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Abstract

Differencing is a very popular stationary transformation for series with stochastic trends. Moreover, when the differenced
series is heteroscedastic, authors commonly model it using an ARMA-GARCH model. The corresponding ARIMA-GARCH
model is then used to forecast future values of the original series. However, the heteroscedasticity observed in the stationary
transformation should be generated by the transitory and/or the long-run component of the original data. In the former case, the
shocks to the variance are transitory and the prediction intervals should converge to homoscedastic intervals with the prediction
horizon. We show that, in this case, the prediction intervals constructed from the ARIMA-GARCH models could be inadequate
because they never converge to homoscedastic intervals. All of the results are illustrated using simulated and real time series

with stochastic levels.
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1. Introduction

Economic and financial time series often have
stochastic trends. In this case, following Box
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and Jenkins (1976), it is common to obtain a
stationary transformation by taking differences, and
then fit an ARMA model to the differenced series.
Another characteristic which is often observed in
this transformation is the evolution of its uncertainty,
which is usually modelled by assuming GARCH
errors. The corresponding ARIMA-GARCH model is
then used to construct prediction intervals for future
values of the original series. For example, Doornik
and Ooms (2008) model UK prices and Soares and
Medeiros (2008) model hourly electricity loads by
estimating a GARCH model, after removing the trend


http://dx.doi.org/10.1016/j.ijforecast.2010.05.007
http://www.elsevier.com/locate/ijforecast
mailto:santiago.pellegrini@repsol.com
mailto:ortega@est-econ.uc3m.es
mailto:espasa@est-econ.uc3m.es
http://dx.doi.org/10.1016/j.ijforecast.2010.05.007
Cita bibliográfica
Publicado en: International Journal of Forecasting, 2011, nº 27, pp. 308-319


by taking differences. Even more recently, Bowden
and Payne (2008) and Payne (2009) considered similar
models for electricity prices and Thailand inflation,
respectively.

In this paper, we analyze the effects of differencing
conditionally heteroscedastic time series with stochas-
tic trends on the performance of prediction intervals
for the original observations. As an illustration, we
consider that the series of interest, y;, has a stochastic
level, i, characterized by a random walk and a transi-
tory component, &;, which is a white noise.? Then, Y
is given by the local level model as follows

Ve = e + &, (1a)
M = pe—1 + 1y, (1b)

where & and 7, are mutually independent and
serially uncorrelated processes, with zero means and
marginal variances 052 and 0,’2, respectively; see, for
example, Durbin and Koopman (2001) for a detailed
description and applications of this model. As we
mentioned above, it is very popular to differentiate
the non-stationary series y; in order to obtain the
stationary transformation

Ay; = n; + Agy. )

It is well known that the marginal variance and
autocorrelations of Ay, are the same as those of the
following IMA(1,1) model:

Ay = a; +6a;_1, 3)

where, if Ay, is invertible, then 0 = [(g% + 4q)"/? —
2 —ql/2,withg = 0'3/0'82 being known as the signal-
noise ratio. Note that the parameter 6 is restricted to be
negative, i.e. —1 < 6 < 0. Finally, the reduced form
disturbance, a;, is an uncorrelated process with zero

mean and positive variance equal to 05 = —%52. When
Ay, is conditionally heteroscedastic, the evolution of
its uncertainty over time can be incorporated in the
IMA(1,1) model in Eq. (3) by assuming that a; is a
GARCH(1,1) process. In this case, a; = a,T oy, Where
a)L is a white noise Gaussian process and

of =80+ 81a’_| + 807 . )

3 The results for more complex models are similar to those
reported in this paper.

Howeyver, note that it is obvious that the heteroscedas-
ticity observed in Ay, should come from the transi-
tory component, &, and/or from the long-run noise,
n;. When the long-run noise is heteroscedastic, the
shocks to the variance of y; are permanent, and conse-
quently, the prediction intervals never converge to the
prediction intervals based on the corresponding ho-
moscedastic model. However, the effects of shocks to
the transitory component are not permanent. There-
fore, when the long-run noise is homoscedastic and
only the transitory component is heteroscedastic,
the prediction intervals for y, should converge to
the corresponding homoscedastic intervals with the
prediction horizon. However, the prediction inter-
vals constructed from the ARIMA-GARCH model,
Egs. (3)—(4), incorporate the unit root and never con-
verge to the homoscedastic intervals. Therefore, they
can be inadequate when the heteroscedasticity ob-
served in Ay, emerges only from the transitory com-
ponent of y,, i.e. when only &, is heteroscedastic.

Furthermore, it is important to note that when the
heteroscedasticity only affects the transitory compo-
nent of the series, the ARIMA-GARCH model fitted
to y; will not show any signs of misspecification, in
the sense that the correlations between the residuals
and the squared standardized residuals will not be sig-
nificantly different from zero. Therefore, after fitting
this model one may think that it is appropriate for ob-
taining prediction intervals for future values of y,.

In this paper, we analyze the effects of differencing
heteroscedastic time series with stochastic trends on
the performance of prediction intervals for the original
series.

The rest of this paper is structured as follows.
Section 2 derives the prediction intervals for the local
level model with GARCH disturbances and for the
IMA-GARCH model. Section 3 reports the results of
several Monte Carlo experiments which were carried
out to analyze the performances of both prediction
intervals. Section 4 contains an empirical application.
Finally, Section 5 concludes the paper.

2. Prediction intervals

In this section, we derive expressions for the
prediction intervals for future values of the series
of interest when it has a stochastic level and is
conditionally heteroscedastic. We consider the local



level model in Eq. (1), and, in order to incorporate
conditional heteroscedasticity, assume that the errors
are represented by GARCH(1,1) processes. Then,
& = e,Thll/z and n; = n;rqtl/z, where etT and n;r are
mutually and serially independent normal processes
with zero mean and unit variance, and

hy = ao +are? | +ahy_1, (5a)

g = Yo+ Vi, + g1, (5b)

where the parameters o, o1, o2, Y0, ¥1 and y» are
assumed to satisfy the usual positivity and stationarity
conditions; see Pellegrini, Ruiz, and Espasa (2010)
for the relationship between the GARCH parameters
in Eq. (5) and the GARCH parameters of the moving-
average innovation in Eq. (4). Obviously, the lengths
of the prediction intervals will be different, depending
on whether the conditional variances of &; and 5; at
the moment of forecasting are larger or smaller than
the corresponding marginal variances.

The objective is to obtain prediction intervals
for yr4x given {y1, y2,..., yr}. The optimal point
predictor of yry; that minimizes the mean squared
forecast error (MSFE), denoted by 3J74, is its
conditional mean, i.e. y74+x = Er(yr4x), where the
T under the expectation means that it is conditional
on the information available at time 7. Note that
from Eq. (1), it is easy to see that Er(yr4x) =
Er(ur+x) = Er(ur) = fr. Furthermore, from
Eq. (5) it is possible to derive the following
expressions for the variances of eri;x and nrig
conditional on {y1, y2, ..., yr}

Er(e3.4) = Erl(e}, )2 IEr (hrp)
=ap + (a1 + a2)Er(h74r-1)
[1 — (o +0t2)k_1}
= ao —_—mmm
l —o)—oan
+ (@1 + ) "Bz (hr41)

=2+ (a1 + ) hre1 — 0}, k=1, (6a)
where };T+1 = Er(hr4+1) and 052 = 1_;‘]0_00' By

analogy, it is straightforward to show that

Er(mf) = o + (n + ) GFy, — o),

k>1, (6b)
where 741 = Er(gr41) and a,% = 1_;’10_7/ . Using
the expressions given in Eq. (6), it is easy to show that

the MSFE of y74 is given by

MSFE(r-4) = Er |7k — r40?
= Erl(ur +nrp1 + -+ 014k
+erik — fir)’]
= P; + o2 +k 0,72

1= (i +m* Grat — o)
L—(n+y 00T
+ (a1 + ap)! (ﬁrﬂ - C’gz) )
k=1,2,..., @)
where P = Er[(ur — fir)?]. Note that the

local level with GARCH disturbances (LL-GARCH
henceforth) is not conditionally Gaussian, even when

i Ii

the standardized disturbances, €, and n, , are Gaussian.
Therefore, it is not straightforward to obtain the
conditional expectations involved in the MSFE in
Eq. (7). Harvey, Ruiz, and Sentana (1992) show that,
in practice, it is possible to obtain approximations of
the quantities i, P#, /’ALT_H and g7+ in Eq. (7) by
using an augmented version of the Kalman filter. This
is the approximation adopted in this paper in order to
obtain the MSFE of y7¢.

The expressions (flT+1 — %2) and (G741 — a,%)
in Eq. (7) may be interpreted as measures of the
excess volatility at the time the prediction is made
with respect to the marginal variance in both noises.
Note that the MSFE of the homoscedastic local level
model is given by the first three terms of Eq. (7).
Furthermore, given that oy + o < 1, the MSFE
of y74% becomes a linear function of k for large
forecasting horizons, with the same slope as its
homoscedastic counterpart 03, but with a different
intercept, due to the contribution of the fourth term
in Eq. (7), i.e. the contribution of the long-run excess
volatility. However, for short and medium horizons,
the influence of the excess volatility in both noises
leads to a MSFE either smaller or greater than that of
the homoscedastic local level model, depending on the
sign of the excess volatility.

Once y74+; and its MSFE are available, one can
obtain prediction intervals for y74; by assuming that
the distribution of the k-step-ahead prediction errors is
normal.* Therefore, approximated (1 —a)% prediction

4As we commented before, the prediction error distribution
in unobserved component models with GARCH disturbances is



intervals for yr are given by

AT £ 2a/2 VMSFE(S744), ¥

where MSFE(J714) is given by Eq. (7) and zq/2
is the «/2 quantile of the standard normal density.
On the other hand, when assuming homoscedasticity,
o] = ap = Y1 = y» = 0, and the prediction intervals
are given by

[lT:IZZa/z,/P#-i—(ng-l-kG,%. )

It is important to note that there is a significant
difference in the behavior of the prediction intervals
in Eq. (8), depending on whether the conditional het-
eroscedasticity affects the long- or short-run compo-
nents. Excess volatility in the permanent component
affects the MSFE for all horizons, while the effect of
excess volatility in the transitory component vanishes
in the long run. Therefore, when the heteroscedasticity
only affects the transitory noise, i.e. y; = y» = 0, the
prediction intervals in Eq. (8) converge to those of the
homoscedastic model in Eq. (9). However, when the
long-run component is heteroscedastic, depending on
the sign of the excess volatility, the prediction inter-
vals of the heteroscedastic local level model are wider
or narrower than those obtained from the homoscedas-
tic model for all prediction horizons. As an illustration,
Fig. 1 plots the prediction intervals obtained for a se-
ries simulated by the local level model with parame-
ters g = 0.05, 1 = 0.10, 2 = 0.85, 1 = o =0
and g = 1;1i.e., only &; is heteroscedastic. The point in
time at which the prediction is made is selected in such
a way that the excess volatility is positive. Assuming
that the parameters are known and using the Kalman
filter proposed by Harvey et al. (1992) to approxi-
mate the MSFE, we construct the prediction inter-
vals for the LL-GARCH (in solid lines) as in Eq. (8),
and for the homoscedastic model (in dash-dotted lines)
as in Eq. (9). Note that the LL-GARCH model pro-
duces wider intervals for short horizons than the ho-
moscedastic model, because the conditional variance
is higher than the marginal. However, since the shock
producing the positive excess volatility is transitory,
the prediction intervals of the LL-GARCH stick to

not Gaussian. However, the results of Pascual, Romo, and Ruiz
(2006) suggest that it could be approximated well by a Gaussian
distribution.

J— +-

Fig. 1. 95% prediction intervals for a simulated series with a
stochastic level and heteroscedasticity in the transitory component,
with g = 0.05, @1 = 0.10, p = 0.85, and ¢ = 1. The point
in time at which the forecast is made is selected to be in a highly
volatile period.

those of the homoscedastic model as k increases. In or-
der to have a visual insight into the coverage of the pre-
diction intervals for this particular series, Fig. 1 also
plots possible trajectories for yrx, represented by the
vertical clouds of points.

As we mentioned in the introduction, it is
a very common practice to deal with stochastic
trends by differencing the original series in order
to obtain its stationary transformation. Then, after
fitting an ARMA model to the differenced series, the
conditional heteroscedasticity is modelled by fitting a
GARCH model to the residuals. In the case of the LL-
GARCH model, the resulting model is the IMA(1,1)-
GARCH model (Egs. (3)—(4)). Next, we derive the
prediction intervals for y, obtained when this is the
methodology chosen to deal with the presence of
unit roots in the data. In the IMA-GARCH model,
assuming as usual that the within-sample innovations
are observable, the optimal predictor of yr.i, given
the information available at time 7', is given by

Yr4k =yr +0ar, k=12,..., (10)

with the MSFE given by the equation in Box 1.

Once more, (0% - Uaz) is a measure of the excess
volatility of a; at the moment when the forecast is
made. Note that the MSFE in Eq. (11) can also be
separated into a linear and a nonlinear part, defined
by the first and second terms, respectively. It is clear
from Eq. (11) that as k increases, the MSFE(374%)
is also a linear function of the horizon. Note that, as
long as the excess volatility is different from zero,



MSFE(37 k)
0p + (07 —0),
[(1 +02*k—1) +1]02

(1)

1 — (81 +62)

N [(1 +60)2 =81 +8)F 1 OQ+0)+68 +68)

](U%H_%z), k=2,3,....

Box L.

the path of MSFE in the IMA-GARCH model is
always either above or below the path of the MSFE
in the corresponding homoscedastic IMA model. This
implies that the sign of the excess volatility at time
T determines whether the IMA-GARCH prediction
variance will be smaller or larger than the prediction
variance of the homoscedastic IMA, for all prediction
horizons. In this sense, the behavior is similar to that
of the local level model with heteroscedastic long-
run disturbances. However, when only the transitory
component is heteroscedastic, the MSFEs still depend
on the excess volatility at the moment when the
prediction is made and do not converge to the
corresponding homoscedastic intervals as they should,
given that the heteroscedasticity is transitory.

As in the LL-GARCH model, k-step-ahead
intervals based on the IMA-GARCH model can be
obtained by assuming that the forecast errors are
normally distributed for all values of k. In this case,
the approximated (1 — )% prediction intervals for the
IMA-GARCH model are given by

yr + 6 ar £ 242 vV MSFE(S144),

where the MSFE(y74¢) is given by Eq. (11). Finally,
we can construct the prediction intervals for future
values of yr4x by assuming a homoscedastic IMA
model. We do not consider these intervals further,
as they are identical to those obtained using the
homoscedastic local level model in Eq. (9).

Given that the reduced form IMA(1,1) model
contains one unit root, the corresponding prediction
intervals in Eq. (12) depend on the excess volatility
at the moment when the prediction is made, for
all prediction horizons, regardless of whether the
conditional heteroscedasticity of Ay, is due to the
transitory or the long-run component of y; (or both).
When the long-run component is heteroscedastic, they
are similar to those of the unobserved component

12)

model in Eq. (8). However, when only the transitory
component is heteroscedastic and the excess volatility
is positive (negative), the multi-step prediction
intervals based on the IMA(1,1) model will be too
wide (narrow).

Going back to the illustration in Fig. 1, we also
plot the IMA-GARCH prediction intervals (dashed
lines) from Eq. (12). The values of 6 and &g in
the IMA-GARCH model have been obtained using
the functions that relate them to the signal-to-noise
ratio, g, and the marginal variance, 082, while the
parameters of the GARCH process, §; and &,
have been recovered from o and oy following the
procedure given by Pellegrini et al. (2010). By looking
at the resulting intervals, we observe that they have
almost the same length as those of the LL-GARCH
for very short horizons, but become wider as k
increases. This behavior is a consequence of taking
the transitory shock as permanent, which means that
the positive excess volatility leads to a higher MSFE
and wider prediction intervals. In the next section we
use simulated data to analyze whether the different
patterns of the prediction intervals lead to significant
differences in their coverages.

3. Forecasting performance

In order to analyze the performances of the pre-
diction intervals constructed using the two alterna-
tive models considered in Section 2 for dealing with
stochastic levels, we generate 1000 series of size T =
1000 with stochastic levels and with their compo-
nent disturbances being GARCH processes, and con-
struct 90% and 95% prediction intervals using the LL-
GARCH, homoscedastic LL and IMA-GARCH mod-
els, as given in Eqs. (8), (9) and (12), respectively.
We calculate the empirical coverages of these inter-
vals by generating B = 1000 trajectories of yri



Table 1

Mean Absolute Deviation (MAD) of the differences between the observed and nominal coverages for horizons k = 1, 6, 12 and 24, and
for two confidence levels, 90% and 95%. The MAD is calculated in percentages. The series are simulated from the local level model with a

GARCH(1,1) process in the transitory component.

90% 95%

k=1 k=6 k=12 k=24 k=1 k=6 k=12 k=24
Parameters: «; = 0.10, 00 = 0.85,¢ =1
Homoscedastic (true param) 3.164 1.210 0.837 0.784 2.186 0.867 0.633 0.560
LL-GARCH (true param) 1.575 0.885 0.742 0.773 1.104 0.630 0.571 0.549
IMA-GARCH (true param) 1.753 1.823 1.877 1.684 1.220 1.249 1.297 1.173
Homoscedastic (QML estim) 3.241 1.593 1.463 1.578 2.260 1.134 1.022 1.064
LL-GARCH (QML estim) 2.011 1.442 1.515 1.531 1.402 1.000 1.077 1.043
IMA-GARCH (QML estim) 2.179 2.079 2.176 2.104 1.483 1.387 1.491 1.409
Parameters: o1 = 0.10, ap = 0.85,¢ = 0.5
Homoscedastic (true param) 3.906 1.685 1.098 0.825 2.705 1.164 0.774 0.583
LL-GARCH (true param) 1.792 0.959 0.806 0.764 1.223 0.703 0.583 0.546
IMA-GARCH (true param) 1.930 1.933 2.019 1.934 1.306 1.332 1.392 1.280
Homoscedastic (QML estim) 3.940 2.034 1.735 1.683 2.698 1.395 1.210 1.179
LL-GARCH (QML estim) 2.064 1.505 1.541 1.635 1.442 1.067 1.088 1.134
IMA-GARCH (QML estim) 2.206 2.110 2.288 2.338 1.534 1.422 1.536 1.550
conditional on {y1, y2, ..., y7, U1, 42, ..., ur}, fol- substituting the parameters with their QML estimates.

lowing the dynamics given by Eq. (1). That is, we
fix the value of 7, and generate 1000 values of nr41
from the GARCH model described above in order to
find the trajectories of wr41. Then, we obtain the tra-
jectories of yr41 by adding a draw of &7y to each
value of pr41. This procedure is repeated in order to
find the trajectories of yr with k > 1.

We consider four designs, depending on whether
the transitory or permanent components are het-
eroscedastic, and on the value of the signal-to-noise
ratio. In the first two models, the transitory compo-
nent is heteroscedastic while the long-run component
is homoscedastic. Their parameters are og = 0.05,
a1 = 0.10 and o, = 0.85, with ¢ = 0.5 in the first
model and g = 1 in the second. In the last two mod-
els, the long-run component is heteroscedastic, with
yo = 0.05, y1 = 0.10, y» = 0.85 and ¢ = 1 in the
third model and g = 2 in the last one. The prediction
horizons considered are k = 1, 6, 12 and 24, and the
nominal coverages are 90% and 95%.

Note that, in practice, the parameters needed to
construct the prediction intervals in Egs. (8), (9) and
(12) should be estimated. Consequently, in order to
analyze the effects of estimation on the performance
of prediction intervals, we construct them, first,
by assuming known parameters, and second, by

To estimate the parameters of the heteroscedastic
local level model, we follow the estimation approach
proposed by Harvey et al. (1992). Tables 1 and 2 report
the mean absolute deviation (MAD) of the observed
coverages with respect to the nominal, for the
two models with heteroscedasticity in the transitory
component and the two models with a heteroscedastic
long-run component, respectively. Consider first the
results when the parameters are known. The first
conclusion from both tables is that, regardless of
the model and coverage considered, the deviations
between the empirical and nominal coverages become
smaller, in general, as the prediction horizon increases.
Furthermore, note that for short horizons, £ = 1,
the coverages of the LL-GARCH and IMA-GARCH
models have similar deviations from the nominal
coverages, which are smaller than that observed in the
homoscedastic case, in any case. One might expect
that this deviation should be zero. However, remember
that the future values of yry; were generated by an
approximation of its conditional distribution, not by
the conditional distribution itself, which is unknown.
Furthermore, the Kalman filter for the LL-GARCH
model only yields an approximated MSFE.

We now compare the results reported in Table 1
with those in Table 2. Table 1 reports the results for



Table 2

Mean Absolute Deviation (MAD) of the differences between the observed and nominal coverages for horizons k = 1, 6, 12 and 24, and
for two confidence levels, 90% and 95%. The MAD is calculated in percentages. The series are simulated from the local level model with a

GARCH(1,1) process in the permanent component.

90% 95%

k=1 k=6 k=12 k=24 k=1 k=6 k=12 k=24
Parameters: y; = 0.10, y» =0.85,¢ =1
Homoscedastic (true param) 2.325 3.606 3411 2.804 1.607 2.421 2.310 1.850
LL-GARCH (true param) 1.624 2.631 2.497 2.087 1.132 1.775 1.711 1.400
IMA-GARCH (true param) 1.715 2.933 2.813 2.384 1.193 1.946 1.905 1.552
Homoscedastic (QML estim) 2.387 3.723 3.656 3.236 1.659 2.570 2.5210 2.216
LL-GARCH (QML estim) 1.858 3.000 2.985 2.727 1.299 2.095 2.098 1.945
IMA-GARCH (QML estim) 1.976 3.144 3.139 2.804 1.384 2.195 2.220 2.013
Parameters: y; = 0.10, y» =0.85,¢ =2
Homoscedastic (true param) 2.995 3.755 3.471 2.808 2.060 2.527 2.262 1.868
LL-GARCH (true param) 1.969 2.483 2.299 1.904 1.355 1.698 1.524 1.286
IMA-GARCH (true param) 2.016 2.715 2.542 2.119 1.384 1.833 1.668 1.421
Homoscedastic (QML estim) 3.077 3.972 3.668 3.159 2.124 2.689 2.489 2.142
LL-GARCH (QML estim) 2.241 2.933 2.811 2.612 1.551 2.040 1.976 1.833
IMA-GARCH (QML estim) 2.320 3.077 2.974 2.648 1.600 2.165 2.091 1.918

the two models in which the long-run component is
homoscedastic and the heteroscedasticity only appears
in the transitory component. In this case, regardless
of whether the parameters are known or estimated,
we can observe that the homoscedastic models only
have the largest deviations between the empirical and
nominal coverages when predicting in the short run
for k = 1. However, when the prediction horizon
is longer, constructing the intervals using the IMA
model leads to the worst coverages. This is due to
the inability of the IMA-GARCH model to represent
the dynamics of series in which only the transitory
component is heteroscedastic. Also note that when
the forecast horizon is large (k = 24), the deviations
between the empirical and nominal coverages of the
homoscedastic and LL-GARCH models are similar.
Obviously, when the parameters are estimated, we
observe larger deviations. However, the conclusions
about the comparisons among intervals are the same
as those obtained assuming known parameters.

We now consider the results reported in Table 2
for the models in which the short-run component
is homoscedastic and the long-run component is
heteroscedastic. In this case the homoscedastic
prediction intervals are worse than any of the intervals
constructed using the heteroscedastic models for
all prediction horizons, regardless of whether the

parameters are known or estimated. Furthermore,
comparing the heteroscedastic intervals between
them, we observe that their MADs are very
similar, in particular when the parameters are
estimated. Therefore, when the long-run component is
heteroscedastic, constructing the prediction intervals
using the LL-GARCH model leads to only slight
improvements in the performance of the prediction
intervals with respect to constructing them using
the simpler IMA-GARCH models. Once more,
the deviations between the empirical and nominal
coverages are only slightly larger when the parameters
are estimated.

The information in Tables 1 and 2 allows us to
compare the alternative models in terms of which
generates the smallest deviations between the nominal
and empirical coverages. However, it does not contain
any information on the sign of these deviations.
Therefore, we cannot conclude whether or not we
are obtaining intervals that cover more or less than
the nominal coverage. Obviously, the sign of the
deviations depends on the sign of the excess volatility
at the time the prediction is made. Consequently,
we also compute the mean coverage of each model
and prediction horizon, conditional on whether the
excess volatility is positive or negative. Fig. 2 plots
the average empirical coverages against the horizon
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Fig. 2. Mean observed coverage in volatile (positive excess volatility) and quiet (negative excess volatility) periods. The series are generated
from the local level model with a GARCH(1,1) noise in the transitory component only. The parameters are given by «; = 0.10, oy = 0.85 and

g =0.5.

k, computed both in a volatile period, when the
marginal variance is smaller than the conditional
(top row), and in a quiet period in which the
marginal is larger than the conditional (bottom row)
for the model in which the short-run component is
heteroscedastic and g = 0.5. Fig. 2 shows that in both
periods, the coverages of the homoscedastic model
tend toward the nominal when the prediction horizon
increases. However, in the short-run, the coverages
of the homoscedastic prediction intervals are smaller
(larger) than the nominal when the excess volatility
is positive (negative). The short-run coverages of the
two heteroscedastic intervals are closer to the nominal
than those of the homoscedastic intervals, although
there still exists a gap between the empirical and
nominal coverages. On the other hand, the long-run
coverages of the IMA-GARCH intervals are well
above (below) the nominal when the excess volatility
is positive (negative). As we mentioned above, this

model incorporates the unit root, and it cannot cope
with the fact that only the transitory component is
heteroscedastic. Finally, the average coverages of the
LL-GARCH intervals are close to the nominal for all
of the prediction horizons considered.

Finally, Fig. 2 illustrates that, for the large sample
size considered in this paper, obtaining prediction
intervals using estimated parameters implies slightly
larger deviations of the empirical with respect to
the nominal coverages. This is an interesting result,
given the increased number of parameters that need
to be estimated in this model. It seems that when
the heteroscedastic component is identified correctly,
the parameter estimation uncertainty does not have
any impact on the prediction intervals. A further
point which is worth making in relation to estimation
is that estimating the parameters produces IMA-
GARCH intervals with coverages which are closer
to (further from) the nominal when the period of
forecasting is quiet (volatile) than those obtained
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Fig. 3. Seasonally adjusted monthly US inflation rate observed from February 1959 to May 2008 (top panel), and sample autocorrelations of

its first differences (bottom panel).

when the parameters are known. This is due to the
fact that when the prediction is made in a quiet
period, the IMA-GARCH intervals tend to be narrower
than the nominal coverage. However, estimating the
parameters generates wider intervals, which obviously
have coverages which are closer to the nominal. On
the other hand, when forecasting in a volatile period,
estimating the parameters yields still wider intervals,
which produce coverages which are even further from
the nominal than when the parameters are known.

In this section we have generated the series
using the LL-GARCH model, and the prediction
intervals have then been constructed by: (i) us-
ing the augmented Kalman filter to approximate
the conditional distribution of future observations;
(i1) fitting the IMA-GARCH model; and (iii) fitting the
corresponding homoscedastic model. One might think
that we should also generate the series using the IMA-
GARCH model and then obtain the three prediction
intervals just described. However, given the results al-
ready reported, it is clear that the IMA-GARCH model
implies a conditional heteroscedasticity with perma-
nent effects. Therefore, the LL-GARCH model with
conditionally heteroscedastic long-run noise will gen-
erate prediction intervals with coverages close to the
nominal. Furthermore, when we differentiate a time
series, it is because the original observations have
stochastic trends. Therefore, it seems rather distant
from the situation faced in reality to generate the dif-

ferenced series and then obtain the original observa-
tions from it.

4. An empirical illustration

In this section, we construct prediction intervals of
the seasonally adjusted monthly US inflation rate.’
The period analyzed spans 49 years, from February
1959 to May 2008, and thus contains 7 = 592
observations. We leave the last R = 90 observations
(from January 2001 to May 2008) for the out-of-
sample forecasting exercise. Fig. 3 plots the inflation
series and the correlogram of its first differences,
where the first order autocorrelation is negative and
significant. Therefore, the inflation series can be
represented well by an IMA(1,1) model with 6 <
0. Alternatively, the dynamic dependence of the
monthly inflation can be explained by the local level
model. In consequence, we fit both models. The
estimation results are given in Table 3, together with
the results of testing for homoscedasticity in the
residuals. In the case of the IMA(1,1) model, we

5 More specifically, the inflation rate is defined as the log-
difference of the monthly personal consumption expenditure (PCE)
deflator, multiplied by 100 in order to obtain percentage rates. The
series was downloaded from the EcoWin database. An intervention
analysis of the series using auxiliary residuals (see Harvey &
Koopman, 1992) was carried out using the program STAMP 6.20
from Koopman, Harvey, Doornik, and Shephard (2000).



Table 3

Estimation results for the US inflation rate from February 1959
to December 2000. The top rows report the results for the
homoscedastic local level and IMA(1,1) models, while the bottom
rows report the estimation results for the LL-GARCH and IMA-
GARCH models. The statistics Q¢ (8) and Qy(8) are the lag-8 Box-
Pierce statistics for joint significance of the differences between the
autocorrelations of squares and the squared autocorrelations of the
auxiliary residuals, while Q,(8) is the same statistic applied to the
squared IMA residuals.

LL model IMA(1,1) model

62 =16.07 x 1073
62 =149 x 1073 **
0:(8) = 52.63**
0y(8) = 70.82**

62 =121.74 x 1073+
6 = —0.738**
0q(8) = 44.84**

LL-GARCH(1,1) model IMA(1,1)-GARCH(1,1) model

Qo = 1.30 x 1073 ** S0 =132 x 1073 **
@) = 0.193** 5 =0.142%*
Gy = 0.738** 5y = 0.804 **
63 =1.06 x 1073 * 6 = —0.775**

** indicates significance at the 1% level.

test for the joint significance of the autocorrelations
of squared residuals by using the McLeod and Li
(1983) test. Given that these autocorrelations are
significant, we fit an IMA(1,1)-GARCH(1,1) model
to the inflation series; see Doornik and Ooms (2008)
and Payne (2009) for other authors who fit ARIMA-
GARCH models for modelling inflation. In order to
identify which component in the local level model is
heteroscedastic, we compute the differences between
the autocorrelations of squares and the squared
autocorrelations of the auxiliary residuals and test for
the joint significance of these differences; see Broto
and Ruiz (2009). According to this analysis, and given
that the variance of the permanent component is very
small relative to that of the transitory component (§ =
0.092), we assume that the permanent component
noise, 7, is homoscedastic, and include GARCH(1,1)
effects only in the transitory component, &;; see Stock
and Watson (2007) for a local level model with
heteroscedastic noises for US inflation. The estimation
results of the heteroscedastic models appear in the
bottom row of Table 3. Note that the estimates of ¢
in the LL models and 6 in the IMA models are very
similar, regardless of whether we fit homoscedastic
or heteroscedastic errors. These two parameters only
depend on the marginal variances.
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Fig. 4. 90% prediction intervals of the US inflation rate, obtained in
June 2003.

Conditional on the estimated parameters of
each model, we find the approximated (1 — )%
prediction intervals of the two heteroscedastic and the
homoscedastic models given in Egs. (8), (9) and (12)
for horizons running from £k = 1 to k = 36. We
consider « = 5% and 10%. Finally, we re-estimate
the three models for the whole out-of-sample period,
from January 2001 to May 2008, by adding one new
observation at a time and computing the prediction
intervals again. Therefore, the results below are based
on 90 — k + 1 predictions of yr. As an illustration,
Fig. 4 plots the approximated 90% prediction intervals
obtained in a period of high volatility, in June 2003.
Note that the homoscedastic model produces narrower
prediction intervals for small values of k, because it
cannot capture the positive volatility shock. However,
as the horizon increases, the intervals have almost
the same length as those generated by the LL-
GARCH model. On the other hand, the IMA-GARCH
prediction intervals have the same length as those of
the LL-GARCH in the short-term, but widen as the
horizon increases because the model treats the shock
as permanent.

To measure the accuracies of the coverages of each
of the three prediction intervals considered, Table 4
reports the percentages of observations lying within
the intervals, for horizons k = 1, 3, 6, 12 and 24.
These prediction horizons have been selected because
they are relevant, in the sense that they represent
a month, a quarter, half a year, and one and two
years ahead. We observe that when the nominal
coverage is 90% and the prediction horizon is k =
I, 3, or 6, the coverage of the homoscedastic
intervals is smaller than the nominal, while the two
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Table 4

Empirical coverage of the US inflation rate, measured as the percentage of observations lying within the 90% and 95% prediction intervals.

Homoscedastic LL-GARCH(1,1) IMA(1,1)-GARCH(1,1)

Horizon 90% 95% 90% 95% 90% 95%

k=1 81.11 88.89 88.89 91.11 90.00 91.11
k=3 82.95 87.50 88.64 92.05 87.50 92.05
k=6 84.71 91.76 89.41 94.12 90.59 94.12
k=12 91.14 92.41 91.14 94.94 92.41 96.20
k=24 95.52 97.01 94.03 95.52 94.03 98.51
k=736 98.18 100.00 98.18 98.18 98.18 100.00

heteroscedastic models have similar coverages, close
to 90%. However, for longer horizons, the three
models generate intervals with very similar coverages,
which are clearly larger than the nominal 90%. On
the other hand, the conclusions are similar when the
nominal coverage is 95%, although the coverages
of the LL-GARCH intervals are slightly closer to
the nominal, even when k& = 12 or 24. Therefore,
estimating the conditionally heteroscedastic models
improves the coverage, especially for short and
medium horizons. As the estimated value of the signal-
to-noise ratio, ¢, is very small (around 0.1), we
cannot expect big differences between the LL and
IMA models (in the limiting case where ¢ = 0, the
local level component model collapses into a white
noise process). However, estimating the conditionally
heteroscedastic component directly seems to work
better for medium to long horizons.

5. Conclusions

In this paper, we analyze the effects of differencing
conditionally heteroscedastic time series with stochas-
tic trends on the performances of prediction inter-
vals for the original observations. In particular, we
consider a conditionally heteroscedastic model with
a stochastic level. We show that, in this model, if
the long-run component is heteroscedastic, the corre-
sponding ARIMA-GARCH prediction intervals have
properties which are similar to those of the condi-
tionally heteroscedastic unobserved component model
for all prediction horizons. On the other hand, when
the long-run disturbance is homoscedastic and the
transitory component is the only heteroscedastic
component, since the shocks to the variance are
purely transitory. Consequently, the prediction inter-
valsbased on the corresponding homoscedastic and

heteroscedastic models stick to each other for long
prediction horizons. However, depending on the sign
of the excess volatility, the ARIMA-GARCH counter-
parts may be wider or narrower than the intervals ob-
tained using the corresponding unobserved component
model for long prediction horizons. This is due to its
incapacity to distinguish whether the heteroscedastic-
ity affects the long or short run components, and may
lead to significant differences between the two predic-
tion intervals, especially for the medium to long term.
When the prediction horizon is small, the simpler
ARIMA-GARCH model generates prediction inter-
vals with coverages similar to those of the condition-
ally heteroscedastic unobserved component intervals.

It is also important to mention that when
the conditional heteroscedasticity is transitory, the
incorrect prediction intervals from the ARIMA-
GARCH models are the result of a model which
does not appear to be misspecified when looking at
the usual residual diagnostics. Therefore, it seems
as though one goal for further research could be
to analyze the way in which the properties of the
prediction intervals can be used to identify the source
of the heteroscedasticity. In this way, it may be
possible to overcome some of the problems pointed
out by Broto and Ruiz (2009) which are faced when
trying to identify the source of the heteroscedasticity
by using auxiliary residuals. Furthermore, our results
also suggest that it is worth putting more effort
into the identification and estimation of conditionally
heteroscedastic unobserved component models. In any
case, we have seen that, for moderate sample sizes,
if the source of the heteroscedasticity is identified
correctly, parameter estimation uncertainty does not
have an impact on the prediction intervals. These
results are illustrated using simulated data and a real
time series of the US monthly inflation rate.
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