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A State Action Frequency Approach to Throughput
Maximization over Uncertain Wireless Channels

Krishna Jagannathan, Shie Mannor, Ishai Menache, Eytaridviod

Abstract—We consider scheduling over a wireless system, The capacity region(or the rate region) of the system
where the channel state information is not available a priorto  described above, is the set of all arrival-rate vectors #nat
the scheduler, but can be inferred from the past. Specificaji the stably-supportable bgomescheduling policy. Our aim is to

wireless system is modeled as a network of parallel queues.eN h terize th it . f th t d to desi
assume that the channel state of each queue evolves stoclty Characterize the capacity region of the system, and to aesig

as an ON/OFF Markov chain. The scheduler, which is aware of @ throughput optimal scheduling policy.
the queue lengths but is oblivious of the channel states, hde The general problem of scheduling parallel queues with

choose one queue at a time for transmission. The scheduler $ia time-varying connectivity has been widely studied for a$tno
no information regarding the current channel states, but ca two decades. The seminal paper of Tassiulas and Ephremides

estimate them by using the acknowledgment history. .
We first characterize the capacity region of the system using [6] considered the case where both channel states and queue

tools from Markov Decision Processes (MDP) theory. Specifédly, Iengths are fU”y available to the scheduler. It was shown in
we prove that the capacity region boundary is the uniform limit  [6] that the max-weight algorithmwhich serves the longest

of a sequence of Linear Programming (LP) solutions. Next, we connected queue, is throughput optimal.
combine the LP solution with a queue length based scheduling Following this paper, several variants of imperfect and

mechanism that operates over long ‘frames,’ to obtain a thragh- h - . .
put optimal policy for the system. By incorporating results from delayed CSI scenarios have been considered in the literatur

MDP theory within the Lyapunov-stability framework, we show  [2], [5], [7], [8]. However, our scheduling problem fundame
that our frame-based policy stabilizes the system for all aiival tally differs from the models considered in these reference
rates that lie in the interior of the capacity region. Specifically, no explicit CSI is ever made available to the
scheduler, and acquiring channel state information Eag

) . _ . of the scheduling decisiomade at each time instant. This
In this paper, we consider the scheduling problem in g,4q significant difficulties to the scheduling problem.

wireless uplink or downlink system, when there is no explici 1,4 recent papers consider the scheduling problem where
instantaneous Channel State Information (CSI) availabtee o cs) is obtained through an acknowledgment process, as

scheduler. The lack of CSI may arise in practice due to sevefa o \r model. In [1], the authors consider the objective of
reasons. For example, the control overheads, as well as Sximizing thesum-rateof the system, under the assumption
delay and energy costs associated with channel probingitmig . the queues afelly-backloggedi.e., there is always data
make instantaneous CSI too costly or impractical to obtain,, ¢and in each queue). It is shown that a simpi@pic policy

Our system consists of wireless links, which are modeled;s g m_rate optimal. The suggested policy keeps scheduling
as N parallel queues that are fed by stochastic traffic. Wge channel that is being served as long as it remains ON, and

assume that only a single queue can be chosen at each ches to the least recently served channel when therturre
slot by the server for transmitting its data. The state oheagy5nnel goes OFF.

wireless link is time-varying, evolving as an independent | [4], the authors propose a randomized round-robin

ON/QFF Markov ghaln. A given transmission is successfgt:hedu"ng policy for the system, which is inspired by the
only if the ynderlymg f:har_mel IS currently ON. myopic sensing results in [1]. That policy is shown to stabil
Our basic assumption in this paper is tha,‘t the Sf:heduﬁrrivals that lie within an inner-bound to the rate region.
cannot observe the current stateaofy of the wireless links. However, the policy isnot throughput optimal, and their
Nonetheless, when the scheduler serves one of the queu€s,iinag cannot be used to characterize the capacity region.
a given time slott, there is an ACK-fee_db_ack mechanism In this paper, we propose a throughput optimal scheduling
which acknowledges whether the transmission was sucdesgbl”cy for the system. In particular, the frame-based polie
or not, thereby revealing the channel s_tataosterlorl Since propose can stabilize arrival rates that lie arbitrarifysel to the
the char_lnels are Co”e!at_ed across time by the M"’_‘rk_ov'égpacity region boundary, with a corresponding tradeofhe
assumption, thig posteriori CSl can be _used for Pred'Ct'ngcomputationaI complexity. Our proof of throughput optiital
the channel state of the chosen queue in future time slots. . ;1 bines tools from Markov decision theory within a Lya-
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Fig. 2. The Markov chain governing the time evolution of eaxfththe
channels stat€; (t).

Fig. 1. A system of parallel queues served by a single seff@.channels

. . . sufficient to recordhow long agceach channel was served, and
connecting the queues to the server are randomly timengryi

the state of the channglON/OFF) when it was last served.
Scheduling objective.Given the above information structure,

. o ) . our objective is to design a scheduling policy that can suppo
which leads to the characterization of the capacity regiog,q largest possible set of input rates. More preciselyravea

In Section 1V, we suggest_the frame-based p_olicy, which Wea vecton\ — (M. .., \y) is said to besupportableif there
prove to be throughput optimal. Proofs are omitted throuhQgyists some scheduling policy under which the queue lengths
due to space constraints, and can be found in [3]. are finite (almost surely). Theapacity regionl" of the system

[l. SYSTEM DESCRIPTION is the closure of all supportable rate vectors. A policy isl sa

The network model. We model the wireless system aizebﬁliz:?ourg:&m optimaif it can support all arrival rates in

consisting of N parallel queues (see Fig. 1). Time is slotte
(t=1,2,...). Packets arrive to each queiie {1,2,..., N} I1l. OPTIMAL POLICIES FOR AFULLY BACKLOGGED
according to an independent stochastic process with xate SYSTEM

We assume that the arrival processes are independent of eati
other, and independent and identically distributed ().ifcbm
slot-to-slot.

n the interest of simplicity of notation and exposition, we
restrict attention to the case &f = 2 queues in the rest of

Due to the shared wireless medium, only a single trantg-e Paper, although our methodology extends naturally temo
mission is allowed at a given time. In our queuing modeﬂueues. In this section, we assume that the queues are fully

this is equivalent to having the queues connected to a sin %cklogge(_j, l.e., the queues never empty. A.S we shall_ see,
server, which is capable of serving only a single packet p r analysis of the fully backlogged system gives us insight

slot. Each queue is connected to the server by an ON/Of ut the optimal scheduling policy for the dynamic system

. . . . th finite queues.
channel, which models the time-varying channel qualltyheftw' . o
underlying wireless link. If a particular channel is OFF and Since the queues are assumed to be infinitely backlogged

the queue is chosen by the scheduler, the transmission fd&tms section, the state of the system is completely specifi

and the packet has to be retransmitted. If it is ON and chosh the state of each channel the last time it was served, and

by the scheduler, a single packet is properly transmittad, a ow long ago each channel_was seryed. In a sy_stem with two
an ACK is received by the scheduler. fully backlogged queues, thaformation stateduring slott

We denote the channel state of th¢h link at time ¢ by thhas the I)orrrsf(t)lzt [/ﬁ(t)’lilr](t)’kz(,t)’bz(t)]’ Wgereki(t) Is
Cit) € {ON,OFF}, i — 1,....N. We assume that the (€ Number of slots since the queuwas serve , andl;(t) €

states of different channels are statistically indepetoisach {Q’ 1}is the state of the channel_the |§St time .it was obgered.

other. The time evolution of each of the channels is given nce the channels are Markovissf¢) is a sufficient statistic

a two state ON/OFF Markov chain (see Fig. 2). Although o r the fully backlogged system. Note thatn (ki (1), k2(t)) =

methodology allows for different Markov chains for diffete 1, v i’ an r;_la_):(kl(ti’ ka(t|>|> = 2va t.t Let & denote the

channels, we shall assume for ease of notation and expositggoun ably infinite) set o a’l possibie S ?‘_m(g)-

that the Markov chains are identically distributed acrossrs. Denote thel.step transm(?lr; pr((l))bab(lll)ltles of (tl?e channel
_ .«Markov chain in Fig. 2 bypi;, pyi, pig, andpy. It can

We further assume that < 0.5, so that each channel is L ]

positively correlatedn time. be shown by explicit computation that foe> 1,

Information structure. At each timet, we assume that the o @ 1-(1- 2¢)! o @ l1+(1- 2¢)!

scheduler knows the current queue lengthgt) prior to DPoi = P10 = D) » P11 = Poo = 9

making the schedul|ng.deC|§|on. Yet)mfprmauon about the {\Iext, define thebelief vector corresponding to state €
current channel conditions is made available to the scleedu _ : .
S [w1(S),w2(s)], where w;(s), ¢ = 1,2 is the condi-

Only after scheduling a parncular_ queue, does the schedu nal probability that the channel is ON. For example,
get to know whether the transmission succeeded or not, 1)

. . s = [1,0N, 3, OFF], the corresponding belief vector is
virtue of the ACK-mechanism. The scheduler thus has access L, B ) P 9
to the entire history of transmission successes and failure 1Throughout,0 is used interchangeably to denote the channel state OFF,

However, due to the Markovian nature of the channels, it #&d1 is used to denote ON.



[1- e,pégi)]. It can be shown that the belief vector has a onder some weight vectow = [w, ws], with w; +wy = 1. The

to-one mapping to the information state, and is therefase alfollowing proposition shows that if the rate pgix;, \2) is in

a sufficient statistic for the fully backlogged problem. A, then there must necessarily exgthte action frequencies
In each slot, there are two possible actionse {1,2}, that satisfy a set of balance equations.

corresponding to serving one of the two queues. Given a statdroposition 1: Let (A1, A2) € A. Then, for each statee S

and an action at a particular time, the belief for the next sland actiona € {1,2}, there exists state action frequencies

is updated according to the following equation. x(s; a), that satisfy
(1= uwi(t) + e(1 —wi(t)), if a(t) # 1, 0<z(s;a) <1, 2
wi(t+1)= 1—e¢, if a(t) =14, Cup(t) =1, ) o
e, if a(t) = i, Cog(t) =0, the pa}lance equations (3)-(6) (next page), the normadizati
) ) condition
where we have abused notation to writgt) = w;(s(t)). Zx(s; 1) +2(s2) =1, @)

A policy for the fully backlogged system is a rule that
associates an actiar(t) € {1, 2}, to the states(¢) for eacht.
A deterministic stationaryolicy is a map fromS to {1,2},
whereas aandomized stationarpolicy picks an action given i < Zx(s;i)wi(s), i=1,2. (8)
the state according to a fixed distributi®{a|s(-)} . ses

Suppose that a unit reward is accrued from each of the twojqitively, a set of state action frequencies correspands
channels, every time a packet is sgcces;fully transmltre_d 8 stationary randomized policy such thafs; a) equals the
that channel, i.e., when the server is assigned t0 a paticueagy-state probability that in a given time slot, theestas
channel and the channel is ON. Given a state) at @ anq the action is. Further, conditioned on being in stase
particular time, and an actiom(t), the probability that a unit o actiona is chosen with probabilityﬁéf%}), whereP {s} =

reward is accrued in that time slot is simply equal to th s1 s2) (If P{s' = 0. the policy brescribes actions
belief of the channel that was chosen. We are interestedein i{b’itr;r—;;ﬁ( 2). (I P {s} ’ policy p

long term time average rate achieved on each of the channeIEet us now provide an intuitive explanation of the balance

under a given policy. From the viewpoint of.th.e feward,deﬁn?éjquations. Equations (3)-(6) simply equate the steadg-sta
above, the average rate translates to the infinite hqnme ti probability of being in a particular state, to the total pabbity
average reward obtained on each channel under ag'ven'p0|5:fyentering that state from all possible states. For example

We say that rate pai()\l, /\2). Is achie\_/ablein th? fully the left side of (3) equals the steady-state probabilityeihl
papkloggeq systgm, if there existemepolicy for which the in the state[l, b1, k,b2], k£ > 2, while the right side equals
infinite horizon time average feW"?“d vector equ@lg, _/\2)' the total probability of getting to the above state from othe
The closure of the set of all achievable rate pairs is calleglios and similarly for the other balance equations. fmua
the rate region A of the fully backlogged system. It should 7) equates the total steady-state probability to unitgafy,
be evident that a rate pair that is not achievable in the ful Equation (8), the termx(s; i)wi(s) equals the probability

backlogged system, cannot be supportable in the dy“a'{HSt the state is, the actioni is chosenandthe transmission

system with random arrivals. Thus, the capacity redionf  g,.ceeds Thus, the right-side of (8) equals the total eggec
the queueing system is contained in the rate regioof the rate on channei

fully backlogged system. In fact, we show in Section IV that We now return to the characterization of the rate region

the two rate regions have the same interior, by deriving a’queooundary. In light of Proposition 1, Equation (1) can be
length based policy for the original system that can stadili rewritten as follows

any arrival rate in the interior ak. We now proceed to obtain
an implicit characterization of the rate region boundary. 5. jem INFINITEQ):

seS
and the rate constraints

A. MDP formulation and state action frequencies

Let us consider a Markov decision process (MDP) formu-
lation on the belief space for characterizing the rate regi§ubiect to (2)-(8).

boundary.
It is egsy to show that the rate regidnis convex. Indeed, ~ Since the state-space of this MDP is countably infinite, the

given two points in the rate region, each attainable by sorfetimization in (9) involves an infinite number of variables
policy, we can obtain any convex combination of the raté order to make this problem tractable, we now introduce an
points by time-sharing the policies over sufficiently londP @pproximation.

intervals. Further, the rate region is also closed by déimit g | p approximation using a finite MDP

Therefore, any point on its boundary maximizes a weighted
sum- rate expression. That is, (iff,r3) is a rate pair on the
boundary ofA, then

(ry,r3) = argmax y, 3, WiA1 + waAs (9)

In this section, we introduce an MDP with a finite state
space, which as we show, approximates the original MDP
arbitrarily closely. The state action frequencies coroesting

(r1,73) = argmax(y, y,)eAW1A1 + walo (1) to the finite MDP approximation can then be solved as an LP.



x([l,bl,k,bQ];l)—|—x([1,b1,k,b2];2) = ([1 bl,/{—l bQ] )(1—6)+I([1,1—b1,k—1 bQ];l)E,k>2, (3)

o([1,b1,2,b2); 1) + 2([1,b1,2,02;2) = > a([l,br, 1, ba); Dpiy + (1,1 — by, 1, ba]; 1)ply 4)
1>2

l‘([k,bl,l,bg];l)+l‘([/€,b1,1,b2];2) = ([ —1,b1,1, bg] )(1—6)+$([k—1,b1,1,1 b];?)e,k>2, (5)

(12,61, 1,020 1) 4 2(12,b1, 1,021:2) = > 2([1,b1, 1,52} 2)p{] + (1, b1, 1,1 = bl 2)p], (6)
1>2

First note that the belief of a channel that has not beenWe next show a result that asserts that using the state action
observed for a long time increases monotonically toward tifieequencies obtained from the finite MDP in the backlogged
steady state value df.5 if it was OFF the last time it was system entails only a negligible sub-optimality, whenis
scheduled. Similarly, the belief decreases monotoni¢ally5 large. The finite MDP solution is applied to the backlogged
if the channel was ON the last time it was scheduled. The keystem as follows. If the state in the backlogged systemdl su
idea now is to construct a finite MDP whose states are the sathat both channels were served no more thaime slots ago,
as the original MDP, with the exception that the belief of then we schedule according to the state action frequen€ies o
channel that remains unobserved for a long time is clampttht particular state in the finite MDP. On the other hand, if
to the steady state ON probability,5. Specifically, when a one of the channels was served more thatime slots ago,
channel has not been scheduled foor more time slots, its the finite MDP would nohavea corresponding state and state
observation history is entirely forgotten, and the beliefitis action frequencies. In such a case, we schedule according to
assumed to b&.5. The action space and the reward structurthe state action frequencies of one of the four states in the
are exactly as before. We show that this truncated finite MOmite MDP in which the belief is clamped to the steady-state
closely approximates the original MDP whengets large.  value. For example, if the system state[isby, k2, b2, with

Let us now specify the states and state action frequencles> 7, we schedule according to the state action frequencies
for this finite MDP. There arel(r — 2) states of the form of the state{l,b,, ¢, ¢] in the finite MDP, and so on.
[1,b1,ko,bo], 2 < ko < 7 —1, by,bo € {ON,OFF} that Proposition 3: Suppose that the optimal state action fre-
correspond to the first channel being scheduled in the pusvigjuencies obtained by solving the problem FINITE() are
slot, and the second channel being scheduled lessrttiate used to perform scheduling in a fully backlogged system, as
slots ago. In a symmetric fashion, there ate — 2) states of detailed above. Let(7,w) denote the average reward vector
the form(ky,b1,1,b2], 2 < ky < 7—1, by,bo € {ON,OFF} so obtained. Then for eveny with w; + wo = 1, we have
that correspond to the second channel being scheduled in tihatf (7, w) convergesuniformly to the optimal reward* (w),
previous slot. Finally, there are 4 statfisby, ¢, ], by € asT — oo.

{ON,OFF} and [¢,®,1,bs], bo € {ON,OFF} in which We pause briefly to emphasize the subtle difference between
one of the channels has not been seen for at leagtts, and Propositions 2 and 3. Proposition 2 asserts that optimadmw

its belief reset t@).5. Let us denote by the above set of statesobtained from the finite MDP is close to the optimal reward of
for the finite MDP, and leti(s;a), s€ S, a € {1,2} denote the infinite MDP. In this case, the optimal solution to theténi
the state action frequencies for the finite MDP. These sta¥#DP is applied to the finite state-space. On the other hand, in
action frequencies satisfy normalization, balance equati Proposition 3, the optimal policy obtained from the finite MID
and rate constraints, analogous to (2)-(8). is used on the originainfinite state-space, and the ensuing

For a fixedw and, let us now consider the following LP. reward is shown to be close to the optimal reward. From a
practical perspective, Propositions 2 yields a charazdtaon

Problem FINITE{,w): of the rate region, while Proposition 3 plays a key role in
. . the throughput optimality proof of the frame-based poliay i
(P1,79) = argmax s, 5, ywid + w2y (10) Section IV.

subject to normalization, balance equations and rate cda- An Outer Bound

straints, analogous to (2)-(8). We now derive an outer bound to the rate regionusing

‘genie-aided’ channel information. Although the boundt
The main result of this section shows that gwdution to this used in deriving our optimal policy, it is of interest to coanp

LP approximates the boundary poispecified by the problem the outer bound we obtain to existing bounds in the liteeatur

INFINITE(w) for everyw, whenr is large. Consider a fictitious, fully backlogged system in which
Proposition 2: For a givenw with w; +ws = 1, andr, let the channel processes follow the same sample paths as in
. . the original system. However, after a channel is served in
7)(7,w) denote the solution to the problem FINITE(), and 3 particular time slot, a genie reveals the states of all the
let r*(w) denote the solution to INFINITE). Then,7(7,w) channels in the system. Therefore, at the beginning of a time
convergesiniformlyto r*(w), ast — oc. slot in the fictitious system, the scheduler has accesd the
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updated at the beginning of each frame. Given the queueiengt
vector Q(kT") at the beginning of each frame, the idea is
to maximize a weighted sum rate quantity over the frame,
where theweight vector is the queue length vector that
frame. The weighted rate maximization is, in turn, perfodme
approximately by solving the finite MDP. Intuitively, the
above procedure has the net effect of performing max-weight
scheduling over each time-frame, where MDP techniques are
employed to compute each of the ‘optimal schedules.” More
precisely, our policy operates as follows.

FRAME-BASED POLICY:
(i) Atthe beginning of time framé, update the queue length

vector Q(kT). }
Fig. 3. The capacity region, our outer bound, and the inndraarter bounds (i) Compute the normalized queue length vec®@(kT),
derived in [4], fore = 0.2. whose entries sum to 1.
(i) Solve the problem FINITEf, Q(kT)) and obtain the state
action frequencies(s,a), s€ S,a € {1,2}.
channel states in the previous slot, and not just the chan(i¢) Schedule according to the state action frequencies ob-

that was served. Clearly, the rate region for the genieehide tained in the previous step during each slot in the frame.
system, denoted by, is an outer bound to the rate region

of the original system. The boundary of the regidrcan be
explicitly characterized (see [3]) in terms af

A= {()\1,)\2)

D. Numerical Example

The main result of this paper is the throughput optimality
of the frame-based policy, for large enough valuesi'chnd
Eil + (){ - E)iQ E (i - E)/gf m T Specifically, our frame-based policy can stabilize alivair
( /\61)4—1;; 6<2:)>f4(_€/§)/ . (1) rates within ad-stripped region ofA, for any § > 0. As we
- shall see, a smald could require large values df and 7,
which increases the dimensionality of the LP (depends)on
as well as the average delay (depends/9nThus our policy
In this section, we use the finite LP approximation obtainesifers a tradeoff between computational complexity ancylel
in Section 111-B to numerically compute and plot the capaciton the one hand, and better throughput on the other. Our main
region for a two queue system. Specifically, we use thReorem is stated below. Note also that our policy requires
solution to the problem FINITE(w) with large enoughr, queue length information only at the beginning of each frame
which, according to Proposition 2, uniformly approximates Theorem 1:Given anyd > 0, there exist large enough
rate region boundary for alv. We also plot the genie-aidedandT' such that the frame-based policy stabilizes all arrival
outer bound obtained above, and compare the rate region aags in thej-stripped rate regiod — §1.
our outer bound to the inner and outer bounds derived in [4].
Fig. 3 shows the numerically obtained rate region, the genie
aided outer bound, and the inner and outer bounds derivedlihS. Ahmad, M. Liu, T. Javidi, Q. Zhao, and B. Krishnamagh4Op-

: s timality of myopic sensing in multichannel opportunisticcass,”|EEE
[4] for our symmetric two queue system with=0.2. The Transactions on Information Theqryol. 55, no. 9, pp. 4040—4050, 2009.

capacity region, shown with a dark solid line, was obtaingg) A. Gopalan, C. Caramanis, and S. Shakkottai, “On wirelssheduling
by solving the LP approximation FINITE(w) for all weight with partial channel-state information,” iProc. Ann. Allerton Conf.

. : - Communication, Control and Computing007.
vectors, and Iarge enough The dash-dot curve in the flgure 3] K.Jagannathan, “Asymptotic performance of queuedlefizpsed network

is our genie-aided outer bound. The achievable region of the control policies,” Ph.D. dissertation, Massachusettsitlits of Technol-
randomized round-robin policy proposed in [4], is shown bﬁé ogy, Cambridge, MA, USA, 2010.

; ; ; : : C. Li and M. Neely, “On Achievable Network Capacity andrdbghput-
a dashed line. Fmallly’ th_e outer most region in the figure Achieving Policies over Markov ON/OFF Channelsirxiv preprint
the outer bound derived in [4].

arXiv:1003.2675 2010.
Interestingly, we observe that the genie-aided outer bouidtl A. Pantelidou, A. Ephremides, and A. Tits, “Joint schiguyiand routing

is tight at the symmetric rate point; see [3] for details. f/%rl aféh%%nngggg under channel state uncertaitfreless Networks

IV. A THROUGHPUTOPTIMAL FRAME-BASED PoLICY [6] L. Tassiulas and A. Ephremides, “Dynamic server allmratto paral-
’ lel queues with randomly varying connectivithEEE Transactions on

In this section, we return to the original problem, with Information Theoryvol. 39, no. 2, pp. 466-478, 1993.

s : : ] L.Ying and S. Shakkottai, “On Throughput-Optimal Schilg with De-
finite queues and stochastic arrivals. We propose a thmﬂghB layed Channel State Feedback,”lifformation Theory and Applications

optimal queue length based policy that operates over long workshop 2008, pp. 339-344.
‘frames.’ [8] ——, “Scheduling in Mobile Ad Hoc Networks with Topologynd

In our frame-based policy, the time axis is divided into Channel-State Uncertainty/EEE INFOCOM, Rio de Janeiro, Brazil
frames consisting of” slots each, and the queue lengths are

REFERENCES



