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Abstract

An ensemble of classifiers is a set of classifiers whose predic-
tions are combined in some way to classify new instances.
Early research has shown that, in general, an ensemble of
classifiers is more accurate than any of the single classifiers
in the ensemble. Usually the gains obtained by combining
different classifiers are more affected by the chosen classi-
fiers than by the used combination. It is common in the re-
search on this topic to select by hand the right combination of
classifiers and the method to combine them, but the approach
presented in this work uses genetic algorithms for selecting
the classifiers and the combination method to use. Our ap-
proach, GA-Ensemble, is inspired by a previous work, called
GA-Stacking. GA-Stacking is a method that uses genetic algo-
rithms to find domain-specific Stacking configurations. The
main goal of this work is to improve the efficiency of GA-
Stacking and to compare GA-Ensemble with current ensemble
building techniques. Preliminary results have show that the
approach finds ensembles of classifiers whose performance
is as good as the best techniques, without having to set up
manually the classifiers and the ensemble method.

Introduction

In recent years there has been a growing interest in a partic-
ular area of Machine Learning: the combination of classi-
fiers (Dietterich 1997). This approach is known as ensem-
bles of classifiers in the supervised learning area, and the
main idea behind is that ensembles are often much more
accurate than the individual classifiers that make them up.
Usually the members of the ensemble are generated by ap-
plying a single learning algorithm (Dietterich 2000) (homo-
geneous classifiers). On the other hand, there are other re-
search in the area that use different learning algorithms over
a dataset to generate the members of the ensemble (Wolpert
1992) (heterogeneous classifiers).

In order to generate a homogeneous ensemble of clas-
sifiers there are several methods that can be grouped in:
sub-sampling the training examples (e.g. bagging (Breiman
1996) and boosting (Freund & Schapire 1995)); manipulat-
ing the input features (Cherkauer 1996); manipulating the
output target (e.g. ECOC (Dietterich & Bakiri 1995)); and
injecting randomness in the learning algorithm (Kolen &
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Pollack 1991). Once the classifiers have been generated,
they are combined, in most cases by voting or weighted vot-
ing.

One example of methods that use different learning al-
gorithms in order to generate a heterogeneous ensemble of
classifiers is Stacking (Wolpert 1992). Stacking uses an algo-
rithm to learn how to combine the outputs of a set of classi-
fiers that have been obtained by different learning algorithms
(meta-classifier).

One of the problems of Stacking is how to obtain the
right combination of base-level classifiers and the meta-
classifier, specially in relation to each specific dataset. In
a previous work (Ledezma et al. 2004), we presented an ap-
proach which used Genetic Algorithms (GA) to search for
good domain-specific Stacking configurations. GA-Stacking
found several Stacking configurations that performed very
well given a specific domain, but the time it needed to find
a solution grew exponentially depending on the character-
istics of the domain. The approach presented in this paper
is inspired on GA-Stacking, continuing that line of thought,
but not limited to find Stacking configurations. Some some-
what related approaches have used recently GA’s in order to
determine optimal ensembles of classifiers in different con-
texts (Altinçay 2004; de Oliveira et al. 2005). In this work
we let the genetic algorithm to find a good set of base level
classifiers and which method is more suitable to combine
them, either using a metaclassifier or combining the base
level classifiers by voting. Furthermore, we have extended
the previous GA-Stacking approach by using a set of classi-
fiers trained a priori in order to improve the efficiency of the
genetic algorithm. Finally we have compared results with
two recent ensembles methods based on Stacking.

This paper is organized as follows. Section “Stacking
and GA-Stacking” gives some background on Stacking and
show our previous work based on genetic algorithms, GA-
Stacking. Section “GA-Ensemble” introduces our genetic
approach, GA-Ensemble. Sections “Experimental setup”
and “Empirical results” describe the experimental setup and
the results, respectively. The last section, “Conclusions and
future works”, draws some conclusions.

Stacking and GA-Stacking

Stacking is the abbreviation to refer to Stacked General-
ization (Wolpert 1992). The main idea behind Stacking is
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to combine classifiers from different learners such as deci-
sion trees, instance-based, bayesian or rule-based learners.
Stacked Generalization works by deducing the biases of the
generalizer(s) with respect to a provided learning set. Each
classifier uses different knowledge representation and differ-
ent learning biases, so the hypothesis space will be explored
differently, and different classifiers will be obtained. It is
expected that their errors will not be correlated, and that the
combination of classifiers will perform better than the base
classifiers.

Once the classifiers have been generated, they must be
combined. Stacking uses the concept of meta learner.
The meta learner (also known as level-1 model or meta-
classifier) tries to learn how the decisions of the base clas-
sifiers (or level-0 models) should be combined to obtain the
final classification. To classify a new instance, the level-0
models produce a vector of predictions that is the input to
the level- 1 model, which in turn predicts the class.

One problem of Stacking is how to obtain the right com-
bination of classifiers, especially in relation to each specific
dataset. If the number of classifiers and algorithms to use is
small, the problem can be solved by a simple method: ex-
haustive search. But when it becomes unfeasible to use ex-
haustive search, it is very difficult to find the best classifiers
combination. The work presented in this paper is based on
a previous approach called GA-Stacking, which used a ge-
netic algorithm to find Stacking configurations for a specific
domain.

Most work on Stacking focuses in the selection of the
meta-level data and algorithm to generate the base-level
classifiers (Seewald 2002; Dzeroski & Zenko 2004). In the
GA-Stacking approach a genetic algorithm was used to gen-
erate the whole Stacking system configuration (level-0 and
level-1 classifiers) to perform reasonably well in a specific
domain. In other words, each individual in the population of
the GA, represented a different Stacking system configura-
tion.

In a preliminary GA-Stacking work (Ledezma, Aler, &
Borrajo 2001), the search carried out by the genetic algo-
rithm was limited to find a Stacking configuration with four
base-level classifiers and the meta-classifier from a set of
six available algorithms. However, in the last approach the
search space was extended enlarging the number of possible
base-level classifiers to ten and including the learning pa-
rameters of the algorithms in the search. This implies a very
different and much richer search space.

Results showed that GA-Stacking was comparable to the
best results reported so far, and it was never significantly
worse than the other systems tested. The main advantage
of GA-Stacking was its flexibility and extensibility, since it
could use new learning algorithms as soon as they were cre-
ated, not being restricted by a priori assumptions. It was
unnecessary to specify in advance parameters such as the
number of base classifiers or the algorithms available to be
used. On the other hand, GA-Stacking required a longer exe-
cution time than the other approaches, because several gen-
erations of individuals had to be evaluated to obtain a good
solution.

GA-Ensemble

In this section we will describe the approach taken by GA-
Ensemble to build the ensembles of classifiers. As we de-
tail in a previous section, GA-Stacking focuses in generat-
ing optimized Stacking systems, and although good results
were reported, a very long execution time was required. The
question is: how to improve the efficiency without losing ac-
curacy?. GA-Ensemble tries to determine, in a reasonable
time, which classifiers and which method to combine them
is the best option for a specific domain. To solve this issue,
in this work the genetic algorithm makes use of a pool of
trained classifiers (Zhou et al. 2001); that is, all the algo-
rithms needed by the genetic algorithm are trained a priori
to avoid training them in successive generations of the ge-
netic algorithm. Before the search starts, and considering
we have used cross-validation process to prevent overfitting,
the training folds of the data set are identified and the set
of algorithms available to be used in the search is trained
a priori to generate the classifiers. Making unnecessary to
regenerate the classifiers in every iteration of the genetic al-
gorithm (as was the case in GA-Stacking).

GA-Ensemble has three phases (see Figure 1): classifiers
generation, problem encoding and the genetic search. Next,
we will detail each one of these phases.

Classifiers generation

The first step of GA-Ensemble is to take the domain data
and the available learning algorithms as input to generate the
pool of classifiers, training the learning algorithms. Once a
classifier is included in the pool its learning algorithm will
not need to be trained any more along the genetic algorithm
execution.

Problem encoding

The solutions encoding task is performed in the second
phase. There are different ways to represent the solutions
of a problem for a genetic algorithm (e.g. binary codifi-
cation, decimal, hexadecimal, etc). In order to represent
the candidate solutions or individuals in GA-Ensemble, it
has been decided to use a binary representation since it al-
lows the use of canonical GA’s. The canonical GA is the
original form proposed by Holland (Holland 1975; 1992)
and has a stronger mathematical foundation (Goldberg 1989;
Mitchell 1996).

In the GA-Ensemble approach, each individual in the pop-
ulation of the genetic algorithm represents a different ensem-
ble. The size of the chromosome, that represents an individ-
ual, is given by the number of available classifiers in the pool
and an extra gene than indicates the method that is going to
be used to combine the classifiers (see Figure 2). For exam-
ple in this work, in which we have used fifteen classifiers,
each individual is sixteen genes long.

When GA-Ensemble makes use of a metaclassifier to
combine the base-level classifiers, a multi-response model
tree (Frank et al. 1998) is always used, so the meta-level
algorithm is never included in the search space.
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Figure 1: General framework of GA-Ensemble.

1 1 0 1 0 ... 0
︸ ︷︷ ︸

present/absent classifiers

combining method
︷︸︸︷

0

Figure 2: Ensemble codification.

Genetic search

In the last phase a standard genetic algorithm is applied so as
to evaluate each individual of the population and obtain the
ensemble optimal configuration as output of the system. We
have used a genetic algorithm because it is proved that they
can handle large and complex (multimodal) search spaces,
not requiring strong assumptions on the function to be opti-
mized.

In order to evaluate each individual, we used the classi-

fication accuracy of the ensemble encoded in the individual
over a defined fold cross-validation as the fitness function.
The GA parameters are detailed in section “GA parameters”.

Experimental setup

In these preliminary experiments we have used several algo-
rithms implemented in the Waikato Environment for Knowl-
edge Analysis - WEKA - (Witten & Frank 2000). This tool
includes all the algorithms used to generate the base classi-
fiers and the ensemble generation algorithms.

Datasets

For the experimental test of this approach we used 10 data
sets from the well-know repository of machine learning
databases at UCI (Blake & Merz 1998) (see Table 1). These
datasets have been used widely in other comparative works.
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Dataset Attributes Instances Classes

australian 14 690 2

balance 5 625 3

car 6 1728 4

chess 36 3196 2

diabetes 8 768 2

glass 9 214 6

hepatitis 19 155 2

hypo 25 3163 2

ionosphere 35 351 2

vehicle 19 846 4

Table 1: Datasets descriptions

Learning algorithms

In order to obtain the optimal combination of classifiers, 15
learning algorithms have been used to generate the base level
classifiers, some of them with different parameters:

• A probabilistic Naive Bayes classifier (John & Langley
1995)

• PART (Frank & Witten 1998). Its creates decision list
from partial pruning decision trees generated using C4.5
heuristic.

• C4.5 (Quinlan 1993). It generates decision trees.

• C4.5 using unpruned tree.

• Decision Stump (Iba & Langley 1992). It is an algorithm
that generates one level decision tree.

• Decision Table (Kohavi 1995). It is a simple classifier that
use the mayority class.

• Decision Table using the nearest neighbour instead of
global table majority.

• Classification Via Regression method. It classifies using
regression methods. The M5 algorithm (Quinlan 1992) is
used as the regression method.

• Random Forest (Breiman 2001). This algorithm con-
structs a Random Forest that forms combining a great
number of unpruned decision trees.

• Random Tree (Witten & Frank 2000). This algorithm
constructs a tree considering K random attributes at each
node. It does not carry out any pruning.

• VFI (Demiroz & Guvenir 1997). It is an algorithm that
generates a classifier that classifies an instance based on
features intervals.

• Conjunctive Rule. This algorithm generates a simple con-
junctive rules classifier.

• JRip (Cohen 1995). An algorithm that generates proposi-
tional rules.

• Nnge (Martin 1995). It is a nearest neighbor algorithm
that use non-nested generalized exemplars.

• HyperPipes (Witten & Frank 2000). It generates a classi-
fier that constructs a HyperPipe for each category, which
contains all the points of that category.

Ensemble approaches

The ensembles of classifiers found by our approach, GA-
Ensemble (GAE), have been compared with three well-know
ensemble methods: Bagging, Boosting and StackingC (See-
wald 2002) (StC). The base level classifiers of the StackingC
method have been included in the comparative for a better
evaluation.

• StC: Stacking with a reduced set of meta-level attributes.
We carried out experiments with two different numbers
of base level classifiers, three and six. It has been used
the same three base-level classifiers used in (Dzeroski &
Zenko 2002): C4.5, IBk and Naive Bayes. In the second
set of experiments we added the K*, Decision Table and
multi-response model tree (MMT).

• Bagging: method for generating multiple versions of a
predictor and using them to get an aggregated predictor.
We used the C4.5 algorithm as base algorithm.

• Boosting: Method for improving the accuracy of any
given learning algorithm producing a series of sequential
classifiers. The basis for boosting is the C4.5 algorithm.

GA parameters

The parameters used for the genetic algorithm in the prelim-
inary experiments are shown in Table 2.

PARAMETER VALUE

POPULATION SIZE 50
GENERATIONS 30
ELITE RATE 0.1
CULL RATE 0.05
MUTATION RATE 0.1

Table 2: GA parameters

Evaluating and comparing algorithms

In order to evaluate our approach, we applied the genetic
algorithm three times in every search process. The best
individual obtained was saved. This individual encoded
an ensemble configuration, defining the combining method
and base-level classifiers. It was then compared with the
other ensemble approaches using a 10-fold cross-validation.
Weka’s paired t-test was used to test for significance with
the other algorithms (α = 0.05).

Empirical results

Table 3 shows the results obtained for GA-Ensemble, Bag-
ging, Boosting and StC (with 3 and 6 base level classifiers).
In 4 of 10 domains, GA-Ensemble gets the best results, al-
though differences with the best other systems are not sta-
tistically significant. If we add the differences between GA-
Ensemble and the other systems, GA-Ensemble gets a rela-
tive improvement (RAI) of 30.29% with Boosting, 33,99%
with Bagging and 23.53% and 3.65% with StC (3 and 6
BLC). With regard to the base level classifiers GA-Ensemble
gets a relative improvement of 52,7% with IBk, 51,61% with
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Domain GAE Boosting Bagging IBk K* MMT DT C4.5 NaiveBayes StC(3) StC(6)

australian 86.66 85.94 86.37 82.31 79.56 86.66 84.05 84.78 77.82 85.36 86.52

balance 96.31 78.07 81.59 85.58 88.79 88.15 74.87 77.91 90.39 89.59 89.11

car 97.68 95.89 92.59 92.99 87.32 96.64 93.57 91.72 85.58 92.88 96.81

chess 99.56 99.68 99.40 96.18 96.87 99.24 97.55 99.40 88.10 99.40 99.40

diabetes 76.81 72.77 76.04 70.83 70.30 76.82 73.44 75.65 75.91 76.43 75.90

glass 72.90 73.33 71.51 69.13 75.67 71.06 70.47 61.23 49.54 68.70 76.16

hepatitis 84.50 80.54 79.95 81.29 81.91 85.12 79.12 76.58 85.24 84.54 84.58

hypo 99.05 99.05 99.11 96.90 97.85 99.17 98.95 99.17 97.81 99.17 99.11

ionosphere 93.42 92.30 90.85 87.15 84.60 89.45 90.57 90.57 81.76 92.86 92

vehicle 77.91 76.94 73.40 69.74 70.32 79.33 65.49 72.57 45.38 72.34 81.56

RAI — 30.29 33.99 52.7 51.61 13.16 56.72 55.22 107.27 23.53 3.65

Table 3: Accuracy of StC with different number of base-level classifiers (3 and 6), the base-level classifiers, Boosting, Bagging
and GA-Ensemble

K*, 13,16% with MMT, 56,72% with DecisionTable and
55,22% with C4.5.

It is also interesting to consider the execution time, since
one of the objectives of this work was to reduce the exe-
cution time of GA-Stacking. GA-Ensemble has required a
much shorter time than GA-Stacking to finish the execution
of the genetic algorithm. Considering that GA-Ensemble has
to generate the base-level classifiers once per each execution
of the genetic algorithm and GA-Stacking had to train all
classifiers to calculate the fitness function of each individual
of each generation, the improvement in time is obvious.

Using a function to express this improvement, the time
required by GA-Stacking would be:

TGA−Stacking = ((TaBC ∗ NaCI) + TaMC) ∗ Ni ∗ Ng

where TaBC is the time average to train a base classi-
fier, NaCI is the number average of classifiers which are
encoded in an individual, TaMC is the time average to train
a meta-classifier, Ni is the number of individuals in the pop-
ulation and Ng the number of generations of the genetic al-
gorithm.

Whereas the function to express the time required by GA-
Ensemble would be:

TGA−Ensemble = (TaBC ∗ TnBC) + ((TaMC ∗AIm) ∗
Ni ∗ Ng)

where TnBC is the total number of base classifiers and
AIm is the average of individuals in the population using a
meta-classifier as ensemble method.

Conclusions and future works

In this paper, we have presented a preliminary version of
GA-Ensemble, an approach to find good ensembles config-
urations for a specific domain by means of genetic search.
This preliminary version of GA-Ensemble is based on a pre-
vious genetic approach, GA-Stacking, which was able to
generate, given a domain, a good Stacking configuration.
GA-Ensemble not only determines which base classifiers
must be present, but also the combining method of these
classifiers. One of advantages of GA-Ensemble inherited
from GA-Stacking is its flexibility and extensibility, since it
can use new learning algorithms as soon as they are invented
being not restricted by a priori assumptions. But its main ad-
vantage may be its improvement in time, requiring a much

shorter time than our previous approach, GA-Stacking. Em-
pirical results in domains currently used in this field show
that GA-Ensemble is comparable to the best results reported
so far, and it is never significantly worse than the other sys-
tems tested (with the advantage that parameters such as the
number of base classifiers need not be specified in advance).
With respect to accuracy, if we add the relative improve-
ments over the other systems across all the domains tested,
positive differences are always obtained, and quite large in
some cases. On the other hand, although GA-Ensemble has
improved the execution time with respect to GA-Stacking, it
may still require a long time depending on the used domain;
but for most domains this is not crucial, given that usually
classifiers do not require to be constructed in real time.

But accuracy is not always the only aspect used to eval-
uate ensembles of classifiers, although it is usually the only
issue considered relevant. Configuration size, classification
speed, etc, can also be the significant qualities in some do-
mains. Further work in this preliminary algorithm can in-
clude the research of the flexibility of GA-Ensemble. For
instance, adding pressure to reduce the number of base-
classifiers. Also, it would be a good enhancement to add
information to the chromosome about the meta-level classi-
fier to be used, as in GA-Stacking.
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