires wavelength calibration precision and stability -10 cm/s for the astrophysical

spectrograph used to measure the stellar spectrum [5]. Because frequency combs provide a broad

spectrum of highly stable and precisely known optical frequencies [90] which can be traced to a common

reference such as GPS, they are an ideal wavelength calibration tool for astrophysical spectrographs.

Spectral filtering of the frequency comb using a Fabry-Perot cavity [91,92] is generally required for the

spectrograph to resolve individual comb lines, Fig. 5.1, though work is progressing to develop frequency

combs with repetition rates high enough to eliminate the need for filter cavities [25,93,94].

Measurements of time-variation of the fundamental constants or of the expansion of the universe [95,96]

may also be enabled by these types of calibration systems, with expansion of the universe requiring -1

cm/s sensitivity over decadal timescales. In this work, the focus is on calibrators for the near-term goal of

exoplanet detection.



Frequency comb systems optimized for astrophysical spectrograph calibration ("astro-combs")

have been demonstrated at several wavelength regions to date [3,4,49,97,98] though recently there is a

trend toward demonstrating systems operating in the short wavelength end of the emission spectrum of

Sun-like stars (400-700 nm) [97,98]. In addition to providing the largest photon flux, this wavelength

region is rich with spectral features of high quality most suitable for use with the RV method [99].

Shorter wavelengths also avoid fringing effects in the spectrograph's charge coupled device (CCD)

caused by weak etaloning in the silicon substrate. Etaloning can be a serious complication for data

analysis at wavelengths longer than 700 nm since correction of these fringes to a precision better than 1%

is challenging.
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Figure 5.1 - Description of an astro-comb in the frequency domain. (a) Frequency-doubled source comb lines and
analytic description of the optical spectrum in terms of the repetition rate, frep, and the carrier envelope offset
frequency, fCEO, of the underlying Ti:Sapphire laser. The frequency doubled spectrum is multiplied by the
transmission function of the Fabry-Perot cavity, filtering the source comb spectrum which becomes the astro-comb
spectrum shown in graph (b). The free spectral range of the transmission resonances of the filter cavity, ffpter, is
ideally an integer multiple of the repetition rate of the source laser. However due to dispersion from air and mirror
reflections, flter will generally be a function of frequency. In this example the integer m=4 (typically m=20-50 with
our 1 GHz repetition rate laser) such that in (b) every 4th line (referred to as an astro-comb line) is fully transmitted.
Because the spectrograph resolution (->15 GHz) is generally larger than the repetition rate of the source comb,
finite suppression of the source comb modes closest every astro-comb line results in a power weighted average
frequency, fR, to be reported by the spectrograph. The difference Af must be recovered to realize the full accuracy
of the astro-comb.

Here, operation of an astro-comb with a center wavelength near 420 nm with FWHM bandwidth

of about 15 nm, center wavelength tunable over 20 nm, and spectral line spacing of 22 and 51GHz is

demonstrated. Systematics of the calibration system including dispersion, higher order transverse modes

of the cavity filter and alignment of the frequency comb and cavity filter transmission resonances have

been characterized. Using a scanned-cavity technique [100], the accuracy of the astro-comb system has



been compared to the underlying laser frequency comb. The basic idea of the scanned cavity technique is

as follows. A single frequency diode laser is phase locked to one tooth of a stabilized frequency comb.

The filter cavity is then phase locked to the diode laser at a length corresponding to an integer multiple of

the frequency combs cavity length. By scanning the offset frequency between the diode laser and the

frequency comb and monitoring the spectrum which is transmitted through the filter cavity, information

about the dispersion of the filter cavity can be gained. The scanned cavity technique requires assumptions

about the finesse of the filter cavity and cannot handle dispersion which changes quickly with frequency,

though it can provide good calibration for low dispersion cavities.

Broadband characterization of an astro-comb system is necessary to ensure that the optical

filtering process has not left unevenly suppressed source comb lines on either side of each astro-comb line.

Identifying where uneven suppression has occurred can allow use of a much wider bandwidth than would

normally be possible if only exactly even suppression could be tolerated. Analysis of the source

frequency comb to filter cavity locking method is also presented with consequences of misalignment of

these two spectra. A method for avoiding misalignments is also discussed.

5.2 Limits of spectrograph calibration

Astrophysical spectrographs used for high precision spectroscopy are generally configured as cross-

dispersion spectrographs which disperse the input spectrum in two orthogonal directions to increase

resolution and optical bandwidth. Focusing the cross-dispersed beam on a CCD creates a two dimensional

image which transforms the frequency (or wavelength) of the input light to a physical position on the

CCD. The ideal calibrator for such a spectrograph would be a single light source whose spectrum is

composed of an ensemble of individual incoherent emitters, each with equal power and separated in

frequency by slightly more than the spectrograph resolution [5]. Each emitter should also have a spectral

width much less than the spectrograph resolution. Knowing the frequency of each component of the

calibration spectrum allows recovery of the spectrograph's mapping of frequency (or wavelength) to CCD

position as well as the point spread function of the spectrograph for all frequencies.



Frequency combs based on mode-locked lasers are currently the closest analogue to this ideal

calibrator with the exceptions that their optical bandwidth is typically much narrower than the

spectrometer's bandwidth and the frequency spacing between spectral features (comb lines) is much less

than the resolution of the spectrometer. Overcoming the bandwidth limitation can be partially achieved

by broadening the spectrum from the frequency comb in a nonlinear fiber or crystal and/or shifting the

spectrum to a different wavelength range using a similar process. A Fabry-Perot cavity can be used to

selectively remove all but every mth comb line in the output spectrum of the frequency comb to generate a

new comb whose comb lines are resolvable by the spectrograph, Fig. 5.1. The shot noise limited velocity

uncertainty of a radial velocity measurement using the Doppler shift of a single spectral feature has

previously been discussed as [5,101]

V = A A- X -(5.1)
SNROf

where A is a number close to one related to the specific line shape of the feature in question, 6vI/ 2 is the

FWHM of the feature, SNR is the peak signal to noise ratio due to shot noise for the feature usually

measured at peak center, n is the number of spectrograph CCD pixels sampling the spectral feature in the

grating dispersion direction and X is the center wavelength of the feature. Using all N emission features

of a target star or all the lines from an astro-comb, the value given by Eq. (5.1) may be reduced by 1/N1 2.

By matching the frequency spacing of the astro-comb lines to a value just larger than the resolution of the

spectrograph (a~~3) [5], and defining N as the ratio between the FWHM frequency bandwidth of the

calibration spectrum 5 vin,,, and the astro-comb repetition rate, Eq. (5.1 )can be rewritten including the

spectrograph resolving power R=1/1& as

Ac aA (5.2)
V = SNR(nR5 .2

In addition to the benefits achieved by shifting the center wavelength of the RV measurement to shorter

wavelengths as stated in the introduction, there is an additional precision benefit of ~1 / -..[2 gained from



frequency doubling the Ti:Sapphire laser. However large increases in the bandwidth of the calibration

source are necessary to see significant gains in calibration precision for a given spectrograph with

resolving power R. The sensitivity gain between calibrating 15 nm and calibrating the full octave

spanning spectrum of the Ti:Sapphire laser (>300 nm) is a factor of ~4.5. The difficulty of achieving

comb line filtering over 300 nm generates far greater challenges than those presented here [2,4,102].

5.3 Visible frequency comb generation

Our visible wavelength astro-comb (Fig. 5.2) follows the general approach outlined above by using a

frequency doubled octave spanning Ti:Sapphire laser which is spatially and spectrally filtered before its

spectrum is fiber coupled to the astrophysical spectrograph for calibration of the spectrograph's frequency

(or wavelength) to CCD position mapping. Currently, nonlinear frequency conversion is the only method

for generating a frequency comb in the 400-600 nm wavelength region, as no broadband laser materials in

this region are known. Frequency doubling of a broadband Ti:Sapphire laser, Fig. 3, has been chosen to

provide a source comb at 400 nm, because our group has previously [50] constructed stable and high

power Ti:Sapphire lasers that are capable of operating unattended on day long timescales. Absolute

referencing of such lasers is also more direct than with other systems, as Ti:Sapphire lasers can generate

optical spectra directly from the laser cavity that cover more than one octave allowing direct access to the

carrier envelope offset frequency, fC'EO, control of which is required if all optical frequencies from the

frequency comb are to be known.
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Figure 5.2 -- Layout for visible wavelength astro-comb. Output from an octave-spanning 1 GHz Ti:Sapphire laser
frequency comb is pre-chirped using two Dispersion Compensating Mirrors (DCM) and focused with an off-axis
parabolic mirror into a BBO crystal. Single mode fiber between the Ti:Sapphire laser and the Fabry-Perot cavity
filter ensures that the spatial profile of the beam entering the cavity is of lowest order (TEMo), giving the best
possible suppression of transmission by higher order transverse modes. A 408 nm external cavity diode laser allows
for identification of the desired Fabry-Perot cavity length as well as side-mode suppression estimation. TRES -
Tillinghast Reflector Echelle Spectrograph, AOM - acousto-optic modulator, PZT - piezo electric transducer.

Optical frequencies of comb lines from femtosecond lasers are uniquely described byf=fcEo+nfR,

where active control of bothfCEO and R allows unique definition of the absolute frequency of each comb

line. In the system depicted in Fig. 5.2, fR is detected using a PIN photodiode to recover the pulse

repetition rate which is then phase locked to a low noise radio frequency oscillator using a low bandwidth

feedback loop to control the length of the laser cavity. Control of the fCEO frequency is achieved by

modulation of the pump laser intensity using an AOM. A phase locked loop which generates the control

signal for the AOM matches the fCEO frequency detected using the f-2f method with a second low noise

frequency synthesizer. Both synthesizers are phase locked to a commercial rubidium frequency reference

to enable the entire chain to have a fractional frequency stability <1011 over time scales from seconds to

days. Heterodyne measurements with a narrowband diode laser at 408 nm reveal a maximum linewidth

of the optical comb lines <5 MHz, limited by the linewidth of the diode laser.

The astro-comb system must be very robust and reliable over many hours for use in an

observatory environment. For high reliability operation, a Imm BBO crystal was chosen for frequency

conversion rather than a photonic crystal fiber. Using 300 mW from the Ti:Sapphire laser as input to the

BBO crystal, 18 mW average power and 15 nm FWHM spectrum centered at 420 nm is typically

generated. Rotation of the BBO crystal in the laser focus allows tuning of the generated spectrum over a



FWHM bandwidth of nearly 50 nm as measured directly after the BBO crystal. For reasons explained

below, the tuning bandwidth is reduced to approximately 20 nm after transmission through the Fabry-

Perot cavity, Fig. 5.3(A).

For optimal spectral filtering of the source comb, it is necessary to ensure that the intensity

distribution of the beam sent to the Fabry-Perot cavity is well described by a fundamental order Hermite-

Gaussian mode. Due to both the spatial chirp of the Ti:Sapphire laser output and spatial walk-off which

occurs during second harmonic generation in the BBO crystal, the beam at the output of the BBO crystal

contains many higher-order spatial terms. A single-mode fiber (mode field diameter -2.9 ptm) placed in

the Fourier plane of a 4F lens system leads to a transverse intensity distribution at the output of the 2nd

lens which is approximately a lowest order Gaussian. While using a single-mode fiber as a spatial filter

reduces the power available after the doubling process by a factor of almost 5, the spatial profile of the

output beam becomes a constant and only the spectral content and transmitted fraction can be affected by

changes in beam pointing from the laser.

1.0 1-0 3

-. 22

-- 0*
1* 

1

0.6- 20 E 0.6-

0.4\ - 30 0.4 0.4

0.4-

0.2 0.2- --2

390 40 410 420 430 440 450 400 410 40 430 40
Wavelength (nm) Wavelength (nm)

(A) (B)

Figure 5.3 -- (A) Measured optical spectra of the visible wavelength astro-comb, after the Fabry-Perot cavity filter,
for several angles of the BBO crystal relative to the IR source comb beam. Integrated power for the central
spectrum is 25 uW (-25 nW per astro-comb line). Filtered mode spacing is 22 GHz. (B) Calculated characteristics
of the Fabry-Perot cavity filter using dispersion-optimized dielectric Bragg reflectors. Round-trip dispersion due to
reflection from the Fabry-Perot cavity mirrors is plotted on the right axis, and cavity transmission for an input
spectrum centered at 420 nm is plotted on the left axis taking into account air dispersion as well as mirror dispersion
and reflectivity.



5.4 Spectral filtering

The highest precision of calibration occurs when the spacing between spectral features in the spectrum

used to calibrate a spectrograph is approximately three times the resolution of the spectrograph [5],

ensuring high contrast coverage of the spectrograph's CCD. Spectral filtering of the source comb is

currently necessary to achieve the ideal spacing since the frequency spacing between comb lines of all

current mode-locked lasers suitable for spectrograph calibration is smaller than the resolution of most

existing astrophysical spectrographs.

The most straightforward way to achieve filtering is by using a two mirror Fabry-Perot cavity

where the distance between the mirrors, L, is set such that the free spectral range of the filter cavity, c/2L,

is an integer multiple of the source comb repetition rate, Fig. 5.1. Such a filter only transmits every mth

source comb line, suppressing the remaining source comb lines to varying degrees resulting in a

transmitted spectrum which more closely approximates the ideal. Dispersion from air or mirror reflections

causes a deviation from an integer spacing resulting in a change in amplitude of source comb line

transmission. The difference in transmitted amplitude is generally small and is manifested primarily as an

asymmetry in the suppression of the two source comb lines on either side of the mth transmitted source

comb line (astro-comb line), causing an apparent shift in the overall line center recovered by the

spectrograph. This shift occurs because the spectrograph's limited resolution causes all three source

comb lines to be recovered as a power-weighted sum rather than as individual lines. The shift in

frequency of the recovered center of gravity caused by asymmetrical line suppression as Af=(Pn-1-

I)fRPn-+PnPn+1) which is a truncated version of the formula described above in Fig. 1. A recently

developed scanned cavity technique [100] can be used to identify and remove these systematic shifts from

the final calibration which is critical since any dielectric mirror coating will contain both small errors and

a systematic divergence of the dispersion at the edges of its working range.

In this work, plane parallel mirrors are used to construct the Fabry-Perot cavity filter to reduce

distortion of the astro-comb caused by transmission of source comb light through the filter cavity as a



result of excitation of higher order transverse modes (HOM) at frequencies far from the longitudinal, c/2L,

resonances. The reduction in transmission via HOM is a result of three factors: First, the frequency offset

for the higher order transverse modes is typically <100 MIHz for plane parallel cavities. Second, due to the

high source comb repetition rate of 1 GHz, transmission of a source comb line adjacent to a desired astro

comb line, can only occur via transverse modes with very high mode order (10 or more). Third, the

difference in nominal transverse mode size between the TEMO,O) mode and higher order transverse modes

prevents significant coupling into higher order transverse modes once the coupling is optimized for the

TEMO,O) mode. The combination of these three factors reduces the side mode transmission via higher

order transverse modes to a level similar to what would be expected from a hypothetical cavity possessing

only the longitudinal c/2L modes. To verify our chain of arguments experimentally, Fig. 5.4(A) shows

the measured transmission of the Fabry-Perot filter cavity using a swept frequency laser diode.

Asymmetry of the measured transmission, due to transmission via higher order transverse modes is

clearly visible on the high frequency side of the transmission fringe in Fig. 5.4(A). However, it should be

emphasized that the benefit of using a plane parallel mirror cavity is the elimination of transmission

maxima in a similar sweep spanning the full 22 GHz free spectral range, Fig. 5.4(B). The broadening of
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Figure 5.4 -Transmission of the Fabry-Perot cavity filter measured with a swept frequency laser diode. (A)
Comparing measured transmission (blue) and calculated transmission assuming R=98.2% and a free spectral range
of 22 GHz (green) shows the asymmetric observed line shape. Coupling of the diode laser into the cavity is
identical to that of the frequency comb. (B) No higher order peaks are visible in a sweep spanning the full 22 GHz
free spectral range.



the main transmission fringe in Fig. 5(A) occurs mainly because the flatness deviations are not spherical,

though the asymmetry of the transmission fringe can be compensated using the technique described

in [100].

Misalignment in the frequency domain of the Fabry-Perot cavity filter's transmission resonances

and the source comb lines caused by air and mirror dispersion is also a limiting factor for the bandwidth

of the source comb which can be successfully filtered. The mirrors used here are dielectric Bragg

reflectors with slightly modified layer thicknesses using the numerical routine described in [103]. The

layer thicknesses are optimized for minimum accumulated phase on reflection over most of the high

reflectivity bandwidth of the initial Bragg layer stack. The resulting phase from reflection as a function of

wavelength is plotted in Fig. 5.3(B) with the portion due to a constant group delay removed. Due to the

fast variation of round trip phase mainly due to air dispersion [4] at the edges of the reflectivity bandwidth,

the bandwidth over which the input comb lines and the Fabry-Perot cavity's transmission resonances are

well aligned is limited, reducing the overall transmission and resulting in an astro-comb bandwidth of ~20

nm, Fig 5.3(A).

For calibration of an astrophysical spectrograph, it is not strictly necessary that the absolute

frequency of each astro-comb line to be known before the astro-comb light is sent to the spectrograph.

The astro-comb spectrum as measured on the spectrograph can be compared to the spectrum from an

iodine cell or a thorium argon lamp, the emission lines of which are well tabulated and known to better

than 1 GHz. Once one line of the filtered astro-comb is identified by using the thorium argon spectrum,

all of the other lines in that spectrograph order can be identified and the full accuracy of each individual

astro-comb line can be exercised. In our previous NIR (near infrared) astro-comb studies [3], a single

fiducial reference laser was used as a frequency marker to identify the frequency of all astro-comb lines

recorded by the spectrograph. However, because the frequency difference between spectrograph orders is

not constant, and for some orders the dispersed spectrum extends beyond the collection area of the CCD,

the loss of information between orders can prevent indexing of astro-comb lines from one order to the



next. Thus in general a fiducial wavelength marker is required for each order of the spectrograph, which

an iodine cell or thorium argon lamp can easily provide.

5.5 Source comb and Fabry-Perot cavity alignment and stabilization

Initially, alignment of the comb lines from the source comb with the transmission resonances of the

Fabry-Perot cavity filter is achieved by maximizing the transmission of the source comb through slow

change of the filter cavity length. Once the cavity is set to the nominally correct length, the cavity length

is modulated by ~3 pm at a rate of 100 kHz, causing modulation of the power transmission of the cavity.

Demodulating the detected transmission using a lock in amplifier, one can use the resulting signal to

control the length of the cavity with a second piezo mounted mirror. Two piezos are used so that one of

the piezos can be optimized for generating a high frequency modulation allowing a higher feedback

bandwidth. The second piezo can then be of slightly larger physical size enabling larger deflection and

thus correction of larger amplitude cavity length errors at the cost of much larger piezo capacitance and

longer response time.

A more mathematical description is warranted to allow consideration of the effects of dispersion,

mirror reflectivity and repetition rate multiplication factor. The optical components of the frequency

comb are described by

fnfCEO fR (5.3)

with emphasis on the fact that each mode of the comb is separated equally in frequency byfR. In the final

astro-comb system, bothfR and fcEo will be stabilized to GPS disciplined oscillators, the values offCEo and

fR can be assumed as absolutes. The Fabry-Perot cavity has transmission fringes which occur at

frequencies corresponding to

$=27c j=(5.4)

allowing us to describe the transmission spectrum of the Fabry-Perot cavity using the familiar Airy

function



1T = 1(5.5)
1 + F sin ()(

F = 2 (5.6)
(1- R)

where F is the coefficient of finesse and R the power reflectivity of the mirrors, assuming equal

reflectivity of both mirrors. In the current experiment, the bandwidth of the input spectrum from the

doubling stage is less than half the reflectivity bandwidth of the current mirrors, so it is reasonable to

assume constant reflectivity across the band of interest. The dispersion due reflection and especially

round trip dispersion due to air cannot be ignored. To account for phase error in the round trip phase of

the cavity, the effects of mirror reflections and air dispersion will considered as additive errors.

#= L-+9# (5.7)

Phase error due to air can be straightforwardly determined from the refractive index of air, na, as

50, = 0,O -Co.) +(5.8)

c$ =- L0 - a'- (Oj - O, )+ n, (co - coo

Phase error due to reflections from the mirrors used to construct the filter cavity must be determined by

measuring the group delay on reflection from the mirror using a white light interferometer [104]. The

resulting phase error is determined up to an unknown constant by integration of the measured group

delay.

2rf 2 -df (5.9)
dw

Since the unknown constant merely changes the length of the cavity, this constant can be set to zero with

no consequence. For the mirrors used here, the dispersion from reflection is ~1/10 of that caused by air,

and can be ignored for the discussion here.

The dither lock scheme relies on coherent detection of the modulated reflection signal, E(t), from the

filter cavity to determine the alignment of the frequency comb lines and Fabry-Perot cavity, figure



5.2. The length of the filter cavity is modulated by applying a sinusoidal voltage signal, m(t), at a

frequency off, to a piezo on which one of the cavity mirrors is mounted.
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Figure 5.5 - Above is plotted the error signal for a nominal cavity length of 2.9 mm (upper) and 7.1 mm (lower) +/-
200 nm, corresponding to 51 and 21 GHz filter cavities both with a finesse of 312 (R=99%). The system is locked
to one of the steep zero crossings. Note the small difference in locking fringe amplitude for adjacent fringes for both
cavity configurations.

The cavity reflection signal E(t) is mixed with the original modulation signal and low pass filtered to

recover the phase and amplitude information.

e (t) = [E (t){m (t)] {hLPF (f) (5.10)

An analytic description of the resulting signal can be easily constructed from (5.10), however it is of little

instructive value. A more intuitive description can be made if the comb and cavity transmission fringe are

already well aligned such that the cavity transmission function can be approximates as a parabola. In the

parabolic approximation the modulated reflection signal can be described as

E (t) Rmin + KL sin (27rft +# (SL)) (5.11)

where 8L = L 8f/f is the length misalignment of the Fabry-Perot cavity. Recognizing that the Fourier

transform of Eq. (5.11) merely returns the phase and amplitude at the modulation frequency, the



calculation of the expected error signal in Eq.(5.10) can be simplified. Rather than evaluating expression

(5.10) the difference in reflection for the two extremes of cavity length modulation for a given alignment

condition to determine the error signal can be found as

E(L)= T(f)1 6 df- fT(f)I-8L df (5.12)

Evaluating E(L) considering the conditions of the astro comb constructed here for two different repetition

rate multiplication factors results in Fig. 5.5.

Notice that the error signal has more than one zero crossing. Each locking fringe is generated when

central transmission fringe moves from one source comb line to the next, Fig. 5.7, due to a change in filter

cavity length. When the filter cavity length is an integer multiple of the source comb cavity, all of the

filter cavity transmission peaks line up exactly with the source comb lines. When the filter cavity length
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Figure 5.6 - Plots of the recovered astro comb center error for the central 10 lock point described in the previous
figure assuming finesse of 312 (R=99%), for both 21 and 51 GHz, left and right respectively. The line center error
occurs due to the spectrograph measuring each astro comb line as a power weighted sum of the main astro comb line
and the two suppressed first side modes, Fig. 5.1. Solid lines are read from the left axis of each graph and dotted
lines are read from the right. While both cavities are capable of precisions better than current calibrators, only the
21 GHz line spacing allows the central 3 fringes to have recovered shifts less than 50 cm/s over the entire astro-
comb spectrum.

is in error by an amount required for the central transmission fringe to shift over by one source comb line,

the other transmission fringes are shifted slightly off center depending on what side of the spectrum they

are located and in which direction the cavity length is in error. The net result is a reduction in the
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amplitude of the error signal, E(t) resulting in the reduction of the fringe amplitude reported in a sweep of

the cavity length by E(L) in Fig. 5.5. As discussed in Fig. 5.1 at the beginning of this chapter,

misalignment of source comb lines also causes a shift in the recovered astro-comb line center as seen by

the spectrograph. Figure 5.6 plots the effect of source comb to filter cavity misalignment for the case of a

21 GHz and a 51 GHz astro-comb, highlighting the need for increased locking fringe discrimination.

5.5.1 Fringe discrimination

As shown in the previous section, the dither locking scheme only reproduces the accuracy of the source

comb for one of the available locking fringes. The long term precision of the source comb is available

when locking to any of the fringes, but to use the astro-comb to determine the drift of fundamental

constants, the astro-comb must retain the accuracy of the underlying frequency comb. However, there

will always be a finite optical bandwidth where the astro-comb faithfully maintains the accuracy of the

source comb due to filter cavity dispersion. In the two cases from the previous section, the amplitude of

each fringe was within 10% of the adjacent fringe, making experimental determination of the central

locking fringe difficult. Selection of the correct fringe could be made easier if the difference in locking

fringe amplitude between the central fringe and the first adjacent fringe could be made larger than 50%.

For small modulation depths, comparison of the amplitude of locking fringes, can be achieved by

comparing the derivative of the transmission function for each transmission fringe of the Fabry-Perot

cavity for two different cavity lengths. Specifically, we are interested in the peak amplitude of the

derivative of the transmission function

OT _ -2cos($)sin($)F (5.13)

ao 11+ Fsin ($)2

with #b = rc where Af is the local misalignment of a source comb and its transmission fringe. The

peak of this function occurs at offset frequencies which satisfy
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Figure 5.7 -- Case 1 demonstrates the ideal case where the frequency spacing of the Fabry-Perot transmission
fringes are an integer multiple of the source comb repetition rate. In this alignment condition the dither lock uses the
central locking fringe (Fig. 5.5), and the astro comb lines are recovered by the low resolution spectrograph at the
exact locations of the source comb lines. In case 2, the Fabry Perot cavity length has been increased slightly, causing
a systematic misalignment of the source comb lines from the transmission fringes. This misalignment has three
results: the dither lock uses the first fringe adjacent to the central fringe, the recovered astro comb lines are all
shifted towards the central fringe and the overall transmission is reduced.
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2 = 3

F
(5.15)

Unfortunately, 012 must be determined numerically, although given the narrow bound over which (5.15)

function has a meaningful value, # =0 -> -1 determination of the peak value is fast.

The reduction in locking fringe amplitude occurs due to a systematic misalignment of the FP

cavity transmission fringes with the source comb line due to the length of the filter cavity not being an
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exact integer multiple of the source comb cavity length, Fig. 5.7. The length mismatch necessary to

generate each additional locking fringe can be recovered by realizing that each locking fringe occurs

when the central transmission fringe has moved to the adjacent source comb line

L - >5L=L - - O (5.16)
L f f 2f, fo f, 2

with Ao the central wavelength of the spectrum and fR the source comb repetition rate, and fa as the astro

comb line spacing. From the discussion above, each transmission fringe will be shifted from perfect

alignment with the source comb by an amount described by

, cc
f C (5.17)fe "a" 2 L 2(L+±')

with each transmission fringe shifted by an additional increment off'e which is the free spectral range of

the filter cavity when the central fringe of the transmission spectrum has been shifted to the adjacent

source comb line, Fig. 5.7. Finally, the expression to evaluate is

NL
aT

aAJ
N= f ^r f 

(5.18)

aT
aAf

where the summation is over half of the symmetric astro-comb spectrum, NL v1 2fa-

A useful question related to the design of an astro-comb system is what mirror reflectivity is

needed to achieve a 50% locking fringe discrimination, given that there exists a useful optical bandwidth

of about 10 nm. Figure 5.8 plots predictions by both Eq. (5.18) and Eq.(5.12) for such an operating point,

revealing that reflectivity of-99.79% should be sufficient to achieve a finesse of 1500.
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Figure 5.8 - Plot of the result from Eq.(5.18) and Eq.(5.12), to determine the cavity finesse necessary to achieve
50% difference in locking fringe amplitude for a 21 GHz filter cavity and 1 GHz source comb. The optical spectrum
in both cases is assumed to be a 10 nm FWH-M Gaussian shaped spectrum centered at 410 nm.

The comparison of Eq. (5.18) and Eq.(5.12) plotted in Fig. 5.8 shows good agreement for values

of finesse below 2000, although the two curves diverge for higher values. As would be expected, much

higher values of finesse are necessary to generate a 51 GHz astro-comb with a similar level of locking

fringe discrimination as evidenced by the difference in width of the envelope functions in Fig. 5.5. The

divergence between the approximation and the exact calculation is likely due to the fact that the source

comb spectrum and Fabry-Perot cavity transmission fringe spectra don't perform a simple convolution.

As shown in Fig. 5.7 above, the frequency shift of the Fabry-Perot's transmission fringes occurs because

the frequency spacing between the fringes increases, rather than the entire transmission spectrum moving

as a whole unit. In Eq.(5.18), two lengths were chosen at which to evaluate the cavity's transmission

derivative, and do not account for the phase difference between the error signal generated by each astro-

comb line. Despite this approximation, calculation of the approximation takes -1/3 the time of the full

computation.

The best solution for increasing the discrimination is to increase the bandwidth of the astro-comb

spectrum. A new type of chirped mirror which was recently introduced [102] should allow filtering of



>100 nm of bandwidth at 500 nm and more than 200 nm at 1 pm. Dispersion due to air will become a

serious limitation in these cases, even though it can be partially compensated in the design of the chirped

mirrors. The ultimate solution is to put the filter cavity in a very mild vacuum (100-10 Torr) which

would reduce the dispersion contribution by a factor of 10-100.

4W0 00 0 7W0909010

Figure 5.9 - Raw spectrograph CCD output after exposure to the astro-comb spectrum for 30 sec. The spectrograph
reports optical power at wavelengths increasing from 390 nm to 910 nm from the upper left hand comer of the CCD
to the lower right hand corner. See the text in section 5.6 for a description of the spectrograph functionality. The
faint dotted bands in the upper portion of the figure are the individual astro-comb lines. The strong "astro-comb"
line in the upper most band is a diode reference laser.

5.6. Astro-comb system characterization

A second astro-comb system nearly identical to the one described above has been installed at the Fred

Lawrence Whipple Observatory (FLWO). Using a Menlo Systems 1 GHz octave spanning Ti:Sapphire

laser as the source comb source as well as a BBO crystal, Fabry-Perot filter cavity, and filter cavity

stabilization scheme identical to that described above, an average output power from the astro-comb of

10-30 pW (-10-30 nW per astro-comb line) is generally possible with a line spacing of 51 GHz. The

TRES spectrograph [105] has a resolving power of R=)Z/6=40,000 and spectral coverage from 390-900

nm. A 100 um multimode step-indexed fiber couples light from the calibration system where astro-comb

light is injected to the spectrograph optical bench to where the spectrum is dispersed by an echelle grating

and a prism to produce a 2-dimensional spectrum consisting of 51 orders of approximately 10 nm each,



figure 5.9. The dispersed light is then re-imaged onto a two dimensional CCD array with a resolution of

-0.01 nm, sampled by ~6 pixels in the dispersion direction. The CCD (E2V 42-90) is read out with added

noise of less than 3 counts per pixel. Spectra are arranged as 1 dimensional data through the use of a

halogen flat-fielding lamp which maps the spectrograph orders and compensates for pixel to pixel gain

variations. Approximately six pixels in the cross-dispersion direction orthogonal to the grating dispersion

direction contained counts from each order which are added together to produce one dimensional spectra.

In the data presented in Fig. 5.10, the wavelength calibration was provided by a standard thorium argon

calibration lamp also attached to the spectrograph calibration system. For exposure times compatible

with the spectrograph control software (~30 sec), the output of the astro-comb was attenuated by 20 dB to

avoid saturating the CCD.
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Figure 5.10 -- Extracted one dimensional spectrum of full astro-comb spectrum. The FWHM of the spectrum is
approximately 10 nm, with approximately 50,000 peak counts in 10 seconds on the spectrograph. Inset: example of
filtered comb lines with mode spacing of 51 GHz. The diode reference laser is used for characterization of the filter
cavity transmission profile described in the text.

To achieve -10 cm/s precision required for detection and characterization of Earth-like exoplanets over

several year observation times, an in-situ technique may be used to characterize the cavity filter [100] and

determine the apparent shift in the center of gravity of each astro-comb line from its nominal position

caused by cavity dispersion and transmission resonance asymmetry and thus recover accurate astro-comb

calibrations. Briefly, the scanned cavity technique uses a diode laser phase locked to the stabilized source

comb to which the cavity filter is then locked using the Pound-Drever-Hall technique. After initially

aligning the comb lines from the source comb and the transmission resonances of the cavity filter, the



offset frequency between the diode laser and frequency comb is changed in discrete steps and the

spectrum transmitted through the cavity is recorded. Broadband characterization of an astro-comb system

is necessary to ensure the astro-comb spectrum is fully understood prior to its use as a calibrator.
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Figure 5.11 - Offset of recovered astro-comb line center caused by misalignment of filter cavity transmission
maximum and the source comb lines as measured by the TRES spectrograph (black circles). Error bars at +/-15
cm/s on the recovered offset correspond to the uncertainty of the laser diode frequency used to lock the filter cavity
and astro-comb (blue dotted lines). Breaks in the data set at 417 nm and again at 422 nm correspond to transitions
between spectrograph orders as recovered from the CCD. The glitch at 408 nm is caused by amplitude to phase
conversion by slight saturation of the CCD by the laser diode. Increased fluctuation in the trace above 424 nm and
below 402 rnm is due to the reduced signal to noise ratio at the edges of the astro-comb spectrum. The offset of
recovered astro-comb lines has been low pass filtered to remove oscillations caused by mild etalon effects from the
mirror substrates, see text above.

The scanned cavity calibration technique has been employed with the system installed at the

FLWO, Fig. 5.11. From the data generated from the scanned cavity measurement data, good agreement is

found between the measured group delay dispersion (GDD) and that expected from the mirrors, Fig.

5.3(B), along with few mRad oscillations in the recovered offset due to weak etalon effects between the

mirror substrates. Because the etalon effect can be straightforwardly circumvented by using wedged

substrates for the cavity filter mirrors, the offset data in Fig. 5.11 has been low pass filtered. A four point

binomial filter with a cut-off frequency of 0.1 nm' was chosen for removal of the high frequency

oscillations to reveal the true potential of the system. Incorporation of the calibration data into

astronomical observations will also require a robust model of the cavity transmission asymmetry, which

was not accounted for in Fig. 5.11, as well as the line to line amplitude variation of the source comb.
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Complete analysis of the wavelength to pixel position mapping is a very complex process. A

robust model of propagation from the spectrograph fiber inlet to the CCD must be constructed.

Construction of the propagation model is in addition to reduction of data from each CCD exposure to one-

dimensional data from the original two-dimensional format shown in figure 5.8. At several megabytes

per file, this is not a trivial process, though preliminary results from the data reduction are promising.

Plotted in Fig 5.12 are both the average change in radial velocity of the astro-comb spectrum as

reported by the spectrograph and the standard deviation. Since apparent radial velocity is the quantity

which will be used to eventually find extra-solar planets, it is natural to use it also as the basis for

determining the precision of calibration provided by the astro-comb. The upper trace in Fig. 5.12 is

generated by comparison of sequential exposures of the astro-comb spectrum, specifically determination

of the locations of each comb line in the astro-comb spectrum on the CCD by fitting each peak with a

number of Hermite Gaussian functions to determine the peak center. Use of such a high order fit is

warranted due to the chromatic aberrations in the spectrographs point spread function. The locations are

determined first in terms of their pixel location on the CCD and then in terms of a standard pixel to CCD

pixel mapping provided by a Thorium Argon lamp spectrum. Once the astro-comb system has been

qualified, the pixel to wavelength mapping will be provided solely by the astro-comb, but for

qualification purposes, using a single mapping for all of the exposures allows determination of the

movement of each peak in terms of apparent radial velocity. Changes in the peak locations are mapped to

an apparent radial velocity over the entire astro-comb spectrum using

v (5.19)
N .1 An

where &l is the fractional change in comb line location, A is the wavelength of each comb line, N is the

number of comb lines in the recovered astro comb spectrum, and c is the speed of light. Since the astro-

comb spectrum is stabilized to a rubidium reference clock, which provides a level of stability for

exceeding that necessary for finding Earth like planets around Sun like stars, the drifts reported in Fig.

5.12 are solely due to drifts in the spectrograph. Typically these drifts are due to temperature and



pressure changes in the spectrograph which cannot be corrected through measurement of temperatures

and pressures inside the spectrograph. Based on comparisons with barometric pressure data for the
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Figure 5.12 - The upper plot reports the average effective radial velocity reported by the TRES spectrograph by
exposure to the astro-comb spectrum. The lower bound for calibration precision can be made using (5.2)
which reports the standard deviation of the reported radial velocity. The first astro-comb spectrum exposure is
chosen as the reference for the comparison.

same time period, the large variations seen in the effective radial velocity are most likely due to pressure

variations in the spectrograph enclosure which has no pressure stabilization.

In terms of spectrograph calibration, the standard deviation reported by the lower trace of Fig.

5.12 is a more important indicator of the performance of the astro-comb system. Application of the

changes in peak locations reported by the astro comb spectrum to the spectrograph CCD pixel to



wavelength mapping will be in error by an amount indicated by the plot of standard deviation if only the

average value of apparent radial velocity is used for correction. For comparison, thorium argon lamps

provide approximately 1 m/s calibration precision, while Fig. 5.12 reports nearly 0.6 m/s calibration

precision. In comparison with the unstabilized case, reported in the upper trace of figure 5.12, the lower

trace in the same figure represents an improvement in calibration precision of approximately 50.

5.7. Conclusion and future work

Development of visible wavelength frequency combs with wide mode spacing will have broad

applicability as high-accuracy and high-stability wavelength calibrators for astrophysical spectrographs.

The absence of broadband laser materials in the 400-600 nm range leaves nonlinear frequency conversion

as the means to realize such wavelength calibrators. A frequency-doubled Ti:Sapphire laser frequency

comb was used to provide a tunable visible wavelength astro-comb operating near 420 nm, with a spectral

line spacing variable over tens of GHz (up to 51 GHz in the present demonstration), a usable spectrum of

15 nm, and an output power of up to 20 nW per line. Systematic shifts in the resulting astro-comb will

not limit the final calibration accuracy [100]. Long term operation of astro combs at telescope

installations will also require extremely robust cavity to comb alignment methods. The dither locking

scheme outlined in detail above is the most robust method for maintaining this alignment, although

careful integration of the locking system with the overall comb line filtering design is necessary.

Since the wavelength region best suited to exoplanet discovery using the radial velocity method is

dependent on many factors, the most broadband astro-comb calibrator design will likely receive the most

use. Further, since calibration precision and radial velocity shift sensitivity scale with the square root of

the calibration source bandwidth, increasing the nonlinear conversion bandwidth is one of the most

important upcoming tasks. To generate an optical spectrum useful for spectrograph calibration in the

visible band exceeding 200 nm can only be achieved currently using an unreferenced etalon [106]. The

ideal solution for using a frequency comb as a calibrator seems to be something similar to the system

constructed by Quinlan et al [49]. In essence, a high power narrowband frequency comb is filtered using
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two Fabry-Perot filters to achieve >60 dB side mode suppression prior to amplification and broadening in

a photonic crystal fiber. Using two filter cavities is attractive because the side mode suppression prior to

spectral broadening can be very high. The disadvantage of the approach is the increased system

complexity and the possibility of uneven power distribution of power in the spectral broadening process.

A recent publication by Chang et al [107] suggested that slight phase errors between the two sidebands of

the main transmitted comb lines would be transformed into a much larger power asymmetry during the

broadening process. Sensitivity to slight side mode asymmetries in the optical spectrum used for spectral

broadening was noted in the experiments by Quinlan, et al, though currently this remains the most

promising approach.
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Chapter 6

Optical measurement of mode-locked laser
pulse train timing jitter

6.1 Introduction

It has been known for some time that the steady state pulse propagating inside a mode-locked laser is the

optical equivalent of a mechanical flywheel. The ultrashort pulse duration, approaching a few optical

cycles, drastically reduces high frequency pulse position fluctuations caused by unavoidable spontaneous

emission noise resulting in emitted pulse trains with unprecedented homogeneity of their pulse-to-pulse

time spacing. Here we show that optical pulse trains from Kerr lens mode-locked Ti:Sapphire lasers

exhibit the lowest high frequency phase noise and integrated timing jitter of any oscillator known today.

By measuring the phase error between phase locked optical pulse trains from two identical 10-fs

Ti: Sapphire lasers, we demonstrate that the pulse train phase noise of each individual laser is below -203

dBc/Hz for offset frequencies greater than 1 MHz. This constitutes the lowest high frequency phase noise

ever recorded and results in an integrated timing error between two tightly synchronized Ti:Sapphire

lasers of less than 13 attoseconds, measured over the entire Nyquist bandwidth. The dominant noise

source is conversion of pump laser relative intensity noise (RIN) into phase noise, suggesting that the

currently observed phase noise can be further reduced by improvements in pump laser technology. Such a

highly uniform train of pulses from mode-locked lasers enables new science and technology at

unprecedented levels, such as synchronization of pump-probe experiments which measure evolution
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dynamics of chemical [108,109], biological and atomic processes [17,110] evolving on femtosecond and

attosecond timescales. The ultra low timing jitter of such pulse trains also allows photonic analog to

digital conversion of mid IR waveforms with up to 6 bits of resolution [111]. Further parameter

optimization of the laser dynamics can be used to reduce timing jitter originating from the Gordon-Haus

effect [112] and self-steepening [113]. With those improvements the integrated timing error from standard

Kerr lens mode-locked Ti:Sapphire lasers may be reduced to the sub-attosecond level.

To understand the impact of the low phase noise measurement result and how it was

accomplished, this chapter will begin with a general discussion of mode-locked laser pulse train stability

as compared to other highly stable oscillators, as well as two of the main limitations to achieving zero

phase noise. Also included is a review and analysis of the non-linear optical processes necessary for

balanced optical cross correlation and as well as lower limits on phase noise detection capability. A

description of the measurement setup used for this experiment follows with analysis of the results and

possible improvements for the future.

6.2 Low phase noise oscillators

The advent of femtosecond laser frequency combs [114] has revolutionized frequency metrology in the

last 10 years and with it a wide variety of disciplines ranging from astrophysics and the search for

exoplanets [3,4,98] to precision spectroscopy [62,115] and most recently attosecond science [116,117].

Optical atomic clocks have also been realized with fractional frequency instabilities below 10-16 in only a

few seconds of averaging [1,64]. The existence of a well defined frequency comb is due to the pristine

temporal periodicity of the pulse envelope of femtosecond laser pulse trains and a well defined carrier-

phase evolution from pulse to pulse, however the latter is not important for this work. As with any

oscillator the translation invariance of the steady state oscillation with respect to pulse position or carrier

phase leads to a Brownian motion like diffusion of the pulse position and phase. It can be shown [118]

that the fundamental spontaneous emission noise of the gain medium compensating for output coupling

and internal losses of a Kerr Lens mode-locked laser generating soliton like pulses of under 10 fs duration
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is given by

d 2 ) r 2 2 hv
6( --- r (6.1)

dt 6 Ep,

where At is the offset of the pulses from their nominal time locations which are equal to multiples of the

roundtrip time of the pulses in the cavity, T the full width at half maximum pulse width divided by 1.76,

Ep the intracavity pulse energy, Tc the cavity decay time and hv the quantum energy of the laser photons.

The phase noise of a harmonic co of the microwave signal generated by detection of the pulse stream is

given by A#=ot. The lowest phase noise oscillators demonstrated to date have been microwave systems

based on large (-5 cm), precisely grown, sapphire crystals operating at 10 GHz to take advantage of the

anomalously low absorption of electromagnetic energy in sapphire at that frequency [20]. As a reference

for the current state of the art, a single sideband (SSB) phase noise of -190 dBe at 1 kHz offset is

predicted for the next generation of cryogenically cooled sapphire loaded microwave cavity

oscillators [119].

The rate at which mode-locked lasers emit pulses is related to the inverse length of the optical

cavity. As a result, phase noise in the emitted pulse train can be generated not only by spontaneous

emission, but also by environmental perturbations of the cavity length including mirror vibrations, as well

as slight laser cavity misalignments leading to intracavity power fluctuations. These power fluctuations,

in addition to those caused by relative intensity noise from the pump laser, are transformed into phase

noise through the self-steepening effect. The Gordon-Haus effect may also lead to increased timing jitter

through center frequency fluctuations of the optical spectrum of the laser pulse that which are transformed

into timing fluctuations via the intracavity dispersion. Extremely short pulse lasers may be able to

minimize the contribution of Gordon-Haus jitter by completely filling the gain bandwidth of the

Ti:Sapphire crystal, and careful choice of the laser operating point can minimize the contribution from

self steepening. Assuming careful elimination of such noise sources and conversion mechanisms,

spontaneous emission from the gain medium directly driving the pulse diffusion according to the

discussion above will remain the only noise source resulting in a single-side band phase noise of a
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microwave component of the photo-detected pulse train at frequency o is,

L(f)= w" 7  2 hv 2 (6.2)
12 EPr (2rrf)

Wheref is the offset frequency from line center.. Theoretical estimates of the phase noise of pulse trains

from solid-state mode-locked lasers were predicted to be below -190 dBc for offset frequencies greater

than 1 kHz assuming a harmonic at 10 GHz [21,120] but such low levels of phase noise have never been

measured until this work.

6.3 Analysis of the balanced optical cross correlator performance
with short pulses

Measurement of phase noise in optical pulse trains can be difficult if the optical pulse train has been

converted to a radio frequency signal [121,122], independent of the challenge of making a low noise

optical to microwave conversion [23,123]. RF domain techniques are limited by thermal noise in

terminating resistors and the signal level available for input to the phase noise measurement system to a

level of about -192 dBe with discriminator slopes of nearly 110 V/Rad [20,124]. Balanced optical cross

correlation [125-127], Fig. 6.1, avoids the photodetection process, allowing direct measurement of the

optical pulse train phase noise with phase noise discrimination slopes usually exceeding 1 kV/Rad. The

optical cross correlator performs sum frequency generation (SFG) between orthogonally polarized pulses

from the two femtosecond lasers with the efficiency of the up-conversion process dependent on the

temporal overlap of the two pulses in a Beta Barium Borate (BBO) crystal. By aligning the extraordinary

axis of the BBO crystal to a different input polarization in each arm and noting that the group velocity in

the BBO crystal is different in each polarization axis, the two arms of the cross correlator are forced to

require different initial time offsets between the orthogonally polarized pulses for optimal conversion, Fig.

6.1.
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Figure 6.1 -General method for detecting time of arrival difference between optical pulses using Type-LI sum

frequency generation (SFG) as a cross correlation mechanism. Linearly polarized pulses from lasers A and B are

cross polarized prior to combination at the beamsplitter. The pulses then travel to the two BBO crystals where,

depending on the difference in the time of their arrival at the BBO crystal, Ar, proportionally more or less sum

frequency generation will occur. Note that the orientation of the crystal axis (indicating the polarization which will

experience increased index of refraction and lower group velocity) is different in each of the two arms. This

difference forces the two arms of the cross correlator to require different initial time offsets for maximum SFG,

generating the characteristic timing error detection signal in the upper right hand corner of the diagram.

Using the output of the cross correlator and balanced detector (Thorlabs PDB120A, modified for

36 kM transimpedance gain with Hammamatsu S5712 photodiodes) as the phase error discriminator in a

phase locked loop, the voltage output of the balanced detector is measured when the loop is locked to

determine the relative phase error between the two optical pulse trains. The measurement floor of

balanced optical cross correlation is ideally set by shot noise of the incident pulse train converted into

apparent phase error by the transimpedance amplifier and discriminator slope, however here the input

current noise of the balanced detector limits the noise floor to -203 dBe/Hz.

While the mathematical basis for operation of the balanced optical cross correlator is described
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in [127], the operating regime described in that work is one of a long pulse laser and a relatively short

crystal where the effect of group velocity mismatch between the two pulses is small. As a result, the

cross correlation performed in each BBO crystal is accounted for as static time offset in each arm,

allowing the conversion to be evaluated by an overlap integral as a function of the time offset due to

phase noise. In this work the pulse durations are much shorter than the time shift caused by the difference

in group velocity of the two crystal axes. The group delay provided by the orthogonally oriented crystals

is ~140 fs in total and pulses at the input to the crystal are no longer than 50 fs, such that it is no longer an

appropriate approximation to take the cross correlation as a static time offset.

Because of the difference in operating regime, a separate analysis is warranted. The first portion

of the following analysis will account for the temporal effects of the conversion process. The second

portion of the analysis will account for the spatial effects of the conversion. Finally suggestions will be

given for how best to optimize the conversion process for highest timing or phase error sensitivity.

6.3.1 Temporal conversion analysis

To begin, below are expressions for the three fields involved in sum frequency generation

El (z, t)= -A A(z, t)exp[i(klz - C91t)]+ C.C. (6.3)
2

E2 (z,t)= A2 (z,t)exp[i(k2z - j 2t)]+ C.c. (6.4)
2

E3 (zt)= -A 3 (z, t)exp [i(k3 z- a3 t)] + c.c. (6.5)
2

where Ai are the complex pulse amplitudes, k, are the propagation vectors in the BBO crystal and wi are

the center frequency of each pulse, with W=2w1o=2 2. To have an efficient conversion process the BBO

crystal should be cut for phase matched Type-II second harmonic generation (SHG) at the center

wavelength of the Ti:Sapphire spectra, ensuring that the refractive index at the fundamental and second

harmonic wavelength are equal, k (co) = k (2o). By assuming perfect phase matching, the coupled wave

equations can be written as
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aA1(z ) - jcoIdft A3 (z,t)A2 (z, t) (6.6)
az cn,

82(z,t) - ico2d 1 A, (z, t) A* (z,t) (6.7)
cBz cn23

aA3(zt) - 3deffA (z,t)A(z, t) (6.8)
z cn3

In the low conversion limit (<1%), the usual assumption is that the input fields are constant allowing

elimination of the first two equations and ignoring any back conversion of the SHG field to the two input

fields. To account for the different group velocity experienced in each polarization for the input pulses,

as well as the bandwidth of the input pulses, the time variable is changed to, t12 = t - z/v,. For

simplicity of analysis the pulse width from both lasers and the pulse energy will be assumed to be equal.

To simplify notation in the following expressions, the difference in group velocity between the two input

fields is

1 1

= Avg (6.9)
v, vg2

where there is no account made for the difference between the group velocity of the two input fields and

the output field because back conversion is ignored. Again for simplicity of the following analysis the

amplitude of pulses from each laser are modeled as Gaussian functions, specifically

A, (z, t) = a, exp - (6.10)

with full width at half maximum pulse widths of 2VIn 2T and amplitudes properly normalized to the

pulse energy Ep by

a=A(0,t 2 E (6.11)
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Rewriting Eq.(6.8) using the differenced group velocity the conversion for both arms of the cross

correlator can be expressed as

aA3L(Z = - Coff A, ,t +Ar 2 0,t+ Ar (6.12)
8z cnAvg O Avg

aA3R (z,')=- 0,3dtff A Z A A O,t-Z -Ar (6.13)
az cn3  Avg Avg

where the time error between the pulses due to phase noise, Ar, has been explicitly included. Integrating

with respect to z gives the instantaneous pulse power at the crystal output

2

PL,R (Z) 3LR dz n3 A (6.14)
0 az 2)7

including the effective cross sectional area of the beam within the crystal as Aef, refractive index of the

crystal at the up converted wavelength, n3 and the free space impedance rq. Integrating again over the

entire pulse duration gives the pulse energy of the converted pulse.

Ey =(f PL,Rdt (6.15)

Evaluating the second integral over a time window much longer than the duration of the two input pulses

is reasonable because the detector response time is slow with respect to the duration of the pulse and will

only measure the average power of the resulting converted pulse train. Appendix A.4.2 cautions against

using the difference in timescales as an excuse for imprecise detector placement.

After passing through the BBO crystal, bandpass filters are used to remove the unconverted

portion of the beams at the fundamental wavelength. The resulting power incident on each photodiode of

the balanced detector for the left and right channels for a crystal of length L will be

Ar AvA-r-L AvEw3dg 2 TEcd

Per (Ar)f p3 R (6.16)
_f L52T L 2AvT n n2c Aeffn 3

110



~ Ar AvAr+ L AvEwOsdef T __

PRA fRop 3  erR ' T- - (6.17)
_ Ir T LN7 hAvgT nn 2c , Aeffn 3

The balanced photodetector will convert the incident optical power into currents and ultimately an output

voltage proportional to the difference in photo-current similar to the inset in Fig. 6.1. The difference in

powers is the phase error discriminator function used to phase lock the two pulse trains. The slope of the

discriminator near Ar=O and the time window over which there is a linear voltage to time or phase error

relationship is the characteristic quantity of balanced optical cross correlation and is what allows such a

highly sensitive measurement of the optical pulse train phase noise. In terms of the incident pulse energy,

the discriminator slope is

exp A erf AvAr+L--erf AvAr - L

2T 2 ) Av, fAvT (6.18)

_= = 8( Avga 3d r EEfR +er eXp - L, + AviAr L - AvA r
aA r c f ) Ann3nK T) UTTAv, [2TAvg

(2 2
L - AvAr r AvA r - L L, + Av,A r AvgAr +L

+exp rTAv, e 2AvgT - rAv, ef 2AvgT

Evaluating (6.18) at AT=O provides considerable clarity on how to best optimize the cross correlator

1-= -= 16 Avw 3deff erf EE1-fexp - (6.19)
8Ar c 1 Af n n2n3  Av T ) AvT

The error function and exponential terms in (6.19) limit the benefit of using a non-linear crystal which is

significantly longer than the interaction length of the two pulses, AvgT. The expression also indicates that

there is no penalty for using a crystal which is longer than the interaction length, other than extra cost, and

in fact a longer crystal appears to make full use of the available pulse energy.

6.3.2 Spatial conversion analysis

The previous analysis only considered the temporal walkoff or group velocity mismatch (GVM) of the

two input pulses due to the difference in group velocity in the two principal axis of the BBO crystal.

GVM takes account of the pulse bandwidth, changing the shape of the cross correlator output. Spatial
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walkoff of the two input beams occurs inside the nonlinear crystal as well when the crystal axis is not

aligned either with the input beams k-vector or in a plane normal to the input beams. If neither of these

two conditions is satisfied (which is the definition of a non-critically phase matched crystal), the input

beam polarized in the plane of the crystal axis, as well as the converted field will propagate away from

one another and away from the second input field at a small angle to the input k-vector, which will result

in a further reduction in conversion efficiency. Typical walkoff angles, a, are in the range of 100 mRad,

with a value of 75 mRad between the two input fields for Type II SFG in BBO at 800 nm.

As before, due to the low conversion efficiency, only the walkoff between the two input fields

will be considered. Beginning with the spatial distribution of the field amplitudes written as

E,(x,y,z)=El 4I exp - 2 (6.20)
w1() we, 6.0

2
E 2 (x, y, z)=E 2 exp _ 2 (6.21)

W2 (Z) Wo2

where wo, 02 are the waists of the two input beams, and w,2(z) are given by equation (2.30) in the

propagation direction, z. Spatial walkoff will be modeled as a transverse motion of one of the beams, da,

over a propagation distance z

da = za (6.22)

resulting in an efficiency factor y over the entire crystal length. In reality, there must also be a reduction

in the effective electric field strength, however, this reduction will be directly proportional to the walkoff

angle and can be ignored. The evolution of the beam diameter due to diffraction will also be ignored in

the following analysis because the confocal parameter, which defines the distance over which a beam will

maintain at least half its peak intensity, will generally be much longer than the spatial walkoff distance.

The spatial overlap of the two beams in the BBO crystal can be expressed as
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X2 +
JJJEE2 eXP - 2  exp

( 0 WO
7 = (6.23)

Jfj.

where equal size beam waists have been assumed. Evaluating (6.23) expression yields

7 = -erf 2w f
2a z 2 WO

(6.24)

suggesting an effective length of 2 2/awo equal to -20 gm for a 6pm beam waist at the crystal input

face. Equation (6.24) serves as an interaction strength factor in the product of the two fields in Eq. (6.12)

and (6.13). Unfortunately, these new equations cannot be integrated, so (6.24) will be approximated as

/ Z 2 2
7y~ exp K -_22 (6.25)

The resulting difference in converted power is accurate to within -10% for crystal lengths not exceeding

4 2/awo, beyond which Eq. (6.25) will underestimate the overlap by as much as 75% depending on

crystal length (see Figure 6.2).

i I I
0 50 100 150 200 250 300 350 400 450 500

Propagation distance (um)

Figure 6.2 - Eq. (6.24) and (6.25) are drawn in the left plot
mRad. After integrating Eq (6.24). and (6.25) with respect to
between the exact overlap function and the approximation is
angles. While the divergence of the error plot may indicate a

150 mRad
. ' ' --- 75 mRad

-.... 35 mRad

---- 15mRad

0 50 100 150 200 250 300 350 400 450 500
Propagation Distance (um)

for a beam waist of 6 pm and walk off angle of 15
z and squaring the result, the percentage difference
plotted on the right for several different walk off
poor approximation, note that as the error function

diverges towards gross underestimation, the product of the two electric fields has been reduced by a factor of 10,
resulting in a converted power reduction of 100.
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The output power from each channel of the cross correlator is now

-1 2

rL (Ar) = V2-erf ;rArwo +erf L rAvgArwo - L,(2aT2Av +'2(
L T 4aT2 Avg +22wjj L AVgTwo 4aT2 Avg +2 0

-2

z K2AvgArw
2 +L(2aT2Av +x2

P,(Ar- eI - erf I (6.27)
T 4aT 2 Av2,Z 2w2 j [ zAvjTwo 4aT 2 Avg + 22w2

f 2 q 2g
E d 7J )2 yAv'wo 2aAr 2v

g/I=8Tfrzl Ede 2 V 2 ex 2p 2 - (6.28)
nn 2  n3Ae 2aT2 Av + 2 2aT2 Av +u 2

with the peak slope of the cross correlator output now

(PL Rr[FC 4B C2  -C 4AA_ 4B +C2 C (6.29)
F Ar D)erf - +WE E2 erfj + D erf[] J eP E2 )e J

A =xwo

B=,z
2Av W2

C = L (2aT 2 Av + ;2w2) (6.30)

D=T 4aT2 Av 2 + 22

E =)xT AvWO 4aT 2 Av2 + 2n 2 2

To gain some insight into the results provided by these equations, it is instructive to vary the

parameters which are most accessible experimentally. Walkoff angle is set by the phase matching

condition of the chosen crystal, and since BBO has the largest phase matching bandwidth of any non-

linear material in the visible region, fixing the walkoff angle at 75 mRad. The same is true for the group

velocity difference, Avg and the nonlinear coefficient, dff, leaving input pulse width, beam waist at the

crystal input and the length of the nonlinear crystal as the readily variable experimental parameters.
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Figure 6.3 - Plots of the difference in converted power between the two arms of the cross correlator. The plot on the
left assumes no spatial walkoff while the plot on the right includes the effect of walkoff as described in the text.
Units in the z-direction are log I0(uW/fs). Both plots assume the 75 mRad walkoff angle for BBO and 1 nJ input
pulse energies and 10 fs pulses.

As can be seen in the left hand plot of Fig. 6.2 and 6.3, which plots the difference in converted

power in each arm of the cross correlator against both input beam waist and crystal length for the case of

no spatial walkoff, the relationship behaves as expected. Making the crystal longer increases the slope of

the phase discriminator, and there is no penalty for making the focus of the input beam tighter. In the

case which includes spatial walkoff, there is an optimum focal length which maximizes the intensity of

the input beams, yet minimizes the impact of the spatial walkoff. For SHG in BBO near 800 nm the

optimum focal waist corresponds to an input beam waist of ~10 um for a 10 fs pulse. Interestingly, the

optimum values shifts to larger input beam sizes for longer pulses, Figure 6.3. The reason for the shift of

the optimal value can be understood directly from the spatial extent of the pulses. At 10 fs, a pulse exists

over a distance of 3 pm, which is much less than the effective walkoff distance of ~40 gm. At 100 fs, the

pulse exists over a distance comparable to the walkoff dimension, meaning that with a tight enough focus

only a fraction of the pulses will be fully overlapped. To ensure full overlap over a longer distance, a

looser focus is required. Note, however, that the plot on the right side of Fig. 6.3 is a very smooth

function, varying over only 2 dB, so the dependence of the optimal beam waist on input pulse width is a

weak effect.
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Figure 6.4 - Plots of the difference in converted power between the two arms of the cross correlator. The plot on the
left assumes no spatial walkoff while the plot on the right includes the effect of walkoff as described in the text.
Units in the z-direction are loglO(uW/fs). Both plots assume the 75 mRad walkoff angle for BBO and 1 nJ input
pulse energies and 100 fs pulses.

6.3.3 Ultimate measurement sensitivity

Further analysis of the balanced optical cross correlation technique can be made in terms of achievable

sensitivity of the method by determining the minimum detectable timing error with respect to both shot

noise and electronic noise. Optically referred noise at the photodiode surface isr r G R " ](6.31)
TIM =F - L +G,Gr R)

which reports power difference per pulse arrival time difference in fs/rtHz, with the amplifier output

voltage noise vn reduced by the circuit voltage gain, G, and transimpedance gain, GT, and photodiode

responsivity R. In the ideal case, the phase noise floor of balanced optical cross correlation is set by the

shot noise of the incident pulses when the phase locked loop is closed. If the optical portion of the cross

correlator has been designed properly, the shot noise level will correspond to an average power equal to

the square root sum of the peak converted power from each arm of the cross correlator when the lasers are

phase locked together (i.e. output power at Ar=O for both arms). Depending on how the detector is

designed, the crossover from electronic noise to shot noise will occur at different power levels. In

Appendix A there is a detailed summary of the design process for such a detector as well as a discussion

of the design tradeoffs which occur depending on the goals of the measurement.
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For a meaningful comparison, Eq. (6.31) is modified to the form below to report the resulting

single sideband white phase noise

L, (f) = T2 (f) (6.32)

Figure 6.4 plots the relationship of Eq.(6.32) to the measurement bandwidth as defined by equation (A.4)

and the input pulse energy from the two lasers to the resulting noise floor in dBc/Hz for a 10 GHz carrier.

Using the parameters from this experiment of 10 fs pulses, a 400 gm crystal with a 10 gm focus at the

face of the input crystal, and assuming a detector output noise level of 1 piV/rtHz is achievable

independent of detector configuration, a prediction of the possible measurement sensitivity can be made.
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Figure 6.5 - Plot of the predicted noise floor as a function of detector bandwidth and cross correlator input pulse
energy, with z-axis units of dBc/Hz. Laser and cross correlator operating parameters assume 6 pm beam waist at the
BBO input face, 10 fs pulses, a 400 pm long crystal, 3.9 GHz GBP amplifier with a gain of 25 voltage amplifier as a
second stage, 0.35 A/W responsivity photodiodes, and 6 pF effective input capacitance at the transimpedance
amplifier inverting input pin. The lower left hand portion of the plot is dominated by the detector noise floor, while
the upper left hand corner is shot noise limited.

The noise floor reported in Fig. 6.4 is extremely low and actually operating the measurement

system at these low levels would be challenging. One of the main limitations to using a detection system

with a sensitivity capable of -210 dBc/Hz or lower is the feedback loop bandwidth necessary to keep the

two pulse trains phase locked.
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The dynamic range of most high speed detectors is only +/- 2.5 volts, which for a phase error

sensitivity of 1 V/fs implies a linear output range of only +/- 2.5 fs. Put another way, the integrated RMS

phase error between the pulse trains when they are phase locked together cannot be more than 5 fs,

typically 0.5 fs as a maximum to avoid regularly breaking the phase lock. If the phase error signal

exceeds the linear region, the effective gain of the loop is reduced resulting in destabilization of the

feedback loop due to reduced phase margin. Achieving such a high level of synchronization means

significant suppression of the phase noise between the two pulse trains, and since the gain of most

feedback loops varies approximately as 1/f to 1/f2, feedback gain exceeding 1000 at a frequency of 1 kHz

is very challenging to implement using femtosecond lasers (Appendix B).

6.3.4 Misalignment of principal axes

One final aspect of the cross correlation scheme worth mentioning is the extinction ratio between Type-I

and Type-II phase matching. Ideally, the BBO crystal is cut such that for a linearly polarized beam, there

should be no Type-I SHG generated from either beam. The intent is to remove as much background

signal from the measurement as possible. However several factors conspire to allow a finite amount of

Type-I phase matching to occur as well as a small amount of Type-II phase matching for a single beam.

These factors include, degree of polarization of both lasers are typically 100:1, imperfectly orthogonal

polarization alignment between the beams from the two lasers, and imperfectly cut BBO crystals. All

three factors combine to create as many as five separate fields to be incident on the photodetector: Type I

SHG from both pulse trains individually, Type-II SHG from both pulse trains individually and Type-I

from the cross correlation of both pulse trains. The first two fields should be extremely small. The

second two however could easily be as much as 1% of the main cross correlation spectrum. These

individual Type-II SHG fields will interfere with each other and with the main cross correlation field on

the photodiode, generating the beat frequencies seen in Fig. 6.11 at 20, 40 and 60 MHz. While these

signals are generally not a problem as their origin is easily identified, they reduce the CMRR of the

detector by misaligning the power balance on the detector. Ensuring that the polarizations of the beams
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from each laser are as orthogonal as possible is the best solution to minimize the amplitude of these

parasitic fields.

6.4 Experimental setup

The experimental setup consisted of two Kerr lens mode-locked Ti:Sapphire lasers, both with repetition

rates of 82.6 MHz, using nearly identical optical components. The main differences between the two

lasers was a slight difference in the length of the laser crystals (2.2 mm vs 2.28 mm) and corresponding

differences in the amount of fused silica used for dispersion compensation, resulting in slightly different

optical spectra, Figure 6.7. Both lasers emitted between 100 and 120 mW of power with no apparent

dependence on optical output power in the measured results. Output from both lasers was combined in

the cross correlator using a broadband dielectric beamsplitter of 3 mm thickness. Prior to the beamsplitter

the polarization of one laser is rotated using a pair of silver mirrors in a periscope. The two resulting

cross polarized beams were directed into two 400 um long BBO crystals after focusing by 12.7 mm EFL

parabolic mirrors. The extraordinary axis of the each BBO crystal was oriented at a 90 deg angle to one

another so that each arm of the cross correlator would require a different time offset between the pulses to

achieve maximum conversion. Each arm therefore performs a cross correlation between the two input

pulses, generating a third pulse at 400 nm with an amplitude and relative phase related to the temporal

and spatial overlap of the two pulses in each crystal. Because the slope of the phase error discriminator

directly determines the level of the final result of this measurement, the slope was determined both before

and after the two pulse trains were phase locked together as well as while the phase lock was closed.

Before and after the loop is closed, measurement of the slope is achieved by detuning the repetition rates

of the lasers slightly (3 Hz) to allow the pulses to slowly pass through on another performing a repeating
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Figure 6.6 -- The output from two nearly identical Ti:Sapphire lasers are spatially overlapped using a beamsplitter
(BS). The two resulting beams are composed of orthogonally polarized pulses from both lasers which are focused
into two separate 400 um long BBO crystals for Type II second harmonic generation. Orthogonal orientation of the
extraordinary axis of the two BBO crystals ensures that equal upconversion efficiency occurs only when the two
pulses are exactly overlapped. Peak conversion from each arm of the cross correlator is typically 100 uW, which is
collected by a balanced detector to cancel intensity fluctuations of the two lasers. The resulting error signal is
characterized by a phase error to voltage conversion of 22.1 kV/Rad, +/- 1.0 kV/Rad for a 10 GHz carrier.

cross correlation and recording the output of the balanced detector using an oscilloscope [128]. When the

pulse trains are phase locked together, a small controlled time delay is injected to one of the pulse trains

prior to the beamsplitter and coherently detected at the output of the balanced detector using a network

analyzer. The mean value determined from these three measurements was 22.1 kV/Rad +/-1.0 kV/Rad,

resulting in a measurement uncertainty of +/-0.4 dBc/Hz and +/-0.6 as for the resulting phase and

integrated timing error measurements, respectively, Fig. 6.14. The following sections will discuss the two

techniques for characterizing the phase error slope discriminator as well as the laser's RIN to phase noise

sensitivity.
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Figure 6.7 -- Optical spectrum from the two 80 MHz Ti:Sapphire lasers. The Fourier transfonn limited pulse width
of both spectra is -10 fs.

6.5 Characterization of the phase error discriminator slope

A typical characterization trace from the cross correlator is shown in the inset of Figures 6.1 and 6.6

above. The trace is characterized primarily by a very narrow steep slope which occurs when the two

pulses from both lasers enter the two crystals at the same time. Slope sensitivities for the cross correlator

are typically in excess of 10 kV/Rad, assuming a 10 GHz carrier. The linear range for this high slope

region is typically 100 pRadians, again considering a 10 GHz carrier. To measure the frequency

spectrum of phase error between the two locked pulse trains, the voltage output from the balanced

detector is fed into both a voltage spectrum analyzer to determine the phase error between the lasers and

to a servo controller to modify the voltage signal so that it may be used to phase lock the lasers. Phase

locking of the two lasers is achieved through length modulation of one of the lasers using a piezo

mounted mirror in one of the lasers. The phase error voltage signal was measured using two devices, an

Agilent 89410 Vector Signal Analyzer (VSA) for the 100 Hz to 10 MHz frequency range and an Agilent

E4407B ESA for the 10 MHz to 90 MHz range.
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Because of the alignment sensitivity of the cross correlator, two methods were employed to

determine the time error to voltage conversion. Before and after phase locking the two pulse trains

together for the actual measurement, the two pulse trains were individually phase locked to two separate
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Figure 6.8 Plot of the external piezo mirror displacement as a function of piezo modulation frequency for two
different measurement arrangements. Displacement measurements were made using both a Michaelson
interferometer and the cross correlator, with the mean and standard deviation of both results plotted for comparison.
Both data sets were generated using the same piezo drive voltage.

reference oscillators with a 3 Hz frequency difference. The two reference oscillators were phase locked

to one another using the 10 MHz timebase inputs and outputs. The 3 Hz offset allowed the phase

difference between the two pulse trains to grow at a controlled rate of 27r, three times per second.

Recording the output of the balanced detector on a digital oscilloscope allowed measurement of the cross

correlator slope, an example of which is shown in Figure 6.6. Because the portion of the output signal

from the balanced detector containing the cross correlator slope was typically only present for 100 ns of

the 0.33 s beat frequency period, determination of the cross correlator slope is susceptible to

uncompensated phase noise between all of the oscillators involved in the offset lock scheme. Phase noise

in a phase locked loop should, however, have zero mean and averaging 3-5 measurements reduced the

standard deviation to less than 10%. Regardless, due to the fact that the voltage signal from the balanced
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detector requires nearly half of the slew rate of the output amplifier, an online confirmation is in order

where the detector is not operating in such an extreme state.

- \Balanced
Detector

LaserLaser A Crystals

Networke
Analyzer Aewr

Flat Retro-
R Rfeteflecting Mirror CDB

Figure 6.9 - General setup for characterizing phase error discriminator slope (left) and pump RIN to phase error
conversion (right). On the left, the output of the network analyzer is used to directly modulate the piezo in this
setup. Due to the 50 Ohm output impedance of the analyzer, the unity transformation bandwidth is only about 10
kHz. Careful construction of the piezo and mount allowed resonance free operation to -300 kHz. On the right, the
network analyzer modulates the pump power to both lasers using AOMs. Modulation bandwidth is - MHz, and
each pump laser is modulated in turn as described in the text. For both measurements, the pulse trains are locked
with the loosest bandwidth possible to maximize the frequency range between the influence of the feedback loop
(low frequency limit) or modulation bandwidth high frequency limit).

To check the slope of the cross correlator while the loop was closed and the two pulse trains were

phase locked together using the cross correlator as the phase error discriminator, a small time delay

between the two pulse trains was introduced prior to combination of the beams at the beamsplitter. A

controlled delay was accomplished by mounting a small mirror on a piezoelectric transducer and

retroreflecting one of the pulse trains. Calibrating the displacement response of the mirror to a known

voltage signal was accomplished using an interferometer. Using the piezo mounted mirror, delays of up

to 40 as between the two pulse trains over a frequency range of I kHz to 1 MHz were possible. The slope

of the cross correlator was confirmed by comparing the mirror displacement reported by the

interferometer and that reported by the cross correlator, Figure 6.8. For the result reported here five

measurements were made using different gain settings for the phase locked loop to identify which portion

of the calibration spectrum was least affected by the loop and therefore would give the best representation

of the cross correlator response. The cross correlator slope was determined by selecting a value which

minimized the squared difference between the interferometer response and the in-loop measurement over
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the frequency range of 60 kHz to 1 MHz. Standard deviation of these three measurements was again less

than 10%. The resulting slope used in Fig. 6.14 is the mean of all three measurements (before and after

the phase noise measurement using the offset lock, and while the phase lock was closed using the

modulation technique), with the standard deviation of each assumed independent and therefore square

root summed.

6.6 Characterization of measurement method noise floor

A typical method for measuring the noise floor of an optical detection system is to block the detector at a

point in the system which only prevents the signal light from entering the detector. For example, in Fig.

6.9, this would correspond to blocking the output of lasers A and B directly at the laser output. Blocking

the measured beam far from the detector has the advantage of including the effect of any ambient light

sources in the noise floor measurement, in addition to capturing the noise level of the detector itself.

Intensity fluctuations caused by mirror vibrations or air currents or non-linearity in the photodetector are

not accounted for using the blocked detector method.

In an attempt to quantify the impact of mirror vibrations and ambient beam pointing errors on the

final phase noise measurement, the response of the balanced cross correlator was measured using only

one laser pulse train. Measuring the response of the cross correlator using one pulse train as the input

should provide an ideal calibration of the system noise spectrum, since any timing or intensity noise from

the laser source should be common mode to both arms of the correlator, leaving only environmental

perturbations to generate an output signal. The general measurement is described in Fig 6.10. The output

of one of the Ti:Sapphire lasers is split into two beams. In one of the beams a periscope is used to rotate

the polarization of the pulse train by 90 degrees to simulate the second laser source. The recombined

beams are then routed to the cross correlator for analysis. The length of the two beam paths must

obviously be kept identical, though length matching is easily achieved using the output of the cross

correlator as the length error discriminator. Measurement of the length error spectrum will reveal the

desired information about the cross correlator setup.
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One challenge of using only one mode-locked laser, is to determine the pulse time arrival to

balanced detector output voltage conversion. Since there is only one laser in this experiment, there is no

capability to force the two pulses being cross correlated to change their overlap as a function of time as

was demonstrated previously. As an alternative, the stage used to keep the two beam paths equal was

moved in a controlled way to cross correlate the two pulses. Displacement of the stage was monitored by

a second interferometer, with the voltage output of the second interferometer and the output of the

balanced detector monitored simultaneously on an oscilloscope while the stage was displaced by hand.

The resulting traces are plotted in figure 6.11 and resulted in a slope sensitivity of 405 mV/fs, which is

Balanced
detector

9-HI
Laser A
,-------ap-pol p-pol

BS1 -

BS2

-- -- -- - sc o e

Periscope s-pol
p-pol Det

e e
Laser

Figure 6.10 - Schematic of the experimental setup for measuring the noise intrinsic to the cross correlator technique.
The output of Laser A is split in half at the first beamsplitter, BS 1, which is non-polarizing and broadband by way of
being a half silvered mirror. One of the two beams remains unchanged while the second beam undergoes
polarization rotation by 90 degrees. Polarization rotation is achieved using a periscope, as shown previously in Fig.
6.6; using a periscope introduces no dispersion and is completely achromatic. The two cross polarized beams are
recombined on BS2 for entry into the cross correlator setup. The two beam paths are kept at the same length using
the feedback loop for the main experiment by controlling a piezo mounted mirror in one arm of the interferometer.
The HeNe laser is used in an interferometer to determine the displacement of the delay stage for measurement of the
time to voltage conversion of the cross correlator, see text.
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somewhat less than what was found when using both lasers. The difference in slope sensitivities is

expected however since the power into each crystal has been reduced by a factor of two, and the power

levels in each polarization is not exactly equal due to the beamsplitters.

Plotted in Fig 6.12 is the output of the cross correlator with the essentially noiseless pulse train as

the input and has several important features. First, because of the low pulse energy used in this

experiment, a large transimpedance gain was used which limited the bandwidth of the measurement to

just over 1 MHz. The white noise floor at -180 dBc/Hz is due to the electronic noise floor of the detector

Balanced detector output
Interferometer output
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-3 |
-0.050

Time (s)
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i
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Figure 6.11 - Measurement of cross correlator pulse arrival time error to voltage transfer function. The
interferometer output is used to recover the distance traveled by the stage, and thereby the time of arrival delay
between the two pulses by a simple conversion assuming a group velocity of c. The inset shows a higher resolution
image of the central region near where the cross correlation trace crosses zero volts. The fringes visible in the
balanced detector output are likely caused by a slight misalignment of the polarization axis of the two input beams
on the BBO crystal, causing a finite amount of Type I SFG in each of the two beams.

which was different from the one used for the main measurement in Fig. 6.14 (New Focus 2107 vs

modified Thorlabs 120 as described below). The bandwidth of the feedback loop used for stabilizing the

beam paths is estimated to be about 200 Hz from the servo bump. The remaining spectrum between 200
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Hz and 10 kHz is environmental noise coupled into the measurement apparatus and converted into timing

error by the cross correlator.

It is difficult to draw conclusions from Fig. 6.12 for a few reasons. First, the measurement is

actually measuring the environmental noise spectrum which is coupled into both the cross correlator and

into two beams which generate the two cross polarized pulse trains from the single input laser pulse train.

Ideally this only results in a 3 dB difference, assuming equal contributions from both the cross correlator
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Figure 6.12 - Result from measurement of the cross correlator stability by using the pulse train from one laser which
had been split into two pulse trains and recombined as if it were beams from two cross polarized lasers. The white
noise floor at -180 dBc/Hz is due to the electronic noise of the photodetector. The bandwidth of the feedback loop is
estimated to be 200 Hz.

and split beam paths. Second, the fringes present on the nominally linear central region of the cross

correlator calibration trace make confirmation of the time error to voltage conversion uncertain. For a

large deflection, the average value of the slope of the central region can be used, though for the small
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deflections expected here, the interferometric fringe slope is highly nonlinear. The average value has

been used here which may be overly conservative. Because of these uncertainties, Fig 6.12 can only be

considered as an upper limit to the intrinsic noise of the measurement setup.

6.7 Characterization of coupling between relative intensity noise and
phase noise

The effect of relative intensity noise was determined by a method nearly identical to that described

in [129], Fig. 6.9. Controlled modulation of the pump power to each laser was achieved by use of an

acousto-optic modulator. Calibration for the degree of modulation of both the pump power and the mode-

locked laser output power was achieved by coherent detection of the resulting modulation. Coherent

detection of the resulting timing error as measured by the cross correlator and balanced detector
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Figure 6.13 - Plot of pump laser intensity modulation to pulse timing shift for each laser. The transfer function has
a 1/f dependence because the induced time shifts are integrated into frequency errors. The response bandwidth of
the Ti:Sapphire gain forces the response to start reducing even faster for frequencies beyond 200 kHz. Both curves
have been reconstructed using a simple model of the phase locked loop transfer function. The slight increase in
coupling at low frequencies is likely due to a thermal refractive index change of the sapphire crystal caused by pump
induced heating.
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to determine the effect of pump power modulation on the pulse timing from each laser. Division of the

timing error due to pump power modulation amplitude spectrum by the pump power modulation

amplitude spectrum yields the frequency dependent conversion factor necessary to convert the measured

pump power RIN into pulse train phase noise, Fig. 6.13.

The value of this transfer function can be predicted using the analysis presented in [22]. In that

analysis, the self steepening term is treated as a timing shift of the pulse as it circulates in the laser cavity.

The resulting expression for the time error spectrum as driven by the pump power RIN spectrum is

2

S,2iv(f) SP(f)SLIP(f (6.33)

wheref is the offset frequency,fR is the pulse repetition rate, #NL is the non-linear phase, vo is the carrier

frequency, Sp(f) is the pump laser RIN spectrum and SLp(f) is the frequency dependent optical to optical

conversion efficiency. The nonlinear phase term is defined to be

$NL= n2kOzJ (6.34)
with n2 as the intensity dependent refractive index, ko is the vacuum wavenumber, z taken as two times the

Rayleigh range inside the sapphire crystal, and I is the mean pulse intensity inside the laser crystal. Using

the above definitions, it can be shown that Fig. 6.13 plots

Sp(j K2f2fvj LIP (f) 1 f 2 Pavg SLp (f) (6.35)

where the definitions for the Rayleigh range and peak intensity have been substituted using Pavg as the

average laser output power, / as the round trip cavity loss, r, as the pulse intensity FWHM, and the laser's

center wavelength A. Using operating points corresponding to that of the two Ti:Sapphire lasers in this

experiment of: Pavg= 100 mW, Tp= 10 fs, 1= 0.08, n2=3x10-20cm 2/W and SLPf 0.08, results in the

predicted conversion factor trace of Fig. 6.13.

Overcoming the RIN to timing error coupling will be a major factor in measuring the real

quantum limited timing error of pulse trains generated by Ti:Sapphire lasers. Not only does the RIN

contribution to timing error mask the contribution by spontaneous emission, but it also limits the

sensitivity of the cross correlator slope which can be used by forcing the cross correlator designer to
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satisfy two mutually opposed goals. To allow phase locking, sufficient dynamic range is necessary to

ensure the detector output doesn't saturate and reduce the feedback loop gain, destabilizing the feedback

loop. Simultaneously the cross correlator output slope must be as steep as possible to ensure that the

small phase errors due to spontaneous emission generate a response larger than the intrinsic noise of the

detector. The obvious solution to this conflict is to make the pulse train emitted by the lasers more stable

especially at low offset frequencies. A promising approach to increasing the stability of the emitted pulse

train is to phase lock one comb line of the mode-locked laser's optical spectrum to a cavity-stabilized

diode laser as described in [129].

6.8 Discussion of measurement results

The measured spectrum of the phase error between the two Ti:Sapphire lasers is plotted in Fig. 6.14,

along with the integrated timing error. The bandwidth of the feedback loop for phase locking the two

lasers can be estimated from the servo bump at 30 kHz. Below this frequency the feedback loop is

suppressing the phase error spectrum which is dominated mainly by environmental cavity length

perturbations. Offset frequencies above 30 kHz show the intrinsic phase noise spectrum between the two

lasers until 1 MHz where the phase noise spectrum falls below the noise floor. The large noise spur at 190

kHz is a result of relative intensity noise being converted into phase noise. Confirmation of this

dependence, as described above, was accomplished by controlled modulation of both pump lasers in turn

and coherent detection of the resulting phase noise using the cross correlator [130], resulting in a

conversion factor of 2 Rad/W/f for offset frequenciesf, below the relaxation oscillation frequency of each

laser, which was 60-100 kHz for these lasers. Using the entire frequency dependent conversion factor and

the measured RIN from both pump lasers, one can generate the dotted black curve in Fig. 6.14. The

deviation of the measured phase error and phase error predicted by the RIN to phase noise conversion for

frequencies beyond 300 kHz is likely caused by the limited common mode rejection ratio of the detector
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at both high frequencies and high differential signal levels. The resulting integrated timing error, which

covers the entire Nyquist region, is 12.3 as +/-0.6 as with a noise floor contribution of 8.1 as +/-0.4 as.

While the phase error for pulse trains from mode-locked lasers are predicted to decrease at a rate of -20

dB/decade, the level of -200 dBc/Hz at 10 kHz offset predicted for the current laser configurations

measured here is still too low to allow detection. A noise floor no higher than -240 dBc/Hz at a 1 MHz

offset appears to be necessary to observe quantum noise that exceeds the pump RIN induced phase noise.
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Figure 6.14 -- (a) Spectrum of phase error between two mode-locked Ti:Sapphire laser pulse trains, scaled to a 10
GHz carrier. The result of the optical cross correlator measurement is plotted in red, and in black is the noise floor
of the optical cross correlator measurement determined by measuring the output of the balanced detector when
blocked. There are four noise spurs at 80 MHz, 60 MHz, 40 MHz, and 20 MHz, none of which are counted towards
the integrated timing error of the pulse train. At 80 MHz is the pulse repetition rate of the lasers, fR; at 20 and 60
MHz is the difference frequency beat between the two laser optical spectra due to their different carrier envelope
offset frequencies(fb-fCEo1-fCE02); at 40 MHz is a mixing product between the twofCEO signals and thefR signal in the
photodiodes. In addition, when calculating the integrated timing error from the Nyquist frequency (41.3 MHz) to
100 Hz, the falling response of the detector beyond 20 MIz is corrected to give a white noise floor. The estimated
quantum limited phase noise for the lasers measured here, plotted in green, assumes only that the laser cavities have
zero dispersion. The corresponding quantum limited integrated timing error does not exceed one attosecond until
approximately 200 Hz offset frequency.
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6.9 Conclusions and future work

Optical pulse trains from femtosecond mode-locked lasers exhibit the lowest phase noise of any type of

oscillator. The estimated spontaneous emission limited phase noise level for a laser with an optical

spectrum corresponding to a 5 fs pulse, 1% output coupling, and 125 nJ intracavity pulse energy and no

dispersion would be -200 dBc/Hz at a 1 kHz offset frequency. The corresponding integrated timing error

would not exceed one attosecond until approximately one Hertz offset frequency. Extremely high speed

and precision optical analog to digital conversion as well as ultra-broadband secure communications

systems should benefit from such high quality oscillators.

While low noise conversion of the optical pulse trains to electrical signals useful for many

applications remains an outstanding problem, the main barrier to realizing the full potential of these low

noise oscillators lies in reducing the technical noise contributions from the pump lasers. One possible

solution for overcoming the RIN contribution to phase noise in a future measurement would be to pump

both Ti:Sapphire lasers with the same pump laser. Using a common pump laser would allow both lasers

to experience very nearly the same RIN spectrum. Cancellation of the low frequency differences in the

RIN spectrum could be achieved with a scheme similar to that in Figure 6.12. Ensuring good matching of

the high frequency RIN spectra (outside the matching bandwidth of Figure 6.12) seen by both lasers will

require careful path length matching of the distance from the point where the pump beam is split and each

Ti:Sapphire crystal.

Assuming excellent matching of the RIN spectra seen by each laser (>100:1) the conversion

factor for each laser of RIN into pulse train phase error will have to be matched. This is a more difficult

task as it is not clear how to change the value of the RIN to phase noise conversion factor. An easier task

may be to modify the ratio of RIN seen by each laser using the feedback network to minimize the

measured RIN induced timing error by manipulating the operating point of the balanced detector.
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While measurement of the phase noise between two mode-locked lasers provides excellent

information of the noise properties affecting the two lasers, constructing a single laser which emits a low

phase noise pulse train is another matter. The low frequency phase noise caused by pump laser RIN and

environmental perturbations must be cancelled or prevented. Phase locking one comb line of the

Ti:Sapphire's optical spectrum to a single frequency laser which is itself stabilized to a ultra-stable

reference cavity could be the ideal arrangement. This method takes advantage of both the reference

cavity's low frequency stability and the mode-locked laser's high frequency stability. Ensuring enough

feedback bandwidth would still be quite challenging, since the Ti:Sapphire laser has appreciable phase

noise due to pump laser RIN out to >200 kHz. Significant suppression of RIN induced phase noise will

require a feedback bandwidth of >5 MHz for either a pulse repetition rate stabilization or RIN reduction

system. Despite what is essentially a technical difficulty, mode-locked lasers will likely become the low

noise oscillator of choice for the most demanding low phase noise applications.

0- ------- Balanced
-0 Detector

Laser A

A/2

Figure 6.12 - Common pump laser arrangement for reducing the RIN contribution to the measurement of
timing error between two Ti:Sapphire lasers. DC band biasing is accomplished using a half wave plate
and a polarizing beamsplitter (PBS). High frequency balancing and removal of non common mode power
modulations accumulated during propagation between the PBS and the laser crystals (due dust, air
currents, etc.) is achieved by correction using balanced detection of the relative power levels of the two
beams and either feedforward (pictured) or feedback correction. Further reduction of the influence of the
pump laser could be achieved by pre-stabilizing the pump laser intensity prior to the PBS.
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Chapter 7

High Repetition rate lasers: is there life
beyond 1 GHz?

7.1 Introduction

For many mode-locked laser applications, including the calibration of astrophysical spectrographs, optical

arbitrary waveform generation, precision spectroscopy and two-photon microscopy, increasing the

spacing between the comb lines or increasing the repetition rate of the source laser simplifies the design

and operation of these systems. Currently the majority of Ti:Sapphire mode-locked lasers are limited to

repetition rates of less than 1 GHz, with only a few examples operating at higher rates. The current limit

for a laser generating an octave spanning spectrum set at 2.16GHz [25]. The highest reported pulse

repetition rate is 10GHz [13], though the spectrum of this laser is very far from octave spanning at only

19nm.

This chapter will discuss several of the challenges of scaling the repetition rate, both practically

and theoretically. Two lasers with repetition rates greater than 1 GHz were constructed as part of this

thesis, the configuration of both lasers and their operating parameters will be reported. The chapter will

conclude with some suggestions for overcoming the difficulties identified during this thesis.
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7.2 Challenges to increasing the pulse repetition rate

As described in Chapter One, Kerr lens mode-locking relies on non-linear self focusing of the intracavity

beam to achieve self amplitude modulation necessary for mode-locking. For generation of octave

spanning spectra, there is a further intensity requirement to generate enough self phase modulation for

nonlinear broadening of the normal laser output spectrum to an octave. Table 7.1 reports operating

parameters for several laser systems as reported in the literature. Direct comparison of the intensity in the

Ti:Sapphire crystal for each laser system could be instructive with respect to design of high repetition rate

lasers, but such a comparison is difficult as peak intensity is dependent on not only the radius of curvature

(ROC) of the focusing mirrors and the pulse energy, but also on the physical alignment of the laser cavity.

A few reasonable assumptions of the operating points for each laser will yield interesting results.

Recent simulations of the spatial-temporal dynamics of octave spanning Ti: Sapphire lasers [131] confirms

that self amplitude modulation occurs by the traditional soft aperture description, where the spatial Kerr

effect forces the Ti:Sapphire beam to improve its overlap with the pump beam to sustain mode-locked

operation, as discussed in section 2.2.5. Because the beam size in the Ti:Sapphire crystal is now more

well defined, an educated guess can be made about the intensity of the Ti:Sapphire beam in the laser

crystal based on the components of the laser cavity (ROC and the index of refraction of sapphire, ns), as

well as the Fourier limited pulse duration of the intracavity spectrum which should occur in the center of

the crystal for a ring cavity laser.

A second result from the spatial-temporal simulations is a limit to the peak intensity in the

Ti:Sapphire crystal. As the peak intensity in the crystal exceeds 10 2W/cm 2, a multi-photon absorption

process occurs which generates a plasma in the Ti:Sapphire crystal. The plasma generation process acts

as a non-linear loss mechanism, clamping the peak intensity in the laser crystal to a value less than

1012W/cm 2 [131]. By further analyzing the non-linear phase shift in the Ti:Sapphire crystal in the next

section of this chapter, a lower bound can also be defined for the peak intensity necessary for octave

spanning operation. The peak intensity between these two bounds should be the target operating range
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for an octave spanning Ti:Sapphire laser, independent of repetition rate and allow for a better

understanding of the power requirements for such a laser.

7.2.1 Pulse energy requirements for octave spanning operation

To determine the lower intensity bound for octave spanning operation, examination of the self phase

modulation term is necessary. Repeating the analysis in section 2 Eq. (2.17)

# = nkz

-> $ =(no +n2I)kz (7.1)

-> co = ao= n k a, zWmax at 2a za

where # is the nonlinear phase shift in the sapphire crystal, and n2 is the nonlinear index of refraction.

Defining the intensity of the pulse in the time domain at the center of the crystal at z=0 as

2_ ( t )

I(t,0)= sech (7.2)
A,(ff) (r)

with the pulse energy normalized to the pulse intensity by

cp = 242r (7.3)

Allowing specification of the peak intensity and frequency shift provided by self phase modulation

(SPM). To determine the bandwidth of frequency components which are generated, the maximum

amplitude of the time derivative of the pulse intensity must be found, which is

m t 2

= - 2t secht- tanh (7.4)

and has maximums at

= C cosh 2 -2 sech =

t2 273 h(7.5)

->t =±icosh(2)

Substitution of Eq.(7.5) and (7.4) into the result of (7.1) yields
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max =n2k 2A' sech max tanh max z (7.6)
Teff T

allowing definition of the pulse energy necessary to generate an octave of bandwidth for several different

intracavity pulse widths. The assumption of a certain pulse width is equivalent to assuming that the

bandwidth generated by the SPM process in a single pass is coupled out from the laser entirely in only a

few round trips. This simplifies the dispersion compensation of the laser, by limiting the bandwidth over

which extremely linear group delay is necessary. A further assumption of a certain cross sectional area is

also necessary, although, again taking the suggestion of [131], a beam waist of 10 um can be assumed

without significant loss of accuracy.
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Figure 7.1 - Peak intensity required for generating an octave of bandwidth for several different pulse widths. Since
for a given pulse energy, peak intensity is defined, this plot is used to determine the allowable range of pulse widths
which will not incur significant loss due to plasma generation. The pulse widths plotted here are those which are
resonant in the laser cavity and are not generated through SPM.

Plotted in Fig. 7.1 is the peak intensity in the laser crystal necessary for generating an octave of

bandwidth at 800 nm for several different pulse widths. The plasma generation process is proportional to

the cube of the peak intensity, so it is likely that an intensity exceeding 2x10 12 will be heavily absorbed.

The resulting loss leaves pulses shorter than 30 fs in the allowable range for generating enough bandwidth
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for an octave spanning spectrum at 10 GHz. Figure 7.2 plots the intracavity average power required to

achieve the peak intensity values plotted in Fig. 7.1, for repetition rates from 1 to 10 GHz. If a standard

output coupling value of 1% is assumed with an additional 1% loss to account for both scattering and

absorption loss, an output power of 1 W should be achievable for a cavity which is resonant over a

bandwidth corresponding to a 10 fs pulse. Due to the r2 scaling of the required pulse energy, moving to

even a 30 fs pulse requires that the total cavity loss be reduced by an equivalent amount for a given

pumping rate. While ~20 W pump sources exist for Ti:Sapphire lasers, the real hurdle to overcome is the

intracavity losses.

1000001

10000S

10 100

-5fs
-- -10fs

0 - -- 1-O3fs --

0. 1000 50fs ....--.

0I

-U 1 - - f

1

1 2 3 4 5 6 7 8 910
Repetition Rate (GHz)

Figure 7.2 - Average intracavity power required to generate an octave of bandwidth through self phase modulation
as a function of pulse repetition rate and pulse width. Average intracavity powers exceeding 100 W are challenging
to achieve in short pulse lasers.

7.2.2 Literature review of high repetition rate Ti:Sapphire lasers

To reinforce the validity of this analysis, a literature search was performed to determine the operating

conditions of narrowband and broadband Ti:Sapphire lasers of several different repetition rates. The

results of that search are listed in Table 7.1.
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Pump Transform Total Estimated
Type and limited f-2f beat Type ROC Repetition Pulse Cavity Loss Average Pump Peak Reference
focusing intracavity from laser? Mirrors Rate Energy (-1% power power Intensity

lens pulse intravavity)

Verdi No(but 0.95
30mm 10.9 fs appears Ring 3 cm 2.12 14.9 nJ 2% oc mW 7.5 W 3.6x10 [93]

possible)

Verdi No (but 0.89 12

30mm 7.6 fs appears Ring 3 cm 1 GHz 29.6 nJ 2% oc mW 7.6 W 1.0x1 [132]
possible)

No Ring
30 mm 36.5 fs (narrow (6 3 cm 2 GHz 7.5 nJ 1% oc 0.3 3.7 7.2x10'0 [8]

band) mirror)

30 mm 15.8 fs Yes Ring 3 cm 1 GHz 40 nJ 2% oc 1.2 10.5 6.7x10" [133]

40 mm 2.164mm.n 7.3 fs Yes Ring 2.5 cm 2.1 12.5 nJ 2% oc 0.812 10.5 4.5x10" [25]
Milennma _ __GHz

No
30 mm 57 fs (narrow Ring 8 mm 10 GHz 3.25 nJ 1% oc 0.65 6.5 1.3x10 1

4 [13]
band)

No
30 mm 132 fs (narrow Ring 8 mm 10 GHz 3.5 nJ 2% 1.06 6.5 1.4x0 10 [13]

band) 1 1

30 mm 11.2 fs Yes Ring 3 cm 1 GHz 45 nJ 1% oc 0.9 8.5 9.4x10 1 [66]

No 77 J
30 mm 29 fs (narrow Ring 15 mm 5 GHz n 2% oc 1.15 7.5 9.3x104' [134]

band)

30 mm 8.2 fs Yes Ring 3 cm 1 GHz 12 nJ 4% 0.6 10 4.2x10" [50]

Table 7.1 - Summary of recently published broadband and narrowband Ti:Sapphire lasers with pulse repetition rates
above 1 GHz.

For the analysis in Figures 7.3 and 7.4, the spectra from the referenced papers were recovered as

well as the OC transmission profiles using a simple data retrieval program. Having both the output

spectrum and the output coupler transmission data allows recovery of the intracavity pulse width and

ultimately the peak intensity in each laser. The data for the output coupler used in Refs [133] and [66]

were substituted with a design from Lia Matos's doctoral thesis [89] and which was scaled and shifted to

fit the data provided in Ref [66]. The transmission profiles of both optics over the wavelength range

provided in Ref [66] are nearly identical when properly scaled. As both optics are likely Bragg reflectors

with no attempts at dispersion compensation, the reflectivity outside of the high reflectivity range is likely

similar. Further, the spectrum outside of the high reflectivity range where the OC provides more than
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90% reflectivity contributes little to the circulating pulse width due to the high loss. For the narrowband

lasers listed in Table 7.1, the intracavity spectrum was assumed to be the same as the output spectrum.

The intracavity pulse energies for each laser are determined without accounting for the output

coupler and output spectrum shape, i.e. the wavelength dependent loss. An extra 1% of loss was added to

all of the output coupler values to account for scattering etc, and an additional 1% loss for spectra which

greatly exceeded the output coupler bandwidth to account for the wavelength dependent loss in those

cases. The effective cross sectional area of the beam in the Ti: Sapphire crystal is assumed to be the same

for all lasers, -10 um. This is a rough estimate based on the fact that nearly all of the references use 30

mm focal length lenses and most pump lasers have output beams with waists of approximately 1 mm, and

is likely the largest source of error in the analysis.

1310
* Ref I
- Ref 2
A Ref 3

E + Ref4
* Ref 5

10 * Ref 67
o Ref 7

0 Ref 9
* Ref 10

cc 110

10
1 2 3 4 5 6 7 8 9 10 11 12

Repetition Rate (GHz)

Figure 7.3 - For ten different laser systems from the literature the peak intensity in the Ti:Sapphire crystal was
determined using assumptions described in the text. The peak intensity appears to decrease linearly from 10 GHz
repetition rate down to about 1.5 GHz, where the plot saturates at 1012 W/cm 2.

With the aforementioned assumptions, the plot in Fig. 7.3 is generated, relating the peak intensity

in the laser crystal to the repetition rate of the laser in question. Two important points can be drawn from

this plot. First, as the pulse repetition rate is reduced from 10 GHz to 1 GHz, the peak intensity increases

linearly presumably due to the reduction in pulse repetition rate with an approximately constant average



intracavity power. Second, for the lasers at 1 GHz repetition rate, the peak intensity appears to have

saturated at an intensity level of 1012 W/cm 2. Continuing the previous trend should have put the peak

intensity ~3 times higher, however, such a high intensity would likely result in a tenfold increase in

plasma loss. The saturation behavior of the data in Fig. 7.3 lends some support to the previous

assumption of a peak intensity limitation of 2x1012 W/cm 2 used for Fig. 7.1 and 7.2 above.

The second plot of interest is Fig. 7.4 which plots the average power in the laser cavity as a

function of repetition rate. Noting that this plot is presented with a linear y-axis, the average intracavity

power is nearly constant as a function of pulse repetition rate. Interpretation of Fig. 7.4 is difficult since

the lasers plotted here have distinctly different optics and bandwidths. However, if Fig7.4
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(L Y Ref 8
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* Ref10
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Figure 7.4 - Average intracavity power vs pulse repetition rate for ten references from the literature. Across the
reported range of repetition rates, the intracavity power stays within a factor of ten, implying a lower limit to
intracavity losses.

is compared with the results in Fig. 7.2, it becomes clear that generating the >100 W of average

intracavity power necessary for an octave of bandwidth from a laser with pulses > 8 fs will likely be very

difficult. The challenge of generating such a high average power is highlighted by the fact that the result

with the highest intracavity power, Ref [13], is a 10 GHz laser with a 1% output coupler. Most likely, a
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reduction to a 0.5% output coupler should result in a doubling of the intracavity average power. Further

reduction by the factor of 40 necessary to achieve an octave of bandwidth according to Fig. 7.2 is unlikely.

The data presented above highlight the two areas of focus for construction of mode-locked lasers

with octave spanning spectra and pulse repetition rates greater than 10 GHz. Reducing the intracavity

loss is the most important task. Increasing the amount of pulse energy available for nonlinear broadening

of the spectrum by self phase modulation increases the necessary resonant cavity pulse width by a square

factor, reducing the dispersion compensated bandwidth. Generating more than 100 W average intracavity

power, however, will be challenging considering the results of Fig. 7.4. Without sufficient reduction in

intracavity loss, increasing the bandwidth of careful dispersion compensation is the second method for

generating an octave of bandwidth at 10 GHz pulse repetition rate. While the corresponding reduction in

resonant pulse width is a square factor increase in bandwidth generated by self phase modulation, the

increase in complexity and cost for each iteration of chirped mirror design introduces an unwelcome

practical aspect to the design process.

The path taken in this thesis has been to combine these approaches. First, a dispersion

compensation scheme is devised to allow the laser to operate without additional dispersion compensating

elements while simultaneously providing the reflectivity and dispersion compensation bandwidth for a 10

fs pulse. Typically the adjustable dispersion compensating elements are optical quality plates or wedges

which are inserted into the intracavity beam at Brewster's angle. Inevitably these optics introduce a finite

amount of loss, so their elimination could be key to the success of the project. As an alternative method

of allowing some form of dispersion compensating element for the cavity, a wedged Ti:Sapphire crystal is

proposed. A tapered crystal could be taller than a standard crystal to allow vertical adjustment of the

amount of sapphire material in the cavity, giving a small amount of tuning capability to compensate for

manufacturing variances in the chirped mirrors. Time constraints prevented implementation of this

second idea; however the approach is still valid.
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7.3 Laser design

The physical setup for the 10 GHz laser was chosen to be an x-folded ring type arrangement, Fig. 7.5. A

ring cavity configuration was chosen for two reasons; first, the physical size of the laser once constructed

will be ~2 times the size of a linear cavity laser of similar repetition rate simply because of the optical

path layout of the two types of cavities. Second, a ring type laser offers an advantage by enabling a

tighter focusing of the cavity beam in the laser crystal than would be possible with the same ROC mirrors

in a confocal cavity configuration. The final physical arrangement used for the 10 GHz laser is shown in

Fig 7.5.

In order to minimize the losses internal to the laser cavity, the dispersion compensation scheme

was chosen to eliminate the need for extra intracavity elements as discussed in the previous section.

During the work for this thesis, two different combinations of optical components were used to

successfully construct a mode-locked 10 GHz Ti:Sapphire laser, Table 7.2. The first set of components

was a combination of custom designed dispersion compensating mirrors and commercially available

optics from Layertec.

M1 M2 M3 M4 Ti:Sapphire Focusing
crystal lens

"green" "blue" DCM8, Layertec high Layertec Brewster cut,
Set 1 DCM8, 0.75 cm ROC reflector P/N: output coupler 2.15 mm GPL 60 mm

cm ROC 100471 P/N: 101910
"green" "blue" "green" Brewster cut

Set 2 DCM1 1, 0.75 DCM1 1, 0.75 green 1% INVOC B s c' 60 mm
______ cROC mROC DCM11, flat 2.28 mm GPLcm ROC em ROC IIII

Table 7.2 - optical components used for the two mode-locked Ti:Sapphire lasers with 10 GHz pulse repetition rates
reported in this thesis.

The second combination of optics was completely custom designed by the group. The design criteria for

this second set of dispersion compensating mirrors was reinforced by the success of the mixed
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M1

~7.5 mm

17 -M2

~500 mW
output

Figure 7.5 - Top - A picture of the laser in a configuration for operation at -8 GHz. Moving to 10 GHz would
require the two flat mirrors to be moved slightly closer together. Bottom - Schematic of the 10 GHz laser discussed
in the text. Note the mirror designations discussed in the text and in Table 7.2.

pairs of mirrors used in Set 1. The second set was again designed to completely compensate the

dispersion of the sapphire crystal without any extra dispersion compensating elements. With these design

criteria in mind Li-Jin Chen designed a pair of dispersion compensating mirrors (generation "DCM1 1")
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where the dispersion of one transit of the Sapphire crystal can be compensated completely by a single pair

of dispersion compensating mirrors (mirrors M1 and M2 in Fig. 7.5). The remaining two flat mirrors, M3

and M4, were designed as a copy of Ml and as a gain matched/dispersion matched output coupler

respectively. Mirror M3 is simply a plane parallel version of Ml, since the DCM1 1 mirrors are

ultimately designed for use in Ti:Sapphire lasers with repetition rates ranging from 80 MHz to 1 GHz,

however, their ability to fully compensate for the dispersion of the sapphire crystal with only two

reflections.

The reflectivity profile of mirror M4 is designed to have a transmission function that is a scaled

version of the Ti:Sapphire gain curve. Frequency dependent output coupling loss which is described by

the gain spectrum of the laser material is known as a "gain-matched" output coupler [86]. The general

idea is to reduce the amount of self amplitude modulation necessary to start mode-locking by equalizing

the net gain in the laser cavity across a wider bandwidth than would normally be the case with standard

Bragg type output coupler mirrors. The dispersion on reflection of mirror M4 is designed to compensate

the negative dispersion of mirror M4. Again, the general idea is that mirrors Ml and M2 compensate for

the dispersion of the sapphire crystal and mirrors M3 and M4 compensate for each other's dispersion as

well as the small amount of air dispersion. For the correct length of sapphire crystal, no additional

intracavity elements will be necessary, reducing the total intracavity loss.

7.4 Laser operation and characterization

As can likely be guessed from the picture in Fig. 7.5, alignment of a 10 GHz laser is challenging even by

the standards of octave spanning Ti:Sapphire lasers. However, once the correct alignment condition was

found, and with optics from Set 1, continuous mode-locked operation could be maintained for several

hours without the laser in an enclosure. The optics from Set 2 generated a less stable operating condition;

the laser could be mode-locked at will, though the laser would drop out of mode-locked operation after

only a few minutes. The optical and RF spectrum for operating with optics from Set 1 and Set 2 are
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plotted in Fig. 7.6. Output power for Set 1 was 489 mW, and 500 mW for Set 2 with both configurations

using 10.5 W of pump power.

Using the same analysis method described above in Section 7.2 and the parameters listed in Table

7.3 a few conclusions can be drawn about the operational state of the current lasers and about what

changes should be made for new generations. First, the average power in the laser cavity for both

configurations is about the same as the referenced points in Fig. 7.4, indicating that the intracavity loss for

both lasers was within a factor of two of what has been achieved in a variety of other laser configurations.
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Figure 7.6 - Optical and radio frequency spectra for the two 10 GHz Ti:Sapphire lasers. The optical
spectra, left, are plotted in a solid lined for Set 1, while the spectrum for set two is plotted as a dashed line. Set 1
generated a 3.6 nm bandwidth spectrum while Set 2 generated 9.5 nm. The RF spectrum for set one is plotted on the
right, while the RF spectrum for Set 2 was not recorded. The repetition rate for Set 2 was measured to be 10.003
GHz.

The peak power was nearly a factor of ten below that achieved in the other configurations (again

assuming a 10 gm waist in the sapphire crystal), implying that the dispersion compensation of both of the

current configurations was slightly imperfect. In this situation, having a tuning element would likely

allow a larger bandwidth of the laser to operate in a low dispersion regime resulting in a broader output

spectrum, both due to the resonant pulse , but possibly also due to a finite amount of SPM.

147



7.5 Summary and future work

In this section, design criteria for an octave spanning Ti: Sapphire laser with a 10 GHz pulse repetition rate

have been developed. These criteria were compared against existing laser systems from the literature and

were found to agree well with the published results. Based on these confirmed criteria, two mode-locked

Ti:Sapphire lasers operating at 10 GHz were successfully constructed. One was built with commercially

available optics and a second was built entirely with custom designed optics. The output power of both

lasers was within a factor of two of the only other published 10 GHz mode-locked laser results; however

the bandwidth of the lasers constructed during this thesis lasers was only half that of the published results.

The difference in bandwidth was traced to the dispersion compensation of both lasers and the lack of an

element to allow tuning of the laser dispersion in small amounts.

To circumvent the problem of dispersion compensation and retain the low loss character of the

current systems, future high repetition rate lasers should include a dispersion tuning element such as a

wedged Ti:Sapphire crystal. Changing the laser cavity arrangement may also provide some benefit since

the repetition rate limit with the current setup is at most 12 GHz. The four mirror cavity is extremely

challenging to align, although it gives the best advantage for focusing the intracavity beam in the

Ti: Sapphire crystal. A three mirror cavity would be a viable option for a laser using a saturable absorber

mirror. Such a laser configuration would allow not only higher repetition rates, but also simpler
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Pump Transform
laser type limited f-2f beat ROC Repetition Pulse Total Cavity Average Pump Estimated

and intracavity possible? Configuration Mirrors Rate Energy Loss (~1% power power Peak Reference
focusing pulse intravavity) Intensity

lens

Milennia 1.2xli 9  Set1
60 mm 563 fs No Ring 0.75 cm 10 GHz 2.5 nJ 1% oc 489 mW 10.5 W W/CM

2

Milennia 3.6x10 9  Set2
6mm 192 fs No Ring 0.75 cm 10 GHz 2.5 nJ 1% oc 500 mW 10.5 W W/CM

2



alignment and self-starting of the mode-locking process. Construction of a saturable absorber mirror

which could support octave spanning operation will be extremely challenging.

149



THIS PAGE INTENTIONALLY LEFT BLANK

150



Appendix A

Photodetector design

A. 1 Introduction

For the majority of measurements which are undertaken, commercially available photodetectors are more

than adequate. Occasionally though, a slight modification to an existing detector or a completely separate

design will be in order. This section will summarize some general guidelines for constructing balanced

photodetectors as well as two limitations of the balanced photodetection technique.

A.2 Balanced transimpedance amplifier design guide

Perhaps the first driving requirement for any detector is how much gain and bandwidth is needed.

Referring to Fig. A. 1, the output of the transimpedance amplifier (TIA) can be expressed as

V =(V,-V_)A (A.1)

AR FAV--VA-i ARF _ _

1+RFsC 1+RFSC (A.2)

V --ARF=o - F (A.3)
i A+1+RFSC

which is a standard result [135]. Defining A = a/s as the gain bandwidth product (GBP) in the frequency

region near unity gain, the bandwidth of the circuit is

f~B- GBP
A dB = (A.4)

27rRFC

giving a useful expression linking several design parameters together. Depending on how much

transimpedance gain is needed, the next step might be determining the noise characteristics of this circuit.



In the case of needing both high transimpedance gain and high bandwidth, a low noise voltage amplifier

is in order as a second stage, Fig A. 1. Depending on the application, very large transimpedance gain will

limit the available optical dynamic range due to the limited dynamic range of the detector output. An

example of an application where extremely high conversion factors (>1 OOkV/W) from a two stage circuit

is useful is the measurement undertaken in chapter 6 of this thesis. In that measurement the phase locked

loop keeps the DC value of the detector output near zero, only allowing fluctuations outside the loop

bandwidth to generate significant output signals.

Low noise design of such a two stage circuit requires a careful distribution of gain. The ideal

distribution with respect to meeting both the bandwidth and transimpedance gain goals is to only use as

much voltage gain as is necessary to allow the corresponding reduction in transimpedance gain to satisfy

the bandwidth requirements of the circuit. Since the TIA is the only stage which can distinguish between

signal and noise, it is the stage which will have the most effect on the final signal to noise ratio and

should thereby have as much gain as possible. Once the gain has been set for both the TIA and voltage

amplifier, analysis of the noise in each stage can be completed. Reference [136] has an exceptionally

clear description of how to account for noise contributions from both the op-amp and the gain setting

resistors. Note that the only noise contribution which needs to be considered from the photodiode is the

shot noise from the photocurrent, as Johnson noise currents due to the shunt resistance of the photodiode

are typically far smaller than the input current noise from the op-amp.

Finally, choosing which op-amp(s) to use for a new detector can be an overwhelming task.

Between the five or six major semiconductor manufacturers there are thousands of different amplifiers, at

least 10% of which are suitable for use in a transimpedance amplifier. Beyond the guideline of gain

bandwidth product in Eq. (A.4), the following are a few other useful comparison points.

* The type of transistor used in the input stage of the op-amp will have the largest bearing on the

level of input current and voltage noise that the amplifier exhibits. Bipolar junction transistor

(BJT) based input stages will have very low voltage noise (<1 nV/rtHz) and field effect transistor
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(FET) based input stages can have very low input current noise (<1 fA/rtHz). Neither type has

extremely low levels of both current and voltage noise.

" Input capacitance of op-amp input terminals is important because it adds to the capacitance of the

photodiode, CD, seen by the TIA input terminal, Fig A. 1. The network formed by the input and

photodiode capacitance and the feedback capacitance in parallel with RF will determine the

peaking and noise gain of the circuit response. An excellent description of noise gain appears

in [137], but briefly this is the increase in the circuit noise floor at high frequencies due to an

increase in circuit gain. At high frequencies if the impedance of CD falls faster than CF, the

amplifier gain will rise until the GBP of the amplifier is reached. Unfortunately, op-amps with

input stages composed of FETs tend to have larger input capacitances than BJT based amplifiers.

As a result, FET input op amps will have the lowest white noise floor, and unless properly

compensated (usually at the expense of bandwidth) they will exhibit peaking and significant noise

gain at high frequencies.

* So far all discussions have assumed the use of voltage feedback op-amps. Current feedback op-

amps can be used as well, as they tend to have even higher bandwidths than the best voltage

feedback op-amps. Unfortunately the input voltage and current noise is typically also much

higher, usually enough to negate the bandwidth advantage.

With respect to physical construction, when dealing with high speed semiconductors (>50 MHz), special

construction considerations should be made. While not the most aesthetically pleasing method,

constructing the circuit on a plain copper clad board is the best method for ensuring success. This type of

construction minimizes stray capacitances and offers an excellent low impedance ground plane to mount

components on for shielding from external noise sources and reducing the chance for unintended

feedback paths. Reference [138] has over 100 pages of excellent discussion and diagrams on how to

construct, measure and debug high speed circuitry.
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Figure A. 1 -- Generic schematic of a balanced detector consisting of a transimpedance stage followed by a voltage
amplifier stage. Intrinsic noise sources for the op-amps are shown as current and voltage noise sources en and i.. the
capacitance element CD contains the photodiode capacitance as well as the input capacitance of the op-amp.

A.3 Limitations of balanced detection

Balanced detection is a commonly used measurement method because it offers the opportunity to reject

unwanted signals impressed on the interrogating beam before reaching the experiment. Typically "noise"

some sort of intensity noise in the laser source or power fluctuation caused by propagation of the beam to

the part of the experiment which will perform the desired modulation. Cancellation occurs because both

photodetectors measure the exact same signal, except for the desired modulation on one beam or ideally

differential modulation on both beams, Fig 5.3. The ratio of differential signal output to the output due to

signals present on both channels is the common mode rejection ratio (CMRR). Rejection of common

mode signal occurs because ideally the phase and amplitude of photocurrent fluctuations are equal, so no

signal voltage is generated at the amplifier output. There are limitations to the amount of common mode

cancellation which is achievable, two which are particularly applicable to the experiment in chapter 6 are

degradation of the CMRR due to the differential signal level and phase mismatch between otherwise

common mode signals on both arms of the detector.
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Source Laser

Ax Reference+
Beam

Source Laser Experiment

Figure A.2 -- Two possible configurations for utilizing balanced detection in an experimental setup. The upper
setup is essentially the same as many simple setups, with the exception of the reference beam. The presence of the
second beam allows cancellation of intensity fluctuations in the laser which occur prior to the beamsplitter. This is
similar to a Hobbs type detector [139]. In the lower setup, the experiment spans both the main beam and the
reference beam. In this second arrangement the signal from the experimental setup can be fully differential such that
the signal in the two channels is opposite. Modulating both beams offers the additional possibility of removing
errors in the signal which are common to both channels. Both setups suffer from the same difference in path length
between the beamsplitter and the detector, limiting the total CMRR available as the frequency of noise processes
increase. See text and Figure A.3.

A.3.1 Effect of differential signal level

To eliminate signals common to both arms of the detector, the phase and amplitude of the "common mode"

signal must be the same on both photodiodes. To have an output other than zero, the balanced detector

must have different optical power levels on the two photodiodes. Depending on how a particular noise

source scales with signal level, this unbalance can change the CMRR as a function of the differential

signal level. Defining the photocurrent in each of the two diodes

,I =Ime +i +8i1 +aI1 (A.5)

I2 = DC + 2 + 2 +aI2 (A.6)

where IjDC is the large signal DC component, i; is the desired small signal modulation, 6i; is a strictly

additive noise process accumulated after the beamsplitter in Fig. A.2, and aIJ and aI2 are fractional noise
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processes described as the RIN of the source laser. The balanced detector subtracts these two

photocurrents to yield

I -I2 = c +2I + i +aIl -Inc -'2 - g2 -aI2 (A.7)

If the output of the balanced detector is used as error point in a control loop, the output of the balanced

detector must have zero mean on the timescale corresponding to the phase locked loop bandwidth,

requiring l]DC=12DC. Assuming a nearly 50/50 power split on the photodetectors, the balanced detector

voltage output will be

V =(I, -1 2 )RGT = [(i -i 2)+(6i, -5i 2)+a(i -i 2 +8il -3i 2 )]RGT (A.8)

with photodiode responsivity R and transimpedance gain GT. In the ideal case, only the first term on the

right side of Eq. (A.8) is non-zero. However, because there must be a non-zero output for both the

control loop to work and to make a measurement of the differential signal outside the bandwidth of the

feedback loop, all terms in Eq.(A.8) are non zero. Because of the requirement for a non-zero output, the

CMRR can be redefined as an Effective CMRR, as the ratio of the desired differential term and those

terms which are either undesired or caused by what should be a common mode source

ECMRR = (''2) (12) (A.9)
(5ix - Si2)+ a(i, - i2) + a (6i, - Si2) (5i - a2 aIDC v2

where a (I, - '2) ~ 0 by virtue of the feedback loop. The resulting expression emphasizes the need for a

small differential signal to maintain good RIN suppression by the balanced detector. Estimations of the

ECMRR for a given measurement should be made by determining the integrated voltage error during a

given measurement period (integrating from the detector bandwidth to the RBW or inverse duration of a

time trace for signals which are fast Fourier transformed) and dividing by what would be the DC voltage

level of either channel without balancing.

.DetBiW
e, = V S,(f)df (A.10)
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ECMRR = " (A.11)
VDC

This new ECMRR can be applied to known fractional noise spectra to predict their contribution to the

final signal output.

A.3.2 Effect of length mismatch for common mode signals

The second contributor to a limited CMMR is unequal path lengths for each arm of the experiment

between the beamsplitter and the detector. Cancellation of common mode signals requires that both the

amplitude and phase of the common mode signals be equal at the balanced detector. Using the small

angle approximation the phase error at the detector can be defined as

&eo=2x f (A.12)
C

where A is the difference in path length between the two arms and f is the measurement frequency of

interest. Using Eq.(A.12) and assuming equal signal amplitudes at the two photodetectors, the resulting

rejection of the common mode signal is plotted in Fig. 5.4 plots Eq.(A.12) for several values of Ax.

- 1 uM
--- 30um -

-20' ---- 30 mm -- ---- 1 MM-
-20 -

-80-

-100- ..
103 104 10 10 10 108

Frequency (Hz)
Figure A.3 -- Plot of maximum possible common mode rejection ratio as a function of frequency for
several different differential distances, Ax, as depicted in Figure A.2.
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Appendix B

Piezo mounted mirrors for optical cavity
length stabilization

B.1 Introduction

Laser cavity length stabilization is an extremely important part of frequency comb system design. The

following is a review of theoretical and empirical conclusions for control of frequency comb systems,

specifically repetition rate control systems which are necessary for stabilizing the frequency spacing of

the comb lines in the optical spectrum of a mode-locked laser. To control the repetition rate, the length of

the optical cavity must be controlled, which can be achieved several ways, the most common method

being to mount one of the laser cavity mirrors on a piezoelectric transducer as the main feedback element

in a phase locked loop. Design criteria for the piezo mirror support as well as design of driver circuits

appropriate for capacitive loads are discussed. A brief introduction to control theory is also included. Far

more in depth analysis can be found in the works of Gardner [140] and Best [141], to cite only two in a

rich field of study.

B.2 Basic control theory

Phase locked loops are no different from any other control problem. There are details regarding how to

detect the phase error between two oscillators, and how to implement a control signal to send to the

oscillator, but these problems can be generalized to any controlled system. The general control problem

is drawn in Fig. B. 1, where all practical details have been abstracted away. The output signal, R(t), is
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ideally exactly the same as the input signal C(t), with the impulse response of the intervening system and

sensor response represented by G(s) and H(s), respectively.

C(t) ---- + --- G(s) --- ,--- R(t)

-- - - H(s) - --

Figure B.1I - Generic feedback system diagram. C(t) is the input signal which one would like the output signal, R(t),
to match. G(s) is known as the plant or forward path gain, and H(s) is known as the sensor or the backward path
gain. Systems which can be abstracted to this level are easily represented by Black's formula as described in the
text.

The response of such a system can be characterized using Black's formula, which relates the

output of a feedback system to its input through the two gain blocks as

R(s) - G (S)

C (s) 1+G(s)H(s) 
(.1

The product, G(s)H(s) in the denominator is known as the loop transmission, L(s), and it determines the

range of frequencies over which the output will faithfully follow the input as well as the stability of the

overall system. Good tracking, R (t)~- C (t) , occurs when the product L(s) is large, and stability is

assured as long as L(s) doesn't approach - 1. The impact of the magnitude and phase of L(s) is more

readily apparent when written as

R (s) G (s)
(B.2)

C (s) I1+ IL (s)l exp (iL (s))

Both the tracking and stability conditions are best assessed by inspection of a frequency domain

plot of L(s), Fig. B.2. In the two example plots for L(s), both systems have large gain at low frequencies,

however the gain of the two systems is very different at high frequencies. As the gain of the system

described by the dotted line falls at high frequency, the phase is still far from - 180', preventing a positive

or nearly positive feedback situation. The system described by the solid line however has a bit too much
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frequency independent gain such that when the loop transmission phase crosses -180, the gain is only a

slightly larger than unity, causing an uncontrolled enhancement in the loop response. For this particular

example, the uncontrolled response can be prevented by either lowering the system gain, or by changing

the system response so the phase at the desired unity gain frequency is much smaller than -180'.

60 dB

40 dB-

Magnitude

0 dfrequency

0*

Phase

-180*.
frequency

Figure B.2 - Bode plot of a hypothetical system with two different levels of frequency independent gain. The phase
response of the system is the same in both cases, but the system is only stable in the configuration depicted by the
dotted line. The slight reduction in frequency independent gain causes the system response to become unstable near

The important result from this analysis is twofold. First, characterization of the frequency

domain characteristics of the feedback loop as carefully as possible and over as wide of a bandwidth as

possible will allow optimization of the feedback loop limiting factors. Second, ensure that L(s) doesn't

approach - I within the bandwidth of interest by increasing the bandwidth of response of the lowest

bandwidth components in the feedback loop and eliminating any time delays in the loop. In repetition

rate control systems for mode-locked lasers, the lowest bandwidth component is the piezo mounted

mirror.
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B.3 Piezo mirror system

The most commonly encountered method for controlling the repetition rate of mode-locked lasers is to

mount one of the laser cavity mirrors on a small piezoelectric transducer. Displacing one of the cavity

mirrors both minimizes the optical dispersion added to the laser due to the length stabilization system and

generally gives the largest feedback bandwidth. Other methods are possible for fiber laser systems using

intracavity electro-optic phase modulators, but this is only possible due to the much reduced optical

bandwidth of those lasers [142]. The piezo mirror system, Fig.B.3, is composed of four pieces: the mirror,

piezo, the mount which holds the piezo and mirror, and the circuit used to drive the piezo. As the piezo

mirror systems described here will operate on only a rather low voltage (+/-15 V) with very small piezos

(5x5x2mm typically), with a total dynamic range usually only about 100 nm before deformation or tilting

of the piezo mirror will adversely affect the laser operation. Generally the limited dynamic range is

overcome by using a second piezo with much longer travel and much lower bandwidth to cancel larger

cavity length fluctuations (up to 10 tm) which occur on much longer timescales (minutes).

Piezo

Piezo mirror Piezo mount

Voltage control
signal input

" Piezo driver

Figure B.3 -- Schematic of the piezo mirror system.

B.4 Piezo driver

The piezo driver as described here is based on a low voltage, high current (< 60v) op amp (OPA551,

OPA552, etc.) operational amplifier. It is possible to build a fast, high voltage(+/- 150v) piezo drivers,

162



however for practical reasons such circuits are more complex and more expensive. As discussed in the

section on feedback theory, the main problem to be overcome for all components in the feedback path is

the time delay in signal propagation from input to output. In the frequency domain a time delay is

manifested as a phase delay which will reduce the stability and bandwidth of the feedback system. The

problem in this section is to generate a circuit which will control the voltage across the piezo used to

displace one of the cavity mirrors with minimal time delay.

The most accurate way to model the electrical response of a piezo is as a RLC circuit to account

for the capacitance of the dielectric, inertia of the physical structure, as well as any internal or external

resistances. However, doing so presumes use of the piezo in a range where the resonance frequency is

important. Since near resonance the phase and magnitude response of the piezo (both electrical and

dimensional) change quite quickly, it is best to avoid this frequency range. By avoiding the resonance, it

is reasonable to treat the piezo as a pure capacitance.

By driving a purely capacitive load, a rather common solution is to put a small resistance at the

output of the driver before the capacitive load, Fig. B.4(D). This stabilizes the circuit by creating a first

order response between the input voltage to output voltage transfer function. While the circuit is stable, it

is also usually slow because optimization of the output resistor value is either not done or not understood.

To understand why using this configuration works and how to optimize it, a model of the circuit should

be constructed. Fig. B.4 gives progressively more complicated models of the op amp's circuit including

the output resistance of the op amp, the capacitive load of the piezo and finally the stabilizing load

resistor. Fig. B.4(C) allows understanding of why simply attaching a capacitive load to an op amp can

destabilize the circuit.
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0

Vi -- \ \ - R ~ R- V( XL

Figure B.4 -- Three levels of piezo driver complexity. A -Generic inverting configuration with little meaningful
detail. R, and Rf are the input and feedback resistors. B - More complete model of op amp operating circuit
including output resistance and internal transfer function. A(s) will be best modeled by a two pole system (T and TL)

with high DC gain aO which captures both the tendency for instability from capacitive loads and the non-infinite
gain and resulting non-zero error signal. C - Similar to case B except now the capacitive load of a piezo is included.
D - Lag compensated piezo driver with external stabilizing resistor RL-

Normally the equation for the output voltage of the op amp is written as,

b+,(+ Va (V () (B.3) )
v. = (v, - v_ A(ss(.3

and since the amplifier is in an inverting configuration another equation is used to describe the voltage at

the inverting input as a function of both the input and output voltages

V_ =v ( Z)±V ( Zod) (B.4)

where ZiD is the impedance divider network from the input and output voltage sources of the op amp, vi

and va to the inverting input. The result, while not terribly complex, hides the role of the output resistance

in destabilizing the system. The same result can be obtained in a more understandable way by making the

reasonable assumption that the output resistance Ro of the op amp and the load resistance RL should be

much smaller than both the input and feedback resistors, Ri and Rf in Fig.2 allowing the op amp circuit to

be drawn as shown in Fig. B.5, where H(s) can be recognized as a low pass filter. Drawing the feedback

loop for the circuit in Fig. B.5, the solution for L(s) determines the circuit stability and bandwidth.

The loop transmission of the circuit of the resulting circuit is plotted in Fig. B.6, where it is

possible to determine from the total phase at high frequency that the system transfer function V/v ,
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contains three poles. Generally in systems similar to the one described in Fig. B.5, the second pole will

determine where the phase crossover point is and therefore the stability of the system. The second pole is

generated by the output resistance of the op amp and the load capacitance of the piezo. Unless the load

capacitance is very small (< 1OOpF) the op amp will be unstable or will have an oscillating response due

to the small phase margin.

To prevent oscillation, the most common solution is to put a small resistor at the output of the op

amp as shown in Fig. B.4(D). The addition of the output resistor changes H(s) from a low pass filter to a

passive lag filter where the response of H(s) for frequencies above 1/27cRLCp is purely resistive so that the

piezo driver behaves like a two pole system which can never be unstable. The type of response the circuit

gives will however be a function of the frequency at which the lag filter makes its transition, Fig. B.7.

While it seems that the problem is solved, one caution is warranted. The resistor value chosen will only

provide stable control of the piezo voltage for capacitances equal to or greater to the capacitance that the

circuit was designed for.

Rf

R,~~R +-------- R
vi- V -A(s) H(s) V,R0 vo R,+R1 +

v
aC R,

R, + R

v.=(v -v )A(s) 1

1 +sR, C,

Figure B.5 -- Because of the large difference in impedance between Ro and the Rf+ Ri combination, it is possible to
separate the effect of the low pass filter formed by Ro and Cp from the rest of the feedback network. By making this
separation, drawing the block diagram of the system becomes both simple and general.
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Unity Gain = 262kHz

Frequency (Hz)

Phase Margin =3deg

2 0 2 4 6 8 10
Frequency (Hz)

Figure B.6 -- Loop transmission of the capacitively loaded op amp. Note that there are three poles, where the high
and low frequency poles are determined by the op amps transfer function and the middle pole is generated by the
output resistance and load capacitance. As a result, the phase margin is only 2 deg which will not allow for a
controllable response.

Unity Gain = 262kHz. 269kHz, 281kHz, 295kHz
60

-RL=0.3

40-- RL=0.6
-RL=0.9

20 -RL=12

Z
0

-20--

-40

-60 L
-2 0 2 4 6 8 10

Frequency (Hz)

Phase Margin =15deg, 27deg, 37deg, 46deg
0-

-RL=0.3
-RL=0.6

-50 - -RL=0.9
-RL=1.2

-180 deg
Q-100 - -

-150 - - - -.-

-.200 II
-2 0 2 4 6 8 10

Frequency (Hz)

Figure B.7 - Loop transmission of the capacitively loaded op amp with lag compensation. Note that there are still
three poles, however a zero has been added to the system such that the overall phase response is only -180 deg.
More importantly, the minimum phase margin can be varied by tuning the value of the load resistor.
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B.5 Piezo mirror and piezo mount design

Design of the piezo mount and selection of the mirror to be mounted on the piezo have the largest

influence on the final response of the repetition rate control system. The mirror design is rather

straightforward, although the design of the mount is somewhat subtle and will require the bulk of this

section. The section will conclude with a note about adhesive attachment of the mirror to the piezo and

the piezo to the mount.

The mirror should be made as small as is practical for the optics portion of the setup. Reducing

the mirror diameter will reduce the mass of the mirror and subsequently the force (piezo voltage) required

to displace the mirror at a given speed. With the reduction in mass in mind, the mirror thickness should

not be less than -1 mm since thinner substrates are both difficult to polish , and subject to deformation

due to stress from any dielectric coating and from the glue used to mount the mirror to the piezo.

The purpose of the piezo mount is to resist the force applied by the piezo so that the majority of

that force is utilized in displacing the mirror. The mass of the piezo is limited though, by the requirement

to keep the resonance frequency of the mount outside the desired feedback bandwidth. The piezo will be

excited by a broadband signal from the feedback loop, but ideally the mount is assumed to be a

completely solid mass and only the spring constant of the piezo must be considered with respect to

possible vibration modes. It turns out that the vibration modes of the mount itself are the dominant

contributors, and the physical shape of the resulting mount as well as the materials of construction are

quite important.

For simplicity of analysis, a cylindrical shape is assumed, as in Fig. B.3. For an oscillating point

load applied near the cylindrical axis, there are three dominant vibrating modes: A compression mode, a

Bessel type mode and a bending mode due to off axis placement of the piezo and mirror on the face of the

mount. The compression mode is a density wave which travels at the speed of sound in the material.

Speed of sound is defined as
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C, (B.5)
p

with E as the modulus of elasticity, or Young's modulus, and the material density p. Using the same

relation as in optics, the frequency of the first compression mode as a function of the rod's length L can

be found using

C
f - (B.6)
2 L

The lowest order bending mode is determined by assuming a beam with cylindrical cross section

that is free (unsupported) at both ends [143]

1 I)2 E
f - -912 4  (B.7)

2 7r pL4

with I as the area moment of inertia of the beam and (fL)2 as a parameter related to the boundary

condition, which in this case takes a value of 22.4. According to Fig. B.8, the bending mode has the

lowest

10'

Crpeiomode

10

110

10 10 10
Mount Length in mm

Figure B.8 - Diagram of bending modes and the frequencies of the lowest vibrating mode for a %" diameter copper
rod. The dotted line represents the mass of the cylinder as a function of the cylinder length, and the straight line at
20 kHz is represents 30 times the mass of the piezo mirror. The mount length where the goal mass and the rods
actual mass intersect is the desired piezo length. In this case a resonance should be expected at a frequency of ~200
kHz.

168



frequency of all three of the modes considered in the frequency range of interest. Fortunately, excitation

of the bending mode requires the piezo and mirror to be attached to the face of the cylindrical mount

away from the center. Careful centering of the mirror and piezo can reduce or eliminate excitation of this

mode. The lowest order Bessel mode is approximated by a bending mode across the plane of the piezo

mounting face.

9L E
B 2 (B.8)

r 2 tp

with r as the radius of the cylindrical mount. The stiffness of the mount when excited from the center

face of the mount is very high, and thereby the lowest vibrating mode frequency is also very high, and the

Bessel mode need not be considered except for very thin mounts.

10

-0

103  10 10

0

-20

-40

cu-60 -
DL -80-

10 3 104 s0

Frequency Hz

Figure B.9 - Measured response function of the piezo designed using methods described in Appendix B. Note the
prominent resonance at 100 kHz as predicted by the analysis in this section. The small zero-pole doublet resonance
45 kHz is likely from deformation of the mirror.

The response of the piezo used in chapter 3 of this thesis was designed using the described design

method, with the result of the design calculations used for Fig. B.8. Plotted in Fig. B.9 is the result of a

response measurement made using the technique described in Appendix B.6. The result of that
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characterization agrees very well with the predictions of Fig. B.8., specifically, there is a prominent

resonance at 100 kHz as predicted by the calculation for the lowest order compression mode.

While the above analysis accurately predicts the frequency of a resonance in the piezo response

function, the resonance itself can be a problem for the feedback loop. The first resonance in Fig. B.9

represents a nearly 10 dB enhancement of the piezo response, which can force a significant reduction in

feedback loop bandwidth to ensure that L(s) does not approach -1 at that frequency. Methods for dealing

with these resonances include filling the mount with some sort of damping material to reduce the amount

of stored energy in the mount at resonance [144].

Finally, while no carefully controlled experiments have been made to compare different types of

adhesive, all piezo mirrors constructed in this thesis were assembled using CrystalBond brand adhesive,

which is a thermal adhesive, which melts at about 150 C and hardens to a crystalline structure. Certain

epoxies may perform as well or better, however CrystalBond offers the opportunity to re-set previously

glued optics in case of error or redesign simply by reheating the piece with no apparent loss of holding

strength. Best results are achieved when using the absolute minimum amount of adhesive.

B.6 Characterizing the piezo mirror system

Measurement of the piezo mirror system transfer function can be achieved in a few different ways

(electrical drive impedance of piezo mirror, direct measurement of piezo voltage, etc.), though direct

measurement of the mirror displacement as a function of applied voltage will arguably give the most

unambiguous result. To measure the voltage to mirror displacement transfer function, the piezo mirror

system should be installed in a Michaelson interferometer similar to the one depicted in Fig.6. Biasing the

arm length imbalance so that the central fringe detected by the photodiode is at the half intensity point and

driving the piezo mirror system with a small amplitude swept sine wave signal, the piezo mirror transfer

function can be directly measured.

A few details of Fig.6 should be highlighted, first is the requirement that all of the components

outlined in gray should be mounted on their own small breadboard. Further, the breadboard should be
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placed on at minimum a thin piece of rubber or preferably a very dense foam to isolate the setup from

large amplitude vibrations of the larger table which will make the measurement unnecessarily difficult.

Some small amount of isolation is generally necessary even if an air isolated optical table is used as the

workspace. The defocusing lens is used to enable easier

Vsible Laser
Piezo mirror system

A

Piezo Driver .+--.-.Network Analyzer +---.--.-.-----.--.-.-

se Lock-in Amplifier +- - - oo

Signal Generator

Oscilloscope .+---

Figure B. 10 -- Schematic of the optical and electrical layout of a piezo mirror system response measurement. All of
the components out- lined in gray should be located on their own small breadboard separate from the main
workspace. The area in green outlines simultaneously three different possible methods for recovering the piezo
mirror system response. SM-silver mirror, DL-Defocusing mirror, IR-Circular iris, BS-Non-polarizing 50/50
beamsplitter, PD-Photodiode, A-location where piezo driver should be connected for measurement system
calibration.

isolation of the central fringe of the interference pattern on to the active area of the photodiode. Fringe

selection is further enhanced by using a circular iris again to ensure that the only light reaching the

photodiode active area is from the central fringe of the interference pattern. Care should be taken to avoid

back reflections into the laser as this will destabilize the laser with an increase in intensity noise. The

visible laser should also be reasonably narrow band (< 3 nm) to allow good fringe contrast, though

bandwidth is usually only an issue with inexpensive laser diodes.

Measurement of the response can be recorded several different ways, however prior to any

measurement a calibration should be made to remove the effect of the piezo driver, cabling delays, etc.
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Calibration can be achieved by, Fig.6, connecting the output of the piezo driver directly to the cable

which would normally connect to the photodiode. For both the reference measurement and the

measurement of the piezo mirror system, the parameters of interest are the phase and amplitude of the

signal returned from the photodiode cable at point A with respect to the signal which excited the system

minus any static offsets. The assumption is that the system should have a unity transfer function at DC.

To make the measurement of the piezo mirror system the interferometer arm imbalance should be adjust

so that the central fringe, which has been isolated on the photodetector using the circular iris, is at its half

intensity point as measured using an oscilloscope. Air currents and unsuppressed vibrations will likely

cause the bias to move around, but simply placing a finger on the breadboard should allow control over

the bias point which should be visually monitored throughout the measurement regardless of the

measurement system used to ensure consistent system response.

Once the bias has been set, the quickest and easiest way to measure the system response is to use

a network analyzer. It is also possible to use a lock-in amplifier, making several measurements of the

amplitude and phase of the returned signal at different excitation frequencies to map out the response.

Finally, while somewhat less accurate, it should be possible to use a common signal generator and an

oscilloscope to recover the amplitude and phase of the returned signal with respect to the excitation

signal. The last method is somewhat undesirable as it is quite slow and prone to errors especially with

respect to the phase measurement since it requires the experimenter to manually recover the phase of two

time domain waves by measuring a small time delay between two smooth functions on the oscilloscope

screen. Accurate measurements are possible, though the repeatability of the results are highly dependent

on the user whereas the previous two methods are much less dependent of user skill and patience.

Measurement of the response from I kHz to 1 MHz is enough to completely characterize most

systems. Attempting to measure the system response at excitation frequencies lower than 1 kHz is

problematic because the system must simultaneously cancel the effect of environmental noise and excite

the system at the same range of frequencies, making separation of the signal from the noise very difficult.

As for excitation amplitudes, use only enough to generate a clean measurement signal. There are two
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reasons for using small amplitude drive signals, first, it is important to only record the linear response of

the systems and minimizing the excitation amplitude should minimize the contribution of any non-linear

terms. Second, when the mode-locked laser's repetition rate is locked, the piezo will generally only see an

AC error signal amplitude of <100mV or less, so characterizing the system with a 5 volt signal is not

representative of the final operating condition.

Once the amplitude and phase of both the reference response, X(s), and the measured piezo, piezo

driver and mirror response, Y(s), have been measured over the desired range of excitation frequencies,

determining the piezo transfer function is simply a matter of taking a ratio of the two results.

H (s~zY(s)
Hpezo (S) (S) (B.9)

Similarly the phase response can be recovered from

H =Y x (B.10)
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Appendix C

Frequency Metrology

C.1 Introduction

Characterization of frequency combs requires understanding of some basic phase and frequency noise

definitions. Understanding how these representations are related and how they change when multiplying,

dividing the frequency of a signal of interest is especially important. A clear understanding is of

particular importance when selecting a stabilization scheme for a particular frequency comb application.

This section will review some basic representations of noise properties of high quality oscillators.

Official definitions from the IEEE are described very concisely in Ref [145].

C.2 Basic representations

In this discussion, an oscillator will refer to any electrical or optical signal which has a regular, repeating

waveform, the lowest harmonic of which will be used to characterize the stability of the oscillator. With

these assumptions, the electric field, or voltage signal of such an oscillator can be written as [146]

E (t) = E0 sin (2rrvt + $ (t)) (C. 1)

where E0 is the wave amplitude, v is the average frequency and #(t) is the time dependent phase

fluctuations. Amplitude fluctuations have been neglected since in high quality oscillators the

phase/frequency noise spectrum is much larger than the amplitude noise spectrum. The instantaneous

frequency of the oscillator is
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v=vo + I ao(W)(C.2)
2 7 at

and the normalized fractional frequency deviation is

1 8#b(t)
y (t) (C.3)

Using the autocorrelation theorem for Fourier Transforms [147] the two sided power spectrum of the

fractional frequency fluctuations can be defined as

S, (f ) =f( y (t ) y (t) * pe-'"'dt (C.4)

Substituting (C.3) gives the relationship between the phase and frequency noise spectra

V2

SO (f= 02 S,(f)(C.5)
f

which are both frequency domain representations of the phase or frequency noise of the oscillator.

Typically S, and So are used to describe phase and frequency noise over an offset frequency range of 100

mHz to several megahertz. For phase and frequency noise at even smaller offset frequencies, the

generally accepted method is to use the Allan deviation [148].

The Allan deviation is a measure of the average fractional change in frequency of an oscillator as

a function of the averaging time. Using Eq.(C.3) the average fractional change in frequency for the n'

measurement period of duration T can be defined as

y(T) = Tfy (t)dt (C.6)

Averaging over many successive averaging periods as an approximation of many identical oscillators

simultaneously gives

o, (T) y(T=)-y(T ) (C.7)

Since only a finite number of measurements can be made, Eq.(C.7) is typically approximated as
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07-,(T)= M-1 ) (7) 2 (C.8)
2(M - 1) i=l

where the summation is made over M cycles. There are several subtleties to using this representation,

many of which are well described in [147].

The Allan Deviation and frequency domain phase and frequency noise representations are related

through a window function which describes the Allan deviation averaging period

2 ( sinf ( fT) d
o 7(T) = 2 iSY (f() 2 df = 4 (r2 ff2S,(f)sin4(fTT)df (C.9)

v02(zT 0 f vO (;TT 0

with the window function for the Allan deviation as

= sin2 (fT) (C.10)
f

C.3 Frequency comb example

When stabilizing a frequency comb, it is important to realize the implications of choosing a reference

oscillator at one frequency over another. As a simple example, consider stabilization of the optical

spectrum of a Ti:Sapphire laser to a "low phase noise" quartz crystal oscillator. The pulse repetition rate

of the laser to be stabilized is ~1 GHz, and the optical frequency of a particular comb line of interest is a

-100 THz. In this example, the pulse repetition rate is vo and the optical frequency is vn, so the

instantaneous optical frequency can be defined as

v~=N Na8(t)
v, = Nvo + (C.11)

and the fractional frequency deviation as

N 8t
yN (t)= (C.12)2 v at
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noting that in equation (C. 12) that the fractional frequency fluctuations are being described in terms of the

new frequency requiring that Sy remain constant over frequency translation, though So will not as shown

below

SO (f)= 2 SY (f) (C.13)
f

The obvious implication of Eq. (C.13) result is that measurements using frequency combs which can be

averaged for several seconds will likely have a much less stringent stabilization requirement than those

which require low phase noise in the optical spectrum.

Going back to the example, and defining the stability of the quartz crystal as characterized by an

Allan deviation of 10-9 on a 10 s timescale and phase noise of -120 dBc/Hz at 1kHz offset. From the

results of (C. 12) and (C. 13), the 100 THz comb line needed for the experiment will also have a fractional

frequency stability of 10-9 on a 10 s timescale, though the phase noise at the 1 kHz offset frequency will

have increased by a factor of 1010 to -20 dBc/Hz. Depending on the application of the resulting comb,

such a large increase in phase noise may not be an issue. If phase noise is still a problem, three options

are possible: reduce the feedback bandwidth of the phase locked loop which stabilizes the pulse repetition

rate to the quartz oscillator, find a better reference oscillator or use a different stabilization scheme.
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