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Abstract

We propose a new method to detect intergalactic Lyman a emitter and absorber systems
by comparing broadband and narrowband images. The narrowband observations were car-
ried out with the Maryland-Magellan Tunable Filter (MMTF) at central wavelengths of
5120A and 5140A and pointing to the Chandra Deep field South. The broadband images
were obtained through the European Southern Observatory public database. Catalogues of
galaxies were constructed from all images, taking the R broadband as a reference for lo-
cating objects. Via color-color and color-magniude diagrams, and taking the Steidel et al.
color selection criteria as a reference, we were able to identify numerous Ly a emission and
absorption candidates. This serves as a proof of concept that narrowband absorption could
be used to mao the distribution of Lyman limit systems in 3D.
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Chapter 1

Introduction

Surveys of the intergalactic medium (IGM) have been previously done using spectra of

quasars (very bright active galactic nuclei (AGN) powered by the accretion disk of the black

hole at their center). However, these represent only a small percentage of the total galaxy

population (AGN fraction is between 0.1-3% at low redshifts [8]). In addition, obtaining

spectra from quasars only allows us to study the IGM in one dimension. Moreover, quasar

spectra has the disadvantage of being more expensive in terms of telescope time than galaxy

spectra. In contrast, it would be much more efficient to survey gas clouds by using galaxies,

given that they are more numerous, since we can find hundreds of galaxies per quasar. On

the other hand, the challenge presented by galaxies is their intrinsic faintness compared to

quasars, especially when taking spectra, and the fact that the ones we want to study are

located at large distances.

We are experimenting with a novel method to map IGM clouds in three dimensions using

narrowband imaging of galaxies instead of quasar spectroscopy. Using a variety of broadband

and narrowband filters, it should be possible to construct a catalogue of IGM clouds through

discrete slices in redshift by comparing the images.

The field we have chosen is the Chandra Deep Field South (CDF-S) which covers an

area of 0.11 deg2. This is the most studied field in the sky as it was probed by Chandra

X-Ray Observatory Survey [7], Hubble Ultra-Deep Field [3], Great Observatories Origins

.. .. .. .... .............. .................. mmmmm: .......... .



Deep Survey (GOODS) [6] and other prior redshift surveys.

Public imaging data in the optical range from the European Southern Observatory (ESO)

taken with broadband filters were used for this thesis project, in combination with images

from the Magellan Telescopes, using the Maryland-Magellan Tunable Filter (MMTF) at

narrowband widths. The innovative technique used in this project will allow us to observe

absorption line features at a higher contrast than we would by just using broad filters.

The first step of the analysis is to calibrate the photometric measurements coming from

the different instruments and filters, and register the images to each other. Then we will

identify the galaxies that will be used as background sources from examining the broadband

images. After that, we select those and measure their color against narrow band MMTF

images. We will find that some galaxies drop out of the narrow filters, and that is due to

IGM clouds absorbing radiation at that particular wavelength. Moreover, some galaxies will

appear especially bright in the narrowband filters and this can be attributed to Lyman oZ

emission lines. In this way, we can assemble a catalog of "drop-out" and emission galaxies

for each redshift we have available.

The IGM represents 95% of the total baryonic matter of the universe [14]. Even though

these clouds have very low densities, they still occupy a large volume. We are interested in

mapping the distribution of IGM clouds, drop-out and emission galaxies. This will provide

insight to answer deeper questions about galaxy formation as the conclusions we would draw

from a random IGM distribution or a physical correlation between IGM clouds and the

nearby galaxies will differ significantly.

The intergalactic matter, as its name suggests, is the matter filling the largely void spaces

between galaxies. It is a low density gas primarily composed of Hydrogen and Helium,

but it can contain traces of metals as they are expelled from the galaxies via supernovae.

The constituting gas of the IGM is highly ionized, having a neutral Hydrogen fraction of
nHI < 10-4 [13] as compared to the total Hydrogen available (ionized plus neutral). This

high ionization also contributes to the IGM's considerably high temperature of 3 x 104 K [13].

The ionization of the IGM occurs due to the high frequency light coming from 0 and



B stars, AGNs, and quasars. All these sources are energetic enough such as to produce

photons with at least 13.6 eV, capable of ionizing Hydrogen. This energy corresponds to a

wavelength of 912 A, which falls in the ultraviolet regime of the electromagnetic spectrum.

When the ionized IGM recombines back into neutral Hydrogen, it emits a Lyman a photon.

The Lyman a line in neutral Hydrogen spectrum corresponds to the electronic transition

from n = 2 to n = 1, which gives rise to the emission of a photon of wavelength A = 1215.67A.

However, Ly a emission photons coming from distant galaxies and quasars, suffer from

significant redshift on their way to the Earth due to the expansion of the universe, such that

they become observable in the optical regime.

Some of the most common sources of astrophysical Ly a are gas clouds surrounding 0

and B stars, which are among the most massive types of stars and consequently the ones

with the shortest lives. The larger the initial mass used in forming a star, the shorter its

life will be. A new-born massive star needs a high rate of Hydrogen fusion in its interior in

order to achieve enough pressure to prevent it from a subsequent gravitational collapse. In

this way, the star will run out of fuel more quickly than a lower mass star and eventually

undergo supernova to start the same cycle again. These types of stars are also the brightest,

so they have the ability of producing energetic photons in the UV, capable of ionizing the

surrounding the interstellar medium (ISM), thus emitting Ly a. Therefore, a Lyman a line

in a galactic spectrum is usually related to the instantaneous star formation rate [101.

For the case of AGNs and quasars, there is a black hole at the center with an accretion

disk around it. As matter spirals into the black hole and is accelerated in its way to the

center, it is heated through viscous accretion and emits blackbody radiation in the UV. The

light emitted in this scenario is sufficiently energetic to ionize the neutral Hydrogen near the

central engine, and thus we observe Ly a [10]. This is consistent with observations of highly

ionized Hydrogen in the surroundings of quasars and AGNs. [13].

Since the IGM has such low density and does not produce light of its own, the only way

to detect it through the absorption signature it leaves in quasar spectra. The Lyman a forest

is a series of absorption lines from neutral Hydrogen which are ubiquitous in quasar and high

I ............... ............. - - - --............. ............ ................... ............. .............



redshift galactic spectra. Despite the high degree of ionization in the IGM, the volume that

these photons have to cross in order to reach the Earth is so great that the probability of

finding a neutral Hydrogen atom to ionize is quite large. This is the reason why we observe

a "forest" of lines instead of a single absorption line. This particular distribution of spectral

lines shone light on the filamentary structure of the IGM.

Observationally, the Lyman absorber systems can be classified according to the column

density of the IGM. The lowest column density clouds NHI - 101 cm- 2 give rise to the

Lyman a forest. As we go higher in column density, we observe Lyman limit systems and

damped Lyman a systems.

Lyman limit systems (LLS) are absorption line systems with column densities NHI >

1017cm -2. LLS are optically thick to Hydrogen ionizing photons. These systems show an

absorption line at Aabs = 1216 x (1 + z8y,)A, where zsy, is the redshift of the LLS [15]. In

addition, there is a "blackout" (absence of lines/significant decrease of flux) blue-ward of the

rest frame wavelength of Amin = 912A, since a photon needs to have at least a wavelength

of 912Ato ionize Hydrogen. Figure 1-1 shows a composite quasar spectrum with marks on

important spectral lines.

Another important type of Lyman systems are the damped Lyman a (DLA) systems,

which are very strong absorbers with column densities of NHI ,5 1020 C- 2 [15]. On the

spectrum, the DLAs have very distinctive "wings" as they can be seen in figure 1-2.

In the next section we will describe the techniques used for the reduction of the narrow-

band and broadband images utilized in this thesis. In section §3, we explain the method

followed for obtaining catalogues of galaxies from the images and examining their colors in

order to classify them into Ly a absorbers or emitters. Section §4 discusses the results and

explores applications of this method which can be useful for future work. Finally, a summary

and motivation of the work done is presented.
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Figure 1-1: Sample LLS composite spectrum in its rest frame. Up
we can see the blackout. The Lyman series begins at the Lyman
absorption line is deep at 1216A. Source: [12]
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Figure 1-2: Spectrum of a damped Ly a system at z = 3.202. The best fit solutions indicate
the density of this cloud is NHI = 1020.65 cm-2. Source: [I 1]

......................... .. .. ........................................................................ ......... ....................................................... ........................... --.- ...........



........ ......



Chapter 2

Data Reduction and Techniques

Our data were taken in the direction of the Chandra Deep Field South (CDF-S) which

is centered at RA=3:32:28.0 , Dec=-27:48:30 (J2000), in the constellation Fornax, in the

Southern Hemisphere. It is 16' across, covering 0.11 deg2 of sky [7]. This region has been

thoroughly studied in the X-ray, as it was chosen to be part of an ultra deep survey with

the Chandra X-Ray Observatory, particularly because of the low occurrence of dust and gas

from the Milky Way in that direction.

For this thesis, the CDF-S was observed with the Magellan Baade Telescope at two

narrowband filters, and compared to public broad band data from the European South-

ern Observatory 2.2m Telescope. In this section, we explain the instruments involved in

observations and the data reduction pipeline.

2.1 MMTF images

The Maryland-Magellan Tunable Filter (MMTF) is a tunable narrowband imaging filter

designed for the Inamori Magellan Aeral Camera and Spectrograph (IMACS) at the Magellan

Baade 6.5m Telescope, located at Las Campanas Observatory, Chile. Tunable filters are

particularly useful for distinguishing faint signals from the noise coming from the sky [19],

such as Lyman a emission line signatures.

.......... .......... .....



IMACS is a wide-field imager whose transmitting spherical collimator, shown in figure 2-

1, produces a 24' diameter field of view and a slightly vignetted 30' diameter field [5]. The

short camera's field of view is spanned by 8 chips and has a 8192x8192 CCD array and a

0.2 "/pixel plate scale.

The MMTF is a Fabry-Perot type filter composed of two parallel glass plates with high

reflectivity surfaces, separated by an air gap. The system is known as an etalon. The width

of the gap ranges between 5A and 15A [19]. By adjusting piezo-electric stages, the central

wavelength of the filter can vary from 5000A to 9200k

The filter has a varying transmission function due to the interference of light rays between

the plates. When a light ray enters the etalon it can pass through the second plate or it can be

reflected from it. The phase difference after reflection should equal a multiple integer of the

wavelength, such that there can be constructive interference at the detector. Equation 2.1

explains how constructive interference is achieved by fixing the path travelled by the reflected

ray to a wavelength change of phase of 27r. In this equation, d is the spacing between the

plates, m is a non-zero positive integer called the "order number" and AT is the wavelength

of the transmitted light.

md
2dm = 27rA =# AT -m (2.1)

7

Since 1 < m < oo, the transmission function will look like a series of sharp peaks at

the A values corresponding to m's. The effect of changing the size of the gap is to change

the spacing between the m's in the transmission curve, thus allowing for a wider selection

of narrowband filters in a single apparatus. Additionally, a broad band filter whose range

includes the narrowband filter of interest, must be placed in the detector such that it blocks

the transmission from the unwanted order numbers.

Due to the geometry of the filter, the interference pattern forms in the gap between the

plates. Specific wavelengths are imaged according to their radial distance from the optical

axis, i.e. the axis traversing the center of the plates. Incoming rays along the optical axis

will be mapped near the center of the CCD, while those rays coming off-axis (and thus



traveling a distance dcosO across the plates instead of simply d, where 0 is the off-axis angle)

will be mapped at a radial distance which correlates to the incidence angle. As a result,

the wavelength will vary slightly from the center of the CCD, going outwards. Higher order

interference must be eliminated in order to minimize the variation of wavelength and obtain

nearly monochromatic images.

,% T 1 -*-F

'i F~f 10 ,.

COLM CT

L 

1ffR M.fC'
IF'- 71fr.CkAj

Figure 2-1: Schematic of IMACS camera and MMTF filter. Light comes from the left, crosses
the field lens, gets focused by the collimator and then enters the etalon (MMTF). Filtered
light then goes to the short camera, crosses another filter and ends up in the detector. [19]

The observations were carried out during observing runs on December 2007 and October

2008, with narrowband filters centered at 5120A and 5140A to the Chandra Deep Field

South region by Prof. Rob Simcoe (MIT) and Ben Weiner (U. Arizona). Therefore, the field

was imaged at redshifts of z = 3.211 and z = 3.227, respectively. More detailed information

about the observations can be found in table 2.1.

............... .. .... ............ .



Table 2.1: MMTF Observations

Filter name Observation date Exposure time Seeing Number of stacked images
5120 300CT2008 1500 s 0.605 17
5140 14DEC2007 1800 s 0.712 27

MMTF image calibration

The standard MMTF data reduction pipeline can be found at http: //www. astro. umd. edu/

-veilleux/mmtf/datared.html.

For any image calibration pipeline, the basic frames used are bias, flat fields and dark

frames. Bias are zero-second exposures taken with the shutter closed. These measure the

electronic zero-point offset which is intentionally added to the CCD counts. Flat fields are

images taken with the shutter open pointed at a homogeneously illuminated area, such as the

dome of the observatory or a part of the sky during astronomical twilight. These images show

the relative sensitivity of each pixel to photons. Darks are images taken with the shutter

closed for the same duration as the science frames, which estimate the thermal motion of

electrons on the CCD. Dark frames are not required for image calibration if data is taken

from large telescopes, such as the Magellan, since these have efficient cooling systems which

render dark current negligible. Bias and flat fields, however, are always required.

The first steps toward data reduction were bias subtraction and flat fielding. Bias and

flats were combined into a masterbias and a masterflat. Flats were normalized to unity with

respect to the image's central region. Bias were subtracted from all images and bias-corrected

science images were divided by the bias-corrected flat fields, as shown in equation 2.2:

Final image = F-Z (2.2)

where S is science image, Z is bias (or zero) frame, and F is flat field.

The next step was cosmic ray and bad pixels masking. Traditional methods of cosmic

ray detection are based on the contrast between bad pixels and their surroundings, but

occasionally the cosmic rays are larger than the point spread functions (PSF) used to model



stars and galaxies, and they may get overlooked. Instead, a more robust method to identify

cosmic rays in an image is the Laplacian Edge detection routine for IRAF (LA Cosmic)

developed by Pieter van Dokkum [18]. The routine convolves the image with the Laplacian of

a Gaussian function, thus matching the zero-crossings (points where the Laplacian changes

sign) of the image and the Laplacian. The standard deviation is used to determine the

smoothness of the edge. Occasionally, there will be cosmic rays left unmasked after LA

Cosmic. However, it would be rare for LA Cosmic to miss a cosmic ray completely. Therefore,

with a cosmic ray detected but poorly masked, one can apply an IRAF task (crgrow) in order

to expand the mask by a single pixel in every direction.

The sky was azimuthally averaged (averaged over equal radii rings) given the mapping

correspondence of CCD pixels to focal plane and the location of the optical axis. Subse-

quently, astrometry solutions were required to join the 8 chips composing the CCD. Since

the IMACS camera has a small f-ratio and hence a wide field of view, the mapping of field

of view to sky is nonlinear at large field angles. The higher order polynomial terms of these

solutions are known a priori from crowded star field observations taken by the MMTF in-

strument team. An absolute WCS was obtained by matching the catalogued positions of

known US Naval Observatory (USNO) stars to image position on the focal plane. These

offsets, calculated on a frame-by-frame basis, were used to register the multiple exposures

into a single, deep composite for each setting of the etalon.

Using the astrometric solutions, the chips were combined into a multi-extension FITS

file (MEF). In a similar fashion, all the bad pixel maps were combined into a single one per

exposure. Consequently, a stellar catalogue was obtained. This catalogue excluded stars

farther than 3500 pixels from the center and with magnitudes outside the range 10 < mag <

19 [19].

Model PSF catalogues were matched to the stellar catalogue in order to obtain a mode

seeing value, which was inserted into the header. With this information, frames were de-

graded to match the one with the largest seeing. Finally, frames were stacked in two groups

with central wavelengths 5120 Aand 5140 A settings of filters. A sample reduced FITS

............. : .... ......................



frame is shown in figure 2-2.

2.2 ESO images

Broadband images of the CDF-S were taken at the MPG/ESO 2.2m Telescope and the ESO

New Technology Telescope (NTT) at the La Silla Observatory in La Serena, Chile, under

Program-ID No. 164.0-0561 with the Wide Field Imager (WFI) camera [1]. The WFI

camera has a field of view of 33' x 34' and a pixel scale of 0.24 "/pixel [2]. These images

were used for background subtraction and to select high-redshift objects. Fully calibrated

and reduced images in UBVRI filters from CDF-S were downloaded from the European

Southern Observatory public database. More information about the images and the filters

can be found in tables 2.2 and 2.3, respectively.

Table 2.2: ESO Observations [9]

Filter name Observation date Exposure time Seeing Limiting magnitude # Stacked images
U 260CT2000 47595.50 s 0.98 55
B 260CT2000 24546.85 s 1.02 - 30
V 260CT2000 9247.29 s 0.97 27.75 33
R 260CT2000 9247.30 s 0.86 25.5 33
I 05NOV1999 26926.40 s 0.93 26.75 46

Table 2.3: Central wavelength and full width at half maximum
mission function of the I filter depends on the response of the
only approximate. [9]

Filter Central Wavelength Width
U38 3636.90 A 382.6 A
B99 4562.52 A 990.14 A

V/89 5395.62 A 893.86 A
Rc/162 6517.25 A 1621.84 A
Ic/Iwp 7838.45 A 400 A*

of ESO filters. * The trans-
CCD, therefore the value is



(a) A 0.14

(b) A 2 x 10- 4 deg2

Figure 2-2: Combined image for 5120 filter. Figure 2-2(a) shows the entire field of view
of the IMACS camera and figure 2-2(b) is a zoomed-in region. The number of galaxies in
an area about a thousandth of the original suggest the large depth of the image. Areas are
approximate.

. .................... ........... .................. .. .... .1 .......... .......... -

deg 2



2.3 Image cross-registration

A catalogue of star positions in right ascension and declination was obtained from the MMTF

images using IRAF. These coordinates were then transformed to pixel positions in x and y

and accurately centered on the stars. The same procedure was applied to the ESO frames.

However, while the ESO images had a square field of view, the MMTF images were circular.

Therefore, the star catalogues found from ESO were constrained to only include stars within

the circumference of the MMTF frames, such that the catalogues would match.

To register the ESO images with respect to the MMTF frames properly, an IRAF routine

was applied to find solutions for the transformation of the coordinate systems such that both

(x,y) positions on the images and world coordinates would match. The reference image for

the transformations was the ESO R filter. This choice was made because selection of high

redshift galaxy candidates is usually defined with respect to R [16]. Finally, the solutions

were applied and the new registered images generated. Figure 2-3 shows a sample registered

ESO image.



(a) A - 0.31 deg 2

(b) A 9 x 10-4 deg 2

Figure 2-3: Figure 2-3(a) shows the entire field of view in the R filter and figure 2-3(b) is a
zoomed-in cut-out region. Areas are approximate.





Chapter 3

Analysis

Our analysis consisted of extracting magnitudes in broadband and narrowband images and

comparing them to find Ly a emitters and dropouts. For this end, we used the industry-

standard Source Extractor software to perform photometry.

Source Extractor is a robust software which can identify and analyze galactic sources

directly from the image. First, SExtractor tries to estimate the value of the sky background

by subdividing the image into smaller grids and estimating the local sky background. Then,

it takes the sky values from all the smaller grids and combines them around their median.

The object detection is done by convolving a point spread function with the section

of the image in question. This method is called "thresholding" and does not distinguish

between stars and galaxies until the end. This method works remarkably well with low

surface brightness objects, as compared to peak detection, which is more accurate for stars.

Given the abundance of low surface brightness objects, it is indeed likely that two or more

may appear blended. In that case, a multiple isophotal analysis technique is performed by

which the connected pixels are thresholded again at exponentially spaced brightness levels

(i.e. thresholded at different magnitudes). From this, the objects will be separated if their

integrated pixel intensity is greater than a determined fraction of the total intensity of the

blended objects.

After all detections have been made and deblended, it is important to filter them since

........... ......... ......



false positives are usually found around very faint objects. The way to solve this problem is

by trying to prove that even if the surroundings had been clean, the detection would had still

been made. The contribution of the suspected false detection to the mean surface brightness

of the neighbors is calculated and subtracted form the mean. If the brightness of the object

falls above the surface brightness threshold, then the object is accepted into the catalogue.

SExtractor also calculates the total magnitude of all objects in the catalogue. The method

used was adaptive aperture photometry, which consists in taking an elliptical aperture,

approximately equivalent to two isophotal "radii", and calculating its first moment, i.e. its

expectation value. No correction was applied to the initial magnitude results. [4]

The ESO image in the R band was used as a reference for finding objects and defining

isophotal apertures. Magnitudes in other bands were extracted using identical apertures

for calculating colors. For this end, we ran SExtractor first on the R band image only and

were able to build a catalogue from the objects in this filter. Using the vector association

function (ASSOCVECTOR), we were then able to run SExtractor simultaneously on two

images with the R band catalogue for source detection and a second image in a different

filter for measuring magnitudes. The program ran through the R band catalogue to define

the (x,y) coordinates of each galaxy, then found the same objects in the second image. After

performing photometry on the galaxies from the second image, SExtractor compiled a single

catalogue of objects appearing in both images and its corresponding magnitudes. In the case

that SExtractor was not able to match an object from the R catalogue to the second image

(probably because the object was not bright enough in that filter), it gave a magnitude of

99, clearly indicating an error. This same procedure was applied for the combinations of R

and V band, R and I band, R and 5140A, and R and 5120A. The raw number of galaxies

found through this routine exceeded 130,000.

Figure 3-1 are histograms of source counts for the R, V, and I filters for objects detected

in R. The peak from V magnitude is not shown, but it reaches - 27.75 mag. The peak in

the histograms indicates the detection limit at each filter. As we can see more clearly in

figure 3-1(a), the drop in number of galaxies happens after ~ 25.5 mag. SExtractor still

............ ............ ............................
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Figure 3-1: Histograms for the three broadband filters used to determine the color selection
criteria. The peak determines the limiting magnitude of the filter, therefore, it gives us an
idea of reliability from the colors we may be detecting.
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gave us magnitude values beyond the detection limits, so these plots are very important to

distinguish between real detections and false positives. The scatter at low magnitudes is due

simply to the lower occurrence of bright nearby galaxies.

Steidel et al. explains a method to select high redshift galaxies from a color-color diagram.

Their analysis uses G, R and I filters. The G filter has a central wavelength of 4830A, which

is -565A bluer than the V filter used in this study (CWLv = 5395A). The R filter was

specifically designed for the Steidel et al. analysis to be an intermediate filter between R

and I, centered at 6930A. As a reference, R and I filters have central wavelengths of 6517A and

7838A, as previously shown in table 2.3.

Colors are computed by subtracting magnitudes. Equation 3.1 describes how magnitudes

and colors are calculated, where FR is the flux in R and F, is the flux in I.

R - I= -2.5 ogio( ) (3.1)
F1

Galaxies bluer on R-I and simultaneously redder on G-R were candidates for high redshift

galaxies according to Steidel et al. Bluer color of R-I indicates a stronger flux coming from

R filter than I filter and similarly, a redder color in G-I suggest a stronger flux coming from

the I than from the G filter. As we go higher in redshift, the galaxy spectrum, as the one

shown in figure 3-3, shifts to the right towards longer wavelengths. Making the parallel

between their G and our V filters, their R and our R, and the I filters, this means that the

Lyman a emission line will move across our V filter, eventually leaving it to enter the R

filter regime. Therefore, as the spectrum becomes brighter in R than in V, the V-R color

becomes positive and increasing with redshift. This is the reason why the selection window

for high redshift galaxies in Steidel et al. and in our study, corresponds to the top left of the

color-color diagram shown in figure ??.

It is worth noting the slight difference in filters when comparing figures 3-2(a) and 3-2(b).

Since their R filter is a compromise between R and I, the R-I color appears bluer in their

diagram since the R and I filters are closer together, whereas R-I in our study looks redder

given the larger wavelength spacing between the filters.
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(a) Steidel et al. color selection criteria.

Color-color diagram

-1 -0.5 0 0.5 1 1.5 2 2.5 3
R-1

(b) Color-color diagram of galaxies found in CDF-S.

Figure 3-2: Color-color diagrams as determined by Steidel et al. and our study. The central
wavelength of the filters used in both cases changes slightly, and therefore so does the general
shape of the dispersion plot. High redshift galaxies are shown in the upper left.
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Figure 3-3: Sample galaxy spectrum with BVRI and narrow bands 5120A and 5140A. Figure
credit: Kathy Cooksey.

Figure 3-3 shows a sample galactic spectrum at redshift z = 3.211 and the wavelengths

along which the broadband filters lie. It is clear in this plot to see the Lyman a emission line

and how the narrowband filters relate to the line. The Lyman a forest are the absorption lines

to the left of the emission line, and the part of the spectrum to the right of the Ly a line is

due to stellar light. The U filter lies too far left, so it does not appear in the sample spectrum

anymore.

Since both narrowband filters, 5120A and 5140A, are contained within the V filter, they

are useful to detect sharp features in the galactic spectra. Figures 3-4(b) and 3-4(a) are

color-magnitude diagrams which give information about these sharp features within the V

filter.

As we can see in figure 3-4, galaxies are centered around zero V-5140A color, meaning

that most of them have a magnitude in the narrowband approximately equal to that in

the wide band, thus showing no outstanding features in their spectra. Those galaxies lying

above the zero V-5140A color line show more flux in the narrowband than in the wide band,

which indicates the presence of a Lyman a emission line. These galaxies are particularly

interesting since Lyman a emission is a sign of a star formation region. Conversely, the

galaxies lying below the zero V-5140A color line show less flux in the narrowband than in



the V band, which indicates the narrowband filter falls on the Lyman limit system region of

the spectrum, denoting these galaxies as Ly a absorbers. This further indicates the presence

of a cloud of intergalactic matter between the absorption galaxy and us.

We selected galaxies with a V - 5120A or V - 5140A colors to be greater than 1 or less

than -1, so as to admit Lyman a emitter systems and Lyman a absorbers, respectively.

From a sample of 1000 galaxies, we chose the 10 emitters and absorbers which seemed more

interesting. Figure 3-5 shows an example of 5 emitter systems, located at the center of each

frame. The frames are organized by filter, where R, V, I are the first three in that order,

followed by 5120A and 5140A. Figure 3-5(a) shows a galaxy visible in R and V, quite faint

in I and especially bright in 5140A. In the next figure, 3-5(b), we can see a galaxy in the

R and V filters located at the center, again fainter in I and brighter in 5140A. In addition,

there are two galaxies in the lower right of the 5140A frame that are barely visible in all

other filters. Therefore, we have found 3 Lyman a emitter candidates in one frame. In

figure 3-5(c), the galaxy is very faint in all three broadband filters, and becomes very bright

on 5120. Figure 3-5(d) show a galaxy brighter in 5140A than in the V filter. It is possible

that this candidate is an AGN given that it looks like a point source. Finally, figure 3-5(e)

appears to be very faint in V and I filters, and then its brightness spikes at 5120.

For the case of the absorber systems, figure 3-6(a) shows a faint galaxy in the center of the

R magnitude frame, which is brighter in V and I filters, but then completely disappears at

5120A and remains very faint at 5140A. This suggests an absorption line at 5120A. Figure 3-

6(b) is centered around the upper right galaxy in the quadruple system. It is possible that this

image may be only one gravitationally lensed galaxy. The top two galaxies, while bright in

R, V, and I filters, get fainter in 5120A and the one in the right almost completely disappears

in 5140A. Figure 3-6(c) is centered about the lower galaxy from the center pair, and we can

see it dropping out of the 5120A frame. Figure 3-6(d) shows a galaxy in all broadband filters

which then disappears in 5120A and appears fainter in 5140A. Paying closer attention to

5140A, we see a candidate for a Lyman a "blob", which are enormous (~100 kpc) Lyman a

emitter gas clouds only seen at high redshifts. This kind of objects spark interest because

............
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Figure 3-4: Color-magnitude diagrams for narrowband colors at 5120A (figure 3-4(a)) and
5140A (figure 3-4(b)). The spread in the data increases as we go higher in V magnitude, due
to the intrinsic faintness of higher redshift galaxies, and thus lower signal-to-noise ratio.
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Figure 3-5: Ly a emitters
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they have been very little studied, as they were only discovered in 2000 by Steidel et al. [17].

The mechanism for the emission is unknown. Finally, figure 3-6(e) shows a galaxy which

seems to be a LLS in 5120A and another galaxy on top and to the right of the central one,

which does not appear in any of the broadband filters, possible due to intrinsic faintness,

but it appears very bright on the 5140A filter thus indicating that it is a Ly a emitter.

Table 3.1 provides information about the magnitude of the galaxies in each filter and the

two narrowband colors from the selected galaxies.

Table 3.1: Magnitude and color information about the selected galaxies in figures 3-5 and 3-6

Lyman system V mag V - 5120A V - 5140A
25.12 0.73 1.83
24.61 0.89 0.77

Emitters 27.08 2.56 -0.02
25.70 0.91 1.42
24.80 1.56 0.66
24.68 -1.09 -0.14
24.80 -0.39 -2.00

Absorbers 24.39 -1.17 -0.53
25.45 -1.40 -0.52
23.93 -1.03 -0.66
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Figure 3-6: Ly a absorbers
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Chapter 4

Discussion and Future Work

The IGM is mostly unexplored territory. The fact that IGM clouds can only be observed

through absorption on the spectra from background objects, adds difficulty to its study.

However, these clouds are very important since understanding them will take us a step

further towards understanding how galaxies form.

With this thesis, we tried to find emission and absorption systems in a different way than

using quasar spectroscopy. From our search we have successfully found Lyman a emitter and

absorber candidates. Further tests are needed in order to confirm that the absorber systems

are in fact Lyman a, and not another transition from a lower redshift galaxy, like OII for

example (Rest wavelength: Aorr = 3727A). The spectrum of a galaxy, as that in figure 1-1,

shifts to the right as the redshift grows. The possibility remains that the excess brightness

in the narrowband as compared to the broadband filters, could signify a different emission

line at a slightly different redshift.

It is not possible to study the low-density Lyman a forest with our filter set because the

equivalent width of the forest spectral lines is too small, and even our narrowband filters are

too wide for that case. As we can see in equation 4.1, since the rest frame equivalent width

is in the order of 0. A, this value multiplied by the redshift of our galaxies, yields numbers

still in the order of 10-1 which are two orders of magnitude smaller than the width of our

narrowband filters ~ 15A (Simcoe, personal communication). Therefore, there would not

...............................



be enough contrast between the depth of the absorption line and the total flux coming into

the filter. We would need narrower filter, in the order of ~1Aor less.

However, for the case of Lyman limit systems, this method proves to be viable. The

equivalent width of absorption lines from an LLS goes from 1 to a few Angstroms. As seen

in equation 4.2, if we take for example an equivalent width of 3A we find that when redshifted

to z = 3.2, it will be about 9.9A wide. As opposed to the Lyman a forest case, this width

is comparable to the width of our narrowband filters, and therefore medium density LLS

become detectable with our approach.

WLy aforest ~ O.1A X (1 + 3.2) O.4A (4.1)

WLLS ~ 3A x (1 + 3.2) ~ 9.9A (4.2)

Our knowledge of Lyman limit systems is limited. It is important to know the dimension

of Lyman a emission and absorption systems as well as their rate of occurrence, since these

factors would lead us to have a better grasp on problems related to galaxy formation.

We would also want to find absorption systems where the gas halo of a foreground galaxy

absorbs the light coming from a background quasar. Observationally, both galaxy and quasar

would appear close to each other in a broad band image, but only the galaxy would be visible

in the narrowband image, assuming the narrowband filter includes the wavelength of the Ly a

absorption line. In this way, the light coming from the background quasar, on its way to the

Earth, will travel across large volumes of diffuse IGM (which give rise to the Ly a forest)
and eventually go through a galactic gas halo (shown as a Lyman a absorption line in the

spectra). The occurrence of this type of systems will shine light on the location of galaxies

within the IGM filaments.

If this method becomes automated, then it would have the potential of becoming a

powerful tool for detecting Lyman a systems. For this thesis we managed to do the absolutely

necessary to prove the method. However, in the time allotted it was not possible to try to

improve it. There is still an important personal component when selecting candidate galaxies.
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Summary

We proved that it is possible to use broadband and narrowband images to detect Lyman

absorption and emission systems. This is a fundamentally different methodology from quasar

spectroscopy, which has been done for decades. By using galaxies rather than quasars, we

get hundreds of samples per field, rather than only a few.

Narrowband images and broadband images from the Chandra Deep Field South were

compared in order to see contrast between these in such a way that the higher or lower

brightness in the narrowband filters, as compared to the broadband, would indicate the

detection of a Lyman emission or absorption system, respectively. The narrowband images

were taken with the MMTF at central wavelengths of 5120A and 5140A. The broadband

images were obtained from the European Southern Observatory in UBVRI filters, although

ultimately we only used VRI.

The images were registered to each other, taking the R band as a reference. Once

the coordinates were matched, we proceeded to use SExtractor, a standard software which

produces a catalogue of galaxies based on the images alone. SExtractor yielded more than

130000 galaxies. From these we excluded all the ones which appeared to have a magnitude

beyond the detection limit.

Examining the broadband colors we found a galaxy distribution similar to that of Steidel

et al. [1(]. The narrowband colors helped us further select the possible Lyman o emitter and

absorber candidates. Those galaxies which looked brighter in the narrowband than in the

broadband were Lyman a emitter candidates, whereas the galaxies visible in the broadband,

but significantly fainter in the narrowband were Lyman a absorbers.



In conclusion, our narrowband imaging method has given its first positive results, since

we were succesfully able to identify Lyman a candidates by comparing the narrowband

to the broadband images. This forms the basis for followup sprectroscopy to confirm the

method. More work remains to be done with the details of target selection, but this shows

that narrowband imaging is a viable way to map absorption systems over large fields of view.
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