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Abstract

The Laser Interferometer Gravitational-wave Observatory (LIGO) attempts to de-
tect ripples in the curvature of spacetime using two large scale interferometers. These
detectors are several kilometer long Michelson interferometers with Fabry-Perot cav-
ities between two silica test masses in each arm. Given Earth's proximity to various
astrophysical phenomena LIGO must be sensitive to relative displacements of 1018
m and thus requires multiple levels of noise reduction to ensure the isolation of the
interferometer components from numerous sources of noise. A substantial contributor
to the Advanced LIGO noise in the 1-10 Hz range is Newtonian (or gravity gradient)
noise which arises from local fluctuations in the Earth's gravitational field. Density
fluctuations from seismic activity as well as acoustic and turbulent phenomenon in the
Earth's atmosphere both contribute to slight variations in the local value of g. Given
the direct coupling of gravitational fields to mass the LIGO test masses cannot be
shielded from this noise. In an attempt to characterize and reduce Newtonian noise in
interferometric gravitational wave detectors we investigate seismic and atmospheric
contributions to the noise and consider the effect of submerging a gravitational wave
detector.
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Chapter 1

Introduction

The Laser Interferometer Gravitational-wave Observatory's purpose is the detection

of gravitational waves. These waves are fluctuations in the fabric of spacetime radi-

ated by accelerating mass, a phenomenon predicted by Einstein's General Theory of

Relativity. However only large scale astrophysical phenomena, like black hole binaries

or supernovae, can generate detectable gravitational waves on Earth and still these

fluctuations are incredibly faint. The theoretical strain, given the Earth's proximity

to nearby binaries and the average rate of supernovae, here on Earth is 10-". LIGO's

aim is to detect these ripples using two large scale interferometers with multiple levels

of noise reduction to ensure the isolation of the interferometer components from the

many sources of noise on the Earth's surface. The LIGO interferometers are 4 km in

length and thus to detect a signal a sensitivity of 10-18 m is required. To do this the

mirrors and stages of the interferometer must be kept extremely still which requires a

number of levels of feedforward and feedback control, suspension of components, and

even squeezing the laser light. For active damping the system requires high precision,

low noise displacement sensors.

Clearly the largest motivation for gravitational waves detectors is the direct de-

tection and thus direct observation of gravitational waves. Once detailed detections

and analysis of gravitational wave becomes possible not only could the predictions

of general relativity be verified but could provide a more detailed view and possibly

reveal aspects of gravity's not predicted in the classical theory, for example the exis-



tence of a scalar field that arises with the graviton field in various theories of quantum

gravity. More realistically the successful detection of gravitational waves will give us

a great deal of information regarding astrophysical phenomenon that are currently

not well understood, such as the dynamics of supernovae, black hole radiation, and

dark matter, but more generally will give a new perspective on observing the skies.

Since it's beginning astronomy has been the study of celestial objects by interpret-

ing light. All of the information we get regarding stars, for example, their rotation,

composition, age, etc., is from the light they emit. Gravitational waves offer a new

insight, allowing us to study dynamics and structure of matter in these astrophysical

objects. The reason the information is different is because gravitational waves are

emitted by the entire system, bulk motions, and not atom and electrons as is the case

with light. Information from these bulk motions can provide valuable insight into the

dynamics and structure of astronomical systems.

Detection of gravitational radiation is the only way to directly observe and thus

verify the existence of black holes given that semiclassical radiation, Hawking radia-

tion, has an observable strength far less than that of gravitational waves. Moreover

gravitational waves interact weakly with matter neither attenuating or scattering

when passing through close-set distributions of matter and thus can pass through

dense star systems without losing information. It is for this reason that we also

might get a chance to gain information about stars and objects obscured by brightest

and densest parts of the Milky Way.

1.1 Motivation

As we will discuss in depth later, there are many noise sources that contribute to

LIGO's noise spectrum, as is to be expected when one is concerned with length

scales one thousand times smaller than a proton. The noise source we are primarily

concerned with is Newtonian noise contributions in the 1-10 Hz region. LIGO has

reached sensitivities below 10-21 but only at relatively high frequencies. Many know

sources of gravitational waves in the universe have been shown to radiate at amplitude



of 10- to as high as 10-14, but only at very low frequencies and far below the LIGO

cutoff. At frequencies lower than 10 Hz the noise becomes dominated by seismic

noise and Newtonian noise. Seismic noise is easier to deal with as it can be shielded

against, but Newtonian noise couples directly the the test masses. This is why space

based detectors like LISA are appealing because in space seismic and gravity gradient

noise would be far less prevalent. But if we were able to reduce the contributions of

Newtonian noise in next generation gravitational wave detectors, where substantial

improvements in seismic isolation have been realized then we would open up ground

based interferometric detectors to lower frequencies. This becomes apparent in Figure

1-1. Signals from white dwarf binaries and black hole binaries fall just below the limit.

Additionally neutron star - neutron star binaries produce signals that go as f- 8/3 and

would become detectable with improvements in low frequency noise.

In this thesis we will present an overview of general relativity and gravitational

wave physics, then methods of detection of gravitational waves. Then we will look

at the LIGO detector and the various sources of noise and how they can be isolated

against. We will then present the calculations and estimations of seismic and atmo-

spheric noise in interferometric detectors. After building up the necessary formalism

we will consider the atmospheric Newtonian noise in a submerged detector as well as

the implications for seismic Newtonian noise.
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Chapter 2

Gravitational Waves and

Gravitational Wave Detectors

2.1 General Relativity

General relativity is currently the best description of gravitation in modern physics.

The theory was first formulated by Albert Einstein from 1905 to it's completion in

1915, and finally published in 1916. General relativity is a generalization of Einstein's

previous theory of special relativity and Newton's gravitation to non-Euclidean ge-

ometries, thus providing a unified description of gravitation as a geometric property

of four dimensional spacetime. Since 1915 the theory has been remarkably successful

in providing an understanding of astrophysical phenomena and making unexpected

predictions that has since been scientifically verified. Such phenomena, which stood

in opposition to Newtonian physics, include gravitational time dilation, gravitational

red shift, and Shapiro time delay. The first and one of the most successful triumphs

of general relativity was the accurate explanation of the perihelion advance of Mer-

cury. General relativity's predictions have been confirmed by all experiments and

observations to date. It stands as one of the most successful theories in modern

physics. The theory also makes more abstract predictions of seemingly bizarre astro-

physical phenomenon. For example, it implies the existence of black holes, regions

of spacetime so distorted that even light cannot propagate out. Additionally, most



cosmological models of a constantly expanding universe are predictions of general

relativity. Another of general relativity's predictions, most relevant to this paper, is

that of gravitational waves. Gravitational waves are the perturbation of the metric,

the curvature of spacetime, propagating as a wave outwardly from a source. We will

now briefly go through the fundamentals of general relativity and the derivation of

gravitational radiation.

The theory is best understood in two parts; the distribution of matter tells space-

time how to curve, and the curvature tells particles how to move. General relativity,

like Maxwell's description of electromagnetism, is a classical field theory, but the field

is not a physical concept that exists in space but is the shape of the spacetime it-

self. A description of a gravitating system under general relativity is a mathematical

description of the geometry of spacetime, as general relativity is a geometric theory.

In the theory spacetime is represented by a four dimensional Lorentzian manifold

described by a metric g,,. A Lorentzian manifold is an important special case of a

pseudo-Riemannian manifold where the metric need not be positive definite. Now we

comment briefly on the convention used in this section; here we are using the metric

signature (-, , +, +), all Greek indicies run from zero to three spacetime dimensions

whereas Latin indicies run from one to three spatial dimensions, and in the relevant

formulae in this section we work in units where c = 1. Introducing a local coordinate

system x1 we then start with the Einstein field equations, which are typically written

in the form

G, = 8IrGT,, (2.1)

where G is Newton's gravitational constant, T,, is the stress-energy tensor, a descrip-

tion of the distribution of matter in space, and G,,, is a symmetric second-rank tensor

that acts on the metric, typically called the Einstein tensor. The Einstein tensor is

subsequently defined as

1
- g,,R where R,, R' and R = g"R,, (2.2)

where R,,, is the Ricci tensor, a contraction of the Riemann tensor Raw, and R is the



Ricci scalar, a further contraction using the metric. For completeness the Riemann

tensor is defined as

RF= , - a ]PC, + re, A - Ira (2.3)

where F" is the Christoffel connection. The connection in a mathematical object

that encodes information about parallel transport. Thus given some curved surface,

or more generally a manifold, we can determine how a set of basis vectors change as

they are moved around the manifold. More specifically parallel transport is a way of

transporting information regarding the geometry of the space along smooth curves.

We can see then how information about the curvature of a space, i.e. the Riemann

tensor, can be expressed entirely in terms of Christoffel symbols and their first partial

derivatives. The Christoffel symbol can be expressed explicitly in terms of the metric

tensor,
1

J"OV g"(ooggp + &vgpt, - apg,). (2.4)

2.2 Gravitational Wave Physics

To probe the structure of spacetime and further explore the implications of general

relativity we will take a weak field approximation. Assume the metric is close to that

of flat spacetime

gy1 = 71, + hy, (2.5)

where h,, is a small perturbation, i.e. |h,,. << 1, and the Minkowski metric takes

the canonical form ,,, = diag(-1, +1, +1, +1). We now evaluate the Einstein tensor

for this perturbed field and find the linearized equation

GIV = 1 (8,h" + O,8,h" - 8,0vh - Ohl, - ryw&,&h"" ± ?,hh) (2.6)

where L is the D'Alembertian operator. While general relativity is clearly a classical

field theory it is more interesting to note that it is a gauge theory, where the gauge



field is spacetime itself. The quantization of this gauge field is the gauge boson for

gravity, but this is another story. We know that a gauge theory must be gauge

invariant or else it losses it's physical significance. Proper justification of the theory's

gauge invariance would require discussion about diffeomorphisms of metric spaces.

Assuming this is so we can choose a gauge specified by OLx = 0, which is equivalent

to gi""fP = 0. In the weak field limit this becomes

1
0,h -2Oxh = 0. (2.7)

A 2

This gauge is commonly referred to as the Einstein gauge. In this gauge the field

equations take on the elegant form

1
1hL - -r,,Oh = -167rGT,, (2.8)

2

and the vacuum equations R,,, 0 take on the even simpler form

Oh = 0, (2.9)

a familiar form for a relativistic wave equation. These two equations describe waves

propagating at the speed of light. The fact that it's form has a natural dependence on

the coordinate system raised significant doubts regarding the validity of gravitational

waves. Many thought that the waves were just a result of a coordinate transformation

and were note anything physical. Although we can, in fact, eliminate the gravitational

forces by choosing an appropriate gauge we can not transform to a gauge where the

tidal forces are not present, indicating that the phenomena is physical. We will not go

through the tedious derivation of the two polarization states for gravitational waves,

which can be found in [5] and [30]. We will briefly show that two polarization states

should exist. Given a coordinate system in our gauge x', we can always induce

coordinate changes x'" = x11 + ( and the system unchanged in this gauge if D(A = 0.

This indicates that h can have as many as two degrees of freedom. In a vacuum

T1, = 0 we can introduce the transverse-traceless gauge where h,.o = 0, hii = 0, and



OQOGOQO Q%000%0

Figure 2-1: On the left, the effect of a "+" polarized gravitational wave on a ring of
particles over time, and on the right the effect of a "x" polarized gravitational wave.
Modified from [5].

O&hig = 0. In this gauge we can write the Riemann curvature tensor as

1
R = -ooohzj. (2.10)

2

Since the Riemann tensor is gauge invariant this implies that the weak field, and thus

the gravitational wave, has two and only two degrees of freedom, and thus there are

two polarization states of the wave. The two polarizations are shown in Figure 2-1.

To first motivate and provide validity to the above weak field limits in General

Relativity and it's prediction of gravitational radiation before we motivate direct

detection of gravitational waves let's briefly discuss the agreement of these predictions

with the famous binary system PSR1913+16. In 1974 Russell Hulse and Joseph

Taylor discovered that this system was losing energy in almost exact agreement with

the predicted gravitational radiation of the system.

We know from General Relativity that a mass quadrupole moment that changes

with time can produce gravitational radiation, analogous to the electromagnetic ra-

diation produced by oscillating electric or magnetic quadrupoles. We can consider

certain types of gauge transformations which leave certain global quantities invari-

ant, most importantly the total energy on a surface S of constant time. We can take

this and consider the total energy radiated through to inifinity AE and subsequently

perform many lengthy calculations to find the radiated power, AE = f Pdt, in terms

of the quadrupole moment of a radiating source. Such calculations are done in [5]



and [30] but here we will merely quote the result

G d 3Qz-1 d 3Q.g
P = - - ( 2 .1 1 )

45 dt3  dt 3

where Qi, is the traceless part of the quadrupole moment. This is the radiated power

due to gravitational radiation of a gravitating system with a quadrupole moment.

The traceless quadrupole moment for a binary system is derived by integrating the

energy density T0 of the binary. Doing this and taking the third derivative we find

128 2 G4 M 5  (2.12)
5 5 r5

where M is the mass of each of the objects in the binary, r the radius from the center

of mass, and Q the orbital frequency, which we find by equating forces in classical

mechanics.

The binary system PSR1913+16 consists of a pulsar in orbit with a neutron star

which each follow elliptical orbits about a common center of mass. Both stars are

relatively small and thus orbit according to Kepler's laws, so our classical treatment

of the orbits was valid. The period of the orbit is 7.75 hours, which is incredibly small

by astrophysical standards, and since a pulsar serves as an accurate clock astronomers

can track the change in the orbital period as the system radiates energy. It turns out

the energy lost by the system was in agreement with the predicted energy loss due to

gravitational radiation of such a binary system disagreeing by 0.2%. An interesting

note, recent analysis has shown that the 0.2% discrepancy is due to poorly known

galactic constants. In 1993 Hulse and Taylor were awarded the Nobel Prize for their

discovery, the only Nobel prize for gravitational wave related physics to date.

2.3 The Detection of Gravitational Waves

Hulse and Taylor's discovery of the radiating binary system strongly motivated general

relativity and the accuracy of gravitational wave physics but nevertheless does not

constitute direct detection of gravitational waves. A gravitational wave detector



exploits the effect of a passing gravitational wave on matter. As we recall from our

discussion in 2.2 a propagating gravitational wave's primary effect is to change the

relative distance between adjacent free particles. Thus in principle one could construct

a gravitational wave detector that measured the distances between free particles.

Even more naively one could imagine creating gravitational waves in a laboratory

and eliminating the dependence on cataclysmic astrophysical phenomenon, but a

simple calculation using Equation 2.12 negates such a possibility. The quadrupole

formula for the radiated power of an object is dependent on M, r, and 9, choosing

the limiting rotational velocity of the object to be the speed of sound, the radius to

be on the order of a kilometer and the mass to be 106 kg, a huge, massive object

rotating incredibly fast, still only corresponds to a power of 10-1 watts, which only

gets worse as this power is converted into the flux one would expect from a detector

in the vicinity of the rotating object.

Since constructing a gravitational wave source on Earth is inconceivable we must

turn to the cataclysmic astrophysical phenomena as potential sources. The first at-

tempt at gravitational wave detection were resonant bar detectors. The instruments

consisted of heavy metal cylinders in which gravitational waves would drive a mechan-

ical oscillation of the bar itself. Transducers mounted at the ends of the resonating

bar would thus transform the oscillations to electrical pulses. The extremely low

amplitude of gravitational waves and thus the signal in the system results in an in-

credibly small signal to noise ration. To help overcome this the signal to noise is

improved by time integration of the first normal mode oscillation of the bar. These

detectors exploit the sharp resonance of the resonating cylinder to get their sensitiv-

ity. Unfortunately the sensitivity of the bar detectors in confined to a very narrow

bandwidth, perhaps a few Hertz, about the resonant frequency. In general for these

devices f/f ~ 10-3. These were the first practical instruments developed for gravi-

tational wave detection, largely because the technology necessary for interferometric

detectors was fairly undeveloped in the 1960's and 1970's.

The first of these bar detectors were developed by Joesph Weber in the 1960's,

subsequently publishing papers with evidence that he had successfully detected grav-



itational radiation. In the 1970's the results of Weber's experiments were largely dis-

credited, although Weber continued to argue that he had been successful in detecting

gravitational waves. Other attempted to reproduce his results by building similar

apparatuses with no success. Additionally the device he had constructed, which used

non-cryogenic aluminum bars, was not nearly sensitive enough. Regardless his work

is considered pioneering and generated generations of interest in gravitational wave

detection. Since Weber's work, the construction of bar detectors has been greatly

improved. A gravitational wave of h ~ 10-21 makes a L ~ 3 m bar detector vibrate

with an amplitude 1021 m. The main noise sources include thermal noise, which in

a cryogenic system contributes vibrations on the order of 1018 m, although using a

high Q, resonating material could lower this to - 10-20. This is largely why Weber's

initial design was thought to be flawed as it operated at room temperature. Sensor

noise arises from the transducer's conversion of mechanical oscillation to electrical

signal and the amplification of the signal to record it. Quantum noise arises from the

zero point vibrations in the bar detector, which for a resonant frequency of 1 kHz

are on the order of 5 x 10-21. No squeezing techniques have been developed for bar

detectors as they have in quantum optics.

Thus resonant bar detectors remain fairly narrow bandwidth detectors with much

difficulty in pushing below sensitivities of 10-21, although recent proposals to use

spheres at the resonating mass make claims of possible sensitivities below the pre-

vious limit. But with their narrow bandwidth they remain suitable for specific high

frequency searches.

In the 1970's Rainer Weiss and others developed the idea of using an interferometer

as a gravitational wave detector. Laser interferometer gravitational wave detectors

are essentially Michelson interferometers, measuring the differential length change

between test masses and subsequently the difference in length of the two orthogonal

arms. The beam is split and sent down the two arms, reflected and recombined result-

ing in an interference pattern. Any relative change in the lengths of the orthogonal

arms will cause a change in the interference pattern. A diagram of the basic optical

layout is shown in Figure 2-2. In principle, if the test masses are in free fall then the



Figure 2-2: On the left: Basic optical schematic of an interferometric detector. Mod-
ified from [23]. On the right: Optical schematic used by the current LIGO detectors.
Modified from [27].

Figure 2-3: On the left: An aerial view of the LIGO Livingston Observatory in
Livingston, LA. On the right: An aerial view of the LIGO Hanford Observatory in
Hanford, WA. Both taken from [27].

changes in the interference pattern correspond directly to changes in the curvature of

spacetime, and thus the passage of a gravitational wave. As we saw in our description

of gravitational waves the wave has an orthogonal effect on the plane of it's prop-

agation. In an interferometer this would manifest as one arm becoming longer and

the other proportionally shorter. Clearly a ground based detector would not be in

freefall but instead would be coupled to the motions of the Earth, but isolation from

these forces would allow successful detection. There are many other noise sources

that inhibit successful detection as we will discuss shortly. But unlike bar detectors,

interferometric detectors offer the possibility of high sensitivities over a wide range of

frequencies.



2.4 Laser Interferometer Gravitational-wave Ob-

servatory

The Laser Interferometer Gravitational-wave Observatory (LIGO) one of the leading

gravitational wave detection efforts along with VIRGO, GEO, TAMA, and AIGO.

LIGO has two 4 km long interferometer in the United States, one in Livingston, LA

and the other in Hanford, WA (where an additional 2 km interferometer is operated

in parallel to the first). Aerial views of the LIGO sites are shown in Figure 2-3. Many

universities around the world are involved in the LIGO Scientific Collaboration (LSC),

with primary research groups at MIT and CalTech. Since the theoretical gravitational

wave strain on Earth is 10-", the amplitude of the wave LIGO is attempting to detect

is on the order of 6f, - hf - 10-1'm. As previously described the LIGO detectors

are essentially Michelson interferometers using coherent light and an optical readout

to determine the difference in the arm lengths from the interference of the beams.

LIGO uses a NdYAF laser with a wavelength A = 1064 nm and a photodiode to

measure the phase difference. Since the time light takes to travel up and down the

arm is only 10-5 sec, which is much less than a gravitational wave period, the light in

each arm is stored in a Fabry-Perot optical resonant cavity using partially transmissive

input mirrors. The effective path length of the light is thus increased by a factor of

100. Initial LIGO used 25 cm, 11 kg, fused silica, test masses whereas Advanced

LIGO will use 34 cm, 40 kg, fused silica, test masses, which we will see plays an

important role in reducing noise. In addition to improved seismic isolation systems

the Advanced LIGO test masses will be suspended from a quadruple pendulum. The

strain sensitivities achieved in the first five LIGO runs are shown in Figure 2-4. With

it's many improvements Advanced LIGO should push the noise floor even lower and

hopefully to sensitivities capable to detecting gravitational waves.
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Best strain sensitivities for Initial LIGO, Science Runs: S1 through S5.
[27].

2.5 Noise in Interferometric Detectors

In this section we will discuss the primary sources of noise that appear in interfero-

metric gravitational wave detectors and limit sensitivity. In naive consideration of a

interferometric detector one would imagine that most noise sources would be negligi-

ble, and that a sufficiently isolated system should suffice. But given the scale of the

gravitational wave signal one must consider a vast number of noise sources that rarely

pose problems in experiments. In ground based interferometric detectors, the most

important limitations to sensitivity result from the effects of seismic noise and other

disturbances that propagate through the Earth, thermal fluctuations in the interfer-

ometer itself, in the test masses and suspensions systems, shot noise, high frequency

quantum noise in the photodiodes, radiation pressure noise, low frequency quantum

noise from photon momenta in high powered lasers, and finally gravity gradient noise,

the primary focus of this thesis, arising from minor fluctuations in Newtonian gravita-

tional fields. The current estimates for relevant Advanced LIGO noise contributions

are shown in Figure 2-5. A brief discussion, based on [?] [23] and [31], of each of these

noise sources follows:



Seismic Noise

Noise is introduced from seismic activity in the Earth, mechanical oscillations

from human activity (i.e. highways, construction work, etc.), natural phenomenon in

the atmosphere, and many other forms of ground born oscillations. These external

vibrations are eliminate with passive and active damping systems. Simple pendulum

systems provide a relatively simple way to isolate the system from external noise af-

fecting the test masses in the horizontal plane. The transfer function of a pendulum,

concerning the horizontal motion of the mass at the suspension pointy, falls off as

1/f 2 above the pendulum resonance, thus isolating from high frequency vibrations.

Since there is undoubtedly coupling of horizontal noise in the vertical axis, we must

also screen out vertical oscillations. We can isolate the test mass from vertical noise

in a similar way by suspending it on a spring. In order to further isolate the sys-

tem around the pendulum and spring resonant frequencies we must also incorporate

active damping. Additionally low frequency isolation must take place in order to

prevent low frequency seismic noise from inducing motion in the test masses. Low

frequency isolation takes different forms in different detectors, but in Advanced LIGO

this is done using seismometers and actuators to reduce via feedback control and thus

servo-control out the seismic noise. The full Advanced LIGO seismic isolation system

consists of a variety of active and passive stages of isolation. There is an external hy-

draulic isolation system (HEPI), two stages of active isolation in-vacuum (ISI) with

passive spring and flexure systems coupling the stages, completed by a quadruple

pendulum test mass suspension.

Thermal Noise

Thermal noise is caused by temperature fluctuations, inducing minor expansions

and contractions in the test masses and suspension systems contributing a significant

source of low frequency, sensitivity limiting, vibrational noise. As with seismic noise,

the noise is further amplified by the bouncing of light between the mirrors. Thermal

noise in the pendulum suspensions, corresponding to resonant frequencies, is around
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a few Hz, and internal vibrations of the mirror from thermal noise have natural

frequencies of several kHz. In order to keep the thermal noise as low as possible

we ensure that the masses and pendulum resonances have very high Q values, and

thus the loss factor of the resonances is as low as possible, as then we can confine

the vibrational energy from the noise to a small bandwidth around the resonant

frequency. Furthermore we must ensure that the test masses have a shape such

that the frequencies of the internal resonances are kept as high as possible. It is

interesting to note that we can see the confined resonances in the thermal noise

Figure 2-5. Another type of thermal noise arises from losses within the mirror's

dielectric coating, generating fluctuations in the phase shift of the reflected light.

Since fluctuation dissipation is closely related to Brownian motion this specific effect

is often termed coating Brownian noise

Advanced LIGO uses 40 kg, 34 cm diameter, fused silica test masses [27].As no

lossy materials should come into contact with the test masses they are suspended

by fused silica blocks, which in turn are suspended by fused silica fibers. This setup

allows the test masses to have quality factors exceeding 107.

Shot Noise

Shot noise is a type of electronic noise that occurs when a finite number of parti-

cles that carry energy five rise to statistical fluctuations in some measurement. Since

the beam with which interferometry is done is quantized, i.e. composed of photons,

the photons arrive at a detector at random and make random fluctuations in the light

intensity. Since this is a Poisson process, the signal to noise ratio is N/v7 = V7,

and thus the error improves as the square root of the number of photons. Of course,

the more photons used, the less shot noise contributes to the signal. It turns out

that to achieve the required sensitivity we need a laser operating at a wavelength of

10-6 m providing a power of 6 x 106 W at the input to a Michaelson interferometer.

This large laser power mandated of us is far beyond the output of any continuous

laser, but this problem is overcome using light-recycling techniques to use the light

efficiently. A more detailed analysis of shot noise and light recycling is discussed in



[15] and [23].

Radiation Pressure Noise

Although shot noise is a quantum noise, there are a number of other effects that

constitute 'quantum noise', including radiation pressure noise. As the laser power is

increased this noise source becomes more important arising from fluctuations in ra-

diation pressure. One interpretation is that the beam splitter divides up the photons

constituting laser light randomly. If each is scattered randomly and independently

then we get a distribution of N photons in each arm with a - v/ noise in radiation

pressure. A more detailed description can be attributed to vacuum fluctuations in

the photon fields with respect to amplitudes. With this in mind we can state that

radiation pressure noise arises from uncertainty in the amplitude of the photon fields

in the interferometer laser while shot noise arises from uncertainty in the phase of

the photons. These correspond to a sensitivity limit called the Standard Quantum

Limit (SQL) which corresponds to Heisenberg's uncertainty principle. Methods to

achieve and even overcome the SQL have been implemented in Advanced LIGO by

putting the laser light in a squeezed state. We will not attempt to successfully de-

scribe the process of squeezing light, but the basic idea is that just as an uncertainty

principle exists between position and momentum, as does one between energy and

time, and thus amplitude and phase of light. Since in gravitational wave detection we

are concerned primarily with phase, we can inject noise in the amplitude and achieve

greater certainty in phase. More detailed descriptions of quantum noise locking and

poderomotive squeezing can be found in [7] and [16].

Gravity Gradient Noise

The last noise source which test masses cannot be shielded from is Newtonian,

or gravity gradient, noise. This noise arises from fluctuations in the local Newto-

nian gravitational field induced by seismic activity or atmospheric turbulence. A

test mass in a detector will respond to the changes in gravitational field just as it

would respond to gravitational waves. A diagram depicting the effect of a varying



attraction

propogation of surface wave
on the surface of the earth

Figure 2-6: Depiction of the induced fluctuations in the local gravitational field on a
test mass by the propagation of a passing seismic wave. Modified from [23].

gravitational field on a test mass in shown in Figure 2-6. Seismic waves and other

surface phenomenon change the density in the Earth around the detector and these

mass fluctuations constitute noise in the detector. Similarly acoustic and turbulent

phenomenon in the atmosphere cause changes in air pressure and thus in air density

also constituting Newtonian noise. Although the spectrum does fall off sharply with

increasing frequency it still dominates in below 10 Hz. As next-generation gravita-

tional wave detectors are constructed and new technology is implemented we will see

significant improvement in many of the aforementioned noise sources. Unfortunately

improvements with respect to gravity gradient noise in ground based detectors are less

likely to occur. Gravity gradient noise will likely continue to dominate and limit the

sensitivity of LIGO in the 1-10 Hz region. The most promising approach to detecting

gravitational waves at frequencies lower than 1 Hz is space based interferometers like

LISA.



Chapter 3

Newtonian Noise in Gravitational

Wave Detectors

As previously discussed Newtonian noise, also termed gravity gradient noise, is noise

due to fluctuating Newtonian gravitational forces that induce motion in the test

masses of the gravitational wave detector. Gravity gradients were first identified as

a potential noise source in an interferometric gravitational wave detector by Rainer

Weiss in 1972. The first analytical estimates of Newtonian noise were done by Peter

Saulson in 1984 [25]. Newtonian noise arises primarily from two sources, seismic

Newtonian noise where gravity gradients are induced by ambient seismic activity

and atmospheric Newtonian noise where gravity gradients arise from acoustic and

turbulent phenomenon. In his paper Saulson gives a rudimentary estimation of gravity

gradients generated by seismic noise, atmospheric noise, and a third source, moving

massive bodies. The current estimates for seismic gravity gradient noise, which are

used in the Advanced LIGO noise curves, are done by Hughes and Thorne [13]. The

current estimates for atmospheric gravity gradient noise are given in [8] and [4]. We

will now give a more detailed overview of each Newtonian noise source as well as the

theoretical description and estimation of the characteristic noise curve itself.



3.1 Seismic Gravity Gradient Noise

When ambient seismic waves pass near or directly beneath a LIGO detector, they

give rise to density perturbations in the Earth itself. When the density of the Earth

is altered slightly, the local gravitational field will alter slightly, changing the local

value of g, the acceleration of gravity. These fluctuating Newtonian gravitational

forces induce motion in the LIGO test masses. Gravity gradient noise is most pro-

nounced, with respect to LIGO sensitivities, at f < 20 Hz and thus contributes most

to the LIGO noise spectrum in the 1 Hz to 10 Hz range, see Figure ??. We can

isolate the test masses from seismic activity using many levels of active and passive

damping and isolation but even in principal one cannot isolate the system from New-

tonian noise because gravitational forces cannot be shielded (without the advent of

negative gravitational charge in the gravitational analog of a Faraday cage). From

our knowledge of seismic and atmospheric phenomenon we can estimate the strength

of gravity gradient noise. We will now outline the work of Hughes and Thorne [13] in

describing the seismic activity contributing to the Newtonian noise with respect to

the LIGO sites and the derivation of the transfer function T(f) used to describe the

gravity gradient noise from ambient seismic activity.

Before we continue we will briefly outline some important details regarding seismic

waves that are relevant to the following description of Newtonian noise. Seismic waves

are low-frequency acoustic waves that most noticeably result from cataclysmic geo-

physical phenomenon but are also caused by many other natural and anthropogenic

sources. The latter are referred to ambient vibrations, the cause of the relevant

background Newtonian noise. There are two types of seismic waves, body waves and

surface waves. Body waves travel through the Earth's interior, reflected and refracted

by the differences in density and modulus. The two types of body waves are primary

P-waves, compressional waves that are longitudinal in nature, and secondary S-waves,

shear waves that are transverse in nature. P-waves propagate faster than S-waves, up

to velocities of 5000 m/s. Surface waves, on the other hand, travel along the Earth's

surface; the two types of Surface waves are Rayleigh waves, surface waves that travel



as ripples analogous to water waves, and Love waves, surface waves that cause circular

shearing of the ground.

Now we continue with our description of Newtonian noise. In keeping with LIGO

notation and expressing noise transfer functions in frequency space, we define the

gravity gradient noise transfer function T(f) to be

z(f)T(f) = , (3.1)
W(f)'

the transfer function of z(f), the displacements in the test masses, to W(f), motions

in the Earth produced by seismic activity. A simple and elegant form of this transfer

function is derived in [25]. Given the importance of this result and the reliance of the

work done by Hughes and Thorne, and subsequently the LIGO for Newtonian noise,

we will outline the derivation. Gravitational forces accelerate the test masses with

an acceleration of w2 x, since we are interested in working in the frequency domain.

Consider a simplified interferometric gravitational wave detector and a region in the

neighborhood of the interferometer that exhibits fluctuations in it's mass due to

seismic activity, a diagram of the simplified detector is shown in Figure 3-1. The time

dependent fluctuations experienced in the massive region are AM(t) = M(t)- (M(t)),

and thus the force experienced by the test mass of mass m due to this perturbation

is
-- GAM(t)

F(t) = m 2 er. (3.2)

We may consider the force in the x-direction with respect to the coordinate system

in the diagram and transform the equation into the frequency domain

GAM(w) cos 0
F = m 2 . (3.3)

r2

LIGO test masses are passively isolated in vacuum with a spring and flexure system

and suspended from a quadruple pendulum. We may consider the test masses as

having a resonant frequency wo and damping time r. Since the force from an oscillator



M(t)

L
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Figure 3-1: A simplistic interferometric gravitational wave detector configuration with
arm length L and a nearby region of fluctuating mass M(t).

is F = mw2x we substitute and take the magnitude and find

((w2 _ W02)2 + w2lr 2) Ix(w)12 = G2|AM(W)|2 cos2 . (3.4)

We now consider the area around our interferometer configuration to be filled with

regions of fluctuating mass. The calculation we preformed above was for a coherently

fluctuating region of mass M(t). To achieve a computation that includes multiple

coherently fluctuating regions there must be some scale at which a region is coherent.

We may make the assumption that such a region is of the order A/2 where A = vs/f

is the acoustic wavelength and v, is the speed of sound of the associated seismic

wave. We also need to make a second assumption that the mass fluctuations in

different coherent regions are uncorrelated and are completely independent physical

events. This means that we may add the the forces exerted by the coherent regions

in quadrature. We are also considering the region the fluctuations are occurring in to

be a homogeneous half-space, euclidean three-space bifurcated into two half-spaces

by a plane, i.e. a homogeneous planar model of the earth. Since we may add the

forces in quadrature the total contribution reduces to a summation of the cos 2 O/r 4



over all coherent regions in the euclidean half-space. It is reasonable to approximate

this summation as an integral over 6 and r, as is justified in both [25] and [13]. Thus

we find
cos 2 0 1 oo 2" cos 2 0

rd dr (3.5)L.. 4  A fi Tmiih JO r4

where we have introduced an inner cutoff radius to ensure the integral in conver-

gent. The fact that the integral is divergent is indicative of the dominance of local

gravitational fluctuations, as expected. We choose rmin A/4, the radius of our

approximated coherent region. A choice of a smaller rmin would disregard our earlier

assumption that the summation over coherent regions may be approximated as an

integral. Performing the integral with the specified cutoff radius we find

cos 2 0 647r 4W4

r4 3A4 3 47r (3.6)

Plugging this back into Equation 3.4 we find

4G2

((w2 _ W 2 )2 + w2T 2) IX(w)12 G37r W 4|AM(w)12 . (3.7)

This equation tells us the force exerted on a test mass by local gravitational fluctua-

tions and an interferometric gravitational wave detector measures the difference in the

separations between test masses. For example using the configuration in Figure 3-1

the detector itself measures the difference between the interferometer x arm length

and interferometer y arm length. When performing the integral above we realized

that the forces induced by mass fluctuations around a test mass are largely dominated

by the local fluctuations, i.e. the contributions from coherent regions on the order of

a distance A from the test mass.

The P-wave and S-wave velocities, as measured at the Livingston LIGO site and

cited in [13], are 440 m/s and 220 m/s respectively. Since the frequency range of

the gravitational gradients we are concerned with is 1-10 Hz, this corresponds to

wavelengths, A, of 440 m to 44 m, as we are considering the most disruptive seis-

mic interference. The LIGO arm length is L = 4 km and thus we may make the



approximation A << L. Since we argued that Newtonian noise in the test masses

is dominated by coherent regions within a few wavelengths A we may claim that the

noise in the test masses is uncorrelated and thus adds in quadrature. The gradients

in the difference in interferometer arm lengths is four times that of an individual test

mass. To find T(f) all we need to do now is express the mass fluctuation IAM(w)I
as a displacement of a point on the Earth's surface from equilibrium by a passing

seismic wave |AX(w)|. From [25] we find that

7rp 2 A4  75v4p2
IAM(w)12 =. e IAX(C)1 2  r pe2|AX(W)12 (3.8)16 W

where pe is the local density of the Earth. Substitution of the previous equation into

Equation 3.7, expressing the test mass displacement Ix(w)| as a differential displace-

ment between the test masses IAx(w)|, and accounting for the noise from each test

mass added in quadrature we find

((w2 _ w2) 2 + W2 2 ) I AX(w)1 2  16r 2 G2 2 AX(W)2 (3.9)

The displacements in the test masses z(f) = |Ax(w)| and motions in the Earth

produced by seismic activity W(f) = |AX(w)|. We have thus arrived at the gravity

gradient transfer function T(f)

4xGpe
T(f) = (W2 - (3.10)

V3 (( _ W02)2 + W2/,r2)

We will assume that we can ignore the resonant frequency wo = 7r rad/s and damping

time T ~ 108 s for frequencies f > 1Hz and that the arm length is long enough that

the short wavelength approximation is valid. Then ((w2 _ W2) 2 + w2/i-2 )IAX(w)| 2 ~

W4 1AX(w) 12. Which gives us

T(f) =Gpe (3.11)
vr-7rf 2

Following [13] we define a dimensionless correction #(f) referred to as the reduced

transfer function. In the derivation we just did and that in [25] we had #(f) = 1/9/5



which arises from the inner cutoff radius we decided upon. Thus we can imagine

that a more rigorous treatment of the regions of fluctuating mass and the coherent

lengths of these regions would produce a different cutoff with a different order of A.

Expressed as such the transfer function is

T(f) - Gpe/(f). (3.12)

A more rigorous treatment would have to consider the types of seismic waves and

modes experienced at the test masses as well as the standard seismic activity around

the test masses at each of the sites. Only after performing such an analysis could we

accurately determine the reduced transfer function. The work of Hughes and Thorne

in [13] does such an analysis by considering the fundamental Rayleigh and Love modes

in relation to anisotropy ratios to derive and justify #(f). Specifically see Appendix

A of [13]. We will not go into their analysis of seismic modes at LIGO sites but we

will note one part of their derivation that is of interest regarding the correlation of

noise at the test masses. Each seismic mode will contribute to the transfer function

and since the phases of these modes are uncorrelated we find the modes contribute

in quadrature

#(f) WJpJ(f) 2, (3.13)
J1

where the index J sums over the relevant modes. As shown in Appendix A of [13] we

can express the reduced transfer function of a mode to be #3 = 1'#'. What we are

interested in is the dimensionless function -yj(f) which accounts for the correlation

between the Newtonian noise experianced at two different test masses. Specifically,

for the two corner test masses 7 will be a function of the phase shift in traveling

from one mass to the other, -(olv,) where w is the seismic wave frequency, f is

the distance between the test masses, and v, is the phase velocity of the wave. The

function -y(x) is given by

I 1 f2' /cos 4+sin 4
(x) = 1 +± cos 4 sin c ( cox) do (3.14)

2 7r v/2
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Figure 3-2: Plot of 7(x) which accounts for the correlations of seismic Newtonian
noise in the two corner test masses.

as shown in [13]. We plot the function in Figure 3-2 and observe that regardless

of seismic wave properties determining w and v, the correlation is still on the order of

unity. Much to our surprise we find that in fact for seismic Newtonian noise the noise

experienced at the corner test masses is to a very good approximation uncorrelated

and thus the naive assumption we made in our derivation turns out to be fairly

accurate.

For completeness, in our expression for #j, 1j describes the attenuation of the

noise due to the height h of the test masses above the Earth's surface F. = exp(-wH/v,).

For the LIGO test masses H ~ 1.5 m and since Rayleigh and Love modes propagate

on the order of a few hundred m/s we can approximate F. to unity and therefore

#j ~ #'. We present a table of reduced transfer functions predicted for the Livingston

and Hanford LIGO sites contrasted with our original #3 1/V/ in Appendix A. We

conclude by expressing Equation 3.12 as a strain h(f) as a function of the ground

noise z(f)
Gpep 1h(f) =p 1 2f) (3.15)

Lwr

where L is the interferometer arm length. To find the ground motion we first reported

amplitude spectral densities of the ambient earth motion in [10]. The ground motion

measured is as such, between 0.1 Hz and 10 Hz z(f) is proportional to 1/f 2 . This
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Figure 3-3: Plot of seismic Newtonian noise as per Equation 3.15 with ground motions
from GWINC and [10].

actually corresponds reasonably well to the ground motion given in the gravg m part

of the GWINC MATLAB script [28]. Since the origin of the functional form of the

ground spectra in gravg is unclear as no source is provided we plot using both this

and the data we found. In gravg the ground motion is given by

a + a 1.\ ( f3.16)
1+3(f-f) 1 1 3F0ffa) f

where the script gives the knee frequency fk = 10 Hz, a low frequency level a

1 x 10-t F 0.8, and #/= 0.6.

3.2 Atmospheric Gravity Gradient Noise

We now present a theoretical estimate of the atmospheric Newtonian noise due to

fluctuations of massds densi in the atmosphere generated by acoustic and turbulent

phenomenon. We can continue the first half of the analysis performed in ?? as the

derivation considered general regions of fluctuating mass without specifying seismic

induced fluctuations until the latter half of the analysis. Thus we begin with Equation



3.7:

((w2 _ wg)2 + W2/r2 ) I X(W)1 2  4A M(W)2. (3.17)

Recall that this equation give us the force exerted on a test mass by local gravitational

fluctuations and since LIGO measures the difference in the separations between test

masses we must consider all four test masses. We argued that the forces induced by

mass fluctuations around a test mass are largely dominated by local fluctuations, and

thus we may add the contributions for any two test masses in quadrature. Similarly

the two orthogonal arms of the interferometer are uncorrelated, so altogether the

difference in sepoarations is four times the motion of an individual mass,

((w -
2) + 2 /T) x~w1 2 16G 2

((W 2 _ )2 + W2) 2-16G 2 3 rw 4 AM(w)1 2. (3.18)

In the previous analysis of seismic Newtonian noise we justified the absence of corre-

lation of test masses from a short wavelength approximation based on S and P-waves.

In this atmospheric estimation we consider the most disruptive atmospheric Newto-

nian noise to propagate at the speed of sound c,, 343 m/s. Since the frequency

range of the gravitational gradients we are considering is 1-10 Hz, this corresponds to

values of wavelengths of 343 m to 34.3 m. The LIGO arm length is L = 4 km and thus

we may consider the approximation A << L to be valid, and thus the atmospheric

Newtonian noise in test masses can be considered uncorrelated.

Now we can cast 3.18 in terms of observables. Specifically we need to write

JAM(w) in terms of pressure fluctuations |Ap(w)|,

IAM(w)12 = V2!Ap(W)1 2  (3.19)

where V is the volume of the coherent region and p(w) is the frequency dependent

density. Just as the quantity GpX has dimensions of force per unit mass and we

can thus equate w2 x = AGpX, we may consider the same analysis for air pressure

fluctuations. Measurements of air pressure give us the fractional pressure fluctuation

Ap/p and if the radius of a coherent region of fluctuating pressure is on the order



of A, then we may equate w2x AGpAAp/p, where A is another dimensionless

constant. We also note that while evaluating jAM(W)12 we are considering the rapid

compression and expansion of a region of air. We may consider a process where that

there is no opportunity for significant heat exchange, in other words an adiabatic

process. What we are concerned with is the bulk modulus K, which measures the

substance's resistance to uniform compression. For a gas, the adiabatic bulk modulus

Ks is approximately given by Ks = 7P where 7 is the adiabatic index or heat

capacity ratio. Since the pressure scales quadratically we must add a factor of 1/7 2

to account for the adiabatic compression of air. For dry air at 20* C, Y = 1.400. Thus

1/_2 = 0.51 ~ 1/2. Considering coherent regions of A/2 and rewriting p(w) as p(w)

using the pressure and density of air, pa and pa, we can now write

1 MA ) 6 p2 IAp(W) 2 1 AP(W) I
|AM(W)2 1_ _ _ __ a 2. (3.20)

2 2 p 2 2 p

Upon substitution into 3.18 we find

87r3 G2 2i 2

((P2 _ W2) 2 + W2 /T 2 ) IX(W)1 2  3  a ) 2  (3.21)
3 WRJ

Now we reformulate this into a transfer function, making the same short wave-

length approximation that allows us to ignore the resonance and damping of the test

masses. Reformulating in terms of frequency f we find

IX(f)12  83G 6 aIAp(f) 2. (3.22)3 (2rf)6 p

We now provide a slightly different derivation, as similarly presented in [?], that

gives the same result as what we just derived. The importance of this is that it

will build the formalism we will need to perform the submerged calculation in the

next chapter, but also we made many bold approximations in the previous deriva-

tion. Some of those approximations were justified for the seismic Newtonian noise

calculation but less so for the atmospheric Newtonian noise calculation. This addi-

tional derivation will verify that we are on track and will lay the groundwork for the



calculation in the following chapter.

We consider a pressure wave propagating through a homogeneous air space at

the speed of sound v,. As the fractional pressure change is small it will induce the

adiabatic density change Sp/p = op/yp. The gravitational acceleration produced in

the direction of propagation is

gJ = 3 dV. (3.23)

Since there is only acceleration in the direction of propagation and not transverse and

the detector is only concerned with motion parallel to the interferometer arms we pick

up a factor of cos 0 just as in the previous derivation. Here is where we generalize

the previous derivation to pressure fluctuations. The test mass is housed within some

structure which suppresses noise which can be interpreted as a high frequency cutoff

factor C(27rfrmin/v.). This provides some formalism to our discussion of the radius

of coherent regions around a test mass. The function 0(x) depends on the shape

of the structure and its acoustic properties, i.e. the ways in which it reflects sound.

Based on these assumptions and without making bold approximations as before we

can evaluate the integral as is done in [4] and [?],

g(t) = f G3 dV = 0tm* cos 9C(2,rfrMin/v5)p(t + 1/4f). (3.24)
r 7fpf

Since d2h/dt2 = g(t)/L, or in the frequency domain h(f) = g(t)/((27rf)2L) where L

is the length of the interferometer arm. We find the strain signal in the interferometer

to be
Go, p 1I( f ) = 3v p cos OC(2,rfrmin/vs)Jp (3.25)

To simplify our equations and express them in a more meaningful way we want to

write the noise as a spectral density S(f), where the dimensionless strain noise would

be NS(f). In terms of h(f), S(f) = (h(f)I(f)* = S(f)J(f - f'). Thus we find

G 2V2 P2 4

S(f) = 16r 4 2 L2p? 3f6ZC(27rfr /v) 2 S (f). (3.26)

42



where the index i sums over the test masses in the interferometer and r', is the

radius of the structure housing the i-th test mass. This result is essentially the same

as what we had before except we made fewer assumptions about the correlation of

the noise in each test mass and the exact nature of the coherent regions.
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Chapter 4

Gravity Gradient Noise in a

Submerged Detector

In order to extend the gravitational wave detection frequency below 10 Hz one needs

to develop novel methods of reducing Newtonian noise because, as we have discussed,

as isolation from seismic noise improves Newtonian noise will become the dominate

noise source at low frequencies. Moreover it is calculated that this noise will exceed

the expected gravitational wave signal below 10 Hz. Seismic and atmospheric induced

fluctuations in gravitational fields directly couple to LIGO test masses, bypassing all

stages of attenuation. Since no filter or shield can be built to prevent this direct

coupling we must consider alternative approaches to reducing Newtonian noise. One

consideration is to submerge an interferometric gravitational wave detector in some

body of water. The hope would be that such a detector would experience reduced

Newtonian noise from atmospheric sources as well as seismic sources.

4.1 Reductions in Atmospheric Newtonian Noise

We have setup up the necessary formalism in Chapter 3 to consider the effect of

submerging an interferometric gravitational wave detector in some viscous fluid, like

water. The path length difference fluctuations due to pressure fluctuations were cal-

culated in 3.2. Thus we can perform a naive calculation of the equivalent Newtonian



noise from pressure fluctuations in water. The reason this calculation is naive is that in

the atmospheric calculation we claimed that coherent regions of pressure fluctuations

for each test mass were uncorrelated which we justified by a short wavelength approx-

imation. More specifically the atmospheric Newtonian noise for a given test mass was

dominated by the local regions of pressure fluctuations with coherence length A/2,

and since L >> A for arm length L this allowed us to add the noise in quadrature.

In air the pressure fluctuations will not exceed the speed of sound v, = 343 m/s, but

in water the speed of sound is substantially higher. In fresh water at 250 C the speed

of sound is 1497 m/s. For frequencies of 1 and 10 Hz this corresponds to wavelengths

of 1500 m and 150 m. Since L = 4 km this approximation is no longer as valid.

Obviously most underwater disturbances do not propagate at the limiting velocity

but what we can assume is that the atmospheric Newtonian noise for each test mass

is correlated in submerged detectors. Additionally the correlation length for pressure

waves at these frequencies will be much larger than for ground based detectors. This

fact has an important implication, the gravity gradients will be correlated across the

entire detector which will suppress their noise contribution, especially at lower fre-

quencies. This fact indicates that we should see a decrease in atmospheric Newtonian

noise, as we were hoping.

4.1.1 A Naive Calculation

We begin with a naive calculation in the same vein as the one outlined in Chapter

3. We already admitted that the pressure fluctuations are more correlated due to in-

creased pressure wave propagation velocities. But we will first perform the calculation

of the noise using the short wavelength approximation and subsequently consider a

more rigorous approach. This can be interpreted as the noise in a submerged detector

with ideal uncorrelated pressure fluctuations. We start with Equation 3.22 as derived

in Section 3.2

((w2 _ 2 + 2 T2) IAX(W)1 2  8 sr3G2 Vp) (4.1)3-y2 W2 p2



Ignoring the resonant frequency and damping time of the test mass, as we previously

justified, and expressing the noise spectra in terms of frequency f, we find that

8,r 3G 2 V2 ,2IAx(f)12 
- _m f2. (4.2)

37 2 (27rf) 6p2(

where we now have v, as the speed of sound in water, p, the water pressure, which

is dependent on depth, and p, which is 998.2 kg/m 3 at 200 C and approaches 999

kg/m 2 as the water temperature approaches 0* C. Lastly, -y is the adiabatic index

which arises from the adiabatic compression of a fluid; for H2 0 at 20' C, 7 = 1.330.

To simplify our equations and express them in a more meaningful way we want to

write the noise as a spectral density S(f), where the dimensionless strain noise would

be V/S(f). We also write jAp(f)12 as the acoustic noise spectral density S,(f). We

now find an L2 in the denominator where L is the interferometer arm length. We

now have

S(f) = -Sf) (4.3)
247r372L2, 6P

4.1.2 Results

We now want to find the power spectra of acoustic noise. We investigated many

studies of acoustic ambient noise in the ocean and extrapolating from collected data

we estimate an acoustic ambient noise power spectra. The data on which we are

basing our power spectra is from [1], [3], [6], [11], [17], [21], and [33].

Careful analysis of the seven sources we cited gives us a feel for the ambient noise

due to pressure perturbations in the ocean. It turns out the ranges in ambient acous-

tic noise determine whether or not we see an improvement. Considering the lowest

noise floor observed in the power spectra there is a minor improvement over the at-

mospheric Newtonian noise experienced in ground based detectors. But if we consider

the average of the power spectra for ambient acoustic noise in deep ocean, there is no

improvement as the ambient noise is too loud. We estimated the frequency depen-

dence in the power spectra for ambient acoustic noise to be 1/f2, on a loglog plot.

This was fairly typical of frequencies 1-100 Hz, although only a few sources provided
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Figure 4-1: Examples of ambient noise in the ocean, on the left deep ocean ambient
noise in the Northeast Pacific, modified from [11], and on the right North Pacific west
of California, modified from [17].
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Figure 4-2: Variation of deep ocean ambient noise in the Northwest Atlantic with
respect to wind speed, Modified from [21].
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information below 10 Hz. A few constants of proportionality were determined for the

acoustic noise based on the cited sources, corresponding to an average noise floor,

which averaged the constants determined for all the sources, a relatively quiet noise

floor where the a few of the quietest results were considered from the sources, and a

constant corresponding to the two quietest ambient acoustic noise floors observed in

the cited studies. A few of the power spectra for deep ocean ambient acoustic noise

are shown in Figure 4-2. The units on the ordinate axis are dB re 1jpPa 2 /Hz, or some

similar variant. These are magnitude with respect to some reference unit, which in

the one stated is l1pPa2 /Hz. The conversion to a pressure in units of pPa2 /Hz is done

using

dB = 10 log 10 (1-P /Hz (4.4)

Having determined the transfer function for ambient acoustic noise we plot the

atmospheric Newtonian noise curves in contrast with atmospheric Newtonian noise in

air, the Newtonian noise in Advanced LIGO, and the LIGO noise curve. A few plots

are shown and discussed in Figure . We see that if a interferometric gravitational

wave detector were constructed underwater the atmospheric noise levels would be

comparable to those in ground based detectors, and far below the total Advanced

LIGO noise curve.

An important fact to keep in mind is that this was a naive calculation done using

a short wavelength approximation, and thus we should assume that since we assumed

that all coherently fluctuating regions were uncorrelated and the only contribution

to the noise at the test mass was from the pressure fluctuations adjacent to it. For

ground based detectors, where v,, 343 m/s, this would be a valid approximation,

but for a submerged detector, where v, = 1500 m/s, concerning the frequency range

1 to 10 Hz this is an over approximation, which means the atmospheric contribution

to Newtonian noise would be even lower than the level seen in our results.
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4.1.3 A Long Wavelength Approximation

We now consider density fluctuations where the characteristic length of the coherent

pressure fluctuation is larger than the interferometer arm length A >> L. In this sce-

nario the effect of a gravitational gradient in an interferometer is not the incoherent

sum of the gravitational forces exerted by the density or pressure fluctuations experi-

enced by the test masses, added in quadrature. But instead there is a fluctuation in

the gravitational field across the entirety of the interferometer. Therefore we must be

explicit in how we consider that forces on each test mass ass opposed to just adding

in quadrature. We must consider the difference in the gradient at each test mass due

to the fluctuation. So we develop some formalism to this. The differential length

change in the interferometer is

6L = h(t)L = (x( 3 ) - X(4)) - (y(2) _ (i) (4.5)

where the index indicates the test mass. Moving down the y arm and over the x

arm we label the test masses in succession, as in the corner mass on the x arm is

mass 4 and the inner mass on the y arm is mass 2. Clearly x and y correspond to

the positions of the respective test mass, thus we can see how the differential length

change arises from test mass motion. If the signal is induced by some density or

pressure fluctuation then h(t) is the Newtonian noise signal. In terms of accelerations

we have
d2h(t) = ((a - a 4)- (a2) - a))) (4.6)

where the a's correspond to the components of the acceleration experienced by the

respective test mass. In the frequency domain this is equivalent to

I L(2wf) 2 ((3) _ 4 _ _41)



Since the density and pressure fluctuations constitute a stochastic process we know

that the spectral density should be S(f) = (h(f)h(f)*), which amounts to

S(f) L(2f)2 () - (4)) - (&(2) - &M) 2 ) . (4.8)

where we have not assumed anything about the nature of the fluctuation's character-

istic coherence length or correlations in signal.

It is clear that the quantity we are interested in is the difference in accelerations.

We can calculate this considering a long wavelength approximation and resorting back

to the simplified model and diagram in Figure 3-1. Recall that we found for some

region of fluctuating mass the acceleration experienced by the test mass is

cos 0
a - GAM(f) r 2  (4.9)

Recall that in our initial analysis we had to consider the sum of coherently fluctuat-

ing regions E cos 2 9/r 4 with some inner cutoff radius. The analogous terms here is

calculated from (ax) - axP) - (aY) - a) where we have reindexed to conform to

the simplified model. From the diagram in Figure 3-1 two terms become immediately

clear

a() = GAM(f) Cos a(0) -GAM(f) (4.10)X ~r2 Yr

Consider mass one on the x axis, call the distance to the mass perturbation c and

the angle internal to the interferometer 7, from the law of cosines and law of sines we

find c2 = r 2 + L2 - 2rL cos 6 and sin y r/c sin 6. Equivalently for the corner mass

on the y axis d2  , 2 + L 2 - 2rL sin 6 and sin o = r/d cos 0. Thus we find

a(') = GAM ao ) ) = -GA cos(o-) (4.11)

(0)_ (1)) (0 (2))tWe now perform a series expansion on our expression for (ax a - (0 - a ) to
the first order in L. We use this approximation because the distance to the fluctuating

region is r, since we imposed some inner cutoff at which no longer contribute which



was on the order of r ~ A, thus r >> L. So expanding the the first order in L should

be sufficient. The leading order term cancels out and we are left with

3GAML (sin 2 0 - cos 2 0). (4.12)
r3

We find the summation over all contributing regions of coherent fluctuation by inte-

grating r from rmin to oo and over all 0, doing so we find

9G 2 L2 2 _ 02 144G 2 L 2W6

r6 (sin2 0 - cos 2 9)2 ~ L(4.13)
S

since rmin = A/4 and A = 27rv/w. For pressure fluctuations we know that

76 6 2

IAM(w)2 w S 6IAp(w)12. (4.14)

The acoustic noise spectra is for coherent pressure fluctuations with a long charac-

teristic wavelength is

S(f) 144rG 2 p2  (4.15)
57 p2SW

Considering our interferometric gravitational wave detector submerged in water, where

the speed of sound is v, = 1500 m/s, we can expect that below 0.1 Hz, the acoustic

spectra will go as 4.15. As there have been no deep ocean acoustic noise studies in

sub 1 Hz frequency range we cannot plot the resulting spectra but the functional form

and dependence on parameters, or lack thereof, gives us an idea of the low frequency

behavior.

4.2 Reductions in Seismic Newtonian Noise

We have seen that in the ideal case where we construct an interferometer in the parts

of the ocean with the lowest ambient acoustic noise and that there is not an increase in

the atmospheric noise. An improvement comes with the absence of the seismic noise

experienced on the surface in ground based detectors. As discussed in [13] the major

contributions to seismic Newtonian noise is from density fluctuations due to surface
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Figure 4-4: Seismic Newtonian noise on the surface compared to that on the ocean
floor. On the left is an average ambient seismic noise on the ground and on the right
is a quiet ambient seismic noise on the ocean floor.

waves, i.e. Rayleigh and Love modes, and these do not exist at the same strength in

the ocean as on the surface. Previously we calculated the seismic Newtonian noise

as generated by gwinc .m as well as our own study of seismic noises on the surface as

presented in [10]. We consider the same expression for the seismic noise, a strain as

a function of the ground motions,

Ih(f) = -pz/f), (4.16)

where pe is now the density of the surface of the ocean floor which is approximately

p~ 3000 kg/i 3, assuming the ocean floor is largely composed of basaltic rock. We

now need to determine the spectrum for seismic noise on the ocean floor. We use

the broadband ambient seismic noise studies done in [?] and [?] which gives ocean

floor seismic spectra from different points in oceans around the world. As we did with

pressure fluctuations we look through the various spectra and determine a dependence

on frequency on a loglog plot and then determine constants of proportionality for an

average of the spectra and then for the least noisy of the spectra. The results are

plotted in Figure 5-1.

Since the short wavelength approximation that led to 4.16 is a good approximation

we can assume that this is not an overestimate of the seismic Newtonian noise. We
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see that in fact on the ocean floor the seismic Newtonian noise is lower than the

seismic Newtonian noise experienced in ground based interferometric gravitational

wave detectors as per our calculation using ambient surface seismic data from [10] and

the Newtonian noise produced by gwinc.m. This has two important consequences for

submerged detectors; the seismic noise is lower on the ocean floor than on the surface,

thus seismic isolation, which is currently still a limiting noise source in Advanced

LIGO, would improve in a submerged detector. Moreover since the decrease in seismic

noise has resulted in a decrease in the seismic Newtonian noise compared to that in

ground based detectors.
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Chapter 5

Conclusions and Future Work

We derived a number of formalisms and methods to express Newtonian noise in more

general ways. The work relied heavily upon work already done in [25], [?], [13], and

[4], but also expanded upon their work in seemingly unique ways. After developing

the formalism for discussing Newtonian noise from seismically induced density fluctu-

ations and atmospheric pressure fluctuations from acoustic and turbulent phenomena

we considered ways to reduce the Newtonian noise in next generation interferometric

gravitational wave detectors.

As methods for seismic isolation in LIGO detectors improve the sensitivity below

10 Hz will be increasingly inhibited by gravity gradient noise. There are no direct

methods of screening out this noise as gravitational fields couples directly to mass

and thus the noise directly to the test masses. One can not in principle measure the

gravity gradient noise in a detector and subtract it because measuring the Newtonian

noise would constitute measuring changes in the gravitational field. This is analogous

to constructing a gravitational wave detector because detection of gravitational waves

is, in fact, a measurement of the changes in a gravitational field. Thus a detector at

such a sensitivity would nullify the need for an interferometer.

Although there have been efforts to model the Newtonian noise and subtract it

from the signal doing so requires very low levels of seismic activity and extremely

precise knowledge of the seismic activity that does occur. The proposal in [2] would

require construction of an underground detector. The next consideration is the con-



struction of a detector where we can expect reductions in both types of Newtonian

noise. We considered the construction of a submerged interferometric gravitational

wave detector. These postulations are not assertions that we should construct un-

derwater gravitational wave detectors, but rather ways to look and gain a better

understanding of Newtonian noise. Although the unsure fate of LISA raises ques-

tions about the where the future of gravitational wave detection lies.

We first derived the power spectra of Newtonian noise in terms of ambient pressure

fluctuations and after compiling various deep sea ambient noise studies we presented

the resulting spectra for atmospheric Newtonian noise from pressure fluctuations at

various depths and with varying levels of ambient noise. Additionally we looked

at the validity of our short wavelength approximation and subsequently performed

a long wavelength approximation in order to better determine the Newtonian noise

from pressure fluctuations. We also derived the Newtonian noise from seismic activity

and applied the result to the ocean floor. After analyzing a few studies of ambient

noise levels on the ocean floor we determined the associated Newtonian noise. We

found that the seismic noise on the ocean floor was lower than that on the surface,

which has beneficial implications for seismic isolation in submerged detectors. More

importantly the Newtonian noise from seismic activity was subsequently lower for a

detector on the ocean floor.

We also found that the Newtonian noise from pressure fluctuations in submerged

detectors could be lower than that in ground based detectors, but depended on the

depth and ambient noise levels. The ambient noise for pressure fluctuations seemed

to vary depending on one's location in the ocean, but given the choice of a quiet

location in the ocean and sufficient depth the Newtonian noise is on the same order

of magnitude as for ground based detectors. We argued that our approximation was

an overestimate of the Newtonian noise due to the breakdown of the short wavelength

approximation underwater. This leads to an overestimation because we considered

the coherent regions of pressure fluctuations around each test mass and added them in

quadrature. But as these coherent regions become larger, as the v, in water is greater

than in air, they begin to overlap. Note that for a stochastic process like pressure
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Figure 5-1: The Newtonian noise from pressure fluctuations and seismic activity in a
submerged detector, on the ocean floor at a depth of 4000m.

fluctuations the correlation of these regions will not amplify the signal. So we are

considering coherent regions that overlap and thus overestimating the Newtonian

noise from pressure fluctuations. This implies that the actual contributions will be

lower than what we calculate.

So the ideal submerged interferometric gravitational wave detector could be on the

ocean floor. Considering a depth of 4000 m, which is the average depth of the Pacific

ocean, we present the resulting Newtonian noise from both pressure fluctuations and

seismic activity. The results are shown in Figure 5-1.

Additional work that could be done includes accounting for atmospheric Newto-

nian noise without using short or long wavelength approximations but instead cal-

culating the correlation function between coherent regions. Additionally there might

be a number of additional contributions to the Newtonian noise in a submerged de-

tector that we might need to account for. Specifically it is possible that temperature

fluctuations in the ocean would contribute to pressure fluctuations, increasing the

associated atmospheric Newtonian noise.

We have presented an initial analysis of the sources of Newtonian noise that would

exist in a submerged interferometric gravitational wave detector and considering ideal

Acoustic Newtonian Noise at 4000m
..... ...... Seismic Newtonian Noise



ambient pressure and seismic noise we would likely see an improvement in the New-

tonian noise that limits low frequency detection in Advanced LIGO.



Appendix A

Reduced Transfer Functions

Recall that the reduced transfer function for a mode J is #j = -yfj#'. The attenu-

ation of the gravity gradient due to a height h above the Earth's surface is described

as Fj = exp(-wH/vj), where vj is the phase velocity of the J mode. For LIGO

test masses H - 1.5 m, the frequency of greatest concern might be f ~ 10 Hz and

we can assume that the dominant contributor to the noise in from the fundamental

Rayleigh mode, which for 10 Hz corresponds to v, _ 330 m/s [13]. This gives us

the attenuation factor of F ~ 0.75 for the fundamental Rayleigh mode. For all other

modes the v, associated with that mode will be higher and thus the attenuation factor

will be much closer to unity. So our approximation of F ~1 was not an unreasonable

approximation.

To help provide a connection between the work done in Chapter 3 and the actual

seismic Newtonian noise experiance at the LIGO detectors we present the reduced

transfer functions predicted for the Livingston and Hanford LIGO sites, as calculated

in [13]. Shown are the ranges of #' for different models of fundamental Rayleigh

modes. Also shown are the range of reduced transfer functions #L1 which corresponds

to models where the Rayleigh modes are considered alongside Love modes. If enough

Love modes mix with each Rayleigh mode then mode's anisotropy ratio, which can

be fairly high, would be reduced to an anisotropy ratio at the level of quiet times at

the LIGO sites. Values of the two reduced transfer functions discussed, beta' and #3L
are given in Table A.1.



Table A.1: The reduced transfer functions #' predicted for the Hanford and Livingston
sites, as calculated in [13], contrasted with our original estimate for #.

Original Derivation 1/ -4= 0.577
Modes Hanford #' Hanford #, Livingston #' Livingston #

RF f < 10 Hz 0.4-0.85 0.35-0.6 0.65-0.9 0.35-0.45
RF f > 10 Hz 0.85 0.6 0.65-0.9 0.35-0.45

RS 0.4-1.4 0.35-0.6 0.0-1.2 0.0-0.9
RP 0.0-0.15 0.0-0.15 0.02-0.13 0.01-0.06



Bibliography

[1] R. K. Andrew, B. M. Howe, J. A. Mercer, and M. A. Dzieciuch. Ocean ambient
sound: Comparing the 1960s with the 1990s for a receiver off the california coast.
Acoustics Research Letters Online, 3(2):65-70, 2002.

[2] M. Beker, G. Cella, R. DeSalvo, M. Doets, H. Grote, J. Harms, E. Hennes,
V. Mandic, D. Rabeling, J. van den Brand, and C. van Leeuwen. Improving the
sensitivity of future gw observatories in the 110 hz band: Newtonian and seismic
noise. General Relativity and Gravitation, 43:623-656, 2011. 10.1007/s10714-
010-1011-7.

[3] M. J. Buckingham. On surface-generated ambient noise in an upward re-
fracting ocean. Philosophical Transactions: Physical Sciences and Engineering,
346(1680):pp. 321-352, 1994.

[4] C. Cafaro and S. A. Ali. Analytical Estimate of Atmospheric Newtonian Noise
Generated by Acoustic and Turbulent Phenomena in Laser-Interferometric Grav-
itational Waves Detectors. 2009.

[5] S. Carroll. Spacetime and Geometry: An Introduction to General Relativity.
Addison Wesley, 2004.

[6] N. R. Chapman and J. W. Cornish. Wind dependence of deep ocean ambient
noise at low frequencies. The Journal of the Acoustical Society of America,
93(2):782-789, 1993.

[7] T. Corbitt et al. A squeezed state source using radiation pressure induced rigid-
ity. 2005.

[8] T. Creighton. Tumbleweeds and airborne gravitational noise sources for LIGO.
Class. Quant. Grav., 25:125011, 2008.

[9] S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajen-
dran. An Atomic Gravitational Wave Interferometric Sensor (AGIS). Phys.
Rev., D78:122002, 2008.

[10] J. E. Fix. Ambient Earth motion in the period range from 0.1 to 2560 sec.
Bulletin of the Seismological Society of America, 62(6):1752-1760, 2008.



[11] R. Gaul, D. Knobles, J. Shooter, and A. Wittenborn. Ambient noise analysis of
deep-ocean measurements in the northeast pacific. Oceanic Engineering, IEEE
Journal of, 32(2):497 -512, april 2007.

[12] M. A. H. Hedlin and J. A. Orcutt. A comparative study of island, seafloor, and
subseafloor ambient noise levels. Bulletin of the Seismological Society of America,
79(1):172-179, 1989.

[13] S. A. Hughes and K. S. Thorne. Seismic gravity-gradient noise in interferometric
gravitational-wave detectors. Phys. Rev., D58:122002, 1998.

[14] R. A. Hulse and J. H. Taylor. Discovery of a pulsar in a binary system. Astrophys.
J., 195:L51-L53, 1975.

[15] T. T. Lyons, M. W. Regehr, and F. J. Raab. Shot noise in gravitational-wave
detectors with fabry-perot arms. Appl. Opt., 39(36):6761-6770, Dec 2000.

[16] N. Mavalvala et al. Lasers and optics: Looking towards third generation gravi-
tational wave detectors. Gen. Rel. Grav., 43:569-592, 2011.

[17] M. A. McDonald, J. A. Hildebrand, and S. M. Wiggins. Increases in deep ocean
ambient noise in the northeast pacific west of san nicolas island, california. The
Journal of the Acoustical Society of America, 120(2):711-718, 2006.

[18] J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich.
Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev. A,
65(3):033608, Feb 2002.

[19] M. V. Moody, H. A. Chan, and H. J. Paik. Superconducting gravity gradiometer
for space and terrestrial applications. Journal of Applied Physics, 60(12):4308-
4315, 1986.

[20] M. V. Moody, H. J. Paik, and E. R. Canavan. Three-axis superconducting gravity
gradiometer for sensitive gravity experiments. Review of Scientific Instruments,
73(11):3957-3974, 2002.

[21] A. J. Perrone. Deep-ocean ambient-noise spectra in the northwest atlantic. The
Journal of the Acoustical Society of America, 46(3B):762-770, 1969.

[22] J. Peterson. Observations and modeling of seismic background noise. US Geol.
Surv. Open-File Rept., 93, 1993.

[23] M. Pitkin, S. Reid, S. Rowan, and J. Hough. Gravitational Wave Detection by
Interferometry (Ground and Space). 2011.

[24] P. Saulson. Fundamentals of Interferometric Gravitational Wave Detectors.
World Scientific, 1994.

[25] P. R. Saulson. Terrestrial gravitational noise on a gravitational wave antenna.
Phys. Rev. D, 30(4):732-736, Aug 1984.



[26] B. F. Schutz. Gravitational wave astronomy. Class. Quant. Grav., 16:A131-
A156, 1999.

[27] D. Shoemaker and the LSC. A comprehensive overview of advanced ligo.

[28] The LIGO Scientific Collaboration. GWINC (Gravitational Wave Interferometer
Noise Calculator), MATLAB script: accepts as input a parameters that describe
a Fabrey-Perot Cavity laser interferometer gravitational wave detector and esti-
mates the limiting noises.

[29] K. S. Thorne and C. J. Winstein. Human gravity-gradient noise in interferometric
gravitational-wave detectors. Phys. Rev., D60:082001, 1999.

[30] R. Wald. General Relativity. Physics/Astrophysics. University of Chicago Press,
1984.

[31] S. J. Waldman. The Advanced LIGO Gravitational Wave Detector. 2011.

[32] S. C. Webb. Broadband seismology and noise under the ocean. Reviews of
Geophysics, 36(1):105-142, 1998.

[33] G. M. Wenz. Acoustic ambient noise in the ocean: Spectra and sources. The
Journal of the Acoustical Society of America, 34(12):1936-1956, 1962.


