
Smart Data Structures: An Online Machine

Learning Approach to Multicore Data Structures

by

Jonathan M. Eastep

B.S., University of Texas at Austin (2004)
S.M., Massachusetts Institute of Technology (2007)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2011

c© Massachusetts Institute of Technology 2011. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2011

Certified by. .
Anant Agarwal

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

2

Smart Data Structures: An Online Machine Learning

Approach to Multicore Data Structures

by

Jonathan M. Eastep

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2011, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

As multicores become prevalent, the complexity of programming is skyrocketing.
One major difficulty is efficiently orchestrating collaboration among threads through
shared data structures. Unfortunately, choosing and hand-tuning data structure algo-
rithms to get good performance across a variety of machines and inputs is a herculean
task to add to the fundamental difficulty of getting a parallel program correct. To
help mitigate these complexities, this work develops a new class of parallel data struc-
tures called Smart Data Structures that leverage online machine learning to adapt
themselves automatically. We prototype and evaluate an open source library of Smart
Data Structures for common parallel programming needs and demonstrate significant
improvements over the best existing algorithms under a variety of conditions. Our
results indicate that learning is a promising technique for balancing and adapting to
complex, time-varying tradeoffs and achieving the best performance available.

Thesis Supervisor: Anant Agarwal
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

This thesis is dedicated to my parents, my girlfriend, and my mentor in the early

days, Michael Taylor. You stood by me throughout the PhD process when I needed

you most, and I would not have finished without your support and belief in me.

I also owe a big debt to my collaborators David Wingate and Marco Santambrogio

who helped take Smart Data Structures from a concept to a living, breathing system.

I feel privileged to have worked with such kind, devoted, and talented researchers.

To my colleagues at MIT, thank you for the opportunity to grow and learn to-

gether. To Jason Miller, Henry Hoffman, and Harshad Kasture especially, thank

you for always making the time to bounce ideas around with me. It significantly

contributed to my intellectual growth at MIT.

To my research adviser Anant Agarwal, thank you for supporting me and patiently

nurturing my development as a researcher. Thank you for re-teaching me how to think

about a problem and how to communicate clearly with others. It is the most valuable

thing I have ever learned.

5

6

Contents

1 Introduction 19

1.1 Programming Problems . 19

1.2 Self-Aware Computing . 20

1.3 Smart Data Structures Introduction 20

1.4 Smart Data Structures Design Overview 23

1.4.1 Design Challenges . 23

1.4.2 Application Interfaces . 23

1.4.3 Learning and Reward Architecture 23

1.5 Key Contributions . 25

1.6 Thesis Overview . 27

2 Background and Related Work 29

2.1 Background on Concurrent Data Structures 29

2.1.1 Historical Evolution of Spin-Locks 30

2.1.2 Historical Evolution of Flat Combining 33

2.2 Adaptive Data Structures . 36

2.2.1 Auto-Tuned Libraries . 36

2.2.2 Adaptive Programming Frameworks 38

2.3 Smart Data Structures Contributions Summary 39

2.3.1 Novel Online Learning Adaptation Methodology 39

2.3.2 Novel Lock Acquisition Scheduling Optimizations 40

2.3.3 Closed-Loop, Dynamic Decision-Making 40

2.3.4 Simplified Extensibility via Model-Free Learning 41

7

2.4 Additional Learning-Based Self-Aware Systems 42

2.4.1 Resource Allocation . 42

2.4.2 Scheduling and Load-Balancing 42

2.4.3 Libraries and Optimization . 43

3 Smart Data Structures Design 45

3.1 Smart Data Structures Architecture 45

3.1.1 Implementation Strategy . 46

3.1.2 Optimization Methodology . 47

3.2 Smart Data Structures Prototype Library 49

3.2.1 Supported Data Structures . 49

3.2.2 Application Interfaces . 50

3.2.3 Data Structure Implementations 50

3.2.4 Library Extensibility and Other Features 58

4 Learning Design and Challenges 61

4.1 Design Challenges . 61

4.2 Learning Architecture . 62

4.3 Learning Engine Algorithm . 64

4.4 Learning Thread Tradeoffs . 67

5 Performance Results 69

5.1 Experimental Setup . 70

5.2 Performance of Existing Alternatives 71

5.3 Scancount Sensitivity . 73

5.4 Performance of Smart Data Structures 75

5.5 Adaptivity of Smart Data Structures 78

5.6 Application Case Studies . 81

5.6.1 Application Descriptions . 82

5.6.2 Smart Data Structures Versus Previous Work 84

5.6.3 Smart Data Structures Versus Performance Bounds 90

8

5.6.4 Usage Guidelines . 94

6 Scalability Results 97

6.1 Introduction . 97

6.2 Concurrency Demands . 99

6.2.1 Data Structure Communication Bottlenecks 100

6.2.2 Data Structure Algorithm Bottlenecks 102

6.2.3 Summary of Data Structure Concurrency Constraints 109

6.2.4 Smart Data Structures Communication Bottlenecks 110

6.2.5 Smart Data Structures Reward Bottlenecks 114

6.2.6 Smart Data Structures Learning Bottlenecks 118

6.2.7 Summary of Smart Data Structures Concurrency Constraints . 129

6.3 Multi-Data-Structure Demands . 131

6.3.1 Multi-Data-Structure Incremental Bottlenecks 132

6.3.2 Multi-Data-Structure Scaling Constraints 136

6.4 Multi-Optimization Demands . 137

6.4.1 Multi-Optimization Incremental Bottlenecks 137

6.4.2 Multi-Optimization Scaling Constraints 140

6.5 Case Studies . 142

6.5.1 Combined Constraints . 143

6.5.2 Case Study Applications . 144

6.5.3 Overall Scaling Results . 146

7 Smart Locks Performance Results 151

7.1 Experiment Overview . 151

7.2 Dynamic Overclocking Experiment 152

7.2.1 Experimental Setup . 152

7.2.2 Results . 153

7.3 SPLASH-2 Static Heterogeneity Experiment 156

7.3.1 Experimental Setup . 157

7.3.2 Results . 158

9

7.4 Smart Locks Usage Guidelines . 160

7.4.1 Self-Optimizing Data Structures 160

7.4.2 Learning Thread Sensitivity Analysis 161

8 Future Work 165

8.1 Scalability Enhancements . 165

8.2 Additional Smart Data Structures . 167

8.3 Additional Axes of Adaptation . 167

8.4 Alternative Learning Integration Strategies 168

8.5 Applications to Other Systems . 169

9 Conclusion 171

A Lazy Counter Algorithm 173

10

List of Figures

1-1 The Anatomy of Standard Parallel Data Structures. Data structures

consist of storage, interfaces, and algorithms. The storage organizes

the data, the interfaces specify how the data can be accessed and ma-

nipulated, and algorithms implement the interface operations while

preserving correct concurrent semantics. Knobs parameterize the be-

havior of the storage and algorithms. 21

1-2 The Anatomy of Smart Data Structures. Smart Data Structures aug-

ment standard data structure interfaces, storage, and algorithms with

online machine learning to internally optimize the knobs that control

their behavior. 22

1-3 Smart Data Structures Internals. All Smart Data Structures share a

learning thread which jointly optimizes the knobs that control their

behavior. Performance feedback, the reward, drives the optimization. 24

1-4 Smart Pairing Heap Throughput vs. Post Computation. Through

online learning, the Smart Pairing Heap significantly improves perfor-

mance over the average static bound, achieving and exceeding the ideal

static bound. 27

2-1 Properties of a Spin-Lock Algorithm 30

11

3-1 The Anatomy of Standard Parallel Data Structures. Data structures

consist of storage, interfaces, and algorithms. The storage organizes

the data, the interfaces specify how the data can be accessed and ma-

nipulated, and algorithms implement the interface operations while

preserving correct concurrent semantics. Knobs parameterize the be-

havior of the storage and algorithms. 46

3-2 The Anatomy of Smart Data Structures. Smart Data Structures aug-

ment standard data structure interfaces, storage, and algorithms with

online machine learning to internally optimize the knobs that control

their behavior. 47

3-3 Flat Combining Data Structures. The Flat Combining Skip List is

pictured. Flat Combining data structures consist of a publication list,

a lock, a scancount, and a serial data structure. 53

3-4 The Smart Queue, Skip List, and Pairing Heap. The Smart Skip List

is pictured. These Smart Data Structures augment the Flat Combin-

ing algorithm with an online machine learning engine to optimize a

performance-critical knob of the algorithm called the scancount. . . . 54

4-1 Smart Data Structures Learning Architecture. A learning engine col-

lects performance feedback in the form of a reward signal from a reward

monitor. An internal reward monitor is provided by default; for gener-

ality, external, application-specific reward monitors are also supported. 62

5-1 Performance Characterization of the Best Existing Algorithms. The

Flat Combining Queue, Skip List, and Pairing Heap substantially out-

perform the others at higher concurrency levels and heavier loads (lower

post computation). 72

5-2 Sensitivity to the Scancount in Producer-Consumer Application Struc-

tures: Throughput vs Scancount Over a Range of Loads. The ideal

scancount varies widely and depends on both the load and the data

structure. 74

12

5-3 Smart Queue Throughput vs Post Computation: A Comparison Against

Ideal and Average Static Throughput Bounds. The Smart Queue

achieves near ideal static throughput for most data structure loads. . 76

5-4 Smart Skip List Throughput vs Post Computation: A Comparison

Against Ideal and Average Static Throughput Bounds. The Smart

Skip List achieves near ideal static throughput for most data structure

loads. 77

5-5 Smart Pairing Heap Throughput vs Post Computation: A Compari-

son Against Ideal and Average Static Throughput Bounds. The Smart

Pairing Heap achieves near ideal static throughput for most data struc-

ture loads. 77

5-6 Smart Data Structures Throughput Under Variable Load: A Com-

parison Against Ideal Dynamic and Average Dynamic Throughput for

Different Variation Frequencies. In many cases, Smart Data Struc-

tures achieve near-ideal throughput. Throughput slowly decreases as

changes in the load become more frequent. 80

6-1 Concurrency Scaling: One Flat Combining Data Structure Shared

Among n Application Threads. The communication ports between the

application threads and the Flat Combining components are depicted. 101

6-2 Concurrency Scaling of the Flat Combining Queue. The Flat Com-

bining Queue is compared to the best existing queue algorithms on a

SPARC T2 system. It reaches maximum performance at 24 threads

but outperforms all prior queues up to 64 threads. Some time after 64

threads, the Combining Tree Queue is expected to overtake it as the

highest performance queue. 103

13

6-3 Concurrency Scaling of the Flat Combining Skip List. The Flat Com-

bining Skip List is compared to the best existing priority queue imple-

mentations on a SPARC T2 system. It reaches maximum performance

at 4 threads but outperforms all prior priority queues up to 64 threads

and beyond. 104

6-4 Concurrency Scaling of the Flat Combining Pairing Heap. The Flat

Combining Pairing Heap is compared to the best existing priority queue

implementations on a SPARC T2 system. It reaches maximum perfor-

mance at 12 threads but outperforms all prior priority queues up to 64

threads and beyond. 105

6-5 A Comparison of the Number of Necessary CAS Successes per Data

Structure Operation for Different Queues. While for most queues the

necessary rate is approximately fixed as the number of threads in-

creases, the necessary rate for the Flat Combining queue decreases.

This is the primary source of its performance improvements over the

other queues. 106

6-6 A Comparison of the Number of CAS Failures per Data Structure

Operation for Different Queues. While for most queues the failure

rate increases as the number of threads increases, the failure rate only

initially increases then decreases with the Flat Combining Queue. . . 108

6-7 Concurrency Scaling: One Smart Data Structure Shared Among All

Application Threads. The communication ports between optimization

components, application threads, and the Flat Combining components

are depicted for two different reward modes. 112

6-8 Heartbeats Scaling. The total update rate achieved by Heartbeats is

compared to the ideal update rate for different requested per-thread

update rates. Heartbeats sustain the ideal update rate until an inflec-

tion point at a total update rate of approximately 5.7 MHz. 116

14

6-9 Reward Scaling for Different Reward Monitors. The total update rate

achieved by the Lazy Counter monitor and Heartbeats monitor are

compared to the ideal for different requested per-thread update rates.

The Lazy Counter monitor nearly achieves the ideal total update rate

while Heartbeats saturate at a much lower total update rate. 117

6-10 The Practical Impact of Reward Scaling on a 16-core Intel Xeon Sys-

tem. The figures compare benchmark throughput using Heartbeats

vs the Lazy Counter reward monitor for the Smart Queue, Skip List,

and Pairing Heap. The results indicate that for the benchmark and

concurrency levels in our 16-core Xeon system, both reward monitors

achieve similar throughput. 118

6-15 Multi-Data-Structure Scaling. Applications scale up by adding new

thread pools with each pool utilizing its own Smart Data Structure.

Each pool (and corresponding Smart Data Structure) has its own re-

ward monitor and learning engine. Learning engines all run in a single

learning thread and time-multiplex its resources. 132

6-17 Multi-Optimization Scaling. Applications scale up by increasing the

number of Smart Data Structures belonging to each pool of threads.

We assume there is one pool of threads, with a fixed number of threads

n. There are s Smart Data Structures. All s Smart Data Structures

share one reward monitor and one learning engine. 138

7-1 Heartrate performance across thermal throttling events (workload changes).

Smart Locks significantly outperforms reactive and TAS spin-locks,

achieving near optimal. 154

7-2 Time evolution of the learned policy. Crossovers between Worker 0

and 3 reflect throttling events. 155

7-3 Speedup versus lock acquisition scheduling policy. The policy can sig-

nificantly impact performance. Smart Locks learns a policy that ap-

proaches the ideal speedup. 159

15

7-4 Normalized execution time of SPLASH-2 applications. 6 threads with

an additional thread for Smart Locks vs. 6 threads vs. 7 threads. The

slowdown reflects by what factor Smart Locks must improve perfor-

mance for net benefit. 163

16

List of Tables

2.1 Summary of Lock Algorithms . 33

5.1 Summary of Performance Variation and Smart Data Structure Im-

provements . 94

6.1 Concurrency Scaling of Flat Combining Data Structure Components.

For each component, the scaling of the storage requirements, number

of communication ports, and degree of internal cache line sharing are

given as a function of n, the number of threads accessing the data

structure. 102

6.2 Concurrency Scaling Constraints from Flat Combining Data Struc-

tures. n is the number of threads concurrently accessing a given Smart

Data Structure, and the max n is defined to be the maximum number

of threads before an alternative algorithm will outperform the Smart

Data Structure. 110

6.3 Concurrency Scaling of Smart Data Structure Optimization Compo-

nents. For each component, the scaling of storage requirements, com-

munication ports, and the degree of cache line sharing are given as a

function of n, where n is the number of threads accessing the Smart

Data Structure. 113

6.4 Concurrency Scaling Constraints from Smart Data Structures Opti-

mization Components. n is the number of threads accessing the data

structure. 131

6.5 Multi-Data-Structure Scaling Constraints. 136

17

6.6 Application Scaling Demands. n is the number of application threads 146

6.7 Application Scaling Limits and Limit Sources. n is the total number

of application threads. 147

6.8 Performance at Realistic Software Pipelines Scaling Levels 149

6.9 Performance at Maximum Scaling Levels 149

7.1 Expected Utility of Smart Locks by Scenario 160

18

Chapter 1

Introduction

1.1 Programming Problems

As multicores become prevalent, programming complexity is skyrocketing. Program-

mers expend significant effort on parallelizing problems and mapping them onto hard-

ware in a way that keeps all threads busy and working together effectively. In many

applications, the most difficult aspect of design is efficiently orchestrating collabora-

tion among threads through shared data structures.

Unfortunately, application performance is becoming increasingly sensitive to the

choice of parallel data structure algorithms and algorithm parameter settings. The

best algorithm and parameter settings can depend in complicated ways on the ma-

chine’s memory system architecture as well as application-specific criteria such as

the load on the data structure. To make matters worse, many applications have

input-dependent computation which causes the load to vary dynamically.

Writing correct software is fundamentally difficult, but writing software that is

simultaneously correct and high performance across a variety of machines and inputs

is a herculean task. Our view is that programmers should not be expected to code

for these complexities by hand.

19

1.2 Self-Aware Computing

Recently, self-aware computing has been proposed as one automatic approach to

freeing the programmer from this complexity. While traditional systems require the

programmer to balance system constraints by hand, self-aware systems attempt to

automatically monitor themselves and dynamically adapt their behavior at runtime.

Self-aware systems are an example of closed-loop optimization: they measure

performance feedback and make adjustments continually as system conditions change

to achieve the best performance available at any time. They are sometimes referred

to as autonomic, auto-tuning, adaptive, etc., and they have been applied to a broad

range of platforms including embedded / real-time [10], desktop [18], server [9, 8],

and cloud computing environments [40, 38].

1.3 Smart Data Structures Introduction

One of the insights in this work is that design principles from self-aware computing

can be applied to the problem of tuning data structures. This thesis introduces

Smart Data Structures, a new class of self-aware parallel data structures that self-

tune themselves automatically through a novel methodology based on online machine

learning. Through learning and automatic tuning, Smart Data Structures relieve

programmers of the burden of hand-tuning for the best performance across different

machines, applications, and inputs.

Smart Data Structures are drop-in, self-optimizing replacements for standard data

structures. They are implemented by layering an online learning engine on top of a

standard data structure. To illustrate, we review the anatomy of a standard data

structure and contrast it with the anatomy of a Smart Data Structure.

Figure 3-1 shows the components of a standard data structure. Standard data

structures consist of data storage, an interface, and algorithms. The storage organizes

the data, the interface specifies the operations threads may apply to the data to

manipulate or query it, and the algorithms implement the interfaces while preserving

correct concurrent semantics.

20

Al i h

Online
LearningStorageSmart Data

Structure
E g Smart Queue

Storage

Al i h

Data
Structure
E g Queue Algorithm

knobs
• self‐tuned

Interface
• add
• remove
• peek

E.g. Smart QueueAlgorithm
Interface
• add
• remove• peek

E.g. Queue

knobs
• hand‐tuned

• automatically
• at runtime

p

t1 t2 tn…t1 t2 tn…
• per system
• per app
• staticApplication Threads Application Threads

79

Figure 1-1: The Anatomy of Standard Parallel Data Structures. Data structures
consist of storage, interfaces, and algorithms. The storage organizes the data, the
interfaces specify how the data can be accessed and manipulated, and algorithms
implement the interface operations while preserving correct concurrent semantics.
Knobs parameterize the behavior of the storage and algorithms.

Storage and algorithms are often controlled by knobs : thresholds or other pa-

rameters that program implementation behaviors and heuristics. Knobs are typically

configured via one-size-fits-all static defaults provided by the library programmer.

When the defaults perform sub-optimally, programmers must hand-tune the knobs.

This is typically done through trial and error which can increase development time

and through special cases in the code which reduce readability. Though often neces-

sary, runtime tuning is typically ignored by the programmer due to its complexity.

Figure 3-2 contrasts Smart Data Structures with standard data structures. Smart

Data Structures preserve the same interfaces, storage, and algorithms. The difference

is that Smart Data Structures augment standard data structures with an online learn-

ing engine that automatically and dynamically tunes the knobs to optimize storage

and algorithm behaviors. Through learning, Smart Data Structures balance complex

tradeoffs to find ideal knob settings and adapt to changes in the system or inputs

that affect these tradeoffs.

There have been a variety of related works in adaptive data structures. Among the

most well-known are several auto-tuned signal processing and linear algebra libraries:

21

Al i h

Online
LearningStorageSmart Data

Structure
E g Smart Queue

Storage

Al i h

Data
Structure
E g Queue Algorithm

knobs
• self‐tuned

Interface
• add
• remove
• peek

E.g. Smart QueueAlgorithm
Interface
• add
• remove• peek

E.g. Queue

knobs
• hand‐tuned

• automatically
• at runtime

p

t1 t2 tn…t1 t2 tn…
• per system
• per app
• staticApplication Threads Application Threads

79

Figure 1-2: The Anatomy of Smart Data Structures. Smart Data Structures aug-
ment standard data structure interfaces, storage, and algorithms with online machine
learning to internally optimize the knobs that control their behavior.

FFTW, PHiPAC, and ATLAS [11, 3, 20]. Smart Data Structures differ from these

prior works in an important way. While prior works can adapt to different machine

architectures and runtime conditions like input size, they typically base these decisions

on thresholds computed during compile-time or install-time characterization. The

problem is that such characterizations can poorly reflect realistic runtime conditions

in modern systems.

Consider systems with frequency scaling, for example. Frequency scaling technolo-

gies like thermal throttling or Turboboost R© from Intel R© can dynamically under- or

overclock some subset of the processors, altering the machine’s effective performance

and substantially affecting the tradeoffs that determine which algorithm and/or knob

settings are best. Furthermore, vanilla multi-process environments can have com-

plex runtime conditions as well. They can have unpredictable effective performance

because applications run alongside other applications, interfering and competing in

different ways for important resources like communication and memory bandwidth.

Smart Data Structures account for these complexities by taking on online approach

to optimization decisions. They collect dynamic information about the system and

performance tradeoffs. They balance those tradeoffs intelligently at runtime through

online learning. Through learning, Smart Data Structures adapt and react to changes

in the system, application, or inputs to achieve the best performance available.

22

1.4 Smart Data Structures Design Overview

1.4.1 Design Challenges

The overriding goal of our design is to maintain ease of use in applications while

providing the highest performance available across a variety of different machines,

applications, and workloads. To do so, our design must address three key challenges:

1) measuring application performance in a reliable, non-intrusive, and portable way,

2) adapting knob settings quickly so as not to miss windows of opportunity for opti-

mization, and 3) identifying the knob settings that are best for long-term performance.

The subsequent sections provide an overview of the Smart Data Structures design,

with descriptions framed around how these three challenges are addressed.

1.4.2 Application Interfaces

Smart Data Structures are drop-in, self-optimizing replacements for standard, non-

blocking concurrent data structures. While internally adapting their storage and

algorithms, Smart Data Structures preserve fixed, standard interfaces. Smart Data

Structures are implemented in C++ for shared memory C++ applications. C inter-

faces are provided as well for mixing with other programming languages. Thus, from

the perspective of an application developer, integrating a Smart Data Structure into

an application is as simple as integrating a standard data structure: the developer

includes a library header file and is provided standard object-oriented interfaces.

1.4.3 Learning and Reward Architecture

Internally, a Smart Data Structure uses online machine learning to learn knob settings

that best optimize its storage and algorithms. As Figure 4-1 illustrates, each Smart

Data Structure attaches to an online learning engine which optimizes its knobs. That

learning engine runs in a learning thread separate from the application threads. The

number of learning threads is parameterizable. We will evaluate the case with one

learning thread that multiplexes all learning engines.

23

SDS Implementation

Learning

Reward = throughput (ops/s)

Learning
ThreadSmart Data

Structure
E.g.

Smart Queue

Storage

s
t

External Perf.
M it

• add
• remove

Interface

S a t Queue
Algorithmta

ts

Monitor
E.g. Heartbeats

• remove
• peek

Application
Threadst1 t2 tn…

83

Figure 1-3: Smart Data Structures Internals. All Smart Data Structures share a
learning thread which jointly optimizes the knobs that control their behavior. Per-
formance feedback, the reward, drives the optimization.

Optimization within each learning engine is driven by performance feedback, the

reward. The reward signal must reflect application performance accurately without

perturbing it. We address Challenge 1 (ensuring that performance measurements are

portable, non-intrusive, and reliable) by supplying a low-overhead, internal reward

signal to the learning engine that meets these criteria for many applications: by

default, Smart Data Structures measure and provide their own throughput as the

reward. For generality, we also support a variety of external performance monitors

that developers can use to provide application-specific reward signals.

Application Heartbeats is one external performance monitor that we recommend

for its portability and ease of integration into applications [17]. Heartbeats is a frame-

work for expressing application goals and measuring progress toward them through

the abstraction of heartbeats. Developers insert calls to Heartbeats at significant

points in the application to issue a heartbeat for each unit of progress. The learning

engine uses the rate of heartbeats, the heart rate, as the reward.

We address Challenge 2 (adapting settings quickly so as not to miss windows

of opportunity) in part by running learning engines in a dedicated learning thread

rather than interleaving the learning computation within the application code in the

24

application threads. This decoupling allows learning engines to run faster, deliver

optimizations sooner, and minimize disruption of the application threads.

The other way we meet this challenge is through our choice of learning algorithms.

As Chapter 4.3 will elaborate, our choice of learning algorithms is also central to meet-

ing Challenge 3 (identifying good long-term knob settings): we use a Reinforcement

Learning algorithm based on the Policy Gradients method [42]. The goal of the al-

gorithm is to find the knob settings that maximize the reward at any given time. As

the name suggests, the method for improving knob settings is analogous to gradient

ascent. The algorithm is online and fast, and the reward criterion that we adopt

enables the algorithm to optimize for the best long-term effects.

1.5 Key Contributions

In this work, we have developed an open source prototype library of Smart Data

Structures for common parallel programming needs. It is available [7] on github under

a GPL license. We developed the Smart Data Structures prototype to a) demonstrate

our novel methodology for optimizing data structures using online learning and to b)

pose and answer research questions such as:

• Can online learning be used to optimize data structures and simplify program-

ming?

• Is learning efficient enough to be used for fine-grained, online optimization in

data structures?

• What level of performance improvements are possible using online learning?

• How well can a learning-based design scale to large concurrency levels?

The key contribution of this work is compelling answers to these questions. We

show constructively, through empirical evaluations of our prototype and prior pub-

lications in this area [9, 8], that online machine learning is an effective strategy for

automatically tuning data structures, that learning is efficient enough for fine-grained

25

online optimization of data structures, that significant improvements over state-of-

the-art algorithms of up to 44% are possible, and that learning is not the scalability

limiter for the data structures we have studied.

Furthermore, while this work focuses on a case study of optimizing data structures,

we have taken care to design our learning engine and abstractions so that they may

be applied to the online optimization of other systems in the future as well. The

long-term vision for this work is the optimization of knobs in systems such as cloud

resource allocators, spatially-aware OS schedulers, and adaptive hardware cache hash

functions and coherence protocols.

In Figure 1-4, we give an example from our experimental results for optimizing

data structures. One of the Smart Data Structures provided by our library is a Smart

Pairing Heap: a concurrent heap based on the Flat Combining algorithm [12] (to be

described in Chapter 3.2.3). We benchmark the Smart Pairing Heap to determine the

throughput it can achieve on our machine using online learning to automatically tune

a performance-critical knob in its algorithm. We compare this to the throughput of

the typical approach: statically programming knob settings. Specifically, we compare

against the throughput that could be achieved through painstaking hand-tuning (the

ideal throughput) and the throughput that would be achieved if learning were not

working well (the average throughput over the available knob settings).

The difference between the static ideal and average throughput demonstrates that

finding the optimal knob value can substantially improve throughput. Further, the

result shows that the Smart Pairing Heap is able to learn ideal knob values and reach

the ideal static throughput. Its throughput actually slightly exceeds the ideal static

throughput in some cases because, for data structures like the Pairing Heap, the ideal

knob value can vary during execution and necessitate dynamic tuning. The ability

to dynamically adapt knob settings is a major virtue of the Smart Data Structures

approach.

26

400

600

800

1000

p
u
t
(o
p
s/
m
s)

Smart Pair Heap
14 threads

Ideal Static

SDS Dynamic

Avg Static

0

200
Th

ro
u
gh
p

Post Computation (ns)

Figure 1-4: Smart Pairing Heap Throughput vs. Post Computation. Through online
learning, the Smart Pairing Heap significantly improves performance over the average
static bound, achieving and exceeding the ideal static bound.

1.6 Thesis Overview

The rest of this thesis is organized as follows. Chapter 2 provides background in

concurrent data structures and compares Smart Data Structures to related work in

auto-tuned libraries and adaptive programming frameworks. Chapter 3 presents the

Smart Data Structures design. It describes the popular parallel programming data

structures we provide, the base algorithms upon which Smart Data Structures layer

online learning, and the knobs within them that we expose to learning for performance

optimization. Then, in Chapter 4, we describe the Smart Data Structures learning

design and how we address key challenges such as measuring how well a given knob

setting is performing, adapting settings quickly enough to meet optimization dead-

lines, and planning to ensure good long-term knob settings.

Chapter 5 through Chapter 7 present our experimental results. Our results are

organized in three parts: performance results for the Smart Queue, Skip List, and

Pairing Heap (Chapter 5), scalability results for the Smart Queue, Skip List, and

Pairing Heap (Chapter 6), and performance results for the Smart Lock (Chapter 7).

In Chapter 5, we perform five experiments that 1) evaluate various state-of-the

art algorithms to determine which are highest performance and best to build our

27

Smart Data Structures library prototype upon, 2) study the sensitivity of Smart

Data Structures to different knob settings to motivate our auto-tuning of them via

machine learning, 3) determine ideal and average static performance bounds and

compare the performance of Smart Data Structures with online learning against them,

4) demonstrate the adaptivity of Smart Data Structures to high frequency changes in

the system and application which affect the ideal knob settings and 5) evaluate Smart

Data Structures in a variety of real-world applications to demonstrate significant

performance improvements and analyze different use-cases to determine when Smart

Data Structures provide the most performance improvements over prior work.

In Chapter 6, we evaluate the scalability of the Smart Queue, Skip List, and

Pairing Heap for various application case studies. Specifically, we determine the

maximum concurrency level that each application could theoretically scale to while

still achieving good performance with Smart Data Structures. We identify various

scaling challenges and describe how our design addresses them.

Similar to Chapter 5, Chapter 7 presents performance results for the Smart Lock.

For several application case studies, we study sensitivity to the knobs in the Smart

Lock and motivate our use of learning-based auto-tuning. We determine bounds on

the application performance and demonstrate that Smart Locks achieve near ideal

performance. Then, we show that Smart Locks can adapt to dynamic changes in

the system. Specifically, we simulate Turboboost R© overclocking events and show the

Smart Lock readily adapting its knobs to the changes in core clock speeds.

Next, Chapter 8 discusses future work. We describe additional areas for research,

pose alternative implementation strategies, and suggest promising applications of our

learning-based optimization methodology to other systems beyond data structures.

Finally, in Chapter 9, we summarize our contributions and results then conclude.

28

Chapter 2

Background and Related Work

This work introduces a new class of data structures for parallel programming called

Smart Data Structures. Building upon design principles from self-aware computing,

Smart Data Structures leverage online machine learning to optimize themselves for

different machines, applications, and inputs automatically. This chapter compares

Smart Data Structures to related work. First, it provides historical background on

concurrent data structures, leading up to the development of adaptive data structures.

Then, we describe prior approaches to adaptive data structures and analyze their

limitations. Next, we summarize the contributions of Smart Data Structures over

prior work. Finally, we survey other examples of machine-learning-based self-aware

systems as evidence of the increasing importance of machine learning in systems.

2.1 Background on Concurrent Data Structures

In this section, we provide historical perspective leading up to the development of

adaptive spin-locks and other adaptive concurrent data structures. We begin with the

challenges and developments that drove the creation of various spin-locks. Then, we

do the same for the developments that led to the creation of the Flat Combining data

structures upon which some Smart Data Structures are built. Later, in Chapter 2.2,

we will describe a number of methodologies that have been developed for designing

adaptive data structures.

29

2.1.1 Historical Evolution of Spin-Locks

In parallel programming for shared memory machines, a lock is typically used as a

mechanism to limit access to a region of multi-threaded code called a critical section.

The lock guarantees that only the thread that holds the lock at a given time can ex-

ecute the critical section. Typically, the critical section, and only the critical section,

references particular shared resources or shared memory locations, and the lock co-

ordinates concurrent access to these resources or variables through mutual exclusion.

The lock is used in a cycle of four computation phases: acquiring the lock, executing

a critical section, releasing the lock, then performing the main body of computation.

Because they are important for parallel programming, variety of different lock

types have been developed. Depending on the algorithms used for acquiring and

releasing the lock, different types of locks have three defining properties: their proto-

col, their wait strategy, and their lock acquisition scheduling policy (summarized in

Figure 2-1).

Spin-lock

Protocol Wait Strategy Scheduling Policy

Figure 2-1: Properties of a Spin-Lock Algorithm

The protocol is the synchronization mechanism that the lock uses to guarantee

mutual exclusion so that only one thread can hold a lock at a time. Typical mecha-

nisms include global flags, counters, or distributed queues that locks manipulate using

hardware-supported atomic synchronization primitives such as compare-and-swap or

test-and-set. The wait strategy is the action that threads take when they fail to ac-

quire the lock such as blocking, spinning, or spinning with backoff to reduce polling.

Lastly, the lock acquisition scheduling policy determines which waiter should go next

when threads are contending for the lock. For most locks, the protocol implies a

particular fixed lock acquisition scheduling policy.

One popular lock type in multiprocessor and multicore applications is the spin-

30

lock. Spin-locks are named for their wait strategy: while threads are waiting for the

lock to become free, they poll the lock variable in a tight loop called a spin loop. Spin-

locks are well-suited for these applications because locks are generally held for short

periods of time, and the spinning strategy is less costly than blocking and switching

contexts.

Over the years, there have been many advances in spin-lock protocols to optimize

performance and solve various challenges. One of the first spin-locks was the test-

and-set lock. In the test-and-set lock, threads spin on a global shared variable which

implements the lock. To acquire the lock, they must atomically test the value and

successfully transition the value from 0 to non-zero. At small scales, the test-and-set

lock proved remarkably efficient. However, its key deficiency is that it scales poorly

under high lock contention because threads continuously execute costly synchroniza-

tion primitives on the global lock variable which generate many cache invalidations

and large amounts of bus or network traffic [29].

To help reduce the overhead, the test-and-test-and-set lock was invented. The

basic idea was to prune execution of synchronization primitives by only performing

them when the primitive was expected to succeed. Test-and-test-and-set uses less

expensive non-atomic reads to determine when the lock is free. At that time, threads

attempt the synchronization primitives. While these locks reduced overall bus or

network traffic, they still suffered from large amounts of invalidations when the lock

became free. When locks were held for short periods of time, synchronization prim-

itives were still frequently executed and the overheads were still significant. Various

other derivatives of the test-and-set lock were also proposed, including a version with

backoff to reduce polling.

The scaling limitations of the test-and-set lock and its derivatives inspired the

creation of scalable lock protocols based on distributed queues. In these “queue

locks,” waiters spin on local variables instead of global shared variables [29]. Popular

queue locks include the Mellor-Crummey and Scott lock (the MCS lock) [31], the CLH

variant on the MCS lock [27], and a more recent queue lock with various improvements

called QOLB [23].

31

Unfortunately, queue locks were not without deficiencies either. First, due to the

bookkeeping overhead of maintaining the queue, queue locks could not outperform

test-and-set locks at small contention scales. This placed the burden of choosing the

proper spin-lock algorithm on the programmer. Second, various spin-locks – but queue

locks in particular – were prone to poor performance when the number of threads

(or processes) exceeded the number of available cores. The problem stems from

context switches when one thread spins, waiting for action from another thread that

was swapped out. This problem led to various strategies for improving interactions

between locks and the kernel scheduler to avoid context switches an inopportune times

[24].

While much of the work in spin-locks focused on advancing spin-lock protocols,

there were few efforts to advance lock acquisition scheduling policies. The few works

that do exist are important predecessors to our work on Smart Locks because they

are the first hints at the benefits of lock acquisition scheduling.

One example of work in lock acquisition scheduling is the write-biased readers-

writer lock [30]. It enables concurrent read access and exclusive write access, priori-

tizing writers over readers. Another example is the priority lock [22]. Priority locks

explicitly prioritize lock holders and were developed for database applications where

transactions have different importance. They present challenges such as priority in-

version, starvation, and deadlock, and are a rich area of research [39]. NUCA-aware

locks are another example [36]. They were developed to improve performance on

NUCA memory systems by releasing locks preferentially to near neighbors to im-

prove locality. The adaptive lock acquisition scheduling policy in Smart Locks can

learn to use these policies when beneficial, automatically.

Table 2.1 summarizes the various spin-lock algorithms we have discussed, detailing

their protocol mechanisms, lock acquisition policies, scalability, and the contention

levels for which they can be used most effectively. Reactive locks and other adaptive

locks are discussed in Chapter 2.2.1. Reactive locks are closest related work to Smart

Locks: they attempt to adapt protocols at runtime to use the best lock for the given

contention level.

32

Table 2.1: Summary of Lock Algorithms
Algorithms Protocol Mechanism Policy Scalability Target Scenario
TAS Global Flag Pseudo-Random Not Scalable Low Contention
TASEB Global Flag Pseudo-Random Not Scalable Mid Contention
Ticket Lock Two Global Counters FIFO Not Scalable Mid Contention
MCS Distributed Queue FIFO Scalable High Contention
Priority Lock Distributed Queue Arbitrary Scalable Asymmetric Sharing Pattern
Reactive Adaptive (not priority) Adaptive (not arbitrary) Scalable Dynamic (not asymmetric)
Smart Locks Adaptive (w/ priority) Adaptive (arbitrary) Scalable Dynamic (w/ asymmetry)

2.1.2 Historical Evolution of Flat Combining

There are two predominant implementation strategies for concurrent data structures:

lock-based designs and designs based on atomic synchronization primitives. Lock-

based data structures came first and are based on a simple mechanism for ensuring

correctness despite concurrency: they use a lock to restrict access to shared data

within the data structure such that, at any given time, only the thread holding the

lock can access the data.

The simplest lock-based designs use the lock as a coarse-lock around all shared

data. One drawback of this approach is that it serializes all concurrent accesses to the

data when they could potentially be completed in parallel. Amdahl famously showed

that such serialization ultimately limits the scalability of parallel programs.

To reduce serialization and improve scalability, lock-based concurrency underwent

a series of refinements. Programmers started building data structures with finer-

grained locks, logically partitioning the data and locking each partition independently.

This avoided serialization unless threads were attempting to access data from the

same partition. While this helped improve scalability, lock-based data structures still

had the key deficiency that, in the worst case, threads may block for indeterminate

periods of time before the lock becomes available.

Data Structures based on atomic synchronization primitives were built, in part,

to address these issues. Atomic synchronization primitives are hardware instructions

that read, modify, and write a memory location in a shared cache line in a single, un-

interruptible operation. Examples include test-and-set, fetch-and-add, and compare-

and-swap instructions. These instructions temporarily lock individual cache lines,

and thus permit concurrent modification of data in data structures so long as the

data is on different cache lines.

33

Unfortunately, because of the concurrent semantics of atomic synchronization,

data structures based on these primitives are incredibly complex to design and debug.

Furthermore, algorithms of this type tend to require additional bookkeeping not seen

in simpler lock-based designs that cause their overheads to be higher than lock-based

designs at small scales. In other words, their scalability comes at the cost of increased

complexity and increased overheads at small scales.

Until recently, programmers largely assumed that the scalability limitations of

serialization in lock-based designs would be more significant than the overheads in

data structures based on atomic primitives. Thus, the prevailing wisdom has been

that data structures based on atomic primitives are higher performance. However,

recent studies have shown that the overhead of atomic synchronization primitives is

becoming increasingly expensive on multicores as more cores are added [12], and that

shared memory systems are suffering from large amounts of cache coherence traffic

as cache lines ping-pong between cores due to atomic operations.

This has led to the recent development of Flat Combining data structures by

Hendler et al. [12]. Hendler et al. have shown that the Flat Combining algorithm

significantly improves performance over prior data structures by eliminating the ma-

jority of synchronization overheads. Furthermore, because the Flat Combining algo-

rithm is lock-based, it shows that what was thought to be a fundamental deficiency of

lock-based data structures – serialization of accesses – can be significantly mitigated.

Flat Combining uses a lock as a coarse lock around the data structure but avoids

much of serialization of prior lock-based designs by allowing threads, when they get

the lock, to learn about the operations that other threads wish to perform and per-

form them on their behalf. The principle mechanism is a low-overhead publication

list in which threads publish requests for operations. The key advantage of the de-

sign is that threads perform multiple data structure operations each time they get

the lock. In contrast, conventional algorithms based on atomic primitives typically

require one or more synchronization operations per data structure operation. Flat

Combining’s savings in synchronization overheads outweigh the serialization of the

lock-based design and allows Flat Combining to significantly outperform prior art. In

34

Chapter 6.2.2, we show Flat Combining data structures outperform all prior art up

to 64 threads.

Due to their lock-based design, however, Flat Combining data structures would

still be susceptible to blocking for indeterminate periods of time. For example, if

the thread that holds the lock gets swapped out, no data structure operations will

be completed until the thread gets swapped back in. Luckily, in the years since

data structures based on atomic synchronization primitives were first built, various

efforts have been made to allow “scheduler conscious” locks to communicate with

the scheduler and avoid preemption at inopportune times [24]. The Flat Combin-

ing implementation [13] actually uses a similar technology and avoids blocking for

indeterminate periods of time.

Another motivation for the design of Flat Combining data structures was to op-

timize cache locality [12] and minimize shared memory coherence traffic. Because

threads perform multiple operations within each lock, more successive operations on

the data structure occur within the same thread, increasing the chances that succes-

sive operations will access memory already in the cache and already in the appropriate

shared memory coherency state.

There have been several complementary efforts in data structure design to opti-

mize utilization of memory storage, bandwidth, and access patterns. For example,

the C-store relational database developed at MIT [6] organizes database information

strategically so that it can be compressed and manipulated directly in the compressed

format. Cache oblivious algorithms [35] are an example of an attempt to optimize

memory access patterns. They are typically recursive algorithms that divide prob-

lems into smaller and smaller subproblems until subproblems become so small they

fit into the cache regardless of the cache size and avoid cache capacity misses.

The Flat Combining data structures expand upon these ideas and optimize a

new aspect of memory system performance: synchronization overheads. Moreover,

the memory system optimizations that C-Store and cache oblivious algorithms use

are complementary to optimizing synchronization overheads; they could be combined

with Flat Combining. For example, an interesting extension to Flat Combining would

35

be to utilize compression within the data structures. Then, Flat Combining would

improve memory bandwidth utilization in addition to locality and synchronization

overheads. Today, Flat Combining provides state-of-the-art performance for various

important multicore data structures and is a promising platform for optimization.

2.2 Adaptive Data Structures

In the ongoing quest for increased performance, various efforts have been made to

design adaptive concurrent data structures. In Chapter 2.1.1, we saw that the best

spin-lock algorithm depends on the contention level. Similarly, the best choice of

concurrent data structures and/or the best choice of knob values within a given data

structure may depend on system conditions, inputs, or other factors. The goal of

adaptive data structure techniques is to tune data structure choices or knobs values.

Two of the most well-known approaches to doing this are auto-tuned libraries and

adaptive programming frameworks. This section describes related work in these areas.

2.2.1 Auto-Tuned Libraries

Some of the best known auto-tuned libraries are FFTW, PHiPAC, and ATLAS

[11, 3, 20]. FFTW is a library for computing discrete Fourier Transforms for sig-

nal processing, PHiPAC is a fast matrix multiplication library, and ATLAS is a self-

optimizing implementation of the famous BLAS (Basic Linear Algebra Subprograms)

application programming interface. STAPL is another example. STAPL is an exten-

sible library of general-purpose, parallel C++ data structures and algorithms.

These and other typical auto-tuned libraries like Olszewkski’s adaptive sorting

library [33] select from a repertoire of data structure and algorithm implementations

at runtime based on install-time benchmarks on the machine, data sampling, and the

input size. Different implementations in the repertoire are typically optimized for

different cache blocking, loop unrolling, and data partitioning strategies. For signal

processing, linear algebra, scientific computing, and sorting, respectively, these works

have demonstrated significant improvements.

36

Auto-tuning has also been applied to spin-locks. To address the issue of choosing

the best lock protocol for a given contention scale, Lim and Agarwal developed reac-

tive locks [25]. Through the use of consensus objects, reactive locks adapt between

test-and-set and queue locks, depending upon the lock contention level. Thresholds

for determining when to switch are computed via install-time characterizations for a

given machine.

The principal limitation of these prior works is that, while they may adapt to

different architectures and runtime conditions like input size, they rely on thresholds

computed statically at compile- or install-time. The problem is that static character-

izations may poorly reflect realistic runtime conditions. One example is virtualized

environments where an application may migrate from one machine to a different ma-

chine with a different architecture during the lifetime of the program. This completely

shifts the tradeoffs that determine which algorithm and knob settings are best. Smart

Data Structures, on the other hand, are robust to this sort of unexpected shift and

subtler shifts in tradeoffs. Smart Data Structures take an online, adaptive approach

to identifying and balancing tradeoffs through Reinforcement Learning.

Among the auto-tuned libraries, STAPL is an important predecessor to Smart

Data Structures because it uses machine learning – albeit a very different form of

learning than Smart Data Structures employ. Offline learning is used when STAPL is

installed to aid in the analysis of computing static thresholds for algorithm decisions.

Their approach is model-based: programming experts supply architectural and other

detailed parameters upon which performance depends. Then, decision tree learners

are trained, using carefully constructed training examples in attempt to avoid over-

fitting, to build up models for a given parameter’s effect on performance. The models

are then used to compute decision thresholds. Smart Data Structures, on the other

hand, use online learning, and a major virtue of our online Reinforcement Learning

algorithm is that it is model-free. Our view is that the skyrocketing complexity of

multicore machines has made it too difficult to build accurate models.

Another important predecessor to Smart Data Structures is recent work in self-

tuning reactive locks [15]. This work has shown that the dependence on static thresh-

37

olds in reactive locks can be eliminated by tuning the threshold online via a competi-

tive algorithm. Unfortunately, another major deficiency of the reactive lock remains:

the reactive lock makes no attempt to optimize the lock acquisition scheduling policy.

Related work in write-biased readers-writer locks [30] and NUCA-aware locks [36]

have hinted that the lock acquisition scheduling policy can be an important factor

in performance. Indeed, our results in Chapter 7 will show that it can be used to

significantly improve performance in heterogeneous multicores by optimizing access

to shared resources and critical sections. To our knowledge, the Smart Lock is the

first adaptive spin-lock to self-optimize its lock acquisition scheduling policy.

2.2.2 Adaptive Programming Frameworks

Adaptive Programming Frameworks are an alternative to auto-tuned libraries. Like

auto-tuned libraries, they provide automatic tuning of data structures but do so at

the programming language abstraction layer rather than the library abstraction layer.

An example of an adaptive programming framework is PetaBricks from MIT [1].

Petabricks is a programming language, compiler, and runtime library for building

adaptive programs. Using the PetaBricks framework, programmers specify multi-

ple implementations of each function or algorithm using a syntax that enables the

compiler and runtime to make algorithm decisions and compose parallel algorithms.

One advantage of this work over prior work is that it can evaluate decision tradeoffs

either offline or online. The online auto-tuner divides the cores in the system into two

halves and duplicates the computation. At each step, one half of the cores use a safe

configuration and race an experimental configuration in the other half. The result

from the faster configuration wins and is used. If an experimental configuration wins,

its improvements are gradually added to the safe configuration. Over time, the safe

configuration gets faster and faster. Ansel et al. show that the benefits of running one

half of the cores with a faster algorithm can sometimes be greater than 2x – enough

to outweigh the cost of giving up one half of the cores for experimentation [1].

While adaptive programming frameworks are promising, our view is that they can

be impractical because they require adopting new programming languages. Histori-

38

cally, the wide-spread adoption of new programming languages has been hampered

by considerable inertia. We have implemented Smart Data Structures in C++ be-

cause, thirty years after it was invented, C++ remains one of the most predominant

languages. That said, the ideas in Smart Data Structures are general and language-

independent. It would be interesting to apply the ideas in Smart Data Structures to

other languages and to PetaBricks. For example, the PetaBricks runtime auto-tuner

might be alternatively implemented with an online learning engine.

2.3 Smart Data Structures Contributions Summary

In this section, we detail the key contributions of Smart Data Structures over previous

work. To summarize:

1. To our knowledge, Smart Data Structures are the first adaptive data structure

library to successfully use online machine learning.

2. To our knowledge, Smart Locks are the first adaptive spin-locks to systemat-

ically and dynamically schedule lock acquisitions to optimize access to shared

resources and critical sections.

3. Smart Data Structures are designed around a more reliable closed-loop, dynamic

optimization strategy than the static decision thresholds used in prior auto-

tuned libraries.

4. Smart Data Structures provide a robust, model-free learning implementation

which enables the programmer to extend the library to new systems (includ-

ing virtualized environments) with none of the complexity of building accurate

performance models.

2.3.1 Novel Online Learning Adaptation Methodology

While various auto-tuning libraries have experimented with offline machine learning

to statically tune the library, to our knowledge, Smart Data Structures is the first

39

library to apply online machine learning successfully. Our experiments based on

our prototype implementation (Chapters 5, 6, and 7) and our previous publications

in this area [9, 8] show, constructively, that online machine learning is an effective

optimization strategy for adaptive data structures. Further, we contribute a learning

algorithm based on Policy Gradients Reinforcement Learning that is simultaneously

high performance and efficient enough for online use in adaptive data structures (see

Chapter 4.3).

2.3.2 Novel Lock Acquisition Scheduling Optimizations

While previous adaptive spin-locks such as reactive locks have innovated in the area

of protocol adaptation, to our knowledge, Smart Locks are the first adaptive spin-lock

to systematically optimize the lock acquisition scheduling policy. Our experiments in

Chapter 7 and prior publications [9] show empirically that lock acquisition schedul-

ing is an important technique for improving program performance on heterogeneous

multicores because it can be used to preferentially allocate shared resources and/or

critical sections to faster cores. Doing so reduces their wait times. Since fast cores can

perform more work per unit time than slower cores, overall performance increases.

2.3.3 Closed-Loop, Dynamic Decision-Making

While previous auto-tuned libraries and programming frameworks may adapt to dif-

ferent architectures and runtime conditions, they rely on thresholds computed stat-

ically at compile- or install-time to do so. Unfortunately, static characterizations

may poorly reflect realistic runtime conditions. For example, applications running in

virtualized environments may migrate among different machines during the lifetime

of the program, completely shifting the tradeoffs that determine the best algorithm

and knob settings. Further, on a given machine, newer frequency scaling technologies

like thermal throttling and Intel’s Turboboost R© overclocking technology, can alter the

tradeoffs dynamically. Even in the absence of virtualization and frequency scaling,

multi-process environments have fundamentally dynamic tradeoffs that static thresh-

40

olds cannot account for. In multi-process environments, different applications can

run at the same time, and different combinations of applications will interfere and

compete differently for hardware resources.

Smart Data Structures monitor tradeoffs online and take a closed-loop approach

to optimization: through Reinforcement Learning, they are robust and reactive to

dynamic changes in the system, application, or inputs that alter the best algorithm

and knob settings over time.

2.3.4 Simplified Extensibility via Model-Free Learning

A major virtue of the online learning algorithm used in Smart Data Structures over

prior offline learners is that our algorithm is model-free. When extending the library

to new systems or data structures, this frees the programmer from having to supply

specifications of the system such as architectural parameters, cache sizes and asso-

ciativities, or details about the cache coherence protocol. Model-based systems are

reliant on these specifications so that they can learn approximate machine perfor-

mance as a function of these specifications and predict what implementations will

maximize performance.

The problem is that the complexity of systems is skyrocketing and making it diffi-

cult to produce accurate specifications and models. Furthermore, many applications

are moving to cloud computing environments where system specifications are a) un-

available because they are proprietary or b) unpredictable because the hardware is

virtualized. The Policy Gradients Reinforcement Learning approach used by Smart

Data Structures learns how to act without prior information about the environment.

Furthermore, it adapts its actions when the environment changes. In our design, pro-

grammers need only specify what data structure knob to optimize, not a procedure

for how to optimize it.

41

2.4 Additional Learning-Based Self-Aware Systems

Now that we have looked at background on concurrent data structures and compared

Smart Data Structures to related work, we survey other examples of self-aware sys-

tems based on machine learning. Researchers have built self-aware systems based on

learning to address a variety of important problems in multicores and clouds spanning

resource allocation, scheduling and load balancing, and libraries and optimization.

Our view is that these pioneering works are evidence that machine learning will play

an essential role in the development of future systems.

2.4.1 Resource Allocation

Ipek et al. apply Reinforcement Learning and neural nets to multicore resource

management [19, 4]. They build self-optimizing hardware agents that adapt the

allocation of critical resources according to changing workloads. Hoffman et al. [18]

utilize Reinforcement Learning and control theory in a software runtime framework

which manages application parallelism to meet performance goals while minimizing

power consumption. Tesauro et al. use Reinforcement Learning in the context of data

centers to make autonomic resource allocations [38]. Wentzlaff et al. from MIT are

investigating various applications of machine learning to the operating system that

they are designing for multicores and clouds [40].

2.4.2 Scheduling and Load-Balancing

Fedorova et al. extend learning to heterogeneous multicores to coordinate resource

allocation and scheduling [10]. Their system uses Reinforcement Learning to produce

scheduling policies that balance optimal performance, core assignments, and response-

time fairness. Whiteson and Stone use Q-learning to improve network routing and

scheduling [41].

42

2.4.3 Libraries and Optimization

Work in libraries and optimization has also benefited from learning-based self-aware

computing. Coons et. al apply genetic algorithms and Reinforcement Learning to

compilers to improve instruction placement on distributed microarchitectures with

results rivaling hand-tuning [5]. Finally, Jimenez and Lin apply the perceptron algo-

rithm to dynamic branch prediction and propose a scheme that substantially outper-

forms existing techniques [21].

43

44

Chapter 3

Smart Data Structures Design

Smart Data Structures are a new class of self-aware parallel data structures that self-

tune themselves automatically through a novel methodology based on online machine

learning. Through learning and automatic tuning, Smart Data Structures relieve

programmers of the burden of hand-tuning for the best performance across different

machines, applications, and inputs.

This chapter details the design of Smart Data Structures. We begin in Chapter

3.1 by describing the architecture of Smart Data Structures, including our imple-

mentation strategy and optimization methodology. Next, in Chapter 3.2 we describe

the contents and design of our open source library of Smart Data Structures. Later,

in Chapter 4, we will describe the challenges of fine-grained optimization of data

structures and how our learning architecture and learning algorithm address them.

3.1 Smart Data Structures Architecture

The goal of the Smart Data Structures architecture is to facilitate high-performance

and robust self-optimization while simultaneously making Smart Data Structures easy

to use in applications. Chapters 3.1.1 and 3.1.2 present our implementation strategy

and optimization methodology. We show how Smart Data Structures achieve this goal

and motivate our architectural design decisions by contrasting Smart Data Structures

with standard data structures and standard optimization methodologies.

45

3.1.1 Implementation Strategy

For ease of use in applications, Smart Data Structures are designed to be drop-in,

self-optimizing replacements for standard data structures. Smart Data Structures are

implemented by layering online learning on top of standard data structures. While

preserving the interfaces, Smart Data Structures internally adapt and optimize data

structure components via learning.

To illustrate, we review the anatomy of a standard data structure and contrast

it with the anatomy of a Smart Data Structure. Figure 3-1 shows the components

of a standard data structure. Standard data structures consist of data storage, an

interface, and algorithms. The storage organizes the data, the interface specifies the

operations that threads may apply to the data to manipulate or query it, and the

algorithms implement the interfaces while preserving correct concurrent semantics.

Al i h

Online
LearningStorageSmart Data

Structure
E g Smart Queue

Storage

Al i h

Data
Structure
E g Queue Algorithm

knobs
• self‐tuned

Interface
• add
• remove
• peek

E.g. Smart QueueAlgorithm
Interface
• add
• remove• peek

E.g. Queue

knobs
• hand‐tuned

• automatically
• at runtime

p

t1 t2 tn…t1 t2 tn…
• per system
• per app
• staticApplication Threads Application Threads

79

Figure 3-1: The Anatomy of Standard Parallel Data Structures. Data structures
consist of storage, interfaces, and algorithms. The storage organizes the data, the
interfaces specify how the data can be accessed and manipulated, and algorithms
implement the interface operations while preserving correct concurrent semantics.
Knobs parameterize the behavior of the storage and algorithms.

Storage and algorithms are often controlled by knobs : thresholds or other pa-

rameters that program implementation behaviors and heuristics. Knobs are typically

configured via one-size-fits-all static defaults provided by the library programmer.

When the defaults perform sub-optimally, programmers must hand-tune the knobs.

46

This is typically done through a) trial and error which can increase development time

and/or through b) special-casing in the code which can reduce readability. Though

often necessary, runtime tuning is typically ignored by the programmer due to its

complexity.

Figure 3-2 contrasts Smart Data Structures with standard data structures. Smart

Data Structures preserve the same interfaces, storage, and algorithms. The difference

is that Smart Data Structures augment standard data structures with an online learn-

ing engine that automatically and dynamically tunes the knobs to optimize storage

and algorithm behaviors. Through learning, Smart Data Structures balance complex

tradeoffs to find ideal knob settings and adapt to changes in the system or inputs

that affect these tradeoffs.

Al i h

Online
LearningStorageSmart Data

Structure
E g Smart Queue

Storage

Al i h

Data
Structure
E g Queue Algorithm

knobs
• self‐tuned

Interface
• add
• remove
• peek

E.g. Smart QueueAlgorithm
Interface
• add
• remove• peek

E.g. Queue

knobs
• hand‐tuned

• automatically
• at runtime

p

t1 t2 tn…t1 t2 tn…
• per system
• per app
• staticApplication Threads Application Threads

79

Figure 3-2: The Anatomy of Smart Data Structures. Smart Data Structures aug-
ment standard data structure interfaces, storage, and algorithms with online machine
learning to internally optimize the knobs that control their behavior.

3.1.2 Optimization Methodology

The use of an online learning engine for the dynamic optimization of data structures

is an important departure from the methodologies used in prior work that enables

Smart Data Structures to provide a more robust framework for optimization.

There have been a variety of related works in adaptive data structures. Among the

most well-known are several auto-tuned signal processing and linear algebra libraries:

47

FFTW, PHiPAC, and ATLAS [11, 3, 20]. While these prior works are able to adapt to

different machine architectures and runtime conditions like input size, they typically

base adaptation decisions on thresholds computed during compile-time or install-

time characterization. The problem is that such characterizations can poorly reflect

realistic runtime conditions in modern systems.

Consider systems with frequency scaling, for example. Frequency scaling technolo-

gies like thermal throttling or Turboboost R© from Intel R© can dynamically under- or

overclock some subset of the processors, altering the machine’s effective performance

and substantially affecting the tradeoffs that determine which algorithm and/or knob

settings are best. Furthermore, vanilla multi-process environments can have com-

plex runtime conditions as well. They can have unpredictable effective performance

because applications run alongside other applications, interfering and competing in

different ways for important resources like communication and memory bandwidth.

Smart Data Structures account for these complexities by taking on online, closed-

loop approach to optimization decisions. They continually collect performance feed-

back to infer dynamic information about the system and performance tradeoffs. It

is through the use of online learning that Smart Data Structures are able to weigh

complex tradeoffs at runtime. Through learning, Smart Data Structures adapt and

react to changes in the system, application, or inputs to achieve the best performance

available.

Another benefit of the online learning optimization methodology in Smart Data

Structures is that it generalizes to the optimization of systems beyond data structures.

While this work focuses on a case study of optimizing data structures, we have taken

care to design our knob abstraction, our library, and our learning algorithms (as we

will see in Chapter 4), so that they can be used in other systems. Our long-term

vision is to apply this work toward the optimization of knobs in systems such as

cloud resource managers, OS schedulers, and multicore shared memory systems as

well (see Chapter 8.5 for further details).

48

3.2 Smart Data Structures Prototype Library

This work develops an open-source library of Smart Data Structures for popular

parallel programming needs. It is available [7] on github under a GPL license. The

goal of the library is to constructively demonstrate that online learning is a high

performance and flexible framework for the automatic, fine-grained optimization of

data structures in the face of complex, time-varying tradeoffs.

This section, describes the contents and design of the Smart Data Structures

prototype library. First, we list the supported data structures and describe their

significance to parallel programming. Then, we discuss the standard interfaces used

by Smart Data Structures to facilitate easy integration into applications. Next, we

detail the implementation of the prototype data structures, describing the significance

of the knobs that we optimize within them. Finally, we discuss library facilities for

easy porting and extensibility.

3.2.1 Supported Data Structures

The Smart Data Structures library includes a variety of data structures to support

popular parallel programming models and orchestrate sharing of data among threads.

The library provides a Smart Queue for use in global work queue, work-stealing, and

pipeline-parallel programming models. It provides a Smart Skip List for concurrent

sorting or sharing lists of data. A Skip List is comparable to a binary search tree in

that it support insertion and search with the same asymptotic complexity but the Skip

List uses a simpler implementation based on a hierarchy of increasingly sparse linked

lists. The library also provides a Smart Pairing Heap for concurrent sorting. Both the

Smart Skip List and Smart Pairing Heap can be used as high-performance priority

queues in prioritized work queue programming models or for event-based scheduling.

Finally, the library provides a Smart Lock for use in lock-based programming models

with critical sections to schedule when threads get access to critical sections.

Potential applications of these data structures range from accelerating parallel

graph search algorithms like Dijkstra’s single-source shortest path algorithm (Smart

49

Queues), to prioritizing network traffic such as VOIP streams for better quality of

service (Smart Skip Lists), to reducing discrete event simulation times in multicore

architecture simulations (Smart Pairing Heaps), to accelerating work queue programs

on heterogeneous multicores by scheduling work stealing (Smart Locks).

The Smart Data Structures prototype provides facilities for extending the library

to additional data structures as well. As Chapter 3.2.4 will show, these facilities make

it easy to add Smart Data Structures to the library. We have plans to expand the

library to include a Smart Stack and a Smart Distributed Hash Table in the future.

3.2.2 Application Interfaces

The Smart Data Structures in the library prototype are designed to be drop-in, self-

optimizing replacements for standard concurrent data structures. They are non-

blocking data structures with standard interfaces. They are written in C++ for

shared memory C / C++ applications. C interfaces are provided as well for mixing

with other programming languages. Thus, from the perspective of an application

developer, integrating a Smart Data Structure into an application is as simple as

integrating a standard data structure: the developer includes a library header file

and is provided standard object-oriented interfaces.

Though Smart Data Structures internally use machine learning to optimize their

implementation, they preserve the same standard interfaces at all times. The Smart

Queue, Skip List, and Pairing Heap provide add, remove, and contains methods to

insert, retrieve, and search for elements. Their interfaces provide additional methods

to track statistics: size and empty. The Smart Lock is a learning-enabled spin-lock

with standard lock, unlock, and trylock interfaces with extensions for timeout and

abort conditions to facilitate complex uses.

3.2.3 Data Structure Implementations

This section details the implementation of the Smart Queue, Smart Skip List, Smart

Pairing Heap, and Smart Lock data structures in the Smart Data Structures proto-

50

type. We begin with an implementation overview. Then, we detail the Smart Queue,

Skip List, and Pairing Heap together because they are based on a common algorithm.

Finally, we detail the Smart Lock.

Implementation Overview

In general, different Smart Data Structures are built on top of different base algo-

rithms and thus have different types of knobs. Different Smart Data Structures may

also use different online learning algorithms to optimize their knobs. As we will see,

the types of knobs in the prototype Smart Data Structures range from discrete-valued

knobs to permutation orderings. So far, all Smart Data Structures in the prototype

have used Reinforcement Learning as the online learning algorithm.

The Smart Queue, Skip List, and Pairing Heap build on top of the recent Flat

Combining algorithm [12]. They augment Flat Combining base data structures with

an online Reinforcement Learning engine. Through Reinforcement Learning, they

continually optimize a performance-critical, discrete-valued knob in the Flat Com-

bining algorithm called the scancount. In Chapter 5.2 we will motivate our decision

to build upon Flat Combining base data structures by showing that Flat Combining

outperforms the best prior algorithms over a range of scenarios.

The Smart Lock, our self-tuning spin-lock, uses Reinforcement Learning as well.

However, Smart Locks use learning to optimize a permutation knob rather than a

discrete-valued knob. In a Smart Lock, the permutation knob specifies the order

and relative frequency with which different threads get the lock when contending

for it. By continually adjusting the permutation order, the Reinforcement Learning

engine schedules lock acquisitions. At any given time, the permutation order specifies

the current schedule. A Smart Lock implements the schedule by building on top

of a priority lock and interpreting the schedule as priorities. In other words, the

Reinforcement Learning engine in the Smart Lock dynamically programs the priorities

in a priority lock. Smart Locks are used in programs to protect critical sections so

this optimization has the effect of scheduling access to the critical section. In Chapter

7, we will show that scheduling access to critical sections can significantly accelerate

51

work queue programs on heterogeneous multicores.

Smart Queues, Skip Lists, and Pairing Heaps

The Smart Queue, Skip List, and Pairing Heap augment a recently developed data

structure algorithm called Flat Combining [12] with an online Reinforcement Learning

Engine. In this section, we describe the Flat Combining algorithm and a performance-

critical, discrete-valued knob in the algorithm called the scancount. We will motivate

our auto-tuning of the scancount by describing how it affects data structure perfor-

mance.

Figure 3-3 shows the Flat Combining data structure design. Flat Combining

data structures are non-blocking, shared memory data structures that consist of a

publication list, a test-and-test-and-set lock, a scancount, and a serial data structure.

The algorithm uses the lock as a coarse-lock around the serial data structure and the

publication list as a low-overhead mechanism for broadcasting the operations that

the threads wish to apply to the data structure. Threads overcome the serialization

of lock-based concurrency by combining : performing not only their operation when

they have the lock but also the published operations of the other threads.

The steps of the algorithm are numbered in Figure 3-3. Each thread has a record

in the publication list. In Step 1, when a thread wants to perform an operation on

the data structure, it publishes a request and any necessary arguments in its record.

Next, in Step 2 the thread waits for the operation to complete, spinning locally on a

field in its record. While spinning, the thread will periodically attempt to acquire the

lock. If successful, the thread moves to Step 3 and becomes the combiner ; otherwise

it remains in Step 2 until its operation completes. In Step 3, the combiner reads

the scancount, k. Finally, in Step 4, the combiner scans the publication list k times,

each time looking for operations to perform and applying them. The combiner may

merge operations before applying them to improve efficiency. As soon as a thread’s

operation is complete, the combiner writes to that thread’s record to signal it. That

thread stops spinning and it returns control to the application. After its k scans, the

combiner releases the lock and likewise returns control to the application.

52

Smart Queue, SkipList, PairHeap, Stack

Publication ListE.g.:
1 4

FC
Skip List

Publication List

S t

Serial Skip List

g

32

Interface
Lock Scancount

• add
• remove
• contains

knobs
• # scans over pub. list
• hand‐tuned

t1 t2 tn…
Application Threads

• per system
• per app
• static

hand tuned

82

Figure 3-3: Flat Combining Data Structures. The Flat Combining Skip List is pic-
tured. Flat Combining data structures consist of a publication list, a lock, a scancount,
and a serial data structure.

Thus, the scancount dictates the number of scans combiners make over the pub-

lication list before returning control to the application. Adjusting the scancount for

more scans provides opportunities to catch late-arriving requests and therefore per-

form more operations in each combining phase. This can improve synchronization

overheads by reducing the rate at which locks must be acquired and can improve

temporal locality and cache performance because more back-to-back data structure

operations are performed by the same thread [12]. However, making more scans

has the tradeoff that the latency of data structure operations can increase because

threads remain the combiner for longer. Some applications are not affected by this

latency, but we will demonstrate common application structures in Chapter 5 that

are adversely affected. Increased latency can be particularly bad when the extra time

spent combining is wasted because requests are not arriving quickly enough to keep

the combiner busy.

In Flat Combining, the scancount is fixed to a static default value provided by

the library. The Smart Queue, Skip List, and Pairing Heap significantly improve per-

formance over Flat Combining by optimizing the scancount dynamically. As Figure

53

3-4 shows, they do this by augmenting Flat Combining with an online Reinforcement

Learning engine which balances the tradeoffs to find the ideal scancount. Our ex-

periments in Chapter 5 will demonstrate that, through learning, the Smart Queue,

Skip List, and Pairing Heap can outperform the state-of-the-art Flat Combining data

structures by up to 44% over a range of conditions. Furthermore, we will show that,

through learning, these Smart Data Structures can readily adapt to rapid changes in

the application workload that cause the ideal scancount to vary over time.

Smart Queue, SkipList, PairHeap, Stack

Reinforcement
LearningPublication ListE.g.:

1 4
g

(of a discrete var)Smart
Skip List

Publication List

S t

Serial Skip List

g

32

Interface
Lock Scancount

• add
• remove
• contains

knobs
• # scans over pub. list

lf t d
t1 t2 tn…

Application Threads
• automatically
• at runtime

• self‐tuned

80

Figure 3-4: The Smart Queue, Skip List, and Pairing Heap. The Smart Skip List
is pictured. These Smart Data Structures augment the Flat Combining algorithm
with an online machine learning engine to optimize a performance-critical knob of
the algorithm called the scancount.

Smart Locks

The Smart Lock is a shared memory spin-lock data structure for synchronization be-

tween threads. Applications use spin-locks to protect a region of multi-threaded code,

called a critical section. The spin-lock guarantees that only the thread that holds the

lock at a given time can execute the critical section. Typically, the critical section,

and only the critical section, references particular resources or shared memory vari-

ables, and the spin-lock coordinates concurrent access to these resources or variables

through mutual exclusion. Through a technique we call Lock Acquisition Scheduling,

54

the Smart Lock optimizes access to these resources or critical sections by intelligently

scheduling access to the lock.

Smart Locks are based on priority locks and use the abstraction of priorities to

schedule access to the lock. Each thread has a priority. Whereas thread priorities

are usually statically programmed in a priority lock, Smart Locks augment a stan-

dard priority lock with an online Reinforcement Learning engine that dynamically

programs thread priorities. By dynamically configuring the priorities, the learning

engine controls the order and relative frequency with which contending threads will

get the lock. To optimize priorities, the learning engine optimizes a permutation

knob. The permutation knob specifies an ordering over the threads, and a thread’s

position in this ordering is its priority.

Figure 3-5 shows the steps of the priority lock algorithm. When a thread wants

to get the lock, it reads its priority and adds itself to the wait queue. The wait queue

is (conceptually) a priority queue, and the thread uses its priority as the key (with

a minor modification) when it inserts itself. When the lock is free, the thread at the

head gets it next. The others spin until they become the head of the queue.

Smart Lock

• Lock Acquisition Scheduling: dynamically managing the
order and frequency with which threads get the lock

• Implemented via priority lock and auto‐tuned priorities

Reinforcement
Learning

(of a permutation)Smart
L k

Lock
3

Priorities

Lock

Wait Priority
…

Queue

2 1

Interface
• lock
• unlock knobs

• per‐thread priorities

Queue

9

• learn dynamic prioritiest1 t2 tn…

Figure 3-5

Our priority lock implementation supports a few additional complexities. First,

spinning can be aborted if too much time elapses or if some other specified condition

55

is met. To abort, threads remove themselves from the wait priority queue. Second, a

thread’s priority can be updated by the learning engine while it is in the wait queue.

If so, that thread will move to a new position in the queue. Third, as a performance

optimization, our priority lock uses discrete priority levels – 32 or 64 levels, depending

on the machine integer width. This allows us to implement the wait priority queue

as a bit vector which we can atomically modify. Each bit signifies the occupancy of a

different priority level, and threads can scan the bit vector efficiently to determine if

they are the head of the queue. For applications with more than 64 threads, positions

in the permutation ordering from the learning engine are mapped into priorities by

quantizing the positions into 64 different priorities. In this case, the bits in the bit

vector are multiplexed among multiple threads, with little effect on efficiency.

To summarize, the Smart Lock uses priority locks and learning to optimize the

performance of an application by intelligently managing the schedule with which its

threads access shared resources or variables. In general, the best lock scheduling

policy varies depending on the application, and Smart Locks attempt to find the

ideal policy for a given application, adapting it at runtime if necessary.

As Figure 3-6 illustrates, this is an important departure from prior spin-locks.

Most spin-locks have fixed, static scheduling policies. For these spin-locks, the schedul-

ing policy is an intrinsic property of their algorithm. For example, consider the test-

and-set lock. In the test-and-set lock, when a thread wants the lock, it conceptually

enters a wait set where it spins on a common shared variable until it gets the lock.

All members of the set attempt to atomically test the variable for zero and transi-

tion it to non-zero value if zero. The test-and-set algorithm makes no effort to order

or schedule which contending thread will get the lock next. Its scheduling policy

is pseudo-random. In practice, however, non-uniformities in cache coherent shared

memory systems make it so that threads running in cores near the current lock holder

are more likely to win the race for the lock.

Another popular lock is the scalable Mellor-Crummey and Scott queueing lock

(the MCS Lock) [29]. Unlike the test-and-set lock, the MCS Lock schedules the order

in which threads will get the lock. Its scheduling policy is a fair, first-in-first-out

56

Why Does Lock Scheduling Matter?

MCS
Lock Wait

Lock
2

1
Test‐

and‐Set Wait

Lock1

L k

3

Interface

Wait
Queue

Interface

Wait
SetLock

static
policy

Priorities
f

Priority
Lock

Wait Priority

…

Queue

Lock
3

2 1

Static

Interface
Queue

vs
Reinforcement

Learning
(of a permutation)Smart

Lock

W it P i it
…

Lock
3

2 1 adaptive
policy

60

Priorities
Interface

Wait Priority
Queue

Figure 3-6

(FIFO) policy. When a thread wants the lock, it enters a wait queue. Conceptually,

the head of the queue spins on the lock and will become the next lock holder when

the lock is free. This is implemented by having all threads in the queue spin until

signaled. When the current lock holder releases the lock, it signals the node after it

in the queue. If the queue was empty when a thread inserts itself, it is the head and

gets the lock.

The only prior lock we are aware of that does not rely on a fixed scheduling

policy is the priority lock. Though its policy is not fixed, it is still usually statically

programmed. When a thread wants to acquire the lock, it reads its priority and uses

it as a key to insert itself into a wait priority queue. Only the head of the queue can

57

attempt the lock, and the head will become the next lock holder.

Unlike its predecessors, the Smart Lock uses a dynamic, adaptive scheduling pol-

icy. Through lock acquisition scheduling, the Smart Lock attempts to learn the best

policy for the application. The major virtue of lock acquisition scheduling is that

it can automatically introduce desired application-specific biases into the lock. In

real-time systems, Smart Locks can learn biases to improve real-time guarantees. In

clouds, they may be used to improve resource allocation fairness. In heterogeneous

multicores, they can minimize lock latency for critical threads. In Chapter 7, we show

that Smart Locks can accelerate work queue programs on heterogeneous multicores

as well. Through lock acquisition scheduling, Smart Locks optimize access to criti-

cal sections in the work queue code concerning work stealing and, thus, intelligently

schedule work stealing.

3.2.4 Library Extensibility and Other Features

This section describes features in the Smart Data Structure prototype library for

portability and extensibility.

To facilitate easy porting to new architectures, the Smart Data Structures proto-

type abstracts architectural and memory model dependencies through a portability

layer. The library has been tested most thoroughly on x86 64 R© systems but it should

be trivial to port it to 32-bit x86 R© systems. Porting to SPARC R© systems is expected

to be relatively simple as well, though a few lingering memory barriers for accommo-

dating its memory model differences may have been overlooked. We are told that the

library has been successfully ported to Tilera R© TileGX R© systems as well.

To facilitate the expansion of the library to new data structures, the learning

engine in our library supports the optimization of a variety of different knob types.

Supported knob types range from permutations to Gaussian distributions to discrete

values to binary values. Furthermore, our learning framework provides a flexible in-

terface for joint-optimization of multiple knobs (of arbitrary type) for more advanced

optimizations. Support for joint-optimization also enables optimization across multi-

ple components. See Chapter 8.5 for promising applications of joint optimization.

58

In addition to the portability layer and learning framework, the library also in-

cludes a variety of performance monitoring frameworks. As we will see in Chapter 4,

performance monitoring frameworks supply reward to the learning engine and drive

optimization within Smart Data Structures. Chapter 6.2.5 will evaluate several of

the performance monitoring frameworks included in the library.

59

60

Chapter 4

Learning Design and Challenges

4.1 Design Challenges

This work introduces a new class of data structures called Smart Data Structures

which leverage online machine learning to optimize themselves at runtime. The over-

riding goal of our design is to maintain ease of use in applications while providing the

highest performance available across a variety of different machines, applications, and

workloads. The Smart Data Structures design must address three major challenges

to meet this goal. Namely, Smart Data Structures must:

1. Measure performance in a reliable and non-intrusive way so that optimizations

are relevant to the goals of the application

2. Adapt knob settings with fine-grained frequency and latency so as not to miss

windows of opportunity for optimizations

3. Accurately identify the best long-term knob settings

The Smart Data Structures design addresses these challenges through the choice

of learning architecture and the choice of online learning algorithms. This chapter

describes the learning architecture in Chapter 4.2 and provides a mathematical treat-

ment of the learning algorithm in Chapter 4.3. Throughout, descriptions are framed

61

around these challenges and how the Smart Data Structures design addresses them.

Finally, in Chapter 4.4, we discuss some tradeoffs made by our design.

4.2 Learning Architecture

Recall that a Smart Data Structure is implemented by augmenting a base data struc-

ture with an online learning engine which continually optimizes the knobs of the base

data structure. As Figure 4-1 illustrates, the learning engine performs closed-loop

optimization. It collects performance feedback from an additional component called

the reward monitor. The reward monitor provides a reward signal, and the goal of

the learning engine is to learn knob settings that maximize the reward signal.
SDS Implementation

Learning

Reward = throughput (ops/s)

Learning
ThreadSmart Data

Structure
E.g.

Smart Queue

Storage

s
t

External Perf.
M it

• add
• remove

Interface

S a t Queue
Algorithmta

ts

Monitor
E.g. Heartbeats

• remove
• peek

Application
Threadst1 t2 tn…

83

Figure 4-1: Smart Data Structures Learning Architecture. A learning engine collects
performance feedback in the form of a reward signal from a reward monitor. An
internal reward monitor is provided by default; for generality, external, application-
specific reward monitors are also supported.

For the learning engine to improve the performance of an application, the reward

signal must accurately reflect the goals of the application. Measuring the reward

must also be non-intrusive; otherwise, overhead due to measurement can negate the

benefits of optimization. This is Challenge 1.

The Smart Data Structures learning architecture addresses Challenge 1 in two

62

ways. First, Smart Data Structures provide a default, low-overhead, internal reward

monitor that measures the throughput of the Smart Data Structure and provides the

throughput as the reward signal. The throughput of the Smart Data Structure is

often a reliable heuristic indicator of application performance. Sometimes, however,

the goals of the application are not reflected in the throughput. For generality, Smart

Data Structures provide an alternate solution to Challenge 1: they support external

performance monitors which developers can use to provide application-specific reward

signals.

Our design supports a variety of external performance monitors. One we recom-

mend is Application Heartbeats [17]. Heartbeats is a portable framework for express-

ing application goals and measuring progress toward them through the abstraction of

heartbeats. Developers insert calls to Heartbeats at significant points in the applica-

tion to issue a heartbeat for each unit of progress. The learning engine uses the rate

of heartbeats, the heart rate, as the reward. Application Heartbeats addresses Chal-

lenge 1 because it enables developers to provide application-specific reward signals

and is simple to integrate into applications.

For the learning engine to maximize application performance, it must react quickly

when changes in the system, application, or workload shuffle the tradeoffs that deter-

mine which knob settings are best at any given time; otherwise, the learning engine

may invest the effort in finding an optimization but deliver that optimization when

it is no longer useful. This is Challenge 2.

Smart Data Structures address Challenge 2, in part, by adopting a decoupled

learning architecture. As Figure 4-1 shows, the learning engine runs in a learn-

ing thread that is separate (decoupled) from the application threads. This addresses

Challenge 2 because, in multicores, the learning thread can run simultaneously along-

side the application threads and produce optimizations with low latency after they

become available.

The decoupled learning architecture also helps to minimize application disrup-

tion. It avoids the need for interleaving computation for learning within the applica-

tion threads; alternatively, stealing cycles from the application threads could impede

63

their performance. This is especially true if the application utilizes many Smart

Data Structures because there would be many learning engines to interleave in the

application threads.

However, having an extra learning thread per Smart Data Structure could be

disruptive to application performance if the total number of threads exceeded the

available hardware thread contexts on the machine. To address this problem, our

learning architecture uses a parameterizable number of learning threads and multi-

plexes each learning thread among multiple learning engines. By default, our design

multiplexes a single learning thread among all learning engines. In Chapter 6, we de-

scribe how this is accomplished while maintaining low latency of optimizations. We

also study the effect of multiplexing on performance and show that several hundred

learning engines can be multiplexed within a single learning thread before Smart Data

Structures are no longer able to improve performance over the base data structures

upon which they are built.

The final challenge, Challenge 3, is identifying knob settings that are good for long-

term performance. We want to leverage the benefits of planning rather than making

near-sighted optimizations. As Chapter 4.3 will elaborate, Smart Data Structures

accomplish this through our learning algorithm. In fact, our choice of learning algo-

rithms is also the second way we address Challenge 2 (reacting and adapting knob

settings quickly so as not to miss windows of opportunity). The learning algorithm

we use is designed to be simultaneously reactive and good at planning.

4.3 Learning Engine Algorithm

To address both Challenge 2 (adapting settings quickly so as not to miss windows

of opportunity for optimization) and Challenge 3 (identifying knob settings that are

best for long-term performance), our Smart Data Structures library employs a Rein-

forcement Learning (RL) algorithm [37] that reads a reward signal and attempts to

maximize it. Using RL in the context of Smart Data Structures presents a number of

challenges: the state space can be large and is mostly unobservable, state transitions

64

are semi-Markov due to context switches, and the entire system is non-stationary.

Because we need an algorithm that is a) fast enough for on-line use and b) can toler-

ate severe partial observability, we adopt an average reward optimality criterion [28]

and use policy gradients to learn a good policy [42]. In particular, we use the Natural

Actor-Critic algorithm [34].

The goal of policy gradients is to improve a policy, which is defined as a conditional

distribution over “actions,” given a state. At each timestep, the agent samples an

action at from this policy and executes it. In the case of the Smart Queue, Skip

List, and Pairing Heap, actions are a vector of discrete-valued scancounts, one for

each Smart Data Structure; executing the action means installing each scancount

in its corresponding Smart Data Structure. Throughout this section, we denote the

distribution over actions (the policy) as π and parameters of the distribution as θ.

To compute the quality of any particular policy, we measure the average reward

obtained by executing that policy. The average reward obtained by executing actions

according to policy π(at|θ) is a function of its parameters θ. We define the average

reward to be

η(θ) ≡ E{R} = lim
i→∞

1

i

i∑
t=1

rt,

where R is a random variable representing reward, and rt is a particular reward at time

t, taken either from the sum of throughputs from all Smart Data Structures or from

an external monitor such as Heartbeats, and smoothed over a small window of time.

The average reward is a function of the parameters because different settings induce

a different distribution over actions, and different actions change the evolution of the

system state over time. The average reward optimality criterion addresses Challenge

3 (finding good long-term knob settings) by attempting to maximize all future reward

rather than immediate reward.

The goal of the Natural Actor-Critic algorithm is to estimate the natural gradient

of the average reward of the system with respect to the policy parameters

∇̃θη(θ) = G−1(θ)∇θη(θ)

65

where G(θ) denotes the Fisher information matrix of the policy parameters. Once

it has been computed, the policy can be improved by taking a step in the gradient

direction.

Fortunately, there is a known elegant, closed-form way to compute the natural

gradient which does not involve direct computation of the Fisher information matrix

[34]. We address Challenge 2 (adapting knob settings quickly) through the use of

this efficient algorithm. Alg. 1 shows the algorithm adapted to our case. Note that

the algorithm only requires basic statistics available at each timestep: the observed

reward rt and the gradient of the log-probability of the action that is selected at

each timestep ∇θ log π(at|θ). One problem is that our domain is partially observable.

In a small twist on the ordinary Natural Actor-Critic algorithm, we therefore make

a coarse approximation by assuming that the state is constant. Improving this by

combining with a state estimation algorithm is left for future research, but the fact

that this algorithm does not depend on a detailed model of the system dynamics is a

major virtue of the approach.

Algorithm 1 The Natural Actor-Critic Algorithm.

1: Input: Parameterized policy π(at|θ) with initial parameters θ = θ0 and its deriva-
tive ∇θ log π(at|θ).

2: Set parameters At+1 = 0, bt+1 = 0, zt+1 = 0.
3: For t = 0, 1, 2, · · · do
4: Sample at ∼ π(at|θt) and set scancounts to at.
5: Observe rt
6: Update basis functions:

φ̃t = [1, 0]T , φ̂t = [1, ∇θ log π(at|θ)T]T

7: Update statistics: zt+1 = λzt + φ̂t,
At+1 = At + zt+1(φ̂t − γφ̃t)T , bt+1 = bt + zt+1rt.

8: When desired, compute natural gradient:
[v wT]T = A−1

t+1bt+1

9: Update policy parameters: θt+1 = θt + αw.
10: end.

So far, we have said nothing about the particular form of the policy. We must con-

struct a stochastic policy that balances exploration and exploitation, and that can be

smoothly parameterized to enable gradient-based learning. We accomplish this in the

most direct way possible. For Smart Data Structures such as the Smart Queue, Skip

66

List, and Pairing Heap, we represent our policy as a multinomial distribution over the

n different discrete values the scancount can take on. We use the exponential-family

parameterization of the multinomial distribution, giving each Smart Data Structure

i a set of n real-valued weights θi. The policy for data structure i is therefore

p(ait = j|θi) = exp{θij}/
n∑
k=1

exp{θik}.

from which we sample a discrete value for the scancount.

The gradient of the likelihood of an action (needed in Alg. 1) is easily computed,

and is given by

∇θ log π(ait|θi) = δ(ait)− π(ait|θi)

where δ(ait) is a vector of zeros with a 1 in the index given by ait. When enough

samples are collected (or some other gradient convergence test passes), we take a step

in the gradient direction: θ = θ + αw, where w is computed in Alg.1 and α is a

step-size parameter. Currently, we take 200 samples and use α = .1.

So far, we have discussed the algorithm in the context of learning discrete-valued

knobs. In addition to discrete-valued knobs, the learning algorithm can support

learning and joint-optimization of a variety of other knobs. Among those supported

are Gaussian distributions, binary-valued knobs, and permutation orderings (used in

Smart Locks).

For all knob types, the algorithm for improving the policy is identical. The only

difference is the interpretation of the policy and how many parameters (real-valued

weights) make up the policy. For example, for the binary knob, we learn a distribution

over two weights from which we sample a knob setting of true or false.

4.4 Learning Thread Tradeoffs

As previously described, the learning engine uses Alg. 1 to jointly optimize scancounts

for all Smart Data Structures. To run the learning engine, our design adds one thread

to the application. The advantage is that this minimizes application disruption and

67

enables background optimization of the application as it is running. The use of

an extra thread also represents a tradeoff because an application could potentially

have utilized the extra thread for parallelism. The extra thread is only justified if

it provides a net gain in performance. Fortunately, net gains are easy to achieve in

common scenarios which this section will describe.

First, by Amdahl’s Law, typical applications reach a saturation point where serial

bottlenecks limit scalability and adding parallelism no longer benefits performance.

Here, adding an optimizing thread is not only justified, it is one of the only ways to

continue improving performance. Most applications are expected to reach their limit

before they can fully utilize future manycore machines, and many reach those limits

today.

Second, for memory-intensive applications, it is well-known that multicore shared

memory systems are becoming a scalability bottleneck: adding threads can increase

sharing in the memory system until it saturates and limits performance. Smart Data

Structures can help scalability by reducing memory synchronization operations and

cache miss rates through better locality and reduced shared memory invalidations.

Finally, for the remaining applications, if we assume n hardware thread contexts,

our design must improve performance by a factor of roughly n/(n − 1) to outweigh

the performance lost to utilizing one thread for optimization instead of application

parallelism. The required improvements diminish as the number of cores increase: on

today’s 16-core and 8-core machines, a factor of just 1.07x and 1.14x are needed. Our

results achieve gains up to 1.44x on a 16-core machine. Future work will investigate

this scenario further.

68

Chapter 5

Performance Results

This chapter evaluates the Smart Queue, Smart Skip List, and Smart Pairing Heap

in our prototype library of Smart Data Structures. It starts with a description of our

experimental setup then presents five studies. The first characterizes the performance

of the best existing data structure algorithms and shows that the Flat Combining

data structures [12] are the best choice to build our Smart Data Structures prototype

upon because they achieve the best performance on our system. The second study

quantifies the impact of the scancount knob setting on data structure performance.

It shows that the best value varies widely, that hand-tuning would be cumbersome,

and that using the ideal scancount can substantially improve performance. The third

study evaluates the performance of Smart Data Structures. It derives performance

bounds from the second study then shows that Smart Data Structures achieve near-

ideal performance under a variety of conditions in many cases. We show that Smart

Data Structures improve performance over the state-of-the-art by as much as 1.44x

in our benchmarks. The fourth study demonstrates the advantage of the learning

approach to auto-tuning in Smart Data Structures: the ability to adapt the scancount

to changing application needs. Since it is common for the load on a data structure

to be variable in producer-consumer application structures,1 we dynamically vary the

load on the Smart Data Structures and show that they achieve near-ideal performance

even under high variation frequencies. The fifth study evaluates the Smart Queue,

1E.g. work queues where the complexity of individual work items may vary

69

Skip List, and Pairing Heap in a variety of real-world applications to demonstrate

significant performance improvements and analyze different use-cases to determine

when Smart Data Structures provide the most benefit.

Later in Chapter 6, we will study the scalability of Smart Data Structures. Then,

in Chapter 7, we will present experimental results for the Smart Lock.

5.1 Experimental Setup

The experiments are performed on a 16-core (quad 4-core) Intel R© Xeon R© E7340

system with 2.4 GHz cores, 16 GB of DRAM, and a 1066 MHz bus. Each core runs

1 thread at a time. Benchmarks use up to 15 threads at once (on 15 cores), reserving

one core for system processes. Where applicable, one of the 15 available cores is

utilized for machine learning. Threads are not affinitized to particular cores and can

move around during execution. Benchmarks are compiled for Debian Linux (kernel

version 2.6.26) using gcc 4.3.2 and O3 optimizations.

The experiments in Chapter 5.2-5.5 measure data structure throughput using a

modified version of the synthetic benchmark developed in the Flat Combining pa-

per [12]. Modifications are limited to adding support for benchmarking Smart Data

Structures, adding a second operating mode for evaluating producer-consumer appli-

cation structures, and varying the scancount parameter used by the Flat Combining

algorithm.

The original operating mode instantiates a data structure and spawns n threads

that request enqueue and dequeue operations at random with equal likelihood. Be-

tween operations, each thread performs post computation. Post computation is mod-

eled as a delay loop of integer arithmetic instructions. For a given n, decreasing the

post computation increases the load on the data structure. The benchmark runs for

10 seconds before joining threads and recording the results.2 For Smart Data Struc-

tures, one unit of reward is credited for each operation completed. The benchmark

2The benchmark supports instantiation of multiple data structures, other distributions of enqueue
and dequeue operations, and different durations as well.

70

takes the number of threads, the amount of work between operations, and a static

scancount setting (where applicable) as parameters.

In the operating mode we added, threads can be configured as producers or con-

sumers. Producers perform only enqueue operations and skip the post computation

between operations. Consumers perform only dequeue operations and do perform

the post computation. In our experiments, we use one producer and n− 1 consumers

to model a work queue application structure where a master enumerates work to be

performed by the workers. The Flat Combining data structures are non-blocking;

thus, to model a producer-consumer application structure, consumers spin until they

successfully dequeue valid data. For Smart Data Structures, one unit of reward is

credited for each valid item that is dequeued.

In all experiments, we average 10 trials per configuration. We calculate error

bars where appropriate using standard error: s√
10

, where s is the sample standard

deviation.

5.2 Performance of Existing Alternatives

This experiment characterizes the performance of the best existing concurrent queue

and priority queue implementations to determine which to build Smart Data Struc-

tures upon. The best queues are the Michael and Scott queue (the MS Queue) [32],

the baskets queue of Hoffman et. al [16], and the Flat Combining queue [12]. The

best priority queues in the literature are the Skip List based priority queue of Lotan

and Shavit [26], the priority queue based on the Flat Combining Skip List, and the

priority queue based on the Flat Combining Pairing Heap [12]. We also compare a

priority queue based on the lazy lock-based Skip List developed by Herlihy and Shavit

[14].

Our benchmark studies how data structure throughput is impacted by two key

variables: the number of threads operating on the data structure and the load on

the data structure. The load is adjusted by varying the amount of post computation

between operations: decreasing the post computation increases the load. The first

71

mode of our benchmark is used (see Chapter 5.1 for a description).

Figure 5-1 shows the results. In the first series of graphs, we fix the amount of

post computation and vary the number of threads. In the second series, we fix the

number of threads and vary the amount of post computation. We find that the Flat

Combining data structures significantly outperform the others over a wide range of

concurrency levels and loads. The Flat Combining Queue, Skip List, and Pairing

Heap achieve up to 2x, 4x, and 10x improvements, respectively, over the best prior

algorithms.

0

1000

2000

3000

4000

2 4 6 8 10 12 14Th
ro
u
gh

p
u
t (
o
p
s/
m
s)

Threads

Queue Throughput
post comp = 800ns

FC Queue
Baskets Queue
MS Queue

0

500

1000

1500

2 4 6 8 10 12 14
Threads

Skip List Throughput
post comp = 800ns

FC Skip List
LF Skip List
Lazy Skip List

0

1000

2000

3000

4000

2 4 6 8 10 12 14
Threads

Pair Heap Throughput
post comp = 800ns

FC Pair Heap
LF Skip List
Lazy Skip List

(a) Throughput vs. Concurrency Level

0

1000

2000

3000

4000

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Queue Throughput
threads = 14

FC Queue
Baskets Queue
MS Queue

0

500

1000

1500

Post Computation (ns)

Skip List Throughput
threads = 14

FC Skip List
LF Skip List
Lazy Skip List

0

1000

2000

3000

4000

Post Computation (ns)

Pair Heap Throughput
threads = 14

FC Pair Heap
LF Skip List
Lazy Skip List

0

1000

2000

3000

4000

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Queue Throughput
threads = 14

FC Queue
Baskets Queue
MS Queue

0

500

1000

1500

Post Computation (ns)

Skip List Throughput
threads = 14

FC Skip List
LF Skip List
Lazy Skip List

0

1000

2000

3000

4000

Post Computation (ns)

Pair Heap Throughput
threads = 14

FC Pair Heap
LF Skip List
Lazy Skip List

(b) Throughput vs. Post Computation

Figure 5-1: Performance Characterization of the Best Existing Algorithms. The Flat
Combining Queue, Skip List, and Pairing Heap substantially outperform the others
at higher concurrency levels and heavier loads (lower post computation).

Hendler et al. analyze the sources of the improvement [12]. They show that

Flat Combining a) significantly reduces synchronization overheads and b) improves

cache performance because centralizing the operations via combining improves local-

ity and reduces shared memory invalidations. We demonstrate in Chapter 5.4 that,

through machine learning, our Smart Data Structures prototype improves upon the

high performance of Flat Combining by an additional factor of up to 1.44x.

It is interesting to note, however, that the Flat Combining data structures are

not always highest performance at small concurrency levels and low load (high post

72

computation). In these cases, in prior data structures, synchronization overheads

no longer significantly degrade performance. If a prior data structure requires less

bookkeeping to complete an operation, it might outperform Flat Combining. Flat

Combining works best at higher loads and higher concurrency levels. Nevertheless,

the Flat Combining Skip List and Pairing Heap outperform prior works at the lowest

levels as well. Only in the case of the queues do prior works outperform the Flat

Combining Queue at low loads and concurrency levels.

Overall, we find that the Flat Combining data structures offer the best perfor-

mance on today’s machines, and the trends suggest that they will significantly outper-

form prior data structures as the number of cores in tomorrow’s machines increases.

5.3 Scancount Sensitivity

This study quantifies the impact of the scancount value on Flat Combining data

structure performance to motivate our auto-tuning of this knob via machine learning.

Recall that the scancount determines how many scans of the publication list that

the combiner makes when combining. We expect that increasing the scancount will

improve performance because it provides more opportunities to catch late-arriving re-

quests and increases the number of operations performed on average in each combin-

ing phase. This reduces synchronization overheads and improves cache performance.

However, making more scans has the tradeoff that the average latency of data struc-

ture operations can increase. Some applications are not sensitive to added latency,

but some are. The best scancount value balances these tradeoffs. We will show that

the best scancount depends on the particular load the application places on the data

structure as well.

For two common application structures, this study evaluates different static values

for the scancount and examines the impact on data structure throughput for different

loads. We use the two operating modes of the benchmark described in Chapter 5.1

to benchmark the two application structures. In Application Structure 1, threads

have no data dependency: they run autonomously, requesting enqueue and dequeue

73

operations at random with equal likelihood. In Structure 2, threads follow a producer-

consumer pattern analogous to a work queue program with a master that enumerates

work for workers to perform.

For Structure 1, we find that the data structures generally benefit from the high-

est static scancount assignment (graphs are omitted for space). This is expected

since threads have no data inter-dependency and thus are not impacted by latency.

For Structure 2, however, we find that throughput can be adversely affected by high

latency. When the producer thread becomes the combiner, work is not being enumer-

ated and inserted into the queue; the consumers can run out of work and spin idly.

Thus, there is an ideal scancount after which throughput begins to degrade.

Skip List Sensitivity Pair Heap SensitivityQueue Sensitivity

400

600

800
14 threads, work=3200ns

400

600

800

1000
14 threads, work=3200ns

600
800
1000
1200
1400

ut
 (o

ps
/m

s) 14 threads, work=3200ns

20%

0

200

1 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

Scancount

0

200

400

1 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

Scancount

0
200
400
600

1 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

Th
ro
ug
hp

u

Scancount

800

1000

Skip List Sensitivity
14 threads, work=400ns

800

1000

Pair Heap Sensitivity
14 threads, work=6400ns

1000

1200

ps
/m

s)

Queue Sensitivity
14 threads, work=400ns

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

1000

hr
ou

gh
pu

t
(o
p

1 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

Scancount

1 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

Scancount

1 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0Th

Scancount

Figure 5-2: Sensitivity to the Scancount in Producer-Consumer Application Struc-
tures: Throughput vs Scancount Over a Range of Loads. The ideal scancount varies
widely and depends on both the load and the data structure.

Figure 5-2 shows characteristic excerpts of our results for Structure 2. The figure

shows throughput as a function of the static scancount value for different loads. The

crosshairs in each graph denote the maximum throughput and scancount value for

which it occurs. We find that throughput can be greatly improved by using ideal

scancount values. Further, if we look at the graphs for a particular data structure,

74

we find that no single scancount value works best for all loads. A near-miss of the

ideal scancount value can result in throughput that is significantly (20%) below the

maximum. Third, we find that the precise dependence of the ideal scancount on the

load differs from one data structure to the next.

Together, these findings indicate that the ideal scancount would be complex to

predict by hand. Smart Data Structures provide an automatic approach that relieves

programmers of this burden. Chapter 5.4 will show that Smart Data Structures

readily discover the ideal scancounts and significantly improve performance by using

them.

5.4 Performance of Smart Data Structures

This study evaluates the performance of Smart Data Structures. We will quantify

how well Smart Data Structures are able to optimize the scancount knob by com-

paring Smart Data Structure performance against ideal and baseline performance

bounds. The benchmark is the producer-consumer benchmark described in Chapter

5.1 which measures throughput for different loads on the data structure. We will show

that Smart Data Structures achieve near-ideal performance in many cases across the

different loads.

The ideal throughput bound represents the best performance a programmer could

achieve if they swept over the space of scancount values to determine the highest

performance value for their application. It is a static throughput bound because we

assume the scancount value does not change during program execution. We derive the

ideal static throughput bound from the results in Chapter 5.3 which give throughput

as a function of the scancount for different loads. We are interested in the ideal

throughput for each different load; together, these throughputs make up the ideal

bound. Thus, for a given load, we look up the corresponding graph in Chapter 5.3

and use the maximum throughput.

The baseline throughput is taken to be the throughput that the learning engine

would achieve if it were unable to learn the scancount. For each load, it is an average

75

over the throughput of all studied scancount values. In other words, it is an expec-

tation of throughput when scancount values are randomly selected. It is computed

using the results in Chapter 5.3 as well.

Figures 5-3, 5-4, and 5-5 show the results. We find that Smart Data Structures

improve performance over the baseline in all cases studied. Indeed, they achieve near-

ideal throughput for most loads, rivaling the performance of thorough hand-tuning

while relieving programmers of the burden and complexity of hand-tuning. Overall,

the Smart Queue, Smart Skip List, and Smart Pairing Heap each substantially im-

prove throughput over the average static bound by up to 1.44x, 1.39x, and 1.39x,

respectively.

500

1000

1500

p
u
t
(o
p
s/
m
s)

Smart Queue
14 threads

Ideal Static

SDS Dynamic

Avg Static

0

500

Th
ro
u
gh
p

Post Computation (ns)

Figure 5-3: Smart Queue Throughput vs Post Computation: A Comparison Against
Ideal and Average Static Throughput Bounds. The Smart Queue achieves near ideal
static throughput for most data structure loads.

This shows that the overheads of layering optimization on top of the base Flat

Combining data structures is low enough that the advantages of optimizing the scan-

count knob far outweigh the costs. The costs are not, however, zero. This is why

performance usually approaches the static ideal bound but does not exceed it.

There are a few data points where Smart Data Structure performance matches

or somewhat exceeds the ideal static bound. Take Figure 5-5, for example. At post

computation of 200ns, Smart Pairing Heap throughput exceeds the static ideal bound.

The error bars for the Smart Pairing Heap and static ideal bound somewhat overlap,

76

400

600

800

1000

p
u
t
(o
p
s/
m
s)

Smart Skip List
14 threads

Ideal Static

SDS Dynamic

Avg Static

0

200

Th
ro
u
gh
p

Post Computation (ns)

Figure 5-4: Smart Skip List Throughput vs Post Computation: A Comparison
Against Ideal and Average Static Throughput Bounds. The Smart Skip List achieves
near ideal static throughput for most data structure loads.

400

600

800

1000

p
u
t
(o
p
s/
m
s)

Smart Pair Heap
14 threads

Ideal Static

SDS Dynamic

Avg Static

0

200

Th
ro
u
gh
p

Post Computation (ns)

Figure 5-5: Smart Pairing Heap Throughput vs Post Computation: A Comparison
Against Ideal and Average Static Throughput Bounds. The Smart Pairing Heap
achieves near ideal static throughput for most data structure loads.

but additional experiments suggest that the improvement is likely due to the Smart

Pairing Heap’s ability to dynamically tune the scancount rather than be limited to

using static values.

For data structures like the Flat Combining Pairing Heap, even for a given load,

the ideal knob settings may vary during execution. A major virtue of the online

learning approach in Smart Data Structures is that it capitalizes on the performance

77

potential of dynamically adjusting knob settings. Dynamic tuning is often necessary

but impractical to achieve by hand, and Smart Data Structures provide this facility

automatically. Chapter 5.5 will investigate how well Smart Data Structures adapt

dynamically. Future work will attempt to identify the dynamic throughput bound

(the optimal bound) in addition to the ideal static bound.

Overall, the results demonstrate that Smart Data Structures are able to learn ideal

scancount values for our benchmarks and that the overhead of learning is low enough

that net throughput improvements are high. Further, the improvements provided

by Smart Data Structures multiply the already high performance benefits of Flat

Combining that we have shown in Chapter 5.2.

5.5 Adaptivity of Smart Data Structures

This study will demonstrate a key advantage of the learning approach to auto-tuning

taken by Smart Data Structures: the ability to balance dynamic tradeoffs and adapt

the scancount to changing application needs. We have shown in Chapters 5.3 and

5.4 that data structure throughput depends critically on optimizing the scancount for

different loads. Therefore, we will quantify how well Smart Data Structures adapt to

dynamic variation in the load. We will reuse the benchmark in Chapter 5.4 which

compared Smart Data Structure throughput to ideal and average static bounds. This

time, we will vary the load dynamically during benchmark execution and compare

against dynamic ideal and average bounds. We will show that Smart Data Structures

readily adapt and achieve near-ideal throughput even when the load changes as rapidly

as once every 10µs.

It is important to adapt knob settings for different loads because it is common

for the load on data structures in applications to vary depending upon the input

to the application. One popular class of producer-consumer applications with input-

dependent loads are video processing applications. They may use a work queue model

to coordinate the parallel processing of each video frame. The processing complexity

can vary significantly over the timescale of a just a few frames (as little as 15ms)

78

because scene complexity varies from one scene to the next. The complexity of the

input scene determines processing time for work items and therefore the rate at which

work items are removed from the data structure and the rate at which new work items

are generated and inserted in the data structure.

Our experiment looks at a related producer-consumer application structure and

studies the adaptivity of Smart Data Structures under variable load. To vary the

load, we break the benchmark up into equal intervals where each interval places

a different load on the Smart Data Structure. We vary the frequency with which

intervals change. The sequence of loads from one interval to the next is given by

a schedule. We look at three schedules, selected at random. Each is a cycle of 10

different loads, repeated throughout the 10 second duration of the benchmark. The

schedules are:

Schedule 1: 800 6400 200 3200 1600 100 400 100 400 800

Schedule 2: 1600 200 400 1600 200 1600 3200 100 200 800

Schedule 3: 800 100 6400 200 200 100 400 800 3200 400

This time we compare against dynamic not static throughput bounds. We are still

able to derive the dynamic bounds from the graphs in Figures 5-3, 5-4, and 5-5. To do

so, we need to derive the expected ideal and average throughput for executing a given

schedule of loads. In fact, we only need to need to know the expected throughput for

one cycle through the schedule because the benchmark executes the same schedule

over and over again and overall throughput will be approximately the same as the

throughput for one cycle.

To get the ideal dynamic throughput for one cycle of a schedule, we look up the

maximum throughput for each load in the schedule. Since each interval is of equal

length, we average these maximum values and the result is the expected ideal dynamic

throughput. We use a similar procedure to get the average dynamic throughput. For

each load in the schedule, we determine the average throughput over all studied

scancount values. Then, since each interval is of equal length, we average these to get

the expected average dynamic throughput.

79

The ideal dynamic throughput will be hard for Smart Data Structures to achieve

because it assumes that the scancount is switched instantaneously when the load

changes to reflect the ideal scancount for the new load. The learning engine within

Smart Data Structures will require a short time to react and find the new ideal

scancount value.

Figure 5-6 shows the results. We vary the frequency with which intervals change.

Each cluster compares ideal dynamic, average dynamic, and Smart Data Structure

throughput for a given variation frequency.

Figure 5-6: Smart Data Structures Throughput Under Variable Load: A Comparison
Against Ideal Dynamic and Average Dynamic Throughput for Different Variation
Frequencies. In many cases, Smart Data Structures achieve near-ideal throughput.
Throughput slowly decreases as changes in the load become more frequent.

The most important result is that, even under the highest variation frequency of

1
10µs

, Smart Data Structures achieve near-ideal throughput in many cases. The Smart

Queue and Pairing Heap still achieve 85% of the performance difference between the

80

average dynamic and ideal dynamic bounds. The Smart Skip List achieves about

60%. This shows that Smart Data Structures are reacting quickly and effectively to

changes in the load.

An interesting secondary feature of the results is that the throughput slowly de-

creases as the interval frequency increases. This is because the learning engine takes

non-zero time to react to changes in the load and converge on the ideal scancount for

the new load; as the interval period becomes smaller and smaller, the reaction time

and the impact of using a sub-optimal scancount slowly becomes non-negligible.

As the interval frequency increases, the degree to which performance degrades

depends upon a) how sub-optimal the scancount is when it is used in the new interval

before the learning engine finds the ideal scancount and b) how long it takes the

learning engine to find the ideal scancount. In Chapter 5.3, we showed that even

narrowly missing the ideal scancount can result in up to 20% deviations from ideal

throughput. We see small degradations in our results because the learning engine is

able to quickly converge on new scancount values in tens of microseconds.

Currently, the finest interval granularity that our benchmark supports is 10µs

due to timing overheads. If we could further decrease the period, we would expect

throughput to continue decreasing because the learning engine would not be able to

keep up with the frequency of changes. It would react by making a best effort and

optimizing the scancount for groups of intervals rather than individual intervals. It

would find the scancount that worked best for several successive intervals.

Overall, we find that Smart Data Structures react rapidly to changes in the the

ideal knob settings and nearly achieve the ideal dynamic throughput in many cases.

5.6 Application Case Studies

This study evaluates the performance of Smart Data Structures in popular, real-

world applications. Our goal will be to gain an understanding of when applications

will benefit most from using Smart Data Structures.

We begin in Chapter 5.6.1 by describing the applications we study and explain-

81

ing how Smart Data Structures are used within them. Then, in Chapter 5.6.2, we

compare the performance of Smart Data Structures to prior data structures, for each

application. We will demonstrate scenarios in which Smart Data Structures substan-

tially improve performance over prior data structures and scenarios in which they

are unable to offer improvement. Next, in Chapter 5.6.3, we will compare Smart

Data Structure performance to performance bounds to determine how well learning

is able to dynamically tune knobs in these applications. We will use a methodology

similar to the experiment in Chapter 5.4 where we compare application performance

with learning and dynamic knob tuning versus performance using static knob values.

Finally, in Chapter 5.6.4, we will provide usage guidelines for Smart Data Structures

based on what we have learned in these experiments.

5.6.1 Application Descriptions

This section describes the case-study applications we will evaluate. We have selected

four popular benchmarks drawn from the well-known Parsec [2] benchmark suite

and canonical parallel programming kernels. We will describe their importance, the

parallelism models they use, and the data structures they rely upon.

Parsec Dedup The first application is Dedup from the Parsec benchmark suite.

Dedup is short for de-duplication. It is a server application that compresses a data

stream via a combination of global and local compression techniques and is widely

used in backup storage systems. The application uses the pipeline parallelism model,

expressing the compression algorithm as a stream computation with multiple stages

that execute in parallel. There are 5 stages in the pipeline. The first and last stage use

a single thread, while the middle 3 stages use a parameterizable number of threads.

Successive stages are connected via a concurrent queue which we will replace with

a variety of different queue implementations to compare performance. We use the

Parsec “simlarge” input for this benchmark.

82

Parsec Ferret The next application is Ferret from the Parsec benchmark suite.

Ferret is a server application that implements content-based similarity search. It is an

emerging next-generation search engine for non-text data types. In the Parsec library,

ferret is configured for image search. The application uses the pipeline parallelism

model with a 6-stage pipeline. The first and last stage use a single thread. The

middle 4 use a parameterizable number of threads. As in Dedup, successive stages are

connected through a concurrent queue which we will replace to study the performance

of different queues. We use the Parsec “simlarge” input for this benchmark also.

Parallel Sort The next application is a popular parallel programming kernel called

Parallel Sort. It is often used for parallel discrete event simulation in system model-

ing and also has important applications in network routing for traffic prioritization.

Sorting is implemented using a concurrent priority queue. In general, each data item

has a key, and the data are sorted by key. The parallelism model utilizes a single

global priority queue shared by all threads. We will replace the priority queue to

study the performance of different priority queue implementations. We will measure

maximum sorting throughput for random integer keys.

Traveling Salesman The final application is colloquially known as the Traveling

Salesman Problem. It is a canonical NP-hard problem in combinatorial optimization

with applications in planning, logistics, and the manufacture of microchips. Slight

modifications of the problem also have applications in DNA sequencing (cities rep-

resent DNA fragments and distances measure similarity between DNA fragments).

The goal is to find a tour which passes through each city in the input once before

returning to the start city, while minimizing the total distance traveled. We will solve

this problem exactly using the branch-and-bound algorithm. The parallelism model

uses a global work queue which all threads share and access. We will replace this

global work queue to study the performance of different queue implementations. We

will measure execution time using the largest cities in the United States as the input.

83

5.6.2 Smart Data Structures Versus Previous Work

In this section, we will compare the performance of Smart Data Structures to prior

data structures in the case-study applications. The first two applications that we

look at will demonstrate typical scenarios where Smart Data Structures significantly

improve performance over prior data structures. The other two applications have

been selected to highlight two scenarios in which Smart Data Structure are unable to

provide improvements. We will show that the reason that Smart Data Structures are

unable to provide improvements in the first one is that the choice of queue implemen-

tations has little effect on performance because the overhead of accessing the queue

is outweighed by the amount of computation between queue accesses. In the other

application, a custom data structure exploits knowledge about the application and

subsequently outperforms the Smart Data Structure. Ultimately, we will use these

results in Chapter 5.6.4 to form usage guidelines for when Smart Data Structures can

be expected to benefit application performance the most. We will also show in the

next section, Chapter 5.6.3, that Smart Data Structures are able to optimize knob

settings effectively in these applications.

In this experiment, we will evaluate application performance for a variety of differ-

ent data structure implementations including Smart Data Structures, state-of-the-art

data structures, the original data structure used in each application (where applica-

ble), and a baseline lock-based data structure built on top of a pthreads mutex and a

serial data structure. In each experiment, we vary the number of threads used in the

application. Our experimental setup utilizes the same system, compiler, and operat-

ing system infrastructure as our experiments in Chapter 5.1. Namely, we use a 16-core

Intel R© Xeon R© E7340 system with 2.4 GHz cores, 16 GB of DRAM, and a 1066 MHz

bus. Each core runs 1 thread at a time. Benchmarks are compiled for Debian Linux

(kernel version 2.6.26) using gcc 4.3.2 and O3 optimizations. Benchmarks use up to

16 threads at once (on 16 cores). Where applicable, one of the 16 available cores is

utilized for machine learning. Threads are not affinitized to particular cores and can

move around during execution. We average results from 10 runs of each application

84

configuration for each performance data point.

We begin with the results for Parallel Sort in Figure 5-7. We replace the priority

queue in the application with different data structures that implement priority queue

functionality. We compare the Smart Pairing Heap to a) the state-of-the-art Flat

Combining Pairing Heap, b) the popular priority queue developed by Lotan and

Shavit [26] which is based on a lock-free Skip List (LF Skip List) and c) a baseline

Mutex-Based Heap which uses a pthreads mutex to protect accesses to a serial heap

data structure. The benchmark measures the throughput of each data structure in

units of the number of random integer keys that can be sorted per millisecond.

2000

2500

3000

3500

u
t
(i
n
ts
 /
 m
s)

Parallel Sort
random int keys

Smart Pairing Heap
FC Pairing Heap
LF Skip List
Mutex‐Based Heap

0

500

1000

1500

3 5 7 9 11 13 15

Th
ro
u
gh
p
u

Threads

Figure 5-7

The results show that the Smart Pairing Heap significantly outperforms previous

work, improving throughput by up to 9% over the Flat Combining Pairing Heap and

by up to 300-400% over the more popularly used LF Skip List.

Interestingly, when used as a priority queue, none of the data structures exhibits

ideal throughput scaling as the number of threads increases. Throughput of the

Mutex-Based Heap actually decreases and reaches a minimum after 7 threads. The

degradation comes from increased contention in the system bus as more threads spin

85

on the mutex attempting to acquire it and interfere with bus operations from the

thread that has the mutex and is doing useful work. The throughput of the LF Skip

List saturates after 9 threads because overheads from synchronization eventually limit

the rate at which threads can complete operations. Throughput of the Flat Combining

Pairing Heap (and thus the Smart Pairing Heap as well) eventually saturates between

11 and 13 threads.

What these scaling trends tell us is that, at larger concurrency levels, we can

expect the benefits of the Smart Pairing Heap to be comparable to the results at

the concurrency levels studied in this experiment. To summarize, the Smart Pairing

Heap significantly improves upon previous work by up to 9% over the Flat Combining

Pairing Heap and by up to 300-400% over the popular LF Skip List. These perfor-

mance improvements come for free by merely dropping in the Smart Data Structure

in place of prior data structures.

Next, we study the performance of different data structures in the Traveling Sales-

man application. Figure 5-8 gives the results. We compare the Smart Queue to a)

the state-of-the-art concurrent queue from Michael and Scott (the MS Queue) [32],

b) the Flat Combining Queue, and c) a baseline Mutex-Based Queue which uses a

pthreads mutex to protect accesses to a serial queue data structure. The benchmark

measures throughput normalized to the throughput of the Mutex-Based Queue at 3

threads.

The results show that the Smart Queue outperforms the other queues for most

concurrency levels. The performance improvement of the Smart Queue over the MS

Queue is highest at 15 threads, at 37%. Improvement over the MS Queue ranges from

-45% to 37% with 9-15% improvements being common. The MS Queue slightly out-

performs the Flat Combining Queue in this application for most concurrency levels.

Thus, the improvements of Smart Data Structures over Flat Combining are slightly

higher.

Data Structure scaling is better in this application but still not ideal for any of the

data structures. As before, we see performance decrease in the Mutex-Based Queue

after 5 threads as well due to bus contention. We expect that the Flat Combining

86

1.4

1.8

2.2

liz
e
d
 P
e
rf
.

Traveling Salesman
11 largest US cities

Smart Queue

MS Queue

FC Queue

Mutex‐Based Queue

0.2

0.6

1

3 5 7 9 11 13 15

N
o
rm

al

Threads

Figure 5-8

Queue (and thus the Smart Queue) have not yet reached maximum performance and

will continue to improve performance at higher concurrency levels than the 16 threads

available on our machine. Based on our findings in Chapter 5.2, we expect that the

MS Queue, however, has reached its scaling limit and its performance will decrease

as more threads are added.

One interesting thing that these scaling trends indicate is that we can expect the

maximum performance (at any number of threads) of the Smart Queue to outperform

the maximum performance of the popular MS Queue by an increasing margin as more

threads are added.

Next we study the Parsec Dedup application. Dedup is an example of an appli-

cation where queue performance is not a significant contributer to overall execution

time. Thus, optimizations to queue performance will be unable to noticeably improve

application performance and using Smart Data Structures will neither help nor hurt

performance. Figure 5-9 gives the results. We compare the Smart Queue to a) the

Flat Combining Queue, b) the original queue in Dedup which is based on pthreads

condition variables and c) a baseline Mutex-Based Queue. The x-axis shows the num-

ber of threads used in each of the 5 pipeline stages in the application. The y-axis

87

0.8

1

1.2

1.4

1.6

1.8

al
iz
e
d
 P
e
rf
.

Parsec Dedup
simlarge input

Smart Queue
FC Queue

0

0.2

0.4

0.6

1‐1‐1‐1‐1 1‐2‐2‐2‐1 1‐3‐3‐3‐1 1‐4‐4‐4‐1

N
o
rm

Pipeline Organization (Threads in Each Stage)

FC Queue
Original Queue
Mutex‐Based Queue

Figure 5-9

gives performance normalized to the performance of the Mutex-Based Queue at 3

threads.

The results show that, indeed, all queue implementations achieve nearly the same

performance. The reason that the queue implementation has little effect on overall

performance is because the time between successive queue accesses in each stage is

large relative to the time to access the queue; improvements to the average queue

access time are dominated by the larger computation time between accesses.

1

1.5

2

2.5

al
iz
e
d
 P
e
rf
.

Parsec Ferret
simlarge input

Original Queue

0

0.5

1

1‐1‐1‐1‐1‐1 1‐2‐2‐2‐2‐1 1‐3‐3‐3‐3‐1

N
o
rm

a

Pipeline Organization (Threads in Each Stage)

Smart Queue

FC Queue

Mutex‐Based Queue

Figure 5-10

88

Figure 5-10 presents results for the final application, the Parsec Ferret application.

Ferret is an example of an application where knowledge about the behavior of the

application can be exploited in a data structure which can outperform a Smart Data

Structure. This application illustrates the point that Smart Data Structures are not

a silver bullet for getting the best performance theoretically possible; rather, a major

virtue of Smart Data Structures is that they typically get good performance without

requiring the development of application-specific data structures.

In this experiment, we compare the Smart Queue to a) the original custom queue in

Ferret which is based on pthreads condition variables, b) the Flat Combining Queue,

and c) a baseline Mutex-Based Queue. The x-axis shows the number of threads

used in each of the pipeline stages in the application. The y-axis gives performance

normalized to the performance of the Mutex-Based Queue at 3 threads.

The results show that the Smart Queue, Flat Combining Queue, and Mutex-Based

Queue have similar performance and are outperformed by the original, custom queue.

The reason that the custom queue performs better is that its design avoids producer

starvation when a pipeline queue becomes empty. Producer starvation can occur

when pipeline stages are imbalanced: if one stage processes work more quickly than

its predecessor, it can overwhelm the queue between them with fruitless dequeue

requests and cause producer enqueue requests to be starved. The Smart Queue is

usually able to avoid producer starvation because it processes enqueue operations

ahead of dequeue operations, but in this application, it is not able to match the

performance of the custom queue. We expect that a queue based on a Smart Lock,

however, may learn to schedule producers ahead of consumers more effectively, and

thereby improve performance; we will investigate this possibility in future work.

To summarize our findings, we have shown that Smart Data Structures signif-

icantly improve performance over prior data structures for the Parallel Sort and

Traveling Salesman applications. We showed that the Smart Pairing Heap improved

performance in Parallel Sort by up to 9% over the highest-performing prior data

structure and that the Smart Queue in the Traveling Salesman application improved

performance by up to 37% over the overall highest performance data structure. With

89

the Dedup application, we highlighted a scenario in which Smart Data Structures are

unable to offer performance improvements because queue performance is not a sig-

nificant contributor to end-to-end application performance. Finally, with the Ferret

application, we highlighted an assumption about when Smart Data Structures will be

used: when developing application-specific data structures is too complex, too much

work, or undesired.

We note that, in addition to the four benchmarks we have analyzed in this section,

we have also considered the Parsec Bodytrack and x264 applications as other examples

of applications that use concurrent queues for pipeline parallelism. We found that

Bodytrack actually uses pipeline parallelism in a superficial way so we did not analyze

it. Namely, Bodytrack uses a pipeline to make I/O asynchronous with respect to the

main, serial computation. In this case, queue access overheads will be dominated by

long I/O times and the queue implementation will have little effect on performance.

x264 was more interesting. x264 is a video encoding application that builds a complex

pipeline at runtime to model dependencies between frames. Each stage corresponds to

a frame, and the pipeline has the form of a Directed Acyclic Graph with multiple root

nodes formed by stages corresponding to the intra-code “index” frames (I frames).

Unfortunately, the pipeline is implemented with a custom data structure interface

that we were not able to replace with standard queue implementations to evaluate

different implementations.

5.6.3 Smart Data Structures Versus Performance Bounds

In this section, we will evaluate how well the learning engine in the Smart Queue,

Skip List, and Pairing Heap is able to optimize scancount values in our case-study

applications. We will establish application performance bounds and compare the

performance of using Smart Data Structures against them. We will show that appli-

cation performance is sensitive to the choice of scancount values, with performance

varying by as much as 32% for different values. Further, we will show that in all but

one of our applications, Smart Data Structures are able to achieve at least 1
3

of their

potential performance improvements.

90

The performance bounds we are interested in are the static ideal and average

performance bounds as in Chapter 5.4. To measure these bounds, we use a similar

procedure as we did in Chapter 5.4: we manually vary the scancount for different

runs of the application and determine the ideal scancount and average scancount

over all studied scancount values. The static ideal bound on Smart Data Structure

performance is the performance that would be achieved if the learning engine is able

to learn the ideal scancount value and the overhead of layering optimization on top

of the Flat Combining data structures is zero. Because the overhead of optimization

is small but not zero, we will not be able to achieve ideal performance in some cases.

The static average bound is the performance we would expect if the learning engine is

unable to learn scancount values and picks scancount values at random. The potential

performance improvement of Smart Data Structures is given by the difference between

the static ideal and average bounds.

Figures 5-11, 5-12, 5-13, and 5-14 show the results for the Parallel Sort, Traveling

Salesman, Parsec Dedup, and Parsec Ferret applications, respectively. On the x-

axis, we vary the number of threads in the application. The y-axis measures the

performance of the application – sometimes normalized (where indicated) relative to

the average bound.

First we will discuss variation in application performance. The Parallel Sort and

Traveling Salesman applications see high variation in application performance. This

is reflected in the difference between the ideal and average bounds. For Parallel Sort,

the percent variation ranges from 7-21% with an average of 15% over all concurrency

levels studied. For the Traveling Salesman application, the percent variation ranges

from 19-53% with an average of 32% over all concurrency levels. Consistent with the

results from Chapter 5.6.2, the Parsec Dedup and Parsec Ferret applications see little

performance variation due to different scancount values. The percent variation for

Dedup ranges from 1.5-3% with an average of 2%. The percent variation for Ferret

ranges from 0-8% with an average of 5%.

Now we will discuss the performance of Smart Data Structures relative to the per-

formance bounds. We measure the percent of potential improvement that the Smart

91

2000

2500

3000

3500
u
t
(i
n
ts
 /
 m
s)

Parallel Sort
random int keys

Ideal Static

Smart Pairing Heap

Average Static

0

500

1000

1500

3 5 7 9 11 13 15

Th
ro
u
gh
p
u

Threads

Figure 5-11

1 2

1.6

2

2.4

2.8

liz
e
d
 P
e
rf
.

Traveling Salesman
11 largest US cities

Ideal Static

Smart Queue

Average Static

0

0.4

0.8

1.2

3 5 7 9 11 13 15

N
o
rm

al

Threads

Figure 5-12

Data Structure achieves: the percent of the difference between the ideal and average

bound that the Smart Data Structure achieves. For all except the Traveling Salesman

application, the Smart Data Structure achieves at least 1
3

of the potential improve-

ment. For the Parallel Sort application, the percent improvement ranges from 5-70%

with an average of 33%. For the Traveling Salesman application, the percent improve-

92

0 6

0.8

1

1.2

1.4

1.6

m
al
iz
e
d
 P
e
rf
.

Parsec Dedup
simlarge input

Ideal Static

Smart Queue

0

0.2

0.4

0.6

1‐1‐1‐1‐1 1‐2‐2‐2‐1 1‐3‐3‐3‐1 1‐4‐4‐4‐1

N
o
rm

Pipeline Organization (Threads in Each Stage)

Average Static

Figure 5-13

1

1.5

2

m
al
iz
e
d
 P
e
rf
.

Parsec Ferret
simlarge input

Ideal Static

0

0.5

1‐1‐1‐1‐1‐1 1‐2‐2‐2‐2‐1 1‐3‐3‐3‐3‐1

N
o
rm

Pipeline Organization (Threads in Each Stage)

Ideal Static

Smart Queue

Average Static

Figure 5-14

ment ranges significantly from -73-74% with an average of 31%. For Parsec Dedup

and Parsec Ferret, despite the low variation in performance from different scancount

values, the Smart Data Structure is still able to capitalize on the small margin of

performance improvement that is available. For Dedup, the percent improvement

ranges from 68-115% with an average of 86%. For Ferret, the percent improvement

93

ranges from 40-66% with an average of 50%. Table 5.1 summarizes these performance

variation and performance improvement statistics for easy comparison.

Application % Performance Variation % Improvement Achieved
Parallel Sort 7-21%, 15% avg 5-70%, 33% avg
Traveling Salesman 19-53%, 32% avg -73-74%, 31% avg
Parsec Dedup 1.5-3%, 2% avg 68-115%, 86% avg
Parsec Ferret 0-8%, 5% avg 40-66%, 50% avg

Table 5.1: Summary of Performance Variation and Smart Data Structure Improve-
ments

The next section will build on what we have learned to provide a set of usage

guidelines for when Smart Data Structures will be able to improve application per-

formance.

5.6.4 Usage Guidelines

This section will provide a set of usage guidelines for the Smart Queue, Skip List,

and Pairing Heap based on our findings in Chapters 5.6.2 and 5.6.3. We begin by

summarizing the results then discuss what they teach us about when the Smart

Queue, Skip List, and Pairing Heap will benefit applications most.

The main result of Chapter 5.6.2 was a demonstration that the Smart Queue,

Skip List, and Pairing Heap can significantly improve performance for applications

with fine-grained parallelism and high queue access rates like Parallel Sort and the

Traveling Salesman application. Specifically, the Smart Pairing Heap improved per-

formance over the state-of-the-art by up to 9% while the Smart Queue improved

Traveling Salesman performance over the state-of-the-art by up to 37% – for free,

just by replacing standard data structures with Smart Data Structures.

The second important conclusion we reached in Chapter 5.6.2 was that applica-

tions with coarse-grained parallelism and low queue access rates were not sensitive to

queue performance. Indeed, no matter how much a novel queue algorithm improves

queue performance, the improvement has little effect on overall application perfor-

mance because the time spent between queue accesses is much larger than the queue

access time on average. Neither Smart Data Structures nor any other novel queue

94

design can help in this scenario.

The third finding of Chapter 5.6.2 which we corroborated in Chapter 5.6.3 was

that Smart Data Structures can achieve a significant portion (50%) of their poten-

tial improvement over the base Flat Combining data structures upon which they

are built but still not improve application performance because the Flat Combining

data structures may not necessarily outperform custom data structures. For the Par-

sec Ferret application, we found that the custom queue provided by the benchmark

performed better because it was designed to address a deficiency in the application

design: namely, the application pipeline stages could become imbalanced and lead

to producer starvation, and the custom queue achieves higher performance in this

scenario than the Smart Queue.

While the Smart Queue is designed to minimize producer starvation by processing

enqueue operations ahead of dequeue operations, it is a general-purpose queue and

must balance tradeoffs for the best performance across a wide variety of applications;

it therefore handles producer-starvation less effectively than the custom queue. This

type of custom queue (based on pthreads condition variables) is known to perform

sub-optimally when producer-starvation is infrequent; thus, the Smart Queue will

outperform it in these scenarios. It would be interesting, however, to extend the

functionality of the Smart Queue (using the existing machine learning infrastructure)

so that it can adapt at runtime between different queue algorithms. Perhaps one

of the algorithms could be the custom queue from Ferret. We will investigate this

possibility in future work.

Based on these findings, the Smart Queue, Skip List, and Pairing Heap can be

expected to provide the most application performance improvement when:

• the application’s parallelism and data structure accesses are fine-grained

• application performance is sensitive to queue performance

• Flat Combining is higher performance than other queue algorithms

95

96

Chapter 6

Scalability Results

6.1 Introduction

In this chapter, we study how well the Smart Queue, Smart Skip List, and Smart

Pairing Heap perform when applications are scaled to larger numbers of threads. For

different application case-studies, we will estimate the maximum number of threads

to which the application can be scaled before Smart Data Structures stop maintaining

a certain level of performance improvement.

Different applications can be scaled to different numbers of threads because they

use Smart Data Structures differently and place different demands on them. The

demands depend on the type of scaling the application uses. Some applications scale

using a single Smart Data Structure and sharing it among more and more threads.

An example of this type of application is a work queue application, and we call this

type of scaling concurrency scaling.

Or, one application may utilize multiple Smart Data Structures. This can intro-

duce two different types of scaling demands, depending on whether or not the knobs

in different Smart Data Structures need to be jointly optimized.

In the simple case, the Smart Data Structures are logically independent and can

be independently optimized with the same performance results as if they were jointly

optimized. We refer to this type of scaling as multi-data-structure scaling. An example

of this type of application is a distributed work queue work-stealing application. Each

97

thread owns a Smart Data Structure. Threads access their own Smart Data Structure

most of the time but occasionally, when they run out of work, they steal work from

Smart Data Structures owned by other threads.

When applications use multiple Smart Data Structures that need to be jointly

optimized, we call this multi-optimization scaling. An example of this type of ap-

plication is a multi-stage software-pipelined application: different threads belong to

different pipeline stages, and successive pairs of stages communicate with one another

through a Smart Data Structure. Joint optimization of the Smart Data Structures in

each stage is beneficial in this case to help ensure that optimizations preserve balance

in the throughputs of the pipeline stages, for the best overall pipeline throughput.

Applications can use combinations of these types of scaling as well and therefore

place multiple types of demands on Smart Data Structures. For example, super-

scalar software-pipelined applications have multiple copies of a pipeline which they

execute in parallel. The data structures in each pipeline are jointly optimized (multi-

optimization scaling), and multiple pipelines run independently (multi-data-structure

scaling).

Thus, an increase in application threads by a factor x does not simply imply that

each Smart Data Structure will be accessed by a factor x as many threads. Nor does

the storage required for Smart Data Structures necessarily increase by a factor x.

In this chapter, we will evaluate a variety of typical applications to determine what

combinations of scaling types they use and how the demands implied by each type

of scaling affect a Smart Data Structure’s ability to improve performance in these

applications.

The chapter begins with three sections that analyze the different demands that

concurrency scaling (Chapter 6.2), multi-data-structure scaling (Chapter 6.3), and

multi-optimization scaling (Chapter 6.4) place on Smart Data Structures. We identify

potential bottlenecks in the Smart Data Structures design for each type of scaling.

We will show that most potential bottlenecks have been eliminated in our design.

We will show that the remaining bottlenecks derive from two sources: the primary

source is 1) the base data structures upon which Smart Data Structures are built

98

and the secondary source is 2) the scaling of the learning overheads in Smart Data

Structures. We will build up an analytical model to estimate constraints on each of

the three types of application scaling due to these bottlenecks.

In Chapter 6.5.2, we evaluate the application case-studies using this analytical

model and estimate their scalability. We define the scalability of an application to be

the maximum number of threads the application can use before Smart Data Structures

can no longer improve performance by at least 1
3

of their potential. The potential

improvement is taken to be the difference between two static performance bounds:

the performance achieved using the ideal knob settings and the average performance

over all available knob settings.

6.2 Concurrency Demands

This section analyzes constraints on application scalability due to concurrency scaling

and the demands it places on a Smart Data Structure. Concurrency scaling refers to

the situation where increasing the number of threads in the application leads to more

and more threads accessing a given Smart Data Structure. The largest concurrency

level a Smart Data Structure can support is ultimately constrained by two sources of

bottlenecks: the primary source is bottlenecks intrinsic to the base data structures

upon which Smart Data Structures are built and the secondary source is bottlenecks

deriving from optimization in Smart Data Structures. We refer to these as Data

Structure Bottlenecks and Smart Data Structure Bottlenecks, respectively.

Data structure bottlenecks can be subdivided into bottlenecks from increased

communication between components in the data structure and bottlenecks due to the

data structure algorithm itself. In Chapters 6.2.1 and 6.2.2, we analyze bottlenecks

of each type. We will show that the Flat Combining data structures upon which the

Smart Data Structures prototype is built have a communication bottleneck which does

not limit performance in practice. Rather, we will show that their main bottleneck

is an algorithmic bottleneck. Chapter 6.2.3 quantifies the constraints on concurrency

scaling due to the algorithmic bottleneck.

99

Smart Data Structure bottlenecks can be subdivided into bottlenecks from com-

munication among optimization and data structure components, overheads from re-

ward monitoring, and the runtime of the learning engine. Chapters 6.2.4, 6.2.5, and

6.2.6 will analyze bottlenecks of each type. We will show that there are no commu-

nication bottlenecks unless external reward monitors introduce them. Then, we will

study the effect of different external reward monitors on concurrency scaling limits

and demonstrate a scalable external reward monitor that avoids a bottleneck. Finally,

we will show that learning overheads are currently well within the necessary range to

enable concurrency scaling to hundreds of threads, and we will develop an analytical

model to estimate the impact of learning overheads in existing and future Smart Data

Structures. Chapter 6.2.7 will use this analytical model to quantify constraints on

concurrency scaling due to learning overheads.

6.2.1 Data Structure Communication Bottlenecks

This section evaluates communication bottlenecks in the Flat Combining data struc-

tures. We will analyze the communication among application threads and the com-

ponents of Flat Combining data structures. We will show that accessing the test-

and-test-and-set lock component of Flat Combining data structures is a potential

bottleneck in applications. However, we will show later in Chapter 6.2.2 that access-

ing the lock is not a scalability bottleneck in practice.

Figure 6-1 shows the scaling of a) the storage of Flat Combining components

and b) the number of communication ports between application threads and the

Flat Combining components as a function of the number of threads accessing the

data structure. Here, we define a communication port to be an abstract connec-

tion between a thread and a component (or between two components). Through a

communication port, the thread accesses the resources within the component. Un-

less otherwise stated, communication ports are assumed to be bi-directional. The

number of communication ports leading to any component is informative because it

indicates the maximum number of threads that can access that component at a given

time. If the number of communication ports is large, there may be shared memory

100

bottlenecks, as we will see.

Shared Memory Communication
• Two reward modes: internal and external
• Internal reward mode:

Shared Memory
Serial Data
Structure

…
Scancount

Pub.
List

Structure

Combiner

TTAS

A li ti

Lock

88

t1 t2 tn… Application
Threads

Figure 6-1: Concurrency Scaling: One Flat Combining Data Structure Shared Among
n Application Threads. The communication ports between the application threads
and the Flat Combining components are depicted.

As indicated in the figure and summarized in Table 6.1, the size of the publica-

tion list increases linearly with the number of application threads. Each record in

the publication list is shared between the application thread that owns it and the

combiner. At any given time, there is only one thread doing combining, so each

record has two communication ports. The storage required for the lock is fixed for

increasing numbers of threads, but its communication ports increase linearly with the

number of threads. The storage and communication ports are fixed for the remaining

components.

For the foreseeable future, linear scaling of storage requirements should not impact

performance since cache and DRAM sizes are much larger than the number of threads.

However, in the worst case, linear scaling in the number of communication ports can

point to the possibility of linear scaling in the number of threads that access certain

cache lines. Linear scaling in the sharing of cache lines can bottleneck typical shared

memory systems, but it depends on the types of access. If all accesses are reads,

101

Object Type Storage Communication Ports Degree of Cache Line Sharing
TTAS Lock O(1) n n
Pub. List O(n) n/a n/a
Pub. List Record O(1) 2 2
Scancount O(1) 1 1
Serial Data Structure n/a 1 1

Table 6.1: Concurrency Scaling of Flat Combining Data Structure Components. For
each component, the scaling of the storage requirements, number of communication
ports, and degree of internal cache line sharing are given as a function of n, the
number of threads accessing the data structure.

linear scaling is no problem. If all are writes, linear sharing can lead to large amounts

of cache coherence traffic that degrade performance. The number of communication

ports connected to a component can be thought of as an upper bound on the degree

of sharing of any cache line within it.

Table 6.1 also indicates the degree of cache line sharing implied by the communica-

tion ports connected to each Flat Combining component. Only the lock component’s

communication ports scale linearly. It is a test-and-test-and-set lock. In this type of

lock, all threads go through their port to spin on a single shared memory variable (the

lock). The degree of sharing of the lock cache line therefore grows linearly with the

number of threads. Fortunately, the test-and-test-and-set lock mostly reads the lock

memory variable and avoids writes where possible: it polls the lock memory variable

until the lock is free and only then attempts to modify the lock variable (via atomic

test-and-set) to acquire the lock. We will see in Chapter 6.2.2 that it is also used in-

frequently in the Flat Combining algorithm; therefore, the test-and-test-and-set lock

is not a communication bottleneck in the Flat Combining design. Chapter 6.2.2 will

show that the main bottleneck in Flat Combining is an algorithmic bottleneck.

6.2.2 Data Structure Algorithm Bottlenecks

This section will evaluate the algorithmic bottlenecks of the Flat Combining data

structures. The scalability bottlenecks of the Flat Combining algorithm have been

previously established: Hendler et al. study them in the Flat Combining paper [12],

and we review their results here for reference.

102

Hendler et al. benchmark the Flat Combining Queue, Skip List, and Pairing

Heap and other state-of-the-art algorithms (described in Chapter 5.2) using the first

mode of the benchmark we describe in Chapter 5.1. In the benchmark, one Flat

Combining data structure is instantiated and accessed by all threads. Threads run

independently, issuing add and remove operations on the data structure at random

with equal likelihood. In this case, threads request accesses as fast as possible with

no post computation between accesses. The benchmark is run with 64 threads on

a 128-way Oracle R© Enterprise SPARC T5140 R© server (Maramba) machine running

Solaris 10. It is a 2-chip Niagara system, with each chip having a shared L2 cache

and 8 cores that multiplex 8 hardware threads each.

Figure 2: Concurrent FIFO Queue implementations: throughput (number of operations), average CAS fail-
ures (per operation), average CAS successes (per operation), and L2 cache misses (per operation).

the basket queue. The combining tree requires 10 CASes
per successful operation. The overall number of successful
CASes needed to complete increases as concurrency grows,
and so do the failed CASes, so the tree’s scalability (due to
parallelism) is hampered by the large synchronization over-
head. Failed CAS overheads also hurt all the other prior
techniques.

Figure 3: FIFO Queue throughput on the Nehalem
architecture.

The most telling graph though is that of the L2 cache miss
rates on the Niagara architecture, a dominant performance
factor in multicore machines. Notice that the graph uses a
logarithmic scale. As we can see, all prior techniques have
two or more orders of magnitude more cache misses than the
FC algorithm.

Unlike other general techniques, the flat combining imple-
mentation requires on average almost no CAS successes to

complete, and has a negligible CAS failure rate. Its cache
miss rate is very low. It is therefore not by chance that the
FC queue outperforms the other algorithms on the Niagara
architecture by a wide margin. We note that as concur-
rency increases, the lengths of the publication list increase,
accounting for the FC’s slightly decreasing performance as
concurrency increases.

Figure 3 shows similar behavior on the Nehalem architec-
ture. Here we see that all the algorithms exhibit negative
scalability, and yet the FC algorithm is again superior to
all others. The cache miss and CAS rate graphs we do not
present provide a similar picture to that on the Niagara.

6.2 Stacks
We now consider linearizable concurrent LIFO Stacks.

We compare our flat-combining queue with Treiber’s lock-
free stack implementation [23] (denoted as ‘lock free’ in the
graphs). Treiber’s algorithm represents the stack as a singly-
linked list pointed at by a top pointer which is manipulated
by CAS operations. We also compare to Hendler et. al’s [6]
linearizable elimination-backoff stack.

Figure 4 shows the throughput of the flat combining stack,
the elimination-backoff stack, and Treiber stack on the two
platforms. On the Maramba (Sparc) machine flat com-
bining clearly outperforms Treiber’s algorithm by a wide
margin (a factor of 9) because Treiber’s algorithm top is a
CAS synchronization bottleneck. The performance of the
elimination-backoff stack algorithm improves to reach that
of flat combining, since the benchmark supplies increasing
equal amounts of concurrent pushes and pops that can be
eliminated. Note that with a different ratio of pushes and
pops the elimination queue will not perform as well. How-
ever, as can be seen, at lower concurrency rates the flat

Figure 6-2: Concurrency Scaling of the Flat Combining Queue. The Flat Combining
Queue is compared to the best existing queue algorithms on a SPARC T2 system. It
reaches maximum performance at 24 threads but outperforms all prior queues up to
64 threads. Some time after 64 threads, the Combining Tree Queue is expected to
overtake it as the highest performance queue.

Figures 6-2, 6-3, and 6-4 show the benchmark throughput results as the number

of threads is varied from 1 to 64 threads. For up to 64 threads, The Flat Combining

Queue, Skip List, and Pairing Heap substantially outperform the best existing queue

and priority queue algorithms.

103

600

800

1000

1200

1400

o
p
s/
m
s

SPARC T2 ‐ FC Skip List ‐ Throughput
50% Add; 50% RemoveMin

fc skip list

lock‐free skip list

lazy skip list

0

200

400

1 2 4 8 12 16 24 32 40 48 56 64

threads

Figure 6-3: Concurrency Scaling of the Flat Combining Skip List. The Flat Combin-
ing Skip List is compared to the best existing priority queue implementations on a
SPARC T2 system. It reaches maximum performance at 4 threads but outperforms
all prior priority queues up to 64 threads and beyond.

Nevertheless, none of the state-of-the-art algorithms (except for one) exhibit ideal

scaling. Only the Combining Tree Queue scales linearly, but, as we will see, it uses

more synchronization operations per data structure operation than the Flat Com-

bining Queue, and thus incurs more overhead and has lower absolute performance

[12]. The maximum throughput for the Flat Combining Queue, Skip List, and Pair-

ing Heap occurs at 24, 4, and 12 threads, respectively. Note that while the Flat

Combining data structures have reached their maximum throughput, their through-

put continues to outperform all other prior art up to 64 threads. After reaching the

max throughput, throughput somewhat degrades due to the overhead of traversing a

longer publication list when combining [12].

Hendler et al. analyze the source of the Flat Combining algorithm’s performance

improvements over the best existing queue algorithms. They show that Flat Com-

bining’s improvements derive from reduced synchronization overheads, and we review

their findings here. We also use these results to show that the linear scaling in the

104

800

1000

1200

1400

1600

1800

2000

op
s/
m
s

SPARC T2 ‐ FC Pairing Heap ‐ Throughput
50% Add; 50% RemoveMin

fc pairing heap
lock‐free skip list
lazy skip list

0

200

400

600

800

1 2 4 8 12 16 24 32 40 48 56 64

threads

lazy skip list

Figure 6-4: Concurrency Scaling of the Flat Combining Pairing Heap. The Flat
Combining Pairing Heap is compared to the best existing priority queue implemen-
tations on a SPARC T2 system. It reaches maximum performance at 12 threads but
outperforms all prior priority queues up to 64 threads and beyond.

number of communication ports leading to the test-and-test-and-set lock do not lead

to the bottleneck in Flat Combining performance. Rather, the bottleneck is due

to the Flat Combining algorithm and its use of the lock to serialize data structure

operations.

Hendler et al. measure the rate of synchronization operations issued by each

of the state-of-the-art queue data structures. They collect these statistics for the

same benchmark used to get Figure 6-2. Recall that the experiments run on a

SPARC machine. Synchronization operations are hardware-supported primitives. On

the SPARC, the Flat Combining data structures use the SPARC compare-and-swap

(CAS) synchronization instruction. Thus, the rate of synchronization operations is

given in terms of the number of CAS instructions issued per data structure operation.

The CAS instruction compares the contents of a memory location to a given value

and, only if they are the same, modifies the contents of that memory location to a

given new value. This guarantees that the new value is calculated based on up-to-date

105

information.

The rate of synchronization operations is divided into two parts: the rate of

successful and unsuccessful CAS operations per data structure operation. Figure

6-5 shows the rate of successful CAS operations per data structure operation for

the best existing concurrent queues. In all queues except for the Flat Combining

and Combining Tree Queues, the rate of successful CAS operations is approximately

constant as the number of threads increases. In the Combining Tree Queue it increases

logarithmically with the number of threads because the depth of the synchronization

tree in the queue grows logarithmically. In Flat Combining, the necessary rate of

CAS successes actually decreases. This is the primary source of Flat Combining’s

performance improvements.

Figure 2: Concurrent FIFO Queue implementations: throughput (number of operations), average CAS fail-
ures (per operation), average CAS successes (per operation), and L2 cache misses (per operation).

the basket queue. The combining tree requires 10 CASes
per successful operation. The overall number of successful
CASes needed to complete increases as concurrency grows,
and so do the failed CASes, so the tree’s scalability (due to
parallelism) is hampered by the large synchronization over-
head. Failed CAS overheads also hurt all the other prior
techniques.

Figure 3: FIFO Queue throughput on the Nehalem
architecture.

The most telling graph though is that of the L2 cache miss
rates on the Niagara architecture, a dominant performance
factor in multicore machines. Notice that the graph uses a
logarithmic scale. As we can see, all prior techniques have
two or more orders of magnitude more cache misses than the
FC algorithm.

Unlike other general techniques, the flat combining imple-
mentation requires on average almost no CAS successes to

complete, and has a negligible CAS failure rate. Its cache
miss rate is very low. It is therefore not by chance that the
FC queue outperforms the other algorithms on the Niagara
architecture by a wide margin. We note that as concur-
rency increases, the lengths of the publication list increase,
accounting for the FC’s slightly decreasing performance as
concurrency increases.

Figure 3 shows similar behavior on the Nehalem architec-
ture. Here we see that all the algorithms exhibit negative
scalability, and yet the FC algorithm is again superior to
all others. The cache miss and CAS rate graphs we do not
present provide a similar picture to that on the Niagara.

6.2 Stacks
We now consider linearizable concurrent LIFO Stacks.

We compare our flat-combining queue with Treiber’s lock-
free stack implementation [23] (denoted as ‘lock free’ in the
graphs). Treiber’s algorithm represents the stack as a singly-
linked list pointed at by a top pointer which is manipulated
by CAS operations. We also compare to Hendler et. al’s [6]
linearizable elimination-backoff stack.

Figure 4 shows the throughput of the flat combining stack,
the elimination-backoff stack, and Treiber stack on the two
platforms. On the Maramba (Sparc) machine flat com-
bining clearly outperforms Treiber’s algorithm by a wide
margin (a factor of 9) because Treiber’s algorithm top is a
CAS synchronization bottleneck. The performance of the
elimination-backoff stack algorithm improves to reach that
of flat combining, since the benchmark supplies increasing
equal amounts of concurrent pushes and pops that can be
eliminated. Note that with a different ratio of pushes and
pops the elimination queue will not perform as well. How-
ever, as can be seen, at lower concurrency rates the flat

Figure 6-5: A Comparison of the Number of Necessary CAS Successes per Data
Structure Operation for Different Queues. While for most queues the necessary rate
is approximately fixed as the number of threads increases, the necessary rate for
the Flat Combining queue decreases. This is the primary source of its performance
improvements over the other queues.

The reason for the reduction in the necessary successful CAS operations is that

the Flat Combining algorithm only issues CAS operations when one combiner has

finished and another thread wishes to become the combiner by acquiring the lock.

106

While a thread has the lock and is the combiner, it performs many data structure op-

erations for the cost of that one CAS operation. In contrast, the other data structure

algorithms require at least one successful CAS operation per individual data structure

operation.

The reason that the CAS success rate decreases as the number of threads increases

in Flat Combining, is that adding threads increases the efficiency of combining and

enables the same rate of data structure operations to be performed for fewer CAS

operations. Adding threads increases the global rate of requests which results in more

requests for a thread to fulfill while it is the combiner. Those extra operations take

more time and reduce the rate at which the combiner changes. Since CAS operations

are only required when the combiner changes, the result is a reduced rate of CAS

successes.

Flat Combining also improves performance over the other queues by reducing

overheads due to CAS failure rates. Figure 6-6 shows the rate of unsuccessful CAS

operations per data structure operation for the different queues. For all except the

Flat Combining Queue, the rate of unsuccessful CAS operations per data structure

operation increases as the number of threads increases. In these queues, the rate

increases because a) their algorithms loop, attempting CAS operations until one suc-

ceeds and b) the likelihood of success decreases as the number of threads increases

because more threads compete to complete the CAS operation on the same memory

locations.

In the Flat Combining queue, the rate of CAS failures per data structure operation

is much lower because a) fewer successful CAS operations are needed to complete

each data structure operation in the first place and b) the algorithm uses a test-and-

test-and-set lock to prune most CAS attempts. The test-and-test-and-set lock only

attempts CAS operations when a non-atomic read of the lock variable indicates the

lock is free and the CAS attempt is likely to succeed.

It is also important to note that, in Flat Combining, the total rate of CAS oper-

ations per data structure operation does not increase but actually decreases as the

number of threads increases. This shows that the lock variable is less and less fre-

107

Figure 2: Concurrent FIFO Queue implementations: throughput (number of operations), average CAS fail-
ures (per operation), average CAS successes (per operation), and L2 cache misses (per operation).

the basket queue. The combining tree requires 10 CASes
per successful operation. The overall number of successful
CASes needed to complete increases as concurrency grows,
and so do the failed CASes, so the tree’s scalability (due to
parallelism) is hampered by the large synchronization over-
head. Failed CAS overheads also hurt all the other prior
techniques.

Figure 3: FIFO Queue throughput on the Nehalem
architecture.

The most telling graph though is that of the L2 cache miss
rates on the Niagara architecture, a dominant performance
factor in multicore machines. Notice that the graph uses a
logarithmic scale. As we can see, all prior techniques have
two or more orders of magnitude more cache misses than the
FC algorithm.

Unlike other general techniques, the flat combining imple-
mentation requires on average almost no CAS successes to

complete, and has a negligible CAS failure rate. Its cache
miss rate is very low. It is therefore not by chance that the
FC queue outperforms the other algorithms on the Niagara
architecture by a wide margin. We note that as concur-
rency increases, the lengths of the publication list increase,
accounting for the FC’s slightly decreasing performance as
concurrency increases.

Figure 3 shows similar behavior on the Nehalem architec-
ture. Here we see that all the algorithms exhibit negative
scalability, and yet the FC algorithm is again superior to
all others. The cache miss and CAS rate graphs we do not
present provide a similar picture to that on the Niagara.

6.2 Stacks
We now consider linearizable concurrent LIFO Stacks.

We compare our flat-combining queue with Treiber’s lock-
free stack implementation [23] (denoted as ‘lock free’ in the
graphs). Treiber’s algorithm represents the stack as a singly-
linked list pointed at by a top pointer which is manipulated
by CAS operations. We also compare to Hendler et. al’s [6]
linearizable elimination-backoff stack.

Figure 4 shows the throughput of the flat combining stack,
the elimination-backoff stack, and Treiber stack on the two
platforms. On the Maramba (Sparc) machine flat com-
bining clearly outperforms Treiber’s algorithm by a wide
margin (a factor of 9) because Treiber’s algorithm top is a
CAS synchronization bottleneck. The performance of the
elimination-backoff stack algorithm improves to reach that
of flat combining, since the benchmark supplies increasing
equal amounts of concurrent pushes and pops that can be
eliminated. Note that with a different ratio of pushes and
pops the elimination queue will not perform as well. How-
ever, as can be seen, at lower concurrency rates the flat

Figure 6-6: A Comparison of the Number of CAS Failures per Data Structure Op-
eration for Different Queues. While for most queues the failure rate increases as the
number of threads increases, the failure rate only initially increases then decreases
with the Flat Combining Queue.

quently atomically modified even though the number of threads that may access the

lock is increasing. In Chapter 6.2.1, we identified that the lock could become a com-

munication shared memory bottleneck if it were frequently atomically modified since

the cache line containing the lock variable must be shared by more and more threads

as the number of threads increases. The fact that the total rate of CAS operations

decreases shows that the lock variable is infrequently modified and that the lock is

not, therefore, a communication bottleneck in Flat Combining. Lock communication

bottlenecks are not responsible for the concurrency scaling limits in Flat Combining

data structures.

Rather, we conclude that the bottleneck is an algorithmic bottleneck, deriving

from the way the lock is used: the Flat Combining algorithm uses the lock to coarse-

lock a serial data structure and serialize all operations upon it. Flat Combining

overcomes that serialization up to a certain number of threads through combining

and allowing the lock holder to perform multiple data structure operations instead

of just its own while it holds the lock. Eventually, however, serialization of data

108

structure operations causes performance to plateau. In Figure 6-2, for example, we

see that the Flat Combining Queue reaches maximum performance at 24 threads.

At concurrency levels beyond 64 threads, scalable techniques like the Combining

Tree Queue will eventually overtake the performance of the Flat Combining Queue.

Nevertheless, up to 64 threads, the Flat Combining queue still substantially outper-

forms the Combining Tree Queue. Because we are interested in knowing how many

threads Smart Data Structures can scale to via concurrency scaling before they no

longer improve upon prior data structures, we will estimate that the Flat Combining

algorithm limits concurrency scaling of the Smart Queue to 64 threads. No scalable

algorithms for the priority queue are known (to our knowledge), so the Flat Combin-

ing algorithm does not limit scalability for the Smart Skip List and Smart Pairing

Heap.

There is, however, ongoing research in hierarchical Flat Combining algorithms

which use multiple combiners and may greatly extend the scalability of the Flat

Combining algorithm so that it continues to outperform scalable algorithms like the

Combining Tree even at large parallelism scales. Our techniques for optimizing the

scancount in Flat Combining will still apply to hierarchical Flat Combining algo-

rithms, and there will be new opportunities to learn the best number of parallel

combiners and partitioning of threads among them for the best performance.

6.2.3 Summary of Data Structure Concurrency Constraints

In Chapters 6.2.1 and 6.2.2 we studied Data Structure Bottlenecks. We analyzed com-

munication and algorithmic bottlenecks in the Flat Combining data structures upon

which our Smart Data Structures prototype builds. In this section, we will summa-

rize these findings and quantify the concurrency scaling limits that these bottlenecks

place on applications.

The main bottlenecks in concurrency scaling are as follows. In Chapter 6.2.1, we

showed that the Flat Combining data structure exhibits only one potential commu-

nication bottleneck: its test-and-test-and-set lock. Chapter 6.2.2 showed that the

communication between application threads and the lock is not the limiter in scaling

109

the Flat Combining data structures up to 64 threads. Rather, the algorithm is; the

limit derives from the way the algorithm uses the lock to serialize accesses to the se-

rial data structure. Flat Combining overcomes the cost of serialization up to a point

by reducing synchronization overheads. For some data structures, however, scalable

algorithms are known that will eventually outperform Flat Combining.

The main conclusion of Chapter 6.2.2 is that the Flat Combining Queue outper-

forms prior art up to 64 threads and that the Flat Combining Skip List and Pairing

Heap will continue to outperform prior art up to arbitrary numbers of threads because

no scalable algorithms are known.

These data structure scaling limits imply limits on overall application scalabil-

ity. There are three ways an application can scale (concurrency scaling, multi-data-

structure scaling, and multi-optimization scaling), but if the application relies entirely

on concurrency scaling as the number of application threads is increased, the concur-

rency scaling of the Smart Data Structure determines application scalability. In other

words, such an application can scale to 64 threads if it uses Smart Queues before the

Smart Queue will no longer be the highest performance data structure. Since scalable

algorithms comparable to the Skip-List-based and Pairing-Heap-based priority queue

are not known, the application can scale to unbounded number of threads if it uses

these data structures. Table 6.2 lists these constraints for convenience.

Type max n
Smart Queue 64
Smart Skip List unbounded
Smart Pairing Heap unbounded

Table 6.2: Concurrency Scaling Constraints from Flat Combining Data Structures.
n is the number of threads concurrently accessing a given Smart Data Structure, and
the max n is defined to be the maximum number of threads before an alternative
algorithm will outperform the Smart Data Structure.

6.2.4 Smart Data Structures Communication Bottlenecks

This section begins the analysis of Smart Data Structure Bottlenecks: the incremental

bottlenecks that are introduced by the learning components in a Smart Data Struc-

110

ture to optimize the knobs in the base data structure. There are three sources of

potential bottlenecks which may limit concurrency scaling: 1) communication bot-

tlenecks among application threads, Flat Combining components, and learning com-

ponents, 2) bottlenecks introduced by collecting and supplying reward for learning,

and 3) bottlenecks from increasing learning overheads. This section focuses on the

first source: communication bottlenecks. We will show that optimization does not

introduce incremental communication bottlenecks unless external reward monitors

contribute them. The other two sources of potential concurrency bottlenecks will be

covered in Chapters 6.2.5 and 6.2.6, respectively.

Figure 6-7 shows a Smart Data Structure shared among all application threads.

It depicts the optimization components of Smart Data Structures and their com-

munication with each other, the application threads, and the base Flat Combining

components. The optimization components of Smart Data Structures are the reward

monitor and the learning thread. Two reward configurations are depicted: Figure

6-7a shows the reward configuration where the Smart Data Structure provides its

own internal throughput as the reward while Figure 6-7b shows the case for external

performance monitors (see Chapter 4.2). As before, the number of communication

ports between components indicates the maximum number of threads that can be

accessing a component at any time.

Augmenting Flat Combining with optimization components requires adding one

port to the scancount to enable the learning thread to optimize and modify it. The

internal reward monitor requires one write and one read port for the combiner and

learning thread, respectively. Since each thread may update the reward in the case

of external monitors, external monitors require one write port per application thread

and one read port for the learning thread. As the application scales to larger numbers

of threads, the storage for the scancount and learning thread is invariant. The storage

for the reward depends on the reward monitor implementation: if the reward is stored

in one central variable, storage is fixed as the number of threads increases; if it is

stored in distributed variables, there is one distributed variable per thread, so storage

grows linearly. Thus, reward storage grows at most linearly. As before, cache and

111

Shared Memory Communication

Shared Memory
Serial Data
Structure

Learning
Thread

…
Scancount

Pub.
List

Structure

Thread
Combiner

TTAS

Reward:
Throughput

A li ti

Lock

89

t1 t2 tn… Application
Threads

(a) Internal Reward Mode

Shared Memory Communication

• External reward mode
Shared MemoryShared Memory

Serial Data
Structure

Learning
Thread

…

Combiner
Scancount

Pub.
List

Reward
TTAS
Lock

t1 t2 tn… Application
Threads

90

Threads

(b) External Reward Mode

Figure 6-7: Concurrency Scaling: One Smart Data Structure Shared Among All Ap-
plication Threads. The communication ports between optimization components, ap-
plication threads, and the Flat Combining components are depicted for two different
reward modes.

112

DRAM sizes should easily accommodate linear scaling since the number of threads is

comparatively small. Table 6.3 summarizes the storage and communication scaling

related to Smart Data Structures optimization components.

Object Type Storage Communication Ports Degree of Cacheline Sharing

Scancount O(1) 2 2

Reward Monitor
Internal O(1) 2 2
External O(n) n+1 2 (n+1 näıve)

Learning Thread O(1) 2 1

Table 6.3: Concurrency Scaling of Smart Data Structure Optimization Components.
For each component, the scaling of storage requirements, communication ports, and
the degree of cache line sharing are given as a function of n, where n is the number
of threads accessing the Smart Data Structure.

Only the reward monitor’s communication ports may scale linearly, and the ports

only scale linearly if the external reward mode is used. In näıvely implemented

external reward monitors, this can lead to shared memory variables inside the reward

monitor being shared by n+1 threads. Unfortunately, n of these sharers are writers,

and if writes are high frequency, this can potentially cause cache lines to ping-pong

between threads (thus cores) and degrade performance. Chapter 6.2.5 will study

different reward monitor implementations and the effect of their overhead on Smart

Data Structure performance. In addition, it will demonstrate a scalable external

reward monitor that removes the bottleneck by reducing cache line sharing to 2-ways.

It is interesting to question the need for support for external monitors given that

they may introduce communication or other bottlenecks into the Smart Data Struc-

tures design. We acknowledge that the internal reward mode is safer because it is

free from communication bottlenecks. However, one of the design goals of Smart

Data Structures is to provide a learning framework that will work well in a variety

of systems and applications, and we acknowledge that the internal reward mode may

not always provide the best indication of application performance. The internal re-

ward mode measures application performance by measuring Smart Data Structure

throughput. The problem is that different applications may have other goals than

maximizing throughput: e.g. minimizing latency. Our Smart Data Structures de-

sign supports external monitors to enable application developers to measure progress

113

toward application goals in application-specific ways. The scalable reward monitor

evaluated in the next section gives this freedom while avoiding communication and

other bottlenecks.

6.2.5 Smart Data Structures Reward Bottlenecks

This section looks at the concurrency scaling bottlenecks in Smart Data Structures

due to reward overheads. Different application use-cases will imply different numbers

of threads using the reward monitor and different reward update frequencies. Our

goal in this section is to determine typical demands as well as upper bounds on

the demands that applications can place on the reward monitor before its overheads

limit the ability of Smart Data Structures to improve performance. We evaluate two

external monitors – Application Heartbeats [17] and a scalable monitor we developed

based on a concurrent counter algorithm we call lazy counters – and study the effect

of update rates on reward overheads.

In the case of Heartbeats, n application threads atomically increment a shared

counter variable, making the degree of cache line sharing increase linearly as more

threads are added. The lazy counter avoids n-way sharing by assigning a separate

counter to each thread and spacing counters so they map to different cache lines.

To increment the reward, a thread increments its own counter. When the learning

thread reads the reward, it sums over the counters from all threads (see Appendix A

for additional details). Thus, each counter is shared no more than 2 ways. The reason

this works is that the learning thread reads the reward infrequently compared to the

rate at which the application threads update the reward. As for storage scaling: the

storage of Heartbeats is invariant to increasing numbers of threads, but the storage

for the lazy counter monitor grows linearly. Like before, we assume that the number

of threads is small compared to cache and DRAM sizes, so this should have negligible

impact on performance.

Since application threads may desire high frequency access to Smart Data Struc-

tures and update the reward once per access, it is imperative that the external reward

monitor can sustain reward updates at comparable frequencies, without degrading

114

performance. Hendler et al. [12] demonstrate that Flat Combining data structure

throughput can exceed 16000 ops/ms in large-scale machines which equates to reward

update rates in excess of 16 MHz total across all threads. Experiments on our 16-core

Xeon R© system achieve throughput up to 3500 ops/ms which equates to sustaining a

3.5 MHz total reward update rate. To summarize, an external reward monitor should

scale beyond a 3.5 MHz total reward update rate for the best performance on our

system, and ideally, beyond 16 MHz for the best performance on large machines with

greater parallelism.

To measure the maximum update frequencies Heartbeats and lazy counters can

sustain, we make a slight modification to our throughput benchmark described in

Chapter 5.1. We instantiate a Smart Data Structure and use the first mode of the

benchmark (the mode in which application threads run independently), but, instead

of looping through a cycle of issuing an operation on the Smart Data Structure,

updating the reward, and executing a post computation delay loop, the threads skip

the operation on the Smart Data Structure in each cycle. Threads still update the

reward each cycle as normal. The learning engine is enabled, as normal, and reads the

reward periodically to optimize the scancount. The scancount is merely ignored since

no operations on the Smart Data Structure are being performed. We fix the number

of threads at the maximum we use in our experiments on our machine (14), and we

vary the length of the post computation delay loop between a thread’s successive

reward updates.

The “throughput” in this benchmark is therefore the total reward update rate

across all threads that is achieved. It is the product of the number of threads and

the average reward update rate achieved by each thread. By setting different post

computation delays between updates, we request different per-thread update rates

which the reward monitors may or may not be able to sustain. Ideally, a given

reward monitor sustains the requested per-thread rate, and the ideal total update rate

is the product of the number of threads and the reciprocal of the post computation

delay (ignoring loop overheads between post computation periods). When the reward

monitor cannot sustain the requested per-thread rates, the total update rate falls

115

below the ideal.

Figure 6-8 shows benchmark results for the Heartbeats reward monitor. It shows

the achieved total reward update rate and the ideal rate as a function of the requested

per-thread update rate. We find that Heartbeats sustain ideal update rates until an

inflection point at approximately a 5.7 MHz total reward update rate, beyond which

the reward update rate saturates. The maximum reward update rate is between 6.6

and 7.6 MHz. Before the inflection point, the 5.7 Mhz that Heartbeats achieves does

exceed the necessary 3.5 MHz for good performance on our 16-core Xeon R© system.

To an approximation, 5700 data structure operations per ms is therefore the Smart

Data Structures throughput beyond which using Heartbeats as the reward monitor

will introduce performance bottlenecks.

14

16

at
e

Heartbeats Scalability
14 threads, Intel Xeon 4x4core System

Ideal

(0.43, 5.7)

(0.71, 7.6) (1.0, 7.0)

4

6

8

10

12

14

16

o
ta
l U

p
d
at
e
R
at
e

M
H
z)

Ideal

Heartbeats

(0.43, 5.7)

0

2

4

6

0 0.25 0.5 0.75 1

A
ch
ie
ve
d
 T
o
ta
l U

(M
H
z

Requested Per‐Thread Update Rate (MHz)

Figure 6-8: Heartbeats Scaling. The total update rate achieved by Heartbeats is
compared to the ideal update rate for different requested per-thread update rates.
Heartbeats sustain the ideal update rate until an inflection point at a total update
rate of approximately 5.7 MHz.

Figure 6-9 shows the scaling of the reward monitor built upon lazy counters. We

run the same benchmark on a 48-core (quad 12-core) AMD R© Opteron R© 6168 system

with 1.9GHz cores and 32GB of DRAM. We run under Debian Linux (kernel version

2.6.31.13) and compile with the same version of gcc and optimization levels: gcc 4.3.2

116

and O3. We run the experiment with 46 threads and show the ideal and achieved

total reward update rate as a function of the requested per-thread reward update

rate. We also show the Heartbeats total reward update rate for reference. Again,

the ideal curve ignores loop overheads, but loop overheads are significant in this case

since higher update frequencies are studied. The results demonstrate that the lazy

counter scales very well up to and beyond 46 cores and 360 MHz total reward update

rates, making it a suitable reward monitor for high-concurrency applications of Smart

Data Structures. As the figure shows, Heartbeats fail to sustain these rates.

150
200
250
300
350
400
450
500

ta
l U

p
d
at
e
R
at
e

M
H
z)

Reward Monitor Scalability
46 threads, AMD 4x12core System

Ideal‐46
LazyCounter‐46
Heartbeats‐46

0
50

100
150

0 1 2 3 4 5 6 7 8 9 10

A
ch
ie
ve
d
 T
o (M

Requested Per‐Thread Update Rate (MHz)
{1/6400ns, 1/3200ns, 1/1600ns, 1/800ns, 1/400ns, 1/200ns, 1/100ns}

Figure 6-9: Reward Scaling for Different Reward Monitors. The total update rate
achieved by the Lazy Counter monitor and Heartbeats monitor are compared to the
ideal for different requested per-thread update rates. The Lazy Counter monitor
nearly achieves the ideal total update rate while Heartbeats saturate at a much lower
total update rate.

While the overhead of the Lazy Counter monitor is much better, the Heartbeats

reward monitor is nevertheless adequate for our machine. In Figure 6-10, we demon-

strate this fact by comparing end-to-end Smart Data Structure performance on our

machine using both monitors. The benchmark is the second mode of the bench-

mark we describe in Chapter 5.1 where one master thread produces work for worker

threads. We fix the number of threads at 14 and vary the post computation between

Smart Data Structure accesses. The results indicate similar performance between

117

Heartbeats and lazy counters. This illustrates two interesting points: a) Heartbeats

provide sufficient scalability for our benchmarks on our machine and b) lazy counters

do not sacrifice performance at small scales to achieve good scalability at large scales.

This suggests that the monitor based on lazy counters can be used at any application

scale and achieve the best performance.

200

400

600

p
u
t
(o
p
s/
m
s)

Smart Queue
14 threads

200

400

600

800

p
u
t
(o
p
s/
m
s)

Smart Skiplist
14 threads

0

200

400

600

Th
ro
u
gh

p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Queue
14 threads

0

200

400

600

800

Th
ro
u
gh

p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Skiplist
14 threads

Smart Pairheap

0

200

400

600

Th
ro
u
gh

p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Queue
14 threads

0

200

400

600

800

Th
ro
u
gh

p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Skiplist
14 threads

0

200

400

600

800

u
gh

p
u
t
(o
p
s/
m
s)

Smart Pairheap
14 threads

SDS.Hb

SDS.Lc

0

200

400

600

Th
ro
u
gh

p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Queue
14 threads

0

200

400

600

800

Th
ro
u
gh

p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Skiplist
14 threads

0

200

400

600

800

Th
ro
u
gh

p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Pairheap
14 threads

SDS.Hb

SDS.Lc

Figure 6-10: The Practical Impact of Reward Scaling on a 16-core Intel Xeon System.
The figures compare benchmark throughput using Heartbeats vs the Lazy Counter
reward monitor for the Smart Queue, Skip List, and Pairing Heap. The results
indicate that for the benchmark and concurrency levels in our 16-core Xeon system,
both reward monitors achieve similar throughput.

6.2.6 Smart Data Structures Learning Bottlenecks

Recall that we wish to determine the maximum number of threads that an application

can utilize before Smart Data Structures in the application can no longer achieve

at least 1
3

of their potential performance improvement. Increases in the learning

runtime due to concurrency scaling may eventually become a bottleneck that limits

118

this number of threads.

The focus of this section is the impact of concurrency scaling on the learning

runtime. We are interested in determining a) how the learning runtime varies with

the number of threads accessing a Smart Data Structure and b) how much the learning

runtime can increase before the Smart Data Structure optimizes knobs too slowly to

meet the requested performance improvement target.

First, Chapter 6.2.6 will develop an analytical model to estimate the scaling of the

learning runtime. We will show that the learning runtime may or may not depend on

the number of threads, depending upon the type of Smart Data Structure used. The

learning runtime actually depends on the number of parameters being learned not the

number of threads. For some Smart Data Structures, the number of parameters is

fixed so the learning runtime does not increase. For others, the number of parameters

does increase with the number of threads.

Then, Chapter 6.2.6 will artificially slow down the learning runtime to identify

the maximum runtime that can be tolerated before missing the performance improve-

ment target. We define this maximum runtime as the tolerable runtime, Tt. We will

measure the tolerable runtime and show that Smart Data Structures can learn many

parameters before they are unable to meet their performance improvement targets.

For Smart Data Structures where the number of parameters scales with the number

of threads, this will enable concurrency scaling to large numbers of threads.

In later sections (Chapter 6.3.1 and 6.4.1), we will expand upon the analytical

model developed here to estimate the learning runtime due to multi-data-structure

and multi-optimization scaling in addition to concurrency scaling. Those sections will

use the model to estimate constraints on multi-data-structure and multi-optimization

scaling. Ultimately, Chapter 6.5.2 will combine all of the constraints to estimate the

scalability of a variety of case-study applications.

Learning Runtime

This section develops an analytical model to estimate the constraints on concurrency

scaling due to the scaling of learning overheads in Smart Data Structures. We will

119

begin by developing a formula to relate the learning runtime to the number of threads

accessing a given Smart Data Structure. Then, we will develop an inequality that

expresses a constraint on the maximum number of threads that can access a Smart

Data Structure before it fails to deliver at least 1
3

of its potential performance im-

provements.

We start with the formula to relate the learning runtime to the number of threads

accessing a Smart Data Structure. The learning runtime may or may not increase

as the number of threads increases. It depends on which Smart Data Structure is

being used. The learning runtime actually depends on the number of parameters that

must be learned. Different Smart Data Structures have different types of knobs, and

different types of knobs require learning different numbers of parameters. Further-

more, as the number of threads increases, the number of parameters grows differently

depending on the type of knob.

In the case of the Smart Queue, Skip List, and Pairing Heap, the knob is the

scancount, and the scancount is a discrete-valued variable. The number of parameters

required for learning a discrete-valued knob is equal to the number of different discrete

values that the variable can take on. In our design, we fix the possibilities for the

scancount to 13 different discrete values. Thus, the number of discrete values does

not change as more and more threads access a Smart Queue, Skip List, and Pairing

Heap, and subsequently, the learning runtime does not change.

In the case of the Smart Lock, however, the number of parameters does grow as

the number of threads increases, and the learning runtime subsequently increases as

well. The Smart Lock uses a permutation-order knob. This knob supplies each thread

with a priority to use in the priority lock. The permutation-order requires learning

one parameter for each thread that accesses the Smart Lock. Thus the number of

parameters is equal to the number of threads.

Thus, we wish to express the learning runtime as a function of the number of

parameters, p, not the number of threads. To understand the precise dependence

of the learning runtime on p, we need a precise definition of the learning runtime.

Recall the learning algorithm in Alg. 1 in Chapter 4.3. The algorithm executes a

120

cycle of three computations. In the first stage of the cycle, the algorithm samples

knob settings from the latest learned parameters to try them out and measure the

resulting reward. In the second stage, it computes the gradient. In the third stage, its

tests for convergence of the gradient and, if converged, steps the learned parameters

in the direction of the gradient. We denote the runtime of these computations as

Ts, Tg, and Tc, respectively, to represent the sampling, gradient, and convergence

test runtimes. We define the learning runtime, Tl, as the period between successive

gradient computations. This is equal to the runtime of one cycle:

Tl = Ts + Tg + Tc

The sampling runtime, Ts, is independent of the number of threads in the appli-

cation and the number of parameters being learned. It is set by our algorithm and

approximately the same for all applications. The gradient is determined by solving

the least-squares problem using QR factorization. Its runtime in our implementation

is Tg = 2·p3 + 4·p2 floating point operations. The convergence test runtime is

Tc = p2 + p floating point operations. Thus, in terms of p, Tl is:

Tl = Ts + 2·p3 + 5·p2 + p

For p ≥13, we approximate Tl as:

Tl ≈ Ts + 2·p3

We need not make any assumptions about how large Ts is relative to the other com-

ponents because we will cancel Ts later. We also note that, to determine scaling

limits, we are interested in determining the maximum p (and subsequent learning

runtime) at which Smart Data Structures can still maintain 1
3

of their potential per-

formance improvement, as requested. For large p, (e.g. p = 50), the error in the

approximation we made is less than 5%.

Now that we have Tl in terms of the number of parameters, we would like to

121

develop an inequality bounding the values of p to those where a given Smart Data

Structure can sustain the requested performance improvement. After the learning

runtime increases beyond some threshold, the Smart Data Structure will no longer

be able to sustain the requested performance improvement. We call this threshold,

the tolerable runtime, Tt. Thus we constrain Tl such that

Tl ≤ Tt

We substitute our approximation of Tl to give this inequality in terms of the number

of parameters:

Ts + 2·p3 ≤ Tt

If we determine the tolerable runtime for a given application and Smart Data

Structure, we can determine the range of p for which the constraint is satisfied. To

measure Tt, we will artificially slow down the learning runtime in the application’s

Smart Data Structure. We will empirically measure when the learning runtime causes

the Smart Data Structure to miss its requested performance improvement target.

We must introduce the slowdown consistently with how the learning runtime would

slow down in reality if the number of parameters were actually increased rather than

artificially modeled. To do this, we choose some fixed number of parameters, pt, and

model an increase in this number of parameters by introducing a slowdown factor of

αt in the terms of the learning runtime that depend on the number of parameters:

Tt ≈ Ts + αt·2·pt3

We refer to αt as the tolerable slowdown of the variable component of the learning

runtime. It is important to note that this is the slowdown of only the portions of the

learning time that depend on the number of parameters.

In general, the tolerable runtime, Tt will be different for different Smart Data

Structures. We will need to determine Tt for each Smart Data Structure. To determine

Tt for a given Smart Data Structure, we need only rerun our benchmarks from Chapter

122

5.4 and Chapter 5.5 and artificially slow down the gradient and convergence runtimes

by different slowdown factors using delay loops. Any number of threads can be used.

We measure performance and determine the maximum learning runtime for which

the Smart Data Structure is still able to improve performance by at least 1
3

of its

potential. This maximum learning runtime is the tolerable runtime. If we record the

number of parameters that were learned (for whatever number of threads were used),

we can determine the tolerable slowdown αt.

Once we have Tt, the constraint on the maximum number of parameters an ap-

plication can scale to is approximately given by Ts + 2·p3 ≤ Tt. Substituting the

approximation for Tt, this can be rewritten as:

Ts + 2·p3 ≤ Ts + αt·2·p3
t

The Ts terms cancel. Then, the constant factor of 2 cancels. We solve for p and get

a final inequality bounding the number of parameters that can be learned:

p ≤ pt· 3
√
αt

The constraint on p is a function of the tolerable slowdown αt (the slowdown factor

at which the tolerable runtime occurred) and pt the number of parameters we noted

that were learned in the tolerable runtime benchmark.

In the next section, we will measure the tolerable runtime of the Smart Queue,

Skip List, and Pairing Heap so that we can get a numerical answer for the bound on

the number of parameters that these Smart Data Structures can scale to.

Runtime Margins

In this section, we perform benchmarks to determine the tolerable slowdown, αt, for

the Smart Queue, Skip List, and Pairing Heap data structures. Recall that this will

allow us to compute a numerical bound on the number of parameters that these Smart

Data Structures can learn while still meeting their target of improving performance

123

by at least 1
3

of their potential improvement. The potential improvement is taken to

be the difference between two performance bounds: the ideal performance and the

average performance over all possible knob settings. We will show that αt is greater

than 256x for these Smart Data Structures.

In general, the tolerable slowdown, αt will be different for different Smart Data

Structures. To determine αt for a given Smart Data Structure, we expand the two

experiments that we used in Chapter 5.4 and Chapter 5.5.

Recall that the first experiment evaluates the performance of Smart Data Struc-

tures against static ideal and average throughput bounds for different loads on the

data structure (configured via the post computation delay). Now, we additionally

slow down the gradient and convergence stages of the learning algorithm by differ-

ent factors and study the effects. The slowdown models increased learning runtime

due to scaling to larger numbers of parameters. Recall that the second experiment

evaluates the adaptivity of Smart Data Structures when the tradeoffs determining

ideal knob settings are time-varying. We vary the load on the data structure over

different variation frequencies and compare throughput against dynamic ideal and

dynamic average bounds. Just as in the first experiment, we now additionally inject

slow down and study the effects.

This setup allows us to sweep over the space of different loads, variation fre-

quencies, and slowdowns. Additionally, it allows us to study both applications with

stationary ideal knob settings and time-varying ideal knob settings. Our goal will

be to use this experimental setup to conservatively estimate values for the tolerable

runtime for arbitrary applications.

In our two benchmarks, αt is all that we need to measure because we already

know the number of parameters being learned in the benchmark (pt) and we have an

equation in terms of αt and pt bounding the maximum number of parameters that

the Smart Queue, Skip List, and Pairing Heap can scale to using concurrency scaling:

p ≤ pt· 3
√
αt

124

Recall that pt = 13 for the Smart Queue, Skip List,and Pairing Heap because

the number of parameters that must be learned is always fixed. These Smart Data

Structures use a single scancount knob and that scancount knob is a discrete-variable

with 13 possible discrete values. The bound thus reduces to:

p ≤ 13· 3
√
αt

We now present the results of our two benchmarks and determine the tolerable

slowdown, αt. Figure 6-11, 6-12, and 6-13 show representative samples of our results

for the first benchmark.

Each graph shows throughput versus the learning slowdown factor for a given load

(configured via the post computation delay). First, the results indicate that slowing

down the learning engine never causes throughput to dip below the static average

bound and harm throughput. Second, we observe that the throughput generally

decreases slightly as we increase the learning slowdown but that slowdown does not

significantly impact performance in this benchmark. In other words, in the first

benchmark, the learning runtime can be slowed by more than 512x and Smart Data

Structures will still achieve the requested performance improvement.

750
800
850

(o
ps
/m

s)

Smart Queue
14 threads, post comp =6400ns

Static Ideal
SDS Dynamic
Static Average

1200

1400

(o
ps
/m

s)

Smart Queue
14 threads, post comp =1600ns

600
650
700
750
800
850

1x 8x 32x 128x 256x 512x

Th
ro
ug
hp

ut
 (o

ps
/

600

800

1000

1200

1400

1x 8x 32x 128x 256x 512x

Th
ro
ug
hp

ut
 (o

ps
/

600

1x 8x 32x 128x 256x 512x

Th

Learning Slowdown Factor α

600

1x 8x 32x 128x 256x 512x

Th

Learning Slowdown Factor α

800/m
s)

Smart Skip List
14 threads, post comp =6400ns

Static Ideal
SDS Dynamic
Static Average

800/m
s)

Smart Skip List
14 threads, post comp =1600ns

400

500

600

700

800

hr
ou

gh
pu

t (
op

s/
m
s)

14 threads, post comp =6400ns
y

Static Average

400

500

600

700

800

hr
ou

gh
pu

t (
op

s/
m
s)

14 threads, post comp =1600ns

400

500

1x 8x 32x 128x 256x 512x

Th
ro
ug
h

Learning Slowdown Factor α

400

500

1x 8x 32x 128x 256x 512x

Th
ro
ug
h

Learning Slowdown Factor α

Smart Pair Heap
14 th d t 400

Static Ideal
SDS Dynamic

Smart Pair Heap
14 th d t 100e

500

600

700

800

hp
ut
 (o

ps
/m

s)

Smart Pair Heap
14 threads, post comp =400ns

Static Ideal
SDS Dynamic
Static Average

500

600

700

gh
pu

t (
op

s/
m
s)

Smart Pair Heap
14 threads, post comp =100ns

400

500

600

1x 8x 32x 128x 256x 512x

Th
ro
ug
hp

ut
 (

Learning Slowdown Factor α

400

500

600

1x 8x 32x 128x 256x 512x

Th
ro
ug
hp

ut

Learning Slowdown Factor αLearning Slowdown Factor α Learning Slowdown Factor α

Figure 6-11

The reason that the learning slowdown does not significantly impact performance

in this benchmark is that the ideal knob settings are approximately fixed, or station-

ary, for the duration of the benchmark. The effect of the learning slowdown is that

learning engine initially converges more slowly on the ideal knob settings but still

125

750
800
850

(o
ps
/m

s)

Smart Queue
14 threads, post comp =6400ns

Static Ideal
SDS Dynamic
Static Average

1200

1400

(o
ps
/m

s)

Smart Queue
14 threads, post comp =1600ns

600
650
700
750
800
850

1x 8x 32x 128x 256x 512x

Th
ro
ug
hp

ut
 (o

ps
/

600

800

1000

1200

1400

1x 8x 32x 128x 256x 512x

Th
ro
ug
hp

ut
 (o

ps
/

600

1x 8x 32x 128x 256x 512x

Th

Learning Slowdown Factor α

600

1x 8x 32x 128x 256x 512x

Th

Learning Slowdown Factor α

800/m
s)

Smart Skip List
14 threads, post comp =6400ns

Static Ideal
SDS Dynamic
Static Average

800/m
s)

Smart Skip List
14 threads, post comp =1600ns

400

500

600

700

800
hr
ou

gh
pu

t (
op

s/
m
s)

14 threads, post comp =6400ns
y

Static Average

400

500

600

700

800

hr
ou

gh
pu

t (
op

s/
m
s)

14 threads, post comp =1600ns

400

500

1x 8x 32x 128x 256x 512x

Th
ro
ug
h

Learning Slowdown Factor α

400

500

1x 8x 32x 128x 256x 512x

Th
ro
ug
h

Learning Slowdown Factor α

Smart Pair Heap
14 th d t 400

Static Ideal
SDS Dynamic

Smart Pair Heap
14 th d t 100e

500

600

700

800

hp
ut
 (o

ps
/m

s)

Smart Pair Heap
14 threads, post comp =400ns

Static Ideal
SDS Dynamic
Static Average

500

600

700

gh
pu

t (
op

s/
m
s)

Smart Pair Heap
14 threads, post comp =100ns

400

500

600

1x 8x 32x 128x 256x 512x

Th
ro
ug
hp

ut
 (

Learning Slowdown Factor α

400

500

600

1x 8x 32x 128x 256x 512x
Th
ro
ug
hp

ut

Learning Slowdown Factor αLearning Slowdown Factor α Learning Slowdown Factor α

Figure 6-12

750
800
850

(o
ps
/m

s)

Smart Queue
14 threads, post comp =6400ns

Static Ideal
SDS Dynamic
Static Average

1200

1400

(o
ps
/m

s)

Smart Queue
14 threads, post comp =1600ns

600
650
700
750
800
850

1x 8x 32x 128x 256x 512x
Th
ro
ug
hp

ut
 (o

ps
/

600

800

1000

1200

1400

1x 8x 32x 128x 256x 512x

Th
ro
ug
hp

ut
 (o

ps
/

600

1x 8x 32x 128x 256x 512x
Th

Learning Slowdown Factor α

600

1x 8x 32x 128x 256x 512x

Th

Learning Slowdown Factor α

800/m
s)

Smart Skip List
14 threads, post comp =6400ns

Static Ideal
SDS Dynamic
Static Average

800/m
s)

Smart Skip List
14 threads, post comp =1600ns

400

500

600

700

800

hr
ou

gh
pu

t (
op

s/
m
s)

14 threads, post comp =6400ns
y

Static Average

400

500

600

700

800

hr
ou

gh
pu

t (
op

s/
m
s)

14 threads, post comp =1600ns

400

500

1x 8x 32x 128x 256x 512x

Th
ro
ug
h

Learning Slowdown Factor α

400

500

1x 8x 32x 128x 256x 512x

Th
ro
ug
h

Learning Slowdown Factor α

Smart Pair Heap
14 th d t 400

Static Ideal
SDS Dynamic

Smart Pair Heap
14 th d t 100e

500

600

700

800

hp
ut
 (o

ps
/m

s)

Smart Pair Heap
14 threads, post comp =400ns

Static Ideal
SDS Dynamic
Static Average

500

600

700

gh
pu

t (
op

s/
m
s)

Smart Pair Heap
14 threads, post comp =100ns

400

500

600

1x 8x 32x 128x 256x 512x

Th
ro
ug
hp

ut
 (

Learning Slowdown Factor α

400

500

600

1x 8x 32x 128x 256x 512x

Th
ro
ug
hp

ut

Learning Slowdown Factor αLearning Slowdown Factor α Learning Slowdown Factor α

Figure 6-13

uses the ideal settings for the majority of the benchmark. The benchmark runs for 10

seconds while the learning engine updates knob settings several orders of magnitude

faster than that even when significantly slowed.

What this tells us is that the learning algorithm runs much faster than minimally

necessary in long-running applications with stationary ideal knob settings. Other ap-

plications may have time-varying ideal knob settings. Our second benchmark studies

the effect of the learning slowdown in applications with rapidly time-varying ideal

knob settings to determine the tolerable runtime.

Figure 6-14 shows the results. There are three clustered bar graphs: one for the

Smart Queue, one for the Smart Skip List, and one for the Smart Pairing Heap. In

each graph, we show throughput versus the variation frequency. Within each cluster,

we vary the learning slowdown. The lines in each graph represent the dynamic ideal

throughput and dynamic average throughput bounds.

First, the results show that slowing down the learning engine never causes through-

126

Figure 6-14

put to dip below the dynamic average bound. Second, we see that the throughput

improvement is always above the 1
3

target for slowdown up to 256x even at the highest

variation frequency of 1
10µs

. For the Smart Queue and Smart Pairing Heap, through-

put improvement is actually above the required 1
3

at 1024x slowdown as well. For

simplicity and to be conservative, we say that the tolerable slowdown is αt = 256

for all three of these Smart Data Structures in the second benchmark. Over both

experiments, the tolerable slowdown is thus αt = 256.

The most interesting feature of the results for the second benchmark is the trend

in how the throughput degrades as we slow down the learning engine. We do not see

much degradation at the lower interval frequencies. At the higher interval frequencies,

127

however, the learning engine begins to have difficulty adapting the scancount at the

same rate that the ideal scancount is changing. In this situation, the learning engine

makes a best effort by adapting the scancount as frequently as possible and finding

the best setting for use over several successive intervals rather than finding the ideal

setting for each interval. The degradation in performance is because the best-effort

scancount is sub-optimal for the intervals it must cover.

The amount of throughput degradation depends upon a) how sub-optimal the

best-effort scancount is in each of the intervals it must cover and b) how many intervals

must be covered by a single best-effort scancount. In Chapter 5.3, we showed that it

is not uncommon for a near-miss of the ideal scancount to result in throughput 20%

below the ideal. We also showed that, without slowdown, the learning engine updates

scancounts in tens of microseconds. With slowdown, this time increases and more

and more intervals must be covered by a single best-effort scancount. With slowdown,

the best-effort scancount becomes a compromise among more intervals, and since the

ideal scancount varies significantly from one load to the next, the best-effort scancount

tends to become more and more sub-optimal.

To summarize, we have conservatively estimated that the tolerable slowdown for

the Smart Queue, Skip List, and Pairing Heap is 256x. Because we took care to

study the tolerable slowdown over a range of loads and variation frequencies for both

stationary and time-varying ideal knob settings, we can extrapolate this result to

arbitrary applications. We estimate that αt = 256 (at least) for any applications

using the Smart Queue, Skip List, and Pairing Heap.

It is likely that these tolerable slowdowns can be increased by optimizing the

efficiency of our learning algorithm implementation. We have not made attempts to

do so here. Further, we have made no effort to tune knobs in the learning algorithm

itself to improve performance. Tuning the performance of the learning algorithm

would probably improve the tolerable slowdown though and is an interesting area for

future research. It is also important to emphasize that the tolerable slowdown is 256x

when a single learning thread is used for learning engines. It is possible to parallelize

the learning engine to use additional threads; this will speed up the learning runtime

128

and enable additional tolerable slowdown if desired.

6.2.7 Summary of Smart Data Structures Concurrency Con-

straints

To summarize the results of Chapter 6.2.5 and Chapter 6.2.6, the optimization com-

ponents of Smart Data Structures exhibit two potential bottlenecks as applications

scale to more threads and more threads access Smart Data Structures: overheads

introduced into Smart Data Structures by näıvely-designed external monitors and

increased learning runtimes in the learning thread.

In Chapter 6.2.5, we demonstrated a scalable reward monitor design that removes

the reward bottleneck and scales to 360 MHz reward update rates on a 48-core system.

We showed that its scalability does not introduce overheads at smaller scales, so it

can be used in all scenarios. We also demonstrated that the less scalable Heartbeats

reward monitor sustains sufficient reward update rates for our system and bench-

marks.

In Chapter 6.2.6, we showed that the runtime of learning does not necessarily

depend on the number of threads accessing a Smart Data Structure. The learning

runtime actually depends on the number of parameters that must be learned. Some

Smart Data Structures like the Smart Lock require learning one parameter for each

thread, while others like the Smart Queue, Skip List, and Pairing Heap have fixed

requirements. We also showed that, for a single Smart Data Structure, the learning

engine runs much faster than necessary to maintain good performance improvements.

From Chapter 6.2.6 and 6.2.6, we have all of the information necessary to calculate

the constraint on the maximum number of parameters that Smart Data Structures can

learn due to optimization overheads before they are unable to improve performance

by at least 1
3

of their potential. Recall that the potential improvement is defined as

the difference between two performance bounds: the performance achieved using the

ideal scancount and the average performance over all possible scancount settings.

129

The bound on the number of parameters is given by:

p ≤ pt· 3
√
αt

Filling in known values for the Smart Queue and Skip List, we have:

p ≤ 13· 3
√

256

p ≤ 82

We can use this result to approximate a constraint on the concurrency scaling

of applications due to learning runtimes. As summarized in Table 6.4, the Smart

Queue, Skip List, and Pairing Heap use a fixed number of parameters, so they do not

constrain application concurrency scaling. We can also use our results to speculate

on the constraints for Smart Locks as well as future Smart Data Structures we have

not developed yet. Since the Smart Lock has one parameter for each thread that

accesses it, we may expect an application with one Smart Lock to scale to 82 threads

before the Smart Lock is no longer able to achieve the desired level of performance

improvement. We would need to determine the tolerable slowdown (αt) for Smart

Locks as in Chapter 6.2.6 for a more accurate estimate, but it is interesting and

informative to speculate based on the results we do have.

For a new Smart Data Structure, if we know the dependence of the number of

parameters on the number of application threads, we can apply these formulas to

speculate on concurrency constraints as well. Just as we did with the Smart Lock,

we would be assuming that the same tolerable slowdown held.

If further concurrency scaling is desired, it is possible to increase the tolerable

slowdown by making the learning engine run faster. For every constant factor that

the learning engine becomes faster, the number of parameters that can be sustained

increases by the same factor. We have made no attempts so far to optimize the

learning engine code. It is also possible to parallelize the learning engine to make it

run faster.

130

Type #parameters max n
Smart Queue 13 unbounded
Smart Skip List 13 unbounded
Smart Pairing Heap 13 unbounded
Smart Lock up to 82 82

Table 6.4: Concurrency Scaling Constraints from Smart Data Structures Optimiza-
tion Components. n is the number of threads accessing the data structure.

6.3 Multi-Data-Structure Demands

In Chapter 6.2, we looked at constraints on concurrency scaling due to concurrency

bottlenecks. This section estimates constraints on multi-data-structure scaling. Re-

call that multi-data-structure scaling refers to instantiating more and more Smart

Data Structures in an application, where these data structures are logically indepen-

dent and need not be jointly optimized.

We begin in Chapter 6.3.1 by analyzing multi-data-structure scaling and evalu-

ating the incremental communication, reward, and learning bottlenecks it implies.

We will show that only the learning overhead increases due to multi-data-structure

scaling. The learning overhead increases because our design chooses to use a single

learning thread to run learning engines for all Smart Data Structures. Because a given

learning engine only gets a portion of the cycles in the learning thread, it effectively

runs slower.

We will extend our analytical model so that it can estimate constraints due to this

increased learning overhead in multi-data-structure scaling. We will show that the

constraints are not placed directly on the number of application threads, but rather

on how many learning engines the application can use. In Chapter 6.3.2, we use the

model to calculate limits on scalability and show that the limits are not likely to be

reached in practice. Thus, learning overheads do not constrain multi-data-structure

scaling in practice.

Later, in Chapter 6.5.2, we will ultimately use the analytical model and these

constraints to estimate the scalability of a variety of case-study applications.

131

6.3.1 Multi-Data-Structure Incremental Bottlenecks

Applications use multi-data-structure scaling when they scale up by adding new

thread pools with each pool utilizing a different Smart Data Structure. Figure 6-

15 illustrates. The application instantiates l Smart Data Structures. We assume that

each Smart Data Structure is accessed by a fixed number of threads, n. Thus, the

application has l·n total threads, divided into l thread pools, with each pool accessing

a different Smart Data Structure. Each Smart Data Structure has its own reward

monitor and learning engine. All l learning engines run in a single learning thread,

time-multiplexing its resources.Design Scalability

… …SDS 1 SDS l

Thread Pool 1
n

nThread Pool l

t1 t2 tn…

Shared

n

Shared

n

t1 t2 tn…

Learning

Memory Memory…

Learning
Thread

92

… …
Figure 6-15: Multi-Data-Structure Scaling. Applications scale up by adding new
thread pools with each pool utilizing its own Smart Data Structure. Each pool (and
corresponding Smart Data Structure) has its own reward monitor and learning engine.
Learning engines all run in a single learning thread and time-multiplex its resources.

Because the number of threads accessing a given Smart Data Structure does not in-

crease as the number of total threads increases in multi-data-structure scaling, multi-

data-structure scaling places no new incremental demands on communication within

the base data structure components in a Smart Data Structure. The communication

between a reward monitor, learning engine, and base data structure components uses

132

no more ports than concurrency scaling, so neither does multi-data-structure scaling

place incremental demands on communication between optimization components and

the base data structure components.

The storage requirements do increase proportionally with increases in the number

of Smart Data Structures instantiated. However, because the number of application

threads (and thus the number of instantiated Smart Data Structures) is small relative

to cache and DRAM sizes, we neglect the effect of the increased storage requirements.

Since the number of application threads accessing each reward monitor is not

increasing, bottlenecks from reward updates will be no worse than they were with

pure concurrency scaling in Chapter 6.2.5.

The only new demands that multi-data-structure scaling introduces are increases

in the learning overheads. Our design chooses to run learning engines from all Smart

Data Structures in a common learning thread. Each learning engine gets a portion

of the cycles in the learning thread and, therefore, effectively runs slower.

We would like to determine the constraint that multi-data-structure scaling places

on overall application scalability. To determine the maximum number of threads that

applications can scale to using multi-data-structure scaling, we expand our analytical

model of the learning runtime from Chapter 6.2.6. We will show that we only need

to introduce an additional factor in the model to account for the time-multiplexing

of the learning thread.

We need to understand what effect time-multiplexing the learning thread has on

the learning time, Tl. Recall the algorithm used by each learning engine (see Alg. 1

in Chapter 4.3). The algorithm executes a cycle of three stages. In the first stage of

the cycle, the algorithm samples knob settings from the latest learned parameters to

try them out and measure the resulting reward. In the second stage, it computes the

gradient. In the third stage, it tests for convergence of the gradient and, if converged,

adjusts the learned parameters in the direction of the gradient.

The sampling stage runs for a fixed amount of time regardless of how many pa-

rameters are learned or how many learning engines are sharing the learning thread.

After a fixed amount of time has passed, all of the samples that could be collected

133

are used, and the learning algorithm moves to the next stage, the gradient stage.

In other words, as illustrated in Figure 6-16, each learning engine is implemented

as a state machine with three states: a sampling state, a gradient state, and a conver-

gence test state. The sampling state get visited over and over until the fixed amount

of time elapses. Each visit results in sampling a new knob setting and measuring the

resulting reward. The other states get visited once before transitioning to the next

state in the cycle.

!time‐up

sample

time up

t t

time‐up

gradient
test

converged

93

Figure 6-16

Our design implements time-multiplexing of the learning thread by stepping the

state machine of each learning engine in round-robin order, one state transition at a

time. Since the time allocated to sampling is fixed, only the time spent in the gradient

and convergence states increases as more learning engines share the learning thread.

The gradient and convergence state runtimes are effectively increased by a factor l,

where l is the number of learning engines in the application. Thus the learning time

Tl is:

Tl ≈ Ts + l·2·p3

We have already studied the effect that an increase in learning runtimes will have

on Smart Data Structure performance. At some point, the learning runtime will

134

increase enough that a Smart Data Structure will no longer able to achieve at least 1
3

of its potential performance improvement. In Chapter 6.2.6, we empirically measured

this threshold which we call the tolerable runtime. We gave an inequality bounding

the learning time to less than or equal to the tolerable runtime:

Tl ≤ Tt

We found it more convenient to express the tolerable runtime as a function of two

factors: the tolerable slowdown of the gradient and convergence test runtimes (αt)

and the number of parameters that were learned in the Smart Data Structure (pt).

The tolerable runtime is given by:

Tt ≈ Ts + αt·2·pt3

Substituting for Tl and Tt in the inequality, we have:

Ts + l·2·p3 ≤ Ts + αt·2·pt3

Canceling terms and reducing constant factors, we have a final inequality expressing

the constraint on the number of parameters and learning engines that Smart Data

Structures can scale to using multi-data-structure and concurrency scaling:

l·p3 ≤ αt·pt3

For Smart Data Structures like the Smart Queue, Skip List, and Pairing Heap,

we measured the tolerable slowdown, αt. We found that αt = 256 and pt is fixed in

these data structures at pt = 13 regardless of how many threads access them. Thus,

for these data structures, the inequality reduces to:

l·p3 ≤ 256·133

135

6.3.2 Multi-Data-Structure Scaling Constraints

We would like to determine the maximum number of threads we can scale an applica-

tion to via multi-data-structure scaling before Smart Data Structures can no longer

maintain at least 1
3

of their potential performance improvements. We have shown

that the limits of multi-data-structure scaling do not directly depend on the number

of threads. Rather, the limits depend on the number of learning engines needed.

For Smart Data Structures like the Smart Queue, Skip List, and Pairing Heap,

we derived a formula that will give us a numerical bound on the number of learning

engines and the number of parameters that can be learned:

l·p3 ≤ 256·133

For the purposes of multi-data-structure scaling, we are not interested in scaling up

the number of parameters p, so we will use a fixed value p = 13. 13 is the number of

parameters that the Smart Queue, Skip List, and Pairing Heap require learning. The

inequality reduces to:

l ≤ 256

Thus, applications can use up to 256 learning engines before the learning runtime

impedes the Smart Data Structure’s ability to improve performance. The constraint

applies only to the number of learning engines. In other words, the number of thread

pools in the application is constrained, but the number of threads (n) in each thread

pool is not. For different size thread pools, we give constraints on the maximum

number of application threads in Table 6.5.

threads per pool, n # learning engines, l max application threads, l·n
1 up to 256 256
2 up to 256 512
64 up to 256 16384

Table 6.5: Multi-Data-Structure Scaling Constraints.

In practice, since the maximum number of learning engines is large, we do not

see learning overheads as being a bottleneck to multi-data-structure scaling. Further-

136

more, scalability can be extended by enabling the use of multiple learning threads.

6.4 Multi-Optimization Demands

In Chapter 6.3, we looked at constraints on multi-data-structure scaling due to multi-

data-structure bottlenecks. This section estimates constraints on multi-optimization

scaling. Recall that multi-optimization scaling is similar to multi-data-structure scal-

ing in that it refers to instantiating more and more Smart Data Structures in an

application. The difference is that, in multi-optimization scaling, these data struc-

tures need to be jointly optimized for the best performance.

This section is organized similarly to the section on multi-data-structure scaling.

We begin in Chapter 6.4.1 by analyzing multi-optimization scaling and evaluating the

incremental communication, reward, and learning bottlenecks it implies over multi-

data-structure scaling. We will show that only the learning overhead increases. How-

ever, it increases more substantially in multi-optimization scaling. This is because a

learning engine must now jointly optimize multiple knobs and thus more parameters,

and the learning runtime grows cubically in the number of parameters being learned.

We will extend our analytical model so that it can estimate constraints due to this

increased learning overhead. Then, in Chapter 6.4.2, we use the analytical model to

estimate constraints on application scalability due to multi-optimization scaling.

Later, in Chapter 6.5.2, we will ultimately use the analytical model and these

constraints to estimate the scalability of a variety of case-study applications.

6.4.1 Multi-Optimization Incremental Bottlenecks

Applications use multi-optimization scaling when they increase the number of Smart

Data Structures being jointly optimized by a given learning engine and reward moni-

tor. Figure 6-17 illustrates. For simplicity, the figure shows an application using only

multi-optimization scaling. There is a single pool of a fixed number of threads, n.

The application scales by increasing the number of Smart Data Structures, s, that

are accessed by the pool. All s Smart Data Structures share one reward monitor and

137

one learning engine. The learning thread is not time-multiplexed.

Design Scalability

Scale up via multiple data structures

Application Threads

…

SDS 1

t1 t2 tn
…

pp

… n

…

Learning

n

n

SDS s

Shared

Thread

91

Shared
Memory

Figure 6-17: Multi-Optimization Scaling. Applications scale up by increasing the
number of Smart Data Structures belonging to each pool of threads. We assume
there is one pool of threads, with a fixed number of threads n. There are s Smart
Data Structures. All s Smart Data Structures share one reward monitor and one
learning engine.

As was the case with multi-data-structure scaling, the number of threads access-

ing a given Smart Data Structure is not increasing. Therefore, multi-optimization

scaling places no new incremental demands on communication within the base data

structure components in a Smart Data Structure. Neither does multi-optimization

place incremental demands on communication between optimization components and

the base data structure components because the number of ports between them is no

worse than the case with concurrency scaling. The learning engine must now connect

to more knobs, but this does not increase the number of sharers of cache lines internal

to the knobs and therefore does not represent new demands on communication.

The storage requirements do increase proportionally with increases in the number

of Smart Data Structures instantiated. However, the number of instantiated Smart

Data Structures is small relative to cache and DRAM sizes, so we can again neglect

138

the effect of the increased storage requirements.

The only potential incremental demands over concurrency scaling and multi-data-

structure scaling are from reward and learning overheads. As more Smart Data

Structures are added, one learning engine and one reward monitor are shared among

all Smart Data Structures. The demands on the reward monitor may increase be-

cause there are more data structures to supply reward updates for. However, we

have demonstrated a scalable reward monitor based on lazy counters (see Chapter

6.2.5) that can tolerate sufficiently high update rates that reward overheads are not

a bottleneck.

The only incremental demands that multi-optimization scaling introduces over

concurrency scaling are learning overheads, and the learning overheads introduced

by multi-optimization scaling are more significant than the learning overheads intro-

duced by multi-data-structure scaling. In the case of multi-optimization scaling, the

overhead derives from the fact that all Smart Data Structures share a common learn-

ing engine and the learning engine must jointly optimize knobs for all Smart Data

Structures. This implies that it must learn more parameters.

We would like to determine the constraint on the number of Smart Data Structures

that can be jointly optimized before learning runtimes cause Smart Data Structures to

miss their performance improvement targets. Fortunately, we have already developed

an inequality that provides a bound on the number of parameters that can be learned

(p) without degrading performance improvements. We will extend this inequality

to accommodate multi-optimization scaling and jointly optimizing parameters for s

Smart Data Structures at once in a learning engine.

To review, when concurrency and multi-data-structure scaling are being used, the

bounds on the number of learning engines l and number of parameters that can be

learned p are given by:

l·p3 ≤ αt·pt3

To extend the inequality so that it accommodates multi-optimization scaling in

addition to concurrency and multi-data-structure scaling, we need only adjust the

139

left-hand side. We will think of p not as the number of parameters corresponding to

the knobs in a single Smart Data Structure but as the average number of parameters

required for each Smart Data Structure. We will think of s not as the total number of

Smart Data Structures but as the number of Smart Data Structures jointly optimized

by each learning engine. Thus the inequality is given by:

l·(s·p)3 ≤ αt·pt3

For Smart Data Structures like the Smart Queue, Skip List, and Pairing Heap, we

found that αt = 256 and pt is fixed in these data structures at pt = 13 regardless

of how many threads access them. Thus, for these data structures, the inequality

reduces to:

l·(s·p)3 ≤ 256·133

6.4.2 Multi-Optimization Scaling Constraints

We would like to determine the maximum number of threads we can scale an appli-

cation to via multi-optimization scaling before Smart Data Structures can no longer

maintain at least 1
3

of their potential performance improvements. We have shown

that the limits of multi-optimization scaling do not directly depend on the number of

threads. Rather, the limits depend on how many total parameters a learning engine

must learn to jointly optimize all of the Smart Data Structures connected to it.

For Smart Data Structures like the Smart Queue, Skip List, and Pairing Heap,

we derived a formula that will give us a numerical bound on the number of learning

engines (l), number of Smart Data Structures per learning engine (s), and number of

parameters (p), that an application can scale to:

l·(s·p)3 ≤ 256·133

For the purposes of pure multi-optimization scaling, we are not interested in scaling

up the average number of parameters p, so we will use a fixed value p = 13. 13 is

140

the number of parameters that the Smart Queue, Skip List, and Pairing Heap require

learning. We are also not interested in scaling the number of learning engines, so we

will use l = 1. The inequality reduces to:

s ≤ 3
√

256

s ≤ 6.35

Thus, applications can use up to 6 Smart Data Structures via multi-optimization

scaling before the learning runtime impedes the Smart Data Structure’s ability to

improve performance by the requested amount. If an application needs to jointly

optimize more than 6 Smart Data Structures, it is possible to parallelize the learning

engine so that it can run faster. We leave this to future work.

In practice, we have found that multi-optimization is not often needed because

Smart Data Structures can typically be optimized independently and approximate the

performance of joint optimization. In other words, less expensive multi-data-structure

scaling can be used in place of multi-optimization scaling in many cases. The main

applications that we think will benefit from multi-optimization are applications that

use pipeline parallelism. When Smart Data Structures connect stages of a pipeline,

jointly optimizing them should help maintain the balance of each pipeline stage and

maximize overall pipeline throughput.

Fortunately, this type of application seldom utilizes pipelines deeper than 5 or 6

stages, so the maximum number of Smart Data Structures to jointly optimize would

be 5. These applications typically scale by using multiple pipelines. Multiple pipelines

can be independently optimized via multi-data-structure scaling. We have shown in

Chapter 6.3.2 that the limits of multi-data-structure scaling occur at such large scales

that they are not likely to limit application scaling in practice.

141

6.5 Case Studies

In the previous sections, we determined constraints on application scalability when

concurrency, multi-data-structure, or multi-optimization scaling were used in isola-

tion. In this section, we combine these constraints to estimate the scalability of

applications that use combinations of these types of scaling. Further, we have said

nothing about the degree to which real applications rely on each of these types of

scaling. In this section, we will study typical applications to identify specifically how

much concurrency, multi-data-structure, and multi-optimization scaling they require

as they scale to larger numbers of threads. We will use the combined scaling lim-

its to estimate the maximum number of threads each of these applications can scale

to before Smart Data Structures are no longer able to sustain at least 1
3

of their

performance benefits.

Chapter 6.5.1 begins by summarizing the bottlenecks that eventually constrain

application scalability and the analytical model we developed to estimate their com-

bined constraints on application scalability. Then, Chapter 6.5.2 describes our appli-

cation case studies and identifies their specific utilization of concurrency, multi-data-

structure, and multi-optimization scaling. Finally, Chapter 6.5.3 uses the analytical

model to estimate overall limits on the maximum number of threads our case-study

applications can scale to.

We will show that, for all but one of the case study applications, Smart Data

Structures scale up to 64 threads or beyond before another data structure would be

higher performance or before Smart Data Structures would be unable to sustain at

least 1
3

of their potential performance improvements. For the other application, we

will show that the scaling limit due to Smart Data Structures is not a scaling limit in

practice because the application itself does not scale this far. We will also show that

the ultimate constraints on application scalability usually derive from the base data

structures upon which Smart Data Structures layer optimization rather than from

scaling constraints due to optimization.

142

6.5.1 Combined Constraints

In Chapter 6.2, Chapter 6.3, and Chapter 6.4, we have identified a variety of potential

bottlenecks in our design. We have shown how our design eliminates many of them.

For a few that remain, we have quantified the point at which they begin to limit the

ability of Smart Data Structures to maintain at least 1
3

of their potential performance

improvements. This section summarizes these bottlenecks and the analytical model

we developed to estimate their constraints on application scalability.

To summarize our results, we have investigated many potential bottlenecks and

have found two sources that can eventually limit application scalability:

1. the concurrency scaling of the base data structures upon which Smart Data

Structures are built

2. the scaling of the Smart Data Structures learning components due to:

• more learning engines multiplexing the learning thread via multi-data-

structure scaling

• increased runtimes of individual learning engines via multi-optimization

scaling and jointly optimizing multiple knobs

For the Smart Queue, Skip List, and Pairing Heap, we have determined the con-

currency limits that derive from their base data structures (the Flat Combining data

structures). The Flat Combining Queue, Skip List, and Pairing Heap outperform

prior art up to 64 threads concurrently accessing the data structure. Shortly after

64 threads, the Flat Combining queue is overtaken by the scalable Combining Tree

Queue. The Flat Combining Skip List and Pairing Heap remain superior to prior art

as concurrency is scaled beyond 64 threads. Thus, we conclude (conservatively) that

the concurrency limit for Smart Data Structures due to base data structure limits is

64 threads accessing a given Smart Data Structure.

For the Smart Queue, Skip List, and Pairing Heap, we have also determined the

limits due to learning overheads. We found that the learning engine runs much faster

than necessary in basic Smart Data Structure configurations. We showed that this

143

headroom enables multi-data-structure scaling beyond 256 Smart Data Structures and

multi-optimization scaling up to 82 jointly-optimized parameters in a single learning

engine.

We would now like to map these constraints into scalability limits on real applica-

tions. Real applications may use a combination of concurrency, multi-data-structure,

and multi-optimization scaling, and we have derived an inequality in Chapter 6.3 to

bound the maximum number of learning engines (l), maximum number of Smart Data

Structures jointly optimized by each learning engine (s), and the maximum number

of parameters on average in each Smart Data Structure (p):

l·(s·p)3 ≤ αt·pt3

Here, αt and pt relate to the tolerable runtime, and we have empirically measured

them for the Smart Queue, Skip List, and Pairing Heap. For these data structures,

the inequality reduces to:

l·(s·p)3 ≤ 256·133

In the next two sections, we look at typical application structures and determine

what combinations of concurrency, multi-data-structure, and multi-optimization scal-

ing they use.

6.5.2 Case Study Applications

We consider five application structures / data structure use-cases: a global work

queue, work-stealing, discrete event simulation, network traffic prioritization, and

software pipelining. We begin with descriptions of these applications then provide

Table 6.6 to relate the number of application threads they use to their concurrency,

multi-data-structure, and multi-optimization demands.

Global Work Queue A global work queue program uses a parallelism model that

divides computation into units of work. All threads share a common Smart Queue

which they populate with work and extract work from. In general, performing a unit

144

of work leads to the generation of new units of work. Scaling this application requires

pure concurrency scaling.

Work Stealing Like global work queues, work stealing is a parallelism model that

divides computation into units of work. The difference is that each thread owns

a Smart Queue which it populates with work and extracts work from. When a

thread’s queue is empty, it has run out of work and may access other Smart Queues

to steal work from other threads. Scaling this application requires a combination

of concurrency and multi-data-structure scaling. However, we assume concurrency

scaling is limited to 64 threads accessing a given Smart Data Structure. In other

words, we limit the stealing so that threads may steal work from no more than

63 other threads. For each thread, those 63 are chosen to guarantee that no data

structure is accessed by more than 64 total threads.

Parallel Discrete Event Simulation Parallel discrete event simulation is a sim-

ulation method which keeps a simulation clock and processes simulation events when

their time matches the simulation clock. Events may be generated out of order, so

applications use priority queues (in this case a Smart Pairing Heap), to process them

in chronological order. When a single global priority queue is used, scaling this ap-

plication requires pure concurrency scaling. Hierarchical discrete event simulation is

also possible. Hierarchical discrete event simulation is an implementation technique

to improve performance using a hierarchy of priority queues instead of a centralized

priority queue. Scaling the hierarchical version requires a combination of concurrency

and multi-data-structure scaling.

Network Traffic Prioritization Network traffic prioritization is an Internet rout-

ing strategy for prioritizing different types of traffic. For example, it can be used

to improve the latency and quality of VOIP conversations by routing VOIP streams

with high priority. It can be implemented with a global Smart Skip List. Scaling this

application requires pure concurrency scaling.

145

Software Pipelining Software pipelining is a method for parallelizing stream com-

putations into multiple stages such that the output of one stage is the input to the

next and all stages run in parallel for increased processing throughput. Scaling this

application requires a combination of concurrency and multi-optimization scaling.

Super-scalar software pipelining is also possible. Super-scalar software pipelining

replicates a simple pipeline and runs all pipelines in parallel. Scaling this type of

application requires a combination of concurrency, multi-data-structure, and multi-

optimization scaling.

Table 6.6 relates the number of application threads used in these applications,

n, to their concurrency, multi-data-structure, and multi-optimization demands. As

the table indicates, application structures that globally access data structures have

concurrency requirements that grow linearly in the number of threads. Application

structures that linearly increase the number of data structures as more threads are

added either linearly increase the number of learning engines needed or linearly in-

crease the number of Smart Data Structures that must be jointly optimized by a

given learning engine.

Application Scenario # SDS concurrency l engines s·p params per engine
Global Work Queue 1 n 1 13
Work Stealing (64-way Stealing) n | n≤4096 64 n 13
Discrete Event Sim. Simple 1 n 1 13
Discrete Event Sim. Hierarchical n+ 1 n n+ 1 13
Net Traffic Prioritization 1 n 1 13
Software Pipeline Simple n− 1 2 1 13·(n− 1)
Software Pipeline Superscalar (5-stage pipes) 4·n/5 2 n/5 13·4

Table 6.6: Application Scaling Demands. n is the number of application threads

6.5.3 Overall Scaling Results

To determine scalability limits for a given application, we divide the limits into two

parts: limits from Flat Combining and limits due to learning overheads. From Chap-

ter 6.5.1, we know that the maximum concurrency that Flat Combining data struc-

tures can sustain is:

concurrency = 64 threads accessing any data structure

146

We also know an inequality that gives the constraints of learning overheads on the

maximum values of l, s, and p that Smart Data Structures can sustain:

l·(s·p)3 ≤ αt·pt3

For the Smart Queue, Skip List, and Pairing Heap, we have empirically measured αt

and pt, and the inequality reduces to:

l·(s·p)3 ≤ 256·133

In Table 6.7, we use these limits to give a numerical value for the constraint on

application scalability deriving from each source. To calculate the constraint on the

maximum number of threads due to learning, we need to express the inequality in

terms of the number of application threads, n. We do this by substituting for l and

s·p using the values in Table 6.6.

Application Scenario Max n due to FC Max n due to SDS Max n
Global Work Queue 64 unbounded 64
Work Stealing (64-way Stealing) 4096 256 256
Discrete Event Sim. Simple 64 unbounded 64
Discrete Event Sim. Hierarchical 64 255 64
Net Traffic Prioritization 64 unbounded 64
Software Pipeline Simple unbounded 7 (7-stage) 7
Software Pipeline Superscalar (5-stage pipes) unbounded 20 (4x 5-stage) 20

Table 6.7: Application Scaling Limits and Limit Sources. n is the total number of
application threads.

As the table illustrates, the base data structures are the scalability limiter for

most of these applications. Furthermore, for the work-stealing application, while

the learning overheads are technically the scalability limiter, the limit is 256 threads

which will not be a limitation in practice – especially since more learning threads

can be added to increase scalability. Only the software pipelines are limited by the

scaling of the learning overheads in Smart Data Structures. We will show, however,

that these theoretical limits will also not limit scalability in practice.

The scalability limits on software pipelines derive from the use of a single learning

engine to jointly optimize multiple Smart Data Structures. The problem is that

147

runtime of the learning algorithm scales cubically in the number of parameters that

must be learned, and each Smart Data Structure is contributing new parameters to

learn. Luckily, typical software pipelined applications (such as those in the Parsec

benchmark suite [2]), do not use more than 5- or 6-stage pipelines. This only requires

jointly optimizing up to 5 Smart Data Structures with a single learning engine –

well within the limit. Software pipelined applications typically avoid deep pipelines

because deep pipelines introduce programming complexity and overwhelm on-chip

communication bandwidth. Replicating pipelines and running multiple pipelines in

parallel is more common in our experience.

As Table 6.7 shows, Smart Data Structures can sustain 4 parallel 5-stage software

pipelines. More parallel pipelines can be supported if we enable the use of multiple

learning threads in our design. Further, deeper pipelines than 7-stage pipelines can

be supported if we parallelize the learning algorithm to make it run faster.

Since it is interesting to consider more realistic pipelines, we will study a 5-stage

simple pipeline. We would like to estimate how much of the potential performance

improvement the Smart Queue is able to achieve for this application. To determine

this, we must first calculate how much the learning has slowed down. Let us denote

this slowdown by α. Then, we can estimate the percent of potential performance

achieved by looking at the results in Figure 6-14 in Chapter 6.2.6.

Recall that the graph for the Smart Queue shows Smart Queue performance as

a function of the learning slowdown for different variation frequencies. To determine

what performance improvement we should expect, we need to know how rapidly the

idea knob settings change in the 5-stage pipeline application. For simplicity, we will

assume the worst case: that ideal settings vary rapidly with a frequency of 1
10µs

. Once

we have calculated the learning slowdown (α), we can focus on the bar in the 1
10µs

cluster corresponding to α.

Thus, a simple procedure for estimating performance improvement is to assume

ideal knob settings change every 10µs and look at the bar corresponding to the

calculated slowdown α.

148

To get α, we have an equation relating α to l, s, and p, which we will solve for α:

α = l·
(s·p

13

)3

We know l and s·p for this application: l = 1 since one learning engine is used and

s·p = 4·13 since there are 4 Smart Queues each requiring learning 13 parameters.

The equation reduces to:

α = 1·
(

4·13

13

)3

= 64

Figure 6-14 shows that, at α = 64, the Smart Queue achieves about 90% of its poten-

tial performance improvement. Recall that the potential improvement is taken to be

the difference between the performance achieved using the ideal dynamic scancount

and the average dynamic performance achieved over all scancount values. Table 6.8

summarizes this result.

Application Scenario Threads SDS Type Learning Slowdown Expected Perf.
Software Pipeline Simple (5-stage) 5 Smart Queue 64x 90%

Table 6.8: Performance at Realistic Software Pipelines Scaling Levels

We will also use this methodology to estimate how much of the potential perfor-

mance improvement Smart Data Structures achieve in the case-study applications.

We calculate the learning slowdown and look up the corresponding performance im-

provement in the graphs in Figure 6-14 for the Smart Queue, Skip List, and Pairing

Heap. Table 6.9 gives the results. For all applications, at the maximum scalability

level, the Smart Data Structure can be expected to achieve at least 1
3

of its potential

performance improvement. This is what we requested. Actually, the achieved percent

performance improvement is about 2
3

or more for these applications.

Application Scenario Limiter Max Threads SDS Type Learning Slowdown Performance
Global Work Queue FC 64 Smart Queue 1 65%
Work Stealing (64-way Stealing) Learning 256 Smart Queue 256 80%
Discrete Event Sim. Simple FC 64 Smart Pair Heap 1 70%
Discrete Event Sim. Hierarchical FC 64 Smart Pair Heap 65 80%
Net Traffic Prioritization FC 64 Smart Skip List 1 60%
Software Pipeline Simple (7-stage) Learning 7 Smart Queue 216 80%
Software Pipeline Superscalar (4x 5-stage) Learning 20 Smart Queue 256 80%

Table 6.9: Performance at Maximum Scaling Levels

Overall, we find that the most significant limiter to scalability in Smart Data

149

Structures is the base data structures upon which they are built. We look forward to

the development of more scalable data structures – possibly parallel Flat Combining

data structures – which will allow us to scale Smart Data Structures further in the

future.

150

Chapter 7

Smart Locks Performance Results

This chapter evaluates the performance of Smart Locks. In it, we perform experiments

on systems with performance heterogeneities between threads and study the effect of

the lock acquisition scheduling policies implied by different locks on application per-

formance. We show that Smart Locks are able to learn intelligent lock acquisition

scheduling policies automatically and optimize access to shared resources and/or crit-

ical sections protected by the lock. Through online Reinforcement Learning, Smart

Locks learn application-specific schedules that maximize long-term performance and

adapt the schedule dynamically as necessary. Then, based on our findings in these

experiments, we provide a set of usage guidelines for Smart Locks.

7.1 Experiment Overview

The first experiment studies dynamic heterogeneities from frequency scaling. In par-

ticular, we look at overclocking technologies like Intel’s R© Turboboost R© which over-

clock cores individually to improve performance if their power and thermal headroom

allows. We simulate Turboboost R© overclocking events in a synthetic benchmark and

show that the Smart Lock’s lock acquisition scheduling can significantly improve the

performance of a work-pile data structure in such performance heterogeneity scenar-

ios. Further, we show that Smart Locks can readily adapt to dynamic changes in the

system that affect the ideal scheduling policy.

151

The second experiment studies static manufacturing heterogeneities. We look at

application performance when applications run on machines whose cores operate at

different clock speeds due to circuit imperfections. We study the performance of

popular SPLASH-2 benchmarks and show a) that the scheduling policy of a lock in

these applications significantly effects performance and b) that Smart Locks are able

to learn near-optimal scheduling policies.

7.2 Dynamic Overclocking Experiment

This experiment applies Smart Locks to dynamic performance heterogeneities in core

performance. It evaluates the performance and adaptivity of Smart Locks versus

standard lock strategies in an overclocking scenario analogous to Turboboost R© where

core clock frequencies vary dynamically and unexpectedly. The section starts with a

description of the experimental setup then presents results.

7.2.1 Experimental Setup

The experimental setup emulates a heterogeneous multicore with six cores (which each

run one thread) where core frequencies are drawn from the set {3 GHz, 2 GHz}. The

benchmark is synthetic, and represents a simple work-pile programming model (with-

out work-stealing). The application uses the pthreads library for thread spawning and

Smart Locks within the work-pile data structure. The application is compiled using

gcc v.4.3.2. The benchmark uses 6 threads on 6 cores: one for the master thread, four

for workers, and one reserved for Smart Locks. The master thread generates work

while the workers pull work items from the pile and perform the work.Application

Heartbeats [17] are used to supply the reward: heartbeats are credited for each work

item completed.

We assume, for simplicity, that each work item requires a constant number of

cycles to complete. On a heterogeneous multicore, workers will, in general, execute on

cores running at different speeds; thus, x cycles on one core may take more wall-clock

time to complete than on another core. In this experiment, work items are small so

152

that workers must frequently retrieve work from the pile. It is a well-known deficiency

of work-piles built using locks that the producer (the master) can be starved because

it must compete with n − 1 consumers (workers) for the lock. We will show that a

major virtue of the Smart Lock is that it eliminates this starvation by scheduling the

producer with high precedence.

This experiment models a heterogeneous multicore but runs on a homogeneous

8-core (dual quad core) Intel Xeon(r) X5460 CPU with 8 GB of DRAM running De-

bian Linux kernel version 2.6.26. In hardware, each core runs at its native 3.17 GHz

frequency. Linux system tools like cpufrequtils could be used to dynamically manip-

ulate hardware core frequencies, but our experiment instead models clock frequency

heterogeneity using a software method: when a thread completes a work item, it

credits either 2 or 3 heartbeats where it would normally issue 1, proportional to the

modeled clock speed of the core it runs on (2 GHz or 3 GHz).

The experiment simulates two overclocking events that change core speeds. For

the cores whose speeds change, we reflect the change by adjusting the number of

heartbeats they issue for each completed work item. We note that, in this experiment,

we choose to simulate events (while suppressing events in hardware) as opposed to

recording real events in the hardware to simplify the illustration of the benefit of

Smart Locks; it allows us to determine a priori illustrative scheduling policies to

compare Smart Locks against and greatly simplifies the derivation of performance

bounds.

7.2.2 Results

In this experiment, we will compare benchmark performance across overclocking

events for different spin-locks and their lock acquisition scheduling policies. A test-

and-set lock, a write-biased lock, two hand-programmed priority locks, and a Smart

Lock are compared. The test-and-set represents baseline lock performance. The

write-biased lock preferentially schedules writers when determining which contending

thread will get the lock next. This improves performance by helping prevent pro-

ducer starvation. The two hand-programmed priority locks, together, give a bound

153

on ideal performance. Since we know a priori what speeds different cores will be, we

hand-program a priority lock to perform well in each case. The goal of the Smart

Lock will be to learn these hand-optimized policies and adapt when the overclocking

events occur to change the policy.

Dividing the graph into three regions surrounding the overclocking events, Hand-

Opt 1 is optimal for the first and last region. Its policy sets the master thread and

worker 0 to a high priority value and all other threads to a low priority value (e.g.

high = 2.0, low = 1.0). Hand-Opt 2 is optimal for the middle region of the graph;

its policy sets the master thread and worker 3 to a high priority value and all other

threads to a low priority value.

Figure 7-1 shows the benchmark results. It exhibits several interesting features.

First, it shows that the ideal performance from the priority locks is substantially

higher than that achieved by the test-and-set and write-biased standard locks (here-

after referred to as simply standard locks). This demonstrates that lock acquisition

scheduling and application-specific biases in the scheduling can provide significant

benefits over the fixed policies of standard locks on heterogeneous multicores.

Figure 7-1: Heartrate performance across thermal throttling events (workload
changes). Smart Locks significantly outperforms reactive and TAS spin-locks, achiev-
ing near optimal.

Second, the results show that the Smart Lock achieves near-ideal performance in

the first region before the first overclocking event. This shows that Smart Locks are

154

effective at learning the need for static biases in scheduling, and that the overhead of

learning in Smart Locks relative to the overhead of priority locks is low; Smart Locks

are able to optimize priority locks without degrading performance from the ideal.

Third, the results show that Smart Locks readily adapt the lock acquisition

scheduling policy after the overclocking events. After each event, Smart Lock perfor-

mance approaches the performance of the corresponding hand-programmed priority

lock. Performance does dip temporarily after the each event but improves quickly.

Interestingly, during the performance dips, Smart Locks’ policy is suboptimal but

still better than the standard locks. At the lowest point, the performance approaches

the performance of the write-biased lock because, while the policy is suboptimal for

the worker threads, it still correctly identifies the need for prioritizing the master.

Within an adaptation time-scale of a few hundred milliseconds after each event, the

Smart Lock adapts the policy and achieves near-ideal performance.

Figure 7-2 elucidates both the source and duration of the performance dips. It

shows the time-evolution of the Smart Lock’s internal learned parameters θi. To

a certain approximation, these weights can be interpreted as the relative priority

between different threads. Ranking threads by their weight gives the priority order,

and the distance between two thread weights gives how strongly that relative order

is preferred. For their priority to switch, thread weights must cross over.

Figure 7-2: Time evolution of the learned policy. Crossovers between Worker 0 and
3 reflect throttling events.

In the figure, threads all have the same weight initially, implying equal probability

155

of being selected as high-priority threads. Between time 0 and the first event, Smart

Locks learns that the master thread and worker 0 should have higher priority, and

uses a policy similar to the hand-programmed one. After the first event, the Smart

Lock learns that the priority of worker 0 should be decreased and the priority of

worker 3 increased, similar to the second hand-programmed one. After the second

event, Smart Lock relearns the first workload policy.

The performance dip after the first overclocking event lasts longer than the dip

after the second event because it takes the thread weights of workers 0 and 3 longer

to cross over after the first event than it does after the second event. This is because,

just before the second event, the weights are closer together than they were before

the first event, so the weights have less bias to overcome before they cross over to the

ideal policy.

7.3 SPLASH-2 Static Heterogeneity Experiment

This experiment applies Smart Locks to intrinsic system heterogeneities in core per-

formance from manufacturing imperfections which affect the maximum speeds of dif-

ferent cores. We envision systems in which faster cores are not limited to the lowest

common denominator in core speeds and are allowed to run heterogeneously rather

than preserving homogeneity.

This experiment evaluates what impact a spin-lock’s scheduling policy has on end-

to-end application performance on such a system. It benchmarks the radiosity and

raytrace applications from SPLASH-2, replacing key locks within their concurrent

data structures with Smart Locks whose policies are varied as part of the experi-

ment. The results show that the lock acquisition scheduling policy can significantly

impact application performance even on moderately heterogeneous multicores like the

system we study. We expect larger heterogeneities will result in larger effects. The

results additionally demonstrate that Smart Locks can learn good policies quickly

and significantly improve overall application performance. The next sections detail

the experimental setup and present the results.

156

7.3.1 Experimental Setup

The experiment uses pthreads implementations of all applications, replacing key

pthreads mutexes with Smart Locks. The lock acquisition scheduling policies within

the Smart Locks are varied to a) compare the performance of common policies, two

custom policies, and Smart Locks’ default dynamically adaptive policy, and to b)

estimate bounds in performance. The common policies are taken from the policies

intrinsic to two popular spin-locks: test-and-set (Random) and ticket locks (FIFO).

The Random policy grants the lock to a waiter at pseudo-random while the FIFO

policy grants locks to waiters fairly in the order they arrive. The custom policies are

application-specific policies introduced where the common policies are not expected

to be upper and lower bounds.

All benchmarks are run with 6 application threads (excluding the startup thread)

and one thread reserved for the Smart Data Structures learning thread which runs on

a spare core. Large inputs are used for all applications. Each thread is fixed to a core

by setting thread affinity. The experiment uses the Linux system tool cpufrequtils to

configure an 8-core Intel Xeon(r) X5460 system with 8GB of DRAM to emulate a

heterogeneous multicore with heterogeneous, fixed clocks speeds of {3.17, 3.17, 2, 2,

2, 2, 2, 2} GHz. Debian Linux kernel version 2.6.26 and gcc v.4.3.2 are used.

The following paragraphs describe the benchmarks, custom policies unique to

them, and application-specific details such as how a monitor (see Chapter 4.2) is

integrated into the application to drive the Smart Locks adaptive policy.

Radiosity The radiosity benchmark is a graphics application that computes the

equilibrium distribution of light in a scene. Its parallelism employs distributed work

queues with work stealing. Work items are imbalanced because the amount of work

per item depends on the input scene. radiosity was chosen to demonstrate a general

scenario where Smart Locks works well: in work queues where Smart Locks can be

used as the locking mechanism for work stealing. In this context, varying the lock

acquisition scheduling policy allows us to vary the work-stealing heuristic. We have

hand-coded good and bad custom policies. The good policy a) optimizes cache locality

157

by programming the Smart Lock in each queue to prefer the thread that owns the

queue most highly then b) minimizes spin idling on the fast cores by ordering the

remaining threads by how fast their cores are. The bad policy essentially inverts the

good policy. We run the benchmark with 6 worker threads: 2 on the fast cores, 4 on

the slow cores. Application Heartbeats is used as the application monitor, and a unit

of reward is credited for each work item completed.

Raytrace The raytrace benchmark is a graphics application that renders a 3-d scene

using the raytracing algorithm. It was selected to illustrate a general scenario where

Smart Locks has little benefit. raytrace uses a distributed work queue but differs from

radiosity in that it has little work stealing. The queues are preloaded with work, so

for most of the execution, a worker does not need to steal work and lock contention

is negligible. We run this benchmark with 6 worker threads (just like in radiosity)

and replace the existing locking mechanism in each queue with a Smart Lock. The

same custom policies are used. Heartbeats is used, again, with reward credited for

each work item completed.

7.3.2 Results

Figure 7-3 shows the performance of the different lock acquisition scheduling policies

in radiosity and raytrace. Speedups are relative to the bad policy. Together, the

speedup bounds from the ideal and bad policies capture the variation the application

experiences in performance as a function of the policy.

In radiosity, the ideal and bad policies are the custom policies. Together, they

show that a good scheduling policy can improve performance by a significant 1.23x.

As expected, the Random policy performs about half-way between the bounds. The

results show that Smart Locks performs within 2% of the ideal speedup, potentially

improving performance by 1.2x. In raytrace, the custom policies yield the ideal and

lowest speedup again. The Smart Lock policy nearly achieves the ideal speedup, but

raytrace does not see much benefit from lock acquisition scheduling.

Overall, the results demonstrate that the Smart Locks machine learning approach

158

Smart Locks Work Stealing

1 4

Radiosity: Speedup vs. Policy

0 6

0.8

1

1.2

1.4

Sp
ee
du

p

0.4

0.6

Baseline Random Smart
Lock

Ideal

1

1.2

up

Raytrace: Speedup vs. Policy

0.4

0.6

0.8

Sp
ee
du

61

Baseline Smart Lock Ideal

Figure 7-3: Speedup versus lock acquisition scheduling policy. The policy can signif-
icantly impact performance. Smart Locks learns a policy that approaches the ideal
speedup.

to optimizing and adapting policies is able to a) learn good policies and b) learn

them quickly enough that a good policy is used for the majority of execution for the

applications studied. We expect performance improvements to be greater on future

machines with greater degrees of heterogeneity. Chapter 7.4 further analyzes these

benchmarks and the custom policies used in them to provide guidelines for when

Smart Locks works best versus less optimally.

159

7.4 Smart Locks Usage Guidelines

This section defines a set of usage guidelines for Smart Locks based on our findings.

We describe a) various use-cases of locks in applications where we have experimentally

shown that Smart Locks significantly improves performance and b) some expected

limitations of Smart Locks. Then, we study the implications of the Smart Data Struc-

tures learning thread architecture on Smart Locks, demonstrating common scenarios

where either a) running an extra thread for optimization does not introduce apprecia-

ble performance overhead or b) the overhead can be outweighed by the performance

gains of lock acquisition scheduling.

7.4.1 Self-Optimizing Data Structures

The results in Chapter 7.3.2 suggest that spin-lock scheduling policies may have

some nonobvious implications for locality and load balancing in multicore applica-

tions. They demonstrate a scenario where Smart Locks’ adaptive policy significantly

improves performance by automatically learning policies (i.e. the custom policy in

radiosity that optimizes for locality and minimizes the spin times of fast cores). Addi-

tionally, the raytrace results show a scenario where Smart Locks is not able to improve

performance much: when lock contention is low. Together, these results help us to

understand when Smart Locks works well vs. less optimally.

Table 7.1: Expected Utility of Smart Locks by Scenario
Application Scenario Expected Utility

Work queues Good

Pipeline queues Great

Graph / grid Neutral

Heap locking Good or Neutral

Table 7.1 summarizes our findings from Chapter 7.3.2 and additional expectations.

We studied the SPLASH-2 and PARSEC benchmark suites to see how locks were

used and found they are most often used in the concurrent data structures that

coordinate the parallelism in the applications – specifically, in those listed in the table.

We have already shown that Smart Locks can significantly improve work queues.

160

For multi-stage software pipelines, we expect strong gains because Smart Locks can

prevent producer starvation and/or help balance pipeline stages to maximize overall

pipeline throughput. For graph /grid applications, we expect small to negligible gains.

Finally, for memory heaps, we expect good to neutral gains, depending on application

conditions.

In graph / grid data structures, there are often thousands of nodes, each with a

lock. We expect that the current learning thread architecture within Smart Lock may

not scale to thousands of Smart Locks if heterogeneities change rapidly. The problem

is that the learning engine for each instantiated lock executes in the same shared

learning thread and may not execute frequently enough to be responsive to rapid

changes. Because these applications have data-dependent behavior, we do expect

rapid changes. Future scalability can be mitigated by spawning multiple learning

threads threads.

As for memory allocator heap locking, the impact of lock acquisition scheduling

will depend on whether or not the application uses dynamic allocation or allocates

upon initialization then reuses memory. The problem with the latter is that reusing

memory avoids the allocator and thus makes lock contention in the memory allocator

heap low, providing no opportunity for Smart Locks to make improvements.

7.4.2 Learning Thread Sensitivity Analysis

As explained in Chapter 4.2, the optimization components of Smart Locks run de-

coupled in a shared learning thread. This section addresses the question of what per-

formance tradeoffs there are for running that learning thread alongside applications.

We discuss the overhead for each of three common multicore scenarios: many-cores,

multicores with SMT, and multicores without SMT.

Many-Cores In many-core machines, hundreds of cores are available for applica-

tions. Except for embarrassingly parallel applications, applications will eventually

reach scalability limits on these machines where further parallelization (adding cores)

no longer improves performance. This is a well-known consequence of Amdahl’s Law

161

and/or the increasing overheads of communication vs computation as parallelism be-

comes more fine-grained. One way to continue to improve performance is by utilizing

spare cores to run optimization threads. The Smart Data Structures learning thread

is one example of this class. Some many-core computers are available today: i.e. the

Tilera Tile-Gx R© with up to 100 cores. Many-cores chips from Intel R© and AMD R© are

coming in the next few years.

Multicores With SMT In a multicore SMT machine, the Smart Data Structures

learning thread can run in the same core as an application thread and share exe-

cution resources. The learning thread is the ideal candidate for SMT because it is

computation-heavy and light on other resources. Applications should see nearly the

full performance gains of lock acquisition scheduling while hiding the overhead of the

learning thread. SMT multicores such as Intel’s R© current x86 R© multicore are widely

available today.

Multicores Without SMT Large-scale multicores with or without SMT are many-

cores and will thus benefit from Smart Locks. On small-scale multicores without SMT,

using Smart Locks can improve performance if the performance gains of lock acquisi-

tion scheduling outweigh the performance tradeoffs of taking a thread away from the

application for parallelism; otherwise, Smart Locks should not be used. The exact

tradeoff to overcome is different for each application and depends on its scalability.

In Figure 7-4, we quantify the tradeoff of taking away a core for SPLASH-2 appli-

cations. We compare 7 application threads vs. 6 application threads plus 1 learning

thread. For reference, we also compare against 6 application threads. We use the

standard large inputs to the applications and run on an 8-core Intel Xeon(r) x5460,

each core at 3.17 GHz. Our system runs Debian Linux kernel version 2.6.26, has 8GB

of DRAM, and all code is compiled with gcc v.4.3.2.1

For this scenario and our system, we find that lock acquisition scheduling would

need to lower execution time by {1.1x, 1.16x, 1x, .93x, 1.28x} to benefit barnes, fmm,

1ocean requires 2n threads and volrend fails on our system.

162

barnes fmm radiosityraytrace water

0.6

0.8

1

1.2
N

or
m

al
iz

ed
 E

xe
cu

tio
n

T
im

e Helper Thread / Parallelism Tradeoff

6 threads + 1 SL thread
6 threads + 0 SL threads
7 threads + 0 SL threads

Figure 7-4: Normalized execution time of SPLASH-2 applications. 6 threads with an
additional thread for Smart Locks vs. 6 threads vs. 7 threads. The slowdown reflects
by what factor Smart Locks must improve performance for net benefit.

radiosity, raytrace, and water, respectively.2 In Chapter 7.3.2, we demonstrated that

lock acquisition scheduling does indeed improve radiosity by up to 1.2x. Thus, the

max net improvement is nearly 1.2x even after accounting for the extra thread. A

future study will determine if Smart Locks can yield net improvement for the other

applications. Regardless, Smart Locks is expected to do well on a) many-cores and

b) multicores with SMT support.

2radiosity, raytrace don’t benefit from the extra core; they are known to scale poorly relative to
other SPLASH-2 apps.

163

164

Chapter 8

Future Work

Smart Data Structures take a novel, online learning approach to optimizing the per-

formance of parallel data structures. Our hope is that the results of this work and our

open source library of Smart Data Structures will help lay the foundation for future

research in the area of optimizing systems via machine learning.

This chapter identifies several interesting ideas for further research. First, we

discuss opportunities for extending the scalability of Smart Data Structures in the

coming decade as larger and larger machines become available. Next, we discuss sev-

eral additional data structures to which we believe our design methodology can be

applied for substantial improvements. Then, we describe the possibility for an addi-

tional adaptation in Smart Data Structures on top of adapting data structure knob

settings. Then, we describe an alternative integration strategy for online learning

that, while more complex, may potentially increase performance. Finally, we discuss

applications of the novel online learning optimization methodology developed in this

work to systems beyond data structures.

8.1 Scalability Enhancements

Chapter 6 demonstrates that our design is expected to achieve good performance

improvements up to 256 threads in typical application scenarios. Nevertheless, it is

possible to extend the scalability of our design further. This section describes a few

165

approaches to extending scalability.

Flat Combining Scalability We have shown that the Flat Combining algorithm

upon which the Smart Data Structures library is built is the most significant scala-

bility limiter. Flat Combining scalability can be significantly improved by developing

hierarchical versions of the Flat Combining algorithm with multiple parallel combin-

ers. There is ongoing work in parallel combining. We leave to future work the task of

monitoring progress on these algorithms and incorporating them when they become

available.

Learning Algorithm Complexity The algorithmic complexity of the learning

engine can also limit scalability for applications that need joint optimization of Smart

Data Structures. So far, we have not run into such scaling limits in our application

studies. Nevertheless, the complexity of our learning algorithm can be improved

to provide further scalability. The learning algorithm must solve a dense system

of linear equations. To do so, we currently use a somewhat näıve method of QR

factorization and solving the least-squares problem. More efficient algorithms are

known. Furthermore, the learning algorithm can be parallelized. Parallel algorithms

exist which, using n2 processors, would reduce the asymptotic complexity of the

learning algorithm to O(n) from the current O (n3). Further investigation is left to

future work.

Learning Thread Time-Multiplexing Some of the case-study applications in

Chapter 6.5.2 on scalability are limited (to a lesser degree) by the time-multiplexing

of a single learning thread in our design. Future work on the library will enable

support for multiple learning threads. A linear increase in the number of learning

threads reduces time-multiplexing linearly and thus increases application scalability

by the same factor in many cases. Since most applications only reach scaling limits due

to time-multiplexing when they use 256 threads or more, dedicating a few additional

threads to learning will be comparatively inexpensive.

166

8.2 Additional Smart Data Structures

In this work, we have demonstrated “Smart” versions of queues, skip lists, pair-

ing heaps, and locks – several important data structures for parallel programs and

programming models – which substantially improve performance through the use of

online learning. We are also investigating the design of other Smart Data Structures.

Additional implementations based on Flat Combining are possible: a Smart Stack is

one example. However, the Smart Data Structures design methodology is applicable

to a wide range of other data structures.

For example, we are investigating ways to use learning to improve load-balancing

in Smart Distributed Hash Tables. We suspect that learning can significantly optimize

the organization of nodes and data. We are also designing a Smart Counter that uses

learning to adapt its implementation at runtime to optimize for different concurrency

levels. For example, at large concurrency levels, lazy counters would be used because

they scale better. The tradeoff is that reads may incur extra overhead if a global

total is needed because counter data is distributed across multiple counters. At low

concurrency levels, an implementation based on a global shared counter would be

used. Updates and reads would rely on atomic operations which scale less well, but

reads of the global total would incur less overhead.

8.3 Additional Axes of Adaptation

We have demonstrated that online machine learning is an effective technique for

optimizing data structure knob settings and that Smart Data Structures can sig-

nificantly improve application performance by optimizing knob settings. There is

another adaptation that we can layer on top of knob optimization: adapting data

structure algorithms at runtime using online learning. The previous discussion of the

Smart Counter alluded to algorithm adaptation. Since our online learning framework

supports joint-optimization of multiple parameters, it can learn to adapt algorithms

while optimizing knob settings.

167

One interesting challenge to solve in adapting algorithms is creating a consensus

protocol to ensure correct operation in the face of algorithm switches: threads with

pending requests based on the previous algorithm should gracefully transition to using

the new algorithm, and the interaction between threads temporarily using different

algorithms should not lead to race conditions or other errors. Another interesting

challenge involves gracefully migrating data when the algorithm switches, so that

data stored for the previous algorithm is available for use by the next algorithm. We

believe that it will be possible to identify a certain set of algorithms that can all

utilize the same underlying storage to avoid the need for migration.

8.4 Alternative Learning Integration Strategies

The current Smart Data Structures design integrates online learning through the

use of a learning thread. As described in Chapter 4.2, the learning thread is an

extra dedicated thread which runs decoupled from the threads of the application.

This design is motivated by producing knob optimizations as quickly as possible and

reacting to rapid changes in the system or application which change the optimal knob

settings over time. Our experiments in Chapter 6.2.6, however, show that our learning

engine may run much faster than necessary in some cases. Moreover, the use of the

learning thread is not entirely free of tradeoffs. In most cases they are easily justified

(see Chapter 4.4), but they may perhaps be removed.

Future work will investigate adding a new integration method for our online learn-

ing engine. This method will interleave learning computation into the application

threads. One approach is to step the learning engine at the end of every ith com-

bining phase; in other words, rather than the learning thread, the combiner steps

the learning engine, and it steps it periodically rather than as often as possible. The

tradeoff of this approach is that the latency of data structure operations may increase

since combining takes longer. Some applications will be negatively affected.

Another approach is to attempt to utilize spare cycles in the threads that are

waiting for their operation to complete and not combining. While waiting, threads

168

otherwise spin idly. Instead, they could work together to carry out a distributed

learning algorithm. This algorithm may be complex to implement, however, because

a) it is a parallel learning algorithm and b) threads will join in and leave the parallel

algorithm dynamically. Despite the implementation complexity, this approach may

provide comparable or better reactivity to changing system conditions than the decou-

pled learning thread architecture we currently adopt while simultaneously eliminating

the reliance on an extra thread.

8.5 Applications to Other Systems

While this thesis focuses on a case study of optimizing data structures using online

machine learning, we have taken care to design our abstractions and learning engine

so that they may be applied to the online optimization of other systems as well.

The abstraction of the knob is one that is natural for use in many different sys-

tems. For example, in cloud managers, a promising knob to optimize may be the

policy used for resource allocation. A promising knob in OS scheduling is the spatial

location of different application threads on the chip: strategic co-location of threads

can minimize communication costs. Promising knobs in the hardware include the

cache hash function and cache coherence protocol: a strategic hash function or adap-

tive coherence protocol may help minimize overheads due to hotspots.

Like the abstraction of knobs, our learning engine is designed for generality as well.

Our learning engine supports a variety of different types of knobs from permutation

orders suited to allocation policies and scheduling to discrete-valued knobs suited

to protocol selection. Our learning engine also supports Gaussian distributions and

boolean-valued knobs, and it can be easily extended to learn other types of knobs.

Further, the learning engine is designed for efficient joint optimization of multiple

knobs. This will enable it to compose knob optimizations from multiple components

or different layers of a system. For example, in future work, we will explore a frame-

work for jointly optimizing knobs within the OS, application (e.g. knobs in Smart

Data Structures), and the hardware at the same time.

169

170

Chapter 9

Conclusion

This thesis demonstrated a novel methodology for using online machine learning to

design self-aware data structures. We developed a new class of data structures based

on this methodology called Smart Data Structures which optimize themselves contin-

uously and automatically to help eliminate the complexity of hand-tuning data struc-

tures for different systems, applications, and workloads. We developed an open source

library of Smart Data Structures with which we evaluated our learning-based opti-

mization methodology. Through empirical evaluations of our prototype, we showed

constructively that:

• Online machine learning is an effective strategy for automatically tuning data

structures

• Learning is efficient enough for fine-grained online optimization of data struc-

tures

• Online learning can enable significant improvements of up to 44% over state-

of-the-art algorithms

• Learning is not the scalability limiter for the data structures we have studied

The results that we have demonstrated with data structures suggest that online

learning is a promising approach to optimizing other systems as well. While this

171

work focused on data structures, we designed our learning engine and abstractions to

be general, flexible, and composable so that they may be applied effectively in other

systems. Our learning-based methodology will not be a silver bullet for mitigating

all of the complexities of optimizing systems, but we hope it provides a foundation

for researchers to further investigate synergies between systems and learning. Our

view is that online learning is a robust and high performance framework for weighing

complicated dynamic tradeoffs, and that online learning will play an essential role in

the development of future systems.

172

Appendix A

Lazy Counter Algorithm

Chapter 6 evaluated a scalable reward monitor that we designed around a concurrent

counter algorithm that we call lazy counters. This appendix describes lazy counters

and how we implement a reward monitor based on them.

Lazy counters are so called because, by design, they do not guarantee up-to-date

values when read by a different thread than the thread that owns them. Lazy coun-

ters have one owner in the sense that they can be written by only one thread; any

other thread may read them only. Lazy counters rely on a property of shared mem-

ory systems which guarantees that, after some machine-specific delay for coherency

messages to propagate through the system, the other threads will eventually read the

latest value written by the owner.

In the context of Smart Data Structures, we want to build a reward monitor using

lazy counters. We observe that all application threads may potentially increment the

reward by issuing writes to it and that only the learning thread needs to read it.

We also observe that writes are much more frequent than reads because a) there are

many application threads and one learning thread and b) the learning thread typically

performs much more computation between reads than the application threads do

between writes.

Thus, as indicated in Figure A-1, we dedicate a separate lazy counter for each

of the n application threads and require the learning thread to read the n counters

individually and sum them to get the total reward. Because of the semantics of

173

coherent shared memory, the learning thread may read a slightly out-of-date reward.

Address Space
n: # threads
a: &counter[0] (aligned)

Implementation

…
n: # threads
l: # bytes per cacheline

Implementation
typedef struct {
volatile int val;
char pad[l‐sizeof(int)];

} t
a+0*l
a+1*l
a+2*l

a+n*l
…

per‐thread,
cacheline‐aligned
countersvoid inc (int tid, int amt) {

} counter;

counter* counters;

…
counters[tid].val += amt;

}

int get () {
int sum = 0;
for(int i=0; i<n;++i)
sum += counters[i].val;

return sum;
}

87
Figure A-1

This strategy is high performance because a) reads are much less frequent than

writes and b) lazy counters are spaced in memory such that they map to separate

cache lines and avoid shared memory bottlenecks. One tradeoff, however, is that

storage grows linearly in the number of application threads. A simple modification

can limit storage requirements: multiplex a fixed number of counters among the n

threads. Threads that share a counter will now have to atomically increment it.

The read by the learning thread, however, remains non-atomic. Atomic operations

introduce synchronization overhead, but if the number of threads sharing a counter

is small, the overhead is small. Since modern machines have multiple megabytes of

cache, in many cases, making this tradeoff to minimize storage will be unnecessary.

174

Bibliography

[1] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edel-

man, and Saman Amarasinghe. PetaBricks: A Language and Compiler for Al-

gorithmic Choice. SIGPLAN Not., 44(6):38–49, 2009.

[2] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PAR-

SEC Benchmark Suite: Characterization and Architectural Implications. In

Proceedings of the 17th International Conference on Parallel Architectures and

Compilation Techniques, October 2008.

[3] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Optimizing

Matrix Multiply Using PHiPAC: A Portable, High-Performance, ANSI C Coding

Methodology. In ICS ’97: Proceedings of the 11th International Conference on

Supercomputing, pages 340–347, New York, NY, USA, 1997. ACM.

[4] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. Coordinated Management

of Multiple Interacting Resources in Chip Multiprocessors: A Machine Learning

Approach. In Proceedings of the 2008 41st IEEE/ACM International Sympo-

sium on Microarchitecture, pages 318–329, Washington, DC, USA, 2008. IEEE

Computer Society.

[5] Katherine E. Coons, Behnam Robatmili, Matthew E. Taylor, Bertrand A. Maher,

Doug Burger, and Kathryn S. McKinley. Feature Selection and Policy Optimiza-

tion for Distributed Instruction Placement Using Reinforcement Learning. In

PACT ’08: Proceedings of the 17th International Conference on Parallel Archi-

175

tectures and Compilation Techniques, pages 32–42, New York, NY, USA, 2008.

ACM.

[6] Mike Stonebraker Daniel, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch

Cherniack, Miguel Ferreira, Alex Rasin, Nga Tran, Stan Zdonik, and Waltham

Ma. C-Store: A Column-Oriented DBMS, 2005.

[7] Jonathan Eastep, David Wingate, and Anant Agarwal. Smart Data Structures

Project. github.com/mit-carbon/Smart-Data-Structures.

[8] Jonathan Eastep, David Wingate, and Anant Agarwal. Smart Data Structures:

An Online Machine Learning Approach to Multicore Data Structures. In ICAC

2011 Proceedings, June 2011.

[9] Jonathan Eastep, David Wingate, Marco D. Santambrogio, and Anant Agarwal.

Smartlocks: Lock Acquisition Scheduling for Self-Aware Synchronization. In

ICAC 2010 Proceedings, June 2010.

[10] A. Fedorova, D. Vengerov, and D. Doucette. Operating System Scheduling on

Heterogeneous Core Systems. In Proceedings of the Workshop on Operating Sys-

tem Support for Heterogeneous Multicore Architectures, 2007.

[11] Matteo Frigo and Steven G. Johnson. FFTW: An Adaptive Software Architec-

ture for the FFT. In Proceedings of ICASSP, pages 1381–1384. IEEE, 1998.

[12] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat Combining and

the Synchronization-Parallelism Tradeoff. In SPAA ’10: Proceedings of the 22nd

ACM Symposium on Parallelism in Algorithms and Architectures, pages 355–364,

New York, NY, USA, 2010. ACM.

[13] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat Combining

C++ Framework Version 2.0. sites.google.com/site/cconcurrencypackage/flat-

combining-and-the-synchronization-parallelism-tradeoff, 2010.

176

[14] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan

Kaufmann, 2008.

[15] Phuong Hoai Ha, Marina Papatriantafilou, and Philippas Tsigas. Reactive Spin-

locks: A Self-tuning Approach. In Proceedings of the 8th International Sympo-

sium on Parallel Architectures,Algorithms and Networks, pages 33–39, Washing-

ton, DC, USA, 2005. IEEE Computer Society.

[16] Moshe Hoffman, Ori Shalev, and Nir Shavit. The Baskets Queue. In OPODIS’07:

Proceedings of the 11th International Conference on Principles of Distributed

Systems, pages 401–414, Berlin, Heidelberg, 2007. Springer-Verlag.

[17] Henry Hoffmann, Jonathan Eastep, Marco Santambrogio, Jason Miller, and

Anant Agarwal. Application Heartbeats: A Generic Interface for Specifying

Program Performance and Goals in Autonomous Computing Environments. In

ICAC 2010 Proceedings, 2010.

[18] Henry Hoffmann, Martina Maggio, Marco D. Santambrogio, Alberto Leva, and

Anant Agarwal. SEEC: A Framework for Self-aware Management of Multicore

Resources. Technical Report MIT-CSAIL-TR-2011-016, CSAIL, MIT, March

2011.

[19] E. Ipek, O. Mutlu, J. F. Mart́ınez, and R. Caruana. Self-Optimizing Memory

Controllers: A Reinforcement Learning Approach. In Proceedings of the 35th

International Symposium on Computer Architecture, pages 39–50, 2008.

[20] R. C J.Dongarra. Automatically Tuned Linear Algebra Software. Technical

report, Knoxville, TN, USA, 1997.

[21] Daniel A. Jiménez and Calvin Lin. Dynamic Branch Prediction with Percep-

trons. In HPCA ’01: Proceedings of the 7th International Symposium on High-

Performance Computer Architecture, page 197, Washington, DC, USA, 2001.

IEEE Computer Society.

177

[22] Theordore Johnson and Krishna Harathi. A Prioritized Multiprocessor Spin

Lock. IEEE Trans. Parallel Distrib. Syst., 8(9):926–933, 1997.

[23] Alain Kägi, Doug Burger, and James R. Goodman. Efficient Synchronization:

Let Them Eat QOLB. In Proceedings of the 24th Annual International Sym-

posium on Computer Architecture, pages 170–180, New York, NY, USA, 1997.

ACM.

[24] Leonidas I. Kontothanassis, Robert W. Wisniewski, and Michael L. Scott.

Scheduler-conscious Synchronization. ACM Trans. Comput. Syst., 15(1):3–40,

1997.

[25] B. H. Lim and A. Agarwal. Reactive Synchronization Algorithms for Multipro-

cessors. SIGOPS Oper. Syst. Rev., 28(5):25–35, 1994.

[26] Itay Lotan and Nir Shavit. Skiplist-Based Concurrent Priority Queues. In IPDPS

’00: Proceedings of the 14th International Symposium on Parallel and Distributed

Processing, page 263, Washington, DC, USA, 2000. IEEE Computer Society.

[27] P. Magnusson, A. Landin, and E. Hagersten. Queue Locks on Cache Coherent

Multiprocessors. In Parallel Processing Symposium, 1994. Proceedings., Eighth

International, pages 165–171, Apr 1994.

[28] Sridhar Mahadevan. Average Reward Reinforcement Learning: Foundations,

Algorithms, and Empirical Results. Machine Learning, 22:159–196, 1996.

[29] John M. Mellor-Crummey and Michael L. Scott. Algorithms for Scalable Syn-

chronization on Shared-Memory Multiprocessors. ACM Trans. Comput. Syst.,

9(1):21–65, 1991.

[30] John M. Mellor-Crummey and Michael L. Scott. Scalable Reader-Writer Syn-

chronization for Shared-Memory Multiprocessors. In Proceedings of the 3rd

ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, pages 106–113, New York, NY, USA, 1991. ACM.

178

[31] John M. Mellor-Crummey and Michael L. Scott. Synchronization Without Con-

tention. SIGARCH Comput. Archit. News, 19(2):269–278, 1991.

[32] Maged M. Michael and Michael L. Scott. Simple, Fast, and Practical Non-

Blocking and Blocking Concurrent Queue Algorithms. In PODC ’96: Proceedings

of the 15th Annual ACM Symposium on Principles of Distributed Computing,

pages 267–275, New York, NY, USA, 1996. ACM.

[33] Marek Olszewski and Michael Voss. Install-Time System for Automatic Genera-

tion of Optimized Parallel Sorting Algorithms. In Proceedings of the International

Conference on Parallel and Distributed Processing Techniques and Applications,

pages 17–23, 2004.

[34] Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Natural Actor-Critic. In

European Conference on Machine Learning (ECML), pages 280–291, 2005.

[35] Harald Prokop. Cache-Oblivious Algorithms. Master’s thesis, Massachusetts

Institute of Technology, 1999.

[36] Zoran Radović and Erik Hagersten. Efficient Synchronization for Nonuniform

Communication Architectures. In Proceedings of the 2002 ACM/IEEE conference

on Supercomputing, pages 1–13, Los Alamitos, CA, USA, 2002. IEEE Computer

Society Press.

[37] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-

tion. MIT Press, Cambridge, MA, 1998.

[38] Gerald Tesauro. Online Resource Allocation Using Decompositional Reinforce-

ment Learning. In Proceedings of AAAI-05, pages 9–13, 2005.

[39] Cai-Dong Wang, Hiroaki Takada, and Ken Sakamura. Priority Inheritance Spin

Locks for Multiprocessor Real-Time Systems. International Symposium on Par-

allel Architectures, Algorithms, and Networks, 0:70, 1996.

179

[40] David Wentzlaff, Charles Gruenwald, Nathan Beckmann, Kevin Modzelewski,

Adam Belay, Lamia Youseff, Jason E. Miller, and Anant Agarwal. An Operating

System for Multicore and Clouds: Mechanisms and Implementation. In SoCC,

2010.

[41] Shimon Whiteson and Peter Stone. Adaptive Job Routing and Scheduling. En-

gineering Applications of Artificial Intelligence, 17:855–869, 2004.

[42] R. J. Williams. Toward a Theory of Reinforcement-Learning Connectionist Sys-

tems. Technical Report NU-CCS-88-3, Northeastern University, 1988.

180

