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Abstract

A key result of the Capital Asset Pricing Model (CAPM) is that the market portfolio—
the portfolio of all assets in which each asset’s weight is proportional to its total mar-
ket capitalization—lies on the mean-variance-efficient frontier, the set of portfolios having
mean-variance characteristics that cannot be improved upon. Therefore, the CAPM cannot
be consistent with efficient frontiers for which every frontier portfolio has at least one neg-
ative weight or short position. We call such efficient frontiers “impossible”, and show that
impossible frontiers are difficult to avoid. In particular, as the number of assets, n, grows,
we prove that the probability that a generically chosen frontier is impossible tends to one at
a geometric rate. In fact, for one natural class of distributions, nearly one-eighth of all assets
on a frontier is expected to have negative weights for every portfolio on the frontier. We
also show that the expected minimum amount of shortselling across frontier portfolios grows
linearly with n, and even when shortsales are constrained to some finite level, an impossible
frontier remains impossible. Using daily and monthly U.S. stock returns, we document the
impossibility of efficient frontiers in the data.
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1 Introduction

A cornerstone of modern portfolio management is the “efficient frontier” of mean-variance

analysis: the set of portfolios for which the lowest variance possible is attained for given

levels of expected return, or the highest possible expected return is attained for a given

level of variance. The main thrust of the Capital Asset Pricing Model (CAPM) is that

the market portfolio—the portfolio of all assets in which each asset’s weight is proportional

to its total market capitalization—must lie somewhere on the efficient frontier. Since, by

definition, every component of the market portfolio has a non-negative weight (because its

market capitalization must be non-negative), we would expect at least one portfolio on

the efficient frontier to have this property. If, for a given a set of asset-return parameters

(means, variances, and covariances), the corresponding efficient frontier does not have any

such portfolio, we call this an “impossible frontier” for obvious reasons.

In this paper, we show that as the number of assets grows large, nearly all efficient

frontiers are impossible.

Specifically, for any arbitrary set of expected returns and for a randomly chosen covariance

matrix, we show that the probability that the resulting frontier is impossible approaches one

as the number of assets increases without bound. This result depends, of course, on the

specific distribution from which we draw the covariance matrix; we consider two classes: the

uniform distribution (Haar measure), and distributions centered around linear-factor models

such as the CAPM and Ross’s (1976) Arbitrage Pricing Theory (APT). For both classes of

distributions, mean-variance-efficient frontiers are almost surely impossible.

This remarkable result is not an artifact of pathological parameters, except in the two-

asset case, but is a generic property of mean-variance-efficient portfolios. For typical param-

eter values, every portfolio on the efficient frontier will contain at least one short position,

i.e., a negative weight. This implies that such an efficient frontier cannot be consistent with

a CAPM equilibrium in which every investor holds the tangency portfolio, for such an equi-

librium requires all weights to be positive for that portfolio. Alternatively, our impossibility

result implies that the set of expected-return vectors and covariance matrices, (µ,Σ), that

are consistent with a CAPM equilibrium is extremely small—in fact, measure-zero in the

limit—hence we should not expect typical empirical estimates of (µ,Σ) to yield plausible

portfolios from the CAPM perspective unless the CAPM is literally true and estimation error

is negligible.

Our results provide one explanation for the skepticism that most long-only portfolio man-

agers have for standard mean-variance optimization. From their perspective, an impossible

frontier is truly impossible for them to implement. Moreover, it is well known that the out-
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put of standard portfolio optimizers yield weights that must be constrained, but until now,

the non-negativity restriction that has become second nature to practitioners was thought

to be a consequence of estimation error. The results in our paper show that even in the

ideal case in which the means and covariance matrix of asset returns are known with perfect

certainty, the efficient frontier will almost always contain negative weights. To the extent

that estimation error generates means and covariances that deviate from the CAPM, such

sampling variation will only exacerbate the problem, making it more likely that the sample

efficient frontier is impossible. Our impossibility results may also provide a partial expla-

nation for the recent popularity of so-called “active extension” strategies such as “130/30”

portfolios in which a limited amount of shortselling is permitted.

We begin in Section 2 with a brief review of the literature, and in Section 3 we derive

analytical results for the two- and three-asset cases to build intuition and motivate our more

general results. The main results of the paper are contained in Section 4, where we propose

two classes of probability measures over the space of all possible covariance matrices and

show that under both of these classes of measures, impossible frontiers become the rule, not

the exception, as the number of assets increases without bound. We also show that the

expected minimum amount of shortselling across frontier portfolios grows linearly with n,

and even when shortsales are constrained to some finite level, an impossible frontier remains

impossible. Given the importance of the CAPM, in Section 5 we examine the linear one-

factor return-generating model in more detail, and show how to construct a covariance matrix

that does not yield an impossible tangency portfolio. In Section 6, we provide an empirical

illustration of our theoretical findings using daily and monthly returns for a subset of S&P

500 stocks, and show that the usual sample estimators of (µ,Σ) do yield impossible frontiers.

We conclude in Section 7 with a discussion of the theoretical and practical significance of

our results.

2 Literature Review

Any review of the mean-variance portfolio selection literature must begin with Markowitz

(1952), who first introduced this powerful framework to the economics literature. Building on

the Markowitz mean-variance framework, Tobin (1958), Sharpe (1964), and Lintner (1965)

derived the equilibrium implications under the assumption that all investors held mean-

variance-optimal or “efficient” portfolios, culminating in the “Capital Market Line”, the line

connecting the riskfree rate on the expected-return axis with the tangency portfolio on the

efficient frontier in mean-standard deviation space.

2



The role of shortsales in mean-variance analysis has also been considered by several

authors. In fact, Markowitz (1959, p. 132) recognized the importance of implementing

constraints on portfolio weights, one of which was a non-negativity or shortsales constraint.

However, Lintner (1965) was perhaps the first to study the impact of shortsales on capital

market equilibrium, deriving alternative equilibria under shortsales prohibitions as well as

shortsales constraints. Lintner concluded that investors would not engage in shortsales in

equilibrium because of the Tobin separation theorem, i.e., all investors are indifferent between

holding portfolios of all assets and portfolios of just two funds: the riskless asset and the

tangency portfolio.

The importance of the mean-variance efficiency of the market portfolio was recognized

early on by many authors, who initiated a series of debates on the testable implications of

the CAPM. In particular, Roll (1977), Rudd (1977), Roll and Ross (1977), Green (1986),

Green and Hollifield (1992), and Best and Grauer (1985, 1992) all acknowledged the potential

incompatibility of an arbitrary set of means and covariances with positive weights for frontier

portfolios. Roll (1977) and Roll and Ross (1977) present qualitative arguments for frontier

portfolios to have positive weights, and Rudd (1977) corrects and quantifies some of those

arguments. Using the dual of the standard mean-variance quadratic optimization problem,

Green (1986) derives a fascinating necessary and sufficient condition for the efficient frontier

to be impossible—the existence of a nontrivial zero-expected-return arbitrage portfolio (a

portfolio with weights that sum to 0) that has non-zero correlation with all assets. Green

and Hollifield (1992) derive conditions under which frontier portfolios will be well-diversified,

meaning they contain no extreme weights, and argue that extreme weights are likely in the

presence of a single dominant factor in asset returns. Jagannathan and Ma (2003) show

that despite this fact, portfolios with non-negativity constraints often perform better than

unconstrained counterparts because the constraints reduce the impact of estimation error.

And given a positive vector of market weights and a covariance matrix, Best and Grauer

(1985) derive the restrictions on the vector of expected returns that imply that the given

vector of market weights is an efficient portfolio.

But the most relevant paper for our purposes is Best and Grauer (1992). In addition to

providing conditions for all frontier portfolios to have positive weights, they derive a beautiful

result: if a frontier contains portfolios with positive weights, they all lie on a continuous

segment of the frontier! Using this fact, they show that as the number of assets increases

without bound, and assuming that the CAPM holds (so that the vector of expected returns

and the covariance matrix is consistent with the mean-variance efficiency of the vector of

market weights), the line segment of frontier portfolios with positive weights converges to

a single point under certain conditions. Given the implausibility of these conditions, and
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the sensitivity of frontier portfolios to small perturbations in the vector of expected returns

(documented in Best and Grauer, 1991a,b), they argue that frontiers with all positive weights

are highly unlikely in practice. Our results confirm this intuition, but without any restrictions

whatsoever on the vector of expected returns.

More recently, Markowitz (2005) has argued that empirical deviations from the CAPM

are not surprising in light of the counterfactual assumptions on which the CAPM is based.

In particular, he observes that “When one clearly unrealistic assumption of the capital asset

pricing model is replaced by a real-world version, some of the dramatic CAPM conclusions

no longer follow”. An example is the fact that unlimited borrowing and lending at identical

yields is not possible in practice, and this limitation implies that the market portfolio need

not be mean-variance efficient in equilibrium.

Markowitz’s (2005) caveats are well taken, but the results of our paper are considerably

stronger—we show that even if all the assumptions of the CAPM are true, the market port-

folio need not be mean-variance efficient. Specifically, Markowitz (2005) states the following

assumptions:

(A1) Transaction costs and other illiquidities can be ignored;

(A2) All investors hold mean-variance-efficient portfolios;

(A3) All investors hold the same (correct) beliefs about means, variances, and covariances

of securities;

(A4) Every investor can lend all she or he has or can borrow all she or he wants at the

riskfree rate;

and argues that Conclusion 1 follows:

(C1) The market portfolio is a mean-variance-efficient portfolio.

The results of Sections 3–5 show that there exist certain combinations of means, variances,

and covariances for which every mean-variance-efficient portfolio contains short positions,

implying that none can be the market portfolio. And as the number of assets grows without

bound, the likelihood of coming across a set of parameter values with this characteristic

approaches certainty.
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3 Some Examples of Impossible Frontiers

We begin with some notation. Let µ be the vector of expected returns for n assets, and let

Σ be the covariance matrix of those returns.1 For a given level of expected return, µo, the

corresponding portfolio on the efficient frontier is the vector ω which minimizes the value of

ω′Σω subject to ω′ι = 1 , ω′µ = µo (1)

where ι is a column vector of ones of the appropriate length. The set of optimal ω can be

found using the method of Lagrange multipliers (see, for example, Merton, 1972):

F =

{
ω : ω =

BC

D

(
µo −

B

C

)
(ω� − ωg) + ωg , for µo ≥

B

C

}
(2)

where

A ≡ µ′Σ−1µ , B ≡ µ′Σ−1ι , C ≡ ι′Σ−1ι , D ≡ AC − B2 (3)

and

ωg ≡ Σ−1ι/C , ω� ≡ Σ−1µ/B . (4)

Note that ωg is the global minimum-variance portfolio, and ω� is the vector that maxi-

mizes the Sharpe ratio relative to the riskfree rate of zero, i.e., ω� maximizes the function

µ′ω/
√

ω′Σω.

The frontier starts at the expected return level µo = B/C. In fact, we can compute

minimum-variance portfolios for values of µo less than B/C, but these portfolios would lie

on the “inefficient” branch of the portfolio frontier, i.e., the portion of the frontier for which

expected return is not maximized for a given level of risk.

We call a frontier “impossible” with respect to the i-th component if the weight of the

i-th component at each point on the frontier is negative. Clearly, a sufficient condition for a

1Throughout this paper, we maintain the following notational conventions: (1) all vectors are column
vectors unless otherwise indicated; (2) matrix transposes are indicated by t superscripts, hence ω′ is the
transpose of ω; and (3) vectors and matrices are always typeset in boldface, i.e., X and µ are scalars and X

and µ are vectors or matrices.
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frontier to be impossible is that it be impossible for the i-th asset, 1 ≤ i ≤ n. From (2), we

see that every point on an efficient frontier can be written in the form

ω =
C

D

(
µo −

B

C

)
ωP + ωg (5)

where ωP ≡ Bω� −Bωg. The values of C and D are non-negative by the Cauchy-Schwartz

inequality, so a frontier will be impossible with respect to the i-th asset exactly when ωg

and ωP both have negative i-th components.

Our technique for proving that an efficient frontier is impossible is to show that the i-th

elements of both ωg and ωP are negative for some i. Using this method, we can calculate

a lower bound for the probability that a generically chosen efficient frontier is impossible,

as well as lower bounds for the expected number of negative weights of portfolios on an

impossible frontier, and lower bounds on the expected amount of total shortsales at each

point on the frontier.

In Section 3.1, we investigate the special case of n = 2 and find that certain frontiers

are impossible, but only under some rather unnatural conditions. However, in Section 3.2,

we show that when n = 3, a variety of frontiers become impossible without any unnatural

conditions.

3.1 The Two-Asset Case

For the case of n = 2 assets, we can characterize all situations in which a frontier will be

impossible (proofs are included in the Appendix):

Proposition 1 For n=2, let the assets be ordered so that µ1 < µ2, let σi denote the risk of

the i-th asset, and let ρ denote the correlation between the assets. The efficient frontier is

impossible if and only if

σ2

σ1
< ρ .

Because ρ ≤ 1, the proposition implies that a necessary condition for a frontier with two

assets to be impossible is that σ2 < σ1. Also, since the volatilities are both non-negative,

it is also necessary that ρ > 0. Thus, for a frontier to be impossible, the asset with higher

expected return must also have lower risk, and the two assets must be positively correlated.

In such a circumstance, it will be optimal to have a short position in the low-return/high-risk
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asset at every point on the efficient frontier.

This condition is unnatural because the lower expected-return asset is strictly dominated

by the higher expected-return asset, given that the latter is less risky than the former.

Therefore, on purely economic grounds, it is possible to rule out impossible frontiers in the

two-asset case. In the next section, however, we show that with just one more asset, there

is no natural way to avoid impossible frontiers.

3.2 The Three-Asset Case

For n=3 assets, we describe a class of mean returns, variances and covariances indexed by a

parameter ε > 0 such that for sufficiently small values of ε, the efficient frontier corresponding

to the specified parameters is impossible, and that the shortsale amount throughout the

frontier becomes arbitrarily large as ε approaches 0. Unlike the case of the condition in

Proposition 1, no dominance relation among the assets is necessary; in fact, all three assets

have the same ratio of expected return to standard deviation. After deriving the formal

results for this class of parameters, we provide a specific numerical example and also indicate

the range of values of ε for which frontiers in this class are impossible.

For each 0 < ε < 1, let d = 1− ε, and define the following set of asset-return parameters:

µ = µ2




d

1

1/d


 , σ = σ2




d

1

1/d


 , and C =




1 d d4

d 1 d

d4 d 1


 (6)

where µ is the vector of expected returns, σ is the vector of standard deviations, and C is

the correlation matrix. We assume that µ2 > 0 and σ2 > 0. The ratio of expected return

to standard deviation for each asset is thus µ2/σ2. Also, the correlation between the first

and the second asset is positive and identical to that between the second and third asset,

while the correlation between the first and third asset is positive but somewhat smaller since

d4 < d. We prove below that the efficient frontiers corresponding to the class of parameters

described by (6) are impossible for sufficiently small values of ε. Before deriving this result,

however, we must confirm that the correlation matrix specified in (6) is positive definite,

which is confirmed by the following lemma (see the Appendix for the proof):

Lemma 1 The correlation matrix C specified in (6) is positive definite for all 0 < ε < 1.

With this lemma in hand, we now prove that frontier described in (6) are impossible when

ε is sufficiently small.
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Proposition 2 For sufficiently small values of ε, the frontier corresponding to the parame-

ters described in (6) is impossible. Each frontier portfolio can be expressed as:

ω = α ω̃P + ωg,

for α ≥ 0, where ω̃P = (12/B)ωP . There are values 0 < α1 < α2 such that the weight of

the second asset is negative for each portfolio in the range 0 ≤ α ≤ α2 and the first asset

is negative for each portfolio in the range α > α1. Therefore, there is always at least one

asset with a negative weight, and for values of α between α1 and α2, two assets have negative

weights. Moreover, each portfolio on the frontier has a negative weight that is at least as

large as 1
3ε

+ O(1).

This proposition demonstrates that impossible frontiers can arise easily in the three-

asset case, and without imposing any unnatural conditions on the asset-return parameters.

In practice, numerical computations show that frontiers corresponding to the parameters in

(6) become impossible whenever ε ≤ 0.317.

For concreteness, consider a numerical example with the following parameter values:

ε = 0.2, µ2 = 12%, and σ2 = 20%. In this case, we have

µ =




0.096

0.120

0.150


 , σ =




0.160

0.200

0.250


 , and C =




1.0000 0.8000 0.4096

0.8000 1.0000 0.8000

0.4096 0.8000 1.0000


 .

The parametrization of the frontier described in Proposition 2 takes the form

ω = α




−2.6021

0.5204

2.0817


 +




1.3553

−0.9104

0.5551


 .

The value of α for which the first coordinate of ω is zero is α1 = 0.5208, and the value of α

for which the second coordinate of ω is zero is α2 = 1.7493. For values of α between 0 and

α1, the weight of the second asset is negative, and the weights of the other two assets are

positive. For values of α between α1 and α2, the weights of both the first and second assets

are negative, and the weight of the third asset is positive. Finally, for values of α greater

than α2, the weight of the first asset is negative, and the weights of the other two assets
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are positive. Therefore, the efficient frontier is impossible. Moreover, each portfolio on the

frontier has a total shortsale amount of at least −63.9% of the total asset value.

The circumstances in which impossible frontiers can arise in the case of three assets is not

limited to just those parameters described by (6). In fact, the efficient frontier will continue

to be impossible if the values of the risk, return and covariances parameters are allowed to

vary within a small neighborhood of (6). In addition, many other three-asset examples of

impossible frontiers with empirically plausible parameters can be constructed. By increasing

the number of assets from two to three, the set of impossible frontiers has grown significantly.

In Section 4, we show that this is no coincidence, and that as n increases without bound, an

arbitrarily chosen frontier is almost surely impossible.

4 The General Case

In this section, we consider the general case of an arbitrary number of n assets. Unfor-

tunately, simple analytical results like those for the two- and three-asset cases of Section

3 are not available for an arbitrary number of assets (but see Green, 1986, and Best and

Grauer, 1985, 1992 for other useful characterizations of impossibility, including computation-

ally explicit methods for identifying impossible frontiers). Instead, we propose to conduct

the following thought experiment: for a given vector µ of expected returns, and a randomly

selected covariance matrix Σ, what is the likelihood that the resulting frontier is impossible?

To compute such a probability, we must, of course, propose a probability distribution for a

covariance matrix, which is not a straightforward exercise. Although distributions of covari-

ance matrices have been developed in the statistics literature, e.g., the Wishart distribution,

they are sampling distributions of covariance-matrix estimators applied to independently

and identically distributed multivariate normal data (see Anderson, 1984, chapter 7). Such

distributions are highly parametric—if multivariate normality does not hold, then neither

does the Wishart—and also do not necessarily capture the randomness that we seek, i.e., the

random drawing of an arbitrary population covariance matrix from the space of all possi-

ble covariance matrices. In particular, Wishart distributions are typically “centered” at the

estimated sample covariance matrix with multivariate tails that decline exponentially fast.

This may be a reasonable model of the randomness associated with sampling variation, but

seems less compelling as a mechanism for drawing an arbitrary covariance matrix at random.

Instead, we seek a more general distribution, such as a uniform distribution over the

space of all possible covariance matrices, i.e., the space of all (n×n) symmetric positive-

definite matrices with real elements. However, because this space is not compact, a uniform
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distribution over this space will have infinite mass. Nevertheless, in the same way that an

“improper prior” can be specified in Bayesian inference,2 we can construct an “uninforma-

tive” distribution as a proxy for the uniform. We provide such a distribution for covariance

matrices in Section 4.1, which will allow us to gauge the probability that a randomly selected

covariance matrix gives rise to an impossible frontier, yielding the conclusion that impossible

frontiers are almost certain to arise as the number of assets increases without bound.

However, it may be argued that an uninformative distribution of covariance matrices

will not yield economically relevant draws because the resulting covariance matrices lack

the factor structure hypothesized in the most popular asset-pricing models. We address

this concern in Section 4.2 by introducing another class of probability distributions centered

around the covariance matrices generated by linear factor-pricing models such as the CAPM

and APT, and derive lower bounds on the probability that a frontier is impossible if it is

chosen randomly with respect to one of the distributions in this class. We show that this

lower bound also approaches unity as n grows without bound.

In Section 4.3, we calculate lower bounds on the expected number of assets with respect

to which a frontier will be impossible, as well as estimates for the expected minimum size of

short positions across frontier portfolios. We also find that an impossible frontier will remain

impossible even if constraints are placed on the total amount of shortselling allowed in any

portfolio.

4.1 Impossibility with a Uniform Prior

Without any prior information for what a covariance matrix “should” look like, a plausible

starting point for generating a “randomly selected” covariance matrix is to apply a uni-

form distribution over the space of all real symmetric positive definite n×n matrices. This

problem is closely related to the Invariance Principle in Bayesian statistical decision theory,

which states that “If two decision problems have the same formal structure. . ., then the

same decision rule should be used in each problem” (Berger, 1985, p. 390). This principle

depends critically on the absence of prior information which, in turn, requires that the prior

distribution also be uninformative and “invariant”, i.e., scale-independent. To formalize this

notion of invariance, Berger (1985, Chapter 6.6, Definition 2) defines a group structure on

the set of transformations of the data, and then defines a parametric family of probability

measures to be invariant under this group if the parameters are invariant across all actions

2See, for example, Jeffreys (1961, pp. 180–181) and Box and Tiao (1973, p. 426).
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of the group. For example, under the group of scale transformations

Y = gc(X) ≡ cX (7)

the exponential density function f(x|θ) = θ−1 exp(−x/θ) is invariant because the density of

Y is given by (see Berger, 1985, p. 394):

c−1f(y/c|θ) = (cθ)−1 exp(−y/(cθ)) = f(y|cθ) . (8)

Of course, the Principle of Invariance is considerably more general, and can be applied to

arbitrary groups defined on arbitrary collections of random variables. Berger (1985, Chapter

6.6) shows that the prior distribution function associated with invariant decision rules is

given by Haar measure, an extension of the uniform distribution to more general settings.

We apply this same approach to define an uninformative prior on the space of all (n×n)

covariance matrices, which we denote by Pn.

For Pn, the natural group of transformations to consider is the general linear group GLn,

the group of all invertible linear transformations on Rn (or, equivalently, the group defined

by all invertible (n×n) matrices). This is the multivariate analog of the multiplicative

scale transformation (7), where we wish to define invariance with respect to the matrix

multiplication of a vector of n random asset returns r by an arbitrary invertible matrix A,

yielding Ar. If the covariance matrix of r is Σ, then the covariance matrix of Ar is AΣA′,

hence we seek to construct an uninformative prior on Pn that is invariant between Σ and

AΣA′ for all invertible A. It turns out that Haar measure is the only measure satisfying

this property.

More formally, Haar measure is the unique measure (up to a constant) that is invariant

under the natural action of the group GLn of invertible linear transformations on Rn on

the space of covariance matrices. For G ∈ GLn, this action is defined by Σ 7→ GΣG′

for Σ ∈ Pn, where Pn is the symmetric space of all positive-definite matrices on Rn, and

any covariance matrix Σ can be mapped to any other covariance matrix under some such

action. Thus, any such action takes a neighborhood around a specified covariance matrix to a

corresponding neighborhood around any other covariance matrix, and Haar measure assigns

the same volume to every such image of the original neighborhood. In this sense, Haar

measure behaves uniformly on all of Pn and represents an uninformative prior distribution

over all possible (n×n) covariance matrices. The following definition summarizes Haar

measure on GLn (see Jorgenson and Lang, 2005 for further discussion).
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Definition 1 Haar measure on Pn is the measure, νn, that is invariant under transforma-

tions of the form Σ 7→ GΣG′, for G ∈ GLn. Thus, for any region S ⊆ Pn, Haar measure

has the property that

νn(S) = νn (GSG′) (9)

for all G ∈ GLn. This measure is unique up to multiplication by a positive constant, and in

terms of the elements of the matrix Σ = [Σi,j ], we have

dνn(Σ) =
1

(det(Σ))(n+1)/2

∏

i≤j

dΣi,j (10)

where dΣi,j is the element of Euclidean measure.

Under Haar measure, the entire space Pn has infinite volume so we cannot scale by a

constant to transform Haar measure into a proper probability density. Instead, we calculate

the probability that a selected frontier is impossible on cross sections of Pn using the prob-

ability density induced by Haar measure on those cross sections. We first need to introduce

a useful system of coordinates on Pn with respect to which we can easily define our cross

sections.

Definition 2 Each matrix M ∈ Pn can be uniquely expressed in terms of (partial) Iwasawa

coordinates as (X,W,V), where W ∈ P2, V ∈ Pn−2, and X ≡ [x1,x2], with x1,x2 ∈ Rn−2.

The relationship between M and (X,W,V) is defined by the formula

M =

(
I2 X′

0 In−2

)(
W 0

0 V

)(
I2 0

X In−2

)
=

(
W + X′VX X′V

VX V

)
. (11)

Moreover, each matrix W can be uniquely expressed in terms of Iwasawa coordinates as

(y, u, v), where u, v ∈ R+ and y ∈ R, according to the relationship

W =

(
1 y

0 1

)(
u 0

0 v

)(
1 0

y 1

)
=

(
u + y2v yv

yv v

)
. (12)

Finally, we can also express each matrix X in terms of polar coordinates (r1, . . . , rn−2, θ1, . . . ,

θn−2), where ri ∈ R+ and θi ∈ S1 = [0, 2π], using the relationships x1,i = ri cos θi and
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x2,i = ri sin θi. Therefore, each M ∈ Pn can be written in terms of coordinates

M = (r1, . . . , rn−2, θ1, . . . , θn−2, y, u, v,V) (13)

so that the space Pn can be viewed as the product

Pn = (R+)n−2 ×
(
S1
)n−2 × R× R+ ×R+ × Pn−2 . (14)

Using the coordinate system of Definition 2, we consider cross sections of Pn that have

fixed values of all coordinates except the θi. We write Z = Z (r1, . . . , rn−2, y, u, v,V) for

such a cross section with specified fixed values of the coordinates r1, . . . , rn−2, y, u, v and

V. This cross section is thus a product of (n−2) copies of S1, and the measure on this cross

section induced by Haar measure on Pn is

dνZ =
1

(2π)n−2
dθ1 · · · dθn−2 . (15)

The measure νZ is therefore a proper probability distribution on the cross-sectional space Z;

although probabilities cannot be computed with respect to Haar measure on all of Pn, they

can be computed with respect to νZ on each cross section Z of Pn.

To calculate the probability that a covariance matrix Σ gives rise to an impossible frontier,

it is convenient first to change variables from Σ to M using the correspondence

Σ = AMA′ (16)

where A = A (c1, . . . , cn) is the unique matrix in GLn with columns defined by

Ae1 = c1ι , Ae2 = c2µ , and Aej = cjej for 3 ≤ j ≤ n (17)

for specified values of ci > 0, where ej is an (n×1)-vector with 0’s in all entries except

for a 1 in the j-th entry, j = 1, . . . , n. Haar measure is invariant under this change of

variables, so we can replace Σ with M and use Haar measure on M as the basis for our

probability calculations. We calculate the probability that a matrix Σ = AMA′ gives rise

to an impossible frontier for a matrix M in a cross section Z, where the probability is
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calculated with respect to the distribution νZ . In Theorem 1, we obtain a lower bound for

this probability of impossibility that depends only on the parameter y in the specification of

Z. However, first we need a lemma that provides a useful test for impossibility.

Lemma 2 For a frontier to be impossible with respect to the i-th coordinate, it is necessary

and sufficient that

e′
iΣ

−1ι < 0 and e′
iΣ

−1µ −
(

µ′Σ−1ι

ι′Σ−1ι

)
e′

iΣ
−1ι < 0 . (18)

If Σ = AMA′ and i > 2, the conditions in (18) are equivalent to

cos θi−2 > y sin θi−2 and sin θi−2 > 0 (19)

where M has coordinates as in Definition 2.

Theorem 1 Let M ∈ Z = Z (r1, . . . , rn−2, y, u, v,V) be chosen randomly with respect to the

distribution νZ . The probability pZ that the covariance matrix Σ = AMA′ gives rise to an

impossible frontier is bounded below as

pZ ≥ 1 −
(

1 − 1

2π
cot−1 y

)n−2

≥ 1 −
(

1 − 1

2π (1 + max(0, y))

)n−2

. (20)

This theorem shows that for any fixed value of y, the probability that a covariance matrix

in a cross section Z gives rise to an impossible frontier tends to 1 geometrically as n grows.3

Moreover, if y is bounded above by y+, the probability for any cross section Z with such a

y coordinate tends to 1 at least as quickly as

pZ ≥ 1 −
(

1 − 1

2π (1 + max(0, y+))

)n−2

.

3The intuition for this result is similar to the intuition for the fact that the fraction of an n-dimensional
unit sphere not lying in the positive orthant tends to 1 geometrically with n. The sphere is defined by n

Euclidean variables subject to the condition that their squares sum to 1. Under the uniform Haar measure
on the sphere, each of these n variables is independent of all of the others, and each is equally likely to be
positive or negative. Thus, the likelihood that at least one is negative, so that a point is not in the positive
orthant, is 1−2−n. For the case of the probability distribution in Theorem 1, each of the (n−2) variables
θi is independent of all the others, and there is a likelihood py, dependant only on y, that the i-th of these
variables gives rise to a frontier that is impossible with respect to the (i+2)-th coordinate. As a result,
the probability that the frontier is impossible with respect to at least one coordinate is at least as great as
1 − (1−py)

n−2
.
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The following corollary extends the previous results to yield a lower bound on the prob-

ability of impossibility for probability densities on the entire space Pn.

Corollary 1 Let ϕ be any probability density on Pn which factors into a product of densities

ϕ =

(
n−2∏

i=1

ϕri

)
×
(

n−2∏

i=1

ϕθi

)
× ϕy × ϕu × ϕv × ϕV (21)

where the ϕθi
are uniform probability densities on S1 and the other distributions are aribtrary

distributions on the respective spaces ri ∈ R, y ∈ R, u ∈ R+, v ∈ R+, and V ∈ Pn−2. Let

Σ = AMA′ be an arbitrary covariance matrix, with A as defined in (17), and with M

chosen randomly in accordance with the distribution ϕ. The probability p that Σ gives rise

to a frontier which is impossible is bounded below by

p ≥ 1 −
∫

R

(
1 − 1

2π (1 + max(0, y))

)n−2

ϕy(y) . (22)

4.2 Impossibility with Linear-Factor Model Priors

Although the generality of Haar measure in representing the selection of an arbitrary covari-

ance matrix is compelling, some may consider it too general because it does not differentiate

among outcomes according to their economic plausibility. In particular, Haar measure places

the same probabilistic weight on covariance matrices arising from quantum mechanics as it

does on those from economic models—there is nothing intrinsic to Haar measure that in-

corporates economic structure. Accordingly, one could argue that Haar measure places too

much weight on financially irrelevant covariance matrices. This argument is debatable, not

in the least because we do not usually develop economic theories to yield specific implications

for covariance matrices, hence it is not clear what “financially relevant” covariance matrices

look like.

However, there does exist an important class of financial models that places restrictions

on asset-return covariance matrices, and that is the set of linear factor models such as

the CAPM and APT. If a linear factor-pricing model holds, then a “typical” covariance

matrix drawn randomly from this economy will have a different distribution than Haar

measure. Accordingly, financial economists may prefer a more informed prior when it comes

to covariance matrices.

In this section, we introduce a class of probability distributions based on covariance

matrices motivated by linear factor models such as the CAPM and APT, and we calculate

15



probabilities of impossibility with respect to distributions in this class. The construction

of this class uses many of the techniques and notations developed in connection with our

analysis of Haar measure in Section 4.1, so our exposition will be less detailed.

We start with T0 = T0(µ, µm, σm, rf), the covariance matrix implied by a linear one-

factor model for a chosen value of the excess expected-return vector µ and for arbitrarily

specified values of the excess expected return on the market, µm, the market volatility, σm.

The excess expected return values are defined as the excess of the expected return values

over the riskfree rate, rf . Also, we assume for the moment that there are no idiosyncratic

components to asset returns. The matrix T0 can be written

T0 = σ2
mββ′

where β is the vector of “beta” values, β = µ/µm (recall that we have assumed no idiosyn-

cratic shocks for the moment).

To incorporate independent idiosyncratic risks,4 non-negative amounts can be added to

diagonal elements of T0, and the elements of the matrix may be additionally adjusted to

reflect deviations from the CAPM. We define a family of such matrices,

T = T (µ, µm, σm, rf) =
{
T = σ2

mββ′ + diag(δ) + ειι′ : ε ≥ 0, δi ≥ 0
}

and we define the subfamily T2 to be those matrices in T with δ1 = 0, δ2 = 0, and δi > 0

for 3 ≤ i ≤ n. The notation diag(δ) represents the diagonal matrix with diagonal elements

equal to the elements of the vector δ.

For any T ∈ T2, we can write T = AA′, where A = A(c1, . . . , cn) is defined in (17), with

c1 = ε1/2, c2 = σm/µm, and ci = δ
1/2
i , for 3 ≤ i ≤ n. We write covariance matrices Σ in the

form Σ = AMA′ for some M ∈ Pn, and we consider probability distributions on Σ defined

in terms of probability distributions on M. Since every Σ corresponds to a unique M under

this relationship, every probability distribution for Σ can be realized in this way. Also, when

M = In, we have Σ = T, so distributions for Σ are “centered” on the CAPM-based matrix

4Of course, if the CAPM were literally true, then the vector of idiosyncratic risks ǫ would have to satisfy
the linear restriction ω′

mǫ ≡ 0, where ωm is the vector of market weights (in other words, the random
idiosyncratic shocks must sum to zero in each and every realization, implying that their n-dimensional
joint distribution is, in fact, degenerate, and lies in an (n−1)-dimensional subspace). However, we are not
assuming that CAPM is true, otherwise by definition the efficient frontier cannot be impossible. Instead,
we are use the CAPM’s one-factor model as motivation for constructing an alternative to Haar measure for
the express purpose of generating a “randomly chosen” covariance matrix that may be more relevant for
financial applications.
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T to the same extent the distributions for M are centered on In. We can now define a broad

class of probability distributions for Σ and “centered” on CAPM-based matrices T ∈ T2.

Definition 3 For c > 0, a distribution ϕ on Σ ∈ Pn is in the class D(T2; c) if the corre-

sponding distribution ϕM on M ∈ Pn can be factored into a product of distributions

ϕ =

(
n−2∏

i=1

ϕri

)
×
(

n−2∏

i=1

ϕθi

)
× ϕy × ϕu × ϕv × ϕV (23)

where the ϕθi
are uniform probability densities on S1, where ϕy is bounded above by c e−y2

for

y ≥ 0, and where the other distributions are arbitrary distributions on the respective spaces

ri ∈ R+, u ∈ R+, v ∈ R+, and V ∈ Pn−2. Here we use the notation of Definition 2 for the

coordinates for M, and we use the correspondence Σ = AMA′ for the relationship between

Σ and M.

We now turn to the central result of this section: a lower bound for the probability of

impossibility which is uniform across all distributions in the class D(T2; c).

Theorem 2 For any given excess expected-return vector µ, excess expected return on the

market µm, market volatility σm, and riskfree rate rf , relative to which excess returns are

defined, let ϕ be a probability distribution in D(T2; c) = D (T2(µ, µm, σm, rf); c), for a specified

c > 0. With respect to this distribution, the probability that a random choice of Σ gives rise

to an efficient frontier that is impossible is bounded below by:

PI ≥ 1 −
(

6

7

)n−2

− 4c exp

(
−
(

n − 2

3π

)2/3
)

. (24)

This lower bound holds uniformly across all ϕ ∈ D(T2; c), as well as across all choices of

µ, µm, σm, and rf . As n increases without bound, the probability that a generically chosen

frontier is impossible tends to unity.

The remarkable generality of Theorem 2 raises the question of how tight the lower bound can

be, especially given the fact that we have placed no restrictions on the excess expected-return

vector µ. Table 1 shows that even for the 50-asset case—a relatively small number of assets

for most financial applications—the likelihood of an impossible frontier is nearly certain.

It should come as no surprise that Theorem 2 can easily be extended to the case in which

returns satisfy any linear k-factor model, k ≪ n. In this case, the factor (n−2) in (24) is
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n Lower Bound

25 0.9059

50 0.9787

75 0.9920

100 0.9966

Table 1: Lower bound for the probability that a randomly chosen n-asset covariance matrix
yields an impossible frontier under any measure ϕ ∈ D(T2; 0.1) over the space of all n×n
symmetric positive-definite covariance matrices with real elements.

replaced by (n−k−2) and some of the constants are slightly different, but the asymptotic

implications of the bound are identical. As n increases without bound, the probability of an

impossible frontier approaches unity.

4.3 Characterizing the Short Positions

In this section, we derive several additional results about impossible frontiers. We determine

the expected number of the total number of assets n with respect to which a generic frontier

will be impossible, and derive a lower bound for the expected sizes of short positions across

a generic frontier. We also generalize Theorem 2 to the case in which a constraint is placed

on the total size of short positions at each point on the frontier.

Theorem 3 For any given excess expected-return vector, µ, excess expected return on the

market, µm, market volatility, σm, and riskfree rate, rf , relative to which excess returns are

defined, let ϕ be an arbitrary probability distribution in D(T2; c) = D (T2(µ, µm, σm, rf); c).

Under this probability distribution, the expected number of the total number of assets n with

respect to which the frontier corresponding to a random choice of Σ is impossible is bounded

below by:

En ≥ c′(n − 2) , (25)

for a positive constant c′ defined as

c′ ≡
∫

R

(
1

2π (1 + max(0, y))

)
ϕy(y) (26)
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which depends only on the factor ϕy of the probability distribution ϕ. If ϕy is a normal

distribution with unit variance, a numerical lower bound for En is (n−2)/8.

This result follows from an estimate of the integral defining the expected value (see the

Appendix), and shows that the number of assets requiring short positions on a typical frontier

grows linearly with the number of assets.

We can also determine lower bounds for the aggregate size of the short positions among

efficient-frontier portfolios. The following definition makes this notion precise:

Definition 4 For 1 ≤ i ≤ n, let Si denote the infimum of the short position in the i-th asset,

measured as a fraction of the portfolio’s net asset value, where the infimum is taken over all

points on a given efficient frontier. Let S denote the infimum of the aggregate amount of

shortselling, where the infimum is also taken over all portfolios on a given efficient frontier.

With this definition, we are able to derive a lower bound on the magnitude of shorting among

efficient-frontier portfolios:

Theorem 4 For any given excess expected-return vector µ, excess expected return on the

market µm, market volatility σm, and riskfree rate rf , relative to which excess returns are

defined, let ϕ be an arbitrary probability distribution in D(T2; c) = D (T2 (µ, µm, σm, rf) ; c).

Under ϕ, for 3 ≤ i ≤ n, the expected value of Si satisfies

E[Si] ≥ ci (27)

where

ci ≡ 1

2π

(∫ ∞

0

ri−2ϕri−2

)(∫ 0

−∞

(1 − y)ϕy

)
(28)

and ϕri−2
and ϕy are as in Definition 3. Note that if all the functions ϕri−2

are identical, so

that all the ci have a common value c∗, then the expected value of S has the following lower

bound:

E[S] ≥ c∗(n − 2) . (29)

Finally, we consider the effect of imposing shortsales constraints by first defining the

concept of a constrained efficient frontier:
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Definition 5 For b ≥ 0, a constrained efficient frontier, Fb, is the set of portfolio weight

vectors that provide maximum returns for given levels of volatility, subject to the condition

that the total size of the short positions in such weight vectors be no more than a fraction

b of the portfolio’s net asset value. Such a constrained frontier is an impossible frontier if

every point on Fb has a negative weight for at least one asset.

Remarkably, imposing shortsales constraints does not decrease the probability that a frontier

is impossible, as the next result shows:

Theorem 5 Let F be an unconstrained efficient frontier and let Fb be the corresponding

constrained efficient frontier for some b > 0. If F is an impossible frontier, then Fb is an

impossible frontier as well.

Therefore, the probability that a constrained efficient frontier, with b>0, is impossible is at

least as large as the probability that an unconstrained efficient frontier is impossible.

5 The One-Factor Model

Given the overwhelming importance of the CAPM to financial theory and practice, we con-

sider the special case of the linear one-factor model that underlies the CAPM. In particular,

let the (n×1)-vector of returns of n assets be given by the following linear one-factor model:

r = ι rf + β(rm − rf) + ǫ (30)

where rm is the stochastic market return, β is an (n×1) constant vector, and ǫ is an (n×1)

stochastic vector of idiosyncratic shocks. We assume that the expected value of ǫ is zero,

and we write Ω for its covariance matrix.

Let µm and σm denote the expected return and standard deviation of rm, respectively.

According to the CAPM relation (30), the mean vector and covariance matrix for asset

returns, µ and Σ, can be written in terms of µm, σm, β, rf , and Ω as

µ = ι rf + β(µm − rf) and Σ = ββ′σ2
m + Ω . (31)

The tangency portfolio implied by the CAPM is ω�, defined in (4) as ω� ≡ Σ−1µ/B. And

under the assumption that Ω is diagonal and µ contains all positive elements, it can be shown

that the tangency portfolio is, in fact, not impossible, i.e., it contains no negative weights
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and may, therefore, be consistent with capital market equilibrium in which the weights are

proportional to the market capitalizations of the securities. In this section, we explore the

impossibility of the tangency portfolio for more general residual covariance matrices Ω and

with no constraints on µ, and find that, as before, impossibility is the rule, not the exception

as n increases without bound.

In Section 5.1, we introduce the techniques needed to characterize impossible tangency

portfolios, and in Section 5.2, we derive a lower bound on the probability that a randomly

selected tangency portfolio is impossible. In Section 5.3, we show how to construct the unique

covariance matrix that is consistent with a given vector of means µ, the riskfree rate rf , a

set of market-capitalization weights ωm, and CAPM equilibrium (i.e., where those market

weights correspond to those of the tangency portfolio), and which is as “close” as possible

to a given covariance matrix Σ. In other words, we derive the covariance matrix that is as

close as possible to Σ, but which is consistent with the CAPM.

5.1 Characterizing Impossible Tangency Portfolios

As in Section 4, the key to characterizing impossible tangency portfolios is the choice of

coordinates in which to express the covariance matrix, which will allow us to focus on the

portion of the matrix that is relevant for impossibility. Any covariance matrix Σ can be

written in the form Σ = AMA′, where M is a positive-definite symmetric matrix and where

A is the unique matrix that takes e1 to µ and ei to ei for 2 ≤ i ≤ n.5 Also, as we showed

in Section 4.1, M can be expressed in terms of partial Iwasawa coordinates as

M =

(
w 0

0 V

)[(
1 0

x In−1

)]
=

(
w + x′Vx x′V

Vx V

)
(32)

where w ∈ R+, x ∈ Rn−1, and V is a covariance matrix of dimension (n−1)×(n−1). Here

we have used the notation G[H] for H′GH.

In these coordinates, the portfolio ω� can be expressed simply as

ω�,i =





(1 + µ2x1 + · · · + µnxn−1)/d for i = 1,

−µ1xi−1/d for 2 ≤ i ≤ n.
(33)

d ≡ 1 + (µ2 − µ1)x1 + · · · + (µn − µ1)xn−1 .

5Note that the definitions of A and M are slightly different here than in Section 4.1, but we keep the
same notation because these matrices play the same role as before.
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Therefore, ω� is completely determined by x and µ. This allows us to characterize the

impossibility of the tangency portfolio via the following proposition:

Proposition 3 The tangency portfolio, ω�, implied by the CAPM is impossible if and only

if any one of the following three conditions holds: (i) two elements of x have different signs;

(ii) all elements of x have the same sign as µ1/d; or (iii) the quantity (1 + µ2x1 + · · · +
µnxn−1)/d is negative, where d ≡ 1 + (µ2 − µ1)x1 + · · ·+ (µn − µ1)xn−1.

We will make the most use out of the first condition for impossibility in Proposition 3, since

it describes the bulk of the cases in which the tangency portfolio is impossible.

5.2 The Probability of Impossible Tangency Portfolios

To determine the probability that the CAPM tangency portfolio is impossible, we need to

choose a probability distribution on the underlying variables β, µm, σm, rf , and Ω. Once

these variables are determined, µ and Σ are determined as well, and Proposition 3 will allow

us to assess the impossibility of the corresponding tangency portfolio.

For our probability distribution, we allow β, µm, σm, and rf to be specified arbitrarily—

our results will hold uniformly across any choice of these variables. With respect to Ω, we

decompose the matrix into components and allow all but one of those components to be

specified arbitrarily. Specifically, we write Ω as

Ω =

(
Ω11 0

0 Ω̃

)[(
1 γ ′

0 In−1

)]
=

(
Ω11 Ω11γ

′

Ω11γ Ω̃ + Ω11γγ ′

)
(34)

where γ ∈ Rn−1, Ω̃ is an (n−1)×(n−1) positive-definite matrix, and Ω11 > 0. The values of Ω̃

and Ω11 can be specified arbitrarily. With respect to γ, we impose a probability distribution

ϕ(γ) on Rn−1, and in our probability calculations we consider several possible choices of

ϕ . Thus, for our probability distribution on the underlying variables, we allow completely

arbitrary specification of all terms except γ, and with respect to γ we focus on a number of

different choices of probability distributions on Rn−1.

The characterization of impossibility in Proposition 3 relies on an expression of Σ =

AMA′ in terms of coordinates x, w and V for M. Our probability distribution, however,

is expressed in terms of another set of coordinates for Σ, namely γ, Ω11, Ω̃, σm, and β.

Thus, we need to calculate the relationship between these choices of coordinates to apply

the characterization of impossibility to draws from our distribution. The relationship of
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primary importance will be the expression of x in terms of the coordinates for the probability

distribution, so we now turn to this calculation.

Multiplying on the right by (A′)−1 and on the left by A−1 in the expression for Σ in

(31), and using the definition of A, we see that

M = e1e
′
1 (σm/µm)2 +

(
Ω11/µ

2
1 (Ω11/µ1)z

′

(Ω11/µ1)z Ω̃ + Ω11zz
′

)

=

(
Ω11/µ

2
1 + (σm/µm)2 (Ω11/µ1)z

′

(Ω11/µ1)z Ω̃ + Ω11zz
′

)
(35)

where z = γ − µ̃/µ1, with µ̃ = (µ2, . . . , µn)
′. In light of the expression for M in (32), we see

that

x = V−1(Vx) = (Ω11/µ1)
(
Ω̃ + Ω11zz

′

)−1

z . (36)

Since µ = ιrf + β(µm − rf) and z is determined by µ and γ, we see that (36) expresses x

in terms of the coordinates for our probability distribution, as desired. After some algebraic

manipulation, we can also write this expression for x as

x =




Ω11/µ1

1 + Ω11

∥∥∥Ω̃
−1/2

z

∥∥∥
2


 Ω̃

−1
z . (37)

This is a more useful formula for x because we are interested in the signs of the elements

of x, and this expression shows these are the same as the signs of the elements of Ω̃
−1

z/µ1

(since the remaining multiplicative factor is always positive).

Theorem 6 Let p be the probability that the tangency portfolio implied by the CAPM is

impossible when the probability distribution on the term γ underlying the covariance matrix

Ω has a distribution given by ϕ. A lower bound for p is

p ≥ det
(
Ω̃
) ∫

Rn−1

F (γ)ϕ

(
Ω̃γ + µ̃/µ1

)
(38)

where F is equal to 1 whenever γ has two elements with different signs and equal to 0
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otherwise.

We now make the result more concrete by applying the theorem to specific choices for the

distribution ϕ .

Corollary 2 If ϕ has an (n−1)-dimensional multivariate normal distribution with mean

µ̃/µ1 and covariance matrix sΩ̃
2

for some s > 0, then the probability that ω� is impossible

satisfies

p ≥ 1 − 22−n (39)

and this result is independent of the choice of s.

Note that choices of ϕ not centered at µ̃/µ1 will generally have a lower probability of

impossibility. However, for choices of ϕ that are close to the uniform distribution, e.g.,

those with large variance, the probability of impossibility will have a lower bound similar to

that in Corollary 2.

5.3 A Non-Impossible Covariance Matrix

Given the simple structure of the linear one-factor model (30), it should be possible to find

some covariance matrix Σ̃ “close” to Σ in some sense that yields a non-impossible tangency

portfolio, i.e., a tangency portfolio that has strictly positive market-capitalization weights

ωm, and is consistent with µ, β, and rf . Using the techniques developed in Section 5.1,

we construct such a “non-impossible” covariance matrix in this section and show how it is

related to Black and Litterman’s (1992) approach to asset allocation with prior information.

Suppose that a mean return vector, µ, and a market-capitalization weight vector, ωm,

are given, and consider a covariance matrix Σ that is derived either empirically or from

prior information, but which is not necessarily compatible with µ and ωm in the sense that

ωm 6= Σ−1µ, as required by the CAPM. The matrix most compatible with the observed Σ

but still conforming to the known values of µ and ωm can be determined in the following

manner. Write Σ = AMA′ and write M in terms of w, x, and V, as in (32). Replace x by

x̃, where x̃ is defined by

x̃i =
−ωm,i+1

µ1 + (µ2 − µ1)ωm,2 + · · ·+ (µn − µ1)ωm,n
(40)
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for 1 ≤ i ≤ n−1. The formula in (40) inverts the relationship between ωm and x from (33),

so the value of x̃ is the unique value compatible with the market weight vector ωm and the

expected-return vector µ.

The change from x to x̃ described in the last paragraph corresponds to a change in the

overall covariance matrix. Replace Σ by Σ̃ where

Σ̃ ≡ AM̃A′ , M̃ ≡
(

w + x̃′Vx̃ x̃′V

Vx̃ V

)
. (41)

This new covariance matrix, Σ̃, is then compatible with ωm and µ in that ωm is the tangency

portfolio resulting from this mean and covariance. In addition, Σ̃ is the covariance matrix

most compatible with the specified values of µ and ωm and the observed value of Σ in that it

requires precisely the amount of alteration to Σ needed to make the three sets of parameters

compatible.

Therefore, for those who have strong conviction that the CAPM must hold and that µ

and ωm are, in fact, the correct expected returns and market weights, and Σ is their best

estimate of the covariance matrix, the covariance matrix they should adopt is Σ̃ given in

(41).

6 Empirical Analysis

To gauge the empirical relevance of our impossibility results, we use daily and monthly

returns for stocks in the S&P 500 index to estimate portfolio parameters (µ,Σ) and show

that the realizations of impossible frontiers in the historical record are nontrivial. These

results update and confirm similar empirical examples in Green (1986) and Best and Grauer

(1992).

6.1 The Data

The monthly data consists of returns for stocks listed on the S&P 500 in December of 1995 for

which monthly return data was available for the period from January 1980 through December

2005. The daily data consists of returns for stocks listed on the S&P 500 in December of

1995 for which daily return data was available for the period from January 1, 1996 through

December 31, 2005. There are a total of 271 stocks in the monthly data set and 326 stocks

in the daily data set.
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6.2 A 100-Stock Empirical Efficient Frontier

For concreteness, we construct the efficient frontier for the first 100 assets for both daily

and monthly returns using standard estimators for the means and covariance matrices. The

two frontiers are plotted in Figure 1, and we find that both are impossible. The blue lines

indicate the unconstrained frontiers and the red lines indicate the frontiers constrained to

allow only 50% shortselling. Figure 2 shows the amount of shortselling for points on both of

these frontiers. Clearly the shortsales constraints do not eliminate the problem of impossible

frontiers and have a significant impact on the characteristics of the constrained optimal

portfolio.
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Figure 1: Unconstrained efficient frontier for 100 stocks in the S&P 500 index, as well as
the frontier constrained to allow no more than 50% shortselling, based on (a) daily returns
from January 1, 1996 to December 31, 2005; and (b) monthly returns from January 1980 to
December 2005.

6.3 More Impossible Frontiers

Applying the usual sample mean and covariance-matrix estimators to daily and monthly

returns, we compute estimates (µ̂, Σ̂) and construct efficient frontiers for each of 2 through

326 assets for daily returns, and 2 through 271 assets for monthly returns. Figure 3 shows the

fraction of assets with respect to which each frontier is impossible. Figure 4 shows the size of

the short positions in the portfolios ωg and ω� for each of these frontiers. These results show

that negative holdings are the rule rather than the exception for empirical efficient frontiers,

and non-negativity constraints are likely to have a major impact on the characteristics of

mean-variance-optimized portfolios.
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Figure 2: Magnitude of short positions for points on the unconstrained efficient frontier for
100 stocks in the S&P 500 index, as well as the frontier constrained to allow no more than
50% shortselling, based on (a) daily returns from January 1, 1996 to December 31, 2005;
and (b) monthly returns from January 1980 to December 2005.
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(b) Monthly Returns

Figure 3: The fraction of assets with respect to which the empirical frontiers are impossible,
as a function of the number of assets underlying the frontiers, based on a subset of S&P 500
stocks using (a) daily returns from January 1, 1996 to December 31, 2005, with the number
of stocks, n, ranging from 2 to 326; and (b) monthly returns from January 1980 to December
2005, with the number of stocks, n, ranging from 2 to 271.
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Figure 4: Magnitude of short positions in the portfolios ωg and ω� for the empirical frontiers,
based on a subset of S&P 500 stocks using (a) daily returns from January 1, 1996 to December
31, 2005, with the number of stocks, n, ranging from 2 to 326; and (b) monthly returns from
January 1980 to December 2005, with the number of stocks, n, ranging from 2 to 271.

6.4 Estimation Error

One possible critique of our empirical analysis is that estimation error is likely to yield

sample means and covariances that are inconsistent with the CAPM, so it is not surprising

that we find impossible frontiers in the data. But this observation only underscores the

ubiquity of impossible frontiers in practice. Since the population means and covariance

matrix must always be estimated in financial applications, estimation error is an unavoidable

aspect of practical portfolio management. While a number of authors have explored the

impact of estimation error on portfolio optimization,6 and alternatives such as Bayesian

inference (Brown, 1976), robust portfolio optimization (Fabozzi et al., 2007), and resampling

(Michaud, 1998) have been developed in response, none of these methods addresses the

impossibility of the population mean-variance-efficient frontier.

In particular, Theorems 1 and 2 show that impossible frontiers are almost certain to

occur, even in the absence of estimation error. To the extent that estimation error can be

viewed as random perturbations of population parameters (as opposed to perturbations that

yield parameters closer to those satisfying a CAPM/APT relation), it is even more likely that

estimated means and covariances will yield impossible frontiers. In other words, if a frontier

is impossible for a set of population parameters, adding random noise to those parameters

is unlikely to yield frontiers that are consistent with the CAPM.

6See, for example, Brown (1976), Bawa, Brown, and Klein (1979), Frost and Savarino (1986), Jorion
(1986), Jagannathan and Ma (2003), Tu and Zhou (2004, 2007, 2008), Wang (2005), DeMiguel, Garlappi,
and Uppal (2007), Garlappi, Uppal, and Wang (2007), and Kan and Zhou (2007).
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7 Conclusion

In this paper, we have shown that mean-variance-efficient frontiers almost always contain

short positions, implying a fundamental inconsistency between efficiency and economic equi-

librium as described by the CAPM. This result is distinct from earlier concerns in the

literature regarding the mean-variance efficiency of the market portfolio. Those concerns

involved the observability of the total market portfolio, the existence of non-traded assets

such as human capital, estimation errors in the sample means and covariance matrix, non-

stationarities, asymmetric information, and other capital-market imperfections. Even in a

frictionless world where all parameters are fixed and known, and where all of the other

perfect-markets assumptions of the CAPM hold, mean-variance-efficient frontiers are almost

always impossible.

This surprisingly general result provides a potential explanation for the near universal

disdain with which long-only portfolio managers regard standard mean-variance optimiza-

tion techniques. These investment professionals—who comprise the majority of end-users of

commercial portfolio construction software such as the BARRA Optimizer and the North-

field Portfolio Optimizer—have railed against mindless optimization for years, arguing that

portfolio weights obtained in this manner are ill-behaved and must be constrained or other-

wise post-processed. However, the typical rationale for these complaints is that the weights

of frontier portfolios are too unstable and too sensitive to estimation error to be of practical

value. We have identified a distinctly different rationale, which is the ubiquity of short po-

sitions in frontier portfolios, even in the absence of estimation error. An impossible frontier

is, in fact, literally impossible for the long-only portfolio manager. The surging popularity

of 130/30 and more general long/short strategies among such managers and their investors

may well be a practical manifestation and an unintended consequence of the impossibility

of mean-variance-optimal portfolios.

The virtual certainty of impossible frontiers also has implications for the interpretation

of economic equilibrium. The converse of our impossibility theorem is that the set of param-

eters, (µ,Σ), that are “possible”, i.e., that are consistent with the mean-variance efficiency

of the market portfolio, is a vanishingly small set as the number of assets grows without

bound. In particular, in a CAPM equilibrium, covariances are also endogenously determined

via supply and demand, despite the fact that most asset-pricing models focus exclusively on

the properties of expected returns in equilibrium. Is it any wonder that the set of n means

and n(n+1)/2 covariances that is consistent with capital-market equilibrium is apparently

quite sparse?

To the disciples of general equilibrium theory, this may be heretical, but from a broader
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and more practical perspective, it should not be too surprising that the likelihood of si-

multaneous equality of supply and demand across a large number of markets is small, and

increasingly less likely as the number of assets grows. With the techniques developed in this

paper, we hope to be able to deduce other generic properties of financial market equilibria

as well as their practical implications.

30



A Appendix

In this Appendix, we provide proofs for the main results of the paper.

A.1 Proof of Proposition 1

When there are only n=2 assets, we may write the set of points on the frontier simply as

F =

{
ω : ω =

[
µo−µ1

µ2−µ1

µ2−µo

µ2−µ1

]′
, for µo ≥

B

C

}
.

Thus, for all expected returns µo with µ1 < µo < µ2, points on the frontier have positive
weight in both components, but for all values of µo outside this range, every point on the
frontier has exactly one negative component. If the minimum value of µo, namely µo = B/C,
is less than µ2, then at least some point on the frontier has all positive weights, but if this
value of µo is greater than µ2, then all points on the frontier have at least one negative
weight.

The condition that B/C < µ2 is the same as the condition that

µ1(e
′
1Σ

−1ι) + µ2(e
′
2Σ

−1ι)

(e′
1Σ

−1ι) + (e′
2Σ

−1ι)
< µ2 .

The denominator on the left-hand side is non-negative, according to the Cauchy-Schwarz
inequality, so we may cross-multiply and collect terms to see that the inequality holds exactly
when e′

1Σ
−1ι > 0. This, in turn, is the same as the inequality ρ < σ2/σ1, so we see that a

frontier will be impossible just when σ2/σ1 < ρ ≤ 1 and µ1 < µ2, which is the assertion of
Proposition 1.

A.2 Proof of Lemma 1

We note that an n × n correlation matrix is positive definite if its elements are the cosines
of angles between a pairs of vectors chosen from a set of n unit vectors that span an n-
dimensional space. Thus, for a 3 × 3 matrix

M =




1 a c

a 1 b

c b 1


 ,

positive definiteness holds if there are three vectors, u1, u2, and u3, such that a is the cosine
of the angle between the first two vectors, b is the cosine of the angle between the last two
vectors, and c is the cosine of the angle between the first and the last vector. Any values
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for a and b may be specified provided that −1 < a, b < 1, with strict inequality necessary to
avoid linear dependence among the vectors. If such values of a and b are specified, then the
value of c must follow the law of cosines so that

c = ab + c̃
√

1 − a2
√

1 − b2, (A.1)

for some −1 < c̃ < 1. Strict inequality is again necessary to avoid linear dependence among
the vectors. The definition of C in (6) specifies that a = d, b = d, and c = d4. These values
meet the requirements for positive definiteness, since c can be expressed in the form given
in (A.1) with c̃ = d2. Thus C is positive definite and the lemma follows.

A.3 Proof of Proposition 2

The idea of the proof is to compute ω�, ωg and ωP directly. We obtain expressions for each
of these portfolios in terms of ε, and we then analyze the results to show that, for small
values of ε, all portfolios on the efficient frontier are impossible. We also analyze the results
to obtain a lower bound for the minimum amount of short selling in any portfolio throughout
the entire impossible frontier.

We turn first to the explicit computation of the three portfolios. To begin, we note that
the inverse covariance matrix corresponding to the parameters in (6) is

Σ−1 =
σ4

2(1 − d2)

det(Σ)




1/d2 −(1 + d2) d2

−(1 + d2) (1 + d2)(1 + d4) −d2(1 + d2)

d2 −d2(1 + d2) d2




For µ as defined in (6), we can multiply the above expression for Σ−1 by µ and use the
relationship d = 1 − ε to obtain

Σ−1µ =
µ2σ

4
2(1 − d4)

det(Σ)




ε + ε2 + ε3 + ε4 + O(ε5)

−2ε + 6ε2 − 4ε3 + ε4

ε − ε2


 .

Dividing the bracketed vector in this expression by the sum of its elements, we obtain

ω� =
Σ−1µ

ι′Σ−1µ
=

1

72ε




12 + 18ε + 17ε2 + O(ε3)

−24 + 60ε − 10ε2 + O(ε3)

12 − 6ε − 7ε2 + O(ε3).


 ,

which is the computation of ω� in terms of ε we desire. The computation of ωg proceeds
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similarly, with a direct computation of Σ−1ι and a rescaling by the sum of vector components
to obtain

ωg =
Σ−1ι

ι′Σ−1ι
=

1

72ε




12 + 30ε + 35ε2 + O(ε3)

−24 + 60ε − 22ε2 + O(ε3)

12 − 18ε − 13ε2 + O(ε3)


 .

Finally, we compute ωP using the foregoing results to obtain

ωP = B(ω� − ωg) =
B

12



−2 − 3ε + O(ε2)

2ε + O(ε2)

2 + ε + O(ε2)


 ,

where

B = ι′Σ−1µ =
µ2σ

4
2(1 − d4)

det(Σ)
(6ε2 − 3ε3 + 2ε4) > 0.

The final inequality in the above expression holds since µ2 > 0, det(Σ) > 0 and 0 < ε < 1.
We now use the foregoing computations to show that the efficient frontier is impossible

for sufficiently small values of ε. Using (5), we see that every portfolio on the efficient frontier
is of the form

ω = αω̃P + ωg,

where α ≥ 0 and ω̃P = (12/B)ωP . Plugging in the above expressions for ωP and ωg, we
rewrite this expression for ω as

ω = α



−2 − 3ε + O(ε2)

2ε + O(ε2)

2 + ε + O(ε2)


 +




1/(6ε) + 5/12 + (35/72)ε + O(ε2)

−1/(3ε) + 5/6 − (11/36)ε + O(ε2)

1/(6ε) − 1/4 − (13/72)ε + O(ε2)


 .

By solving for the value of α that makes the second coordinate zero, we see that the weight
of the second asset is negative for portfolios corresponding to the range 0 ≤ α ≤ α2, where
α2 = 1

6ε2 + O(1/ε). Similarly, by solving for the value of α that makes the first coordinate
zero, we see that the weight of the first asset is negative for portfolios corresponding to the
range α ≥ α1, where α1 = 1

12ε
+ O(1). For sufficiently small values of ε, we have α2 ≫ α1,

and so the efficient frontier is impossible. Specifically, the frontier has negative weights in
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the second asset if α is between 0 and α2 and negative weights in the first asset if α is greater
than α1. Since α1 is less than α2, there is always at least one asset with a negative weight,
and in the range between α1 and α2, both the first and second assets have negative weight.

Finally, we note that the portfolio with the minimum amount of short selling on the
entire frontier occurs at the point α1. To see this, we observe that for α values less than α1,
only the second asset has a negative weight, and this weight decreases as α increases. Also,
for α values greater than α1, the first asset has a negative weight, and it increases with α
more quickly than the negative weight of the second asset decreases. Thus, the minimum
amount of short selling occurs at α = α1, and for small values of ε, this amount of short
selling is 1

3ε
+ O(1).

A.4 Proof of Lemma 2

The first inequality in (18) states that the i-th component of ωg is negative, and the second
inequality states that the i-th component of ωP = Bω� − Bωg is also negative. Together,
these inequalities imply that the i-th component of each portfolio on the entire efficient
frontier has a negative weight, since C and D are always positive, by the Cauchy-Schwartz
inequality, and since frontier portfolios have the form described in (5). This demonstrates
the sufficiency of the condition for impossibility in the i-th asset. The necessity also follows
readily because a negative i-th component of each portfolio is only possible if there is a
negative i-th component in the minimum risk portfolio, ωg, as well as in the high-risk
portfolios which tend toward a positive multiple of ω� − ωg.

To deduce the equivalence between the conditions in (18) and (19), we note that

Σ−1 =
(
A−1

)′
M−1A−1 .

As in Definition 2, we can express M in terms of coordinates as (X,W,V), and we have

M−1 =

(
I2 0

−X In−2

)(
W−1 0

0 V−1

)(
I2 −X′

0 In−2

)
=

(
W−1 −W−1X′

−XW−1 V−1 + XW−1X′

)
.

From the definition of A = A(c1, . . . , cn) in (17), we see that

A−1ι = e1/c1, A−1µ = e2/c2, and A−1ej = ej/cj, for 3 ≤ j ≤ n .

We write W = [wij] so that

W−1 =
1

det(W)

(
w22 −w12

−w12 w11

)
.
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After some algebraic rearrangements, we see that the conditions in (18) are equivalent to

x1,(i−2)w22 − x2,(i−2)w12 > 0 and x(i−2),2 > 0 (A.2)

where we have used the facts that det(W) > 0 and w22 > 0, since W is positive definite.
With the notation from Definition 2, we write w22 = v, w12 = yv, x1,i−2 = ri−2 cos θi−2

and x2,i−2 = ri−2 sin θi−2. Equation (A.2) can be rewritten in terms of these new coordinates
as

cos θi−2 − y sin θi−2 > 0 and sin θi−2 > 0

since both ri−2 > 0 and v > 0, and this is the condition in (19).

A.5 Proof of Theorem 1

From equation (19) of Lemma 2 we see that the probability, pi, that a frontier is impossible
with respect to the i-th coordinate, for i > 2, is just the probability that the conditions of
(19) are fulfilled when θi−2 is chosen from the uniform distribution on S1 = [0, 2π]. The
conditions are satisfied exactly when θ ∈ (0, π) and y < cot θi−2, and this corresponds to a
probability of impossibility

pi =
1

2π
cot−1 y

where cot−1 denotes the branch of the inverse cotangent with values between 0 and π.
Equation (19) of Lemma 2 also shows that for a fixed value of y, impossibility in the

i-th coordinate is independent of impossibility in the j-th coordinate, for i, j > 2. Thus, the
probability of impossibility in at least one of the coordinates i > 2 is bounded below as

p ≥ 1 −
(

1 − 1

2π
cot−1 y

)n−2

and this implies the first inequality of the theorem. The second inequality follows directly,
since the inequality cot−1 y ≥ 1

1+max(0,y)
holds for all y.
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A.6 Proof of Theorem 2

From Corollary 1, we see that the probability in the theorem is bounded below as

PI ≥ 1 −
∫

R

(
1 − 1

2π (1 + max(0, y))

)n−2

ϕy(y)

≥ 1 −
∫ 0

−∞

(
1 − 1

2π

)n−2

ϕy(y) − c

∫ ∞

0

(
1 − 1

2π(1 + y)

)n−2

e−y2

dy .

The first integral in the last line is bounded above by (1 − 1/(2π))n−2. The second integral
is bounded above by the sum

c

∫ 2

0

(
1 − 1

6π

)n−2

e−y2

dy + c

∫ ∞

2

(
1 − 1

3πy

)n−2

e−y2

dy .

The first integral in this sum is bounded above by c(1− 1/(6π))n−2, and the second integral

is bounded above by 2ce−(n−2

3π )
2/3

. This last bound follows from the fact that
(
1 − 1

3πy

)n−2

is bounded above by e−(n−2

3π )
2/3

for 0 ≤ y ≤
(

n−2
3π

)1/3
, as well as the fact that

∫ ∞

(n−2

3π )
1/3

e−y2

dy < e−(n−2

3π )
2/3

.

Combining these results, we see that the probability is bounded below by

PI ≥ 1 −
(

6

7

)n−2

− c

(
19

20

)n−2

− 2c exp

(
−
(

n − 2

3π

)2/3
)

where we have made use of the fact that 6/7 > 1−1/(2π) and the fact that 19/20 > 1−1/(6π).
Finally, we note that

(19/20)n−2 ≤ 2 exp(−((n − 2)/(3π))2/3).

This inequality can be proven by noting that it holds if and only if the logarithm of the
right-hand side minus the logarithm of the left-hand side is positive for n ≥ 2. Computation
of the value of this difference shows that it is positive for n ≤ 27, and computation of the
derivative of the difference, taken with respect to n, shows that the derivative is positive for
n ≥ 27. As a result, the difference is positive for all n, and the inequality holds. Thus, we
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can bound PI below as

PI ≥ 1 −
(

6

7

)n−2

− 4c exp

(
−
(

n − 2

3π

)2/3
)

.

A.7 Proof of Theorem 3

The expected number of assets with respect to which an efficient frontier is impossible satisfies

En ≥
∫

R

(
n∑

i=3

1

2π (1 + max(0, y))

)
ϕy(y) .

This follows from the proof of Theorem 1, which shows that the i-th summand in the inte-
grand is a lower bound for the probability that a covariance matrix gives rise to an impossible
frontier for a fixed value of y. We thus see that

En ≥ (n − 2)

∫

R

(
1

2π (1 + max(0, y))

)
ϕy(y)

and this last integral is the constant c′ from the statement of the theorem. Also, in the
case in which ϕy(y) is a normal distribution with unit variance, we see from a numerical
computation that

En ≥ n − 2

8

and this is the final claim of the theorem.

A.8 Proof of Theorem 4

If a frontier meets the necessary and sufficient conditions of Lemma 2 for the i-th coordinate
where 3 ≤ i ≤ n, then it is an impossible frontier with respect to the i-th asset. In this case,
the i-th components of both ωg and ωP are negative, so the total amount of shortselling in
the i-th asset throughout the frontier is bounded below by the amount of shortselling in the
i-th asset for the minimum-variance portfolio. Thus we see that

Si(Σ) ≥ −e′
iωg = −e′

iΣ
−1ι

ι′Σ−1ι
= − (−ri−2 cos θi−2 + yri−2 sin θi−2)
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where we have used the change of coordinates Σ = AMA′ and the coordinates for M
from Definition 2 to establish the final equality. We thus see that, the expected amount of
shortselling with respect to the i-th asset satisfies

E[Si] ≥
∫ ∞

0

(∫ π

0

∫ cot θi−2

−∞

(ri−2 cos θi−2 − yri−2 sin θi−2) ϕy
dθi−2

2π

)
ϕri−2

(A.3)

where we have used the result from Lemma 2 in which a frontier is impossible with respect
to the i-th asset exactly when θi−2 ∈ (0, π) and y < cot θi−2. We have also used the notation
ϕy and ϕri−2

from Definition 3.
Since the integrand in (A.3) is positive throughout the region of integration, we can find

a smaller lower bound by restricting the size of the region of integration. We calculate

E[Si] ≥
(∫ ∞

0

ri−2ϕri−2

)(∫ π/2

0

∫ 0

−∞

(cos θi−2 − y sin θi−2) ϕy
dθi−2

2π

)

=
1

2π

(∫ ∞

0

ri−2ϕri−2

)(∫ 0

−∞

(1 − y)ϕy

)
.

This is the lower bound in the theorem for E[Si]. The lower bound for E[S] follows imme-
diately if the ϕri−2

are identical for 3 ≤ i ≤ n.

A.9 Proof of Theorem 5

Let F0 be the frontier constrained to allow no shortselling that corresponds to F and Fb. Let
σ0 be the risk of the minimum risk portfolio on F0, and let µ0 be the expected return of the
maximum-expected-return portfolio on F0. Each portfolio on Fb with a lower risk than σ0

must involve shortselling, since σ0 is the minimum possible risk without shortselling. Simi-
larly, each portfolio on Fb with a higher expected return than µ0 must involve shortselling,
since µ0 is the maximum possible expected return without shortselling. Thus, we need only
show that each portfolio on Fb with a risk greater than or equal to σ0 and an expected return
less than or equal to µ0 must involve shortselling.

Let ωb be a portfolio on Fb with risk and expected return, σb and µb, respectively, such
that σb ≥ σ0 and µb ≤ µ0. There are weight vectors ω0 and ωU on F0 and F , respectively,
with the same expected return as ωb. For 0 ≤ λ ≤ 1, write

ωλ = (1 − λ)ω0 + λωU

so that each ωλ also has the same expected return µb. Let σλ denote the risk of ωλ. Note
that σλ is a decreasing function of λ, for 0 ≤ λ ≤ 1, since σ2

λ is a quadratic function of λ,
and since λ = 1 corresponds to the minimum risk portfolio for the level of expected return
µb. We assume here that F is impossible so that ωU involves shortselling and is therefore
distinct from ω0. We thus see that each ωλ with λ > 0 has lower risk than ω0 but the same
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level of return µb. Also, the amount of shortselling in ωλ is positive for all λ > 0 but goes
to zero as λ → 0. As a result, there is some λ∗ > 0 such that the amount of shortselling on
ωλ∗ is no more than b. The existence of this ωλ∗ implies that σb must be no greater than
ωλ∗ , and hence strictly less than the risk of ω0. Since the risk of ωb must be strictly less
than the risk of ω0, it follows that ωb must involve shortselling, as desired.

A.10 Proof of Theorem 6

From the condition for impossibility in Proposition 3 and from the expression for x in (37),
we see that the probability is bounded below by

p ≥
∫

Rn−1

F (x)ϕ(γ) =

∫

Rn−1

F







Ω11/µ1

1 + Ω11

∥∥∥Ω̃
−1/2

z

∥∥∥
2


 Ω̃

−1
z


ϕ(γ)

where z = γ − µ̃/µ1. Because F depends only on the signs of the elements of its argument,
we have

p ≥
∫

Rn−1

F
(
Ω̃

−1
z
)

ϕ(γ)

and after a change of variables, we see that

p ≥ det
(
Ω̃
)∫

Rn−1

F (γ)ϕ

(
Ω̃γ + µ̃/µ1

)

as desired.

A.11 Proof of Corollary 2

Substitution of the specified choice of ϕ into the result of Theorem 6 shows that

p ≥ 1

(2πs)(n−1)/2

∫

Rn−1

F (γ) exp

(
− 1

2s
γ ′γ

)
dγ .

This integral is simply an expression for the fraction of the unit sphere in Rn−1 that does not
have either all negative or all positive coordinates, and this fraction is 1 − 22−n, as desired.

39



References

Anderson, T., 1984, An Introduction to Multivariate Statistical Analysis, 2nd Edition. New
York: John Wiley & Sons.

Bawa, V., Brown, S. and R. Klein, 1979, Estimation Risk and Optimal Portfolio Choice.
Amsterdam: North-Holland.

Berger, J., 1985, Statistical Decision Theory and Bayesian Analysis, Second Edition. New
York, Springer-Verlag.

Best, M. J. and R. R. Grauer, 1985, “Capital Asset Pricing Compatible with Observed
Market Value Weights”, Journal of Finance 40, 85–103.

Best, M. and R. Grauer, 1990, “The Efficient Set Mathematics When Mean-Variance Prob-
lems Are Subject to General Linear Constraints”, Journal of Economics and Business
42, 105–120.

Best, M. and R. Grauer, 1991a, “On the Sensitivity of Mean-Variance-Efficient Portfolios
to Changes in Asset Means: Some Analytical and Computational Results”, Review of
Financial Studies 4, 315–342

Best, M. and R. Grauer, 1991b, “Sensitivity Analysis for Mean-Variance Portfolio Prob-
lems”, Management Science 37, 980–989.

Best, M. J. and R. R. Grauer, 1992, “Positively Weighted Minimum-Variance Portfolios
and the Structure of Asset Expected Returns”, Journal of Financial and Quantitative
Analysis 27, 513–537.

Black, F. and R. Litterman, 1992, “Global Portfolio Optimization”, Financial Analysts
Journal 47, 28–43.

Brown, S., 1976, Optimal Portfolio Choice Under Uncertainty: A Bayesian Approach.
Ph.D. dissertation, University of Chicago.

Box, G. and G. Tiao,, 1973, Bayesian Inference in Statistical Analysis. Reading, MA:
Addison-Wesley.

DeMiguel, V., Garlappi, L. and R. Uppal, 2007, “Optimal Versus Naive Diversification: How
Inefficient is the 1/N Portfolio Strategy?”, to appear in Review of Financial Studies.

Dybvig, P., 1984, “Short Sales Restrictions and Kinks on the Mean Variance Frontier”,
Journal of Finance 39, 239–244.

Fabozzi, F., Kolm, P., Pachamanova, D. and S. Focardi, 2007, Robust Portfolio Optimization
and Management. New York: Wiley Finance.

Frost, P. and J. Savarino, 1986, “An Empirical Bayes Approach to Efficient Portfolio Se-
lection”, Journal of Financial and Quantitative Analysis 21, 293–305.

Garlappi, L., Uppal, R. and T. Wang, 2007, “Portfolio Selection with Parameter and Model
Uncertainty: A Multi-Prior Approach”, Review of Financial Studies 20, 41–81.

Green, R. C., 1986, “Positively Weighted Portfolios on the Minimum-Variance Frontier”,
Journal of Finance 41, 1051–1068.

40



Green, R. and B. Hollifield, 1992, “When Will Mean-Variance Efficient Portfolios Be Well
Diversified?”, Journal of Finance 47, 1785–1809.

Halmos, P., 1974, Measure Theory. Heidelberg: Springer-Verlag.

Huang, C. and R. Litzenberger, 1988, Foundations for Financial Economics. New York:
North-Holland.

Jagannathan, R. and T. Ma, 2003, “Risk Reduction in Large Portfolios: Why Imposing the
Wrong Constraints Helps”, Journal of Finance 58, 1651–1683.

Jeffreys, H., 1961, Theory of Probability, 3rd ed. Oxford, UK: Oxford University Press.

Jorgenson, J. and S. Lang, 2005, Posn(R) and Eisenstein Series. Berlin: Springer-Verlag.

Jorion, P., 1986, “Bayes-Stein Estimation For Portfolio Analysis”, Journal of Financial and
Quantitative Analysis 21, 279–292.

Kan, R. and G. Zhou, 2007, “Optimal Portfolio Choice with Parameter Uncertainty”,
Journal of Financial and Quantitative Analysis 42, 621–656.

Lintner, J., 1965, “The Valuation of Risk Assets and the Selection of Risky Investments in
Stock Portfolios and Capital Budgets”, Review of Economics and Statistics 47, 13–37.

Markowitz, H., 1952, “Portfolio Selection”, Journal of Finance 7, 77–91.

Markowitz, H., 1959, Portfolio Selection. New Haven, CT: Cowles Foundation, Yale Uni-
versity.

Markowitz, H., 1987, Mean-Variance Analysis in Portfolio Choice and Capital Markets.
Oxford, UK: Basil Blackwell, Ltd.

Markowitz, H., 2005, “Market Efficiency: A Theoretical Distinction and So What?”, Fi-
nancial Analysts Journal 60, 17–30.

Merton, R., 1972, “An Analytic Derivation of the Efficient Portfolio Frontier”, Journal of
Financial and Quantitative Analysis 7, 1851–1872.

Michaud, R., 1998, Efficient Asset Management: A Practical Guide to Stock Portfolio
Optimization and Asset Allocation. Boston, MA: Harvard Business School Press.

Roll, R., 1977, “Critique of the Asset Pricing Theory’s Tests: Part I: On Past and Potential
Testability of the Theory”, Journal of Financial Economics 4, 129–176.

Roll, R. and S. A. Ross, 1977, “Comments on Qualitative Results for Investment Propor-
tions”, Journal of Financial Economics 5, 265–268.

Ross, S., 1976, “The Arbitrage Theory of Capital Asset Pricing”, Journal of Economic
Theory 13, 341–360.

Rudd, A., 1977, “Note on Qualitative Results for Investment Proportions”, Journal of
Financial Economics 5, 259–263.

Sharpe, W., 1964, “Capital Asset Prices: A Theory of Market Equilibrium Under Condi-
tions of Risk”, Journal of Finance 19, 425–442.

41



Tobin, J., 1958, “Liquidity Preference As Behavior Towards Risk”, Review of Economic
Studies 67, 65–86.

Tu, J. and G. Zhou, 2004, “Data-generating Process Uncertainty: What Difference Does It
Make in Portfolio Decisions?”, Journal of Financial Economics 72, 385–421.

Tu, J. and G. Zhou, 2007, “Incorporating Economic Objectives into Bayesian Priors: Port-
folio Choice Under Parameter Uncertainty”, unpublished working paper, Olin School
of Business, Washington University.

Tu, J. and G. Zhou, 2008, “Being Naive about Naive Diversification: Can Investment
Theory Beat the 1/N Strategy?”, unpublished working paper, Olin School of Business,
Washington University.

Wang, Z., 2005, “A Shrinkage Approach to Model Uncertainty and Asset Allocation”,
Review of Financial Studies 18, 673–705.

42


