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Chapter 1

Introduction

1.1 A (Very) Brief History of Time

The early universe shortly after the Big Bang was composed of hot, dense plasma and

photons. In this state, photons could not travel far before being scattered, and the

universe was opaque. However, as the universe expanded it reached a period called

recombination. At that time, the universe had cooled to the point where neutral

hydrogen could form. The photons that had formerly scattered off of charged particles

in the plasma were free to travel past the neutral hydrogen atoms. We see the photons

from this surface of last scattering in the Cosmic Microwave Background (CMB).

Much of cosmology to this point has relied on the CMB. The CMB has been mapped

to great precision by WMAP [1], but the CMB is only a picture of the universe at

one instant of time. Following recombination, the neutral hydrogen remained mostly

neutral for about 150 million years until the period of reionization. Reionization

occurred when the first stars and quasars formed and the radiation they emitted

began to ionize the hydrogen around them. The period between recombination and

reionization is called the cosmic dark ages because the universe emitted no light during

this time.



Big
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Figure 1-1: A schematic picture of the evolution of the universe, from [2]

1.2 21 Centimeter Cosmology

An emerging technique in cosmology that should be able to shed light on the dark

ages for the first time is 21 centimeter cosmology, which uses the radiation emitted

by neutral hydrogen at a wavelength of 21 cm to map the universe at redshifts that

have never been probed. The basis of this technique is the fact that the electron and

the proton, the two constituents of the hydrogen atom, both have intrinsic spin. The

spins of the proton and the electron can be either aligned or anti-aligned. The latter

state has lower energy so it is the preferred orientation but there is a small probability

that the atom will be in the aligned state. When the atom transitions to the lower

energy state, it releases a photon with wavelength of 21 cm.

The expansion of the universe after a particular 21 cm photon has been emitted

stretches out the wavelength of the photon, so photons emitted by neutral hydrogen

at different times in the evolution of the universe will end up with different wave-

lengths. When visible light is stretched out by the expansion of the universe, the



longer wavelength A makes the light look red, so astronomers term the wavelength

change as the redshift, denoted z:

An-1
ZAemit

Since older photons are more redshifted, time is often referred to in terms of the

redshift; today is redshift z = 0, the CMB was emitted at redshift z ~ 1100, and

reionization is thought to have occurred between z = 6 and z = 10 [6]. 21 cm

cosmology can map the universe across a large range of redshifts by tuning to different

frequencies (Fig. 1-2). Because it can map a large fraction of the history of our

universe, the 21 cm line offers a unique opportunity to probe the cosmic dark ages

and the first structure formation. It has the potential to overtake the CMB as our

most sensitive cosmological probe of the epoch of reionization, inflation, dark matter,

dark energy, and neutrino masses [3].

1.3 The Omniscope

1.3.1 A Fast Fourier Transform Telescope

21-centimeter cosmology is an exciting development with the potential to map the

structure of the universe over large periods of its evolution. The complication is that

while hydrogen comprises a majority of the matter in the universe, the 21-centimeter

transition is extraordinarily rare. This means that the cosmological signal is quite

weak. In fact, it is about four orders of magnitude fainter than the signal in the same

frequency range emitted by our own galaxy.

For such a faint signal, a very sensitive instrument is required. The expansion of

the universe since the dark ages has redshifted its 21 cm photons to the approximate

range 30-200 MHz, which is in the radio frequency range. The Omniscope focuses

on the 100-200 MHz range, where the signal is expected to be easiest to detect.

In traditional radio astronomy, signals are focused in a metal dish antenna. The

sensitivity of the telescope scales with the area of the dish. Building a square kilometer



Figure 1-2: The 21 cm line can potentially map most of our observable universe
(light blue/grey), whereas the CMB probes mainly a thin shell at z ~ 1100 and
current large-scale structure maps map only small volumes near the center. Half
of the comoving volume lies at z > 29. Even the convenient 7 < z < 9 region
(dark blue/grey) can eclipse the CMB in cosmological precision, probing the nature
of neutrinos, dark energy, dark matter, reionization and early universe [3].

pointable dish would be prohibitively expensive with current technology. Moreover,

a single dish can observe only a tiny fraction of the sky at any one time. This has

led to the alternative approach known as interferometry. The signal is collected in an

array of separate antennas and "focused" in software by a so-called correlator, which

multiplies the signals from every two pairs of antennas and reconstructs the sky image.

In a radio telescope array, the sensitivity increases with the number of antennas

(the effective area of the array). In principle, the array could have an arbitrarily

large number of antennas, so the limit of sensitivity lies in the computational cost

of correlating the antennas. In traditional radio astronomy, the correlator works by

multiplying each pair of signals together so the computational cost scales like N2 ,

where N is the number of antennas.

A key innovation of the Omniscope is to arrange the antennas in a rectangular



grid, which enables these correlations to be performed with Fast Fourier Transforms

(FFTs), which cuts the computational cost scaling from N 2 to Nlog N. Thus using

an FFT correlator, the Omniscope can have greater sensitivity at a lower cost than

traditional telescopes ([4], [5]).

1.3.2 Omniscope Data Analysis Chain

The data flow through the Omniscope is summarized in Fig. 1-3. A grid of dual-

polarization antennas receives the sky signal, which is amplified and filtered in the

analog chain and then converted to digital signals in the ADC. The F-engine per-

forms a temporal Fourier transform and the X-engine correlates the signals between

antennas using Fourier transforms. A small fraction of all antenna pairs is used for

real-time calibration [7]. The correlated signals are then combined in software to

produce 3D maps of the sky.

The work presented in this thesis was primarily focused on the first part of the

data analysis chain depicted in Fig. 1-3: the analog chain. This thesis presents

each of the modules in the analog chain (low noise amplifier, line driver, receiver

board, and analog to digital converter), discussing the work done to characterize their

performance and the improvements made. I will also discuss correlations produced

by the digital correlator and how they can be used to perform an absolute calibration

of the entire system.
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Figure 1-3: Omniscope data analysis pipeline
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Chapter 2

Antenna and Low Noise Amplifier

2.1 Design

Figure 2-1: Array of MWA antennas in Green Bank, WV

The antennas are the first step in the path of the cosmological signal. It is im-

portant for a precision cosmological probe that the antennas be sensitive to the fre-

quency band of the redshifted 21-cm signal that we are targeting (100-200 MHz) and

that they be easily scalable so that the number of antennas can be large enough for

high sensitivity. For the Omniscope we use the antennas designed by the Murchison

Widefield Array experiment (MWA) shown in Fig. 2-1). The MWA is a 21-cm array

led by MIT and an international consortium and is deployed in radio-quiet Western

Australia. The MWA antennas are dual dipole antennas with integrated low noise



amplifiers (LNAs). The low noise amplifiers provide an amplification of approximately

20 dB over 80-300 MHz [8]. They are powered by DC biasing the antenna through

the same 50Q cable that carries the measured signals.

The MWA antennas suit the needs of this project because they can be mass-

produced at low cost and include a low-noise amplifier (LNA) designed for a radio-

quiet environment. The antennas are a dual-polarization bow-tie design. The bow-

tie design was chosen instead of a simple dipole because it is sensitive over a wide

frequency range and it has large angular coverage [8]. The bow-tie reduces the strong

frequency dependence of the impedance so that the antenna impedance better matches

the low noise amplifier impedance across the frequency range of interest. The open-

frame design of the bow-tie means that it can be manufactured at low cost (each

antenna costs about $100, including the LNA). The MWA bow-tie antennas each

house two LNAs, one for each polarization. Each LNA has two Agilent ATF-54143

amplifiers. The signal out of the LNAs travels over a 7 meter SMA cable which also

carries DC power to the LNA.

2.2 Faraday Cage

2.2.1 Motivation

Since our amplification and filtering chain as well as our deployment site differ from

MWA, it was necessary to test the antenna and LNA for use in the Omniscope.

However, because our amplifiers and filters were designed to significantly amplify ex-

tremely small signals in a radio quiet site, it was difficult to test our analog equipment

in the lab. Boston is home to several radio stations less than 2 miles away from our

lab in building 37 (see the peaks around 100 MHz on the blue curve in Fig. 2-2(a)).

The power measured by the antenna is listed in dBm, which is the power ratio with

respect to one milliwatt in decibels. The relation between the power in dBm d and

power in watts P is given by Eq. 2.1.



P
d = 10 logo1  (2.1)
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Figure 2-2: RFI in (a) the lab and (b) The Forks, ME

The strongest of these radio stations in the lab easily saturate our line drivers (the

main source of amplification in the analog chain, described in chapter 3). Our tests

of the Omniscope are done in The Forks, ME, a small town (population 47) with no

cellphone signal and only one radio station at 101.5 MHz. Fig. 2-2(b) shows that

The Forks is considerably quieter in radio frequencies than Boston. The Forks is only

around a 5 hour drive from MIT. Fig. 2-3 is a map showing the location of The Forks

relative to MIT.

In order to test our analog chain in a radio environment more comparable to the

deployment site, I suggested that we build a Faraday cage. Faraday cages are used to

shield from electromagnetic radiation. Basic electromagnetism tells us that a shell of

a perfect conductor has its cavity completely free from electromagnetic waves. In fact,

even a shell with holes (or a conducting mesh) provides good shielding from radiation

as long as the holes are much smaller than the wavelength of interest. The range of

our instrumentation is between 80 and 300 MHz, which corresponds to wavelengths

on the order of a meter.



Figure 2-3: Location of (A) MIT and (B) The Forks, ME

2.2.2 Design and Construction

Our objectives in building the Faraday cage were to achieve a considerable noise

reduction while keeping the cost reasonable and still allowing the cage to be large

enough for the Omniscope signal chain, test equipment, and a UROP student. For

materials, copper mesh would provide the best shielding of readily available mesh,

but would be prohibitively expensive for a cage as large as we needed. We decided to

use reuse the steel ground-screen that we used on a previous field expedition for the

Faraday cage. This material has half-inch spacing, which is sufficiently small for our

purposes. The frame of the cage was constructed primarily out of 1x2 pine and staples

with a base of a reused pallet covered with a plywood sheet. The door has a simple

hinged design with a latch that can be closed from the inside. The ground-screen

mesh was stapled to the inside of the frame and the edges were sealed with aluminum



tape to ensure conduction. The gaps between the door and the frame were covered in

aluminum tape and steel wool. The final Faraday cage (shown in Fig. 2-4) resulted

in approximately 40 dB of attenuation in the RF (radio frequency) power from radio

stations. Fig. 2-2(a) shows this reduction. Note that the RFI inside the Faraday cage

is reduced so that the power in the loudest radio station in the lab is reduced to the

level of the loudest radio station in The Forks. Since the radio environment inside

the Faraday cage is similar to that of our test site, we were able to test for saturation

in the lab.

Figure 2-4: Faraday Cage

2.3 LNA Frequency Response

Using the Faraday cage, we were able to test the response of the LNA in the lab.

We had initially designed the rest of our signal chain assuming that the LNA cut off
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Figure 2-5: RFI picked up by LNA (blue) compared to RFI that is not amplified
(green)

around 300 MHz (referring to an MWA plot), but we can see in Fig. 2-5 that this

is not the case. There is a large amount of power near 1 GHz and significant power

at even higher frequencies. To confirm this behavior, we measured the frequency

response of the LNA on our vector network analyzer (VNA).

ai b2_ __

b_ _a
2

Figure 2-6: Incident and reflected waves in an electrical system

A VNA characterizes the transmission and reflection in an electrical system. At

the both the input and output of the system there is both incident and reflected

power. These four values are related to each other by a complex scattering matrix

given in Eq. 2.2:

b( S1 S12 ai (2.2)
b2 S21 S22 a2



Here the ai and bi refer to the power traveling in the directions indicated in Fig. 2-6.

A VNA measures two of the scattering parameters, S1 (the reflection coefficient) and

S21 (the transmission coefficient). The total gain of the system is obtained from these

coefficients as S21/(1 - S1). Since the VNA actually reports the log magnitude of

the scattering parameters, we obtain the gain from the measured S11 and S21 as:

A = S 2 1 - 10logio(1 - 10 ') (2.3)

The gain for the LNA is plotted in Fig. 2-7(a).

Frequency (MHz)

(a) LNA response measured with the VNA

-30-

-40-

-50-

-601
0 50 100 150 200 250 300 350 400

Frequency (MHz)

(b) Antenna-LNA impedance mismatch

Figure 2-7: Frequency response due to (a) LNA and (b) LNA-antenna impedance
mismatch



This frequency response is of the LNA alone, so it does not include the impedance

mismatch between the antenna and the LNA. Although the antenna's bow-tie design

was chosen to minimize the variation in impedance, there is still a slight impedance

mismatch with the LNA impedance. For a crude approximation of the mismatch,

modeling the antenna as a center-fed dipole gives an impedance of ZA = 20'ir2 (L/A) 2 ,

where L is the length of the dipole and A is the wavelength of the received signal.

Taking the LNA impedance to be ZL = 250Q, the gain G due to the impedance

mismatch is then given by Eq. 2.4. Using L = 0.5m, this gives the frequency response

in Fig. 2-7(b).

G =10 logio 4 ZLZA 
(

l (ZL + ZA)2

2.4 Saturation

The MWA antenna and LNA were designed for use in the radio-quiet Australian site,

so we were concerned about possibly saturating the LNA with RFI (radio frequency

interference) during our first deployments in Maine, which has more RFI contamina-

tion. Using the Faraday cage, the MWA antenna was tested for saturation in the lab.

A tone was broadcast by sending a tone from our Agilent N9301A Signal Generator

through a 25 dB amplifier and broadcasting it through a dipole antenna inside the

Faraday cage. By increasing the tone from the Agilent to high enough power, we

were able to see dramatic saturation in the LNA. Fig. 2-8 shows the behavior of the

output of the LNA as it approaches saturation. At full saturation (bottom right of

Fig. 2-8) you can clearly see the harmonics of the broadcast frequency (137.6 MHz).

When saturation begins, the first harmonic can be seen at 265 MHz (top left of Fig.

2-8).
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Figure 2-8: Output of LNA for different broadcast tone levels (black) compared to
the output with no broadcast tone (red)

2.5 Improvements

From tests in the lab we determined that the LNA was able to amplify in the Faraday

cage without saturating. We also found that the LNA did not cut out frequencies

above 300 MHz like we had initially expected. This is significant because the rest of

the analog chain was designed assuming these frequencies were excluded, so amplifiers

down the line were susceptible to saturation at these high frequencies. Because of

this discovery, we added a Mini-circuits SLP-200+ low pass filter (DC to 190 MHz)

after each LNA, solving the problem. In the future, the low noise amplifier will be

redesigned for this project to include a low pass filter.

-20 dBmn tone -10 dBmn tone
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Chapter 3

Line Driver

3.1 Design

After being amplified by 20 dB in the LNA, the signal is amplified by 51 dB across our

band of interest in the line driver pictured in Fig. 3-1(a). Transmission coefficients

for relevant frequencies are given in Table 3.1. It is necessary to amplify the signal by

a large amount before sending it down the long 75 Q cables to the receiver boards to

ensure that the antenna signal dominates the noise picked up in the cable and analog

components further down the chain. The schematic for the line driver is given in Fig.

3-1(b).

RF
Choke

From
Antenna/LNA

(a) Line driver with and without metal
shielding

Amplifiers: 19dB x 3 Impedance
Match

(b) Line driver schematic

Figure 3-1: Line drivers

The line drivers run on 6-12 Volts DC power and in turn provide DC bias power

to the LNA. The amplification comes from three broadband 19 dB amplifiers. There

are filters between each amplifier for the DC power to avoid feedback. Because of the

To
Receiver



Table 3.1: S21 Transmission

Frequency (MHz) Gain (dB)
100 51.1
150 51.3
200 51.5
500 51.1

large amount of amplification, any output power would get re-amplified, potentially

causing a feedback loop and dominating the signal. The maximum total input power

for the line drivers is -55 dBm and the maximum power they will output is -4 dBm.

The line driver takes in signal from the LNA at 50 Q but the cables out of the line

drivers are 75 Q. These cables were chosen because they need to be long enough to

reach the receiver boards and digital equipment housed up to 50 meters away. The

line drivers must be kept close to the antennas because the signal must be greatly

amplified out of the LNA before it can travel through the long cable or it will be

attenuated away. Because the output of the line driver is sent into a 75Q cable, they

include resistive impedance matching to reduce reflections. Finally, line drivers are

shielded in metal cases to prevent excess amplification of exterior RFI.

3.2 Saturation

The line driver is a crucial component of the Omniscope because it is where the

cosmological signal is amplified to detectable levels. It is also the point that is most

vulnerable to saturation. Even if the RFI is too weak to saturate the LNA, the

output of the LNA can still saturate the line driver. We determined the input level

that saturates the line driver by sending a tone from the Agilent through 50 dB line

driver and 40 dB of attenuator pads. We changed the level of the tone on the Agilent

and recorded the output level on the handheld. The line driver behaves linearly until

about -50 dBm of input power (Fig. 3-2). When 100 ft long 75 Q cable was put

in after the line driver, the saturation behavior did not change but the output was

reduced due to loss in the cable. Fig. 3-2 shows the saturation range of the line
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Figure 3-2: Output of line driver versus input amplitude

driver, but we also need to characterize the saturation behavior of the output of

the line driver so we can recognize saturation in the field. A good way to visualize

frequency spectra is with "waterfall" plots that have frequency on the horizontal axis,

time on the vertical, and the power represented with color.

(a) Not saturating (b) Saturating

Figure 3-3: Waterfall plots for a tone from the Agilent sent directly into 50 dB line
driver and receiver board with full attenuation (shift schedule 100100001) with tone
level increased in steps of 5 dBm fromand (a) -70 dBm to -55 dBm and (b) -55 dBm
to -45 dBm. The horizontal dark blue stripes are a result of packet drops in the
computer receiving the data out of the correlator, not an analog effect.

The waterfall plots in this thesis were produced using data analysis software de-

signed by Nevada Sanchez. In order to see how the line driver behaved when it was

saturating, we sent a tone from the Agilent at a certain frequency (137.6 MHz) and

increased the power by 5 dB every few minutes. The level of the tone increases at



this interval, but we can also see the power level across the band increase when the

power of the input tone is increased. This indicates that there is power mixing into

different frequencies in the line driver, an indication of saturation. The saturation

behavior of the waterfall plot also matches the saturation curve in Fig. 3-2. When

the input power is below the level that saturates the line driver (Fig. 3-3(a)), the

overall gain does not change when the level of the input tone is increased, but when

the line driver is saturated (Fig. 3-3(b)), the overall gain does change.
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Figure 3-4: Plot (a) is a waterfall plot for a tone sent directly into the line driver
with the tone increased in steps of 5 dB from -80 dBm to -30 dBm (at minute 22).
There were many zeroed integrations because the computer capturing the spectra
was simultaneously being used for long calculations. The bright horizontal line at
minute 22 is from accidentally inputting a higher tone from the Agilent. Plot (b) is
a comparison of spectra from different input tone levels from plot 3-4(a).

We can see more directly the effect of increasing the tone on the noise floor by

plotting individual spectra for different tone levels. Fig. 3-4(a) was produced in the

same way as the waterfall plots in Fig. 3-4 except the input power steps from -80

dBm to -30 dBm. Individual spectra for each of the input power levels are plotted in

Fig. 3-4(b). All of the spectra for input tone level below -55 have noise levels that lie

on the red curve corresponding to no input tone in Fig. 3-4(b). The saturated curves

(those with input power above -50 dBm) have noise levels that vary unpredictably

from the true noise level, first increasing and then decreasing.



3.3 Improvements

(a) First Maine trip (b) Second Maine trip

Figure 3-5: Waterfall plots comparing the peformance of (a) first- and (b) second-
generation line drivers

The effect of line driver saturation on our data is very nonlinear. If a radio station

were to saturate the line driver in the field after being amplified by the LNA, the

saturation would not only produce an incorrect value for that frequency, but would

also unpredictably shift the base level of signal across the band. Luckily, it is very

easy to see in the waterfall plots that saturation has occurred. In fact, examination of

waterfall plots from a field test of the Omniscope in The Forks in October 2010 shows

that the line driver was saturating there. There are clearly times in the waterfall

plots in Fig. 3-5(a) where the level across the frequency band suddenly changes,

creating horizontal stripes in both the magnitude and phase. The saturation is likely

caused by the radio station at 101.5 MHz. The saturation is apparent in the noise

floor because there is an ORBCOMM satellite at 137.6 MHz (the red stripe in Fig.

3-5(a)). This power from this satellite changes as it rises and sets, so the noise floor

out of the saturated line drivers changes as well.



We can see that this saturation should have been expected by looking at the

RFI in Maine (Fig. 2-2(b)). Adding the 20 dB for the gain of the LNA, the radio

station at 101.5 MHz goes into the line driver at around -55 dBm measured by the

handheld spectrum analyzer with a resolution bandwidth of 15 kHz. The quantity

that determines the saturation of the line driver is the total power in its bandwidth,

but we can compare the Agilent signal and radio station signals in Maine because they

are both narrow enough to be contained within one frequency bin on the spectrum

analyzer. The power from the strongest radio station in The Forks is perilously close

the nonlinear part of the response curve in Fig. 3-2, so it is not surprising that the line

drivers saturated. The analog chain clearly needed more filtering around 100 MHz to

prevent line driver saturation, so for the design of the next generation of line drivers

we included a notch filter centered on the radio stations. Because of the possibility of

saturation, we compiled a saturation checklist to go through in the field (Table 3.2).

Table 3.2: Saturation Checklist

1. Check output of LNA on spectrum analyzer to make sure it is not saturating

(see Fig. 2-8).

2. Check that input to line driver is under -50 dBm per 15 kHz on the handheld
spectrum analyzer so that the line driver does not saturate.

3. Check that line driver really is not saturating by broadcasting a tone and seeing
if the gain changes across all frequencies when the tone strength is increased

(as in Fig. 3-4).

We performed a second test of the Omniscope at the test site in April 2011 using

the second generation line drivers. We used the saturation checklist after setting up

the signal chain to make sure the line drivers were behaving correctly before collecting

data. Indeed, a waterfall plot from that test (show in Fig. 3-5(b)) does not show

any signs of saturation. The notch filters in the second generation line drivers and

the screw-on low pass filters successfully reduced the radio station power and power

above 200 MHz below saturation levels.



Chapter 4

Receiver Board

4.1 Design

The last step for the sky signal before it is converted to digital bits is the receiver

board. The receiver shifts the frequency of the signal from the band of interest (80-200

MHz) down to be centered around 0 MHz so that it can be input to the analog-to-

digital converter. The receiver also amplifies the signal further. It has a variable

attenuator that allows the gain to be set from -8 dBm to +32 dBm. IQ demodulation

is used, which splits the signal and mixes with a local oscillator (LO) signal, resulting

in the two output signals (I and Q) having a 900 phase shift between them [10]. Using

IQ demodulation has the advantage that low speed ADCs can be used.

Each receiver board has four signal paths to reduce cost and reduce the number

of times the LO must be split. The boards are powered by 6V DC and the maximum

input power is -28 dBm. The receiver first impedance matches the 75 Ohm input

from the long cable back to 50 Ohms for input into the ADC, then uses a band-pass

filter to select only the band of interest and prevent saturation of the amplifiers. The

gain on the variable attenuator can be adjusted so that the output of the two fixed

amplifiers is well matched to the range of the ADC. The IQ demodulation module

takes in an LO that is double the mixing frequency and reduces it before mixing.

After the IQ demodulation, there is a final set of low-pass filters which eliminates the

signal above 20 MHz. The final signal has a bandwidth of 40 MHz centered around



Figure 4-1: Receiver Board

0 MHz with a 2-3 MHz gap in the center. For example, if the LO is se to 150 MHz,

we obtain measurements from 130 MHz to 170 MHz.

LO Input

To ADC

To ADC

Figure 4-2: Each receiver board takes in four polarizations. The impedance is matched
back to 50 Q for input into the ADC. The signal is bandpassed and passes through
variable attenuators, amplifier, I/Q demodulation, and low-pass filter. There are two
outputs (I and Q) for each polarization
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Chapter 5

Analog to Digital Conversion

5.1 Design

An analog-to-digital converter (ADC) converts a continuous analog signal to a discrete

digital representation. The resolution of the ADC is expressed in bits. For example,

a 12-bit ADC represents the range of its allowed input signal in 212 = 4096 integer

values. The analog to digital conversion for the Omniscope is done on commercial

ADCs. Our ADC consists of eight 12 bit, 8-channel ADCs from Analog Devices

(model ADS5272) that run at 50 megasamples per second, and handle 9 input chan-

nels each. Eight such ADCs are mounted on a single board sold by Rick Raffanti that

is designed to be compatible with our digital hardware, thus digitizing 64 channels at

once.

5.2 ADC Quantization Noise

The conversion of continuous analog signals to discrete digital signals introduces error

due to the finite number of bits in the ADC [11]. The input analog signal is continuous

but the ADC can only represent the input value by a discrete value with a resolution

depending on the number of bits in the ADC. The difference between the actual

signal value and the discretized value results in quanitzation noise. Since this error

is just due to rounding, it should be random and uncorrelated between channels.



Thus we expect it to decrease when we average the cross spectrum between any two

channels over time. This is one of the reasons an accumulator is included in the

digital correlator (averaging correlations also reduces thermal noise from the analog

chain). If the correlator averages correlations for a long enough time, in theory the

noise introduced by the ADC would decrease below the level of the systematic noise

from the rest of the signal chain.
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Figure 5-1: Example of the variation in the correlation in each section of size 105

In reality, there is some noise produced in the ADC that is correlated between

channels due to electromagnetic coupling between the cables for the different channels.

If there is such cross-talk we expect that at some point the averaged cross spectrum

will hit a noise floor. We would also expect the cross talk to be greater between some

channel pairs than others, for example those adjacent on one of the eight ADC chips

and those sent on neighboring wires to the ADC. To examine the noise floor due to

cross-talk between channels in the ADC, we took long sections of time-stream data

(about 5 seconds, or 250 million samples at 50 million samples per second) over 10

Gigabit Ethernet from two terminated channels inside the Faraday cage.

If the noise is random, then the correlation in sections of size 10 samples will vary

more than the average correlation in sections of size 105 samples because in the larger



sections, the noise has cancelled more. Fig. 5-1 shows some example correlations for a

section size of 105. To quantify how much the correlation has stabilized for each length

section, we compute the following statistic. We split the correlation into sections of

length n samples. For each section of size n, we computed the correlation, giving

m = N/n such correlations if N = 2.5 x 108 is the total number of samples. Then

we computed the standard deviation of these m values. Repeating this procedure

for different values of n gave the behavior of the noise with increasing accumulation

length.
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Figure 5-2: FIR bandpass filter

Taking the correlation between two channels involves taking a length n FFT of

each channel and complex multiplying them. Taking an FFT becomes computation-

ally intensive as n becomes large, so we instead took correlations in the time domain.

This gives us the same answer as calculating the correlation in the frequency domain

because the Fourier transform is a unitary operation. Because the cross power may

be frequency-dependent, we want to take the mean cross power over a narrow band-

width. In order to accomplish both goals, we can first bandpass the time signal and

then calculate the mean cross correlation of the sections in the time domain. One

way to bandpass the signal and remain in the time domain would be to divide it into

small sections and for each section Fourier transform, then multiply by the bandpass,
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Figure 5-3: Correlation between two distant channels (red) and two neighboring
channels (blue)

and then inverse Fourier transform back to the time domain. Computationally in

our case it is more efficient to apply an FIR (finite impluse response) filter to the

whole time-stream at once. FIR filters are implemented by multiplying the input

signal by a set of coefficients that implement the impulse response corresponding to

the windowing. The frequency response of the FIR filter used is given in Fig. 5-2.

Once the timestream was bandpass filtered, the correlation function for each sec-

tion was calculated by multiplying the time-streams together and the standard devia-

tion a of the correlations in each section was found. Plotting the correlation over time

for different pairs of channels (Fig. 5-3), we see that the channels that are furthest

apart (0 and 30) have a lower cross correlation noise floor that neighboring channels

(0 and 1). The error bars on this plot are the errors on the standard deviations,

which are given by Au = 0-71 if we assume the signals are random. Since the mean

of noise correlation data is not exactly zero due to cross talk in the ADC and other

effects, the decrease in correlation with section size scales not like 1/ N-, but like

/p2 +o,2/N. The fit curves in Fig. 5-3 are given by this function. The time at



which the correlations level off in Fig. 5-3 (around 2 seconds) tells us how long to

average the correlations in the digital correlator. Averaging the correlations for any

longer would not result in any further noise reduction.

5.3 Improvements

These noise accumulations show a significant coupling effect between channels that

are on the same ADC chips. We are currently developing a device called a swapper

that will reduce this cross-talk. The swapper works by multiplying the signal at the

very beginning of the signal chain by a known series of -1 and 1. Once the signal

travels through the analog chain and into the ROACH it is multiplied by the same

series of zeros and ones in software, before the signal is averaged down. Any part of

the signal that was picked up after the first swap has been multiplied once by either

-1 or 1, so the positive and negative parts will sum to zero in the accumulations and

this signal will cancel out. However, any signal that was present before the first swap

(including the cosmological signal) has been multiplied by either -1 or 1 twice, so it

will not cancel in accumulations. As long as the swapping is applied on a timescale

smaller than the time at which the correlation reaches a floor in Fig. 5-3, the swapper

will effectively eliminate the cross-talk in the ADC.
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Chapter 6

Digital Correlator

6.1 Hardware

Once the analog signal is converted to digital format, the computations for the Om-

niscope are performed on Field Programmable Gate Arrays (FPGAs). The advan-

tage of FPGAs over traditional computers is that FPGAs can be programmed at

the gate level, which allows for highly efficient parallel computation. The FPGAs

used in the Omniscope were designed by the Center for Astronomy Signal Processing

and Electronics Reseach (CASPER). This group was formed to develop open-source

hardware for radio astronomy [9]. The Omniscope's computations are performed on

their ROACH boards (Reconfigurable Open Architecture Computing Hardware). We

program the ROACH boards using Linux-based design tools developed by CASPER.

6.2 F-engine Design

The F-engine is the part of the digital design that performs the temporal FFT. Fig.

6-1 shows a block diagram of the F-engine. Before the digital signal from the ADC

is Fourier transformed, it must be filtered (step two in Fig. 6-1). When a finite

length discrete signal is Fourier transformed, frequencies in the signal that do not

correspond to integral multiples of the sampling frequency divided by the FFT length

are represented in many output frequencies in the FFT. This effect is termed spectral



leakage, and can be minimized by first multiplying the input signal by a windowing

function that tapers the signal to zero at the edges [10]. The F-engine actually uses

a more complicated windowing scheme called a polyphase filter bank [12].

F-engine

ADC Polyphase F FT Shifter/
FIR Filter Truncator

Figure 6-1: Overview of F-engine provided by Omniscoper and candidate for Masters
in electrical engineering, Jon Losh

During the windowing, the signal is multiplied so it needs to be represented with

more than 12 bits. The signal is represented in 18 bits at the output of the polyphase

filter bank as a compromise between accuracy and conserving hardware. After the

filtering, an FFT is performed on each signal. This FFT is actually done in multiple

stages. In each stage, there is a possibility that the result may be larger than can

be represented in 18 bits, so it must be shifted down. Thus the FFT includes a shift

schedule that specifies for each stage whether to shift or not. The shift schedule

depends on the type of input signal. For a tone of a single frequency it would be

advantageous to shift at every step, so the shift schedule would be all ones. For a

sharp pulse in time, which has equal power in all frequencies, which has equal power

at all frequencies, the ideal shift schedule would be all zeros. For white noise, the

best shift schedule is alternating zeros and ones.

After the FFT, the result must be truncated to 4 bits in the shifter/truncator

before being correlated so there will be enough room on the ROACH for the com-

putations. However, there is some subtlety here because loud signals have a lot of

information in the higher bits and quiet signals have all their information in lower

bits. In order to preserve the quiet bits, it would be good to first shift them to higher

bits and then truncate. However, using this same shifting scheme for frequency bins

with high power would cut off those values, resulting in digital saturation. The so-



lution is a frequency-dependent shifting scheme. In this scheme, the number of bits

to shift for each frequency bin is determined by the average amount of power in that

bin. This frequency-dependent shifting in the shifter/truncator is separate from the

frequency-independent FFT shift schedule.

6.3 X-engine Design

In the X-engine, the FFTs from the F-engine are correlated. In the current design

that uses 32 polarizations, the correlation is done by complex multiplying all antenna

pairs, but in the future when the number of antennas is large this will be done by

FFT multiplication to reduce computational cost. We currently have 8 ROACHes but

for 32 polarizations we only need one to implement the digital design. After being

correlated, the complex values are averaged together for a certain length of time to

reduce noise. The output of the correlator is viewed in software as the magnitude in

dB and the phase.

6.3.1 Testing

(a) (b)

Figure 6-2: Tone and noise sent directly into line driver and receiver board with shift
schedule (a) 111111111 and (b) 1010101010

We can see the importance of having the correct FFT shift schedule by looking at

the spectra of the same input with different shift schedules. The test signal we used



was broadband noise output by an amplifier added to a tone from the Agilent at 137.6

MHz. It is useful to test the optimal shift schedule for this the type of signal because

the signal we see at The Forks will have a combination of strong tones from point

sources (like the ORCOMM satellite at 137.6) and broadband noise and astrophysical

sources like the Sun and our galaxy. The test signal was sent through the line driver

and the receiver board and then processed in the F-engine and correlator on the

ROACH. With a full shift schedule, the noise floor is shifted away so only the peak

can be seen Fig. 6-2(a). However, shifting only every other step raises the noise floor

artificially so there seems to be power below 130 MHz even though the band-pass filter

in the line driver actually cuts out the signal below that frequency (Fig. 6-2(b)).

6.4 Sawtooth in Cross Correlations

Figure 6-3: Sawtooth in The Forks

When we tested the digital correlator for the first time in The Forks, we found a

surprising issue with the correlations. We expect the spectra to be smooth because

noise contributions from the signal chain and the sky would be broadband. What we

see, however, is a sawtooth pattern in the noise floor of cross correlations between

different antennas. Fig. 6-3 shows a cross correlation from The Forks exhibiting the

sawtooth pattern. This pattern appears in cross correlations of every pair of antennas,



but in no auto-correlations. The source of this signal must be correlated among every

pair of antennas. The sawtooth has a period of about 0.5 MHz, which corresponds to

a timescale of 2 ps. The light travel time in a 50 meter cable has a round trip travel

time of 10' ~ 0.3ps where c is the speed of light, so the sawtooth is not likely due

to reflections in the cables.

In order to reproduce this effect in the lab, we measured cross correlations using

the LNA and line drivers, using a DC filter that allowed us to attenuate the signal

out of the LNA without having leakage into the line driver. In this setup we sent

6V DC power from the lab bench power supply through the DC filter into a bias-tee,

which was connected on the RF+DC end to the antenna. The RF end of the bias-tee

was connected to two 20 dB screw-on attenuators. After the attenuators there was a

bandpass filter, a DC block, and finally a line driver. The DC block was used because

it contains a capacitor that prevents feedback into the line drive. The line driver then

was connected to a 75 Q cable leading to the receiver board as usual.
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Figure 6-4: Auto-correlations and cross-correlations from sawtooth correlations in the
lab

Using this setup, we were able to reproduce the sawtooth pattern in some cross

correlations (Fig. 6-5(a)). Fig. 6-4 shows the auto-correlations and cross-correlation



from the the same data that produced Fig. 6-5(a). As we can see in Fig. 6-4, the

magnitude of the auto correlations is generally higher than the magnitude of the cross

correlations, because noise that is uncorrelated between two antennas is averaged

down. The sawtooth noise must be of a lower magnitude than other noise sources, so

it is dominated by them in auto correlation but it can be seen when the other noise is

averaged down in cross correlation. Physically moving the antenna changed whether

the sawtooth appeared in correlations. Moving it away from the window 6-5(b) or

shielding it by someone holding it in their arms it made the sawtooth disappear.

Moving or shielding the antenna both reduce the power received by the antenna, so

the sawtooth is possibly a saturation effect. However, putting attenuation before or

after the line drivers did not reduce the sawtooth effect. Investigation into this effect

is ongoing.



(a) Antenna near window (b) Away from window

(c) Holding the antenna

Figure 6-5: (a) Cross-correlation from antenna in the lab, (b) away from the window,
(c) holding the antenna
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Chapter 7

Calibration

7.1 Relative calibration of analog chain

20

10-

0-

-10-
c

-20-

-30--

-40- -

-12 1 6 140 10 160 170 1-80
Frequency (MHz)

Figure 7-1: Frequency response of line driver and receiver boards with arbitrary offset
for an LO of 150 MHz. The gain is symmetric about the LO frequency.

All of the spectra up to this point have been uncalibrated. That is, when we

measure the power coming out of the Omniscope, we are not measuring the actual

sky power, but this value multiplied by the gain of all the filters and amplifiers in

the signal chain. The first step in calibrating our results is to divide out the known

frequency-dependent gain of the LNA, line drivers, and receivers. Fig. 7-1 was



produced by measuring the output with a signal of known power into the line drivers

and receiver boards and dividing by the input power. This measurement, performed

by Andy Lutomirski, gives the shape of the frequency response due to the the line

drivers and receivers. Combining this gain with the gain of the LNA from Fig. 2-7(a)

and the antenna impedance mismatch from Fig. 2-7(b), we can correct for all the

known sources of frequency-dependent gain from the analog chain to find a relative

calibration of the sky signal.

7.2 Absolute calibration to solar flux

Figure 7-2: Waterfall plot from The Forks showing solar fringes

In order to calibrate the The Forks data in absolute units, we first divide out by

the frequency response of the antenna and the analog chain described in the previous

section. However, there still remains an unknown gain in the system from the antenna

beam, and we would like to cross-check our calibration to an absolute reference such

as the Sun. To compare the magnitude of the cross correlations from The Forks to

the solar flux, it is necessary to characterize the quality of the data so that we can

find spectra that are dominated by the Sun. Since the Sun continually traverses the



sky during the day, the angle between the Sun and the line connecting two pairs of

antennas is constantly changing. This means that a waterfall plot that is dominated

by solar power will have fringes in the phase. Fig. 7-2 is an example of such fringes

seen at The Forks.
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Figure 7-3: Cross spectrum over time compared to linear fit

Using the waterfall plots as a guide, spectra suitable for calibration can be deter-

mined by looking at individual plots versus time (Fig. 7-3). As the Sun moves in

the sky over time, the phase of the cross spectrum is expected to vary as a cos(d -k),

where d is the vector between the two antennas and kc is the wave vector of radiation

from the Sun. This is apparent in Fig. 7-3 (the phase actually zigzags because 2ir

wraps around to 0).

Once we find spectra that are dominated by solar power, we can calibrate them by

comparing their magnitude to measured solar flux. Solar flux varies considerably from

day to day depending on weather conditions and solar events such as sunspots, but the

National Oceanic and Atmospheric Administration Space Weather Prediction Center

makes daily measurements of this value at several frequencies including 245 MHz

and 410 MHz [13]. The nearest NOAA observatory for which these measurements

are available is Sagamore Hill Solar Radio Observatory in Hamilton, MA. We used

a power law extrapolation of the noon solar flux at these frequencies as a model of

solar flux. The solar power is given the unit of Janskys, which is equal to 10-26

Watts/m 2 /Hz. After subtracting the LNA, line driver, and receiver gain the noon

cross power spectra taken at The Forks were fit to this model.

To calibrate the spectra, they are saved from the Omniviewer and converted to
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Figure 7-4: Calibrated median The Forks spectra

dB using Eq. 2.1. Then the frequency response of the line drivers (Fig. 7-1) and

the frequency response of the LNA (Fig. 2-7(a) are subtracted, as well as the gain

due to impedance mismatch (Fig. 2-7(b)). Finally, the spectra are inverted back to

power and multiplied by 1026 to obtain units of Janskys that can be compared to the

solar fluxes. The spectra are calibrated by fitting the level of the noon cross power

to the extrapolation of the NOAA solar fluxes. This gives a constant offset that can

be applied to all of the spectra. The resulting calibrated spectra are given in Fig 7-4.



Chapter 8

Conclusions

In the short time that I have been a part of this project, I have seen the Omniscope

go from a collection of analog parts and digital designs to an integrated system pro-

ducing RF spectra in the field. My role has been to integrate the analog and digital

development so that problems are quickly identified and improvements can be made.

Since the first system test in The Forks, when the system was already capable of

measuring signals such as radio stations, satellites, and the Sun moving across the

sky, much progress has been made. From the plots from this trip I identified several

issues. Through my investigations in the lab, I found that the LNA responded at

frequencies above 300 MHz and that an insufficient shift schedule in the F-engine

resulted in digital saturation for some signals. I also found that the sudden gain in-

creases across the band were due to line drivers saturating on radio station and high

frequency power.

Using these insights, we have already made several improvements to the Om-

niscope signal chain. We included low pass filters at the output of the antennas to

prevent power over 200 MHz from saturating the line drivers and included a frequency-

dependent shifter in the F-engine to prevent digital saturation. We also included a

notch filter in a new version of the line drivers to prevent them from saturating on

power from a radio station at 105.1 MHz. We have already seen the effect of these

improvements on our signal in a second test at The Forks and there is still progress

to be made. Future low noise amplifiers could include low pass filtering in the an-



tenna itself, and a swapper is being built to reduce system noise. Finally, we must

make further investigations into the source of the sawtooth pattern seen in some cross

correlations.

The Omniscope has now made much progress toward the goal of becoming a high-

resolution measurement of the cosmic dark ages and reionization. For the next step

we plan to build a 128-polarization instrument that will include the FFT correlator.

The Omniscope is an exciting part of the current 21 cm experiments to probe new

domains of cosmology.
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Appendix A

Assembling the Omniscope

Before taking data, use Table. A.1 to check that the Omniscope is set up correctly.

Table A.1: Omniscope Assembly Checklist

1. For each antenna, screw each of the two SMA cables into input of a line driver.

2. Screw one end of a 75Q cable to the output of each line driver and the other
end to one input of a receiver board.

3. Connect the power cable for each line driver to the power source plugged into
an outlet.

4. Make sure that all of the 32 SMA cables from the 64-input ADC are screwed
into the receiver board.

5. Plug in the receiver board power supply and turn it on by flipping the switch.

6. Make sure that a cable from a signal generator that is providing the LO fre-
quency is connected to the splitter and that each of the four outputs of the
splitter goes into a receiver board.

7. Make sure the signal generator is outputting signal.

8. Plug in and turn on the ROACH containing the 64-input ADC (it will hum and
the green light will stay steady instead of blinking).

9. Make sure that an ethernet cable is connected to the back of the ROACH (and
the 10 gigabit ethernet cable, if using).
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Appendix B

Taking Data

B.1 Taking data from the ADC

To take timestream data from the ADC on Idun (the lab computer), you need to

connect the 10 gigabit ethernet cable to the back of the ROACH with the 64-input

ADC inside and to the back of Idun. Make sure that the ROACH is also connected

to the regular ethernet. Note the IP address of the ROACH (it should be labelled

on the case). You should have an account on Idun and a copy of the SVN. On Idun,

type:

~/fftt/models/adctonetx64.py <roachIP>

This instructs the ROACH to start sending the data over 10 gigabit ethernet.

<roachIP> is the IP address of the ROACH. To capture the data on Idun, type:

python2.6 ~/fftt/utils/adc64_toraw.py <roachIP> <#samples> <filename>

<channelO> <channell> <channel2> <channel3>

Where <#samples> is the number of samples (this must be less than 250000000 or

Idun will crash), <f ilename> is the name of the file to be created, and <channelO>

through <channel3> are the four ADC channels (from 0 to 31) that you want to take

data from. This creates a binary file that you can read in MATLAB.



If you only want to take a small number of samples you- can use the capture script

that writes out ASCII format. To use this script, type:

python2.6 ~/fftt/utils/adc64_to_ascii.py <roachIP> <#samples>

<channelO> <channell> <channel2> <channel3> > <filename>

To read the binary output of the adc64_toraw.py script, the MATLAB com-

mands are:

fid = fopen('filepath')

f=idivide(fread(fid,[4,Inf],'intl6=>intl6',O,'b'),intl6(16),'floor');

f close(fid)

This makes a MATLAB array f, with 4 columns, one for each channel, that have

length equal to the number of samples.

B.2 Taking spectra from the digital correlator

The following commands save correlations from the roach in miriad format, which

can be converted to .odf format and viewed on the Omniviewer. First type:

cd fftt/models/fx_s_tests/sw

Next, open the file mit-pock8_ 1k. conf. In this file, set fft_shift to the desired

FFT shift schedule and t-perf ile to the length in seconds you want the file to be.

To take data, type:

python2.6 /fxs-start.py mitpock8_1k.conf

This should result in a positive message about transmitting data. To collect data,

type:

python2.6 /cnrx.new.py -s mit-pock_1k.conf

The data is saved in ~/f f tt/models/f x-stests/sw/data/ as a miriad file named

with a timestamp.


