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Abstract

Radiation therapy is an important component of pediatric brain tumor treatment.
However, radiation-induced damage can lead to adverse long-term health effects.
Proton therapy has the ability to reduce the dose delivered to healthy tissue when
compared to photon radiation therapy, but this dose benefit comes at a significantly
higher initial cost, as proton therapy is 2 to 3 times more expensive to deliver than
photon therapy.

This thesis provides a framework for the evaluation of health and cost effective-
ness of proton therapy compared to Intensity Modulated Radiation Therapy (IMRT).
Proton therapy and IMRT treatment plans of patients treated for low-grade gliomas
(LGGs) were analyzed to provide risk estimates of long-term health effects based on
the dose distributions. A Markov simulation model was developed to estimate the
health effects and costs of proton therapy and IMRT. The model tracked a pediatric
cohort treated for LGGs at age 5. In the model, the patients were at risk of acquir-
ing IQ loss, growth hormone deficiency (GHD), hypothyroidism, hearing loss, and
secondary cancer. Patients faced risks of death due to tumor recurrence, secondary
cancer, and normal death. In addition, a review of literature was performed to esti-
mate the costs and additional health risks not determined from the patient treatment
plans.

The simulation results show that proton therapy can be cost effective in the treat-
ment of LGGs based on the health risks estimated from the patients treatment plans.
The cost associated with IQ loss and GHD were the main contributors to the total
costs from long-term health effects. Proton therapy also results in a lower level of IQ
loss and a lower risk of acquiring other long-term health effects. However, the relative
difference in IQ point loss between the treatment modalities is small in the limited



number of patients studied. There is a need to further investigate the advantages of
proton therapy in reducing the dose delivered to the relevant parts of the brain to
lower the risks of adverse health effects, especially for IQ loss.
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Title: Senior Research Scientist

Thesis Supervisor: Jacquelyn C. Yanch
Title: Senior Lecturer
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Chapter 1

Introduction

Cancer is a leading cause of morbidity and mortality in the United States, accounting

for nearly 1 in every 4 deaths. [1] In 2008, the cost of health expenditures for cancer

care was $93.2 billion, accounting for roughly a third of the total health expenditure

in the U.S. of $2.93 trillion [1] [2]. Radiation therapy is an important aspect of cancer

treatment, used for approximately half of all cancer cases and often in conjunction

with chemotherapy and surgery [3] [4]. Innovations in radiation therapy have led to

more advanced radiation technologies, resulting in increased survival and improved

quality of life for patients [5]. Proton radiotherapy and IMRT improve radiation

therapy by targeting the dose to the tumor and minimizing the dose delivered to

healthy tissue.

The support for proton therapy is based on the improvement in dose distribution

that protons can provide [6]. Since radiation to healthy tissue is correlated with

adverse health effects, treatment plans always aim to reduce radiation dose outside

of the tumor volume. Due to their physical properties, protons are theoretically

better able to target the tumor while significantly sparing healthy tissue compared

to photons used in conventional radiation treatment.

The most advanced form of photon therapy is Intensity Modulated Radiation

Therapy (IMRT). IMRT changes the fluence of the beams to target the tumor and

spare the surrounding healthy tissue. [7] IMRT provides a high degree of control over

the dose distribution to tumor and healthy tissue by modulating the intensity of the



photon beams, using cutting-edge optimization algorithms and multileaf collimators

systems (MLCs) to shield and reduce the dose delivered to the tissue around the

tumor.

Studies have shown that proton therapy spares more healthy tissue than IMRT

during treatment. [8] [9] [10] However, proton therapy is more expensive than IMRT

(estimates range from 30-500% more expensive), and questions remain regarding

whether this cost is justified in terms of both short and long-term health improve-

ments. [11] [12] Some state that proton therapy is projected to remain always more

expensive than photon therapy, even with improvements in technology and learn-

ing. [12] Systematic reviews of the effectiveness of proton therapy in clinical practice

point to the need for more research into the clinical and cost effectiveness of proton

therapy. [13] [14] [15] After 30 years of proton therapy use, there appears to be no

extensive randomized clinical evidence that protons provide better health outcomes

than photons, except for ocular, brain, and pediatric tumors. [16] Even within the

tumor types for which proton therapy is more effective, additional studies are needed

to quantify the extent of the health and cost benefits.

This thesis addresses the need for evaluating the long-term health and cost effec-

tiveness of proton therapy. The goals of this thesis are three-fold:

1. To provide a framework to estimate the long-term health effects and costs of

proton therapy compared to IMRT.

2. To test if proton therapy reduces long-term health effects when compared to

IMRT by analyzing patient treatment plans and modeling.

3. To determine whether the difference in risk of long-term health effects, calcu-

lated from the patient treatment plans dose-volume data, leads to an overall

reduction in costs for proton therapy.

Since proton therapy is significantly more expensive than IMRT, questions remain

regarding whether this cost is justified in pursuit of both short-term and long-term

health improvements. The thesis addresses the following research questions:



1. Based on the difference in dose distribution between proton therapy and IMRT

treatment plans, to what extent is proton therapy able to reduce the risk of

adverse health effects?

2. Using the framework developed in this thesis, is proton therapy more cost-

effective than IMRT for the treatment of pediatric low-grade gliomas when

long-term morbidities are considered?

To limit the scope of this thesis, the assessment will be focused on the use of pro-

ton therapy for the treatment of pediatric brain tumors. Radiation therapy irradiates

healthy brain tissue, and it is imperative to limit the dose delivered to the healthy

brain to lower the risks of adverse health effects. Children are a particularly difficult

population to treat as they are more sensitive to radiation and more likely to expe-

rience adverse health effects. [17] [18] The treatment of pediatric brain tumors using

radiation can lead to severe health effects such as endocrine abnormalities, hindrance

of growth, and impaired neuropsychological development. [17] [19] Since pediatric pa-

tients are likely to become long-term cancer survivors, post-treatment complications

may be chronic and costly. As a positive correlation exists between adverse health ef-

fects and dose/volume delivered to healthy tissue, pediatric patients could potentially

benefit from the improved dose distribution offered by proton therapy. [19] [20]

The target audience for this thesis is the four main stakeholders in the treatment

of pediatric brain tumors using radiation therapy: patients, physicians, payers, and

politicians. Patients are interested in receiving the best treatment available and will

want to know what benefits in health effects can be expected from proton therapy.

Payers (i.e. insurance, Medicaid, or out-of-pocket) and politicians will be interested in

the cost-effectiveness analysis to determine whether proton therapy is a worthwhile in-

vestment. This thesis provides a framework for comparing proton therapy and IMRT

to aid the stakeholders in deciding which treatment method is most appropriate.

Chapter 2 provides background information on the history and physics of pro-

ton therapy and IMRT. Chapter 3 provides a review of literature on the risk of the

long-term health effects after radiation treatment for low-grade gliomas (LGGs). The



chapter focuses on IQ loss, growth hormone deficiency (GHD), hearing loss, hypothy-

roidism, and secondary cancer. Chapter 4 covers the methodology of the evaluation,

detailing how the Markov model simulating two groups of patients treated with pro-

ton therapy and IMRT respectively was designed and how the risks and costs of each

long-term health effect were determined . Chapter 4 also explains how the patient

treatment plans were analyzed. Chapter 5 describes the estimated health effects

from the treatment plan analysis and results of the model simulations based on the

health parameters of each patient. Chapter 6 summarizes the results, pointing out

the limitations of this framework and proposing areas for future work.



Chapter 2

Radiation Therapy Background

This chapter provides an overview of radiation therapy. A short history of radiation

therapy is covered, with a focus on the development of proton therapy and IMRT.

Section 2.2 discusses the differences between the two treatment modalities. Finally,

a review of the physics and biology of radiation therapy is included.

2.1 History of Proton Beam Therapy and Inten-

sity Modulated Radiation Therapy

Radiation therapy is a form of cancer treatment that uses radiation to destroy malig-

nant cells, and proton beam therapy is a form of radiation therapy that uses protons.

Physics research has led, directly and indirectly, to many advances in radiation ther-

apy. With the discovery of x-rays in 1895 by Wilhelm Conrad Roentgen (who went on

to win the Nobel Prize for his discovery), it was a matter of months before radiation

began to be used as a cancer treatment. [21] In 1919, another Nobel Prize winner,

Ernest Rutherford, showed the existence of protons by bombarding light elements

with alpha particles, generating fast protons in the process. [22] This discovery, cou-

pled with Ernest 0. Lawrence's (also a Nobel prize winner) invention of the cyclotron

- a machine able to accelerate charged particles to very high energies - in 1931, cre-

ated the basis for proton beam therapy. [23] The theory of proton beam therapy was



developed in 1946 when physicist Robert Wilson published a study suggesting the

potential benefits of protons in delivering a higher dose of radiation to the tumor

while reducing the dose to the surrounding healthy tissue. Advances in imaging tech-

nologies in the 1980s allowed proton therapy (which requires precise location of the

tumor) to become a viable treatment option.

The mid-20th century proved to be a productive time for cancer treatment, es-

pecially for radiation therapy. A particularly pivotal year was 1937, when cancer

caught the American public's interest, with Fortune, Life, and The New York Times

publishing articles and reports calling for a great need for action against cancer. [24]

The U.S. Congress promptly passed the National Cancer Institute (NCI) Act on July

23, 1937, creating a new body to organize cancer research and education in the U.S.

The first hospital-based clinical use of photon therapy was performed at University

of California Berkeley (UC Berkeley) on a patient with leukemia. [23] UC Berkeley

would also be the first to conduct animal and human proton therapy experiments in

1948 and 1954 respectively. After UC Berkeley's human trial in 1954, other institu-

tions began to treat patients using proton therapy, including Harvard University led

by a group from the Massachusetts General Hospital (MGH). [5]

Today, most radiation treatment occurs using high-energy x-ray beam (often re-

ferred to as photon beam), where photons are generated external to the patient and

focused in a beam to target the tumor. [21] Intensity Modulated Radiation Therapy

(IMRT) is the favored radiation treatment method using photons - according to a sur-

vey in 2004, 73% of responding U.S. radiation oncologists said they use IMRT. [25]

As its name suggests, IMRT modulates the intensity of the radiation beams during

treatment. These changes in the beam intensity create a treatment that manages "a

higher degree of spatial agreement ('conformality') of the resulting dose distribution

with the tumor target volume." In other words, the intensity of the photon beam is

designed to be higher for the tumor volume and lower for the surrounding healthy

tissue.

IMRT was first proposed in 1982 in a paper published by Anders Brahme et al,

showing how to calculate a plan of non-uniform beams based on the desired dose



prescription - a process known as "inverse planning." [26] [21] Independently, Alan

Cormack also proposed the idea that year, right after co-inventing the computed

tomography (CT) scanner. The invention of the CT scanner played an important

part in the development of IMRT, as advanced imaging techniques were necessary to

detect the complex geometry of the tumor volumes and surrounding tissues.

Proton therapy, despite its late entry as a radiation-based treatment, is increasing

the number of systems as demand quickly rises. As of 2008, nearly 20,000 patients

have been treated with proton therapy in the U.S. and over 40,000 people treated

worldwide. [27] [28] The number of proton therapy centers has quickly been growing.

In the U.S., the first proton center was opened in 1991 at Loma Linda University

Medical Center in California, followed a decade later by a flurry of proton center

construction, starting with the Francis H. Burr Proton Therapy Center at MGH. [23]

Currently, there are 29 proton centers operating around the world, and more are

being built. [29] Proton therapy is used to treat a wide variety of tumors, including

head and neck, pediatric tumors, ocular, lung, gastrointestinal, gynecological, bone

and soft tissue, lymphoma, breast, and prostate tumors. [30] [31]

2.2 Proton Therapy Compared to IMRT

Radiation as a treatment tool is a double-edged sword: it effectively kills tumor cells

but also damages healthy cells in the process. Since radiation to healthy tissue is

correlated with adverse health effects, treatment plans always aim to improve tumor

target and reduce radiation outside of the tumor volume. [32]

Proton therapy holds the promise of being a more effective radiation therapy

than IMRT. Protons have the inherent physical properties of depositing most of their

energy after traveling a well-defined distance. Protons can only travel a finite distance

and deliver most of their energy at the end of their range - a phenomenon known as

the Bragg peak (Figure 2-1).

Photon interactions occur based on a probability of interaction per distance, which

depends on the target medium and photon energy. As photons travel through mat-
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Figure 2-1: The Bragg peak, showing the finite range and location of peak energy
deposition of protons in water. [21]

ter, they deliver the maximum dose near the beginning of their path and gradually

attenuates. This attenuation gradually reduces the dose delivered as the number of

photon decreases, as shown in Figure 2-2.

Since photons only gradually attenuates, they continue to deliver a dose beyond

the tumor target, which is know as the exit dose. Protons are able to eliminate this

exit dose as they have a sharp drop-off in their energy deposition at the end of their

range. As shown in Figure 2-3, protons are able to deliver most of their energy within

the target area (between the dashed green lines) and stop shortly after; photons,

however, continue to deliver a dose beyond the tumor target. As the Bragg peak

occurs at a narrow point, it is necessary in clinical practice to superimpose multiple

Bragg peaks to give the appropriate dose to the target volume. This addition of

multiple Bragg peaks creates a spread-out Bragg peak (SOBP), as shown in Figure

2-3.

A number of studies have been published comparing the dose-volume distribution

of proton therapy and IMRT for solid pediatric brain tumors. [8] [9] [20] All the studies

show that proton therapy spares more healthy tissue than IMRT and conventional
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Figure 2-2: Attenuation of a 6 MeV photon through a water phantom, both simulated
(Monte Carlo) and measured. [33]

photon therapy. A study published by St. Clair et al showed significant differences

between proton therapy and photon treatment plans. In the case of medulloblastoma,

a tumor in the posterior fossa, proton therapy is able to conform to the relevant

body part and avoid irradiating other volumes. Medulloblastoma treatment requires

irradiation of the entire spinal cord, which results in irradiation of the chest area when

using photons. Figure 2-4 shows an image of the percent of full dose delivered to the

spinal cord and chest, with proton therapy significantly sparing the chest, avoiding

dose to critical organs.

Proton therapy is most promising in reducing the risks of adverse health effects for

the treatment of pediatric tumors. Children diagnosed with cancers today have over

an 80% chance of 5-yr survival. [34] [35] [36] Cancer survivors may suffer from a range

of adverse health effects associated with the treatment of the primary tumor. [32]

The need to reduce the dose delivered to normal tissue is especially imperative when

treating children who are more sensitive to radiation and who live longer with adverse

health effects than adults. [10] [37] A few studies have indicated that the differences
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Figure 2-3: Comparison of the dose deposition between protons and photons in tissue.
The black line represents a 15 MeV photon beam, the blue lines repesent multiple
Bragg peaks that make up the spread-out Bragg peak (red line). The dashed green
line delineates the tumor target. [21]

in dose distribution between proton therapy and IMRT can result in a lower incidence

of common pediatric late health effects. [20] [38] [39] Even though proton therapy has

demonstrated its potential in reducing the radiation dose delivered to healthy tissue,

there is still a dearth of data on clinical evidence indicating health benefits from

proton therapy compared to IMRT. [14] [15] In part, this is because proton therapy

there ha been a lack of randomized clinical, and those studies are slowly starting to

appear. Another reason is that it is difficult to have long-term comprehensive follow-

ups with patients who come from all over the country to be treated and do not return

afterwards. [40]

It is also not always the case that proton therapy results in a clinically significant

improved dose distribution compared to IMRT. Looking at Figure ??, proton therapy
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Figure 2-4: Dose distribution along the spinal column of a child treated with coven-
tional X-rays (top left), IMRT (bottom left), and protons (bottom right). Significantly
lower doses are delilivered to the torso when treating with proton therapy compared
to conventional x-rays and IMRT. [8]

is a clear improvement over conventional photon therapy treatment, but the difference

between IMRT and proton therapy is not as pronounced. Follow-up studies of patients

who have been treated with proton therapy seem to indicate that protons do lead to

a lower risk of side effects in certain situations - but not all. For example, a recent

study by Winkfield et al found that the risk of getting a secondary cancer from proton

therapy can be higher than from IMRT depending on the number of fields used. To

reduce the total dose that each beam delivers to a particular area, the number of

beams used is increased; however, this results in more healthy tissue being irradiated,

which could explain the increased secondary cancer incidence.

In the face of the paucity of randomized clinical data, this thesis aims to evaluate



the extent to which differences in health effects can be expected based on the dose

distribution from actual proton therapy and IMRT treatment plans. Models have

been developed to quantify the dose-volume effects of radiation on risk of adverse

health events from the follow up of patients treated with photon radiation. Merchant

et al developed models that relate dose to magnitude of IQ loss and GHD. [41] [42] [43]

The risk of hearing loss was found to increase based on the mean dose delivered to

the cochlea. [44] Furthermore, each one of these morbidites have a cost associated to

it. This thesis provides a model to determine whether proton therapy is effective in

reducing the incidence of health effects and their associated costs.

2.3 Radiation Physics and Biology of Radiation

Therapy

The information in this section is primarily drawn from the books by Turner and

Goitein, unless otherwise noted. [45] [21]

2.3.1 Photons

Photons are light particles and have neither electric charge nor actual mass. They

can be referred to as gamma rays or x-rays, based on their origin. Gamma rays come

from atoms with an excited nuclear state, causing the nucleus to release its excess

energy in the form of photons to reach a stable state in a process known as gamma

decay. As Roentgen discovered in his cathode ray experiment, x-rays are generated

when electrons are sent towards a heavy target (i.e. target made of atoms with

a high atomic number). Those electrons collide with other electrons in the target

or be deflected from their course as they pass near the positively charged nuclei,

losing energy by releasing an x-ray photon. This creation of a photon by particle

deceleration is known as bremsstrahlung, which comes from the German words for

'to brake' (bremsen) and 'radiation' (Strahlung). [46] In this thesis, x-rays will be

referred to as photons unless otherwise specified.



2.3.2 Protons and the Bragg Peak

Protons are positively charged particles that interact with matter via two main types

of interactions: Coulombic interactions (with atomic nucleus and electrons) and nu-

clear interactions with the atomic nucleus. As a proton traverses a medium, it can

attract electrons away from atoms, ionizing the atom and setting electrons loose.

Protons do not lose much energy during a Coulombic interaction with electrons and

will experience, on average, hundreds of thousands such interactions per centimer tra-

versed. Since protons are 1836 times heavier than electrons, they barely experience

any deflection from their path. However, protons will experience a repulsive force

when passing near the atomic nucleus, which is positively charged. Since the atomic

nucleus is usually heavier than a single proton, the nucleus will deflect the proton

(albeit, at a small angle).

The Bragg Peak is a result of proton's Coulombic and nuclear interactions. Pro-

tons slowly lose their energy through thousands of Coulombic interactions with elec-

trons, but this energy loss varies as protons travel through matter. Like all heavy

charged particles, protons lose their energy as defined by the Bethe-Bloch stopping-

power formula. As protons slow down, tehy transfer more energy during each collision,

resulting in a peak rate of energy loss near the end of their trajectory, as indicated in

Figure 2-1.

2.3.3 DNA Damage

Radiation damages a cell by breaking bonds in DNA, effectively killing the cell or

stopping the cell's ability to reproduce. As radiation travels through the body, it

interacts by ionizing the particles in the cell - particularly water molecules (-70-85%

of the makeup of human cells). Radiation can affect a cell's biology directly and

indirectly. For example, a direct effect can result from the radiation ionizing atoms

in the DNA helix, breaking the DNA bonds. Radiation can generate indirect effects

by forming free radicals (i.e. particles with unpaired electrons, such as H20+ and H)

or other byproducts. These byproducts can subsequently interact with DNA, such as



a free radical reacting with DNA sugars and resulting in a stand break.

Tumor and healthy cells respond differently to radiation interactions. Tumor cells

tend to be more susceptible to radiation damage, likely due to their genetic makeup -

though this phenomenon is currently not completely understood. This phenomenon

is especially useful when healthy cells are found within the tumor or nearby but are

included in the target volume.

2.3.4 Radiation Dose

Dose delivered to a patient is measured in terms of Gray (Gy). A Gray represents

the energy from radiation absorbed per unit mass, where:

1 Gy= 1 J/kg

Radiation therapy can deliver doses up to 60 Gy to certain parts of the body. An

acute delivery of the full dose (on average around 50 Gy, though greatly depends on

tumor) required to destroy a tumor could kill the patient if delivered acutely to the

whole body or critical organs. Hence, fractionation is an extremely important aspect

of radiation treatment. A treatment plan will conventionally be broken up into 2 Gy

fractions delivered once a day, with a break over the weekend.

2.3.5 Relative Biological Effectiveness

The effectiveness of different types of radiation is compared using their relative bi-

ological effectiveness (RBE). RBE is defined as ratio of the x-ray dose compared to

dose of another radiation type required to produce the same specific biological end

point (e.g. level of tumor cell deaths). RBE is determined by:

RBE = Dx-ray
D

where D is the dose of a type of radiation that produces a particular biological end

point and Dx-ray is the x-ray dose needed to reproduce that end point.



Protons are generally accepted of as having an average RBE of 1.1, meaning that

it would require about 10% more x-ray dose to reach the same biological end point

as protons.

Based on the physical properties of protons, proton therapy can significantly re-

duce the dose delivered to healthy tissue. This benefit is especially important when

treating pediatric patients who are not fully developed and are more sensitive to radi-

ation damage. The next chapter discusses the health risks associated with childhood

brain tumor survival, with a focus on the effect of radiation on those risks.
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Chapter 3

Pediatric Low-Grade Gliomas and

Long-Term Health Effects

Gliomas are tumors of the central nervous system (CNS), which consists of the brain

and spinal cord. CNS tumors are the second most common tumors in children after

hematological malignancies. [47] Every year, about 43,800 cases of brain tumors are

newly diagnosed in the U.S. Roughly 3,000-4,000 of those cases are pediatric brain

tumors. Low-grade gliomas (LGGs) are the most common form of pediatric brain

tumors, accounting for roughly 50% of all cases. [48] LGGs are generally slow growing

and benign tumors, thus increasing the chance of survival. LGGs are usually treated

with surgery (resection of some or all of the tumor volume), chemotherapy, radiation

therapy, or a combination of the three. [49] [50] Most LGG patients will require

radiation therapy, especially for centrally located tumors that cannot be removed by

surgery. [42]

The advantages of more precise radiation therapy are especially important for

pediatric LGG survivors. Children treated for LGG are most likely to survive com-

pared to the population treated for all brain tumors, with 10-20 year survival rates

well above 80%. [48] [51] [52] Since many children with LGG will become long-term

survivors, they are likely to experience a number of adverse health effects after treat-

ment. Children who survive brain tumors are especially susceptible to long-term

morbidities as children's brains are not fully developed by the time of disease onset



and treatment. [47] The main health effects of concern from radiation treatment are

neurocognitive, endocrine, and ototoxicity disorders, and secondary cancer. [52] [42]

3.1 Neurocognitive Dysfunction

Partial to full irradiation of the brain can result in multiple, long-term neurocognitive

effects such as attention, memory, language, and executive function deficits. [53] [54]

Intelligence Quotient (IQ) has been used as a benchmark to quantify the extent of

neurocognitive damage. IQ is a score generated from tests designed to assess intelli-

gence. Pediatric patients who receive radiation treatment are likely to experience IQ

loss, with IQ changes greater than 10%. [41] [55] The relationship between radiation

dose to the brain and IQ loss is not fully understood, though it is generally accepted

that a higher dose to the brain will result in a higher level of IQ loss. [50]

Fuss et al performed a systemic review of 36 publications on neuropsychological

impairments from children treated with radiation. [56] The data from the publications

represents 1,938 children and examines radiation dose, irradiated volume, and age.

Doses greater than 24 Gy resulted in IQ loss. Age was a clear factor in IQ score,

with children under the age of 3 receiving doses higher than 24 Gy having lower than

normal IQ scores (less than 85 points); while children older than 6 experienced that

level of IQ deficiency when receiving doses higher than 36 Gy.

Researchers at St. Jude Children's Research Hospital have published various

studies that investigated the dose-volume effect of radiation on the magnitude of IQ

loss. [41] [51] Merchant et al found mathematical relationships between dose to brain

and IQ loss from studies of pediatric patients with LGGs. The group developed

different IQ loss models for specific brain tumors: all LGGs, craniopharyngomas

(CR), ependymomas, and medulloblastomas (MB). Merchant et al chose those specific

tumors due to their different locations in the brain: ependymomas and MBs can be

found in the infratentorial region; LGGs and CRs can be found in the supratentorial

region, closer to critical structures such as the left temporal lobe, puitary glands and

hypothalamus. [20]



For all LGGs, the study analyzed a group of 78 pediatric patients treated with

54 Gy of CRT between August 1997 and August 2006. [42] Merchant et al found

that a patient's IQ loss was dependent on the dose-volume distribution given to the

supratentorial brain (the top area of the brain, consisting of all brain except for the

posterior fossa) and age at radiation treatment, as shown in Equation 3.1:

IQ = 95.5545+Age x 0.3291 +Time x (Age x 0.00273- Vo-o x 0.0027- V3 0 -6o x 0.0047)

(3.1)

where Age is the age in years when patient receive radiation treatment, Time is the

time in months since radiation treatment, V- 30 is the percentage of supratentorial

brain that received 0 to 30 Gy, and V30-6 0 is the percentage of supratentorial brain

that received 30 to 60 Gy. The more volume of the supratentorial brain that received

a high dose (30-60 Gy) resulted in a higher overall IQ loss. Age at time of treatment

was also a factor that influenced the magnitude of IQ loss (i.e. worse for younger

patient).

For ependymomas, the study followed 88 patients who received 54-59.4 Gy during

radiation treatment from July 1997 to January 2003. The group found an estimation

equation for the dose to the supratentorial brain. [41] The MB and CR models were

less detailed, only using the mean dose to the supratentorial brain to estimate IQ. [20]

The analysis of Merchant et al's studies led to two points of confusion. The first

is that the standard errors to the IQ loss are poorly defined (if at all). Specifically,

it is not clear if all patients should expect IQ loss based on his mathematical models

or not. Second, his study for IQ loss after CRT for enpendymoma provides multiple

mathematical models, correlating IQ loss with dose to the whole brain, left temperoral

lobe, and supratentorial lobe individually. Testing of those equations with data from

the treatment plan used in this thesis of a patient with an ependymoma provide

different values for IQ loss depending on the brain structure.

Ultimately, it is unclear if dose to the supratentorial brain is solely responsible for

IQ loss as other studies show IQ loss related to dose to other parts of the brain. Jalali

et al found a significant difference in the risk of obtaining a high IQ loss (greater than
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Figure 3-1: IQ loss comparison based on dose to the supratentorial brain. Significant
difference in IQ loss can be expected for patients treated with a higher dose to the
supratentorial brain. This graph was generated using the dose-IQ relation developed
by Merchant et al. [51]

10 points) if at least 13% of the left temporal lobe received 43.2 Gy or higher. Other

studies have analyzed the loss of normal white matter and found a correlation with

neurocognitive defects. [52] [54] Nevertheless, the Merchant et al studies are currently

the only studies that mathematically model IQ loss based on dose to the brain. As

proton therapy has the ability to deliver less high doses to the supratentorial brain

during treatment, it would be expected that significant differences in IQ loss would

be found between proton therapy and IMRT.

3.2 Endocrine Dysfunction

Endocrine complications occur from damage to the hypothalamus and pituitary gland,

which disrupts regular hormone release. Two common endocrine complications of

brain tumor survivors are growth hormone deficiency (GHD) and hypothyroidism.

GHD is usually caused by the loss of the growth hormone-releasing hormone neu-



rons in the hypothalamus. [43] The reports of GHD incidence varies from study to

study, based on the tumor type and the number of patients available for analysis.

Incidence of endocrine dysfunctions will be as high as 83% for a pediatric LGG pop-

ulation, with the majority from GHD. [52] A study from St.Jude Children's Research

Hospital (n= 78) found a 10-year cumulative rate of GHD at 49% for LGG pediatric

patients treated with photons. [51]

Growth hormone therapy is usually stopped once children reach their final height. [57]

However, it does not necessarily mean that the patient is no longer growth hormone

deficient. Gleeson et al tested a group of 73 children about 10 years after radiation

therapy, at an average age of 15 years, which is usually when growth hormone treat-

ment is stopped. [58] All the children were on growth hormone replacement for severe

or moderate GHD. The study found that ~50% of the pediatric cohort with GHD

after radiation treatment tested positive again for GHD at final height. A similar

study by Gurney et al found that close to 40% of the childhood brain cancer sur-

vivors were below the 10th percentile for height. The Gurney et al study was part

of the Childhood Cancer Survivor Study and was able to draw data from 921 young

adult survivors of brain cancer.

Hypothyroidism is a condition in which the thyroid does not produce a suffi-

cient level of hormones. [59] Thyroid hormones are crucial in regulating the body's

metabolism, temperature, heart rate, protein production, and calcium in the blood.

The hypothalamus and pituitary glands control the rate at which thyroid hormones

are released, and hence any damage caused by radiation can result in disruption in

the thyroid hormone release. The same LGG study from St.Jude Children's Re-

search Hospital found a 10-year cumulative incidence of hypothyroidism at 68%. [51]

Their findings were aligned with the findings by Rose et al reporting 69% of patients

with brain or nasopharyngeal tumors with hypothyroidism. [60] No studies so far

have attempted to model the correlation between dose and level of thyroid hormone

deficiency.

Other endocrine dysfunctions, such as diabetes, delayed or early onset of puberty,

and testosterone deficiency, were not explored in this study. These deficiencies have



been noted but have not been studied as completely; therefore, the risks of those

health-effects were not considered in this thesis.

3.3 Hearing Loss

Hearing loss is a common side effect in patients treated with radiation for brain, head,

and neck tumors. [44] [61] The onset of hearing loss usually occurs when the cochlea

receives high doses of radiation, in excess of 30 Gy. [42] The area that translates

high frequencies (4000-8000 Hz) is more sensitive to radiation than other parts in the

cochlea. High frequencies are crucial in the understanding of speech, with 50% of

English sounds at energy frequencies up to 8000 Hz. [61]

The threshold for hearing loss for children is between 35-45 Gy. [44] [62] Chiaho

Hua et al reported a hearing loss rate of 14% from a study of 78 patients with localized

brain tumors followed 3-5 years after radiation treatment. [44] Hearing loss incidence

increased for doses greater than 40Gy, with a higher risk of loss at higher frequencies

(6000-8000 Hz). The study found that the onset of hearing loss occurred 3-5 years

post treatment for 75% of the cases, though hearing loss can occur as early as 2 years

after treatment. Median hearing loss onset is 3.5 years post treatment.

A group at Texas Children's Hospital investigated the onset of hearing loss in 44

pediatric patients treated for medulloblastoma from 1998 to 2006 using IMRT. [62]

The median follow-up time was 41 months. They found that 25% of the children

experienced high frequency hearing loss, with the higher mean dose to the cochlea

increasing the severity of the hearing loss.

Merchant et al's follow-up of 78 pediatric patients with LGG found that doses

greater than 45 Gy resulted in significantly higher risk of high frequency hearing

loss. For 6000 and 8000 Hz frequencies, the risk of hearing loss at doses greater

than 45 Gy was 19.2% each compared to 0% at less than 45Gy. The group only

found a correlation between dose to the cochlea and hearing loss in the right ear.

There are multiple other factors that could be associated with hearing loss, such as

genetic make-up and chemotherapy; however dose to the cochlea still remains the



main factor. [44]

3.4 Secondary Cancer

Currently in the United States, about 10% of cancer patients are treated for a sec-

ondary malignancy. [37] Secondary cancer is the onset of another malignancy after

the treatment of the primary tumor. The risk of secondary cancer is associated with

genetic make-up, type of primary tumor, and treatment method. [39] [63] Children

are especially susceptible to secondary cancers for three reasons: [37]

1. They are 10 times more sensitive to radiation than adults. Studies of the

Japanese atomic-bomb survivors show an increased risk of radiation-induced

cancer at a younger age.

2. Any radiation scatter is more likely to deliver a higher dose to critical organs

than for adults, as shown in Figure 3-2.

3. Children with primary cancers are likely to have genetic mutations that make

them more prone to radiation-induced cancers. For example, children treated

with radiation for Hodgins disease were had a higher risk of breast cancer than

children treated for other tumors. [?] However, the general understanding of

genetic susceptibility is still unclear and requires further study.

The most extensive secondary cancer study has been the Childhood Cancer Sur-

vivor Study (CCSS). [64] [65] CCSS is a large retrospective study of over 14,000

childhood cancer survivors. The follow-up period of the patients is the longest to

date: 25-30 years after treatment of the primary tumor. The patients included in

the study survived for at least 5 years after treatment. The study analyzed the inci-

dences of secondary cancer based on many different criteria, such as gender, age at

diagnosis, primary tumor diagnosis, and primary tumor treatment. The cumulative

30-year incidence of secondary cancer was 9.3%. [64] Female survivors were 1.64 times

more likely to develop a secondary cancer than male survivors. Radiation therapy

increased the risk of secondary cancer, especially if the patient was treated for the



Figure 3-2: Comparison of scattered dose to body when treating an adult (left) and
a small child (right).[37] A more significant volume of the child's body is irradiated
compared to the adult's irradiated volume for the treatment of a similar tumor vol-
ume.

primary tumor at a younger age. A more focused analysis of the CCSS found that

patients treated with radiation therapy were more likely to develop a secondary CNS

cancer. [65]

Researchers at St. Jude Children's Research Hospital performed a study on a

cohort of 1,283 patients treated for pediatric CNS tumors between January 1984 and

January 2002. [66] The patients were all under 22 years at time of treatment. The

study found that the 14-year cumulative incidence of secondary cancer was 5.3%

(95% CI, 2.0-8.5%). The 10-yr estimated cumulative incidence of second malignant

neoplasms for patients with LGGs was 0.4% (95% CI, 0-0.8%). All the patients with

a secondary cancer from LGGs (n=10) were treated with radiation therapy for the

primary tumor and received on average 50 Gy at the site where the second tumor

appeared. However, the study was unable to parse out the effect of chemotherapy

and radiation therapy on the risk of secondary cancer.

Recent studies have modeled the risks of secondary cancer from proton ther-

apy and IMRT. Mu et al compared treatment plans for medulloblastoma based on



IMRT, intensity modulated proton therapy (IMPT), conventional electron therapy,

and intensity-modulated electron therapy (IMET).?? IMPT differs from proton ther-

apy in that it utilizes magnetically scanned pencil beams that specifically conform

to the target volume. [7] Conventional proton therapy uses broad proton beams that

are molded to the patient by using specially designed apertures and compensators for

each patient - a process known as passive scattering. The group found that IMRT

had the highest risk of secondary cancer (30%) and IMPT had the lowest risk (4%).

However, IMPT is not currently the main form of proton therapy treatment as most

facilities use the passive scattering technique. It is expected that the risk of secondary

cancer from proton therapy is higher than the risk from IMPT.

Miralbell et al and Winkfield et al also analyzed the risk of secondary cancer

from proton therapy. [39] [67] The Miralbell et al study designed treatment plan for

two cases of pediatric brain tumors: parameningeal rhabdomynsarcoma (RMS) and

MB. [39] Using the dose-volume histograms generated from the treatment plans, they

estimated a yearly risk of secondary cancer risk for IMRT and proton therapy at

0.43% and 0.05% respectively for MB. The yearly risk for RMS was 0.05% for IMRT

and 0.04% for proton therapy. The risk of secondary cancer from MB treatment is

expected to be higher than for RMS treatment as the whole brain and spinal cord

are irradiated. Only the tumor volume is targeted in radiation treatment of RMS.

The Winkfield et al study estimated the risk of secondary cancer for adults treated

for pituitary adenoma. [67] They compared IMRT and proton treatment plans with

different numbers of treatment fields. The overall excess number of secondary cancer

cases was 25 per 10,000 patients treated with IMRT and 20.4 per 10,000 patients

treated with proton therapy. However, they found that proton therapy would cause a

higher excess risk of secondary tumor if the treatment plan called for more than two

fields. Namely, 2-field IMRT treatment resulted in a 9.8 per 10,000 patients excess

risk, compared to 12, 15, and 16 per 10,000 patients for 3-field, 4-field, and 5-field

proton therapy treatment respectively.

The largest clinical study so far investigating the risk of secondary cancer from

proton therapy was conducted at the Massachusetts General Hospital (MGH). [68]



Preliminary and as of yet unpublished results from this study found that the incidence

of secondary cancer 15 years after treatment was 7% for proton therapy and 20% for

photon therapy. [68] The study followed a group of 488 proton patients and 488 photon

patients, treated for all types of tumors. Patients had a median age of 56 years for

the proton cohort and 59 years for the photon cohort, though both cohorts included

pediatric patients. The study adjusted for gender and age at treatment.

3.5 Cost-Effectiveness Analysis of Proton Therapy

for the Treatment of Pediatric Tumors

There are currently only a few published studies that investigate the cost-effectiveness

of proton therapy compared to conventional photon therapy and/or IMRT. [19] [69] [70]

The study most relevant for the work in this thesis is Lundkvist et al's cost-effectiveness

analysis of proton therapy for the treatment of pediatric medulloblastoma. [19] The

group designed a Markov model to simulate two groups of children receiving proton

therapy or conventional photon therapy in Sweden. Their model included seven types

of long-term health effects: hearing loss, IQ loss, hypothyroidism, GHD, osteoporosis,

cardiac disease, and secondary cancer. Lundkvist et al estimated the risks of healths

effects based on a review of literature and the costs were estimated for a Swedish

pediatric population. Their model found that proton therapy resulted in E23,600 in

cost savings. IQ loss and GHD were the main contributors to the cost savings.

The model in this thesis updates the work by Lundkvist et al by estimating the

risk of long-term health effects from the analysis of patient treatment plans, using

existing models that relate dose to risk of health effects. Results of more recent

clinical studies of pediatric proton patients are also used. Furthermore, the costs in

this model are updated to apply to a U.S. pediatric population. The next chapter

describes the treatment plan analysis and model design in detail.



Chapter 4

Methodology

This chapter explains the method applied to evaluate the health effects and costs of

proton therapy and IMRT. The analysis involved a four-step process (Figure 4-1):

1. Literature review and MGH staff interviews.

2. Analysis of patient treatment plans.

3. Estimation of risks and costs of long-term health effects.

4. Design of a Markov model to simulate pediatric populations treated for LGGs

with proton therapy and IMRT.

The findings of the literature review and MGH staff interviews were described

in Chapter 3. This chapter explains how process 2 through 4 were accomplished.

The first section details how proton and IMRT treatment plans from pediatric LGG

patients were collected and analyzed to determine the risks of IQ loss and hearing loss.

A Markov model was designed to determine the long-term health effects and costs

that are incurred by pediatric LGG survivors throughout their lifetime. The Markov

model was evaluated as a Monte Carlo simulation to determine the prognoses of a large

number of individual patients. Section 4.2 describes the model in details, explaining

how the health risks and their associated costs were determined and applied.



Figure 4-1: Flow chart of the methods applied in the analysis of the long-term health
effects and costs of proton therapy and IMRT

4.1 Patient Treatment Plans

Four patient treatment plans were obtained from the Massachusetts General Hospital

(MGH) for analysis. The patients were chosen based on two criteria:

1. Pediatric patient diagnosed with LGG.

2. Both proton therapy and IMRT treatment plans were designed for each patient.

The treatment plans from two of the patients were used for the full analysis, while

the other two were used only for further IQ change analysis. The two patients used

for the full analysis were the only cases that had both IMRT and proton plans with

all of the necessary brain structures outlined. In this document, they are referred

to as P1 and P2. P1 was a female patient age 8 with a pilocytic astrocytoma. P2

was a female patient age 5 with a posterior fossa ependymoma. Two more patient

treatment plans were added after initial analysis of the results to investigate further

the difference in IQ loss between proton therapy and IMRT. P3 was a male patient

age 7 with a craniopharyngioma. P4 was a male patient age 14 with a LGG. All of

the patients were treated at the Francis H. Burr Proton Therapy Center at MGH

using a 240 MeV cyclotron.

Patients were treated according to a Local Protocol #10-206, developed at MGH

as part of a follow-up study of patients treated for pediatric brain tumors using proton

therapy to determine their long-term health effects. [71] For LGG, a dose of 50.4-54

Gy was delivered to the tumor volume. The full dose was delivered in 1.5-2.0 Gy



fractions (typically 1.8 Gy/fraction), 5 days per week.

The treatment plans were developed using XiO@ treatment planning software.

The gross target volume (GTV) was defined as any gross disease visible on the MRI.

The clinical target volume (CTV) was defined as a 3-7.5 mm expansion of the tumor,

based on the physician's judgment of the extent of microscopic disease. Figure 4-2

shows images generated in XiO@ from P1's treatment plans. The XiO® images for P1

and P2 are available in Appendix A. The red line represents the contour of the tumor

volume. All the other contour lines are isodose lines that indicate which volume of

the brain received the associated dose level. For example, any volume inside of the

magenta isodose line received 4,500 cGy or higher in the proton treatment plan and

4,000 cGy or higher in the IMRT treatment plan shown in Figure 4-2.

4.1.1 Dose-Volume Histograms

Dose-Volume Histograms (DVHs) were calculated for a specific set of structures asso-

ciated with the risk of adverse health outcomes, as listed in Table 4.1. The DVH's are

graphs of the dose delivered to a volume of the brain. Specifically, cumulative DVHs

show the percentage volume of a structure that received x dose (in Gy) or higher.

For example, Figure 4-3 shows that 46.3% of the supratentorial brain received 20

Gy or higher. The data from the DVHs were used to determine the risks of IQ loss

and hearing loss. The models from literature used to calculate those health risks are

explained in the next section.

Table 4.1: Brain structures related to health outcomes

Brain Structure Health Outcome

Whole brain Secondary Cancer
Supratentorial brain IQ Loss
Left Temporal Lobe IQ Loss
Hypothalamus GHD, Hypothyroidism
Pituitary Gland GHD, Hypothyroidism
Cochlea (left and right) Hearing Loss



(a) Proton therapy - axial view

(c) Proton therapy - coronal view

(e) Proton therapy - sagittal view

(d) IMRT - coronal view

(f) IMRT - sagittal view

Figure 4-2: P1 Proton therapy and IMRT treatment plans, as seen from the axial,
sagittal, and coronal views. The red contour line delineates the GTV. A compari-
son of the images show that proton therapy provides an improved dose distribution
compared to IMRT by irradiating less brain tissue around the target.

(b) IMRT - axial view
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Figure 4-3: Cumulative DVH of supratentorial brain from an IMRT treatment plan.
The dashed line helps to indicate the example point that 46.3% of the supratentorial
brain received 20 Gy or higher.

4.2 Cost-Effectiveness Model

The cost-effectiveness model in this thesis was designed as a Markov Model using the

TreeAge Pro 2009 software. Markov models are decision models designed to account

for events that recur over time. [72] Markov models are useful when trying to make

decisions about healthcare strategies; in this case, whether to treat LGGs with proton

therapy or IMRT.

In a Markov model, a patient is always in one of a set number of health states

during each cycle. In that state, the patient experiences various events (for example,

getting a secondary cancer) according to the model design. At the end of each cycle,

the patient may transition between the health states. A cycle is a length of time during

which the patient stays in a particular health state. For a model that evaluates the



lifetime of a population, the cycle time is typically one year. If the patient dies during

a given cycle, the patient is sent to the death state. The death state is a terminal

state, effectively ending the simulation for that patient.

The model in this thesis was designed to track two hypothetical cohorts of pediatric

patients treated for LGGs, one cohort with proton therapy and the other with IMRT.

The pediatric patient cohort was evaluated starting at age 5. Each patient's gender

was determined at the beginning of the simulation, and the patient was evaluated

using the associated gender-specific risks and costs.

The model was designed as a Monte Carlo simulation, where a large number of

patients faced with the same health risks are individually tracked. Every cycle, the

patient is put in the 'Survive' state where he or she runs the risks of experiencing

various adverse health outcomes with their associated costs. The patient goes through

the simulation until he/she dies based on the mortality risks detailed below, in which

case the patient reaches the terminal 'Death' state.

The Monte Carlo simulations in this model was test with a sample size of 100,000

patients. Each cycle was set to be 1-year. Every cycle, each patient was faced

with probabilities of gaining a long-term health effect and dying. Each patient could

experience the following health outcomes: IQ loss, GHD, hypothyroidism, hearing

loss, and secondary cancer. The patient also ran the risk of death, with the possibility

of dying from normal death, tumor recurrence death, or secondary cancer death.

Whenever the patient reached the end of a cycle, all their costs incurred that year

would be added to the costs from previous years. The patient would run through the

model until death, which was forced at age 100 if the patient did not die before then.

4.2.1 Mortality Risks

The model assumed 5 and 10 year survival rates of 98.5% and 95.9%, according to

Merchant et al's LGG study. [51] The mortality rate also included a 20-year survival

rate of 85% from a follow-up study of 71 pediatric LGG patients between 1956 and

1991. [73] The overall 5-year, 10-year, and 20-year mortality probabilities were 1.5%,

4.1%, and 15% respectively.



Risk of dying from secondary cancer was included from year 1-15 after diagnosis,

as shown in Table 4.2. Patients could only incur the risk of secondary cancer death

if they had secondary cancer that particular cycle.

Table 4.2: Yearly risk of death due to secondary cancer

Time From Treatment (years) Probability

1-10 0.13%
11-15 0.12%

The secondary cancer mortality rate was based on the mortality data from the

Childhood Cancer Survivor Study. [34] The data are based on the mortality experience

of 20,483 U.S. pediatric cancer survivors as of 2002. The CCSS study did not provide

risks of death from tumor recurrence for the first four years as the patients were only

evaluated starting from 5 years after treatment. In the model, the risk of death due

to secondary cancer from years 1-4 after treatment was assumed to be the same as

the rate from years 5-10.

Beginning fifteen years after treatment (in the base case, from age 21 on), nor-

mal death rates for males and females were applied according to the 2006 U.S. Life

Tables. [74]

4.2.2 Risks of Health Outcomes

IQ Loss

The average IQ loss was estimated using the study by Merchant et al, which followed

a group of 78 LGG pediatric patients treated with radiation therapy (all photon). [42]

The study quantified the relationship between radiation dose and IQ score, as shown

in Equation 4.1:

IQ = 95.5545+Age x 0.3291+Timex (Age x 0.00273-V- 30 x 0.0027- V30-ro x 0.0047)

(4.1)



where Age is the age in years when the patient receives radiation treatment, Time is

the time in months since radiation treatment, V- 0 is the percentage of supratentorial

brain that received 0 to 30 Gy, and V30-o is the percentage of supratentorial brain

that received 30 to 60 Gy.

The number of IQ points lost was determined using Equation 4.1, with the volume

inputs taken from the DVHs of the supratentorial brain for proton therapy and IMRT.

Merchant et al's analysis did not specify the uncertainty associated with the IQ score

calculated form Equation eq:Merch-dose-IQ. However, since Merchant et al found

that their model could predict IQ score after radiation treatment, the model in this

thesis assumed that any difference found in IQ score was significant.

Since the Merchant et al study followed the patients' IQ change only up to 5 years

after treatment, this model presented here assumed all IQ loss occurs up to 5 years

after treatment. The base case assumed that all proton therapy and IMRT patients

acquired the full IQ loss calculated using Equation 4.1.

Endocrine Dysfunctions

The model included the risk of GHD and hypothyroidism. For proton therapy, the

cumulative 10-year risk of GHD and hypothyroidism were both estimated at 35%,

assuming a constant yearly incidence rate of 0.005/person-year. The study by Hug

et al of 25 pediatric patients treated for LGG using proton therapy found 4 patients

(17%) with endocrine complications 3 years after treatment. The follow-up study

(n= 116) by Dr. Margaret Pulsifer at MGH found a 21% (n = 24) risk of developing

endocrine problems for patients any time between 1 to 10 years post-treatment. The

risks of GHD and hypothyroidism in this model were higher than the ones in literature

to provide a conservative estimate.

For IMRT, the 10-year GHD and hypothyroidism risks were estimated at 49%

and 68%, respectively, based on Merchant et al's study. [51] The model assumed

that the rate of GHD and hypothyroidism incidence were constant over the 10 years

post-treatment (0.006/person-year and 0.01/person-year).

After year 10 (after treatment), the risk of GHD and hypothyroidism were reduced



to 0%. This assumption was made in the model as not enough reliable data was

available beyond the 10-year follow-up. Furthermore, the model assumed that ten

years after treatment, patients would be 15 years old and would no longer need to

receive growth hormones since growth hormone therapy usually ends for children

during their mid to late teenage years. [58]

Growth hormone therapy was terminated after age 16 for males and age 14 for

females, as the accepted ages when children reach their final height. [58] Studies have

shown that a certain number of the patients who received growth hormone therapy

as children are still growth hormone deficient when they reach adulthood. [51] [57]

However, those patients do not often receive growth hormone treatment even though

they might need it as they are not tested for GHD at their final height.

Hearing Loss

The risk of hearing loss was based on a study by Chiaho Hua et al relating hearing

loss to the cochlea dose given to pediatric patients treated for brain tumors. [44] The

risk of hearing loss varied according to mean dose delivered to cochlea, as shown in

Table 4.3.

Table 4.3: Risk of hearing loss based on average dose to cochlea

Dmean Risk

less than 35 0%
35-44 0-16%
45-54 0-20%
55 and higher 17-49%

All cases of hearing loss were assumed to occur on year 3 after treatment, based

on the Hua et al study that found most hearing loss onset at year 3.3. The model

used a uniform risk based on Table 4.3 of acquiring a hearing loss on either ear.



Secondary Cancer

The risk of secondary cancer was based on the study by Winkfield ??, which modeled

the risk of secondary cancer for proton therapy and IMRT. [67] In this model, the

yearly probability of secondary cancer was 0.12% for proton therapy and 0.18% for

IMRT. The probability of getting secondary cancer at each cycle is defined in Table

4.4. The probabilities of secondary cancer were based on Winkfield et al's results for

3-field treatments.

The risk of getting a secondary cancer was set to zero at 15 years after treatment.

Follow-up data of patients beyond 15 years after treatment are difficult to obtain, and

the current clinically studies published on the risk of secondary cancer generally only

provide confident estimates up to 10 years after treatment. [66] [68] In this model,

each patient could only get secondary cancer once in their lifetime.

Table 4.4: Yearly sisk of secondary cancer for proton therapy and IMRT

Time Since Treatment (Years) Proton IMRT

1-15 0.12% 0.18%
16+ 0% 0%

4.2.3 Costs Estimation

Proton and IMRT Treatment

The cost of proton therapy was estimated at $58,000/treatment. A recent study by

Peeters et al found that the treatment of head and neck tumors was e39,610, or

$58,971 in 2011 dollars, for proton therapy. [75] The cost-effectiveness analysis of

proton therapy for prostate cancer also estimated the cost at $58,000/treatment. [70]

Proton beam therapy is generally accepted at being twice as expensive as IMRT.

A cost study by by Goitein and Jermann estimated the proton therapy/IMRT cost

ratio at 2.1. [12] The model used the 2.1 cost ratio as the base case, estimating the



cost of IMRT at $24,000/treatment. Peeters et al found a ratio of 3.2 for the cost

ratio, and this value was used in the sensitivity analysis. [75]

IQ Loss

The cost of IQ loss is associated with income loss. The yearly income loss was set

at 1.931%/IQ point for men and 3.225%/IQ point for women. The average income

used was $45,485/year for men and $35,549/year for women, according to the U.S.

Census Bureau Report for 2009. [76] Income loss occured from age 18 to 65. The rates

of income loss due to IQ loss were based on a study by Salkaver that reviewed the

expected earning loss from children affected by lead poisoning. [77] Those children

were likely to have a lower IQ depending on the lead dose, which in turn negatively

impacted their education and earning potential.

The general threshold for an individual to be considered intellectually disabled is

an IQ score of 70 or lower. [78] In this model, the cost of IQ loss also included the cost

of special education from age 4 to 18 if the patients' IQ score was 70 or below. The

cost of special education was estimated at $15,000/child-year. The U.S. Department

of Education evaluated a cost of $12,474/child-year in in their 2002 report, which is

roughly equivalent to $15,000 in 2011 dollars.[79]

Endocrine Dysfunctions

The cost associated with GHD varies between $5,000-$27,000/year, based on the cost

of Omnitrope and Tev Tropin ($30/mg). [80] The GH dose prescribed is 0.3 mg/kg-

week, based on the patient's weight. [81] Using weight charts for American males and

females, the prescribed dose and cost was determined for each age, as shown in Table

4.5. [82]

Males receive a dose of 0.3 mg/kg-week up to age 16. Females receive a dose of

0.3 mg/kg-week up to age 14. After that age, the dose drops to 10% of the original

prescription or 0.03 mg/kg-week. The base case assumed that patients stopped taking

growth hormones at age 16 for males and age 14 for females, which is when they

typically stop growing.??



Table 4.5: Yearly GHD costs by age
population

Male

Dose
(mg/week)

4.0
4.6
5.2
5.9
6.6
7.3
8.1
9.1

10.2
11.4
12.9
14.5
16.1
17.6
18.9

based on the 50th percentile weight of the U.S.

Cost
($/year)

5,803
6,590
7,472
8,437
9,445

10,511
11,690
13,046
14,629
16,472
18,573
20,860
23,188
25,347
27,145

Weight
(kg)

12.8
14.7
16.7
18.9
21.3
23.9
27.0
30.6
34.7
39.1
43.4
47.4
50.6

Female

Dose
(mg/week)

3.8
4.4
5.0
5.7
6.4
7.2
8.1
9.2

10.4
11.7
13.0
14.2
15.2

The cost of hypothyroidism was $168/year, based on the cost of the generic drug

Levothyroxine Sodium at $14/month for a dose of 75 mcg/day.?? The cost of the

generic drug was used to assume the least costly scenario. Patients needing thyroid

hormone replacement had a yearly recurring cost until death.

Patients with endocrine complications saw an endocrinologist on average 3 times

per year. [58] The model included physician costs for patients with either GHD or

hypothyroidism (Table 4.6). The physician costs were derived from interviews re-

questing consultation quotes from MGH and the Mayo Clinic. [58] [83]

Hearing Loss

The cost of a hearing aid was estimated at $2,500/ear, with the cost recurring ev-

ery 5 years. [84] An additional audiologist visit cost of $750 also recurred every 5

years. The values were based on an interview requesting consultation quotes from

Age
(years)

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Weight
(kg)

13.4
15.3
17.3
19.5
21.9
24.3
27.1
30.2
33.9
38.1
43.0
48.3
53.7
58.7
62.8

Cost
($/year)

5,539
6,329
7,201
8,155
9,186

10,333
11,658
13,208
14,975
16,874
18,758
20,459
21,837



Table 4.6: Costs of visits to endocrinologist

Cost/Visit # of Visits Total

Year 1 Consultation $816 1
Year 1 Follow-Up $280 2 $1376
All other years Follow-Up $280 3 $840

the Massachusetts Eye and Ear Hospital. [85]

Secondary Cancer

The cost of secondary cancer was $24,143/case based on the average cost of pediatric

secondary cancer cases in the U.S. (cost was updated from $21,100 in 2005 to 2011

currency). [86] [87]

4.3 Sensitivity Analysis

To test the robustness of the results, certain parameters in the model were changed.

The sensitivity analysis varied three aspects of the model: 1) mortality rates based

on tumor recurrence data from the Childhood Cancer Survivor Study, 2) costs of

radiation treatment, and 3) costs of GHD treatment based on higher average weight

estimates. The sensitivity analysis was applied to the models using P1 and P2 input

data holding everything constant except for the specific change of interest. Only one

parameter was varied at a time.

Tumor Recurrence Rate

The mortality risk was changed to include mortality data from the Childhood Cancer

Survivor Study. [34] The data is based on the mortality experience of 20,483 U.S.

pediatric cancer survivors as of 2002. The risk of death due to tumor recurrence for

all cancer patients were used from year 5-34 after diagnosis, as shown in Table 4.7.

The yearly risk of death estimated in Table 4.7 included both the risk of tumor



Table 4.7: Yearly risk of death due to tumor recurrence

Time From Treatment (years) Risk

5-10 1.02%
11-14 0.46%
15-19 0.35%
20-24 0.35%
25-29 0.44%
30-34 0.68%

recurrence and 'other' death from the Armstrong et al study. [34] The risk of 'other'

death included any patients who died from reasons that were not due to secondary

cancer, tumor recurrence, cardiac,pulmonary, and external causes. The CCSS study

did not provide risks of death from tumor recurrence for the first four years as the

patients were only evaluated starting from 5 years after treatment. From year 1-4

after treatment, this model assumed that the risk of death due to tumor recurrence

were the same as in the base case.

Five years after treatment (from age 16 on), normal death rates for males and

females were also applied according to the 2006 US Life Tables. [74] The normal

death rates were used to account for any death unrelated to the tumor.

Cost of Radiation Treatment

A study by Goitein and Jermann determined the cost of treatment per fraction to be

p1025 for protons and 6425 for IMRT (in 2003 currency). [12] Assuming an average

conversion rate of $1 to I1.07 in 2003, the cost per fraction is $1160 for proton therapy

and $481 for IMRT (in 2011 dollars). [88] [87] For a 30-fraction LGG treatment, the

cost of proton therapy and IMRT was estimated at $35,000 and $15,000 respectively

in the sensitivity analysis. Another analysis tested the 3.2 proton therapy/IMRT

cost ratio estimated by Peeters et al., with cost of treatment estimated at $58,000 for

proton therapy and $18,000 for IMRT.



Higher GHD Costs

Studies have shown that there is an increased chance of obesity in pediatric population

treated with radiation therapy. [89] [90] The Childhood Cancer Survivor Study that

leukemia survivors treated with 20 Gy CRT were more likely to be obese than the gen-

eral population (2.72 times higher for females, 1.66 times higher for males). [91] The

patients weight was increased to match the average of children in the 75thpercentile

weight of the US population. The costs of growth hormone therapy were updated to

match the higher weights, as shown in Table 4.8.

Table 4.8: Yearly GHD costs by age based on the 75th percentile weight of the U.S.
population

Male

Dose
(mg/week)

4.3
5

5.7
6.4
7.3
8.1
9.1

10.3
11.6
13.1
14.8
16.6
18.4
19.9
21.3

Cost
($/year)

6254
7141
8156
9279

10462
11726
13145
14796
16725
18934
21370
23926
26441
28723
30611

Weight
(kg)

13.9
16.0
18.4
21.0
23.8
26.9
30.7
35.0
40.0
45.1
50.1
54.5
57.9

Female

Dose
(mg/week)

4.2
4.8
5.5
6.3
7.1
8.1
9.2

10.5
12

13.5
15

16.3
17.4

This chapter describes the methods used in this study to compare proton therapy

and IMRT. The following chapter provides the long-term health effect and cost results

from the model simulations based on P1 and P2's treatment plans. The results from

the sensitivity analysis and IQ analysis of patients P3 and P4 are also presented.

Age
(years)

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Weight
(kg)

14.5
16.5
18.9
21.5
24.2
27.1
30.4
34.3
38.7
43.8
49.5
55.4
61.2
66.5
70.9

Cost
($/year)

5989
6911
7935
9051

10266
11639
13248
15134
17259
19498
21659
23539
24992
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Chapter 5

Results

In this chapter, the results of the Markov model described in Chapter 4 are pre-

sented, and conclusions based on the expected long-term health effects and costs

incurred from proton therapy and IMRT are discussed. The first two sections present

the results of the model simulations based on P1 and P2 treatment plans, compar-

ing the health effects and costs associated with the two treatment modalities. The

final section further explores the relative difference in total IQ loss between the two

modalities using treatment plans from patients P3 and P4.

All costs are presented to the nearest thousands of dollars as the cost results are

not significant to the hundreds of dollars or lower. The rounding of the results does

not influence the conclusions of this thesis.

5.1 Results using P1's Proton Therapy and IMRT

Treatment Plans

The modeled change in IQ score for P1 was considerable for both proton therapy and

IMRT (Figure 5-1). From a starting point of IQ = 97, the IQ score drops to 80 points

for proton therapy and 78 points for IMRT. The relative difference in total IQ loss

between modalities was small, with IMRT overall incurring an additional 2-point loss

compared to proton therapy (Table 5.1).
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Table 5.1: P1 Estimated IQ points loss after receiving radiation treatment at age 5

Time since CRT IQ Loss (pts)

(months) Proton Therapy IMRT

12 3 4
24 7 8
36 10 12
48 14 15
60 17 19

Table 5.2 shows the Vo-30 and V30- 60 split for supratentorial brain. Proton therapy

delivers a high dose (30-60 Gy) to a lesser volume of the supratentorial brain than

IMRT. Based on P1's cochlea DVH data, the risk of hearing loss was 0% for both

proton therapy and IMRT (Table 5.3).

The model found that proton therapy always resulted in a lower risk of acquiring

a long-term health effect for GHD, hypothyroidism, and secondary cancer, as shown

in Table 5.4. There was no difference in risk of hearing loss (Table 5.3). In the

- PT IQ (Age 5)
IMRT IQ (Age 5)

ng radiation



Table 5.2: Volume of supratentorial brain that received 0-30 Gy and 30-60 Gy based
on P1's treatment plans

Proton Therapy
IMRT

V- 30

85%
67%

V30-6o

15%
33%

Table 5.3: P1 risk of hearing loss

Mean Dose (Gy) Risk

Proton Therapy Right Cochlea 3 0%
Left Cochlea 2 0%

IMRT Right Cochlea 21 0%
Left Cochlea 15 0%

simulation, the model assigned IQ loss estimated for P1 to all patients.

Table 5.4: P1 Modeled risks of long-term health effects

IQ GHD Hypothyroidism Hearing Secondary
Loss Loss Cancer

Proton Therapy 100% 32% 32% 0% 2%
IMRT 100% 43% 56% 0% 3%
Difference 0% -10% -23% 0% -1%

The model found a large lifetime cost associated with long-term health effects:

an average of $349,000/patient for proton therapy and $365,000/patient for IMRT

(Table 5.5). IMRT was found to be more expensive with an average cost difference

of $17,000/patient (Table 5.5). The majority of the total cost was due to IQ loss

($246,000/patient for proton therapy and $275,000/patient for IMRT), reflecting that

a small change in IQ points could lead to a significant long-term cost difference. If IQ

loss is not considered in the cost comparison, proton therapy was found to be more

expensive than IMRT by $12,000/patient.



Table 5.5: P1 Total cost comparison between proton therapy and IMRT

Proton Therapy ($) IMRT ($) Difference ($)*

Treatment Cost 58,000 28,000 30,000
IQ Loss 246,000 275,000 -29,000
Endocrine Dysfunction 44,000 62,000 -18,000
Hearing Loss 0 0 0
Secondary cancer 400 500 -200

Total 349,000 365,000 -17,000
Total without IQ 102,000 90,000 12,000

* Difference is equal to the cost of proton therapy minus the cost of IMRT

Endocrine dysfunction was the second largest driver of cost ($32,000/patient for

proton therapy and $44,000/patient for IMRT), with GHD contributing the largest

proportion of that cost (Table 5.6).

Table 5.6: P1 Detailed endocrine dysfunction cost comparison between
proton therapy and IMRT

Proton Therapy ($) IMRT ($) Difference ($)*
GHD 32,000 44,000 -12,000
Hypothyroidism 1,000 2,000 -1,000
Endocrinologist Visit 11,000 16,000 -5,000

Total 44,000 62,000 -18,000
* Difference is equal to the cost of proton therapy minus the cost of IMRT

For proton therapy, the breakdown of total costs shows that the majority of the

total costs incurred by each patient fall in the $240,000-480,000 range (Figure 5-2).

That range of high costs in Figure 5-2 reflect the costs accumulated from IQ loss

for the patients who did not experience death due to tumor recurrence or secondary

cancer. That population represents 85% of the total sample population, as shown in

Table 5.7. Those patients lived to be on average 70 years old and incurred the full

cost of IQ loss from age 18-65. With a 17 points IQ loss, the maximum lifetime cost

associated with IQ loss is $219,482 for males and $286,487 for females. The maximum

lifetime GHD cost is $159,632 for males and $139,367 for females. The low total costs



(below $240,000) reflect the population that dies early. Costs savings occur when the

population dies early as an artifact of the model, which will be discussed in Chapter

6.
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Figure 5-2: P1 Probability of total cost per patient due to
from proton therapy.

long-term health effects

Table 5.7: P1 Risk of normal death, tumor recurrence death,and secondary cancer

Normal Death Tumor Recurrence Secondary Cancer

Proton 85.6% 14.3% 0.1%
IMRT 84.3% 14.2% 0.1%

The risk of secondary cancer death was low because patients could only face that

risk once they acquired a secondary cancer. However, the results show that there is

only a small chance of secondary cancer in a patient's lifetime (2% for proton therapy

61



and 3% for IMRT). Consequently, the risk of death due to secondary cancer is very

low (0.1% for both treatment modalities).

For IMRT, the individual breakdown of total costs shows that the majority of

the total costs incurred by each patient fall in the $300,000-480,000 range (Figure

5-3). That cluster of high costs (greater than $300,000) reflects the population that

live beyond the risk of death due to tumor recurrence and secondary cancer. The

population who survive past age 25 face normal death rates and survive until an

average age of 70. With a 19-point IQ loss, the maximum lifetime IQ cost is $245,303

for males and $320,191 for females.
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Figure 5-3: P1 Probability of lifetime cost per patient due to
from IMRT treatment

long-term health effects



5.2 Results using P2's Proton Therapy and IMRT

Treatment Plans

The expected change in IQ score for P2 is high for both proton therapy and IMRT

(Figure 5-4). From a starting score of IQ = 97, the IQ score dropped to 82 points

for proton therapy and 81 points for IMRT. The relative difference in total IQ loss

between modalities is small however, with IMRT overall incurring an additional 1-

point loss compared to proton therapy (Table 5.8).

- PT IQ (Age 5)
- IMRTIQ(Age5)

0

10

0OD

I I I I I I I

0 10 20 30 40 50 60

Time since CRT (months)

Figure 5-4: Expected
treatment at age 5

IQ score as a function of time for P2 after receiving radiation

Table 5.9 shows the V-3 0 and V30 -6 0 split for the supratentorial brain. Proton

therapy delivers a higher dose (30-60 Gy) to a lesser volume of the supratentorial

brain than IMRT. Based on P2's cochlea DVH data, the risk of hearing loss was 0%

for proton therapy and 0-16% for IMRT (Table 5.10), according to the study by Hua

et aL [44] The model found that proton therapy always resulted in a lower incidence

of long-term health effects for GHD, hypothyroidism, secondary cancer, and hearing

loss as shown in Table 5.11.



Table 5.8: P2 Estimated IQ points loss after receiving radiation treatment at age 5

Time since CRT Proton Therapy IMRT

(months) (pts) (pts)

12 3 3
24 6 7
36 9 10
48 13 14
60 16 17

Table 5.9: Volume of supratentorial brain that received
on P2's treatment plans

0-30 Gy and 30-60 Gy based

Vo-3o V30-6o
Proton Therapy 97% 3%
IMRT 87% 13%

Table 5.10: P2 Risk of hearing loss

Mean Dose (Gy) Risk

Proton Therapy Right Cochlea 2 0%
Left Cochlea 7 0%

IMRT Right Cochlea 35 0-16%
Left Cochlea 35 0-16%

Table 5.11: P2 Modeled risks of long-term health effects

IQ GHD Hypothyroidism Hearing Secondary
Loss Loss Cancer

Proton Therapy 100% 32% 32% 0% 2%
IMRT 100% 43% 56% 8% 3%
Difference 0% -10% -23% -8% -1%

For P2, the model found an average cost associated with long-term health effects

of $334,000/patient for proton therapy and $343,000/patient for IMRT (Table 5.12).



IMRT was more costly, with an average cost difference of $9,000/patient (Table 5.12).

The majority of the total cost was due to IQ loss ($232,000/patient for proton therapy

and $246,000/patient for IMRT). The overall cost from IQ loss was lower than ob-

served in the P1 simulation since P2's treatment plans resulted in a higher estimated

IQ score for both proton therapy and IMRT. Furthermore, the difference in IQ loss

cost between proton therapy and IMRT for P1 and P2 ($29,000/patient for P1 and

$14,000/patient for P2) reflects the difference in costs expected from a change of 1

IQ point - i.e roughly $14,000/patient per IQ point. If IQ loss is not considered in

the P2 cost comparison, proton therapy was found to be more expensive than IMRT

by $5,000/patient. The total difference without consideration of IQ loss was lower for

P2 than for P1 because the P2 IMRT patients incurred an extra cost from hearing

loss. Endocrine dysfunction was the second largest driver of cost ($44,000/patient

for proton therapy and $62,000 for IMRT), with GHD contributing to the largest

proportion of that cost (Table 5.13). The risks of death were the same for the P1 and

P2 simulations (Table 5.14).

Table 5.12: P2 Total cost comparison between Proton Therapy and IMRT

Proton Therapy ($) IMRT ($) Difference ($)*

Treatment Cost 58,000 28,000 30,000
IQ Loss 232,000 246,000 -14,000
Endocrine Dysfunction 44,000 62,000 -18,000
Hearing Loss 0 7,000 -7,000
Secondary cancer 400 500 -200

Total 334,000 343,000 -9,000
Total without IQ 102,000 97,000 5,000
* Difference is equal to the cost of proton therapy minus the cost of IMRT

For proton therapy, the breakdown of total lifetime costs shows that the majority

of the total costs incurred by each patient fall in the $240,000-420,000 range (Figure

5-5). The maximum lifetime IQ loss costs from a 16-point drop is $206,571 for males

and $269,635 for females. The individual breakdown of total costs shows that 75% of

the total costs incurred by each patient fall in the $240,000-480,000 range for IMRT



Table 5.13: P2 Detailed endocrine dysfunction cost comparison between
proton therapy and IMRT

Proton Therapy ($) IMRT ($) Difference ($)*

GHD 31,000 43,000 -12,000
Hypothyroidism 1,000 2,000 -1,000
Endocrinologist Visit 11,000 16,000 -5,000

Total 44,000 62,000 -18,000
* Difference is equal to the cost of proton therapy minus the cost of IMRT

(Figure 5-6). The cluster of high costs (greater than $300,000) reflects the population

that pass the risk of death due to tumor recurrence and secondary cancer.

*l Probability
--- - 10/50/90 percentile

0 60 120 180 240 300 360 420 480

Cost (thousands $)

Figure 5-5: P2 Probability of lifetime cost per patient due to long-term health effects
from proton therapy.

The results based on P1 and P2's treatment plans show that proton therapy is the

dominant treatment modality. Proton therapy results in lower incidences of long-term



Table 5.14: P2 Risk of normal death, tumor recurrence deathand secondary cancer

Proton Therapy
IMRT

Normal Death

85.6%
85.5%

Tumor Complications

14.3%
14.3%

Secondary Cancer

0.1%
0.1%

Probability
--10/50/90 percentile

moil
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Cost (thousands $)

Figure 5-6: P2 Probability of lifetime cost per patient due to
from IMRT

long-term health effects

health effects and expected overall lower costs than IMRT, by $17,000/patient based

on P1's estimated health risks and $9,000/patient based on P2's estimated health

risks. The cost associated with IQ loss was the main driver of total costs. However,

the relative difference in IQ between proton therapy and IMRT was small for both

patients (a 2-point difference in IQ score for P1 and a 1-point difference in IQ score

for P2).



5.3 Sensitivity Analysis

The sensitivity analysis varied particular aspects of the model, namely:

1. Mortality rates based on tumor recurrence data from the Childhood Cancer

Survivor Study.

2. Costs of radiation treatment.

3. Costs of GHD treatment based on higher average weight estimates.

The sensitivity analysis was applied to the models using P1 and P2 health risks,

holding everything constant except for the specific change of interest. Only one

parameter was varied at a time.

5.3.1 Tumor Recurrence Rate

The initial analysis assumed mortality rates due to tumor recurrence or tumor related

complications for up to 20 years after treatment. The first variation on the base case

applied higher mortality rates due to tumor recurrence based on the Childhood Cancer

Survivor Study for up to 34 years after treatment. Patients lived on average until age

60 for the CCSS tumor rate case and age 70 for the base case. Patients in the higher

mortality rates case were subjected to fewer long-term costs since they had died and

the cost of reduced IQ was no longer accrued. The average lifetime cost per patient

was $325,000 for proton therapy and $338,000 for IMRT for the case of higher tumor

recurrence rate using the P1 simulation (Table 5.15). The cost savings were not as

high in the sensitivity analysis as fewer patients experienced the higher range of IQ

loss cost. In the base case, since the patients lived longer, they were subjected to

higher IQ loss costs.

The average lifetime cost per patient was $312,000 for proton therapy and $320,000

for IMRT for the case of higher tumor recurrence rate using the P2 simulation(Table

5.16). The cost savings were not very different between the higher tumor recurrence

case and base case: $7,000/patient compared to $9,000/patient in the base case.



Table 5.15: P1 Comparison of total costs between base case and case with higher
probability of death due to tumor recurrence

High Recurrence Rate Base Case

PT IMRT Diff.* PT IMRT Diff.*

($) ($) ($) ($) ($) ($)
Treatment Cost 58,000 28,000 30,000 58,000 28,000 30,000
IQ Loss 224,000 250,000 -26,000 246,000 275,000 -29,000
Endocrine Dysfunction 43,000 61,000 -17,000 44,000 62,000 -18,000
Hearing Loss 0 0 0 0 0 0
Secondary cancer 400 500 -200 400 500 -200

Total 325,000 338,000 -13,000 349,000 365,000 -17,000
Total without IQ 102,000 89,000 13,000 102,000 90,000 12,000
* Difference is equal to the cost of proton therapy minus the cost of IMRT

Table 5.16: P2 Comparison of total costs between base case and case with higher
probability of death due to tumor recurrence

High Recurrence Rate Base Case

PT IMRT Diff.* PT IMRT Diff.*

($) ($) ($) ($) ($) ($)
Treatment Cost 58,000 28,000 30,000 58,000 28,000 30,000
IQ Loss 211,000 224,000 -13,000 232,000 246,000 -14,000
Endocrine Dysfunction 43,000 61,000 -17,000 44,000 62,000 -18,000
Hearing Loss 0 7,000 -7,000 0 7,000 -7,000
Secondary cancer 400 500 -200 400 500 -200

Total 312,000 320,000 -7,000 334,000 343,000 -9,000
Total without IQ 102,000 96,000 6,000 102,000 97,000 5,000
* Difference is equal to the cost of proton therapy minus the cost of IMRT

5.3.2 Cost of Radiation Treatment

The second variation looked at a lower cost of radiation therapy treatment. In the base

case, the cost treatment was $58,000/patient for proton therapy and $28,000/patient

for IMRT. In this variation, the cost of proton therapy was $35,000/patient and the

cost of IMRT was $15,000/patient. The difference between the two treatments was

also lowered: $20,000 as compared to $30,000 in the base case. The lower treatment



cost difference resulted in higher cost savings for the P1 and P2 cases. However, if

the cost of IQ loss was not accounted for, only the P2 case resulted in cost savings for

proton therapy (Table 5.17). That is, when IQ loss is not considered, proton therapy

is more expensive by -$5,000.

Table 5.17: Difference in total costs for case with treatment priced at $35,000/patient
for proton therapy and $15,000/patient for IMRT

Treatment Cost
IQ Loss
Endocrine Dysfunction
Hearing Loss
Secondary cancer

Total
Total without IQ
* Difference is equal to

P1

PT IMRT

($) ($)
35,000 15,000

246,000 275,000
44,000 62,000

0 0
400 500

326,000 353,000
79,000 78,000

the cost of proton

P2

Diff.* PT IMRT Diff.*

($) ($) ($) ($)
20,000 35,000 15,000 20,000

-29,000 232,000 246,000 -14,000
-18,000 44,000 62,000 -18,000

0 0 7,000 -7,000
-200 400 500 -200

-27,000 311,000 330,000 -19,000
2,000 79,000 84,000 -5,000

therapy minus the cost of IMRT

Another case variation analyzed the effect of a higher treatment ratio between

proton therapy and IMRT. Using Peteers et al's proton therapy to IMRT cost ratio

of 3.2 ($58,000 for proton therapy and $18,000 for IMRT), the model found that

proton therapy was not cost effective for the P2 case as the average total costs were

slighty higher for proton therapy by $1,000.

5.3.3 Cost of GHD

The final sensitivity analysis used a higher average weight to calculate the cost of

GHD. Since the cost of GHD is proportional to the weight of the patient, a higher

average weight resulted in a higher cost of GHD. The higher cost of GHD was reflected

in the higher average total cost per patient: $430,000 for proton therapy and $473,000

for IMRT in the P1 case, $416,000 for proton therapy and $451,000 for IMRT in the

P2 case (Table 5.19). This higher cost associated with GHD resulted in a higher cost

savings for proton therapy. With the higher GHD costs, proton therapy is always more



Table 5.18: Difference in total costs for case with proton therapy and IMRT treat-
ment cost ratio of 3.2

P1 P2

PT IMRT Diff.* PT IMRT Diff.*

($) ($) ($) ($) ($) ($)
Treatment Cost 58,000 18,000 40,000 58,000 18,000 40,000
IQ Loss 246,000 275,000 -29,000 232,000 246,000 -14,000
Endocrine Dysfunction 44,000 62,000 -18,000 44,000 62,000 -18,000
Hearing Loss 0 0 0 0 7,000 -7,000
Secondary cancer 400 500 -200 400 500 -200

Total 349,000 356,000 -7,000 334,000 334,000 1,000
Total without IQ 102,000 81,000 22,000 102,000 88,000 15,000
* Difference is equal to the cost of proton therapy minus the cost of IMRT

cost effective than IMRT, even in the case where IQ loss is not considered. GHD cost

is the main driver of endocrine dysfunctions cost in the case where patients with a

higher average weight are considered (Table 5.20).

Table 5.19: P1 and P2 Difference in total costs based on the 75th percentile weight
of the U.S. population

P1 P2

PT IMRT Diff.* PT IMRT Diff.*
($) ($) ($) ($) ($) ($)

Treatment Cost 58,000 28,000 30,000 58,000 28,000 30,000
IQ Loss 246,000 275,000 -29,000 232,000 247,000 -15,000
Endocrine Dysfunction 126,000 170,000 -44,000 126,000 169,000 -43,000
Hearing Loss 0 0 0 0 7,000 -7,000
Secondary cancer 400 500 -200 400 500 -200

Total 430,000 473,000 -43,000 416,000 451,000 -35,000
Total without IQ 184,000 198,000 -14,000 184,000 205,000 -20,000
* Difference is equal to the cost of proton therapy minus the cost of IMRT



Table 5.20: P1 and P2 Difference in total endocrine dysfunction costs by age based
on the 75th percentile weight of the U.S. population

PT

($)
GHD 113,000
Hypothyroidism 1,000
Endocrinologist Visit 11,000

Total 126,000
* Difference is equal to the cost

P1

IMRT

($)
151,000

2,000
16,000

170,000

of proton

Diff.*

($)
-38,000
-1,000
-5,000

-44,000

therapy

PT
($)

113,000
1,000

11,000

126,000

minus the

P2

IMRT Diff.*
($) ($)

151,000 -38,000
2,000 -1,000

16,000 -5,000

169,000 -43,000

cost of IMRT

5.4 IQ Analysis on P3 and P4

The DVHs for P3 and P4 showed that there was not a large difference in the volume

of the supratentorial brain that received 30 Gy or higher between proton therapy and

IMRT (Table 5.21). That similarity between the two plans resulted in almost the

same change in IQ score (Table 5.22).

Table 5.21: Volume of supratentorial brain that received 0-30 Gy and 30-60 Gy for
P3 and P4's treatment plans

P3

Proton Therapy

98%
2%

P4

IMRT Proton Therapy

91% 78%
9% 22%

The results of the simulations showed that proton therapy decreases the risk of

long-term health effects and costs incurred in the case of the two patients analyzed

in this thesis. Costs associated with IQ loss were the main drivers of total costs.

However, the difference in IQ loss between the two modalities was not large (on the

order of 1 or 2 IQ points difference). Chapter 6 will discuss the results described in

this chapter, providing explanations for the differences in the long-term health effects

and costs between proton therapy and IMRT.

V- 30
V30-60

IMRT

65%
35%



Table 5.22: IQ score change based on P3 and P4's treatment plans

P3 P4

Time since CRT (months) Proton Therapy IMRT Proton Therapy IMRT

0 97 97 97 97
12 94 94 94 93
24 91 91 90 89
36 88 87 86 85
48 85 84 83 82
60 82 81 79 78
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Chapter 6

Discussion

In the previous chapter, proton therapy was found to reduce the incidence of long-term

health effects and their associated costs when compared to IMRT. Proton therapy was

more cost-effective than IMRT, except for the case when the cost from IQ loss was not

included or when the cost difference between the two treatment plans was increased.

This chapter provides a discussion of the long-term health and costs results, explaining

why the differences presented in Chapter 5 occurred and addressing limitations of the

current model.

6.1 Causes of Death

In this model, the patients could die from tumor death, secondary cancer death, and

normal death. The model did not include the risk of tumor death due to cardiac or

pulmonary complications. The risk of pulmonary death was included in Lundkvist

et al's cost-effectiveness study because the chest was irradiated during treatment for

medulloblastoma.[19] For LGG treatment, no chest irradiation is expected and thus

the risk of pulmonary complications is small. The risk of cardiac death could be

significant as studies have shown that pediatric brain tumor patients have an excess

risk of obesity, which could lead to diabetes and heart problems. Future health and

cost effectiveness studies should analyze obesity and cardiac complications in more

detail.



For each simulation, the wide distribution in total cost incurred by each patient

can be explained by the risks of death. Patients who died early only had a low total

cost from long-term effects (especially due to IQ loss). Patients who died later had

a higher total cost, especially if they had an endocrine dysfunction or hearing loss as

both of those health effects are associated with life-long recurring costs.

Proton therapy was more cost-effective in the base case as patients lived longer

and were faced with more recurring costs. The base case applied death rates based

on follow up studies of LGG patients specifically. [73] [42] Patients lived on average

to age 70, at which time they had incurred the whole cost associated with IQ loss

(the cost due to IQ loss was stopped after age 65). In the sensitivity analysis, death

rates based on the Childhood Cancer Survivor Study (CCSS) for all pediatric tumors

were applied. [34] The patients had a higher risk of death due to tumor complications

and only lived to age 60, on average. Cost savings changed due to the difference in

recurring costs from IQ loss, endocrine dysfunctions, and hearing loss.

6.2 IQ Loss

Since proton therapy provides a tighter dose distribution, it would be expected that

the dose difference would result in a higher IQ loss for IMRT patients. However, the

analysis of the patient treatment plans showed that there was only a small difference

in IQ loss between proton therapy and IMRT. The results found that the calculated

change in IQ score was almost the same for proton therapy and IMRT treatment

plans. The difference in IQ loss between the two treatment plans was 2 points for P1

(17 points for proton therapy vs. 19 points for IMRT) and 1 point for P2 (16 points

for proton therapy vs. 17 points for IMRT). When this phenomenon was further

explored with P3 and P4, the difference in IQ loss was only 1 point between the two

treatment modalities.

There are two possible explanations for this small difference in IQ loss. The first

is that the model used to calculated IQ change may not be appropriate for the patient

cases used. The breakdown between V 3o and V30-60 may not be sensitive enough



for patients with only a small percentage of the supratentorial brain receiving doses

of 30 Gy or higher. All cases had less than 50% of the supratentorial brain receiving

30-60 Gy. Furthermore, a more detailed version of Merchant et al's IQ score model

should be used to account for uncertainty in the IQ difference. Are the 1 or 2-point

IQ difference found in the analysis of the patient treatment plans significant? If they

are, then the results of this thesis indicate that there are significant potential savings

from reducing the risk of IQ loss.

The second explanation is that, assuming Merchant et al's method is correct,

there really is not much of a difference in IQ loss from the way patient are currently

treated. Since the protocol for designing proton therapy treatment plans did not call

for sparing of the supratentorial brain, it is possible that the proton therapy plans

used in this study were not optimized and thus did not result in a lower IQ loss when

compared to IMRT.

As stated in Chapter 3, the reason for IQ loss is still unknown. Studies that

correlate radiation therapy to IQ loss focus on the supratentorial brain or the temporal

lobe. The study by Jalali et al found that patients had a higher risk of IQ loss if the

left temporal lobe received a high dose. [92] Specifically, a dose of 43.2 Gy or higher

to greater than 13% of the brain led to a higher chance of an IQ loss greater than 10

points. If Jalali et al's finding were applied to P1, the risk of an IQ loss greater than

10 points would be 64% for both proton therapy and IMRT (Table 6.1)

Table 6.1: Risk of IQ Loss greater than 10 points based on P1's temporal lobe DVHs

Left Temporal Lobe Receiving Risk
43.2 Gy or higher

Proton Therapy 18.2% 64%
IMRT 54.6% 64%

For P2, the risk of acquiring an IQ loss greater than 10 points would be 19% for

both proton therapy and IMRT (Table 6.2). The interesting connection between the

results based on Jalali el al's study and Merchant et al's study is that there are still



no differences between the proton therapy and IMRT treatment plans in terms of

IQ loss risk. Further work should be conducted analyze the change in IQ based on

proton therapy and IMRT treatment plans from several more pediatric LGG cases.

If possible, a follow-up of the patients whose cases are analyzed should be done to

determine if the calculated IQ loss matches with the actual IQ change.

Table 6.2: Risk of IQ Loss greater than 10 points based on P2's temporal lobe DVHs

Left Temporal Lobe Receiving Risk
43.2 Gy or higher (%)

Proton Therapy 2.6% 19%
IMRT 12.9% 19%

The cost associated with IQ loss was the largest contributor to overall costs.

Furthermore, IQ was the largest contributor to the difference in costs of long-term

health effects between proton therapy and IMRT. The results of the P1 and P2

simulations show an average cost difference from IQ loss of -$14,000/IQ point, as

shown in Table 6.3.

Table 6.3: Average costs from IQ loss, IQ cost difference, and IQ points difference
comparison for P1 and P2

Case IQ Points Avg. Cost of Cost IQ Points Cost/IQ
Loss IQ Loss ($) Difference ($) Difference ($) Point ($)

P1 IMRT 19 275,000 297000 2 147500
P1 PT 17 246,000 '
P2 IMRT 17 246,000 141000 1 141000
P2 PT 16 232,000 '

No patients in the model had an IQ score below the threshold of 70 points for

special education; hence, there was no special education costs associated with the

P1 and P2 analysis. Based on a $15,000/student cost of special education and a

discount rate of 3%, the special education cost of a child attending school from age

5-18 can amount up to $159,524. A difference between proton therapy and IMRT



in the population needing special education could lead to very high cost savings.

However, the costs of special education could be underestimated, as the 70 points

threshold is not a hard guideline for children receiving special education. Children

treated with radiation therapy for brain tumors have a high likelihood of requiring

special education. A 10-year follow-up study of patients treated for medulloblastoma

found that 80% of the cohort received special education. [93] The data from the MGH

follow-up of proton pediatric patient shows that about 50% of the cohort received

special education.[94] Since LGGs are benign tumors, the tumor and treatment are

usually not as aggressive as some of the others CNS tumors. Hence it is expected that

the student need for special education in patients treated for LGGs should be less

than found in the MGH study (which included all types of tumors) and the Hirsch-

Hopper et al childhood medulloblastoma study. However, more studies are needed to

determine the extent to which LGG pediatric patients receive special education.

6.3 Endocrine Dysfunctions, Hearing Loss, and Sec-

ondary Cancer

There was a lower incidence of GHD, hypothyroidism, hearing loss, and secondary

cancer from proton therapy compared to IMRT. However, the reduced incidence of

those long-term health effects was not the main factor in making proton therapy

cost-effective. This result is in part due to the relative low cost associated with those

health effects compared to the cost of IQ loss and in another due to limitations of the

model.

Hypothyroidism was the second most common long-term health effect; this oc-

curred in -55% of all IMRT patients and -33% of all proton therapy patients. The

thyroid dysfunction can lead to a number of subsequent health effects, such as dia-

betes and cardiac disease. However, the cost difference from hypothyroidism between

proton therapy and IMRT was less than $1,000/patient in both the P1 and P2 case.

The costs of hypothyroidism from this model do not translate well into the full costs



of the disease as the cost from complications that could occur if hypothyroidism was

not treated (such as diabetes) was not included. Furthermore, hypothyroidism is a

condition that afflicts a patient throughout their whole life, affecting their quality of

life in ways that cannot be quantified monetarily.

GHD was the third most common long-term health effect, with -43% of all IMRT

patients and -32% of all proton therapy patients needing growth hormone replace-

ment. The costs savings from GHD were the second highest after IQ loss savings.

The cost savings associated with GHD from proton therapy was $12,000/patient for

both P1 and P2. The similarity in costs between the two cases reflected the model

design, assigning a set probability of acquiring GHD at 35% for proton therapy and

48% for IMRT. The sensitivity analysis showed that the cost of GHD had a significant

influence on the overall cost-effectiveness of proton therapy. Since the cost of GHD

occurs early after treatment, the cost is not as discounted when compared to lifetime

costs incurred from IQ loss and hypothyroidism. Since the yearly costs of growth

hormone treatment are high (ranging from $5,000-$30,000), the higher cost of GHD

means that any reduction in the incidence of GHD from proton therapy will results

in a higher cost difference.

Growth hormone therapy is usually stopped after children reach their final height.

However, some childhood cancer survivors remain growth hormone deficient into

adulthood. Gleeson et al studied a group of 74 childhood cancer survivors treated

with radiation therapy to determine the incidence of GHD at their final height. The

study found that 64% of the survivors who were treated with growth hormone as chil-

dren again tested positive for GHD.[57] The cost of GHD would be higher if treatment

into adulthood was included. However, the majority of the costs would still come from

childhood GHD treatment as adults only receive a 10th of the dose administered to

children.

There was no risk of hearing loss based on all treatment plans except for P2's

IMRT treatment plan. The dose to the cochlea was high enough to provide a risk of

0-16% for hearing loss. This finding is not surprising based on the tumor site for P1

and P2. P1's tumor is an astrocytoma located near the central region of the brain



and away from the left and right cochleas. P2's posterior fossa tumor is closer to both

cochleas, which makes the structures more likely to receive a significant dose from

IMRT, as seen in Appendix A.

In the case when hearing loss occurred, the average lifetime cost was significant

at -$7,000/patient. However, that value reflects the cost of hearing loss mitigation

and does not indicate the true cost of hearing loss to an individual. The maximum

cost an individual can accumulate from having a hearing loss from age 5 to age 70 is

$20,000. It is possible that having a hearing disability leads to fewer job opportunities

and a certain level of income loss, which was not reflected in the model. Furthermore,

studies have shown that children and adults with hearing loss report a lower quality

of life. [95] [96] There are psychological and well-being costs associated with hearing

loss that are not accounted for in this model and could make proton therapy even

more cost effective.

The overall risk of secondary cancer was 2% with proton therapy and 3% with

IMRT. These findings are in line with the risks of secondary cancers from childhood

tumors found in literature. Researchers from St. Jude Children's Research Hospital

found a 4% risk of secondary cancer 15 years after treatment from a follow-up study

of 1,283 pediatric patients treated for CNS tumors. [66] The study found a 0.4% risk

of secondary cancer for patients with LGGs as their primary tumor. The model

presented here could have overestimated the risk of secondary cancer as the risks used

in the simulations were taken from the Winkfield et al study, which calculated the

risks of secondary cancer from treatment of adult brain tumors. A study of secondary

cancers after pediatric tumors from a population in the United Kingdom found a 25-

year secondary risk of 4.2%. The Childhood Cancer Survivor Study (CCSS) found

a 30-year secondary cancer risk of 9% for pediatric patients. [64] Though the CCSS

followed a large cohort of pediatric patients (n = 14, 361), the study involved all types

of cancers, which have various degrees of malignancy and have higher incidences of

secondary cancer than LGGs.

In the P1 and P2 simulations, the costs associated with secondary cancers were

negligible (less than $1,000). Even though the cost savings from secondary cancer



is low for proton therapy, the importance of the reduction of secondary cancer cases

cannot be disregarded. First of all, the model might have underestimated the cost

associated with secondary cancer. The model limited risk of secondary cancers that

could occur in a patient's lifetime, stopping the risk of acquiring a secondary cancer

at 15 years after treatment, since reliable data beyond that time was not available.

Second, it was assumed that the cost of treatment only occurred that year, though it

is possible that the treatment of the secondary cancer resulted in additional long-term

health effects not accounted for in this model. There is a need for longer follow-up

studies of pediatric cancer survivors who were treated with proton therapy to evaluate

the true lifetime risk. Finally, the psychological cost of acquiring a secondary cancer is

difficult to measure, and more studies on the quality of life of patient with secondary

cancers should be performed.

Proton therapy could prove to be even more health and cost effective when com-

pared to IMRT. Each long-term health effect could result in a higher total cost than

those found in this thesis if the additional factors described in this chapter are ac-

counted for. There is a need for more studies evaluating the dose effects of radiation

on the risks of long-term health effects to determine the magnitude to which proton

therapy is more health effective than photon therapy. The costs associated with IQ

loss and GHD were found to be the main drivers of the total cost difference between

proton therapy and IMRT, and further studies should investigate the impact of those

health effects on their costs the patient and society.



Chapter 7

Conclusions

This thesis proposes a method for the comparison of long-term health effects and

costs for proton therapy and IMRT as treatment for pediatric brain tumors. The

method was applied to two pilot cases, P1 and P2. The risk of IQ loss and hearing

loss was calculated from each patients dose-volume histograms, using models that

relate radiation dose to the risk of long-term health effects. [42] [44] A review of

the literature was performed to determine the health risks of GHD, hypothyroidism,

and secondary cancers and the costs associated with the long-term health effects. A

Markov simulation model was developed the estimate the health and cost effectiveness

of proton therapy based on those risks.

The analysis of the treatment plans showed that there was not a large difference

in IQ loss and hearing loss between proton therapy and IMRT for the two patients

in the pilot study. However, the treatment plans are influenced by the location

and size of the tumor as well as the field arrangements. It is possible that more

significant differences between the proton therapy and IMRT dose-volume histograms

could be observed using other patients data, which would result in higher differences

in IQ loss and hearing loss. There a higher difference in the incidence of GHD and

hypothyroidism. In the model simulations, the use of IMRT treatment resulted in a

higher number of patients with health complications, with the number of additional

cases per 100 patients at 11 and 23 for GHD and hypothyroidism. Two additional

patient treatment plans (P3 and P4) were analyzed to investigate the unexpected



small difference in IQ loss between the two treatment modalities found using P1 and

P2's treatment plans. The difference in IQ loss between proton therapy and IMRT

was only 1 IQ point for both patients.

When the Markov simulations were run based on P1 and P2s health risks, proton

therapy was more cost effective due to the difference in costs associated with IQ

loss and GHD. IQ loss and GHD were also the main contributors to total costs

accumulated by the patients in the simulations. The cost difference associated with

IQ loss was equal to about $14,000/IQ point per patient for their entire life. Since the

cost associated with IQ loss is the driver of high total cost and high cost difference

between proton therapy and IMRT, this finding suggests that treatment cases where

proton therapy leads to a lower degree of IQ loss would make proton therapy more

cost-effective. Further studies should evaluate the impact of proton therapy on IQ

loss in more details.

The total costs associated with GHD were sensitive to the cost of growth hormone

treatment. Since growth hormone is expensive and children require a high dose, the

yearly cost of growth hormone therapy ranges from $5,000 to greater than $30,000.

When the Markov model is run with higher yearly costs of growth hormone treatment,

the difference in costs due to GHD was $40,000/patient for the P1 and P2 simulations.

As the dose of growth hormone required depends on the patients weight, heavier

children will incur higher costs. Long-term childhood cancer survivors tend to have

a higher relative weight compared to their peers without cancer and would be faced

with higher growth hormone costs.

If the cost savings due to IQ loss are not considered, since that cost represents un-

realized earning potential as opposed to paying for treatment, proton therapy is more

expensive than IMRT by $12,000/patient in the P1 simulation and $5,000/patient in

the P2 simulation. However, this result does not mean that proton therapy should not

be used as a treatment for pediatric brain tumors. Though hypothyroidism, hearing

loss, and secondary cancers were not associated with a high cost difference between

the two treatment modalities, the reduction in the incidence of each health-effect

provides a strong case for the use of proton therapy for the treatment of pediatric



brain tumors. Furthermore, the cost results may not reflect the total cost incurred

from long-term health effects:

1. There are additional costs associated with each of the long-term health effects

that are not reflected in this model (for example, the cost of cardiac disease

from thyroid hormone deficiency). The inclusion of those costs in future work

could indicate an even higher degree of cost-effectiveness using proton therapy,

even in the case if proton therapy is not as health effective, as presented in this

thesis.

2. The burden of long-term health effects materialize in ways that monetary costs

alone cannot represent.

This thesis provides the framework and computational tools for further analysis.

Stakeholders should not use the results from the limited simulations based on P1

and P2s health risks to make the decision about using proton therapy over IMRT (or

vice-versa). Rather, they should use the method described in this thesis to further

investigate the long-term health effects and costs of both treatment modalities. Future

work should apply the analysis method of this thesis to more patient treatment plans.

As treatment plans vary from one patient to another, this future work can help

determine the extent to which proton therapy and IMRT treatment plans differ in

practice and whether this difference provides a lower risk of long-term health effects

by using proton therapy. The estimated risk parameters should then be used in the

Markov model to determine whether proton therapy or IMRT is more effective in the

treatment of pediatric brain tumors and other solid cancers.
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Appendix A

Patient Treatment Data

Appendix A provides additional images and DVHs from each of the patient treatment

plans. The images are pictures of the P1 and P2 treatment plans in XiO@, in the axial,

sagittal, and coronal views. The GTV is contoured in red. The other lines represent

the isodose lines. DVHs of the whole brain, supratentorial brain, left cochlea, and

right cochlea are shown for P1, P2, P3, and P4.



(a) Proton therapy - axial view

(c) Proton therapy - coronal view (d) IMRT - coronal view

(e) Proton therapy - sagittal view (f) IMRT - sagittal view

Figure A-1: Proton therapy and IMRT treatment plans for P1, as seen from the axial,
sagittal, and coronal views. The red contour line delineates the GTV.

(b) IMRT - axial view
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Figure A-2: P1 DVHs of the brain and supratentorial brain from proton therapy and
IMRT treatment plans
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Figure A-3: P1 DVHs of the left and right cochleas from proton therapy and IMRT
treatment plans
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(a) Proton therapy - axial view

(c) Proton therapy - coronal view

(e) Proton therapy - sagittal view

(d) IMRT - coronal view

(f) IMRT - sagittal view

Figure A-4: Proton therapy and IMRT treatment plans for P2, as seen from the axial,
sagittal, and coronal views. The red contour line delineates the GTV.

(b) IMRT - axial view
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Figure A-5: P2 DVHs of the brain and supratentorial brain from proton therapy and
IMRT treatment plans
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Figure A-6: P2 DVHs of the left and right cochleas from proton therapy and IMRT
treatment plans

Brain-PT
Supratentorial Brain-PT

- - - Brain-IMRT
- -Supratentorial Brain-IMRT

I I I I I I
0 10 20 30 40 50 60

Dose (Gy)

'4

1%

0
o -

0-

Co

0

0

0 -

-..- ----- . ~~ ~



o - Brain-PT
Supratentorial Brain-PT

-- - Brain-IMRT
CD Supratentorial Brain-IMRT

co

0

I I I I I I I

0 10 20 30 40 50 60

Dose (Gy)

Figure A-7: P3 DVHs of the brain and supratentorial brain from proton therapy and
IMRT treatment plans
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Figure A-8: P4 DVHs of the brain and supratentorial brain from proton therapy and
IMRT treatment plans



Appendix B

Risk and Cost Tables

Appendix B contains the detailed risk and cost tables used in the Markov model.

The risks and costs where determined based on age, gender, and/or cycle period.

The cycle period was used to assign risks and costs for events that depended on time

after treatment as opposed to age of the patient.

Probability of event and rate of event were related by the equations:

p(t) = 1 - e-" (B.1)

and

r(t) = [ln(1 - p(t))]/It (B.2)

where p(t) is the probability at time t, r is the rate at which the event occurs (number

of events per population-time), and t is time during which the event can occur.



Table B.1: Yearly probability of Normal Death based on 2006 US Life Charts

Age Male Female Age Male Female Age Male Female

1 0.000460 0.000427 34 0.001589 0.000829 67 0.019974 0.012855
2 0.000322 0.000276 35 0.001653 0.000893 68 0.021630 0.014010
3 0.000245 0.000185 36 0.001737 0.000967 69 0.023559 0.015359
4 0.000195 0.000162 37 0.001851 0.001057 70 0.025737 0.016895
5 0.000186 0.000149 38 0.002001 0.001166 71 0.028223 0.018652
6 0.000176 0.000134 39 0.002183 0.001293 72 0.031103 0.020679
7 0.000163 0.000123 40 0.002381 0.001425 73 0.034372 0.022999
8 0.000139 0.000111 41 0.002592 0.001563 74 0.037995 0.025637
9 0.000107 0.000099 42 0.002827 0.001713 75 0.042023 0.028641
10 0.000081 0.000091 43 0.003087 0.001877 76 0.046338 0.031894
11 0.000083 0.000093 44 0.003369 0.002052 77 0.051072 0.035502
12 0.000136 0.000113 45 0.003662 0.002236 78 0.056262 0.039502
13 0.000254 0.000155 46 0.003970 0.002425 79 0.061944 0.043932
14 0.000418 0.000211 47 0.004309 0.002617 80 0.068159 0.048833
15 0.000594 0.000275 48 0.004694 0.002812 81 0.074947 0.054251
16 0.000759 0.000334 49 0.005125 0.003020 82 0.082352 0.060231
17 0.000918 0.000382 50 0.005602 0.003247 83 0.090417 0.066824
18 0.001063 0.000414 51 0.006107 0.003497 84 0.099186 0.074082
19 0.001193 0.000434 52 0.006617 0.003773 85 0.108704 0.082058
20 0.001329 0.000453 53 0.007104 0.004070 86 0.119015 0.090810
21 0.001456 0.000475 54 0.007570 0.004383 87 0.130161 0.100392
22 0.001536 0.000494 55 0.008042 0.004710 88 0.142182 0.110863
23 0.001554 0.000508 56 0.008550 0.005061 89 0.155116 0.122277
24 0.001526 0.000519 57 0.009114 0.005457 90 0.168995 0.134688
25 0.001480 0.000532 58 0.009781 0.005928 91 0.183844 0.148146
26 0.001443 0.000546 59 0.010582 0.006494 92 0.199686 0.162697
27 0.001416 0.000562 60 0.011543 0.007183 93 0.216530 0.178377
28 0.001408 0.000580 61 0.012632 0.007966 94 0.234379 0.195216
29 0.001418 0.000604 62 0.013798 0.008781 95 0.253223 0.213232
30 0.001437 0.000634 63 0.014946 0.009551 96 0.273043 0.232430
31 0.001460 0.000671 64 0.016067 0.010282 97 0.293803 0.252802
32 0.001500 0.000718 65 0.017272 0.011073 98 0.315457 0.274321
33 0.001535 0.000769 66 0.018518 0.011885 99 0.337943 0.296944

100 1.000000 1.000000



Table B.2: Yearly probability of death due to tumor recurrence in the base case

Cycle Probability

1 0.0030
2 0.0030
3 0.0030
4 0.0030
5 0.0030
6 0.0098
7 0.0041
8 0.0041
9 0.0040
10 0.0040
11 0.0445
12 0.0074
13 0.0073
14 0.0073
15 0.0072
16 0.0072
17 0.0071
18 0.0070
19 0.0070
20 0.0069

21+ 0.0000

Table B.3: Yearly probability of death due to secondary cancer

Cycle Probability

1-14 0.0012
15-19 0.0013
20-24 0.0017
25-29 0.0023
30-34 0.0046
35+ 0.0000



Table B.4: Yearly probability of death due to tumor recurrence in the sensitivity
analysis

Cycle Value

1 0.0030
2 0.0030
3 0.0030
4 0.0030

5-9 0.0080
10-14 0.0090
15-19 0.0100
20-24 0.0110
25-29 0.0120
30-34 0.0130
35+ 0.0000

Table B.5: Yearly costs associated with IQ loss

Age Male IQ Cost Female IQ Cost

1 $0 $0
2 $0 $0
3 $0 $0
4 $0 $0

5-19 $15,000 $15,000
19-65 $878 $1,146

65+ $0 $0



Table B.6: Yearly costs associated with GHD by age based on the 50th percentile
weight of the U.S. population

Cost Male

N/A
$5,803
$6,589
$7,472
$8,437
$9,445

$10,511
$11,690
$13,046
$14,629
$16,473
$18,573
$20,861
$23,188
$25,347
$27,145

$0

Cost Female

N/A
$5,539
$6,329
$7,201
$8,155
$9,186

$10,333
$11,658
$13,208
$14,975
$16,874
$18,759
$20,459
$21,838
$22,840

$0
$0

Age

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17+



Table B.7: Yearly costs associated with GHD by age based on the 75th percentile
weight of the U.S. population

Cost Male

N/A
$6,254
$7,141
$8,156
$9,279

$10,462
$11,726
$13,145
$14,796
$16,725
$18,934
$21,370
$23,926
$26,441
$28,723
$30,611

$0

Cost Female

N/A
$5,989
$6,911
$7,935
$9,051

$10,266
$11,639
$13,248
$15,134
$17,259
$19,498
$21,659
$23,539
$24,992

$0
$0
$0

Table B.8: Yearly Risk of GHD

Cycle Proton Therapy IMRT

1 0.0422 0.0649
2 0.0404 0.0607
3 0.0387 0.0568
4 0.0371 0.0531
5 0.0355 0.0496
6 0.0340 0.0464
7 0.0326 0.0434
8 0.0312 0.0406
9 0.0299 0.0379
10 0.0286 0.0355

11+ 0.0000

Age

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17+



Table B.9: Yearly Risk of Hypothyroidism

Cycle Proton Therapy IMRT

1 0.0422 0.1077
2 0.0404 0.0961
3 0.0387 0.0857
4 0.0371 0.0765
5 0.0355 0.0683
6 0.0340 0.0609
7 0.0326 0.0544
8 0.0312 0.0485
9 0.0299 0.0433
10 0.0286 0.0386

11+

Table B.10: Yearly Risk of Secondary Cancer

Cycle Proton Therapy IMRT

1-15 0.00120 0.00184
16+ 0.00000 0.00000
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