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Abstract One of the most important types of applications
currently being used to share knowledge across the Inter-
net are social networks. In addition to their use in social,
professional and organizational spheres, social networks are
also frequently utilized by researchers in the social sciences,
particularly in anthropology and social psychology. In or-
der to obtain information related to a particular social net-
work, analytical techniques are employed to represent the
network as a graph, where each node is a distinct member
of the network and each edge is a particular type of relation-
ship between members including, for example, kinship or
friendship. This article presents a proposal for the efficien
solution to one of the most frequently requested services on
social networks; namely, taking different types of relation-
ships into account in order to locate a particular member of
the network. The solution is based on a biologically-inspired
modificatio of the ant colony optimization algorithm.
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1 Framework and motivation

Today, the great majority of people around the globe are cit-
izens of the information society. Among these digital citi-
zens, only a very few remain who are not users of some type
of social network.

With the appearance and boom of social networks, new
problems have arisen and users have new needs that pose
unique challenges for experts, particularly within the fiel
of information management.

One of the more frequent types of requests made by so-
cial network users is to locate other members of the net-
work in order to verify whether any particular relationship
exists that could be beneficia in establishing business or re-
search partnerships. Used in this way, social networks can
create mutually beneficia ties between people who other-
wise would have difficult connecting.

One of the firs proposals made to directly address the
challenges posed by these types of requests appeared in
1997 and the Referral Web system [19] was developed to
carry out member searches on small-scale social networks.
It is the aim of the present article to propose a near opti-
mal solution for member search requests on very large social
networks that efficientl produces high-quality results with
rapid response times.

In order to respond both effectively and efficientl to the
challenge of findin links between members of a social net-
work, two concrete steps must be taken. (1) All data being
handled must be transformed into a graph, that is, a domain
model must be created, and (2) an algorithm capable of effi
ciently searching for paths between nodes on the graph (i.e.,
members of a particular social network) that were specifie
by a user has to be identified

With regard to this firs step, it is necessary both to iden-
tify the concepts one wants to represent and to transform
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these concepts into nodes on the graph. Additionally, cer-
tain weights must also be assigned to each of the edges on
the graph representing relationships between nodes. This, it
must be noted, is not always an easy task. In the case of
social networks, for example, the act of assigning weights
to the edges connecting different nodes on the graph (i.e.,
network members) can be extraordinarily complex. In one
study [1] where nodes on the graph represent students in
Club Nexus, one of Stanford University’s social networks,
careful attention had to be given to different factors such as
gender or class year of a user who another user wanted to
friend.

With respect to the second step, there are a large number
of studies with the aim of findin algorithms capable of deal-
ing with the different difficultie that graphs may present.
Nevertheless, in most cases, the existing literature focuses
on algorithms capable of obtaining paths between nodes in
small graphs. This fact is problematic insofar as the graphs
obtained when modeling social networks are large. For in-
stance, in one particular path search proposal [26] which
functions efficientl on small graphs (i.e., with thousands
of nodes), the reported success rate diminishes significantl
with an increase in the number of nodes on the graph. The
same problem is found in [16] which efficientl conducts
path searches on graphs on the order of 213.

Given the current dearth of studies available on large
graphs representing social networks, it is the aim of the
present article to attempt to fil this gap in the literature. In
order to aptly address the nature of such graphs (graphs with
a high degree of clustering and with a small number of steps
between any two nodes on the graph), the ant colony opti-
mization (ACO [12–14]) algorithm has been selected. How-
ever, the ACO algorithm’s use is often restricted to small
graphs (hundreds or thousands of nodes) because on bigger
graphs the solutions will consists of too many steps, caus-
ing most of the ants to get lost and resulting in poor perfor-
mance and often unsolved services. The article proposes an
extended version of the algorithm, thereby making it suit-
able for use in large graphs with hundreds of thousands or
millions of nodes.

The extension of the ACO algorithm proposed here was
inspired by the behavior of animals capable of locating paths
to food sources by using their sense of smell. Thus, while the
classic ACO algorithm engineers ants which, as is true of
real ants in nature, locate food sources through pheromone
tracking, the modifie ACO algorithm proposed engineers
ants that, in addition to their traditional pheromone tracking
capabilities, are also endowed with a sense of smell. This
gives them an additional way to locate food sources, namely,
by the odor which those food sources give off. The ants’
new behavioral capability in the modifie ACO algorithm is
particularly significan for two reasons:

• If a food source is located on a relevant node of the graph,
the time needed to obtain a path to this node from another
node on the graph will be reduced.

• The algorithm can learn over time on the basis of queries
about paths, and it is possible to modify the number of
food sources and the number of nodes affected by the
diffusion of this odor during the execution of searches.
During this process, the ants will search for new paths on
the graph using the stochasticity typical of the ACO algo-
rithm if there are no other food sources because odor is
only an added help.

In order to clearly explain and test the proposal, the
present article is organized as follows. Section 2 discusses
relevant literature in the area of path searches, while Sect. 3
formalizes the scenario to be dealt with by the modifie
algorithm and then completely describe the modifie algo-
rithm to be used. Following the full explanation of the sce-
nario and algorithm, Sect. 4 presents and analyzes the results
obtained from several experiments carried out with the ob-
jective of demonstrating both the viability and scalability of
the proposal. Finally, Sect. 5 offers conclusions and a brief
discussion of interesting areas for future research.

2 Background

While the problems raised by path searches are in no way
new to graph theory research, different solutions neverthe-
less continue to be proposed to this day. This is due to the
fact that the ever-growing volume of information currently
being handled must be represented as graphs if it is to be
managed both effectively and efficientl .

Within the domain of social networks, two previously-
mentioned works [16, 26] offering solutions based on the
k-nearest neighbor algorithm may be highlighted. In the two
studies, a social network is represented as a graph and local
information is utilized such that, from a given start node to
a specifie end node, the next node along the path from the
start en route to the end may be located. Both proposals work
with scenarios of a reduced size and, as clearly demonstrated
[26], the probability of obtaining a solution decreases with
an increase in the size of the scenario. This particular result
demonstrates the inadequacy of these proposals for dealing
with the new necessities and challenges raised by the large
social networks currently in use.

With regard to studies searching for paths on graphs from
different domains (i.e., not representing social networks)
with a large number of nodes and edges, from a survey of
the literature it appears that all utilize some type of pre-
processing technique to structure the graph such that, despite
the large volume of data being handled, only certain frag-
ments of the graph are taken into account at different phases
of the search. In this way, the studies are able to considerably
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reduce response times for a given query. Once the graphs
have been processed, the studies use classic path search
algorithms (e.g., Dijkstra’s algorithm or the A* search al-
gorithm) which they slightly modify in order to efficientl
work with various fragments of the graphs. The principal
ways in which these studies differ, then, is not with regard to
the simple presence of pre-processing techniques, but rather
to the methods used for graph storage as well as the specifi
types of pre-processing techniques used (e.g., hierarchies,
clusters, etc.):

Storage in main memory. Some examples of this type of
storage can be found in certain studies [4, 9] which orga-
nize the respective graphs using a hierarchy, or in another
[10] which divides the main graph into sub-graphs and uses
a pre-processing method to determine which of the existing
edges in the graph ought to be taken into account in each of
the sub-graphs. For proposals of this type, it is extremely
important that the algorithm used in the pre-processing
phase obtains a highly compact or reduced graph. Due to
this, the amount of time required to obtain these types of
graphs and the resulting costs in the pre-processing phase
are necessarily large.
Secondary memory. In some particular proposals [5, 6], fil
systems are used to save both the sub-graphs as well as the
paths obtained between start and end nodes (i.e., the nodes
found along the borders between different sub-graphs). In
others [27, 28], graphs are organized into tree structures,
taking into account the distances between nodes, and saved
in databases. With respect to this last method of data stor-
age, a vast number of studies are gathered together in [31].
In each of them, the graphs used are pre-processed and
later, all relevant information is stored in a database. While
the pre-processing algorithms used in these cases are less
heavy-handed than those discussed in the earlier point, the
time required is very high.

One common characteristic to all proposals discussed
here is the large amount of time needed to complete the pre-
processing. As a result it is very difficul to include changes
to the pre-processing factors based on studies of the solved
path queries because any change in the pre-processing re-
quires a lot of time. This means that these proposals are not
adaptable to modification to the pre-processing factors.

An important aspect not taken into account in previous
proposals is the consideration of the kind of topology that
graphs which represent social networks have. This kind of
graph, as well as its large number of nodes, possesses a very
peculiar structure (small-world topology [23, 30]) in which
the number of edges to be covered in travelling from one
particular node to another is extremely low and the clustered
index is extremely high. Considering these different charac-
teristics, then, it may be understood intuitively that the ACO
algorithm [12–14] can offer particularly good solutions in

this domain. ACO has been used for a multitude of applica-
tions: a new version of ACO (BACO) to solve the problem
of job scheduling in grid computing [7], ACO as an algo-
rithm to create personalized guides within museums using
mobile devices [18], evolved ACO algorithm (HACO) to de-
termine medical diagnoses [24], algorithm EACO (modifie
ACO algorithm) to efficientl solve the vehicle routing prob-
lem capacitive [20], a modifie fuzzy ant clustering to solve
problems in image retrieval application [29], a version of ant
colony search algorithm to solve the multi-objective prob-
lems of strategical planning in the design of electrical dis-
tribution systems [17] or ACO algorithm shown in [33] that
solves the problem of scheduling resource control satellite.
However, from a review of the available literature, it appears
that no studies exist that apply the algorithm to large graphs
with millions of nodes with relevant information stored in
databases. Although some studies [2] may approach such an
aim, they are nevertheless restricted by the limitations im-
posed by the storage of graphs in main memory.

In the present article, ideas presented in a previous study
[25] are expanded upon in order to propose an adaptation of
the ACO algorithm equipped to deal with the different con-
cerns discussed above (i.e., graphs with hundreds of thou-
sands or millions of nodes and with a high degree of clus-
tering). As mentioned earlier, in addition to the pheromone
tracking capabilities of the ants of the classic ACO algo-
rithm, the ants in the modifie ACO algorithm are further
endowed with a sense of smell to locate sources of food. As
is the case for many animals in nature, the capacity to de-
tect the odor given off by a particular food source from, at
times, large distances effectively reduces the zone in which
an animal must search and allows for efficientl reaching
that food source even when it lies outside of the animal’s
line of sight. In this way, the modificatio proposed here
reduces the search space of the graph, thereby making it
viable to use the modifie ACO algorithm in large graphs
without, in the process, altering the basic functioning ca-
pabilities of the classic ACO algorithm. As a result of this
and despite the other modification made, the proposal can
nevertheless maintain the characteristics of the classic ACO
algorithm and make feasible the adaptation of the algorithm
to the changes based on the studies of the solved paths in a
short period of time.

3 Proposal

Having discussed the questions relevant to graphs of social
networks not previously addressed in the literature, the arti-
cle may now describe the modifie ACO algorithm proposed
in greater detail.

The modifie ACO algorithm proposed here allows ants
to conduct path searches in graphs with hundreds of thou-
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Fig. 1 State diagram of the
algorithm

sands or millions of nodes and with a high degree of clus-
tering by further endowing them with a behavioral capacity
characteristic of certain animals with a sense of smell. As is
the case with these animals, the ants used here are designed
not only with pheromone tracking capabilities, but also with
the capability to locate paths from their nests to a given food
source using the odor which that food source gives off. In-
sofar as it is no longer necessary for the ants to discover the
node on the graph where a particular food source is located,
but rather simply a node on which some amount of odor
given off by that food source (i.e., from another node on the
graph) is present, these modifie ants are able to reduce the
number of nodes they inspect in their search and, therefore,
may well fin the path to food sources more quickly than
their counterparts from the classic ACO algorithm [14].

In order to carry out this modification the search process
of the algorithm is divided into three principal phases:

Selection of the nodes on the graph where food sources are
to be located. It is good if this selection can be done before
the phase of path searches (firs state in Fig. 1), but it is not
necessary. This selection may be done at any moment, and
concurrently with the task being executed at that moment
(state “New Food Source” in Fig. 1).
Diffusion of food odor. Similar to the previous phase, this
second phase is carried out prior to the execution of path
search services (second state in Fig. 1). However, it is im-
portant to note that even after service execution has begun,
or during service execution, these prior phases may never-
theless be revisited by the algorithm any time that studies
of the services executed determine that new food sources
should appear (“New Food Source” state in Fig. 1), that old
food sources should disappear (“Delete Food Source” state
in Fig. 1) or when these studies show that the amount of dif-
fused odor is incorrect and ought to be increased/decreased

(“Change the Amount of Food Odor Diffusion” state in
Fig. 1).
Path searches with each requested service. This phase also
permits the revisiting of prior phases insofar as when an
ant retrieves part of a food source to bring back to its nest,
as in nature, a new trail of food odor is thereby created
along the path travelled by the ant from the food source to
the nest (“Diffusion of Food Odor along the Path” state in
Fig. 1). In this way, the zone on the graph with food odor
from the food source increases.

The firs sub-section of this point shows a formalization
of the scenario in which path searches are to be conducted,
the following sub-sections explain each of these different
phases in greater detail and the last sub-section shows an ex-
ample to make the algorithm clearly understood. However,
before continuing, it is important to state the obvious fact
that, prior to executing any of these phases, the informa-
tion corresponding to a given social network must firs be
transformed into a graph (if such a preliminary step has not
already been taken).

3.1 Problem formalization

Given a particular work scenario, this scenario may be repre-
sented by the connected graph G(t) = {N,L} at a particular
moment of time t , such that:

• N(t) = {(x, y) ∈ R × R} represents the set of nodes in G

at moment in time t .
• L(t) = {lij = (ni, nj ) ∈ N × N,ni �= nj } is the set of
edges in G at moment in time t , where lij = lj i .

Each of the edges lij ∈ L is assigned a particular weight
which can be define by the function W : L → R+, where
wij = W(lij ).
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The size of G is determined by the number of nodes it
possesses, that is, the number of elements in N(|N |). In the
particular scenario to be considered in later sections of the
present article, G possesses many hundreds of thousands of
nodes.

A series of services is carried out on G requesting a path
search between any two nodes ni, nj ∈ N , such that the
quality of the path obtained pij ∈ P(P : N × N → L′ ⊆ L)

be localizable between certain limits and that the time tanswer
taken in obtaining the path be less than a time tthreshold fi ed
by the user requesting the service.

3.2 Selection of food source nodes

In all social networks there are certain members (e.g.,
celebrities) who have a greater number of friends than other
members and who have a greater probability that other mem-
bers will want to friend them or use them in order to connect
with others in the network. That is, the nodes representing
these particular members on a graph are present (i.e., as
start, end or internal nodes) in a much larger number of path
searches executed than other nodes on the graph. In other
words, the nodes representing these more popular individu-
als have a greater centrality than the others.

Due to the frequency with which these particular nodes
are used in path searches, it is particularly interesting and
useful to identify them within the graph and differentiate
them in some way from the other components of N .

To achieve this in the present proposal, all nodes with
a centrality above a specifie threshold c are included in a
new set Food (F), where F ⊆ N and each element of F is
labeled fi . The number of elements within F , therefore, is
greater than or equal to zero, according to the number of
nodes in the graph with a centrality greater than c.

As previously indicated, it is possible that new nodes of
interest could appear or that nodes already included in F

could lose their importance relative to other nodes in the
graph when studies are done of path searches that have been
carried out. This possibility, however, is not problematic
since such a change would merely require the inclusion of a
new node in F or the removal of a pre-existing node from F .

3.3 Diffusion of food odor

Once all nodes comprising F have been identified the fol-
lowing phase of the proposed algorithm must be explained,
namely, how these relevant nodes in G are used by the algo-
rithm.

Just as it is true for graphs of social networks discussed in
the previous sub-section, in the natural world there are zones
of greater relevance for a given animal. Among these zones,
the animal will always place importance on those in which
food—be it fresh grass, its prey or a piece of bread—can be

found. Applying this real-world analogy to the formaliza-
tion described in the previous sub-section, these zones in G

where food is present are those represented by the set F .
Attracted to a particular food source by the odor which

that source gives off, an animal can successfully reach the
food source by following an odor trail that increases in in-
tensity as the distance from it decreases.

The algorithm proposed in the present article attempts to
simulate this particular aspect of animal behavior. That is,
around every food source fi with the maximum food odor
are a set of nodes where that odor is nevertheless present, but
with an intensity that is inversely proportional to the distance
those nodes are from the corresponding fi .

The concept described above may be formally expressed
in the following way:

• O(ni) indicates the food odor associated with the node ni .
• m is the maximum food odor intensity that a particular
node on the graph may possess.

• O(fi) = m, ∀fi ∈ F , insofar as fi , as a food source, rep-
resents a point from which food odor is diffused to the
rest of the nodes on the graph.

• ∀fi ∈ F there exists a subset si of nodes to which the
food odor has been diffused, and where each si ⊆ N and
contains at least one element, fi .

• All zones of the graph where food odor is present are
found within S; that is, ∀si ∈ S, where |S| = |F |.
Before discussing the algorithm used to diffuse the food

odor from fi to corresponding nodes, it is important to ex-
plain certain terms that directly influenc on the creation of
each zone where food odor is present:

• Insofar as the intensity of a food odor must decrease as
a node’s distance from the food source increases, it is
necessary to identify in the algorithm a specifi rate ac-
cording to which this decrease in food odor is quanti-
tatively expressed. In the algorithm proposed here, the
odor given off by a food source decreases according to
both the costs associated with graph edges, as well as
a factor k which determines the weight of each edge’s
cost in the decrease. This can be formally represented as
O(ni) = O(nj ) − k · wij , where ni is the node to which
the food odor is diffused from node nj .

• Regarding the creation of the distinct subsets si , no ele-
ment shall form part of that subset if its value falls below
that specifie by a food odor threshold u in each distinct
application.

Having explained each of the factors involved in food
odor diffusion in the graph, Algorithm 1 presents the specifi
instructions for its execution and a fl wchart that represents
this execution graphically.

The algorithm presented above functions by selecting the
node with the most intense food odor from a set of nodes
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Algorithm 1 Creation of si

saved in a backpack, initially containing only fi . The al-
gorithm then find other nodes that can be reached from
the previously selected node with food odor. This node is
saved within the variable n and the nodes reachable from it
in neighbors. For each of the latter nodes (i.e., those saved in
neighbors), respectively, a food odor will be assigned that is
equal to that of the more intense, previously-selected node,
lowered by w, the cost of the edge connecting each with
the previously-selected node, and adjusted by k. This as-
signment of food odor to neighbor nodes, therefore, may be
formally represented as O(n) − k · w and is always carried
out by the algorithm so long as the value obtained is greater
than u, as well as any other values which may have been
previously assigned to the neighbor nodes. In these cases
where a food odor has been assigned to a node, this node is
also placed in the backpack.

Once this process has been carried out for all nodes
reachable from n, it is marked (i.e., placed in usedNodes in
order to avoid additional analyses by the algorithm) and the
process is repeated for other nodes in the backpack.

After the complete process has been finished that is,
when backpack − usedNodes = Ø, each of the elements in
the backpack are placed in si .

Once the diffusion has been carried out, studies of its use
in the next search paths may show that fi is not used very of-
ten, that is, fi is not an important node. Therefore, fi should
be deleted from F and all the elements forming its si would
be erased (si should be deleted from S).

It is necessary to highlight here the importance of the
value assigned to u, inasmuch as said value determines the

size of each si and, returning to the real life analogy used
throughout the article, the degree to which a food odor is
diffused. If the value assigned to u is too high, for instance,
no real aid is given to the animals in locating the food source
insofar as the animals would not have access to any odor
trail to follow. As a result, the animals would not know that
a food source existed until they literally and randomly stum-
bled upon it.

If, on the other hand, the value of u is low, the food source
is easily discovered by the animals which would simply have
to follow the food odor trail. However, the time required to
carry out the diffusion would be quite long (in the case of the
previous paragraph, the time required is relatively short).

With the importance of this aspect clearly in mind, the
evaluation section of the present article carries out a study
of different u values so as to observe their influenc on the
proper functioning of the algorithm.

3.4 Path searches: the ACO algorithm modifie

The number of edges that an ant should cover before reach-
ing its destination ought to be relatively low, since the con-
trary could result in the ant getting lost along the way or in
the production of an inferior quality solution. This is why the
representation of nodes with food odor is particularly help-
ful for the ACO algorithm, insofar as an ant needs only to
fin an si and follow the corresponding odor trail of grow-
ing intensity to obtain a solution.

In this way, the number of edges covered by an ant is re-
duced considerably without requiring a restructuring of the
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Algorithm 2 Path search algorithm

graph, be it through fragmentation, reorganization as a tree
or any other related method. Thus, if a deletion, insertion
or modificatio of an si occurs simultaneously with an ant’s
path search, the ant may nevertheless carry on normally with
its search. This is due to the fact that the zones in the graph
with food odor act merely as an aid to the tracking capabil-
ities of ants specifie under the classic ACO algorithm and
preserved in the proposed algorithm.

Despite this fact, the inclusion of zones with food odor
within the graph nevertheless marks a significan depar-
ture from other published works discussed in Sect. 2 of the
present study. This is particularly true given the fact that
the most proposals in other studies are incapable of execut-
ing a search without having previously carried out a pre-
processing of the graph.

Below is a detailed account of the specifi extensions pro-
posed for the classic ACO algorithm in order to respond to
the current necessities and challenges discussed in previous
sections of this paper.

Initialization phase (three separate processes)

• Each of the edges in G is reset to a uniform and fi ed
amount of pheromone. It is important to remember here
that, while food odor is a characteristic specifi to the
nodes of G, pheromone, on the other hand, is specifi to
the edges of G.

• At any particular moment, an ant can move to any node
accessible from the point at which the ant is located, save

those nodes which the ant has visited previously. Only in
the case where all of the nodes reachable from the point
where the ant is located have already been visited, can the
ant return to a previously-visited node. In order to keep
track of all the nodes reached, the ants in the algorithm
make use of a tabu list into which each visited node is
entered. This tabu list is consulted prior to any movement
made by an ant and is emptied in the initialization phase
of the algorithm.

• Finally, the ants are divided in half, placed in their corre-
sponding nests at opposing ends of a particular path and,
to the extent that neither of these two end nodes pertains
to F , are given the objective of reaching the end node at
the opposite end of the path. If one of these end nodes
does, in fact, pertain to F , all ants are situated on the op-
posing non-F node to search for the corresponding fi .

Once both the ants and certain characteristics of the graph
have been initialized, the search for the requested path may
be carried out.

Path search phase In the algorithm to be followed and exe-
cuted in this phase (executed, that is, so long as the execution
time does not exceed tthreshold) that is represented below (see
pseudocode and its fl wchart in Algorithm 2), the following
aspects possess a particular relevance:

• An ant’s selection of a single node out of all those nodes
which can possibly and permissibly be visited from a
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particular point in G (following the application of the
tabu list rule discussed above regarding previously visited
nodes) is based on the application of the probabilistic for-
mula expressed below (see formula (1)), where ni is the
node on which the ant is located at a particular moment
in time t,NodesR are the totality of indexes of visitable
nodes following the application of the tabu list rule, nj are
all those nodes with an index pertaining to NodesR, and
τij (t) is the amount of pheromone existing for edge lij at
moment t

p(ni, nj ) = τij (t)
∑

k∈NodesR τik(t)
(1)

The selection is executed in the algorithm by the method
selectNextnode().

• Only after an ant has found its corresponding end node
can it return to its nest and begin the path search again.

• After having reached an si , an ant will attempt to follow
its current path to its corresponding end node. To do so,
the ant’s tabu list is completed using the method com-
pleteTabu(tabu) for the section of the path spanning from
a node found with food odor to its corresponding fi ∈ si .
As discussed earlier, the discovery of the path from a node
with food odor to its corresponding fi ∈ si is relatively
quick and easy, insofar as the ant needs only to follow the
increasingly strong odor trail leading to the food source.
After this section of the path spanning from one end node
to an fi has been discovered, an attempt is made using the
method completePath(path1) to complete the full path by
continuing from the same fi to its opposing end node.
As discussed below, this latter task of path completion is
achievable only when the latter section of the full path
(i.e., from fi to the opposing end node of the path) has
previously been found by other ants.

• The partial paths found by ants (i.e., paths found lead-
ing to/from a start/end node to an fi) are stored using the
method storePartialPath(path1) so that they may be used
by other ants in the future to fully complete the different
paths ofG. A partial path is saved if it is the firs time such
a path has been discovered between a particular start/end
node and an fi , or if the partial path discovered is superior
in quality to another, previously-discovered path between
the same two nodes.

• Lastly, it is important to note that the only type of
pheromone update carried out in the algorithm is one of
a global nature (using the method globalUpdate(path)).
In other words, the pheromone is only updated by the
algorithm when a complete path has been found, from
a start node to an end node. The formula governing
this pheromone update appears below (see formula (2)),
where τij (t) is the pheromone for the edge lij at moment

in time t , ρ is the dissipation rate of the pheromone and
length is the length of the path encountered

τij (t) =
{

τij (t − 1) · (1− ρ) + constant
length , nj ∈ path

τij (t − 1) · (1− ρ), other case
(2)

The decision to execute only global pheromone updates
is due to the fact that the graph is extremely large and the
number of ants required for the ACO algorithm is, there-
fore, necessarily high. Were local pheromone updates in-
cluded as well, a large number of transactions would be
needed and response times, as a result, would be nega-
tively affected.

As can be observed in the search process presented, the
fact that the value of |S| or each |si | may change during the
search process does not imply that the search process must,
therefore, come to a halt since, if a food odor cannot be de-
tected, the ants continue to search according to the proce-
dure spelled out by the classic ACO algorithm (in Fig. 1 this
concurrency is observed clearly).

It is important to again briefl note the possibility that,
following the search phase, the algorithm can, in fact, re-
turn to the odor diffusion phase. This return to an earlier
phase in the process is due to the fact that if the ants used
an si to reach their destination on the path obtained, a cer-
tain amount of food odor is diffused along the nodes of the
path (“Diffusion of the Food Odor along the Path” state in
Fig. 1), thereby increasing |si | and making future searches
quicker and easier.

Food odor is retroactively assigned to the nodes along the
path obtained by following the path in the opposite direction,
that is, beginning from the node with a food odor and arriv-
ing at the node from which the ant originally departed. From
one node to the next along this inverse path, the food odor
assigned decreases according to the same formula described
earlier in Sect. 3.3, that is, O(ni) = O(nj ) − k · wij , where
nj is the node assigned a food odor directly preceding ni ,
the node currently being assigned a food odor.

The principal difference between this particular exten-
sion and that generated in the second phase of the algo-
rithm is that, in this particular case, the food odor assigned
to nodes here need not be greater than or equal to u. Rather,
it is necessary that its value simply be greater than zero.

3.5 Example of application

After describing the modifie ACO algorithm in detail, this
present sub-section aims to ensure the clear understanding
of the algorithm and its component phases by means of the
following example.

As demonstrated in Fig. 2(a) below, the example begins
with an initial graph of 11 nodes,N = {n1, n2, n3, n4, n5, n6,
n7, n8, n9, n10, n11}, and 10 edges, L = {l1,2, l1,5, l1,8, l1,9,
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Fig. 2 Diffusion of food odor

l2,3, l4,11, l5,4, l5,6, l5,10, l9,7}, with the following weights:
W = {w1,2,w1,5,w1,8,w1,9,w2,3,w4,11,w5,4,w5,6,w5,10,
w9,7} = {2,2,2,2,4,3,4,5,1,4}.

Having define the graph used in the present example, the
different phases of the algorithm are executed on the graph
in the following way:

Selection of graph nodes with food sources. Observing
Fig. 2(a), were the graph the representation of a social net-
work, it could easily be deduced that node n1 represented
an important person, resulting in its selection as a node at
which a food source should be located. In this way, the
node enters the set F as f1, such that F = {f1}. Visually
representing the node’s greater importance and the maxi-
mal presence of food odor at this node (as is expected at
nodes where a food source is located), Fig. 2(b) identifie
n1 with dark color and a larger size than that of the remain-
ing nodes on the graph. Specificall , the amount of food
odor present at the node is equal to m : O(n1) = O(f1) =
m = 10.
Diffusion of food odor. Once the node with the food source
has been selected, the following phase of the algorithm can
be commenced whereby the food odor is diffused to other
nodes on the graph. For this particular example where u

and k values are set at u = 6 and k = 1, the steps to be
followed are listed below:

Step 1
– Backpack= {n1}.
– Used nodes= {}.
Step 2
– The node with the greatest amount of food odor in the
backpack, n1, is selected, such that n = n1.

– O(n2) = O(n1) − k · w1,2 = 10− 1 · 2= 8.
– O(n5) = O(n1) − k · w1,5 = 10− 1 · 2= 8.
– O(n8) = O(n1) − k · w1,8 = 10− 1 · 2= 8.
– O(n9) = O(n1) − k · w1,9 = 10− 1 · 2= 8.
– Backpack= {n1, n2, n5, n8, n9}.
– Used nodes= {n1}.
In Fig. 2(c) below, in order to differentiate the nodes to
which food odor has been diffused in this particular step
from the other nodes of the graph (i.e., the nodes to which
food odor arrives directly from f1), the nodes with dif-
fused food odor have been colored with a lighter color and
are represented by circles that, while larger than those of
the remaining nodes, are nevertheless smaller than that of
the node where the food source is found. This is due to
the fact that the node with the food source has more food
odor than any of the four newly incorporated nodes in the
backpack. Additionally, no differences can be observed in
either color or size among the newly incorporated nodes
due to the fact that, as demonstrated in the calculations
above, each of them possesses the same amount of food
odor.
Step 3
– The node with the greatest amount of food odor in
the backpack not selected previously is chosen. In this
case, as there remain various nodes with the same
amount of food odor, one is selected at random such
that n = n8.

– No node exists that is reachable from n8 that has not al-
ready been reached in earlier steps of the process. Thus,
no (additional) food odor may be dispersed from this
particular node to other nodes on the graph.

9



– Backpack= {n1, n2, n5, n8, n9}.
– Used nodes= {n1, n8}.
Step 4
– The node with the greatest amount of food odor in
the backpack not selected previously is chosen. Simi-
lar to Step 3, as various nodes with the same amount of
food odor remain, one is selected at random such that
n = n2.

– O(n3) = O(n2) − k · w2,3 = 8− 1 · 4 = 4 < u = 6 →
O(n3) = 0.

This node is not added to the backpack since its odor is
less than u. Therefore, neither this node nor any other
nodes which hang from it exclusively may be included
in s1.

– Backpack= {n1, n2, n5, n8, n9}.
– Used nodes= {n1, n8, n2}.
Step 5
– The node with the greatest amount of food odor in
the backpack not selected previously is chosen. Similar
to the previous steps, as various nodes with the same
amount of food odor remain, one is selected at random
such that n = n5.

– O(n4) = O(n5) − k · w5,4 = 8 − 1 · 4 = 4 < u →
O(n4) = 0.

– O(n6) = O(n5) − k · w5,6 = 8 − 1 · 5 = 3 < u →
O(n6) = 0.

– O(n10) = O(n5) − k · w5,10 = 8− 1 · 1= 7.

Of all the nodes reachable from n5, only n10 is added
to s1. Insofar as the other two nodes sharing an edge with
n5 possess food odors determined to be less than u, they
cannot be included in s1. As shown in Fig. 2(d), the new
addition to s1 is colored lighter than the other nodes of s1,
yet distinct from the colorless nodes not in s1, and is rep-
resented by a circle that is smaller than those of the other
nodes in s1, yet larger than the nodes not in s1. In this
way, n10’s lesser odor than that of the other nodes in s1
and greater odor than that of the nodes not in s1 is visu-
ally represented.

– Backpack= {n1, n2, n5, n8, n9, n10}.
– Used nodes= {n1, n8, n2, n5}.
Step 6
– The node with the greatest amount of food odor in the
backpack not selected previously is chosen such that
n = n9.

– O(n7) = O(n9) − k · w9,7 = 8 − 1 · 4 = 4 < u →
O(n7) = 0.

Insofar as the food odor corresponding to n7 is less than u,
the node is not included in s1.

– Backpack= {n1, n2, n5, n8, n9, n10}.
– Used nodes= {n1, n8, n2, n5, n9}.
Step 7
– The only node not having been selected previously is
chosen such that n = n10.

– No node exists that is reachable from n10 that has not
already been reached in earlier steps of the process.
Thus, no new nodes can be included in the backpack.

– Backpack= {n1, n2, n5, n8, n9, n10}.
– Used nodes= {n1, n8, n2, n5, n9, n10}.
Since no new nodes can be included in the backpack,
the food odor diffusion is concluded with the follow-
ing results: a node with food odor F = {f1 = n1} and
S = {s1} = {{n1, n2, n5, n8, n9, n10}}.
Path searches with each requested service. In this phase of
the example, all requested path searches are executed. As
discussed in earlier sections of this article, insofar as the
performance of the proposed algorithm for path searches
is not negatively affected by previous phases of the pro-
cess, these searches may be requested during the execu-
tion of the food odor diffusion, during the selection of the
node with the food source or following the diffusion. Nev-
ertheless, and in order to demonstrate how the inclusion
of food odor in the proposed modificatio enhances the
path search process, the path search phase of the present
example begins following the completion of the food odor
diffusion, that is, using the graph in the state illustrated in
Fig. 2(d).
Having clarifie the graph state over which service re-
quests are to be executed, the particular path to be re-
quested by the service in the present example is path p1,11
linking node n11 with node n1.
Following the phases described in Sect. 3.4 of the arti-
cle, the path search in the present example is explained
below:

Phase 1
– Tabu= {}.
The empty set above refers to the initial tabu lists for
each of the ants in the algorithm.

– The pheromone levels for each of the edges are set at
initFerom.

– Given that one of the start/end nodes in the path search
pertains to F , all of the ants are therefore placed on
n11.

Phase 2 Using the probabilistic equation presented ear-
lier in formula (1), the ants begin to search for nodes
on the requested path. This search is completed when an
ant encounters a node with food odor since it is then easy
for the ant to reach the node with the food source from
a node with food odor. In the example, the fragment of
the path {n11, n4, n5} is encountered. Having arrived at
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Fig. 3 Inclusion of new
elements in si

the node with food odor n5, the ant terminates its use
of the probabilistic formula and continues its search for
the food source by following the path of increasingly in-
tense food odor. In this way, the ant completes the path,
obtaining p11,1 = {n11, n4, n5, n1}.
Since the zone with food odor has been used by the ants
along the path obtained, following the completion of the
service, the food odor is further diffused along the frag-
ment of the path running from the start node to the firs
node where food odor has previously been detected. For
this additional diffusion, the steps below are followed:
Step 1
First node encountered with food odor: n5.
s1 = {n1, n2, n5, n8, n9, n10}.
Step 2
Following node: n4.
O(n4) = O(n5) − k · w5,4 = 8− 1 · 4= 4.
Since the food odor value obtained is greater than zero,
the node is added to s1.
s1 = {n1, n2, n5, n8, n9, n10, n4}.
This new addition is illustrated in Fig. 3(a) in which the
node n4, colorless and small in previous representations
of the graph, is now given a light color—lighter than
the previously colored nodes yet darker than the nodes
not included in s1—and a larger size—smaller than the
previously colored nodes yet larger than the nodes not
included in s1. This is due to the fact that the food odor
present in n4 is weaker than in nodes previously included
in s1 yet stronger than the other nodes not included in s1.
Step 3
Following node: n11.
O(n11) = O(n4) − k · w4,11 = 4− 1 · 3= 1.
Similar to Step 2 above, since the food odor value ob-
tained is greater than zero, the node is added to s1.
s1 = {n1, n2, n5, n8, n9, n10, n4, n11}.
In Fig. 3(b), the newly added node n11 appears with a
light color and larger size than in previous depictions of
the graph. Nevertheless, both the intensity of color and
the size of n11 are less than those of the other nodes pre-
viously included in s1. This is due to the weaker amount

of food odor present in n11 with respect to all other pre-
viously included nodes.

Given that |s1| of the graph in question has increased to
include the two new nodes, with food odor, n11 and n4,
future path searches are, therefore, made easier insofar as
the ants need only to encounter n11 rather than travel all
the way to n5.

4 Evaluation of algorithm

After fully explaining the proposed algorithm, the present
section of the article aims to demonstrate its proper func-
tioning. To this end, a series of experimental path searches
are executed with the proposed algorithm as well as other
algorithms frequently used for path searches in graphs, such
that the costs of the paths obtained by each algorithm and
the times required for their obtainment may be compared.
This section also studies the influenc of different u values
(i.e. threshold for food odor intensity), number of ants, and
graph size on the proper functioning of the proposed algo-
rithm as well as the proposal’s scalability for graphs with a
greater number of nodes and also, therefore, edges.

The proposal presented here is very specifi and its goals
are beyond the focus of most of the state of the art meta-
heuristics, there being no benchmark for evaluation. On the
other hand, variants of ACO are usually compared with
the same algorithm. Therefore, it was decided to compare
the proposal with well-known and disseminated algorithm.
Specificall , the comparison is made with:

Classic ACO algorithm [14]. This algorithm has been cho-
sen in order to clearly demonstrate the importance of the
improvements included in the version proposed here.
Dijkstra’s algorithm. This algorithm has been selected due
to its standing as the classic path search algorithm (e.g.,
database management systems generally offer Dijkstra’s
algorithm for path searches) as well as to the optimal costs
of the paths it obtains. Thus, direct comparison between
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Fig. 4 Cost and response time
of the f rst obtained path with
the proposed algorithm with
respect to Dijkstra

Dijkstra and the proposed algorithm will clearly show how
close or far the results generated by the latter are from the
optimum.

In the following sub-sections, these algorithms are executed
over three distinct types of graphs: first over a fictitious
generic graph of different sizes, and then over two different
graphs corresponding to two distinct social networks, Slash-
dot [22] and Epinions [21].

4.1 Selection of number of ants

The firs step before starting to test the algorithm is to set a
value to some specifi parameters of the way it works. Be-
cause the search algorithm used is based on ACO [12], it is
important to set the number of ants to be used.

To set the value of this parameter, the algorithm is going
to run on a generic graph of different sizes, and the best
number of ants to be used will be the one which obtains
the lowest path cost in the shortest period of time.

Regarding the test plan to be performed, 5 queries, each
of 100 services (routes between two nodes of the graph),
will run.

With respect to the generic graph, it is going to be gen-
erated so that there is an area with a higher concentration
of nodes, and therefore links, in its center. With this design,
the high degree of clustering in social networks will be simu-
lated. To finish the number of nodes that form the graph will
take different values to see if there is any trend in the num-
ber of ants that is more appropriate in each case. The sizes
of graphs considered are the followings: 10,000 nodes (with
30,000 links), 50,000 nodes (with 150,000 links), 100,000
nodes (with 300,000 links) and 200,000 nodes (with 600,000
links).

Figure 4 shows the results for 50, 200 and 500 ants on
the graphs mentioned above: Fig. 4a shows the response
time improvement of the proposed algorithm with respect to

Dijkstra (algorithm used to choose the number of ants that
makes being closer to the optimal cost possible), and Fig. 4b
shows the difference in cost of the path obtained with respect
to the optimal cost (obtained with Dijkstra).

That figur shows how the time used to give the firs solu-
tion to the required path (Fig. 4a) increases when the num-
ber of ants used increases. This is to be expected because
the processing that has to be carried out is greater. However,
the response time is always better than the one required by
Dijkstra (the value obtained is always over 95%).

With regard to the cost of the obtained path (Fig. 4b),
its difference from Dijkstra decreases as the number of ants
increases. This is because the probability of findin the best
way from among all the possibilities increases when there
are more ants looking for a solution.

Joining together the above comments in relation to Fig. 4,
the following conclusion can be drawn: the response time is
improved with respect to Dijkstra for any number of ants.
However, the cost of the path is always higher than the cost
obtained by Dijkstra, but it tends to be closer to the optimal
value with the higher number of ants. For this reason, the
number of ants in large graphs must be as great as possible.

Following this logic, in the next section 500 ants will be
used because the graph used is that of 200,000 nodes (the
selection of this graph is based on the fact that the algorithm
requires testing in the worst conditions, that is, in the larger
size graph).

Besides the number of ants that need to be used for the
correct functioning of the algorithm, another conclusion can
be drawn from the experimentation. This conclusion is that
the algorithm is scalable with respect to the growth in the
number of nodes/links. In fact the effect of growth in re-
sponse time is practically inconsiderable, the cost grows lin-
early, and in all the experiments, all the services obtain a
solution (the success rate is equal to 100%).
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4.2 Experimentation with generic graph

The principal objective of this experiment is to demonstrate
the quality of the path search solutions presented by the pro-
posed algorithm for a generic graph, that is, a graph display-
ing no particular structure that could inherently favor the use
of the proposed algorithm over any other. The quality of
path search solutions obtained by the proposed algorithm,
then, are determined experimentally through their compari-
son with the times and costs obtained by the application of
Dijkstra’s algorithm. While attempts were made to compare
the proposed algorithm with the classic ACO algorithm as
well, no results obtained from the application of the latter are
presented in this sub-section. The reason for this decision is
simple and clear: in more than 70% of the trials run with the
classic ACO algorithm, the ants got lost due to the high vol-
ume of nodes to be visited and no results could be obtained,
while in the remainder of the trials, the quality of the paths
obtained was quite low. The results demonstrate what has
already been noted in the literature; that is, the classic ACO
algorithm is not suitable for large graphs.

For the generic scenario tested in the present experiment,
a large, connected graph was created with 200,000 nodes
and 600,000 bidirectional edges, such that the average num-
ber of edges per node in the graph is three.

With regard to the nodes of interest on the graph, only
one was selected (i.e., only one element f1 in F) and it was
given a greater concentration of edges, that is, a particularly
high connectivity.

With respect to the specifi tests carried out for the
present experiment, 10 queries with 1000 services each were
executed for the graph presented above. The term service is
used here to denote a request for a path search between two
different nodes on the graph, where the end node is f1 and
the start node is selected randomly among all those appear-
ing in the graph, thereby guaranteeing that no start node be
repeated within a given query. This decision to designate f1
as the end node of each of the path searches executed in the
present experiment was made because, as in graphs repre-
senting social networks, nodes of interest are generally vis-
ited with greater frequency than others.

It is also important to highlight that the present experi-
ment only takes the firs path obtained by the ants into ac-
count. In other words, once a firs solution has been obtained
for a given service, the service is then immediately termi-
nated and the following service is executed.

As for the aspects critical to the proper functioning of the
proposed algorithm, it is firs important to note that while
the food odor in the graph is restarted for every new query,
nonetheless, it is not restarted from one service to another.
In this way, the evolution of the effect exerted by the expan-
sion of |s1| on the quality of the paths and response times
obtained can be carefully observed over the duration of the

Table 1 Algorithm parameters

Parameter Value

tthreshold 700 sec
#ants 500
ρ 0.6
m 1,000,000
k 100%

Table 2 Times in food odor diffusion

u Nodes with food odor (%) Time (sec)

999,700 1 11.5
998,600 17 178.3
998,000 30 326.6

query. Secondly, and with regard to the pheromone trails in
the graph, each is restarted at the beginning of every service.
Additionally, the values assigned to the principal parameters
of the proposed algorithm are shown in Table 1.

It is significan that the value assigned to tthreshold is ap-
proximately equal to the time taken by Dijkstra’s algorithm
to produce a solution. In this way, the ants of the extended
ACO algorithm proposed here may never take longer than
the time required to obtain a solution of optimal quality.

Additionally, no specifi u value (i.e., the minimum
threshold value for food odor diffusion) appears in Table 1.
This is due to the fact that, as mentioned earlier, the func-
tioning of the proposed algorithm with different u values
is to be analyzed separately. The u values to be compared,
then, can be seen below in Table 2.

With each distinct u value, different values of |s1| are ob-
tained, such that the smaller the u value, the larger the num-
ber of nodes contained in |s1|. As can be observed in Table 2,
this increased number of nodes results in an increase in the
time necessary to carry out the food odor diffusion. These
times deserve careful consideration when drawing conclu-
sions about the benefit or lack thereof of increased u values
for the proposed algorithm with regard to the path quality
and response times obtained.

Once the diffusion has been carried out, the different
queries are executed and the following conclusions may be
drawn:

Rapid evolution of path costs and response time throughout
services (Fig. 5). Clearly observable from the graph is the
ability of the proposed algorithm to rapidly diminish and
stabilize costs and response times after the fiftiet service.
The importance of the additional, retroactive food odor dif-
fusion carried out at the end of each service is, therefore,
confirmed

13



Fig. 5 Evolution in path quality
and response time of f rst path
obtained for each service
executed

Fig. 6 Response times for f rst path obtained in each service

Furthermore, the influenc of u values on this evolution is
demonstrated by the graphs in Fig. 5 to be insignifican in-
sofar as the algorithm results began to stabilize at approxi-
mately the same service number for each different u value.
The only observable difference between different u values,
then, is with respect to the cost at which the proposed al-
gorithm results stabilize, being slightly lower for lower u

values. These results are studied below in greater detail.
Observable reduction in response time (relative to Dijkstra)
for all u values (Fig. 6), despite need for improvements in
currently non-optimal obtained path costs (Fig. 7). One of
the likely explanations for the non-optimal costs obtained
by the proposed algorithm relative to Dijkstra is that, in the
series of tests conducted for this study, the selected path is
always the firs to be obtained by the ants. It is for this rea-
son that a future study is discussed in the last section of this
paper in order to attempt to evaluate the cost evolution in

Fig. 7 Cost of firs path obtained in each service

consecutive solutions obtained by ants for the same service.
Additionally, the number of nodes which the ants must visit
in order to reach their destination is quite high due to the
generic structure of the graph used in this particular ex-
periment. As a result, the behavior of the algorithm with
the generic graph is understandably less optimal than the
expected behavior of the algorithm with graphs represent-
ing small-world networks [23], that is, the sort of graphs
to which the proposed algorithm is designed to be applied
and whose results are presented below in Sect. 4.3.

As a fina comment, it is important to add that the influenc
of the different u values on cost and response times for paths
attained by the algorithm is not comparable to its influenc
on the time necessary to execute the food odor diffusion.
While costs and response times for the paths obtained with
smaller and larger u values are approximately the same, such
is not the case with regard to the time necessary to execute
a food odor diffusion, which is significantl lower with the
use of higher u values. Thus, in the case of considering the
introduction of new food nodes, or the deletion of old ones,
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or the change in the number of nodes affected by the odor
diffusion, it is advisable to select larger rather than smaller u
values as they make the algorithm more agile and adaptable
to these changes within the graph.

4.3 Experimentation with a real-world graph

Having demonstrated the high performance of the proposed
algorithm with a generic graph, the present sub-section ob-
serves and analyzes its behavior on a graph representing a
real-world scenario. Given that the proposed algorithm was
designed and selected specificall for its application to these
sorts of graphs, the results obtained are, therefore, of partic-
ular significance

For this real-world scenario, a graph representing a so-
cial network was selected in order to address the two prin-
cipal characteristics repeated throughout the earlier sections
of this article: that is, the graphs’ large size and the relatively
low number of edges between any two nodes.

The social network used in the present experiment is the
Slashdot social network as it was encountered in February of
2009, as presented in [22]. The graph representing the net-
work in this state is composed of 82,168 nodes and 948,464
edges, and it possesses a small-world structure.

For the present experiment, all three algorithms presented
earlier—Dijkstra’s algorithm, the classic ACO algorithm
and the proposed algorithm with different u values—are
used. With regard to the parameters affecting the functioning
of the proposed algorithm, the values used are those previ-
ously recorded in Table 1. The table, it must be noted, is also
important for the classic ACO algorithm insofar as it con-
tains a number of parameters—such as tthreshold , number of
ants and pheromone evaporation rate—which are pertinent
to it as well.

The tests run in this experiment were identical to those
carried out on the generic graph of the previous sub-section.
The restarting of food odor and pheromone were also han-
dled the same way as before.

The present experiment presents an F with only one ele-
ment corresponding to the person with the greatest number
of edges within the graph of the social network and serving
as the end node for all services requested in the experiment.

Concerning the different u values for the proposed algo-
rithm, as Table 3 indicates, two such values are used in the
present experiment and correspond to a food odor diffusion
covering 3% and 37% of the nodes on the graph respectively.
As noted earlier in Sect. 4.2, despite the expected improve-
ments in path search solutions obtained with the application
of lower u values, differences in food odor diffusion times
are nonetheless highly significan and ought to be seriously
considered when evaluating the advisability of using lower
rather than higher u values.

Detailed comparisons of the performance of these four
algorithms—Dijkstra, classic ACO, proposed ACO with

Table 3 Amount of food odor diffused throughout the graph

u Nodes with food odor (%) Time (sec)

999,999 3 17.4
999,998 37 234.1

Table 4 Costs of f rst path obtained for each service

Dijkstra ACO Proposed Proposed
ACO 3% ACO 37%

Mean 3.18 18.97 3.62 3.18
SD (standard 0.13 2.82 0.20 0.14
deviation)
% SD 4.20% 14.85% 5.41% 4.30%
Median 3.20 18.78 3.60 3.20
Q1 3.10 16.95 3.48 3.10
Q3 3.30 20.58 3.75 3.30
Minimum 3.00 12.03 3.18 3.00
Maximum 3.70 32.15 4.38 3.75

Table 5 Worsening of costs of firs path obtained relative to Dijkstra

ACO Proposed Proposed
ACO 3% ACO 37%

Mean 100.45% 12.06% 0.16%
SD (standard 51.27% 3.46% 0.64%
deviation)
% SD 51.04% 28.67% 387.11%
Median 91.00% 12.06% 0.00%
Q1 65.93% 9.77% 0.00%
Q3 118.67% 14.29% 0.00%
Minimum 23.48% 2.22% 0.00%
Maximum 494.44% 22.98% 6.38%

3% initial diffusion and proposed ACO with 37% initial
diffusion—are presented below in Tables 4, 5 and 6.

In Table 4, it can be observed that the proposed algo-
rithm’s cost is practically equal to the optimum obtained by
Dijkstra. While the results obtained by the algorithm with
37% of the nodes initially assigned a food odor are closer
to the optimum than those obtained by the algorithm with
only 3% food odor coverage, the difference between the two
in relation to the optimum is minimal. Due to the time re-
quired to diffuse food odor in the two cases (see Table 3),
the proposed algorithm with only 3% food odor coverage
is actually more advisable here. As the algorithm with only
3% coverage allows for faster food odor diffusion from f1
than the algorithm with 37% coverage, it therefore possesses
a greater adaptability to changes in the food nodes (includ-
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Fig. 8 The logarithmic scale
for costs and response times for
firs path obtained for each
service in each algorithm used

Table 6 Response times (msec) of firs path obtained for each service

Dijkstra ACO Proposed Proposed
ACO 3% ACO 37%

Mean 551284.80 345.78 47.55 48.55
SD (standard 6338.63 50.31 4.81 6.34
deviation)
% SD 1.15% 14.55% 10.11% 13.05%
Median 550293.10 340.65 46.85 47.58
Q1 546963.00 311.24 44.47 44.84
Q3 554854.50 375.83 49.98 51.10
Minimum 537232.90 210.55 38.25 36.58
Maximum 577875.60 545.60 109.65 157.05

ing new food nodes, deleting old food nodes, changing the
number of nodes affected by odor diffusion).

It is important to note the great improvements gained by
the proposed ACO algorithm over the classic ACO. As can
be observed in Table 4, the difference in costs obtained by
the classic ACO and either of the two modifie ACO al-
gorithms is large despite the fact that the topology of the
graph used here could be considered adequate for the clas-
sic ACO due to the low number of edges that must be tra-
versed in order to get from one node to another (e.g., the
worst case recorded in [22] is a path comprised of twelve
different edges).

While Fig. 8(a) clearly shows the differences in the per-
formance of the proposed and classic ACO algorithms, an-
other positive characteristic of the proposed algorithm ob-
servable in Fig. 8(a) and present for both of the u values
used is that the variability of results obtained is similar to
that recorded in Dijkstra. This factor requires consideration
since it may be concluded that there is a high probability

that any service requested is the optimum or very close to
the optimum.

In order to more clearly see how far the costs obtained
both by the proposed algorithms and by the classic ACO
algorithm fall from the optimum obtained with Dijkstra, Ta-
ble 5 represents the cost differences as a percentage.

The table makes clear that while the classic ACO algo-
rithm differs from the optimal value by a high percentage,
the proposed algorithms actually come quite close to the op-
timum. More importantly, the distance from the optimum
becomes nearly imperceptible in the case of the proposed
algorithm with food odor coverage across 37% of the nodes.

It must be reiterated that the calculations presented here
include the results of all services requested, including the
firs ones. Thus, it is understandable that the maximum val-
ues recorded are rather high since, as illustrated earlier in
Fig. 5, the results yielded from the firs services are always
worse than those yielded from subsequent services.

Once costs have been fully discussed, it is important to
analyze the times the different algorithms require to obtain a
solution to a path search. With regard to this parameter, both
Table 6 and Fig. 8(b) make it abundantly clear that the pro-
posed algorithm is superior to the others. It must be noted,
however, that the difference between the times required by
the classic and proposed ACO algorithms is not particularly
great. Nevertheless, the previously discussed difference in
obtained path costs makes it clear that the proposed ACO
algorithm with either of its u values is superior to its classic
counterpart.

From the results presented and analyzed here, therefore,
the advantages offered by the proposed algorithm relative
to the other two algorithms studied, when applied to a real-
world domain, become fully evident.
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4.4 Performance on real-world graphs of different sizes

Having demonstrated the proper functioning and high per-
formance of the proposed algorithm in terms of costs and
path search times relative to both the classic ACO algorithm
and Dijkstra’s algorithm, which is used by most database
management systems, it is now necessary to determine if the
modifie ACO algorithm is indeed capable of being used on
real-world graphs of any size.

In order to do so, and just as in the experiments discussed
above, 10 queries with 1000 services each were executed
with start nodes selected at random from all possible nodes
and the end node f1 where F = {f1} (i.e., where f1 was the
only node with a food source on the graph).

For the present experiment, two graphs representing two
distinct social networks—Slashdot [22], used in the previ-
ous experiment, and Epinions [21]—were used. While the
firs represents a classic social network, the second repre-
sents a trust network, a type of social network which always
maintain a small-world topology! [32].

Insofar as the present experiment aims to ascertain how
an increase in the number of nodes on a graph influence
response times and the ability to obtain paths, only the pro-
posed algorithm is tested here.

Using the parameters from Table 1 and u values of
999,999 and 999,998, the following experimental results
shown in Table 7 were obtained.

As observable in Table 7, in each of the scenarios and
regardless of the u value used, the proposed algorithm’s path
search success rate is the same, with paths obtained in 100%
of requested services.

Considering the average times and standard deviations
recorded in Table 7, it can be observed that the time required
for the algorithm to obtain a path is nearly the same for the
different u values used. The relatively insignifican time dif-
ferences recorded, therefore, justify the use of either of the
two u values.

Finally, comparing the response time data obtained for
the two different graphs used, not only is the difference
between recorded times quite small, but the time taken to
obtain paths on the Epinions graph is actually lower than
that taken for the Slashdot graph despite the fact that the
former possesses a larger number of nodes than the latter
(|N |Epinions = 131,828 and |N |Slashdot = 82,168). Consider-
ation of the number of edges |L| in the two graphs, however,

Table 7 Scalability tests

u Slashdot Epinions
999,999 999,998 999,999 999,998

Avg. time 47.55 48.55 37.84 41.04
SD (standard deviation) 4.81 6.34 5.87 6.86
Success rate (%) 100% 100% 100% 100%

where |L|Epinions = 841,372 and |L|Slashdot = 948,464 (i.e.,
|L|Epinions < |L|Slashdot), reveals that it is not the number of
nodes, but rather the number of edges in a graph that affects
response times, although its influenc is minimal.

With these results, it may be concluded that the proposed
algorithm is indeed scalable. While the increase in the num-
ber of edges on a graph exerts a slightly negative effect on
path search response times, the success rate nevertheless re-
mains the same with paths obtained in 100% of the services
executed. This is a great improvement over other proposals
[26] whose success rates decrease with an increase in the
number of nodes on a graph.

5 Conclusions and future research

This article has presented an adaptation of the classic ACO
algorithm with the objective of creating an algorithm capa-
ble of working with large graphs with a high degree of clus-
tering, that is, graphs with hundreds of thousands or millions
of nodes with a high degree of centralization.

In this proposed modification two new concepts, food
(i.e., the set F) and food odor (along with the related con-
cept of food odor diffusion), have been added in order to
reduce the number of steps an ant must take in order to
reach its destination. As has been shown, the introduction
of these new concepts allows the algorithm to be used on
large graphs without the need to change the structure of the
graph or carry out a complex pre-processing.

With these two new concepts inspired from the observa-
tion of animal behavior, the proposal has extended the clas-
sic ACO algorithm by equipping the ants with a sense of
smell. Thus, to the ants’ natural pheromone-tracking capa-
bilities, the extension adds the further ability of other ani-
mals with a sense of smell to follow an ever-intensifying trail
of food odor to the source from which that odor emanates.
Thanks to these additions, the following two advantages
have been obtained for the proposed algorithm which the
classic ACO algorithm does not offer. First, the search space
over which an ant must work is greatly reduced, thanks to
the presence of zones with food odor in the graph. As a
result, the algorithm can be successfully applied to large
graphs. Second, and resulting from the aforementioned ad-
vantage, due to the fact that an ant must cover a significantl
lower number of edges in the graph in order to reach its des-
tination, the resulting path search times and path costs are
also significantl reduced.

In order to demonstrate each of these advantages, a se-
ries of experiments was run and confirme the superiority
of the proposed algorithm over the other algorithms stud-
ied with respect to response times. Additionally, the experi-
ments show that when the algorithm is applied to real-world
scenarios, nearly optimal costs can be obtained. Moreover,
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the algorithm has been proven to be scalable with paths ob-
tained in 100% of all services executed.

Despite these achievements, and with the aim of further
improving the results obtained in the experimental phase of
this paper, it would be particularly interesting to see how the
cost evolution for a path obtained is affected by allowing the
ants to work for longer periods of time rather than imme-
diately taking the firs solution they obtain as was done in
the present research. Additionally, more elements could be
included in F , with the corresponding elements in S, in or-
der to observe the influenc of |F | on the functioning of the
algorithm.

Finally, an important conclusion extracted from the study
of the proposed algorithm is that this algorithm may well
have good results on dynamic graphs due to the particular
characteristics of the food nodes, of odor diffusion and of
the ACO algorithm. This would expand its scope of appli-
cation, and would be even more appropriate for the case of
social networks since they vary with time (users (nodes) and
relationships (links) between old and/or new users that con-
tinuously appear/disappear). This conclusion derives from
the fact that the search algorithm can continue the path
search regardless of any changes affecting the odor or the
food nodes because the graph on which the ants work is
not restructured, only odor diffusion is necessary. Further-
more, the ACO algorithm has demonstrated its good perfor-
mance in dynamic environments (reflecte in different sce-
narios such as ad-hoc networks [11], the classical travelling
salesman problem [3], electrical distribution systems man-
agement problem [15] or dynamic vehicle routing [8, 20]).
For these reasons, the use of the proposed algorithm in huge
dynamic graphs would be an interesting, and possibly satis-
factory, future line of research.
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