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Abstract

The formulation of multivariate point-process (MPP) models based on the Jacod like-
lihood does not allow for simultaneous occurrence of events at an arbitrarily small time

resolution. In this thesis, we introduce two versatile representations of a simultaneous-
event multivariate point-process (SEMPP) model to correct this important limitation.
The first one maps an SEMPP into a higher-dimensional multivariate point-process
with no simultaneities, and is accordingly termed the disjoint representation. The
second one is a marked point-process representation of an SEMPP, which leads to new
thinning and time-rescaling algorithms for simulating an SEMPP stochastic process.
Starting from the likelihood of a discrete-time form of the disjoint representation, we
present derivations of the continuous likelihoods of the disjoint and MkPP represen-
tations of SEMPPs.

For static inference, we propose a parametrization of the likelihood of the disjoint
representation in discrete-time which gives a multinomial generalized linear model
(mGLM) algorithm for model fitting. For dynamic inference, we derive generalizations
of point-process adaptive filters. The MPP time-rescaling theorem can be used to

assess model goodness-of-fit.
We illustrate the features of our SEMPP model by simulating SEMPP data and

by analyzing neural spiking activity from pairs of simultaneously-recorded rat thala-

mic neurons stimulated by periodic whisker deflections. The SEMPP model demon-
strates a strong effect of whisker motion on simultaneous spiking activity at the one

millisecond time scale. Together, the MkPP representation of the SEMPP model, the
mGLM and the MPP time-rescaling theorem offer a theoretically sound, practical

tool for measuring joint spiking propensity in a neuronal ensemble.

Thesis Supervisor: Emery N. Brown
Title: Professor of Computational Neuroscience
and Professor of Health Sciences and Technology.
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Chapter 1

Background, Introduction and Scope

1.1 Introduction

Neuroscientists explore how the brain works by applying sensory stimuli and record-

ing the responses of neurons. Their goal is to understand the respective contributions

of the stimulus, as opposed to the neurons' intrinsic dynamics, to the observed activ-

ity. Nowadays, it is not uncommon to record simultaneously from multiple neurons.

However, techniques for the sound analysis of data generated by such experiments

have been lagging a step behind.

Motivated mainly by applications in neuroscience, the aim of this thesis is to

develop a generic framework for the rigorous analysis of multivariate-point-process

phenomena. Perhaps it is easier to understand the scope of this thesis by dissecting

its title. Loosely, a uni-variate point process is a sequence of discrete events (e.g. firing

of a neuron, arrival of a bus/passenger at a station) that occur at random points in

continuous time (or space). In general, there could be multiple such processes evolving

in parallel, in which case we speak of a multivariate point-process. Effectively, a

multivariate point process is a finite-dimensional vector process, the components of

which are uni-variate point processes. In the literature, significant attention has been

given to the particular case of multivariate point processes for which the probability of

simultaneous events/arrivals in any pair of components is negligible. Meanwhile, the

case where simultaneous arrivals/events in multiple components cannot be ignored

has received little to no attention. From a theoretical standpoint, this latter fact is

the main motivation of this thesis.
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For data analysis tasks, this thesis develops algorithms for simulation and estima-

tion of simultaneous-event multivariate point-process models. In practice, the type

of inference/estimation problems we would like to solve fall within the class of para-

metric density estimation problems. We call such problems 'static' if the parameters

of the model are fixed. If one allows the parameters of the model to vary (e.g. with

time), then we call such models 'dynamic'. We demonstrate the efficacy of the infer-

ence and simulation algorithms on neural data. These data consist of spiking activity

from simultaneously-recorded rat thalamic neurons stimulated by periodic whisker

deflections.

1.2 Background

Existing techniques to analyze neural data fall mainly into two categories: likelihood

methods and those that do not make strong assumptions, if any, about the generating

process of the data. We term the latter non-likelihood methods.

1.2.1 Non-likelihood methods

As a class, non-likelihood based methods are limited due to their inability to quantify

the extent to which the stimulus, as opposed to spiking history, modulates the joint

activity of a group of neurons. The cross-correlogram and the cross-intensity function

are two similar approaches which reduce the problem of analyzing ensemble neural

data to one of characterizing the relationships between pairs of neurons. Given a pair

of neural spike trains and a fixed bin width, the un-normalized cross-correlogram [8]

is the deterministic cross-covariance between the two spike trains, computed at a

series of lags. An underlying assumption of this method is that of stationarity, which

loosely states that the joint statistics of the pair of neurons do not change over time.

Although convenient, such an assumption is hard to justify given how plastic neural

systems are. The cross-intensity function [6] estimates the rate of a given neuron

at different lags relative to another neuron. In spite of its simplicity, the cross-

intensity function has not gained as much popularity as the cross-correlogram within



the neuroscience community. The joint peri-stimulus time histogram (JPSTH) [17]

is another histogram-based method which operates on pairs of neurons. The JPSTH

is the natural extension to pairs of neurons of the well-known PSTH: it is a two-

dimensional histogram displaying the joint spike count per unit time at each time u

for the first neuron and time v for the second neuron. The JPSTH addresses one of the

drawbacks of the cross-correlogram, which is the stationarity assumption within trials.

However, due to its reliance on a stationarity assumption across trials, the JPSTH

may lead to incorrect conclusions when there exists across-trial dynamics. In [45], the

authors incorporate a statistical model for time-varying joint-spiking activity within

the JPSTH framework. They show that this allows for more efficient computation

of the joint-firing rate of pairs of neurons. Among non-likelihood methods, spike

pattern classification techniques allow one to analyze associations beyond pairwise

ones. These methods can be used to assess the statistical significance of certain spike

patterns among multiple neurons [1, 18, 19, 34]. One of the challenges posed by spike

pattern classification is that of selecting the appropriate pattern size.

1.2.2 Likelihood methods

Likelihood methods are closest in spirit to the framework we propose in this thesis.

Among such methods, there are those based on information geometry [3, 31] and

those based on point processes [24, 33]. Likelihood methods based on information

geometry rely on an expansion of the log of the joint pmf of a vector binary process

as a linear combination of its moments. Recently, a method was proposed which

combines information geometry and adaptive filtering to track the evolution over

time of the moments of a vector binary process [39]. The nature of experiments in

neuroscience is such that it is natural to expect the joint statistics of single neurons

or of an ensemble to vary with time. In [39], the authors use a stochastic continuity

constraint on the moments in order to recover the time-varying nature of the statistics

of the data. One would expect, however, that the stimulus and/or spiking history

of neurons in an ensemble would encode information about the time-varying nature

of the joint statistics of the ensemble. This is precisely what point-process methods

17



attempt to do. Building on their success in characterizing single-neuron data [43],

point-process methods have been shown to provide a sensible framework within which

one is able to isolate the contributions of stimulus as opposed to history to the joint

activity of a group of neurons [33]. However, there is a caveat: the assumption

that, for small enough time resolution, the probability of joint firing among any

two or more neurons in the ensemble is negligible. As the time resolution becomes

arbitrarily small, this leads to the Jacod likelihood for multivariate point processes

with no simultaneities [22, 14]. The Jacod likelihood is expressed as the product of

univariate point-process likelihoods.

1.3 Contributions

Likelihood methods based on point processes assume that either the components of

the multivariate point process are independent, or that simultaneous occurrences of

events in any two components can be neglected. These assumptions turn out to be

convenient as, in both cases, one can fit an approximate model to the multivariate

point process by performing inference separately on each of its components. The case

where the probability of simultaneous occurrences cannot be neglected has received

little to no attention in the literature. Ventura et al. [45] developed a likelihood

procedure to overcome this limitation for analyzing a pair of neurons. In [25], Kass

et al. extend Ventura's approach to multiple neurons. Solo [41] recently reported

a simultaneous event multivariate point-process (SEMPP) model to correct this im-

portant limitation. However, in his treatment, Solo does not provide a framework

for inference based on real data. Here, we propose a quite general framework for

inference based on SEMPP observations. We introduce two representations of an

SEMPP. The so-called disjoint representation transforms an SEMPP into an auxil-

iary multivariate point-process with no simultaneities. The multivariate point-process

theorem [14] can be applied to this new representation to assess model goodness-of-

fit. The marked point-process (MkPP) representation [14] leads to algorithms for

simulating an SEMPP stochastic process. In discrete-time (DT), the likelihood of



the disjoint representation can be expressed as a product of conditional multinomial

trials (rolls of a dice). Starting from such an approximation, we derive the limiting

continuous-time likelihood, i.e. that of the continuous-time (CT) disjoint representa-

tion. We also derive a form of this likelihood in terms of the MkPP representation. In

practice, model fitting is performed in discrete-time. We propose a parametrization of

the likelihood of the disjoint process in discrete-time which turns it into a multivariate

generalized linear model (mGLM) with multinomial observations and logit link [16].

We propose and make available a very efficient implementation of the mGLM, which

is up to an order of magnitude faster than standard implementations, such as Mat-

lab's. Last but not least, we derive natural generalizations of point-process adaptive

filters that are able to handle simultaneous occurrences of events in multivariate point

processes.

We apply our methods to the analysis of data recorded from pairs of neurons in

the rat thalamus in response to periodic whisker deflections varying in velocity. Our

model provides a direct estimate of the magnitude of simultaneous spiking propensity

and the degree to which whisker stimulation modulates this propensity.
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Chapter 2

Discrete-Time and Continuous-Time

Likelihoods of SEMPPs

In this chapter, we begin with a simple definition of an SEMPP. Then, We show an ex-

plicit one-to-one mapping of an SEMPP to an auxiliary MPP with no simualteneities,

albeit in a higher dimensional space. We call this new MPP the disjoint representa-

tion. The disjoint representation admits an alternate equivalent representation as an

MkPP with finite mark space, which we also develop here. Last, we derive discrete-

time and continuous-time SEMPP likelihoods. In discrete-time, the likelihood of the

disjoint representation can be expressed as a product of conditional multinomial tri-

als. Starting from this likelihood, we derive the continuous-time likelihood of the

disjoint process by taking limits. We also derive a form of the continuous-time likeli-

hood in terms of the MkPP representation. The Jacod and univariate point-process

likelihoods are special cases of the continuous-time likelihoods obtained here.

We walk the reader through all key derivations. The less essential derivations are

shown in one of the appendices.

2.1 Simultaneous-event Multivariate Point Process

We consider an observation interval (0, T] and, for t E (0, T], let N(t) = (N 1(t), N2(t),- , Nc(t))'

be a C-variate point-process defined as Nc(t) = fo dNc(u), where dNc(t) is the indica-

tor function which is 1 if there is an event at time t and 0 otherwise, for c = 1, -- - , C.

Nc(t) counts the number of events for component c in the interval (0, t]. We assume



that each component c has a conditional intensity function (CIF) defined as

Ac(t|Ht) = lim P[N,(t + A) Nc(t) 11Ht] (2.1)

where Ht is the history of the C-variate point process up to time t. Let dN(t) =

(dN 1(t), dN 2(t), ... , dNc(t))' be the vector of indicator functions dNc(t) at time t.

We may treat dN(t) as a C-bit binary number. Therefore, there are 2c possible

outcomes of dN(t) at any t. C of these outcomes have only one non-zero bit (that is,

only one event in one component of dN(t)) and 2c-C-1 have two or more non-zero

bits. That is, there is an event at time t in at least 2 components of dN(t). The last

outcome is dN(t) = (0, ... , 0)'.

We define N(t) as a simultaneous-event multivariate point process (SEMPP) if,

at any time t, dN(t) has at least two non-zero bits. That is, events are observed

simultaneously in at least two of the components of N(t). The special case in which,

at any t, dN(t) can only take as values one of the C outcomes for which only one

of the bits of dN(t) is non-zero is the multivariate point process defined by Vere-

Jones [14]. The joint probability density of N(t) in this special case is given by the

Jacod likelihood function [32], [24, 14].

2.2 The disjoint and marked point-process representations

We introduce the disjoint representation, which maps an SEMPP into an auxilliary

MPP with no simultaneities, in a higher dimensional space. This new disjoint MPP

admits an alternate representation as marked point-process with finite mark space.

2.2.1 The disjoint representation

To derive the joint probability density function of an SEMPP, we develop an alterna-

tive representation of N(t). Let M = 20 be the number of possible outcomes of dN(t)

at t. We define a new M- 1-variate point process N*(t) = (N*(t), N*(t), ... , N - 1(t))'

of disjoint outcomes of N(t). That is, each component of N*(t) is a counting process

for one and only one of the 2c-1 outcomes of dN(t) (patterns of C bits) that have
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at least one non-zero bit. For any t, the vector dN*(t) = (dN*(t), - - - , dN _l (t))'

is an M-1-bit binary number with at most one non-zero bit. The non-zero element

of dN* (t) (if any) is an indicator of the pattern dN(t) of C bits which occurs at t.

dN*(t) = (0, ... , 0)' corresponds to dN(t) = (0, ... , 0)'. We define the CIF of N* (t)

as

A*(t|Ht) = lim P[N7 jt + A) -,Nm(t) = lIHt] (2.2)

where the counting process is N* (t) = fo' dN* (u). We term N* (t) the disjoint process

or representation.

One simple way to map from dN(t) to dN*(t) is to treat the former as a C-bit

binary number, reverse the order of its bits, and convert the resulting binary number

to a decimal number. We use this decimal number as the index of the non-zero

component of dN*(t). The inverse map proceeds by finding the index of the non-zero

entry of dN*(t), expressing this index as a C-bit binary number, and reversing the

order of the bits to obtain dN(t). This one-to-one map is described in detail in the

next few pages for the arbitrary C-variate case. First, we illustrate this one-to-one

map in Table 2.1 for the case C = 3 and M = 8. In this example, N(t) is related to

N*(t) by

N1 (t) = N*(t)+N*(t)+N*(t)+N*(t) (2.3)

N 2 (t) = N*(t) + N*(t) + N*(t) +N*(t) (2.4)

N2 (t) = N*(t) + N*(t) + N*(t) +N*(t). (2.5)

The CIFs of N(t) are related to those of N*(t) in a similar fashion.

From N(t) to N*(t): For each t E (0, T], the vector dN(t) = (dN 1(t), ... ,dNc(t))'

of counting measure increments of N(t) has entries either 0 or 1. Therefore, we can

treat dN(t) as a C-length binary number. We let mdN(t) i Ecl dNc(t)2c-1 be the

decimal (base-10) representation of dN(t): mdN(t) E {0,... - 1 .

Consider the 2c-1-dimensional vector dN*(t) = (dN*(t), -- - , dN2*c- 1 (t))'. If mdN(t)



Table 2.1. Map from dN(t) to dN*(t), C = 3, M = 8

dN(t)' m dN*(t)'
(1,0,0) 1 (1,0,0,0,0,0,0)
(0,1,0) 2 (0,1,0,0,0,0,0)
(1,1,0) 3 (0,0,1,0,0,0,0)
(0,0,1) 4 (0,0,0,1,0,0,0)
(1,0,1) 5 (0,0,0,0,1,0,0)
(0,1,1) 6 (0,0,0,0,0,1,0)
(1,1,1) 7 (0,0,0,0,0,0,1)

0, we let dN*(t) = (0, - -- , 0)'. Otherwise, we let dN* (t) = 1 if m = mdN(t) and dNm(t)

0 otherwise. In this case, dN*(t) is an indicator vector for the event dN(t) which oc-

curs at t. If we let N,(t) = f' dN,(u), then N*(t) = (N*(t),--- , N2*c (t))' becomes

a multivariate point-process of disjoint events from N(t).

From N*(t) to N(t): For each t E (0, T], the vector dN*(t) = (dN*(t),--- , dN2*c_ 1(t))'

is either (0, --- , 0)' or an indicator vector. In the former case, we let dN(t) =

(0, - -- , 0)'. In the latter case, we would like to determine the event dN(t) that dN*(t)

is an indicator of. Let m c {1, ... ,2 - 1} be the index of the non-zero entry of

dN*(t) and bm = bmibm2 ... bmnc be the binary representation of m. If we let dN(t) =

(bmc, ... , bn 2 , bmi)', we obtain the event dN(t) that dN*(t) is an indicator of. Letting

Nc(t) = fS dNc(u), we recover the C-variate SEMPP N(t) = (N1(t), ... ,N2(t))'

2.2.2 The marked point-process representation

We give the following definition, adapted from [14], of a marked point process on the

real line.

Definition: A marked point process with locations on the real line R and marks in

the complete separable metric space M, is a point process {(te, me)} on R x M with

the additional property that the unmarked process {ti} is a point process in its own

right, called the ground process and denoted N,(-).

When M is a finite set, we say that the MPP is an MkPP with finite mark space. In-
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tuitively, one may think of an MkPP as follows: (a) events occur at random points in

continuous-time (or space) according to the ground process, (b) every time an event

occurs, one assigns a mark to this event by drawing a sample from a distribution

which may very well depend on time, as well as the history of the ground process

and/or past marks.

If we let 0 < ti < t 2 < ... < tL < T denote the times in the observation

interval (0, T] at which dN(t) has at least one non-zero bit, then we can express the

disjoint process N*(t) as a marked point process (MkPP) {(tj, dN*(t,)}I_1 with M-

1-dimensional mark space. At te, at least one of the bits of dN(t) is non-zero. The

unmarked process {te}L_1 is the ground point process [14]. The mark, which is the

index me of the non-zero bit of dN* (te) then indicates, through the map described

above, exactly which of the M-1 patterns of C bits (outcomes of dN(t) other than

(0, ... , 0)') occurred at te. At any other t, dN(t) = (0, ... , 0)'.

We denote by dN9 (t) the indicator function that is 1 at te, E = 1,--- , L and zero at

any other t. The ground point process defines the times of occurrence of any pattern

of C bits (outcomes of dN(t)) that are not all zero. For each m, the times at which

dN,*(t) is non-zero define the times of occurrence of one specific pattern of C bits

that are not all zero. It follows that the counting process and the CIF of the ground

point process are respectively

M-1

Nq (t ) = ( N* (t ) (2.6)
M=1
M-1

A*(t|Ht) = ( A* (t|Ht). (2.7)
m=1

The probability of the marks is given by the multinomial probability mass function

A* (t|IHt)
P[dN*(t)= 1dNg(t) 1,Ht] = mI , (2.8)

A*(t|Ht)

for m = 1, ... , M-1. The derivations for Eqs. 2.7 and 2.8 are in Appendix A. The

MkPP representation provides al efficient description of N(t). The probability of an



event occurring in (0, T] is governed by the CIF A* (t|Ht) of the ground point process.

When an event is observed in dNg(t), the marks are drawn from an M-1-dimensional

history-dependent multinomial distribution (Eq. 2.8) to produce the corresponding

event in N*(t), or equivalently N(t).

N.B: The careful reader will notice that I am being a bit cavalier when using the

notation dN* (te): this is the indicator vector, the index of the nonzero entry of which

is mt. For any te, E = 1, - -- , L, dN*(tj) is automatically an indicator vector. For

any other t $ te, dN* (t) is the zero vector. So, in short, dN* (te) and its non-zero

index are two ways of representing the mark. I struggled with how to deal with the

notation. In the end, this made the most sense. Hopefully, this does not cause too

much confusion.

2.3 Likelihoods

Our goal is to derive the joint probability density function (PDF) of an SEMPP in

discrete and continuous-time using straightforward heuristic arguments. We start

with the likelihood for a discrete-time form of the disjoint representations and obtain

continuous-time likelihoods by taking limits.

2.3.1 Discrete-time likelihood

To derive the joint PDF of N*(t) in discrete time, we define the discrete-time repre-

sentations of N(t) and N*(t).

Choose I large and partition the interval (0, T] into sub-intervals of width A =

I- 1T. In discrete-time Nc(t) and N,(t) are respectively N,, = Nc(iA), N* i =

N* (iA) for i 1, ... ,I. Let ANc,i = Nc Nc,i_1, and AN** = N,i - N* _.

Letting AN = (AN 1,i, - -, ANc,)', we choose I large enough so that ANci is 0 or

1. Either ANi (AN*', - -- , AN 4 _,)' has one event in exactly one component

or ANi* = (0,-- , 0)'. Let AN* = (AN*, -- - , AN*)' be the I x M-1 matrix of

discretized outcomes for the observation interval (0, T]. Each ANi*, where i is the

discrete-time index, is a realization from a multinomial trial with M outcomes (roll



of an M-sided die):

M-1

P[AN,*lH,] =7
m=1

M-1

m=1

M-1 1-= AN*i

E/*m[il Hi]A
m=1

(2.9)

(2.10)(A* [ilHi]A)AN*,i (1 - A*[ilHi]A) 1 ANg,

where ANg, = Ng,i - Ng,i_1 = EM__AN* i N,, = Ng(iA). The probability mass

function of AN* can be written as the product of conditional M-nomial trial:

I

P[AN*] = P[ANi*Hi] + o(AL)

- A*[ilHi]A) 1-ANg,i + O(AL).

(2.11)

(2.12)
I M-1

i=1 m=1

We note that Eq. 2.12 can also be expressed in terms of a discrete-time form of

the MkPP representation A.13. The manipulations are detailed in Appendix A.

2.3.2 Continuous-time likelihoods

Disjoint likelihood

We can obtain the continuous-time likelihood p [N(*OTl1 of the disjoint process N*(t)

by relating it to the discrete-time likelihood of Eq. 2.12 and then taking limits:

P [AN* p[N*O,T)] AL.

P[ AN*]
p [Ng*,7 = -0 AL

(2.13)

(2.14)

Below, we show that p[N(*0,T]] is the product of M-1 continuous-time univariate

point process likelihoods.

Therefore,

(A*[il Hi] A)AN* '

(A* [ilHi]A)"N* ai (1



First, we approximate Eq. 2.12 as follows:

I M-1 m[i|H ]A AN*

P [AN*] = A,4ijH- ]

I M-1
~j f (A*[i H ]A) N* 'j eXp {--A*[ilHj]A} + o(AL)

i=1 m=1

= exp

= exp { E

AN* (log A* [ilHj]A) - A*[ilHi]A + o(AL)

A* [ilHi]A + o(AL),

where we have substituted A*[ilHi] = EM-1 A*m[ilH]. Then, we simplify P[AN*] /AL

as

P [AN*]
AL

exp{ -1 1 AN*,,log A*,[ilHj]A - A*[ilHi]A} + o(AL)
AL

expM{E1 _l1 AN*,,log A*[ilHj] - A* [ilHi]A} AL ± o(AL)

AL
M-1 (I

= exp E
m=1 i=1

I

AN,j (log A*[ilHj]) - A* [ilHj]A
i=1

+ o(AL)+AL~

(2.19)

(2.20)

(2.21)

Finally, we can obtain p[N*OT)] by passing to the limit:

p[N*O,T = lim exp
m=1 Ii=1

Mi1

= lim exp
m=1

M-1

M=1

- S A*,[ilHj]A

AN*n,, (log A* [iI H ]) - A*[i|Hj]A
i=1i=

T
exp log A* (t|Ht)dN*(t) -

T
A*(t|Ht)dt .

0M\I/

If we let N*(t) be the multivariate point process defined by restricting dN*(t) to

the C components which are indicators for the outcomes for which only one bit of

dN(t) is non-zero (that is, if we disregard simultaneous occurrence of events), then

28

(1 - A* [iI Hj]A) + o(AL) (2.15)

(2.16)

(2.17)

(2.18)AN*,,log A*[ijH]A -

o(AL)
±AL

(2.22)

(2.23)

(2.24)

AN*,,j (log A* [ilI H ])



Eq. 2.24 gives the joint PDF of the MPP defined by the Jacod likelihood which has

no simultaneous events [13, 33, 24]. The case M = 2 corresponds to the joint PDF

of a univariate point process [43].

MkPP likelihood

We show a new form of the continuous likelihood of the disjoint process above

(Eq. 2.24) in terms of the MkPP representation. There are various ways we can

arrive at this new form. We could start with the discrete-time likelihood expressed

in terms of the discrete form of the MkPP representation A.13, divide by AL, and

let A -* 0. This would amount to obtaining a continuous likelihood from an approx-

imate discrete one by a limiting process similar to the previous derivation. Instead,

we choose to start with the continuous likelihood of Eq. 2.24 and re-arrange it in

continuous-time to obtain the continuous likelihood in terms of the MkPP represen-

tation:

M-1 p T T

p[N(*,T]] = J exp lo( *,(t|H)dN*(t) - A* (t|Ht)dt (2.25)
m=1 0 0

M-1 L M-1 T

M exp Elog A*(tIHt,)dN,*H(t) - A*(t|H)dt
m=1 f=1 m=1

(2.26)

M-1 L T M-1

= H]fi *(tflHte)dN* (te) *mexp _ A(t|Ht)dt (2.27)
m=1 f=1 m=1

L M-1 T

I* Hte)dN* (ti) exp - j *(t|Ht)dt (2.28)
1 m=1

L dNg(te) M-1 T
=~ * j((tfHtf))A* (t|Hte,)dN,*(tR) -exp {- T*(t|Ht)dt

(2.29)

L M-1 dN (te)

= H (An~te~te)d~n(t- . *,(te|He,)dN (tg) exT A*,(t|Ht dt}.
F=1 m=1 9

(2.30)
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Chapter 3

Rescaling SEMPPs

In the preceding chapter, we showed that the continuous-time likelihood of N* (t)

factorizes into the product of uni-variate point process likelihoods. In this chapter,

after recalling the time-rescaling result for uni-variate point processes, we state results

on rescaling multivariate point processes (with no simultaneities) [29, 11, 14, 46] to

N* (t). The main implication of these results is that N* (t) can be mapped to a multi-

variate point process with independent unit-rate Poisson processes as its components.

We apply the multivariate time-rescaling theorem to goodness-of-fit assessment for

SEMPPs and describe several algorithms for simulating SEMPP models.

3.1 Rescaling uni-variate point processes

Time-Rescaling Theorem: Let the strictly-increasing sequence {t}{_1 < T be a realiza-

tion from a point process N(t) with conditional intensity function Mt|Ht) satisfying

0 < A(t|Ht) for all t C [0, T). Define the transformation:

{te} - {A(te)} = j0 A (-|H,)dT},

for f {1,--- , L}, and assume A(t) < oc for all t E [0,T). Then the sequence

{ A(te)}}I 1 is a realization from a Poisson process with unit rate.

According to the theorem, the sequence consisting ofTr = A(ti) and {T = A(te) -

A(te i)} is a sequence of independent exponential random variables with mean 1.

This is equivalent to saying that the sequence {uf = 1 - exp(-re)}I_ 1 is a sequence



of independent uniform random variables on the interval (0, 1) [9]. This first set of

transformations allows us to check departure from the Poisson assertion of the theo-

rem. If we further transform the uj's into zj = D-1 (ut) (where <D(-) is the distribution

function of a zero mean Gaussian random variable with unit variance), then the the-

orem also implies that the random variables {ze}ti1 are mutually independent zero

mean Gaussian random variables with unit variance. The benefit of this latter trans-

formation is that it allows us to check independence by computing auto-correlation

functions (ACFs). Next, we describe a procedure to assess the level of agreement

between a fitted model, with estimated conditional intensity function A(t|Ht), and

the data.

Kolmogorov-Smirnov Test: The Kolmogorov-Smirnov test is a statistical test to assess

the deviation of an empirical distribution from a hypothesized one. The test is imple-

mented using a set of confidence bounds which depend on a desired confidence level

(e.g. 95%, 99%), the sample size L and the hypothesized distribution (e.g. normal,

uniform etc...). The test prescribes that the null hypothesis should be accepted if the

empirical distribution lies within the confidence bounds specified by the theoretical

model. The null hypothesis is the hypothesis that, with the desired confidence level,

there is agreement between the data and the fit.

Recall that, according to the time-rescaling theorem, if the fitted model with condi-

tional intensity function A(t|Ht) fits the data then the sequence {te} _1 is a sequence

of independent uniform random variables on the interval (0, 1). One can use the fol-

lowing KS GOF test to determine if the fe's are indeed independent samples from a

uniform random variable on the interval (0, 1):

1. Order the fl 's from smallest to largest, to obtain a sequence {(2 }) IL_1 of ordered

values.

2. Plot the values of the cumulative distribution function of the uniform density

defined as {be = I-1/2 }I 1 against the 'ey 's.

32



If the model is correct, then the points should lie on the 45-degree line [23]. Confi-

dence bounds can be constructed using the distribution of the KS statistic. For large

enough L, the 95% and 99% confidence bounds are given by bj ± 1.36 and be ± 1.63

respectively [23].

Testing for Independence of Rescaled times: One can assess the independence of the

rescaled times by plotting the ACF of the ij with its associated approximate confi-

dence intervals calculated as tZ ) [5], where z1-(a/2) is the 1 - (a/2) quantile of

a Gaussian distribution with mean zero and unit variance.

An alternate application of the time-rescaling theorem is simulation of a uni-

variate point processes [9]. This algorithm is a special case of one of the algorithms

we describe in this chapter (Algorithm 2, with M = 2).

3.2 Rescaling multivariate point processes

We now state the time-rescaling result for "multivariate point processes" (Proposition

7.4.VI in [14]).

Proposition: Let N*(t) = {N*(t) : m = 1,--- , M - 1} be a multivariate point pro-

cess defined on [0, oc) with a finite set of components, full internal history Ht, and

left-continuous Ht-intensities A* (t|Ht). Suppose that for m C {1,- ... , M - 1} the

conditional intensities are strictly positive and that A* (t) = f t A* (T|H,)dT -+ oo as

t -* oc. Then under the simultaneous random time transformations:

- A* (t), m E (1, -, M - 1},

the process { (N* (t),-- ,N _1(t)) : t > 0} is transformed into a multivariate Poisson

process with independent components each having unit rate.

Note: In the terminology of Vere-Jones et al., a "multivariate point process" refers

to a vector-valued point process with no simultaneities. In this terminology, N*(t)

would be considered a "multivariate point process" (by construction) while N(t), as

we have defined it in the previous chapter, in general would not. According to the



proposition, N* (t) can be transformed into a multivariate point process whose M - 1

components are independent Poisson processes each having unit rate.

The proposition is a consequence of (a) the fact that the likelihood of N* (t) is the

product of univariate point-process likelihoods, and (b) the time-rescaling result for

uni-variate point processes. The interested reader should consult [14] for a rigorous

proof.

Next, we discuss applications of the time-rescaling result of this section to simu-

lation of SEMPPs and goodness-of-fit assessment respectively.

3.3 Application to simulation of SEMPPs

We present two classes of algorithms for simulating SEMPP models. The first class

of algorithms uses the time-rescaling theorem (univariate or multivariate), while the

second class uses thinning.

3.3.1 Algorithms based on the time-rescaling theorem

The following algorithm is based on the interpretation of SEMPPs as MkPPs with

finite mark space: first we simulate from the ground process, then every time an event

occurs, we roll an M - 1-sided die.

Algorithm 1 (Time-rescaling): Given an interval (0, T]

1. Set to = 0 and f = 1.

2. Draw ue from the uniform distribution on (0,1).

3. Find te as the solution to: log(ue) = A* (t|H)dt.

4. If tf > T, then stop, else

5. Draw me from the (M-1)-dimensional multinomial distribution with probabili-

ties . (idf, m= {1,... M-1}.

6. set dN*,(tt) = 1 and dN (tj) = 0 for all m / me.
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7. dN(tf) is obtained from dN*(te) using the map described in Chapter 2.

8. e = f + 1.

9. Go back to 2.

Note that step 3 of the above algorithm could be replaced by the following two steps:

For each m, solve for t' as the solution to

Then

te= min t
mE{1,...,M-1}

This follows from a known result which we derive below.

Suppose te and te_1 are realization of some random variables T and T_1

and that the tT's are realizations of random variables Tm's, m E (1, ---

respectively,

, M - 1}:

P[T'>t|Te_1=te_1] = P[minT" ;>ti|Te_1=te-1]

M-1

= f0P[T; te|T_1 t_]
m=1

M-1 te

= 7 exp A* (t|Ht)dt
m=1 t-1

(M-1 ftM

= exp A* (t|H)dt
m=1 $-(tj M-1

=exp A \ * (t|IHt)
(rim=1

= exp A*(t|Ht)dt.
t 

t 

qt 
_i

The following algorithm for simulating SEMPPs follows from the time-rescaling

result for N* (t). If there were no dependence of the CIFs on history, we would simulate

observations from each component separately. However, due to history dependence,

each component must inform other components to update their history as events

dt }



occur. Therefore, this algorithm is not as practical as the previous one. However, it

follows directly from the the multivariate time-rescaling theorem discussed above.

Algorithm 2 (Time-rescaling):

1. Set to = 0,E= 1, fm = 1V mE {1, -. - M - 1}.

2. V m, draw Trn an exponential random variable with mean 1.

3. V m, find tern as the solution to:

Te = fte 2I2lA* (t|Ht)dt.

Let m+ = arg minm tern, te = te+.

4. If te > T, then stop the algorithm, else

5. If m = m+, set dN+g (te) = 1, fm = em + 1 and draw Trm an exponential random

variable with mean 1.

6. If m / m+, Im does not change, set

Tern = Trn- f-tR A* (t| Ht)dt,

tern1 =te,

dN*(tj) 0,

7. dN(tj) is obtained from dN*(tt) using the map described in Chapter 2.

8. E =f+ 1.

9. Go back to 3.

3.3.2 Thinning-based algorithms

The following algorithm for simulating an SEMPP model is an extension of the thin-

ning simulation algorithm for MPP models developed by Ogata [32].

Algorithm 3 (Thinning): Suppose there exists A such that A*(t|Ht) < A for all t E (0, T]:

1. Simulate observations 0 < t1 < t 2 ... < tK < T from a Poisson point process

with rate A.



2. Set k = 1.

3. while k < K

(a) Draw Uk from the uniform distribution on (0,1)

(b) if A(t Ht Uk

i. Draw mk from the (M-1)-dimensional multinomial distribution with

probabilities H m - {I, . . . , M-1}
A,(tkIHtk)'

ii. set dNk (tk) = 1 and dN* (tk) = 0 for all m f mk

(c) else, set dN,*(tk) = 0 for all m E {1, ... M - 1}

(d) dN(tk) is obtained from dN*(tk) as in Chapter 2.

(e) k=k+1.

An alternative form of Algorithm 3 is as follows:

Algorithm 4 (Thinning):

t E (0, T]:

Suppose there exists A such that EI_- A*,(t|H) < A for all

1. Simulate observations 0 < ti < t 2 ... < tK < T from a Poisson point process

with rate A.

2. Set k = 1.

3. while k < K

(a) Draw mk E {0, ... , M - 1} from the M-dimensional multinomial dis-
___________________A* (tklHtk)tribution with probabilities ro = A-En A M(tklHtk) and 7m A* I

m= 1, -. -- M - 1

(b) if mk =0, set dN*(tk) =0forallmE {1, ... , M - 1}

(c) else, set dN* (tk) = 1 and dN*(tk) = 0 for all m f mk

(d) dN(tk) is obtained from dN*(tk) as in Chapter 2.

(e) k = k +1.



Algorithms 3 and 4 are variations on the same algorithm. The former uses the fact

that one can represent an M-nomial pmf as the product of a Bernoulli component

and an M - 1-nomial component.

3.3.3 Simulated joint neural spiking activity

We use the time-rescaling algorithm (Algorithm 1) to simulate simultaneous spiking

activity from three thalamic neurons in response to periodic whisker deflections of

velocity 50 mm/s. We simulate 33 trials of the experiment described in Chapter 5

using the following form for the CIFs:

A[l]AJ-1 3 K,

S A[i#H,]A + #3s +mk ANC,Z, (3.1)
9 j=0 c=1 k=1

stimulus component history component

m= 1, -.. -7. In the next chapter, we will see that this parametric form of the

CIFs gives a multinomial generalized linear model (mGLM). For these simulations,

we chose J = 2, K1 = 2, K 2 = 2 and K 3 = 2. We chose the parameters of the model

based on our analysis, in Chapter 5, of the joint spiking activity of pairs of thalamic

neurons in response to periodic whisker deflections of the same velocity.

Fig.3-1 shows the standard raster plots of the simulated data. There is strong

modulation of the activity of each of the neurons by the stimulus. Fig. 3-2 shows the

raster plots of each of the 7 disjoint components of AN*. As the figure indicates,

the parameters of the model were chosen so that the stimulus strongly modulates

simultaneous occurrences from the pairs Neuron 1 and Neuron 2, Neuron 2 and Neuron

3, as well as simultaneous occurrences from the triple.

3.4 Application to goodness-of-fit assessment

Let {A*(te) }=- be the sequence obtained by rescaling points of N*(t) as in the

multivariate time-rescaling theorem. There are Lm such points and the Lm 's satisfy

_-1 Lm = L, where L is the total number of events from the ground process Ng(t)
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Figure 3-1. Standard raster plots of the simulated spiking activity of each neuron in a triplet in
response to a periodic whisker deflection of velocity v = 50 mm/s. (A) Stimulus: periodic whisker
deflection, (B) 33 trials of simulated data. The standard raster plots show that the stimulus induces
strong modulation of the neural spiking of each of the three neurons. These standard raster plots
do not clearly show the effect of the stimulus on joint spiking. The effect on the stimulus on joint
spiking activity is evident in the new raster plots of the disjoint events (Fig. 3-2).

in the interval [0, T). Now consider the sequence consisting of {r 1m = A* (t1 )} and

{jT" = A*(te) - Am E {1, --- , M - 1}. According to the multivariate

time-rescaling theorem, the Trj's (f E (1, ... ,Lm}, m E (1, -... , M -1}) are mutually

independent exponential random variables with mean 1. This is equivalent to saying

that the random variables {u' = 1-exp(--r")} I , m E {1,- , M-1}, are mutually

independent uniform random variables on the interval (0, 1). This latter fact forms

the basis of a KS test for GOF assessment much like in the case of a uni-variate point

process [9].

Kolmogorov-Smirnov Test: Assume that CIFs A*(t|Ht) were obtained by fitting a

model to available data. For each m, one can use the following KS GOF test

to determine whether or not the i"z's are samples from a uniform random variable

on the interval (0, 1):
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1. Order the fi4's from smallest to largest, to obtain a sequence {&)}mI of ordered

values.

2. Plot the values of the cumulative distribution function of the uniform density

defined as {bm = 1-12 }I against the U(m's.

If the model is correct then, for each m E {1, ... , M - 1}, the points should

lie on the 45-degree line [23]. Confidence bounds can be constructed using

the distribution of the KS statistic. For large enough Lm, the 95% and 99%

confidence bounds are given by bm t± 3 and bf , respectively [23].

Testing for Independence of Rescaled Times

If we further transform the um's into zm = <D-(um) (where <D(-) is the distribution

function of a zero mean Gaussian random variable with unit variance), then the

proposition asserts that the random variables {zf}q± are mutually independent zero

mean Gaussian random variables with unit variance. That is (a) for fixed m, the

elements of {zf}m±i are i.i.d. zero mean Gaussian with unit variance, (b) {z7f}m

and {zm'} ' are independent sets of random variables, m i m'. The benefit of

this transformation is that it allows us to check independence by computing auto-

correlation functions (ACFs) (for fixed m) and cross-correlation functions (CCFs)

(m #i m').
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Figure 3-2. New raster plots of non-simultaneous ('100', '010' and '001') and simultaneous ('110',
'011', '101' and '111') spiking events for the three simulated neurons of in Fig. 3-1. (A) Stimulus
(B) Non-simultaneous events, from left to right, '100', '010' and '001', (C) Simultaneous events
from pairs of neurons, from left to right, '110,, '011' and '101', (D) Simultaneous event from the
three neurons ('1'.The new raster plots of the three components show clearly the effects of the
stimulus on non-simultaneous and simultaneous spiking. The AN4*,i and AN,i components of AN*
show that the joint spiking activity of the pairs consisting of Neurons 1 and 2 on the one hand, and
Neurons 2 and 3 on the other hand is pronounced. The AN7*, component of AN* shows that the
joint spiking activity of the three neurons is also pronounced. The information in these raster plots
about the joint spiking activity of neurons could not be gathered from Fig. 3-1.
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Chapter 4

Static and Dynamic Inference

In this chapter, we consider the problem of static and dynamic modeling of SEMPP

data. For static inference, we propose a multinomial generalized linear model (mGLM)

of the discrete-time likelihood of such data. For small enough sampling interval, the

mGLM is equivalent to multiple Bernoulli GLMs. We perform estimation by maxi-

mizing the likelihood of the data using Newton's method. The use of linear conjugate

gradient at each Newton step leads to fast algorithms for fitting the GLMs. For

dynamic inference, we derive recursive linear filtering procedures to track a hidden

parameter based on observed SEMPP data. In particular, we derive a multinomial

adaptive filtering procedure, which uses the exact likelihood of the discrete-time rep-

resentation of SEMPP. Using the approximate likelihood, we obtain generalizations

of point-process adaptive filters.

4.1 Static modeling

We refer to static models as those for which the parameters of interest are fixed for

a given set of observed data. For example, we classify the problem of fitting a line to

data as a static modeling problem because we are seeking a single slope and intercept

pair for the available data. However, we would not consider a static model one where

we allow the slope and intercept to change (e.g. using an AR model).

We start with the likelihood of an SEMPP in discrete-time (Equation 2.12) and

parametrize it so that it becomes a GLM with M-nomial observations and logit link.

For small enough A, the mGLM is equivalent to M - 1 separate uni-variate GLMs

with Bernoulli observations and log link.

43



4.1.1 Generalized linear model of the DT likelihood

We may rewrite the discrete likelihood P [AN[*,] of Equation 2.12 as follows:

exp AN*,,log +log(1-A*H[ilH]A) (4.1)

where we have substituted

A*[ilHi]= P[AN* =1|ANg, = 1, H]A*[iHj], m = 1, ... ,M - 1. (4.2)

and dropped the o(AL) component. The following relationships turn the above like-

lihood into a GLM with M-nomial observations and logit link [16]:

1-A*[ilHi]A,log1 -,ilH] = /3,xi, where (4.3)

#m is a d-dimensional vector of parameters to be estimated from the data, xi is a

vector of covariates/features of the same dimension as #m and m = 1, - - - , M - 1.

The choice of covariates xi depends on the problem at hand. In the case of neural

data, the covariates are chosen so that they capture the effect of the stimulus as

well as history on the observed response(s). The history portion comprises of past

observations while choosing the stimulus depends on the experiment. It is easy to

obtain an expression for A* [i I Hj] A as a function of #1,--- , #m and xi:

A*e[ilHi]A = ,Xi m = 1 ... M - 1. (4.4)M 1 + E'_ exp{,'exj}

In the case of a bi-variate SEMPP N(t) (M = 2), we may recover the marginal

probabilities as

AI[ilHi]A = A*[ilHj]A+A*[ilH]A, (4.5)

A2[ilHi]A = A*[ilHj] + A*[ijH]A. (4.6)

One may also recover the marginal probabilities in case of a C-dimensional SEMPP
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(M = 2c) by using the map described in Chapter 2.

We are now in a position to write the parametrized joint likelihood of the DT

process as a function of #1, -- ,m, the AN*'s and the xi's:

I M-1 
M-1

P [AN[*:, x[1:I]; 3] = exp { E AN*i/#'xi - log 1 + exp{/3'Xi})}
i=1 m=1 m=1

(4.7)

where # = ( l, - -llo M_1)'.

The corresponding log-likelihood L (AN[*:,,, x[1:I]; #) is given by:

I M-1

L (AN[*,:,, x[:]; #) = E E AN*o,,,' xi - log 1
i=1 m=1

M-1

+ E exp{#' x}).
m=1

Approximate GLM: For small A, the discrete-time likelihood is approximately the

product of M - 1 discrete-time univariate point-process likelihoods (Equation 2.18).

Assuming EM-1 Ar[ilHi]A cx o(1), we may write:

A* [ilHi]A
log A*[il Hi]A _ log "_H

1 - Em-1 A* [ilHi]A
(4.9)

If we let log A* [ilHi]A = 3'x (in the approximate discrete likelihood of Equa-

tion 2.18), then the multinomial GLM is approximately equivalent to M - 1 uni-

variate GLMs with Bernoulli observations and log link. The corresponding likelihood

and log-likelihood are given by:

P [AN x[1:] ]

L (AN[*:I, X[1:I] #)

{ I 
M-1exp AN*,,i#' z - exp{3xi}},

i=1 m=1
I M-1

Z~S AN*,,i#,xi - exp{3' i4}.
i=1 m=1

(4.8)

(4.10)

(4.11)
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4.1.2 Maximum likelihood estimation

Iteratively-reweighted least-squares (IRwLS)

Our objective function is the log likelihood of the data, given in Equation 4.8, which

we would like to maximize. That is, we would like to find:

,ML = arg max L (AN*],l:];)- (4-12)
13 [:11X Ii;1)

This is a well-studied problem in the statistics and machine learning literatures, where

it is known as logistic regression [27, 26, 4, 30].

In the appendix, we derive the gradient vector g(3) and the Hessian matrix H(#)

of the objective as a function of # = (#', - -- ,_)'. It is not hard to show that,

if the matrix of covariates/features is full-rank, then the Hessian matrix is negative

definite. In turn, this implies that the ML estimate #ML of / is unique.

We maximize the objective function by taking Newton steps as follows:

3 (k+1) = 0(k) - H-(#W(k)g(#(k)) (4.13)

= 3(k) + (X'W(#(k))X)- 1X' (AN* - A*[/3(k)]A) . (4.14)

Various stopping criteria can be used. Typically, one stops after a given number of

iterations or if the deviance has reached some threshold. The deviance is the log of

the ratio of likelihoods between a saturated model and the one estimated from the

data [16]. It generalizes the mean-squared error in the case of Gaussian observations

(linear least-squares). In our case, the deviance is given by:

D(AN[*:,], x[1:11;#) = -2L (AN*,:, x [1:1]; /). (4.15)

Minimizing the deviance is equivalent to maximizing the likelihood of the data.



Rearranging Equation 4.14 reveals some structure in each Newton step:

X'W(3(k))X3(k+1) = X'W((k))X3(k) + X' (AN* - A*[3(k)]A) (4.16)

= X'W(#(k)) (X(k) + W-l(13(k))(AN* - *[3(k)]A))(.4.17)

As X'W(3(k))X is a symmetric positive-definite matrix, Equation 4.17 can be inter-

preted as a weighted least-squares (WLS) problem:

1
1
3 (k+1) = argmax - (b - Ax)'Q(b - Ax), (4.18)

X 2

b = X!(k)+W-1(3(k))(AN*-A*[3(k)]A), Q = W(#(I)) and A = X. The interpretation

of each Newton step as in Equation 4.18 is the reason why the likelihood maximization

algorithm described above is often referred to as IRwLS [16].

Linear Conjugate Gradient

Maximizing the log-likelihood of the data by IRwLS can be computationally very

expensive [26]. That is why, the algorithm can be very slow at times, especially for

large data sets [26], [30]. We saw in Equation 4.17 that each Newton step amounts

to solving a linear system, which can also be interpreted as a (WLS) or quadratic

optimization problem with negative definite Hessian (Equation 4.18). Treating each

Newton step as a concave quadratic optimization problem allows one to consider use

the linear conjugate gradient (CG) method [38]. The computational complexity of

linear CG is proportional to the sparsity of the Hessian matrix [38]. As our experience

and that of others ([26]) reveals, the use of CG often results in a significant boost in

performance. Typically, only a small number of CG iterations are required at each

Newton step in order to obtain an accurate enough solution [26]. In neuroscience

applications in particular (where the covariates xi include past observations), the

covariate/feature matrix X is often very sparse, which in turn results in a sparse

Hessian. The corresponding algorithm, where the linear system involved at each

Newton step is only solved approximately, falls within the class of truncated Newton

methods [26].



Linear CG is an iterative algorithm to solve n x n linear systems of the form

Ax = b, where A is a symmetric positive definite matrix [38]. One can think of this

linear system as having arisen from the quadratic program:

1
min f(x) = -X'Ax - b'x + c. (4.19)

2

Consider an iterative algorithm to solve the above quadratic program. Let r(k) =

b - Ax(k) be the gradient of f(x) evaluated at X(k), where X(k) is an estimate of

the minimizer of f(x) at iteration k. One can interpret the linear CG algorithm as

an iterative algorithm which generates search directions d(k) by A-conjugate Gram-

Schmidt orthogonalization of the residuals r(k) [38]. The generated directions d(k) are

A-conjugate, that is, they satisfy:

d'i)Ad(j) = 0, i f j E {1,- ,n}. (4.20)

It can be shown that, by taking successive steps in the d(k) directions, the resulting

algorithm known as linear CG would need at most n iterations to converge. This is

because, unlike an algorithm such as steepest descent which may visit some of the

r(k) directions multiple times, linear CG only visits each direction d(k) once [38].

While the interpretation of CG as A-conjugate Gram-Schmidt orthogonalization

on the residuals r(k) is valid, it should not be taken too far. Strictly speaking, each

step of the Gram-Schmidt process would require one to store all previously-generated

directions, as these would be needed in the next step of the process (to compute the

new search direction). This would make the algorithm very expensive both computa-

tionally and in terms of storage space required. Needless to say that, implemented in

this fashion, linear CG would be unattractive. What makes linear CG attractive how-

ever is that, at any given iteration k, one is only required to store the previous search

direction (instead of k - 1 of them). Indeed, one can show that [38], at iteration k,

r(k) is A-orthogonal to all previous search directions except d(k-1). This significantly

reduces the computational and storage cost of the algorithm and is one of the reason

why it has become so popular. A formal derivation of the previous result and other



properties of linear CG can be found in [38]. We now turn to how one would actually

implement the CG algorithm in practice. The algorithm begins with an initial guess

x(o) of the solution.

The linear CG algorithm:

d(o) = r(o) = b - Ax(o), (4.21)

i = 0, (4.22)

Step 1: a M) = (4.23)
01' d'0)Adts)

x(i+1) = x(i) + a()d(i), (4.24)

Step 2 r(i+1) = r() - aq()Ad(j), (4.25)

Stop if desired accuracy reached, else (4.26)

(i+1r(i+1)
Step 3 : (i+1) = (,+1) (4.27)

(i r(s)
d(i+1) = r(i+1) -7(j+1)dgy (4.28)

i = i + 1,1 (4.29)

Step 4: Go back to Step 1. (4.30)

The above algorithm, which utilizes only the previous search direction at each iter-

ation, has O(S) space and time complexity per iteration, where S is the number of

non-zero entries of A. This is a significant improvement over the O(n 2 ) (per-iteration)

space and time complexity of an algorithm which would utilize all previous search

directions at each iteration [38].

4.1.3 Numerical examples of savings due to linear CG

The data sets

We use several data sets from neuroscience experiments to demonstrate the com-

putational savings that can be obtained by using linear CG at each Newton step.

We compare our implementation of logistic regression with Matlab's native glmfit

function.
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Example 1 The data comes from neurons in the auditory system. The data was

recorded from the auditory nerve of anesthetized cats following the presentation of

the input sentence "Wood is best for making toys and blocks" spoken by a male and

sampled at 10 kHz. The GLM for the data expresses the neuron's conditional intensity

function as a function of the spectro-temporal properties of the input stimulus and

neuron's history [35].

Example 2 The data is recorded from a neuron in awake macaque V1 while the animal

was viewing a natural scenes movie. The same movie was presented multiple times.

The GLM of the data uses basis splines to non-parametrically model the stimulus

component of the neuron's conditional intensity function, similar to a PSTH. Further,

spike history effects were included as a basis-spline-based autoregressive model [21].

Example 3 The data comes from one neuron in the rat thalamus and was recorded in

response to a periodic whisker deflection of velocity 16 mm/s administered at 8 Hz

for a period of 2000 ms. A delay period of 500 ms preceded and followed each trial.

A total of 50 trials were recorded. The experiment was described in detail in [42].

In this example, we only use 33 of these trials. The GLM for the data relates the

conditional intensity function of the neuron to the administered whisker stimulation

and the neuron's firing history.

Example 4 The data comes from one neuron in a patient with Parkinson's disease

while the patient performs a behavioral task. The patient is requested to move a

joystick in one of 4 different directions (Up, Down, Right, Left). Recordings start 250

ms before movement onset and stop when the movement begins. The experiment and

the model were described in detail in [37]. The GLM of the data models the neuron's

conditional intensity function as a function of 4 categorical variables as well as the

history of the neuron. Each categorical variables corresponds to one direction of the

joystick.
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Results

We call our implementation 'bnlrCG', which stands for binomial logistic regression

with conjugate gradient. We have also implemented the Poisson GLM with conjugate

gradient. We compare the algorithms to Matlab's glmfit based on running time in

seconds, as well as the deviance of the model for several data sets from neuroscience

experiments.

The examples where run on a machine with two dual core Intel processors at 2.83

and 3.01 GHz dual-core, 3GB of RAM, 32 bit Windows Vista and Matlab version

R2008a.

The algorithm described in [26] uses a fixed number of CG iterations. However,

when the number of covariates d is 0(100), our experience with neural data shows that

a number of CG iterations approximately equal to results in better fits, although2

not significantly so. In what follows, we refer to the size of problems we consider as

n x d, where n is the number of observations.

In interpreting the results of Table 4.1, one should note that 'bnlrCG' does not

solve the GLM/logistic regression problem exactly: the algorithm leads to very good

approximate solutions to the logistic regression problem at a fraction of the time re-

quired by solving the exact problem naively [26]. In the case of neural data, this is

achieved while preserving goodness-of-fit as measured by KS plots [9]. These com-

putational savings are important, considering that one must usually select among

several competing models, which involves fitting of multiple GLMs.

Table 4.1 summarizes the results. In all but the 1st example, 'bnlrCG' and Mat-

lab's glmfit function result in the same value of the deviance. The goodness-of-fits

using either methods, as measured by KS plots [9], were indistinguishable. For the

first example, the negligible discrepancy between the deviances is the result of truncat-

ing the Newton steps by using only a fraction of the number of required CG iterations

required to solve the linear system exactly. However, the running time of 'bnlrCG' is

much smaller than that of glmfit.

We do not report results for our implementation of the Poisson GLM because

savings in running time are practically indistinguishable from the ones reported in



Table 4.1. Comparison of glmnfit and bnlrCG on various neuroscience data sets

Ex1 Ex2 Ex3 Ex4
n = 60000 n = 100000 n = 88000 n ~ 19000

d =500 d =128 d = 43 d = 28
Dev Time (s) Dev Time (s) Dev Time (s) Dev Time (s)

glmfit 12425 230 51187 89 14416 45 7847.5 5.2
bnlrCG 12678 38 51187 10 14416 15 7847.5 0.8

Table 4.1.

The speed up due to linear CG is better appreciated if one considers situation

where the need to fit a large number of GLMs arises. Typically, selecting a GLM of

a given data set requires one to compare several models of the data. In the process,

one would need to fit several GLMs of the data (e.g. up to 1000). The number

of such GLM fits depends on the size of the parameter space over which the set of

competing models lie. In the case of Ex 2., bnlrCG could reduce the time required to

select the best model from 24 hours to 3hours. The need to fit several GLMs also

arises in instances when one is interested in computing bootstrap confidence-interval

estimates.

The implementation based on CG has made fitting of a large number of GLMs

computationally tractable in cases when it previously wasn't using Matlab's native

routine.

4.2 Dynamic modeling: SEMPP adaptive filters

A model is called dynamic if it is not static. In other words, we allow the parameters

of interest to evolve in a constrained fashion. For example, consider the problem of

fitting a 'line' to data. We would consider a dynamic model one where we allow the

slope and intercept pair of the line to evolve (e.g. according to an AR model).

Adaptive filtering is a branch of signal processing which deals with tracking of

a time-varying latent signal based on a given set of observations or measurements.

The Kalman filter is a powerful adaptive filtering algorithm which, under certain as-
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sumptions (Gauss-Markov process), is able to reliably track an underlying continuous-

valued signal based on continuous-valued observations. The Kalman filter, however,

is not very useful when the observations are binary valued as in the case of point

process observations. This has prompted the design of adaptive filters tailored to

point process observations, known as point process adaptive filters [15]. Point pro-

cess adaptive filters have been shown to be very useful at various decoding (tracking

tasks) in the context of neural data [10]. Conventional point-process adaptive filters

are inherently unable to handle multivariate point process data with simultaneities.

This is because they either assume a no-simultaneity, Jacod likelihood model of the

data or independence. As previously argued, both of these assumptions are at best

theoretically-convenient.

Here, we introduce SEMPP adaptive filters as natural generalizations of point pro-

cess adaptive filters. Unlike conventional point-process adaptive filters [15], SEMPP

adaptive filters are able to exploit simultaneous occurrences of events. We use the

Bayes' rule Chapman-Kolmogorov framework along with a linear state equation and

SEMPP observation models to derive adaptive filters appropriate for estimation from

multivariate point processes with simultaneities. The adaptive filters which we derive

closely resemble those introduced by [15]. In fact, the steps involved in the derivation

are exactly the same. However, the key difference is the fact that the authors in [15]

do not allow for co-occurrences in the original C-variate point process N(t). The dis-

joint representation N*(t) of N(t) allows us to account for co-occurrences and leads

to simple, elegant filters. We only sketch the key steps of the derivation and refer the

interested reader to the treatment in [15] for details.

Naturally, these new filters could be applied to decoding problems based on

SEMPP observations. SEMPP adaptive filters could also be useful in the context

of fitting models with time-varying parameters to SEMPP data. Estimation of mod-

els with time-varying parameters is typically performed using the EM algorithm or

Monte-Carlo methods. SEMPP adaptive filters could be used in the E-step of an

EM algorithm. Indeed, they would allow for approximate analytic computation of

posterior density of the state (the parameters) given all observations up to a given



time.

Notation: We observe samples of a C-variate point process N(t) in the interval [0, T).

Assuming that such a process possesses M-1 degrees of freedom at each t C [0, T), let

N*(t) be its disjoint representation with M - 1 components C + 1 < M < 2C. N*(t)

is characterized by conditional intensity functions A* (tIOt, Ht) (m E {, ... , M - 1})

which share are common hidden or unknown time-varying parameter vector Ot. Note

that, in this formulation, it is not hard to incorporate a known exogenous signal

xt on which the CIFs depend. However, we omit this to keep the notation simple.

Switching to a discrete-time representation (with fine enough sampling interval A

and a number I of observations) N* (t) is represented by indicator vectors AN,

where i = 1, ... , I is the discrete time index. The time-varying parameter 0t is also

discretized and represented by the vector 0%. We let ANg*] = [AN* - , AN] denote

the observations up to time i. To simplify notation, we aggregate all of the history that

is pertinent to the probabilities of events at i into a common term Hi = [AN[*:i-l]]

First, we derive adaptive filters based oi the approximate DT likelihood for a

single observation (Equation 2.18 with 1 = 1). These filters turn out to be gener-

alizations of the ones introduced in [15]. Then, we derive filters based on the exact

DT likelihood for a single observation(Equation 4.1 with I = 1) and argue that the

former filters are approximations to the latter.

4.2.1 Adaptive filters based on approximate discrete-time likelihood

To develop an adaptive filter, we derive a recursive expression for 64 in terms of its

previous values and Hi. Time-varying estimates of 6% will be based on its posterior

density conditioned on past observations and Hi, p(0ilANi*, Hi). This posterior den-

sity evolves over time with each incoming observation. Tracking the evolution of this

posterior density over time allows for tracking of the evolution of the parameter 0%

based on observations up to and including the current one at time i.

Before outlining the major steps involved in the derivation of the adaptive filters,

we specify the system and observation equations. We define the system equation as



as a first-order vector auto-regressive process with Gaussian errors:

64 = FiO31 + ei, (4.31)

where F is a system evolution matrix and the ci's are i.i.d. zero-mean Gaussian

random vectors with diagonal covariance matrices E for each i. This model imposes

a stochastic continuity constraint on the 6i's. Loosely, this model implicitly states

that the O's do not change much from one time step to the next.

The second component for the construction of a recursive filtering procedure is

the likelihood or observation model specified in Equation 2.18. To keep the notation

consistent with that of [15], we denote the likelihood by p(ANi*I O, Hi):

p(ANj* IO, H) exp AN,*, (log A*[iIOi, Hj]A) - A*[il62, Hi]A}. (4.32)
m=1)

The recursive filtering equations which we seek are derived using the following

procedure:

1. Bayes' rule to write in terms of likelihood and one-step prediction density:

p (OiIAN, Hj) - p(AN |O|, Hi)p(4|Hi )p((AN~i**HH)=) .(4.33)p (A N*|IH j)

The first term of the numerator is the likelihood and the second term is the

one-step prediction density defined by the Chapman-Kolmogorov equation:

p(Oi|H ) = j p(i, _Hi jH)dOi_1 = Jp(OilOi61 H jp(6i_1|H )d6i-1. (4.34)

The above equation has two components: p(O| Oi1, Hj) given by the state evo-

lution equation (Equation 4.31), and p(Oi_ 1|Hj), the posterior density at the

previous iteration.

2. Gaussian approximation to the posterior density: By assumption, p(O6 O61, Hj)

follows a Gaussian distribution in the parameter 64 - 6;_1. Approximating the



posterior density at the previous time step by a Gaussian implies that the

one-step prediction density p(OBiHj) also follows a Gaussian distribution. This

is a simple consequence of the fact that the Chapman-Kolmogorov equation

becomes the convolution of two Gaussians. Let 0 iji-1 = E[O6jHj] and Wili 1 =

var[O|Hj] be the mean and covariance matrix of the one-step prediction density

and 0 ili = E[OiAN,*, Hj] and Wili = var[Oi|ANi*, Hj] be the mean and variance

of the posterior density. The Gaussian approximation of the posterior can then

be expressed as follows:

p(O6|ANj*, H) cx exp AN,*, (log A* [iI O, Hj]A) - A*[iIO6, Hi]A

exp - (6i - 60 is_ 1)'WO-l_1(OZ - 0;is-1) (4.35)

c exp { (6A - Oile)'Wg(64 - Oiii)}. (4.36)

Taking the log on both sides yields:

-(- 6Oi )'W (O - Oiii)2

M-1
MiM

= > AN*, (log A*,[il64, Hi]A) - A*X[ilO3, Hi]A
m=1

2 ( - O641)'WVt 1j 1(o6 - 0 isi_1). (4.37)

3. Solve for posterior mean and covariance: The recursive filtering equations are

obtained by taking derivatives on both sides of the log equality above and

evaluating at O6 = 6ij|-_. The interested reader is referred to [15] for the missing

steps in the above outline of the derivation. Following the steps outlined above

results in the recursive filtering equations:

64|;1 = FO6_|I 1,

Wili 1 = FWi_1 iFi'+ Ei,

(4.38)

(4.39)
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Wi1

M-1

m=1

M-1 -

-- (AN* j
m=1 -

- lOgA* 0 lOgA* -

2~ *m i
-9 A*,,gA*8648 0;i_

M-1 [( 1 OgA* -\'
Bii O= g1 + Wi 8[W m )

m=1 -
(AN*,,

(4.40)

(4.41)

(4.42)
ili-1

4.2.2 Adaptive filters based on exact discrete-time likelihood (multinomial fil-

ters)

The setup is the same as in the previous section, except that the approximate likeli-

hood (Equation 2.18) for a single observation (i.e. I = 1) is replaced with the exact

one (Equation 4.1):

p(ANi*I O, Hj) exp {{M-1AN*,, (log A*1 [i O, Hj]AM + log(1
1 - A*[il64, Hj]A

- A* [iIOi Hi]A)}

= exp {7(6)'ANi*- log ( M-1

1 + E exp (71m (0j)
m=1

= exp {n(O)'ANf - A (n(Oj))}, (4.43)

where m(Oi) = log AmiiHP.

Following the same reasoning as in the previous section, the Gaussian approximation

to the posterior density of O takes the following form:

p(OilANi*, Hj) oc exp {n(O )'AN* - A (rq(0j))}

exp - (6i - O6ii_1)'W- 1 1  - 6i p

oc exp - (6 - Big)'Wz ( - Oili)

The recursive filtering equations are obtained by taking derivatives on both sides of

the log equality above and evaluating at O = T g|n1.s

1) (4.44)

(4.45)

Taking the log on both sides

-A*,s )



yields:

1 1
2 - 0)W. (6j - i)) = I(6i)'ANi* - A (7(0i)) 2(IA - Oi_ 1)'W1 _1 (0 i - 0 ii 1).2 2

exponential family term

(4.46)

The 'difficulty' in deriving the filtering equations comes from being able to differ-

entiate the 1st term of the equation above with respect to O. Fortunately, the ob-

servations AN* belong to the exponential family of distributions, which possesses

attractive properties. In particular, the following differential equalities are useful:

= E[ANj*|I , Hi] = A*[ilI4, Hj]A and,

= Cov(ANi*, ANi*6, Hi)

= diag A*[ili, Hi]A - A*[il, Hi]A*[ili, Hi]'A 2.

The above equalities imply that:

(4.47)

(4.48)

(4.49)

Vojog p(ANj*|10, Hj)

V log p(ANi*IO6, Hj)

= V'/ij(O4) (AN* - V7A()|n(o))

= V'.i7(6) (AN* - A*[il63, Hi]A), and
M-1

= (AN*,,
m=1

M-1

= Z (AN*,
m=1

- A*1[ijlO, Hj]) V'j7m(6) -

- A* [il6i, Hi] A) V2s qm(6i)

- V', (0) - (diag A*[iIO6, H]A - A*[iIO6, Hi]A*[iI O, Hi]'A 2 ) - Voi 71(0), (4.51)

where

Voi](60) =

(4.50)

V'j?(6j) - V'A()|oqeo) ' k(9(6))

V'A(6)|so)

Voi 71(0i)'



We are now in a position to write down the multinomial filtering equations:

69 iz-1 = FjiO _i_1, (4.52)

Wi _1 = FiW- _1i-_Fi'+ Ej, (4.53)

W-1 = W + [V'/(6i) (diag A*A - A*A§A2 -Voi(Oi) (4.54)

L multinomial covariance O . _1

M-1

[(AN,, - A*,A) VSiym(Oi)]ii (4.55)
m=1

6ii= 0 ii-1 + Wili [V'i(O0) (AN* - A*A)] . (4.56)

Equivalence with filters obtained using approximate likelihood: If (a) we let qm(Oi)

log A*[ilOj, Hj]A and (b) assume that the off diagonal terms of the multinomial co-

variance matrix are oc o(A), then we recover the filtering equations obtained in the

previous subsection using the approximate likelihood.
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Chapter 5

Data Analysis

In this chapter, we apply the machinery developed in the previous chapters to the

analysis of simultaneous recordings from pairs of neurons in the rat thalamus, in re-

sponse to repetitive whisker deflections of varying velocity. The recorded activity of

theses pairs of neurons constitute a sample from of a bi-variate point process and

hence are amenable to characterization using the techniques introduced in this thesis.

Using these techniques, namely modeling of multivariate point processes in the GLM

framework, we are able to provide an estimate of the extent to which whisker stim-

ulation increases the propensity of pairs of thalamic neurons to fire simultaneously.

We find that the effect of the stimulus on the simultaneous-spiking event can be in

the same order as its effect on the non-simultaneous-spiking events. Surprisingly, for

a number of the pairs, the former is even stronger than the latter. We also apply the

dynamic-inference algorithms to decoding of whisker deflection velocity.

5.1 Thalamic firing synchrony in rodents

Rodents use rapid whisker movements to perform fine tactile discrimination. Thala-

mic neurons, which process tactile information from the whiskers, respond to single

or periodic whisker deflections with a low mean firing rate [40, 20]. This had led

neuroscientists to postulate that groups of thalamic neurons encode tactile informa-

tion in the temporal proximity of the spikes which they emit, rather than single cell

response magnitudes or interspike intervals. A population code based on firing syn-

chrony would be well-suited for the task of detecting and processing rapid changes in

whisker movements.



The case for the existence of a population code based on firing synchrony is sup-

ported by findings that cells in layer IV of visual and somatosensory cortex tend to

respond to near-synchronous firing of their thalamic input neurons [2, 44, 36, 12].

In turn, these findings suggest that thalamic neurons play an important role in the

selective transmission and processing of relevant sensory input.

Recent advances in our ability to record simultaneous spiking activity from mul-

tiple neurons [47, 28], have made it possible to directly investigate thalamic firing

synchrony. In [42], the authors applied a cross-correlation analysis to simultaneous

recordings from pairs of thalamic neurons in the same electrophysiologically-identified

barreloid, in response to periodic whisker deflections of varying velocity. They report

systematic changes in both onset time and strength of thalamic firing synchrony as a

function of stimulus velocity.

Here, we use the likelihood-based point process approach developed in the pre-

vious chapters to investigate thalamic firing synchrony and its stimulus-dependent

modulation. This approach offers several advantages over histogram-based methods

such as cross-correlation analyses. First, whereas the results in [42] are obtained by

averaging the responses of all pairs in the data set, we are able to characterize tha-

lamic firing synchrony at the level of individual neuron pairs. Second, we are able to

isolate the contribution of the stimulus, as opposed to neurons' intrinsic dynamics,

to non-simultaneous and simultaneous (synchronous) events. We measure changes in

the stimulus-induced modulation of thalamic firing synchrony as changes in the con-

tribution of the stimulus to the instantaneous rate of the simultaneous-spiking event

at the one ms time-scale. Last but not least, being likelihood-based, our inference

framework carries all the optimality properties of the likelihood theory.

5.2 Experiment

We briefly describe the data set we analyze in this chapter. The experiments were

previously described in detail in [42].

Simultaneous single-unit activity from pairs of thalamic neurons was recorded



with two electrodes placed in the same electrophysiologically-identified barreloid of

the rat ventral posteromedial nucleus. Spiking activity was recorded from the pairs

in response to whisker deflections at three different velocities administered at 8Hz for

a period of 2000 ms. A delay period of 500 ms preceded and followed each stimulus

period. The deflection velocities were 16, 50 and 80 mm/s. For each neuronal pair

and each deflection velocity, the responses were recorded across 50 trials. We divided

the 50 trials into a training set and a test set by randomly choosing 1 of every sequence

of 3 trials and assigning it to the training set (17 trials). The remaining trials were

assigned to the test set (33 trials).

Figs. 5-1A, 5-2A and 5-3A show standard raster plots of the data from a represen-

tative pair, respectively in response to stimulus velocities 16, 50 and 80 mm/s. These

raster plots show that the stimulus (Figs. 5-1A, 5-2A and 5-3A, Row 1) induces strong

modulation of the neural spiking in the training set (Figs. 5-1A, 5-2A and 5-3A, Row

2) and in the test set (Figs. 5-1A, 5-2A and 5-3A, Row 3), for each neuron in the pair.

These figures, however, do not clearly show the simultaneous or joint spiking activity

of the pair. To highlight the effect of the stimulus on the joint spiking activity of the

pair, we introduce the new raster plots in Figs. 5-1B, 5-2B and 5-3B. Two of these

raster plots (Figs. 5-1B, 5-2B and 5-3B, Columns 1 and 2) show the non-simultaneous

activity of the pair, while the third (Figs. 5-1B, 5-2B and 5-3B, Columns 3) shows

the simultaneous spiking activity of the pair. For simplicity, we refer to the non-

simultaneous events as '01' and '10', reflecting the fact that they correspond to the

cases where one of the neuron has an event and the other does not. Similarly, we

refer to the simultaneous event as the '11' event, reflecting the fact it corresponds

to the case where both neurons have an event. The new raster plots show that the

stimulus induces a strong modulation of the joint spiking activity of the neurons in

the pair. This was not apparent from the standard raster plots of Figs. 5-1A, 5-2A

and 5-3A.

The goal of the analysis is to quantify the effect of the three stimuli on the joint

spiking activity of each of the 17 pairs of neurons in the data set. The new raster

plots of Figs. 5-1B, 5-2B and 5-3B provide a useful visual quantification of this effect.
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The representation of the data in these new raster plots is also useful for data analysis

purposes. Intuitively, this is because the new raster plots show disjoint events from

the neuronal pair. Effectively, we have transformed a bivariate point process with

simultaneous events (Figs. 5-1A, 5-2A and 5-3A) into a new trivariate point process

of disjoint events (Figs. 5-1B, 5-2B and 5-3B) from the original bivariate process. The

advantage of this transformation is that the new trivariate process is now amenable

to standard point-process modeling techniques [13, 33].

5.3 Statistical model

We assume that the data constitute a sample from a bi-variate SEMPP, whose

discrete-time likelihood can be written as a product of conditional four-nomial trials.

As shown in Chapter 4, If we let

A[i]AJ-1 2 K,

log AiH]A= m,o + #j + /3 ANc,i (5.1)
9 j=0 c=1 k=1

stimulus component history component

then the parametric model becomes a GLM with four-nomial observations and logit

link. The model expresses the log odds of each outcome with respect to the base

outcome as the convolution of the stimulus s with a finite length kernel {#g" } _-=,

and the history of AN 1 and AN 2 respectively with finite length kernels {/3()} k} 1

and {# /3m}' 1. Estimation is performed by maximizing the discrete-time likelihood

of the data under the above parametric model, as detailed in Chapter 4. We select

J, K1 and K2 using Akaike's information criterion:

AIC(J, K1, K2) = -2 * log P[AN*1:]; #] + 2(J + K1 + K2 + 1).

We assess GOF by time-rescaling as described in Chapter 3.

It should be noted that the stimulus s is the explicit or actual waveform that was

administered during the experiment.
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5.3.1 Measures of thalamic firing synchrony

For a given pair of neurons and an administered stimulus, we would like to extract

meaningful information from the model of Eq. 5.1, which lends itself to interpretation.

Below, we describe three quantities that arise from the model, which can be used to

assess (a) the contribution of the stimulus to zero-lag synchrony, (b) overall zero-lag

dependence between the neurons, and (c) overall non-zero lag dependence between

the neurons. The latter is quantified in terms of the effects of the history of either

neuron on the probability of the other neuron firing in the present.

Stimulus-induced modulation of thalamic firing synchrony

The advantage of our likelihood-based framework (Eq. 2.12) over existing histogram-

based methods [8, 7, 17] is that it helps us to isolate the contribution of the stimulus,

as opposed to neurons' history, to the joint events of the pair, i.e. '01', '10' and '11'.

This model is also superior to existing point-process likelihood based methods [13, 33]

because it allows us to characterize the joint spiking activity of the pair ('11' event)

at any given recording resolution A.

For each joint event (i.e. m = 1, 2,3), we define the stimulus-induced modulation

of that event, that is the effect of the stimulus on that event, by:

J-1

SMm[i] = exp{ /3(si- j}. (5.2)
j=0

This represents, in the ith discrete-time bin, the amount by which the stimulus in-

creases the instantaneous rate of each of the joint events at the A (one ms) time scale.

The m = 3 component is of particular interest as it is the component of AN* which

represents joint spiking of the neurons in the pair. SM3 [i] tells us how much the

stimulus contributes to increasing the instantaneous rate at which the neurons in the

pair fire simultaneously. We use this as a measure of stimulus-induced modulation of

thalamic firing synchrony.



Zero-lag thalamic firing synchrony

Equation 5.2 allows us to make a statement about the effect of the stimulus on zero-

lag synchrony of the neurons. We now describe a measure of zero-lag synchrony that

takes into account the effect of the dynamics of the neurons in the pair. We define

A*[il Hi]A
pli] = (5.3)

,V/A[il Hi]A(1 - A1[il Hi]A)A2[i Hd]A(1 - A2[il Hi]A)

This quantity was used in [42] as a measure of firing synchrony: it reflects both the

correlation caused by direct stimulus modulation of the two neurons' firing rates, as

well as the correlation due to common input. Equation 5.3 is similar to the expression

for the correlation coefficient of AN 1,i and AN 2,i: the numerator is E[AN1,iAN2,iIHi]

and the denominator is oAN1,i|HiH~AN2 ,iIHi . It is not hard to show that the components

of a bivariate Bernoulli random vector are independent if and only if they are uncorre-

lated. In each discrete-time bin, the model of Eq. 5.1 results in an estimate of a joint

pmf, conditioned on history. Therefore, we can assess the time-varying dependence

between the neurons in a pair using the (conditional) covariance in each time bin.

In [42], the authors compute the quantity of Eq. 5.3 at different lags, that is for

different values of j -/ 0 and pairs AN 1,i and AN 2,i+j. We do not compute these

here as results using such estimates have already been reported in [42]. However, we

explain below how the same quantities can be extracted from our model.

The CIFs A*(t|Ht), m = 1, 2, 3 fully characterize the joint density of the vec-

tor process (N1 (t), N2(t)). Equation 5.1 is a discrete-time model of this joint den-

sity. Once we fit the model and establish adequate goodness-of-fit, we can obtain

(by marginalization of the joint density of AN*) the joint probability mass function

(PMF), for any time i and any lag j of any pair (AN 1,i,AN2,i+j). From the joint

PMF, one could compute quantities similar to Eq. 5.3, now indexed by the lag j.

Direct computation of the joint PMF of AN1 ,i and AN 2,i+j is not tractable. Instead,

it is more reasonable to simulate observations from the joint process using the esti-

mated model parameters (Eq. 5.1) and the algorithms described in Chapter 3. The

simulated data can then be used to compute quantities similar to the ones described



in [42]. The key point here is that any statistics of interests can be extracted from

our model by virtue of the fact that we have an estimate of the joint density of the

two neurons as a function of the stimulus.

We use the parameters of the model (Eq. 5.1) to assess the degree of non-zero lag

dependence between the neurons. This is explained below.

Non-zero-lag dependence

In Eq. 5.1, #32$ = (#3(,-- ,/3mKc)' captures the effect of Neuron c on joint event m

(c = 1, 2, m = 1, 2, 3). Recall that m = 1 corresponds to the '10' event, m = 2 to the

'01' event and m = 3 to the simultaneous '11' event. Intuitively, a negative value of

(C) means that a spike in Neuron c that occurred a time i - k ms will decrease the

probability of event m at time i ms by e mk. Similarly, a positive value of /3  means

that a spike in Neuron c that occur-ed a time i - k ms will increase the probability

of event m at time i ms by e m,k.

We characterize the effect of Neuron 1's history on its own probability of firing

using a linear combination of #0) and #(l). The effect of Neuron 2's history on the

probability of Neuron 1 firing is obtained using a linear combination of 3(2) and 2)

We characterize the effect of Neuron 2's history on its own probability of firing using a

linear combination of #2) and 302). The effect of Neuron l's history on the probability

of Neuron 2 firing is obtained using a linear combination of 3(l) and 31)

Let n1o be the number of '10' events, noi the number of '01' events and nul the

number of '11' events. Note that, because the events '10', '01' and '11' are disjoint,

ni = nio + nu and n 2 = nol + niu represent the number of events respectively from

Neuron 1 and Neuron 2. From #, we define the following quantities:

(1) _ lo =1) n11 1)

(2) _ lo (2) il (2)
Yi3 /3+ - 3k

nl nl

(1) _ nol )(1) + nil 3(1)

n 2  
n 2

(2) _ o (01 2) 11 (2)



where 7C) now represents the effect of the history of Neuron c' on the probability

of Neuron c firing in the present (c, c' = 1, 2). This weighted linear combination of

the coefficients makes intuitive sense because if nnl = 0, we obtain a characterization

of the effect of the Neurons' history on their present which is the same as would be

obtained from the Jacod-like approach (which assumes no simultaneous events) [33,

43].

These new coefficients can be interpreted as follows: a negative value of (c') means

that a spike in Neuron c' that occurred a time i - k ms will decrease the probability

of Neuron c spiking at time i ms by ek. Similarly, a positive value of 7k means

that a spike in Neuron c' that occurred a time i - k ms will increase the probability

of Neuron c spiking at time i ms by ec,k.

We used 17 trials of training data to fit the model of Eq. 5.1. The data suggests

that the neurons' response to the stimulus does not vary across trials. That's why,

our model is such that the parameters do not very across trials. This means that our

characterization of the non-zero-lag dependence is the same across trials. However,

the neuron's history changes from trial to trial. So, to compute p[i], we first average

the estimates of A*[ilHi] across the 17 trials. Since the stimulus is periodic and the

same for all trials, we only need to compute SMm[i] for one stimulus cycle.

5.4 Results

We discuss in detail results for the pair displayed in Figs. 5-1, 5-2 and 5-3. We also

show results for another representative pair in the data set and end the section with

a summary of results for the entire data set analyzed.

5.4.1 Results for individual pairs

To select the optimal model order for each pair, we considered values for J, K1 and

K 2 ranging from 2 to 50 ms, in 1 ms increments. We used the results of preliminary

GLM analyses on each neuron separately to reduce the dimension of the search space.

We found that reducing J to a value as low as J = 2 did not affect the goodness-of-fit,
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as measured by the number of points outside of the 95% confidence bounds in the KS

plots. Therefore, for all pairs, the results we report here are for J = 2

The KS plots show that the model fits both the training (Figs. 5-4A, 5-5A, 5-

6A) and test data (Figs. 5-4B, 5-5B, 5-6B) well, at all velocities. The good KS

performance on each of the components of AN* demonstrates the model's accurate

description of the joint process. The performance on the test data demonstrates the

strong predictive power of the model.

Fig. 5-7A compares the modulation of the non-simultaneous and simultaneous

events by the stimulus for each of the three stimulus velocities. The figure shows that

the stimulus modulates each of the simultaneous and non-simultaneous events at all

velocities. Moreover, for the high and medium-velocity stimuli, the stimulus modula-

tion of the '11' event is on the same order as that of the '01' event and much stronger

than that of the '10' event. However, for the low-velocity stimulus, the modulation

of the non-simultaneous events is stronger than that of the simultaneous event. In

short, the stimulus induces zero-lag thalamic firing synchrony for all three stimuli.

As is clearer from Fig. 5-8A, zero-lag stimulus-induced thalamic firing synchrony, as

measured by the stimulus modulation of the '11' event, is much stronger for the high

and medium-velocity stimuli. Indeed, the figure (which compares the stimulus mod-

ulation of the '11' event across stimuli), suggests that the stimulus modulation of

the '11' event by the high and medium-velocity stimuli is two orders of magnitude

stronger than the modulation by the low-velocity stimulus. The higher the velocity,

the stronger the effect of the stimulus on simultaneous firing.

Fig. 5-9A is a comparison of zero-lag correlation p[i] over the first and last stimulus

cycles, for each stimulus velocity. As a measure of thalamic firing synchrony, p[i]

incorporates the internal dynamics of the neurons as well as network effects. The

figure shows that the administration of the stimulus increases the correlation between

the neurons at all velocities, and therefore changes the dependence. The figure also

suggest that the change in dependence is more pronounced for the high and medium-

velocity stimuli compared to the low-velocity stimulus. Moreover, there do not seem

to be major differences between the first and last stimulus cycles. Fig. 5-10A is a
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comparison of zero-lag correlation p[i] across stimuli over the first and last stimulus

cycles. The figure suggests that increases in correlation/dependence are stronger (and

occur earlier with respect to the stimulus onset) for the high and medium velocity

stimuli compared to the low-velocity stimulus. We also observe that these increases

in correlation/dependence mirror changes in the stimuli.

Fig. 5-11 plots the coefficients -y representing the effect of the history of Neuron

c' on Neuron c (c, c' = 1, 2).

Effect of Neuron 1 on itself (Fig. 5-11A, Column 1): the figure shows strong 1 ms

inhibitory effects followed by milder excitatory behavior at 2 to 3 ms time scale. The

high and medium velocity stimuli do not seem to exhibit major effects at longer time

scales. However, the low-velocity stimulus appears slightly inhibitory from 5 to 25

Ms.

Effect of Neuron 2 on Neuron 1 (Fig. 5-11A, Column 2): the history of Neuron 2 does

not seem to have major effects on Neuron l's present for the high and low-velocity

stimuli. For the medium-velocity stimulus, the effect of Neuron 2's history on Neuron

1 oscillates between excitatory and inhibitory effects.

Effect of Neuron 1 on Neuron 2 (Fig. 5-11B, Column 1): The immediate history of

Neuron 1 appears riot to have any major effects on the present of Neuron 1 at the

high and medium velocities. The low-velocity stimulus shows excitatory behavior at

the 20 ms time scale, and inhibitory ones at the 40 ms time scale.

Effect of Neuron 2 on itself (Fig. 5-11B, Column 2): As in the case of Neuron 1, we see

a strong initial inhibitory effect of Neuron 2's history on its present, at all velocities.

5.4.2 Summarizing results of analyses on all pairs

We computed the three measures of thalamic firing synchrony described previously

for each pair of neuron and stimulus velocity. For each stimulus velocity, we took the

median of these quantities as a summary over the population.

Fig. 5-12A compares the modulation of the non-simultaneous and simultaneous

events by all three stimuli, across the population. The figure shows that the high and

medium-velocity stimuli modulate each of the simultaneous and non-simultaneous
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events. The low-velocity stimulus modulates the non-simultaneous events to some

extent but not the simultaneous event. The figure also suggests that the stimulus

modulation of non-simultaneous and simultaneous events is similar for the high and

medium-velocity stimuli. Moreover, for both these stimuli, the modulation of the

simultaneous event is much stronger than that of the non-simultaneous events. In

short, across the population, the stimulus induces zero-lag thalamic firing synchrony

for the high and medium-velocity stimuli but not the low-velocity stimulus. This is

more apparent from Fig. 5-14A, which compares the stimulus modulation of the '11'

event across stimuli. This figure also suggests that the maximum stimulus modulation

of the simultaneous event occurs earlier with respect to the stimulus onset for the

high-velocity stimulus, compared to the medium-velocity stimulus. Fig. 5-13 displays

the empirical distribution of the time of occurrence of maximum stimulus modulation

with respect to the stimulus onset. The figure shows that the the higher the stimulus

velocity, the earlier the time of maximum stimulus modulation of the simultaneous

'11' event with respect to the stimulus onset. Moreover, it appears that the time of

occurrence of maximum stimulus modulation is more robust across the population

for high and medium-velocity stimuli (Table 5.1).

Stim 1 Stim 2 Stim 3
p 12.8 19.6 57.2
o- 2.1 3.2 42.5

Table 5.1. Second-order statistics of data in Fig. 5-13.

Fig. 5-15A compares zero-lag correlation p[i] across the population over the first

and last stimulus cycles. for each stimulus velocity. The figure shows that the ad-

ministration of the stimulus increases the correlation between the neurons at high

and medium velocities, and therefore changes the dependence. The change in depen-

dence is more pronounced for the high and medium-velocity stimuli compared to the

low-velocity stimulus. There do not seem to be major differences between the first

and last stimulus cycles. Fig. 5-16A is a comparison of zero-lag correlation p[i] across

stimuli. The figure suggests that increases in correlation/dependence are stronger

(and occur earlier with respect to the stimulus onset) for the high and medium-



velocity stimuli compared to the low-velocity stimulus. Moreover, these increases in

correlation/dependence mirror changes in the stimuli. We also observe that the peak

correlation occurs earlier, with respect to the stimulus onset, for the high-velocity

stimulus compared to the medium-velocity one.

Figure 5-17 plots the coefficients representing the effect of the history of the neu-

rons in a pair for the whole population. Across the population, each neuron in a pair

shows initial 1 to 2 ms refractory effects at all velocities. There also appear to be

mild excitatory cross effects of each neuron on the other neuron in the pair at the 1

to 2 ms time scale.

5.5 Decoding examples

In this section, we use the results of the analyses above and the data not used for

training (test data), to decode the stimuli. In other words, for each stimulus, we treat

the parameters of the mGLMs as ground truth, and use the test data for those pairs

to form an estimate of the stimulus. We use 11 of the 17 pairs in our data set, whose

raster plots clearly show the effect of the stimulus on the joint spiking activity of the

pairs.

We recall that, in the GLM analyses of the previous section, reducing the AIC-

optimal values of J to J = 2 did not significantly increase the likelihood, nor did it

worsen the goodness-of-fit as measured by KS plots. So, in what follows, we use the

same value of J = 2 for all pairs of neurons.

In our decoding set-up of Chapter 4, we assume that the state O = (si, si 1)

and that it follows the random walk of Equation 4.31, with F = I and Ei = UI.

Conditioned on the state, we assume that the 11 pairs are independent and that, for

a given pair, trials are independent. This leads to the following decoding algorithm

6Ili_1 = O6 _lii_1, (5.4)

Wili_1 = Wi-1_1 + Ei, (5.5)



11 33

W-1 = W-f1 + #3O-E diagA*,,A-A*,,A*,,, -#33)' (5.6)zl- - p=1 r=1 ,rp irp 

11 33

0 ili ~ Oili-1 + Wili E 8(0) [ [(ANi*,, - A*,,pA)] , (5.7)
p=1 r=1

where p and r are the indices over pairs and trials respectively and #po) - [OO)3o)]

is the 2-by-3 matrix whose mth column is the vector of mGLM coefficients corre-

sponding to the stimulus effect on the mt component (Equation 5.1), i.e. /30,p =

(0),, - " - - , #2j-1,p)'. The index p indicates that the stimulus effect is different for

different pairs of neurons.

We compare the decoding algorithm above to one based on a model which assumes

that the neurons in each pair are independent. The resulting algorithm is

0i _i-1 = oli-i_1, (5.8)

Wi_1 = Wi1p_1 + Ei, (5.9)

11 2 33

W1= _1+ -1Z+0() [Air,p,cA(1 - Air,p,cA)] 1 3 3)' (5.10)
p=1 c=1 r=1

11 2 33

0iIi = 1; _+ W 3() E[(ANi,,p,c - Airp,cA)]0 . 1 (5.11)
p=1 c=1 r=1

where c is the index for neurons in a pair (which we assume are independent), and

3#, = (#Eo' ,j-1p)' is the vector of GLM coefficients corresponding to the

stimulus effect on the cth neuron of pair p.

5.5.1 Decoding results on real data

Fig. 5-18 compares the decoded low-velocity stimulus using independent and joint

decoding to the waveform programmed into the mechanical device responsible for

whisker motion. The figure shows that the stimuli decoded using either methods are

very similar and resemble the ideal, periodic stimulus. In terms of mean-squared er-

ror (MSE), the stimulus obtained using the joint model is closer to the administered

stimulus. To highlight differences, Fig. 5-19 compares the algorithms over the first
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and last cycles, as well as the averages (over the 16 cycles) of the decoded waveforms.

All three panels of the figure indicate that, in each cycle, the low-velocity stimulus

comprises of two successive deflections. This would explain the two distinct peaks in

the correlation plot for the low-velocity stimulus (Fig. 5-9A, 3rd Column). Moreover,

in Fig. 5-9A, 3rd Column, the 2nd peak is stronger over the last cycle (black trace).

This could be explained by the difference in the decoded stimulus over the 1st cycle

(Fig. 5-19A) and the last cycle (Fig. 5-19B). Indeed, the decoded secondary deflec-

tion is smaller in the 1st cycle compared to the last cycle. One could argue that the

observations of Fig. 5-9 apply to one pair only, whose contribution to the decoding

algorithm may have (somehow) skewed the decoding results. We removed this pair

and others (one at a time) from the decoding algorithms and obtained traces nearly

identical to Figs. 5-18 and 5-19. We are able to obtain plots similar to Fig. 5-18

for the medium and high-velocity stimuli. In both cases, the stimuli decoded show

features similar to those of Fig. 5-18, such as the periodicity of the decoded wave-

form. However, the presence in each cycle of two successive deflections, as well as

the difference (noted above) between the first cycle and the last cycles (Fig. 5-19A

and B) are unique to the low-velocity stimulus. Figs. 5-21 and 5-20 compare the

cycle-average of the decoded stimulus to one cycle of the waveforms programmed into

the mechanical device responsible for whisker motion. We focus on the medium and

high-velocity stimuli as we have discussed the low-velocity stimulus above in detail.

Fig. 5-21 shows that the decoded medium and high-velocity stimuli are close to the

administered stimulus in the regions where the stimuli are non-zero (0 to - 25 ms

and 0 to ~ 40 ms, respectively). However, there is a discrepancy between the two in

the regions where the administered stimuli are zero. This can be attributed to our

stochastic continuity constraint (Eq. 4.31), which does not allow for sharp changes in

the value of the decoded signal and/or noise when going from the ideal stimulus to

the movement of the whisker.
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Should we treat the available stimulus as ground truth?

The desired periodic stimuli were administered to the whisker using a piezoelectric

stimulator [42]. Our mGLM analyses have assumed a one-to-one correspondence be-

tween the administered, ideal, periodic stimuli and whisker movement. In other words,

we assumed the absence of errors/noise in going from the stimuli to the movement of

the whisker, and used the ideal stimuli as inputs to our mGLM fits (Eq. 5.1). These

errors could be due to imperfections in the placement of the whisker during the ad-

ministration of the stimulus. Figure 5-21 shows that the decoded stimuli resemble the

administered, ideal stimuli, especially at high and medium velocity. However, there

are discrepancies, notably at low velocity. The presence of the secondary deflection

is particularly puzzling.

Using simulated data, we study whether the discrepancies between the adminis-

tered and the decoded stimuli are an artifact of the decoding algorithm. If this is

not the case, then these discrepancies could be attributed to (a) inaccuracies in our

model, which is doubtful given the goodness-of-fit results, or (b) noise in the stimuli

delivered using the piezoelectrode: in other words, contrary to our assumptions, the

administered whisker movement is not transferred exactly to the whisker. This could

be addressed by explicitly accounting for errors in the stimulus in Eq. 5.1.

5.5.2 Decoding results on simulated data

Figs. 5-22 and 5-23 show the result of decoding the administered stimuli using sim-

ulated data. The leftmost panel of Fig. 5-23 shows the result of decoding the low-

velocity stimulus. There are two important observations to make. First, the decoded

stimulus is nearly identical to the ideal stimulus used in the simulation. This is a

textbook example of the usefulness of the SEMPP decoding algorithms introduced

in the previous chapter. Second, we notice the absence of the secondary deflection

present in the third panel of Fig. 5-21. This leads us to the conclusion that the two

successive deflections are unlikely to be an artifact of the decoding algorithm. Fig. 5-

18 may very well constitute an accurate estimate of the actual motion of the whisker



during the experiment. This estimate of the low-velocity stimulus is characterized by

(a) the presence of two successive deflections in each cycle, and (b) a different form

of the stimulus in the 1st cycle when compared to the last cycle (Fig. 5-19), which is

similar to the other 14 cycles.

We also note in Fig. 5-23 that, while preserving their overall shape, the decoding

algorithm slightly underestimates the medium and high-velocity stimuli. This could

be due to inaccuracies in the implementation of the algorithm used to simulate the

data. It is also possible that the decoding algorithm is not able to track the fast

changes in the high and medium velocity stimuli around their peak values.
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Figure 5-1. Raster plots of the spiking activity of a representative pair of neurons in response to

a periodic whisker deflection of velocity v = 80 mm/s. (A) Standard raster plots, (B) New raster

plots of the joint events, '01', '10' and '11'. In both cases, the first row displays the stimulus, while
the second and third rows display the training and test sets respectively. The standard raster plots

(A) show that the stimulus induces strong modulation of the neural spiking of each of the neurons.

These standard raster plots do not show the effect of the stimulus on joint spiking. The new raster

plots (B) show a modulation of the joint spiking activity ('11') by the stimulus.
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Figure 5-2. Raster plots of the spiking activity of a representative pair of neurons in response to
a periodic whisker deflection of velocity v = 50 mm/s. (A) Standard raster plots, (B) New raster
plots of each of the joint events, '01', '10' and '11'. In both cases, the first row displays the stimulus,
while the second and third rows display the training and test sets respectively. The standard raster
plots (A) show that the stimulus induces strong modulation of the neural spiking of each of the
neurons. These standard raster plots do not show the effect of the stimulus on joint spiking. The
new raster plots (B) show a modulation of the joint spiking activity ('11') by the stimulus.
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Figure 5-3. Raster plots of the spiking activity of a representative pair of neurons in response to
a periodic whisker deflection of velocity v = 16 mm/s. (A) Standard raster plots, (B) New raster
plots of each of the joint events, '01', '10' and '11'. In both cases, the first row displays the stimulus,
while the second and third rows display the training and test sets respectively. The standard raster
plots (A) show that the stimulus induces strong modulation of the neural spiking of each of the
neurons. These standard raster plots do not show the effect of the stimulus on joint spiking. The
new raster plots (B) show a modulation of the joint spiking activity ('11') by the stimulus.
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Figure 5-4. Goodness-of-fit assessment by KS plots based on the time-rescaling theorem for the pair
in Fig. 5-1. (A) Time-rescaling performance on the training data. (B) Time-rescaling performance
on the test data. In both cases, the parallel red lines correspond to the 95% confidence bounds. The
KS plots show that the model fits both the training and test data well. The good KS performance on
each of the components of AN* demonstrates the model's accurate description of the joint process.
The performance on the test data demonstrates the strong predictive power of the model.
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Figure 5-5. Goodness-of-fit assessment by KS plots based on the time-rescaling theorem for the pair
in Fig. 5-2. (A) Time-rescaling performance on the training data. (B) Time-rescaling performance
on the test data. In both cases, the parallel red lines correspond to the 95% confidence bounds. The
KS plots show that the model fits both the training and test data well. The good KS performance on
each of the components of AN* demonstrates the model's accurate description of the joint process.
The performance on the test data demonstrates the strong predictive power of the model.
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Figure 5-6. Goodness-of-fit assessment by KS plots based on the time-rescaling theorem for the pair
in Fig. 5-3. (A) Time-rescaling performance on the training data. (B) Time-rescaling performance
on the test data. In both cases, the parallel red lines correspond to the 95% confidence bounds. The
KS plots show that the model fits both the training and test data well. The good KS performance on
each of the components of AN* demonstrates the model's accurate description of the joint process.
The performance on the test data demonstrates the strong predictive power of the model.
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Figure 5-7. Comparison of the modulation of non-simultaneous and simultaneous events for each
stimulus velocity. (A) Stimulus modulation, (B) Stimulus over a single cycle. The figure shows that,
for each stimulus velocity, the stimulus modulates all of the joint events. For this pair, there is strong
stimulus-induced thalamic firing synchrony for the high and medium-velocity stimuli, as measured
by the stimulus modulation of the '11' event. For the said stimuli, the stimulus modulation of the
'11' event is on the same order as that of the '01' event and much stronger than that of the '10'
event. There is evidence of stimulus-induced thalamic firing synchrony for the low-velocity stimulus,
albeit to a much lower extent that for the other stimuli.
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Figure 5-8. Comparison of the modulation of the simultaneous '11' event across stimuli. (A)
Stimulus modulation of '11' event for all three stimuli. (B) Stimuli over a single cycle. For this pair,
zero-lag stimulus-induced thalamic firing synchrony, as measured by the stimulus modulation of the
'11 event, is two orders of magnitude stronger for the high and medium-velocity stimuli compared
to the low-velocity stimulus.
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Figure 5-9. Comparison of zero-lag correlation p[i] over the first and last stimulus cycles, for
each stimulus velocity. (A) Zero-lag correlation p[i] over first and last cycles, for each stimulus, (B)
Stimulus over a single cycle. This measure of zero-lag dependence takes into account the internal
dynamics of the neurons as well as network effects. The figure shows that the administration of the
stimulus increases the correlation between the neurons at all velocities, and therefore changes the
dependence. The figure also suggests that the change in dependence is more pronounced for the
high and medium-velocity stimuli compared to the low-velocity stimulus. Moreover, there do not
seem to be major differences between the first and last stimulus cycles.
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Figure 5-10. Comparison of zero-lag correlation p[i] across stimuli over the first and last stimulus
cycles. (A) Zero-lag correlation p[i] over first and last cycles, (B) Stimulus over a single cycle. This
figure confirms our observation from Figure 5-9 that increases in correlation/dependence are stronger
for the high and medium velocity stimuli compared to the low-velocity stimulus. Moreover, changes
in the dependence mirror changes in the stimuli at high and medium velocities.
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Figure 5-11. Effect of the history of each neuron in the pair on its own firing and on the other
neuron's firing. (A) History effect on Neuron 1's firing, (B) History effect on Neuron 2's firing. The
first and second columns represent the effects of Neuron 1 and 2 respectively. Both neurons show
initial 1 to 2 ms refractory effects at all velocities. Neuron 2 shows mild excitatory effects on Neuron
1 for the medium-velocity stimulus. More details can be found in the text.
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Figure 5-12. Population comparison of the modulation of non-simultaneous and simultaneous
events for each stimulus velocity. (A) Stimulus modulation, (B) Stimulus over a single cycle. The
figure shows that, for each stimulus velocity, the stimulus modulates all of the joint events across the
population. There is strong stimulus-induced thalamic firing synchrony for the high and medium-
velocity stimuli, as measured by the stimulus modulation of the '11' event. For the said stimuli,
the stimulus modulation of the '11' event across the population is stronger than that of the '10'
and '01' events. There is no strong evidence of stimulus-induced thalamic firing synchrony for the
low-velocity stimulus.
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Figure 5-13. Empirical distribution of the time of occurrence of maximum stimulus modulation
with respect to stimulus onset for all 17 pairs in the data set. The figure suggests that, the higher
the stimulus velocity, the earlier the time of maximum stimulus modulation of the simultaneous
'11' event with respect to the stimulus onset. Moreover, it appears that the time of occurrence of
maximum stimulus modulation is more robust across the population for high and medium-velocity
stimuli. See Table
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Figure 5-14. Population comparison of the modulation of the simultaneous '11' event across
stimuli. (A) Stimulus modulation of '11' event for all three stimuli. (B) Stimuli over a single cycle.
For this pair, zero-lag stimulus-induced thalamic firing synchrony, as measured by the stimulus
modulation of the '11 event, is two orders of magnitude stronger for the high and medium-velocity
stimuli compared to the low-velocity stimulus.
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Figure 5-15. Population comparison of zero-lag correlation p[i] over the first and last stimulus
cycles. (A) Zero-lag correlation p[i] over first and last cycles, (B) Stimulus over a single cycle.
This measure of zero-lag dependence takes into account the internal dynamics of the neurons as
well as network effects. The figure shows that, across the population, the administration of the
stimulus increases the correlation between the neurons at high and medium velocities, and therefore
changes the dependence for those stimuli. The change in dependence is more pronounced for the
high velocity stimulus compared to the medium-velocity stimulus. For the low-velocity stimulus,
there is no evidence of changes in dependence across the population. Lastly, the figure suggests that
there are no major differences between the first and last stimulus cycles.
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Figure 5-16. Population comparison of zero-lag correlation p[i] across stimuli over the first and
last stimulus cycles. (A) Zero-lag correlation p[i] over first and last cycles, (B) Stimulus over a single
cycle. The figure confirms our observation from Figure 5-15 that increases in correlation/dependence
are strong for the high and medium-velocity stimuli but not for the low-velocity stimulus. Moreover,
changes in the dependence mirror changes in the stimuli at high and medium velocities.
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Figure 5-18. Decoded low-velocity stimulus using independent and joint decoding. The figure
shows that the stimuli decoded using either methods are very similar and resemble the ideal, periodic
stimulus. In terms of MSE, the stimulus obtained using the joint model is closer to the administered
stimulus. To highlight differences, Fig. 5-19 shows a comparison over the first and last cycles, as
well as averaged over cycles.

5.6 Summary of findings

We proposed a simultaneous-event multivariate point-process framework to charac-

terize the joint dynamics of pairs of thalamic neurons in response to periodic whisker

deflections varying in velocity. A multinomial GLM model of these data offered a

very compact representation of the joint dynamics of the said neuronal pairs. The

model uncovered history effects of the neurons on their joint firing propensity which

lagged up to 40 ms in the past (Fig. 5-11). The advantage of this approach over

existing point-process techniques is that it is able to model simultaneous occurrence

of events. Its main advantage over histogram-based ones is its ability to relate the

joint spiking propensity of neurons to stimuli as well as the history of the neurons.
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Figure 5-19. Decoded low-velocity stimulus during first and last cycles, and averaged across cycles.
(A) First cycle, (B) Last cycle. The figure seems to indicate that, in each cycle, the low-velocity
stimulus comprises of two deflections. This would explain the two distinct peaks in the correlation
plot for the low-velocity stimulus (Fig. 5-9).

The model shows that the stimulus modulates each of the non-simultaneous and

simultaneous events, at all velocities (Fig. 5-12A). We measure changes in stimulus-

induced modulation of thalamic firing synchrony as changes in the contribution of

the stimulus to the instantaneous rate of the simultaneous-spiking ('11') event at the

one ms time-scale. Across the population, the model shows strong changes in zero-lag

stimulus-induced thalamic firing synchrony at high and medium velocities, which are

stronger than the stimulus' modulation of the non-simultaneous events at those veloc-

ities (Figs. 5-12A). We also found that the stimulus modulation of the simultaneous

event is similar for high and medium-velocity stimuli, and an order of magnitude

stronger than for the low-velocity stimulus (Fig. 5-14A). Across the population, there

was no evidence of zero-lag stimulus-induced thalamic firing synchrony for the low-

velocity stimulus (Fig. 5-14A). These changes/features in/of zero-lag thalamic firing

synchrony were also observed when neurons' intrinsic dynamics were taken into ac-

count using the correlation p[i] (Figs. 5-9A, 5-10A, 5-15A, 5-16A), thus confirming

previous findings [42]. We'd like to emphasize the fact that the observed changes in

thalamic firing synchrony mirror rapid changes in whisker deflection. Indeed, we found

that the maximum stimulus modulation of the simultaneous event occurs earlier with

respect to the stimulus onset for high and medium-velocity deflections (Fig. 5-13).
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Joint Decoding: average over cycles
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Figure 5-20. Comparison, for each stimulus, of administered stimulus to jointly-decoded stimulus
using real data. (A) Average jointly-decoded stimuli over 16 cycles. (B) Administered Stimuli. The
figure shows that the decoding algorithm is able to capture the differences between the three stimuli.

The dynamic-inference algorithms, applied to decoding of the low-velocity stimu-

lus, indicate that each cycle of this stimulus may comprise of two successive deflec-

tions. Decoding of the low-velocity stimulus using simulated data indicated that the

presence of these two deflections is not an artifact of the decoding algorithm. We

hypothesize that the secondary deflection may be due to movements of the whisker

during the experiment, which it appears are more pronounced at low velocity. Yet

another possibility is that the decoding of the secondary deflection is due to inaccu-

racies in our encoding model. Indeed, even if our model was correct, the assumption

that the ideal stimulus is exactly delivered to the whisker does not hold. A model

which captures the noise in the stimulus may be more appropriate.

Overall, the results suggest that individual pairs of thalamic neurons may employ

rapid changes in the instantaneous rate of the simultaneous-spiking event to encode
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Figure 5-21. Comparison, across stimuli, of administered stimulus to jointly-decoded stimulus
using real data. (A) High velocity, (B) Medium velocity, (C) Low-velocity. The decoded stimuli
resemble the administered ones. At medium and high velocities, there is a discrepancy between the
decoded and administered stimuli in the regions where the administered stimuli are non-zero. This
can be attributed to our stochastic continuity constraint which does not allow sharp discontinuities.

whisker movements of varying velocity.
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Joint Decoding: average over cycles
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Figure 5-22. Comparison, across stimuli, of administered stimulus to jointly-decoded stimulus
using simulated data. (A) Average jointly-decoded stimuli over 16 cycles. (B) Administered Stimuli.
The figure shows that the decoding algorithm is able to capture the differences between the three
stimuli. The peak values of the high and medium-velocity waveforms are slightly underestimated.
This could be due to inaccuracies in our implerpentation of the simulation algorithm
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Figure 5-23. Comparison, for each stimulus, of administered stimulus to jointly-decoded stimulus
using simulated data. (A) High velocity, (B) Medium velocity, (C) Low-velocity. At medium and
high velocities, the peak values of the waveforms are slightly underestimated. This could be due to
inaccuracies in our simulation algorithm
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Chapter 6

Conclusion

In this chapter, we summarize the contributions of this thesis and point to directions

that could be explored further.

6.1 Concluding remarks

In this thesis, we introduce a quite general framework under which one could perform

inference based on observations from the class of C-variate point processes with up to

2c -1 degrees of freedom (in a small enough interval), which we termed simultaneous-

event multivariate point processes (SEMPPs). We propose a mapping of an SEMPP

into a multivariate point-process with no simultaneities, resulting in the so-called

disjoint representation of SEMPP. We also introduced a marked point process repre-

sentation of SEMPP, which gives new efficient algorithms for simulating an SEMPP

stochastic process. Starting from a discrete-time approximation to the likelihood of

the disjoint representation of SEMPP, we derive the likelihood of the limiting con-

tinuous time process and show that it factors into the product of uni-variate point

process likelihoods. We also express this continuous time likelihood in terms of the

marked point-process representation.

The Jacod likelihood [22] (no simultaneous occurrences) and the likelihood of

a uni-variate point process [43] are special cases of the one we derive here. The

treatment in [41] considered a similar problem. However, it does not make explicit

the relationship to marked point processes with finite mark space, nor does it propose

a comprehensive framework for inference.

In practice, model fitting is performed in discrete-time. For static inference, we

99



propose a parametrization of the discrete-time likelihood of SEMPP which turns it

into a multivariate generalized linear model with multinomial observations and logit

link [16]. Under certain assumptions, the multinomial GLM becomes equivalent to

multiple uni-variate GLMs with Poisson observations and log link. Estimation of the

model parameters is performed by maximum likelihood [16]. Under a generalized

linear model, the discrete-time likelihood is concave. Therefore, there exists a unique

maximum, which can be found using Newton's method. We argue that the use

of linear conjugate gradient, to solve the linear system involved at each Newton

step, can significantly speed up computations [26]. We demonstrate the possible

improvements using data from multiple neuroscience experiments. We provide a set

of fast routines for fitting of GLMs of point-process data. These routines are written

in Matlab, thus making them accessible to a wide range of researchers. For dynamic

inference, we introduce generalized point-process adaptive filters which use the exact

and approximate discrete-time likelihoods of the disjoint representation of SEMPP. If

one uses the Jacod likelihood instead, we recover the adaptive filters derived in [15].

Arguably, the time-rescaling theorem is the most important result in point-process

theory. We suggest a Kolmogorov-Smirnov test to assess the level of agreement be-

tween a fitted model and the data, based on the time-rescaling theorem for multivari-

ate point processes with no simultaneities. The test relies on the fact that the disjoint

representation of SEMPP is a multivariate point process with no simultaneities, al-

beit in a higher-dimensional space. Hence, one can readily apply results on rescaling

multivariate point processes (with no simultaneities) to marked point processes with

finite mark space. The key difference between the said test and that for uni-variate

point processes ([9]) is that points with difference marks are rescaled with different

conditional intensity functions.

We demonstrate the efficacy of the proposed framework on an analysis of simul-

taneous recordings from pairs of neurons in the rat thalamus. Our analysis is able to

provide a direct estimate of the propensity of pairs of thalamic neurons to fire simulta-

neously, and the extent to which whisker stimulation modulates this propensity. The

results show a strong effect of whisker stimulation on the propensity of pairs of thala-
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mic neurons to fire simultaneous, especially for high and medium velocity stimulation.

Surprisingly, for a number of pairs, the effect of the stimulus on the simultaneous-

spiking event is stronger than its effect on either of the non-simultaneous-spiking

events. We also show an application of the dynamic-inference algorithms to decoding

of whisker velocity. The decoding example suggests that, at low-velocity, the whisker

movement in each cycle comprises of two successive deflections.

6.2 Outlook

6.2.1 Modeling stimulus noise

In modeling the data from pairs of thalamic neurons, we assumed the absence of

errors/noise in going from the stimuli to the movement of the whisker. We used the

ideal stimuli as inputs to our mGLM fits (Eq. 5.1). The errors in the stimuli could be

due to imperfections in the placement of the whisker during the administration of the

stimulus. Figure 5-21 shows that the decoded stimuli resemble the administered, ideal

stimuli, especially at high and medium velocity. However, there are discrepancies,

notably at low velocity. The presence of the secondary deflection is particularly

puzzling.

It would be interesting to compare our noiseless model of Eq. 5.1 to one with a

random noise component. We would treat that noise as a latent variable with a prior.

The inference problem would need to estimate the parameters of the latent variables

as well as the fixed parameters of the model, using EM for instance.

6.2.2 Dimensionality reduction

While we set out to solve the problem of dealing multivariate point processes with

simultaneities, we do not claim to have solved it in the most elegant of fashion.

A C-variate SEMPP possesses up to 2C - 1 degrees of freedom, that is to say, the

dimensionality of the AN* process grows exponential with the number of components

of the AN process. For C small, this would be reasonable. However, as C increases,

the problem clearly becomes unmanageable. This points to the necessity of some
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dimensionality reduction technique in order for the case of large C to be manageable.

It is reasonable to assume that not all 2' -1 degrees of freedom with be 'active' at any

given time. The question now becomes: how does one decide which degrees of freedom

dominate the probability mass at any given time? By no means is this question posed

formally. In fact, if we knew how to pose the problem formally, we would have had

a shot at a solution. The main idea here is that the dimensionality of the problem

blows up quickly, how does one deal with this in a principled, non-heuristic fashion.

6.2.3 Large-scale decoding examples using simultaneous events

We demonstrated the techniques developed in this thesis on a data set consisting

of simultaneous recordings from pairs of neurons in the rat thalamus. Various au-

thors have consider the decoding problem using multivariate point-process data with

(conditionally) independent components or no simultaneity. Typically, these decod-

ing problems consist of a large number of neurons that may or may not have been

recorded simultaneously. It would be interesting to study the improvements of the

SEMPP model for decoding of a stimulus based on a large number of simultaneously-

recorded neurons (e.g. place cell data).

6.2.4 Adaptive filtering for the exponential family

The Kalman-like properties of the SEMPP adaptive filters we derive in Chapter 4

are really a property of the exponential family. When we say 'Kalman-like', we

are referring to the innovation and gain components of the update equation for the

posterior mean. Indeed, one of the key steps in the derivation of the SEMPP adaptive

filters is the use of the differential equalities satisfied by the mean and variance of

observations from the exponential family. Indeed, if one follows the steps outline in

the derivation of the SEMPP adaptive filters, replacing the SEMPP likelihood with

that of any observations from the exponential family, one can essentially derive a

very broad class of filters. These are approximate filters, as the posterior density

estimation problem cannot usually be solved in closed form (except in the Gaussian

case). Therefore, it is not unreasonable to ask the following question: how good are
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the approximations? It would be useful if one could obtain bounds on the extent to

which the approximate posterior density differs from the exact one.

Also, from a practical standpoint, are there applications out there that could

benefit from these exponential-family adaptive filters?
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Appendix A

Chapter 1 Derivations

A.1 Derivation of the Ground Intensity and the Mark pmf

We need to specify (a) the intensity of the ground process (Eq. 2.7) and (b) the

distribution of the marks (Eq. 2.8). By definition,

A*(t|Ht) = lir P[ANg = 1lHt]
im-+ A'

M-1
P[AN,, = 1|Ht| = PM[ U AN*, = 1|Ht]

m=1

M-1

= P[AN*7 t
m=1

(A.1)

(A.2)

(A.3)

(A.4)

= 1|Ht] + o(A)

M-1

= Z A*(t|Ht)A + o(A),
m=1

where the second equality follows from the fact that the events {AN*,, = in AN*,t =

1} = 0 for all (m, k) given full history (i.e. ANt* has no simultaneities). From here,

it is not hard to see that
M-1

A*(t|Ht) = Z *,M(t|Hg).
m=1

The mark PMF requires a little more work. We are seeking an expression for
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P[dN* (t) = 1|dNg(t) = 1, Ht] in terms of the A* (t|Ht)'s.

P [dN* (t) = 1|dNg(t) = 1, Ht] = lim P [AN*,t = 1|ANg,t = 1, Ht]

. P[AN*,, = 1|Ht]
A-+O P [ANg,t = 1|Ht]

- lim A(t|Ht)A + o(A)

A-* O A*(tlHt)zX + o(A)

A*(t|Ht)

A*(t|Ht)'

M = 1, --. - M-1, so that the marks follow a multinomial distribution with probabil-

ities given as above.

A.2 Expressing the Discrete-time Likelihood of Eq. 2.12 in Terms of a Discrete

Form of the MkPP Representation

P[AN*] = M 1
i=1 m=1

(A* [i Hj]A)AN ,AN*

(A*[i H ]A) ANj (
(1 - A*+[iHo]A)1-'N"' + O(AL)

(A.10)

(A*[i H]A)AN*,'' (1 - A*[iIH]A) 1 -ANg,i + O(AL)

i=1 M=1 N

(A.11)

(A jHj]A) AN j
(A*[ilHi]A)ANg*,' (1 - A* [ilHj]A)1 -ANg,i + O(AL)

(A.12)

M IN* -1 (A* [iIH ]A)AN"' (1 - A*[ilH ]A) 1 -'Ng" + O(AL

(A.13)

(A.6)

(A.7)

(A.8)

(A.9)

I M-1

= M-1fll
i=1 M=1
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Appendix B

Gradient vector and Hessian matrix of

multinomial GLM log-likelihood

We derive the gradient vector and the Hessian matrix of a GLM with multinomial

observations and logit link. We do this for a single observation/covariate pair and

easily generalize it to the case of multiple observations.

We observe the data in the form of (AN*, xi) pairs, where AN is an M - 1-

length vector corresponding to one of M possibles multinomial outcomes and x is a

d-length vector of covariates/features associated with AN*. The log likelihood of a

single (ANi*, xi) pair is given by:

M-1 M--1
L (ANi*, xi; #) = E AN*,s#'. - log 1 + exp{#' I

m=1 m=1

Let g m) (/3) bet the partial derivative of this log likelihood with respect to /3m:

(m) OL(AN*,xi;3)
g~ 0/3m

AN*p - /3X(-xNm~- 1 + Em- exp/3mxi}],

= (AN*,i - A*,[ilH, 3]A) xi. (B.1)
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Therefore,

gi(3)
= L (ANi*, xi; 3)

= (ANj* - A*[iHI, 3]A) ® xj

= Xj (AN* - A*[iHj,/3]A),

where A 9 B is the Kronecker product of matrices A and B, Xi is an (M - 1) x

(M - 1)d block-diagonal matrix with x' repeated M - 1 times along the diagonal,

and A*[i|H,3] = (A*[ilHI,#], -.. , A*_ 1[ilfy,])'

Let H m,M) (/3) be the partial derivative of gm)(#) with respect to /3m:

= (9m)- ogm (}3)
a/3m'

6m ,- (exp{/3n'xi}(1 + Z$-1 exp{/3m'xi})) - exp{/3mxj} - exp{/3.,X

(1

exp{3'X }
1 + Emx eXp{f/3' Ix

+ EM_ exp '/3mIXi}

exp{# zxi} - exp{ 3,xj}

(1 + Em- expf3mxi})

= .Om,m-Am[ilHi, #]A - Ami|Hi, #]Am,[iI Hi, #]A 2 ) XiX .

Therefore,

Hi(3)
= 2 2L (A N , xi; 3)

Q2/3

= - (diag A*[ilHi, /3]A - A*[ilHi, #]A*[ilHi, #]'A 2 ) ® zi'

= -Wi(O) 9 xjx'

= - XjW(#3)Xi,7

where diag A* [i|Hi, /] is an (M - 1) x (M -1) diagonal matrix whose diagonal entries

correspond to the elements of the vector A* [i Hi,# /].

Finally, the gradient vector g(/3) and the Hessian matrix H(O) for all I observations
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are given by

g(#3) = gi (), and
i=1

H(#3) = ZH(r).
i=1

Note that these can also be expressed in matrix form as follows:

g(#) = X' (AN* - A*[#]A), and

H(0) = -X'W(3)X,

where X is an (M - 1)I x (M - 1)d matrix with the Xi's stacked on top of each

other, W is an (M - 1)I x (M - 1)I block-diagonal matrix with the Wi's on the

diagonal, and AN* as well as A* [#3] are (M - 1)I-length column vectors of the ANi*'s

and A* [ilHi, 13]'s stacked on top of each other.

Gradient vector and Hessian matrix of approximate likelihood: We saw previously that, for

small A, the GLM for the joint process is approximately equivalent to M -1 indepen-

dent uni-variate GLMs with Bernoulli observations and log link. The gradient vector

and Hessian matrix using this approximation are straightforward to obtain from those

of a uni-variate GLM with Bernoulli observations and log link [16]. Therefore, we only

specify the gradient vector and the Hessian matrix for a single observation and one

of M - 1 uni-variate GLMs. The important thing to realize here is that, using this

approximation, the Hessian is block-diagonal, with each block corresponding to one

of the M - 1 uni-variate GLMs. Assuming that the discrete-time likelihood can be

approximated as in Equation 2.18 and that log A*,[ilHi]A =' xi,

g m)(f) (AN*,i - A*[ilHi]A) x = (AN*,, - exp{#3'xi}) xi,

H M')(3) -6m,mAm[ilHi]A - xix'< = - 6 m,m'exp{' 3 xi} x- XiX.

One may also think of the above equations as obtained from Equations B.1 and B.2

by dropping the terms involving A2 , which we assume are o(A).
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Appendix C

Second-order statistics of a

multinomially-distributed random

vector

Consider an M-sided die with sides labeled 0, ... , M - 1. The said die is thrown R

times and let the outcome of the rth trial be an (M - 1)-length indicator vector y(r)

whose m'h entry y [) is 1 if we observed side m (m E {1, ... , M - 1}). Note that

y) = (0, 0, ... , 0)' corresponds to outcome 0 being observed at the rth trial. Let

(ri, -- , 7M-1)' be an M - 1-length vector of probabilities for sides 1 to M - 1. In

this experiment, we are interested in the joint pmf of the (M - 1)-length random

vector y = >r= y), whose mt' entry ym indicates the number of times we observed

side m. For instance, in the case of R i.i.d. Bernoulli trials (M = 2), y E {o, 1, ..., R}

is scalar-valued and follows a binomial distribution with probability of success r1 .

The multinomial distribution is the natural generalization of the binomial to the case

when M is arbitrary but finite. Indeed, the distribution of the random vector y is

given by:

y1!Y2! ... yM-1!(R - y1 - Y2 - - yM-1)! 2 (C1)

... (1 - 71 + 7 2 ± - ± - 1)RY1-2-.-- 1 ,(C.2)

We note the following properties of the multinomial distribution which will be helpful

in deriving its second-order statistics:
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1. Each ym follows a binomial distribution with probability of success 7m.

2. Every (ym, ymn) pair, m $ m' follows a tri-nomial (M = 3) distribution with R

trials and probability vector (rm, 7rm/).

3. Consider the trinomially distributed pair (yI, ym/) mentioned above. Condi-

tioned on ym, ym, follows a binomial distribution with R - ym trials and prob-

ability of success '-

Without loss of generality, let us compute the mean and covariance of the pair (yi, y2).

The means are easily obtained by using the fact that yi and Y2 both have binomial

marginals: E[y1 ] = R -7ri and E[y2] = R -7r2 . The covariance of yi and Y2 requires a

little more effort:

E [(y1 - E[y 1])(y 2 - E[y2])] = E[y1y2] - E[y1]E[y 2]. (C.3)

As we have already obtained the means, we focus on the 1st term in the right-hand

side of the equality above:

E[Y1 Y2]1 EY1 [E ~Y[y1y2|Y1]] (C.4)

= EW[y1 EY21Y1 [y2 |Y1]] (C.5)

(R-y1) 'r2

= (RE[y1] - E[y]) (C.6)
1- 7ri

= (R2 Ti - (R7r1(1 - Ti) + Rr 2 )) (C.7)
- 7ri

= (R2 Wr(1 - 7ri) - R71(1 - 71)) (C.8)1- 7ri

= R 2 r1 7r2 - R7r1 7 2 , (C.9)

where the 2nd equality uses the fact that conditioned on yi, Y2 follows a binomial

distribution with R - y1 trials and probability of success "7. The 4th equality

results from expressing the 2nd moment of y1 in terms of its mean and variance. The
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remaining equalities follow from trival algebraic manipulations. Therefore,

E [(ym - E[ym])(ym, - E[ym,])] = R2 rm7rm' - R7rm7rm, - (R7rm)(R7rm,)(C.10)

E[ymym,]

R7rm7rm', m i'.

E[ym]E[ymi]

(C.11)
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