
A Semantic Data Federation Engine: Design,

Implementation & Applications in Educational
MASSACHUSE. S INST

Information Management OF TECHNOLOGY

by JUN 0 7 2011
Mathew Sam Cherian LIBRARIES

B.S. Electrical Engineering, Johns Hopkins University (2006)

Submitted to the Engineering Systems Division

and ARCHNIES

Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Master of Science in Technology and Policy

and

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2011

® Massachusetts Institute of Te,9nninov011 All rights reserved.

A uthor
hngineering systems Division

Department of Electrical Engineering and Computer Science
January 26, 2011

C ertified by
Lalana Kagal

Research Scientist, Computer Science and Artificial Intelligence Laboratory
) Thesis Supervisor

A ccepted by
irofissor Dava Newman

Dir-onr TpchnIa-v and Poliev Program

A ccepted by
Professor Terry P. Orlando

Chair, Committee on Graduate Students
Department of Electrical Engineering and Computer Science

A Semantic Data Federation Engine: Design,

Implementation & Applications in Educational Information

Management

by

Mathew Sam Cherian

Submitted to the Engineering Systems Division
and

Department of Electrical Engineering and Computer Science
on January 26, 2011, in partial fulfillment of the

requirements for the degrees of
Master of Science in Technology and Policy

and
Master of Science in Computer Science and Engineering

Abstract

With the advent of the World Wide Web, the amount of digital information in the
world has increased exponentially. The ability to organize this deluge of data, retrieve
it, and combine it with other data would bring numerous benefits to organizations that
rely on the analysis of this data for their operations. The Semantic Web encompasses
various technologies that support better information organization and access.

This thesis proposes a data federation engine that facilitates integration of data
across distributed Semantic Web data sources while maintaining appropriate access
policies. After discussing existing literature in the field, the design and implementa-
tion of the system including its capabilities and limitations are thoroughly described.
Moreover, a possible application of the system at the Massachusetts Department of
Education is explored in detail, including an investigation of the technical and non-
technical challenges associated with its adoption at a government agency.

By using the federation engine, users would be able to exploit the expressivity
of the Semantic Web by querying for disparate data at a single location without
having to know how it is distributed or where it is stored. Among this research's
contributions to the fledgling Semantic Web are: an integrated system for executing
SPARQL queries; and, an optimizer that faciliates efficient querying by exploiting
statistical information about the data sources.

Thesis Supervisor: Lalana Kagal
Title: Research Scientist, Computer Science and Artificial Intelligence Laboratory

Acknowledgments

I would like to thank my advisor Lalana Kagal for all the guidance and support she
has given me over the past two years. She has constantly encouraged me to pursue
opportunities in research and life.

This thesis benefited greatly from the interactions I had with other members of
DIG. Particularly, I am grateful to Hal Abelson for taking the time to listen to my
proposal to investigate the applications of my research to educational information
management, a topic which is only remotely related to the Decentralized Information
Group's core mission, and putting me in touch with officials at the Massachusetts
Department of Elementary and Secondary Education; I am indebted to Tim Berners-
Lee for the many brief chats. we had, which gave me more insights than what I got
by reading academic publications.

I had a great experience working with students and staff at the Decentralized In-
formation Group and the World Wide Web Consortium. Specifically, I want to thank
Eric Prud'hommeaux for being a C++ guru and telling me more Emacs shortcuts
than I can possibly remember; Alexandre Bertails for convincing me to convert and
stay with the Ubuntu; and, Oshani Seneviratne for patiently answering the many
questions I asked and for always willing to lend a helping hand.

This thesis, and my time at MIT would not have gone as well as it did, if it were
not for the constant interactions I have had with the following people: Teena, thank
you for always making me feel good about myself in spite of the drags of graduate
student life; Tony, thank you for always being there for a chat, even if it was after
you had been cutting up cadavers all day; and, Thomas for always knowing the right
questions to ask to help me make it through the many difficult times.

I would not be here today without the efforts of my parents, who work tirelessly
every day of their lives for their three children. Amma and Acha: Thank you for
everything.

Contents

1 Introduction 15

1.1 Thesis Overview . 16

2 Background & Related Work 19

2.1 Relational Databases.. 19

2.1.1 Limitations of the Relational Model 20

2.2 Database Federation . 20

2.3 Sem antic W eb . 23

2.3.1 Uniform Resource Identifier (URI) 23

2.3.2 Resource Description Framework (RDF) 24

2.3.3 SPARQL Protocol and RDF Query Language (SPARQL) . . . 24

2.3.4 Advantages of RDF Data Sources 25

2.4 Related W ork . 25

3 Public Education in Massachusetts: An Ideal Application 29

3.1 Interoperability and Data Sharing . 30

3.1.1 B enefits . 30

3.1.2 Challenges . 32

3.2 Public Education in Massachusetts 33

3.2.1 The Need for Better Information Sharing 34

3.2.2 Where We Were Then and Where We Are Now 35

3.3 A Secure SPARQL Federation for the DESE 37

3.3.1 Potential Obstacles . 40

4 A Secure SPARQL Federation Paradigm

4.1 Architecture 43

4.1.1 SSL . 44

4.1.2 Validator . 46

4.1.3 Mapper . 47

4.1.4 Source Descriptions . 48

4.1.5 Map Generator . 49

4.1.6 Optimizer . 49

4.1.7 Orchestrator . 53

4.1.8 Proof Generator . 53

4.1.9 PAW-enabled SPARQL Endpoint 54

5 Implementation 57

5.1 Web Interface . 57

5.2 Federation Engine. 59

5.2.1 SWIG . 59

5.2.2 Fyzz and RdfLib... 61

6 Evaluation 63

6.1 Test Plan . 63

6.2 Optimizer Tests . 64

6.2.1 Number of Predicates vs. the Number of Triples per Predicate 64

6.2.2 Sharing of Variables between Subqueries to Different Endpoints 66

6.2.3 Number of Triples . 67

6.3 Federation Tests . 69

6.4 Discussion . 73

6.4.1 Optimizer Tests . 73

6.4.2 Federation Tests . 75

6.5 Limitations . 77

6

43

7 Summary 79

7.1 Contributions . 79

7.2 Future W ork . 81

A Family Educational Rights and Privacy Act, Section 37 83

B Test Source Description 85

8

List of Figures

2-1 A Database Federation [33] . 21

3-1 Theoretical Model of Inter-agency Information Sharing 31

3-2 Massachusetts DESE Data Sharing for Accountability 34

4-1 System Architecture . 45

5-1 U ser Interface . 58

5-2 Python/SW IG/C . 60

6-1 Number of Predicates vs. Number of Triples per Predicate 65

6-2 Variables Sharing between Service-Subqueries 67

6-3 Total Number of Triples/Number of Triples per Predicate 68

6-4 Transformation Times . 72

6-5 Total (End-to-End) Times . 73

10

List of Tables

2.1 Example of Relational Database Table: Host Cities 20

2.2 Example of Relational Database Table: Event Details 20

2.3 Example of Relational Database Table: Athlete Details 20

6.1 Datasets for Federation . 69

6.2 Queries, Endpoints, & Result Set Sizes 72

12

Listings

2.1 Sample RDF. 24

2.2 Sample SPARQL Query . 25

3.1 Sam ple Q uery . 39

4.1 Input Query 47

4.2 M apped Query . 48

4.3 DESE MCAS Endpoint's Source Description 49

4.4 MA Teacher Information Endpoint's Source Description 50

4.5 Mapping Rules for Education . 51

4.6 Optimization Algorithm . 52

6.1 Optimization Test Query . 64

6.2 Variable Sharing between Subqueries 66

6.3 Variable Sharing between Subqueries (Bound Subjects/Objects) . . . 68

6.4 Q1: German Musicians Who Were Born In Berlin 70

6.5 Q4: Presidents of the United States & Their Vocations 70

6.6 Q4: Athletes Who Played Professional Baseball & Basketball 71

6.7 Q3: Hollywood Actors Who Were Born In Paris 71

14

Chapter 1

Introduction

The amount of digital information in the world has exploded in the past decade. In

2005, about 150 exabytes of data were created - a number that has been estimated

to have reached 1200 exabytes in 2010 [34]. Detecting patterns and extracting useful

information from this deluge of data can significantly benefit firms, governments,

and people by improving efficiencies, and innovating products and practices, among

others. Given the size of this data, it is necessary to have appropriate tools that

can facilitate the organization and querying of data, which is often contained in

disparate locations. The Semantic Web has the potential to make such large scale

data manipulations possible.

The term Semantic Web encompasses the broad category of technologies that are

aimed at making the World Wide Web more machine-readable. Some of these tech-

nologies include Resource Description Framework (RDF) [22], RDF Schema (RDF-

S) [8], Web Ontology Language (OWL) [31], the SPARQL Query Language [39].

Though the Semantic Web has led to open data sources that can be queried, extended

and re-used easily [35], on-the-fly integration of data from multiple heterogeneous and

distributed data sources is still a problem. Furthermore, the ability to perform such

seamless integrations while preserving appropriate security and privacy policies has

not even been addressed.

Several issues need to be addressed before such environments are developed. For

instance, an application developer/user would need to know what data is present in

each source and in which format, so that appropriate queries may be formulated to

obtain the necessary information. Moreover, if a source's content has been modified,

the application developer needs to adjust the query accordingly to ensure proper data

retrieval. One possible solution to address these challenges is the application of the

federation paradigm for database systems [32].

A federated query involves the concurrent search of multiple distributed data

sources. In a federation model, the access to data sources is transparent. Under

such a system, a user can submit a single query to the federation engine, which then

reformulates the query to subqueries to suit the various data sources, executes the

subqueries, and returns the merged result. The lack of a shared model for security

and privacy [20], however, impedes the transparency of the federated model because

the federation engine is unable to execute requests across many secure domains on the

fly. This means that most contemporary federations have static, previously negotiated

policies in place, which prevents dynamic integration of data.

In this thesis, I present a novel architecture of a data integration engine that pro-

vides secure SPARQL federation. The engine accepts a single SPARQL query from

a client, splits it up into subqueries based on the information contained in the ser-

vice descriptions of endpoints it has in its possession, sends them off to appropriate

SPARQL endpoints, and returns the results to the client. Under the proposed archi-

tecture, clients who use the federation engine are also required to provide some secu-

rity credentials, which are used to satisfy the access policies of those endpoints that

contain secure data. Such data may include personally identifiable information(PII)

of individuals and trade secrets, among others.I also present my implementation of

this architecture, which includes provisions for integration with Semantic Web-based

policy reasoners[43, 16], but does not currently support complete policy enforcement.

1.1 Thesis Overview

The proposed system for SPARQL federation is organized in this thesis as follows:

Chapter 2 introduces some of the basic technologies that makes query federation

possible in a Semantic Web environment. A basic overview of federated querying is

provided and the differences between relational and RDF databases are illustrated.

Then, some of the recent advances in federation functionality in Semantic Web tech-

nologies is explored.

Chapter 3 describes the application of a SPARQL federation system in the context

of government data sharing. When organizations see the business case for expressing

their data in formats that suit the Semantic Web, they would begin developing data

systems that facilitate enterprise level data sharing. The presence of such data sources

would accelerate the spread of Semantic Web Technologies on a truly Web scale. This

detailed use case highlights the many advantages of adopting SPARQL federation

systems for the Massachusetts Department of Education over traditional databases.

Chapter 4 discusses the overall architecture of the system and the design choices

that were made during its development. The various components of the system are

described and their features and limitations are identified.

Chapter 5 details the implementation of the design. The various software tools

that made the design possible are identified and their relevance is described.

Chapter 6 discusses the performance of the system when presented with endpoints

and queries with different characteristics. The methodology for the selection of queries

is presented and the relevant metrics are illustrated.

Chapter 7 provides a summary of the contributions of this work. The limitations

of the system are discussed and future areas for expanding on the work are identified.

18

Chapter 2

Background & Related Work

In order to design a federation engine for Semantic Web data sources, it is first

necessary to compare Semantic Web technologies to their relational counterparts.

Moreover, many insights for the engine's design can be found in the existing literature

on federated databases. In the following sections, these results of this two pronged

investigation is described.

2.1 Relational Databases

Most of the research related to database federation has been conducted on relational

databases. This is no surprise because the relational model has been the dominant

model since it was first described by by E.F. Codd in [11]. A relational database has

a tabular structure, with each column in the table signifying a different attribute. A

relation is defined as a set of tuples that contain a set of elements, one each from each

attribute. In Tables 2.1, 2.2, and 2.3 are sections of three tables that are part of

a relational database for the Olympic games. Table 2.1 contains a list of host cities

and their geolocation information. Table 2.2 contains the dates of the events and

their mottoes. Table 2.3 has the details of athletes attending the events.

Table 2.1: Example of Relational Database Table: Host Cities
idville label-en longitude latitude
1 Athens 23.7166667 37.966667
2 Beijing 116.400002 39.900002

Table 2.2: Example of Relational Database Table: Event Details
id idville year Opening Ceremony Date Closing Ceremony Date Motto
1 1 1896 1896/04/06 1896/04/15 NULL
2 2 2008 2008/08/08 2008/08/24 One World, One Dream

2.1.1 Limitations of the Relational Model

The relational model has a number of shortcomings. First, from Tables 2.1, 2.2,

and 2.3, it is evident that there is a clear separation between the data structure (the

attributes) and the data itself. This means that the relationship between the data and

the attributes are not persistent. Second, the database has a rigid structure, which

means that it is necessary to have NULL values for those attributes that do not exist

in a relationship. For instance, the 1896 Olympic games did not have a motto but

it is necessary to specify that fact explicitly. Third, the relationships between the

tables are not explicitly stated and have to be inferred. To gather all the non-athlete

information on a particular Olympic games, it is necessary to do a join on Tables 1 &

2 using idville. Fourth, all data and attribute identifiers are local to a given database.

This means that they lack meaning outside the database and therefore cannot easily

used for data manipulations across different data sources [7].

2.2 Database Federation

The research on federated database systems dates back to the 1980s when McLeod and

Heimbigner first detailed a federated approach to managing decentralized database

Table 2.3: Example of Relational Database Table: Athlete Details
Athlete ID label-en Birth Date Death Date

2 Beijing 116.400002 39.900002

Informix DB2 UDB UNIX, DB2 for OS/390,0B2 for iSeries
Windows, Linux/390 DB2 for VSE/VM

DB2 Connect server
(Windows, UNIX)

Figure 2-1: A Database Federation [33]

systems. They defined a decentralized database as a collection of structured informa-

tion that may be logically and/or physically distributed. Logical decentralization is

the division into components for allowing separate access, and physical decentraliza-

tion is about the allocation of data to different nodes. A federated system consists

of a number of logical components, such as endpoints, related, but independent, and

each with its own component schema, defined by a component Database Adminis-

trator (DBA). A schema describes the structure of a database in formal language.

The principal goal of each component is to satisfy the needs of its most frequent and

important users, which are usually the local ones. These disparate components are

held together by a federal schema, which contains a federal controller and is admin-

istered by a federal DBA. The federal DBA resolves conflicts between components

and defines federal schema(s), relate them to component schemas, and specifies each

components interface.

There are many options available for logical distribution - a single, global federal

schema, a separate federal schema for each pair of components, associating a federal

schema with each component, or a hierarchy of federal schemas. Given a federated

setup, there is a range of possible views that a given component user can have. At

one end, the federal and local schemas are so well integrated that the user cannot tell

--------- ----

which data is being accessed. In this setup, the user could be oblivious to potentially

expensive non-local references. On the other end, the federal schema is separate from

the local one and therefore the user would have to address each one separately.

With physical distribution, better performance would result as a result of placing

the data close to principal sources and users. Moreover, redundantly storing data

would provide reliability and survivability. In such implementations, the complexity

that exists from the presence of duplicate data as well as that which results from the

combination of logical and physical decentralization must be addressed.

The federal controller (or engine) is the entity that is charge of the federation.

The controller needs to perform several steps for each request from a client.

1. The request is checked for validity against the federal schema and access rights

are verified.

2. The request is decomposed into several subrequests, each of which can be sat-

isfied by a single component.

3. Each subrequest, if applicable, is translated from the federal schema to the

target component schema.

4. The subrequests are sent to the corresponding components.

5. The results from each component is collected and, if applicable, translated from

the component schema to the federal schema.

6. The results are combined and returned to the client.

There are three approaches to federal controller placement - as a special node on

the network, co-located on a node with another component, or parts of it may be

distributed across different components. The component controllers should have three

important features: allow local users and the federal controller concurrent access to

data, communicate results back to federal controller, and recognize locally-issued

requests for which the federal schema is needed and forward those to the federal

controller [32]. In this thesis work, the objective was to create an independent, stand-

alone federation engine that could be interfaced with any combination of components.

As a result, the first approach was chosen.

2.3 Semantic Web

The Semantic Web is touted and increasingly accepted as the next generation of the

Web. The inventor of the the World Wide Web described the Semantic Web as an

extension of the current Web in which information has well-defined meaning that

is machine readable [5]. As such, Semantic Web technologies provide a framework

for sharing information between decentralized sources using data interpretation, in-

tegration, and management capabilities. In such an environment, there would be

significant reductions in the hours spent on decision-making, organizing, and filter-

ing useful knowledge from the human-only-readable, large data repository that is the

Web today.

A number of features enable the structure and machine readability of the Seman-

tic Web. Unique Resource Identifiers (URI) enable unique meaning, the Resource

Description Framework (RDF) facilitate the meta data layer, and SPARQL - a query

language for RDF - permits the efficient and descriptive querying of Semantic Web

sources.

2.3.1 Uniform Resource Identifier (URI)

URIs can be Uniform Resource Locators (URLs), such as web addresses, or Uni-

form Resource Names (a unique name within a given namespace) [42]. A URL,

such as http://dig.csail.mit.edu, identifies the homepage of the Decentralized Infor-

mation Group and also indicates the location of that information. A URN, on the

other hand identifies a resource, so that there is no ambiguity in its reference. It

does not necessarily give any information on the resource's location. For example,

dig:source-descriptions, identifies the namespace for the source description ontology

for the system described in this thesis. URIs ensure that a given name will always

@prefix foaf: <http://xmlns.com/foaf/0.1/>

-: a foaf:name "Johnny Lee Outlaw" .
- : a foaf :mbox <mailto :jlowQexample .com>
_:b foaf:name "Peter Goodguy" .
_ :b foaf :mbox <mailto peterQexample . org>
_: c foaf :mbox <mailto carol~example . org>

Listing 2.1: Sample RDF

correspond to the same resource across domains such that disparate information may

be brought together for integration [45].

2.3.2 Resource Description Framework (RDF)

RDF is a directed, labeled graph data format for knowledge representation on the

Web [22]. RDF is used to describe the attributes of resources and establish relation-

ships between different resources. Relationships are established via subject-predicate-

object triples, in which the predicate identifies a relationship between two resources

- the subject and the object. The various components of a triple would ideally made

up of URIs so that the triples maybe easily processed and manipulated. Listing 2.1

shows part of an RDF Graph, expressed as a set of triples. These triples together

contain the name and/or email information for three individuals.

2.3.3 SPARQL Protocol and RDF Query Language (SPARQL)

SPARQL is an RDF query language [39]. It can be used to express queries to a

single data source or across multiple data sources. SPARQL is capable of querying

required and optional graph patterns along with their conjunctions and disjunctions.

The results of a SPARQL query may be returned as a result set or RDF graphs. The

expressive power of SPARQL is perhaps best demonstrated by an example. Suppose

that we have are interested in querying the data in Listing 2.1. We could create

a query that would pull pairs of names and e-mail addresses from this data set. In

SPARQL, this query would have the syntax shown in Listing 2.2.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE

{ ?x foaf:name ?name
?x foaf:mbox ?mbox }

Listing 2.2: Sample SPARQL Query

The real power of SPARQL is the fact that it is already conveniently encoded in

an RDF language. When a query is executed, an attempt is made to match the Basic

Graph Pattern (BGP), i.e. the combination of triples, in a SPARQL query to any

part of the RDF Graph it is trying to query.

The result of this particular query would be names and mboxes of individuals for

whom both pieces of information is in the RDF Graph. Hence, Carol's information

would not be returned as she does not have a foaf:name attribute associated with her

in the Graph.

2.3.4 Advantages of RDF Data Sources

A juxtaposition of the features of the Semantic Web and the aforementioned lim-

itations of the relational mode illustrates how the RDF model makes up for these

deficiencies. The use of URIs mean that the reference to a data element has meaning

across multiple domains. Such persistence makes data integration, interpretation, and

management across different data sources seamless. Moreover, the graph structure

of the data is very flexible. The DBA is free to choose any shape for the data she is

in charge of. Also, the use of triples ensure that the relationships between database

elements are explicit and easy to discern with appropriate SPARQL queries.

2.4 Related Work

Much of the research on database federation has focused on relational databases.

Some of this also includes work on secure relational federations. For example, HER-

MES (HEterogeneous Reasoning and MEdiator System) developed at the University

of Maryland was a platform that was developed to design and implement such sys-

tems [9]. There has been little work done on such comprehensive environments for

Semantic Web, especially secure ones, due to the relative newness of such technologies.

However, marked progress has been made in the development of various components

that make up a federation engine for the Semantic Web.

Some work has been done on the semantic integration of relational data using

SPARQL [44]. In this particular example, a mediator-wrapper architecture is used

for data integration, which is divided into three sub-parts - mediated schema, query

language, and query rewriting algorithms. Ontology is used for mediated schema

and conjunctive queries are rewritten using Views through the implementation of the

MiniCon algorithm. However, since MiniCon uses Datalog, the query processor trans-

lates SPARQL queries to Datalog to perform all steps involved in data integration

optimization, query rewriting, and query optimization. Moreover, this system only

interacts with relational databases and not SPARQL endpoints. Without SPARQL,

most queries will lack expressivity and the full potential of the Semantic Web will

remain untapped.

Virtual integration of distributed, heterogeneous data sources based on the Se-

mantic Web technology to facilitate scientific collaboration was described in [30].

The authors propose a middleware based on a mediator-wrapper architecture that

can map local data models and schemas to several global domain ontologies. Clients

submit SPARQL queries corresponding to the global domain ontologies to the medi-

ator. The mediator, which holds information on registered data sources and global

domain ontologies, generates the query plan using an iterative dynamic programming

algorithm. The wrappers help overcome the model and schema heterogeneity by pro-

viding specific access methods. While this system is promising, little performance

data of the optimizer and the engine is available that sheds light on the effectiveness

of this approach.

Kolas has developed a query rewriting algorithm that attempts to apply lessons

learned from relational information integration systems to Semantic Web technolo-

gies [28]. However, the focus of this paper is only on one aspect of query rewriting -

mapping between local and target schemas. Two approaches are presented and one

is chosen (Global-as-View) based only on a number of factors associated with local

to global mapping - independent domain ontology, mutually independent data source

to domain ontology mappings, extracting all meaning from source to domain ontol-

ogy, etc. Very little focus is placed on the rewriting process once the mappings are

performed.

The OptArq system has implemented a SPARQL optimizer based on triple pat-

tern selectivity. The optimizer aims to reduce the size of the intermediate result sets

of triple patterns. An overall cost function, which is a function of the costs of subject,

predicate, and object, is used to rank triple patterns. The elementary cost functions

are calculated based on statistical data of endpoints that the OptARQ system has

cached [6]. Although the statistical models are basic and imprecise, this system pro-

vides a good framework for optimizing SPARQL queries for use in federated Semantic

Web environments.

The only known federated system that uses SPARQL to query RDF data sources

that we are aware of is the DARQ. It is a full-fledged engine that performs query

parsing, query planning, query optimization, and query execution. Planning and

optimization are done using the source descriptions that the system has on file for

those systems that have registered with it ahead of time. DARQ adapts much of the

research on federation of relational databases to perform SPARQL queries on RDF

sources. However, DARQ only operates on open data sources and does not offer any

support for secure SPARQL federation [40]. Secure data sources are often necessary

in scientific, business, and socio-political fields for economic and legal reasons, as we

will see in chapter 3.

28

Chapter 3

Public Education in Massachusetts:

An Ideal Application

With the emergence of the Web, technologists, policymakers, and citizens have praised

the ability of information systems to transform governments. Various entities have

enumerated the benefits of e-government systems. These fall into the broad categories

of benefits to citizens, businesses, and government agencies.

As e-government systems promote easier access to government information, cit-

izens would have a better customer service experience when interacting with gov-

ernment agencies. The data.gov and data.gov.uk initiatives by the government of

the United States and the United Kingdom, respectively, are prime examples of ser-

vices providing easier access to government information. Businesses would save on

operating costs as paper-based processes are eliminated and government information

is accessed more efficiently. The agencies that employ the systems would also see

cost savings and increased efficiencies as well as increase in morale among agency

employees, which feeds back from better customer service [38, 19].

To achieve the full benefits of e-government systems, it is necessary to share infor-

mation between different government systems. Public policy issues are often spread

across different agencies and it is the case that different entities have to marshall

their resources to solve a particular problem. For example, leukemia rates among the

graduates of River Valley High School in Marion, Ohio increased 122 percent between

1966 and 1992. However, it took almost 30 years for the community to establish a

hypothesis - leaking of cancer causing chemicals from a World War II bomb-making

plant which used to be housed at the school site - and collect enough evidence to

prove it. Had there been systems that allowed interoperability and sharing among

Department of Defense (DoD), Census Bureau, and epidemiological information sys-

tems, the correlation process would have been easier and taken much less time, and

possibly resulted in saving lives [24].

3.1 Interoperability and Data Sharing

In the last 15 years, much research has been done in the area of interoperability

between disparate government information systems to enable better collaboration

between agencies [24, 15, 1]. Figure 3-1 depicts the theoretical model of inter-agency

information sharing that Dawes laid out in [15]. The impetus for these efforts during

the last decade was the terrorist attacks of September 11, 2001 and the belief that the

tragedy might have been avoided had there been better information exchange between

various law enforcement agencies. The Accountable Information Usage in Fusion

Center Information Sharing Environments project at the Decentralized Information

Group (DIG) at MIT-CSAIL attempts to build policy tools that enable seamless

information flow between Federal, State, and Local law enforcement agencies, while

assuring that such sharing adheres to privacy and securing policies [21]. The goal of

this thesis work is not to develop policy tools; rather to use those tools in combination

with others to develop a well integrated data federation environment. Data Sharing

and Interoperability, moreover, has applications and benefits that extend far beyond

the national security and law enforcement realms.

3.1.1 Benefits

Interoperability and the information sharing that results from it has the potential

to make agencies more effective, efficient and responsive. Although, many federal

agencies were created to solve public policy challenges in their purview - education,

Promote Benefits

Mitigate risks

Figure 3-1: Theoretical Model of Inter-agency Information Sharing

environmental protection, etc., policymakers increasingly understand that many of

the social and regulatory problems do not conform to the jurisdictional boundaries

of a particular organization. These problems, and therefore effective government,

require integrated policy approaches that makes use of information, knowledge, and

technology from a variety of agencies and divisions [24].

Once information is aggregated in electronic sources, data manipulation and du-

plication, which are integral to find correlations and causalities, becomes much easier.

Such sources have the ability to reduce the paperwork burden on both governmental

and non-governmental actors that interact with the state [24]. In the same vein, trans-

action costs are reduced, thereby bringing down overall costs and possibly increasing

participation [15].

Finally, the availability of disparate information at the fingertips of public servants

means that governments would act faster to identify problems and respond to them.

Moreover, such increases in efficiencies could establish a cadre of entrepreneurial bu-

reaucrats, who are less bound by rigid policies and have the flexibility to tailor the

processes to reach goals, the completion of which they are held responsible for [24].

3.1.2 Challenges

While the aforementioned benefits makes a strong case for interoperability, a number

of challenges have to be addressed for the full promise of data sharing to be realized.

Andersen and Dawes in [1] identify these challenges into the broad categories of

political, organizational, economic, and technical issues.

Political obstacles include privacy, ambiguity about statutory authority, and the

openness to public scrutiny. Privacy includes the obvious threat of data aggregation

by Big Brother governments [24]. In addition to establishing legal frameworks that

protect citizens' privacy rights, citizens must also have faith in the government for

interoperable systems to become politically viable [23]. Moreover, federal and state

agencies are bound by the statutes that authorized their establishment. Under these

tight constraints, an important question for an agency is if and under what conditions

it can share information with its sister agencies. Those agencies that are hesitant to

share would require explicit regulatory direction to divulge information that they pos-

sess [15]. Once again, appropriate legal frameworks need to be developed for sharing

to become ubiquitous. However, even with appropriate legal frameworks, agencies

that wish to withhold certain information may choose to interpret the legislation dif-

ferently from a partner agency. Lastly, the data that is made easily available through

interoperability might cause the public to increase their scrutiny on the agencies that

shared the information. This outcome is a strong disincentive for sharing.

In the organizational realm, an agency must trust the veracity of the information

it gets from another. For instance, an agency might not be due diligent in ensuring

the accuracy of information it collects, if it is not critical to its core mission. However,

for data sharing to be a success, each interoperating agency must have a high degree

of confidence in the information that it did not directly solicit. Moreover, the fledgling

state of the development of interoperable systems means that agencies lack the exper-

tise to share the information they have and/or are unaware of the opportunities that

exist for sharing. To complicate matters further, the agencies often lack the financial

resources to secure interoperable systems, which are often state-of-the-art and have

high costs. Moreover, cash-strapped agencies often use low-bid procurement methods

for information systems, which fail to take into account the life-time impact of such

systems. These are significant economic obstacles to interoperability [24].

Last, but not least, there are a number of technical challenges. Prime among

them are issues of hardware and software incompatibilities. While there may be

workarounds, the cost of them might be prohibitive. Moreover, when contractors are

used for system development, intellectual property rights of the contractor might pre-

vent the contracting agency from not utilizing all the features of the system. Finally,

a key technical barrier to interoperability is the difference in data standards. It would

be difficult to connect disparate datasets if agencies have different data definitions.

While these definitions could be changed for the purpose of integrating diverse sys-

tems, the financial and legal barriers of doing so might be too high [24]. Usage of RDF

and other Semantic Web technologies described in section 2.3 could aid in integration

while allowing each agency to customize its data structures for local needs.

Section 3.3 lists some of the ways in which these challenges may be mitigated in

an environment that uses SPARQL federation for data sharing.

3.2 Public Education in Massachusetts

Education is an important public sector service where interoperability can have

tremendous benefits. In Massachusetts, the Department of Elementary and Sec-

ondary Education (DESE)' is responsible for the education of the approximately

550,000 children in the state's public schools, which are located in 391 school dis-

tricts. Its mission is To improve the quality of the public education system so that

students are adequately prepared for higher education, rewarding employment, contin-

ued education, and responsible citizenship. It has as one of its six primary goals the

'Note: Massachusetts has had many reorganizations of the state level education administration
in the last decade. In this thesis, the term DESE is used to identify the Department of Elementary
and Secondary Education as well as its predecessors

Student Demographic Data &
Teacher Background Data

Figure 3-2: Massachusetts DESE Data Sharing for Accountability

provision of timely, useful information to stakeholders [12]. To achieve its mission

and goals, it is important for the DESE to track the progress of students as they

advance through the grades. Moreover, it is necessary to address the needs of chil-

dren in early childhood and in the post-secondary years, when they are not in the

purview of the DESE. Without such attention, we would lack an active citizenry that

sustains a vibrant democracy and an educated working-age population that can grow

our knowledge-based economy in a globalized world.

3.2.1 The Need for Better Information Sharing

Since the passage of the Education Reform Act of 1993, Massachusetts has mandated

that all students who are educated with Massachusetts funds participate in standard-

ized Massachusetts Comprehensive Assessment System (MCAS) testing [36]. The

tests serve to help improve curriculum and instruction, evaluate student, school, and

district performance against state defined standards, and determine student eligibility

for the Competency Determination requirement in order to award high school diplo-

mas. Moreover, since 2002, the MCAS tests in Mathematics and English Language

Arts (ELA) in grades 3-8 and 10 have satisfied the testing requirements of the No

Child Left Behind Act (NCLB) - the latest reauthorization of the Elementary and

Secondary Education Act of 1965. The goal of NCLB is to ensure all students in

America's public schools are proficient in Mathematics and ELA by the year 2014.

Increased accountability means that the distribution of education dollars from Wash-

ington and Beacon Hill to schools and districts is contingent upon their students'

performance on the tests.

To satisfy the achievement and accountability requirements of the federal legisla-

tion, Massachusetts is required to conduct yearly assessments in the aforementioned

grades, ensure adequate yearly progress (AYP), and establish that the educators

satisfy NCLB's highly qualified teacher (HQT) requirements. A local education au-

thority has to ensure that schools make AYP at the school level and also for specific

subgroups of students. The HQT requirement states that teachers must be qualified

in the content area they are teaching and that parents be informed if someone who

is not qualified is teaching their child [41].

In this three-pronged set up, even if one leaves aside the supplementary federal

and state legal requirements, the need for data sharing is obvious. A state agency

has to administer the necessary tests and aggregate the results. Then it has to cross-

reference this testing data with the student demographic data, which the schools and

school districts have, to perform the AYP calculations. Finally, the DESE has to

have access to the data bank that contains the educator data - licensure information,

educational background, etc. - to meet the HQT requirements. The ability to easily

and efficiently integrate these disparate datasets would not only help the state meet

NCLB guidelines but might also improve educational outcomes.

3.2.2 Where We Were Then and Where We Are Now

Massachusetts was one of the first states to institute standards based public education

reform. The graduating high school class of 2003 was the first one that had to satisfy

the MCAS graduation requirement by scoring at the proficient level on the 10th

grade Mathematics and ELA tests. In the early days, student demographic data was

collected on the MCAS test booklets. As such, DESE was responsible for amassing

student non-test data as well the assessment results. The test booklets now contain

unique labels for each student so that test administration is made easier on the part of

the schools and the districts. The DESE assigned each student a unique ID, called the

State Assigned Student ID (SASID), to integrate the demographic and assessment

datasets. In the first generation system, the data was a large flat file from which

reports were run for accountability measures. Later on, even bigger flat files were

created to analyze the performance of students that graduated between 2003 and

2005. Systems were then developed (the data was stored in an Oracle relational

system) to automatically merge data and create reports based on a series of business

rules. Statisticians at the DESE were responsible for data curation and the accuracy

of the data.

In 2003, there were 32 characteristics that made up the student profile, which

have been since expanded to 52. Periodically, DESE updates the list of characteristics

based on its needs. Currently, the school districts are responsible for collecting the

student demographic data and reporting it to DESE. Each district is responsible for

securing its own data systems from the vendor of its choice. As there is myriad of

systems that exists across the Commonwealth, the school districts are given two to

three years to upgrade their systems to have the updated list of characteristics when

changes are made.

The Data Warehouse, which is in Phase II and well beyond the flat files, is a

Cognos Centric system. It is built as an enterprise education data warehouse.It works

well in medium sized school districts, but is not ideal for state-wide data processing

and analysis. According to Mr. Robert Bickerton, Associate Commissioner at DESE,

various stakeholders - parents, teachers, policymakers, etc. - could 'make a cup of tea,

maybe they go out and have dinner, maybe they could come back the next day, maybe

they give up," while they wait for the reports. As a result, the agency is attempting

to reengineer the system to make it more efficient. The warehouse aggregates data

from school districts three times/year and the educator data is updated once a year.

Plans to make the teacher data updates happen as frequently as the student data is

in the works. Moreover, proposals have also been made to collect data on student

and teacher assignments to classes so that class level, in addition to district and state

level, analyses may be performed.

Initially, DESE was only concerned about the scaled scores of students and the

levels the scores put them into - advanced, proficient, and needs improvement - for

the purposes of accountability reporting. However, in phase II the agency uses an

enhanced progress analysis framework called the Growth Model to track student

progress. The Growth Model is a student growth percentile model. It is a regression

model that creates a cohort of like performing students from all across the state, which

is floating and changes from year to year based on test achievement, and not just the

school or the district. Starting with a baseline assessment in grade 3, students are

compared against their peer group in each subject category. In this system, student

performance is not simply the scoring level, but a combination of the level and the

student's place in her peer group. The percentile for a school or a subgroup within a

school is the mean of the percentile values of the students that make up the group [13].

Even before the growth model, it was easy to see that data sharing was essential

for meeting the NCLB reporting requirements. However, the floating cohorts that

are made up of students from any school/district in the state and the need to do

performance comparisons on a subgroup basis means that without appropriate in-

teroperability and data standards, progress measurements would be difficult, if not

impossible.

3.3 A Secure SPARQL Federation for the DESE

The data sharing and interoperability challenges that the DESE faces could be mit-

igated by using a secure SPARQL federation engine, the architecture of which is

described in chapter 4. Such a system, would depend on various SPARQL endpoints

that house the information that the federation engine uses.

First, the use of RDF for data representation would make the data collection and

storage more efficient. The characteristics that make up a student's demographic

profile are updated periodically to satisfy the needs of the agency for reporting and

research purposes. Storing this data in tables in relational databases means that

all data would have a rigid structure and the database has to be re-architected to

make these changes. With RDF, each student's profile could have a unique graph

structure. Districts could easily add on new characteristics when the state requests

them and choose to either delete the ones that are no longer needed or keep them

for the districts' own tracking purposes. Such changes would not require the two or

three year time frame that the districts are allotted now, which could lead to faster

feedback. Moreover, with such a design, a school can choose to append additional

characteristics that are not necessary for state reporting requirements but could pro-

vide individualized assistance to students.

The state could specify ontologies that districts have to use to describe the data

that is reported to the state. Alternatively, the districts could create ontologies that

are most appropriate for their day-to-day use to describe the student and teacher

data in their databases. Under such a set up, the district would provide the state

with a detailed source description2 . With appropriate ontology mapping tools, the

state and district level systems can be made to interoperate seamlessly.

The availability of a secure federation engine would eliminate the need for the

transfer of large amounts of transfer between various databases. The student data can

remain on the district servers, and the education licensure information can remain

on the DESE Licensure Office's databases. When analyses have to be generated

for research or federal reporting purposes, they can be generated by querying the

federation engine, which would integrated data from the different databases.

For instance, Mary, an MCAS analyst at the DESE can log in to the federation

engine with her credentials to obtain the data necessary to run a performance report

for a school. The credentials should allow her access to two data sources to perform

a successful query on the federation engine - the student/educator demographic data

2Source descriptions are explained in much more detailed in chapter 4

PREFI DESE: <http:www. mass. gov/dese#>
SELECT ?student ?mscore ?escore
WHERE
{ ?student DESE:id ?sasid

DESE:3rd-math-score ?mscore
DESE:3rd-ela-score ?escore

?sasid DESE: grade-level \''3''
DESE: school-name \''Horace Mann''
DESE: town \''Westtown'
DESE: race \''Hispanic

}
Listing 3.1: Sample Query

at the district level and the assessment data that is stored on the DESE servers. For

example, let us assume she is interested in the performance of third grade students

of Hispanic origin in Horace Mann Elementary School in Westtown, Massachusetts.

She would issue a query that looks similar to the one in Listing 3.1. She would need

to provide appropriate credentials to ensure that she has access to the parts of the

DESE database that she is querying.

SPARQL federation is also relevant in the future of education in Massachusetts,

and possibly the entire United States. The Massachusetts Executive Office of Educa-

tion, which is the executive branch agency that is responsible for all levels of education

in the state, has plans to observe the progress of students from early childhood, to

post-secondary, and eventually employment and wage data to analyze the full impact

of the Commonwealth's educational institutions and practices. Such observations are

necessary because in the 21st century economy, people constantly have to retool their

skill set by engaging in lifelong education. This is evident in the fact that enroll-

ment in adult education programs exceed the rolls of public school students in the

Commonwealth [37]. To do this, the federation engine would need to have among

its endpoints SPARQL endpoints that contain information from the Department of

Early Education and Care, the Department of Higher Education, the Massachusetts

Department of Revenue, and others. These agencies would have to develop appropri-

ate ontologies and source descriptions and register with the federator. Each of those

endpoints would also specify usage policies that contain access restrictions for users

that access the endpoint via the federation engine. The federation engine would be

responsible for reasoning over user credentials and policies to ensure that only those

users, who have the privileges, access any particular endpoint. Furthermore, the ex-

istence of such policies and reasoning would help convince skeptics at these sister

agencies that the data that they expose are only made available to those individu-

als to whom they give access to via inter-agency agreements, which would be made

out-of-band.

From a financial perspective, recent developments suggest that there would be

adequate resources available to upgrade to a system like this. DESE has received

grants, including from the United States Department of Education's Race to the

Top funds, to pursue initiatives like the Schools Interoperability Framework (SIF)

- a standards framework to which many of the vendors that the districts use are

increasingly adhering to [13].

3.3.1 Potential Obstacles

While a secure SPARQL federation engine can boost interoperability among various

systems, it is not a silver bullet by any means. There are a number of potential

obstacles.

First, Semantic Web technologies are in the early stages of development. Therefore

the research literature on them is not as vast as their relational counterparts. Specifi-

cally, over thirty years of work has been done on relational database techniques, such

as query optimization. Combined with the additional size of data that comes with the

expressivity that RDF provides, the fledgling state of SPARQL query optimization

means that integration of large education datasets (records for approximately 550,000

students and 80,000 educators [13]) would be painfully slow.

Second, in theory, school districts could use ontologies that best accommodate

their needs. However, until data source to domain level mapping techniques, such

as the one described in [28] become more robust, DESE might have to prescribe

ontologies for all districts to use. This means that a secure SPARQL federator would

do no better than the proposed Schools Interoperability Framework [13].

Moreover, a number of non-technological challenges outlined in 3.1.2 are pertinent

to DESE. First, as Sharon Wright, the Chief Information Officer in the Executive

Office of Education, pointed out, civil servants are reluctant to bring on board better

technology because of the fear of finding information that they do not like. If better

data organization and management help gleam important insights, it would mean

that policymakers would have to go beyond their current responsibilities to rectify

the new found problems.

Second, currently there does not exist appropriate legal frameworks to facilitate

cross-agency data sharing that would result in longitudinal observations of an indi-

vidual from early childhood to adulthood and beyond. The educational authority

in Massachusetts is dispersed across various agencies, unlike in other states such as

Florida, where one executive is legally in charge of all levels and facets of educa-

tion and training, and has the right to data across the spectrum. Without those

frameworks, the Department of Early Education and Care, for instance, could refuse

access to the data they possess, under the interpretation of a particular statute.

For instance, the major impediment to conducting a longitudinal evaluation is the

disagreement over the meaning of section 37 of the Family Educational Rights and

Privacy Act' [37].

Lastly, as with any large scale data integration effort that the government under-

takes, there is fear of Big Brother using the data to turn society into an Orwellian

nightmare. Until appropriate safeguards are put in place and the public is satisfied

by the effectiveness of those safeguards, elected officials and bureaucrats would face

a tough sell in transitioning to a system which has as its integral component a secure

SPARQL federation engine.

3 The full text of this section is in Appendix A.

42

Chapter 4

A Secure SPARQL Federation

Paradigm

Thus far, the various benefits of a secure SPARQL federation systems have been

illustrated by comparing it against existing technologies and exploring its application

at the Massachusetts Department of Education. Now it is time to look at the SPARQL

federation model in more detail. This chapter details the design of the Federation

Engine. The features of the various components of the system are described as are

the rationale behind various design choices.

4.1 Architecture

As alluded to in chapter 2, the primary motivation of this thesis work was to bring

together various Semantic Web technologies and provide an integrated environment

that demonstrates the benefits of the secure SPARQL federation paradigm. In addi-

tion, this thesis also provides an optimization algorithm for optimizing and rewriting

SPARQL queries. The architecture was first laid out in [10]. A few updates have been

made to the initial design and the complete architecture is described in the following

subsections.

The system is illustrated in Figure 4-1. Its main components are the i) Validator

(section 4.1.2), which validates the query provided by the user; ii) the Mapper

(section 4.1.3), which splits the query to several subqueries based on descriptions of

endpoints; iii) the Optimizer (section 4.1.6), which reorders the subqueries according

to the optimization metrics; iv) the Orchestrator (section 4.1.7), which executes the

subqueries and integrates the various result sets; and, v) the Proof Generator (section

4.1.8), which generates a proof for each secure SPARQL endpoint based on client

supplied credentials and endpoint descriptions, if necessary. The Federation Engine

also has in its possession the source descriptions (section 4.1.4) of the endpoints that

have registered with it. The Map Generator utility (section 4.1.5) generates a set

of mapping rules based on these sources descriptions, which is used by the Mapper.

The data in the endpoints are in RDF, which means that query results from multiple

endpoints can be easily integrated using common variable bindings.

The system functions as follows: A client submits a query to the Federation Engine

on a web-form. The Validator validates the query and forwards it to the Mapper. The

Mapper rewrites the query into various subqueries based on the source descriptions

known to the Federation Engine. Once the mapping is done, the Optimizer performs

the optimization and reorders the subqueries. If any of the endpoints in the query

plan requires specific credentials for data access, the user is prompted to supply

them at this point. Then, the Proof Generator generates a proof based on the user

supplied credentials. The optimized list of subqueries, along with any generated

proofs, is forwarded to the Orchestrator. The Orchestrator accepts the optimized list

of queries, sends the subqueries along with proofs to the various endpoints, integrates

the different result sets, and forwards the final result to the client on the web-form.

Some of the benefits of this architecture have already been presented in chapter 3.

The following subsections, which explain the architecture in further detail, elucidate

these benefits more.

4.1.1 SSL

The Federation Engine uses the SSL protocol to communicate with a user who wants

to query the orchestration engine. The use of SSL ensures that the data transfers

between the client and the engine happens via a secure channel. Such transfers would

V
al

id
at

or

2.
 S

SL
 S

et
up

3.
 S

PA
RQ

L
Q

ue
ry

SS
L

SS
L

4.
 C

re
de

nt
ia

ls
Re

qu
es

t

5.
 C

re
de

nt
ia

ls

6.
 R

es
ul

ts

SS
L

M
od

ul
e

Q
ue

r

M
ap

pe
d

'I
N

 Q
ue

r

M
ap

pe
r

er

M
ap

pi
ng

O

pt
im

iz
er

Ru
le

s

M
ap

G
en

er
at

or

Sou
rce

D
es

cr
ip

tio
ns

O
pt

im
iz

ed
Q

ue
ry

O
rc

he
st

ra
to

r

Po
lic

y
Pr

oo
fs

Po
lic

ie
s

+

U
se

r
C

re
de

nt
ia

ls

Pr
oo

f
G

en
er

at
o
rj

R
eg

is
tra

tio
n

Up
da

te
s

SP
AR

Q
L

Q
ue

ry
 +

Po
lic

y
Pr

oo
f

R
es

ul
ts

1.
 SS

L

protect the confidentiality of queries, results, and credentials that are exchanged. The

client contacts the engine through an SSL handshake during which the client provides

the engine a certificate with a public key. The SSL module uses the public key to

authenticate the user. Once this process is complete, the module notifies the client

of its decision. If there was successful authentication, the client is allowed to submit

SPARQL queries to the Federation Engine.

4.1.2 Validator

The validator checks the query to see whether it is compatible with the SPARQL 1.0

syntax specified in [39]. It also asserts that all the prefixes used in the WHERE

clause of the query has been declared in the PREFIX section of the query. Moreover,

specific to this federation engine, the validator verifies that the various triples in the

query contain no variable predicates. Bound predicates are necessary for the Mapper

to map the triples in the query to the various endpoints, whose service descriptions

are known to the Federation Engine. If any of the above checks fail, the user is notified

of the submission of an invalid query.

It is possible to use variable predicates when querying a single SPARQL endpoint

because the predicate could take on the value of any of the predicates the endpoint

contains. However, in a federated setting, variable predicates would mean that the

Federation Engine would fail to map a particular query to any endpoint. If subject

and/or the object of a triple containing a variable predicate is bound, it may be

possible, generally speaking, to map this triple to a particular endpoint. However, a

design decision was made in the case of this Federation Engine to have only the list

of predicates in the source description file (described in more detail in 4.1.4). While

it is possible to find out if an endpoint has a particular predicate based on the bound

subject/object information by issuing queries on the fly, such a step would drastically

increase the time required to execute a federated query, thereby reducing the utility

of this Federation Engine.

PREFIX dese: <http://www.mass.gov/dese#>
PREFIX teacher: <http://www. mass. gov/dese/teacher-db#>
SELECT ?student ?mscore ?name ?cert-score ?status
WHERE
{

?student dese:id ?sasid
dese:3rd-math-score ?mscore
dese : has-math-teacher ?teacher

?teacher teacher: cert-status ?status
teacher :math-score ?score

OPTIONAL
{

?teacher teacher:has-name ?name

}
}

Listing 4.1: Input Query

4.1.3 Mapper

The Mapper takes the validated query and generates subqueries based on a predicate

to source mapping rules, which are generated by the Map Generator utility. For

instance, suppose that the user has input the query in Listing 4.1.

From the set of mapping rules (an example is shown in Listing 4.5), it is evident

that the student information is contained in the MCAS endpoint -

http://dese.mass.gov/mcas/data/sparql - and the teacher information is found in the

educator information endpoint -

http://dese.mass.gov/educators/sparql. Based on this information, the Mapper trans-

forms the query into the subqueries in Listing 4.2.

The Mapper puts in the SERVICE annotations, which the Orchestrator uses to select

the endpoints to send the subqueries to. Also, notice that the Mapper has resolved

the prefixes during the query transformation process.

If the Mapper cannot find one of the query predicates in the set of mapping rules,

the user is notified that the query cannot be successful executed. As a result, one

could argue that there is some validation done by the Mapper as well.

SELECT ?student ?mscore ?name ?cert-score ?status
WHERE

{
SERVICE <http:// dese. mass. gov/mcas/data/sparq l>
{

?student <http://www. mass. gov/dese#id> ?sasid
?student <http://www. mass. gov/dese#3rd-math-score> ?mscore
?student <http://www. mass. gov/dese#has.math.teacher> ?teacher

}
SERVICE <http://dese.mass. gov/educators/sparql>

{
?teacher <http ://www. mass. gov/dese/teacher-db#cert-status> ?status
?teacher <http://www. mass. gov/dese/teacher-db#math.score> ?score

OPTIONAL

{
SERVICE <http://dese.mass. gov/educators/sparql>
{

?teacher <http://www. mass. gov/dese/teacher-db#has-name> ?name
}

}
}

Listing 4.2: Mapped Query

4.1.4 Source Descriptions

The details of the SPARQL endpoints that are registered with the Federation Engine

are stored in the source descriptions. Two sample source descriptions are shown in

Listings 4.3 and 4.4. The source descriptions are in the Notation3 (N3) 1 format.

Each contains an endpoint's name, URI, read latency, total number of triples, and a

list of predicates. For each predicate, the number of triples that contain that predicate

as well as the number of distinct objects associated with the predicate are provided.

The optimizer makes use of this statistical information. It is possible to generate this

statistical information with a set of predefined SPARQL queries. However, this work

assumes that they are part of the input from each endpoint that registers with the

Federation Engine.

When an endpoint registers with the Federation Engine, it provides a source de-

scription. The endpoint administrator also updates the source description when any

changes are made to the endpoint's data.

1Notation3 is a shorthand non-XML serialization of Resource Description Framework models,
designed with human readability in mind [4]

@prefix dese: <http://www.mass.gov/dese#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix sd: <http :// dig. csail . mit edu/service-description#>.

<http://dese.mass. gov/mcas/data/sparql> rdf:type sd
sd: name

\''MCAS Test Database'' ;
sd: has-policy

<http://dese.mass.gov/mcas/policy.n3> ;
sd:read-latency 5.2;
sd:total-triples 4673239;
sd: num-predicates 3;
sd:hasPredicate dese:id
sd: has-Predicate dese :3rd-m
sd: hasPredicate

dese :has-math-teacher
dese :id

dese :3 rd-math-score

dese : has-math-teacher

sd:
sd:
sd:
sd:
sd:
sd:

num-triples
num.objects
num-triples
num-objects
num-triples
num-objects

:Endpoint ;

ath-score ;

532346
532346
214759
100 .
528631
31209

Listing 4.3: DESE MCAS Endpoint's Source Description

4.1.5 Map Generator

The Map Generator utility generates a set of rules that provides a mapping from the

predicates contained in the various source descriptions to the appropriate endpoint.

The set of rules generated based on the two source descriptions in Listings 4.3 and

4.4 is illustrated in Listing 4.5. The Mapper uses these rules to rewrite the query

with SERVICE annotations for each triple in the query: The set of mapping rules

is generated out-of-band and the generation happens when new sources register with

the Federation Engine or when an existing source description is updated.

4.1.6 Optimizer

The optimizer takes the mapped query and reorders the SERVICE clauses (sub-

queries) based on the statistical information contained in the service descriptions.

@prefix teacher: <http ://www. mass. gov/dese/teacher_db#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix sd: <http :// dig. csail .mit . edu/service-description#>.

<http://dese .mass. gov/educators/sparql> rdf:type sd
sd: name

\''MA Educator Database '' ;
sd: policy

<http:// dese . mass. gov/educators/ policy . n3>
sd:read-latency 4.7;
sd: total-triples 27931373;
sd: num-predicates 3
sd: has-Predicate teacher : hasn
sd: hasPredicate

teacher : math-certscore

:Endpoint ;

ame ;

teacher : has-name

teacher :math-cert-score

teacher : certstatus

sd: hasPredicate
sd: num-triples
sd: num.objects
sd: num-triples
sd: num-objects
sd: num-triples
sd-num-objects

teacher:
77546
77536
234634
100 .
156450
5 .

cert-status .

Listing 4.4: MA Teacher Information Endpoint's Source Description

The optimization algorithm used by the Optimizer is based on the techniques de-

scribed in [6]. The purpose of optimization is to minimize the execution time of a

federated query. To do this, it is essential to minimize the transfer of result set data

from one endpoint to another. The Optimizer ensures that the subquery that would

produce the smallest result set is executed first so that the variable bindings from

that result set may be used to bind variables in other subqueries, which share the

same variables, before they are executed.

Optimization is a two step process. In the first step, the size of the result set of a

subquery directed towards a specific SPARQL endpoint is estimated based on the

statistical information - number of triples that contain a specific predicate and the

number of distinct objects associated with that predicate - contained in the endpoint's

source description. Then, the subjects and objects in the triples of a particular sub-

query are compared against the subjects and objects in triples of all other subqueries

to see whether the subqueries share variables. If there are shared variables, it means

LABEL 'http: / /www. mass. gov/ dese#id ' CONSTRUCT
{?rs <http://www.mass.gov/dese#id> ?ro} {SERVICE
<http://dese.mass. gov/mcas/data/sparql>
{?rs <http://www.mass.gov/dese#id> ro}}
LABEL 'http://www. mass. gov/dese#school ' CONSTRUCT
{?rs <http://www. mass. gov/dese#school> ?ro} {SERVICE
<http: / / dese .mass. gov/mcas/ data/ sparq l>
{?rs <http://www. mass. gov/dese#school> ?ro}}
LABEL 'http: //www. mass. gov/ dese#reduced-lunch ' CONSTRUCT
{?rs <http ://www. mass. gov/dese#reduced-lunch> ?ro} {SERVICE
<http://dese.mass. gov/mcas/data/sparql>
{?rs <http://www. mass. gov/dese#reduced lunch> ?ro}}
LABEL 'http://www.mass. gov/dese#3rd-math-score ' CONSTRUCT
{?rs <http ://www. mass. gov/dese#3rd-math-score> ?ro} {SERVICE
<http: / / dese .mass. gov/mcas/ data/ sparq l>
{?rs <http ://www. mass. gov/dese#3rd-math-score> ?ro}}
LABEL 'http://www.mass. gov/dese#has-math-teacher ' CONSTRUCT
{?rs <http://www. mass. gov/dese#has-math-teacher> ?ro} {SERVICE
<http: / / dese .mass. gov/mcas/ data/ sparq l>
{?rs <http://www. mass. gov/dese#has-math-teacher> ?ro}}
LABEL ' http: / /www. mass. gov/ dese /teacher -db#has-name' CONSTRUCT
{?rs <http://www. mass. gov/dese/teacher-db#has-name> ?ro} {SERVICE
<http:// dese .mass. gov/educators/ sparql>
{?rs <http://www. mass. gov/dese/teacher-db#has-name> ?ro}}
LABEL 'http ://www. mass. gov/dese/teacherdb#certstatus ' CONSTRUCT
{?rs <http://www. mass. gov/dese/teacher-db#cert-status> ?ro} {SERVICE
<http :// dese .mass. gov/educators/sparql>
{?rs <http://www. mass. gov/dese/teacher-db#cert-status> ?ro}}
LABEL 'http://www.mass. gov/dese/teacher-db#math-cert-score ' CONSTRUCT
{?rs <http ://www. mass. gov/dese /teacherdb#math-cert _score> ?ro} {SERVICE
<http :// dese .mass. gov/educators/sparql>
{?rs <http: //www. mass. gov/dese/teacher db#math-cert-score> ?ro}}
LABEL 'http://www. mass. gov/ dese /teacher-db#cert _date ' CONSTRUCT
{?rs <http ://www. mass. gov/dese /teacherdb#cert _date> ?ro} {SERVICE
<http:// dese .mass. gov/educators/sparql>
{?rs <http ://www. mass. gov/dese /teacherdb#cert _date> ?ro}}
LABEL 'http : / /www. mass. gov/ dese /teacher -db#teaches _at ' CONSTRUCT
{?rs <http://www. mass. gov/dese/teacherdb#teachesat> ?ro} {SERVICE
<http : // dese .mass. gov/educators/sparql>
{?rs <http ://www. mass. gov/dese/teacherdb#teachesat> ?ro}}

Listing 4.5: Mapping Rules for Education

Definitions: s : subject; p: predicate; o: object , t triple;
at: element a of t, bound(a): /variable, for a E {s,p,o}
A.index(a) - value in A that corresponds to 'a'
num-triples(p) - number of triples containing p;
num-objects(p) - number of objects with predicate p;
E=UL1 Ei, is the set of all endpoints
MQ=Ui lSQEi //SQEi is the subquery bound for Ei
SEi=Utst,VtCSQEi is the set of all subjects in SQEi
S = U SE1

OEi=Utot,VtCSQEi is the set of all objects in SQEi
O = UOE1
RS-sizesQEn Ut rs-sizet,VtCSQEi
RS-sizes = U 1i RS-sizesQE

#Ranking Endpoints
EstimateResultSetSize (MQ)
for each SQEi E MQ, do

for each atom C{SEi,0Ei},Vi do
for each {SE,,OEJ} C {S,O} Vj #i do

if atom E SE, then
temp = RSSizesQ, .index(atom) - RSSizesQ, .index(ato
if (temp < 0) then

RSSize-ReduceAbilitys, .index (atom) -

max(RSSize-ReduceAbilitysQ_,)

m)

else
RSSizeReduceAbilitysE index (atom)

max(RSSizeReduceAbilitysQE,)
sort {E} by (EZRSSizeReduceAbilitysEi \over Read_LatencyEi, V)
return {E}

#EstimateResultSet-Size (MQ)
for each SQEi c MQ, do

for each t SQE, do
rs-sizet num-triples(pt)
if bound(st) then

rs-sizet = 1 + (1 - #o(pt)/#t(pt)) * num.triples(t)
if bound(ot) then

rs-sizet = 1
if St E SE then

rs*_sizet = rssize (SE,.index(st)) min(rs si zet , rs -size (SE.irdex(st)
i f St E OEi then

rssizet = rssize (OEi.index(st)) = min(rs-sizet , rs-size (OEi.index(st)))
if ot E SEi then

rssizet = rssize (SE1 .index(ot)) min(rssizet rssize (SE.irdex(ot)))
i f Ot E OEi then

rssizet = rssize (OE.irndex(ot)) - min(rssizet , rs-size (OEi.index(ot)))
SE-.add(Utst), OEi.add(Utot), rs-size.add(Ut rs-sizet), VtcSQEi

Listing 4.6: Optimization Algorithm

that it is better to execute the subquery that would result in the smaller result set.

The optimization algorithm is described in Listing 4.6.

4.1.7 Orchestrator

The Optimizer sends the reordered query to the Orchestrator. The Orchestrator sends

each subquery to the endpoint listed after the SERVICE keyword in the subquery.

Once the results are returned from an endpoint, the Orchestrator checks to see if any of

the subject- or object-bindings in the result set maybe used to bind the variables in the

remaining subqueries. If so, these variables are bound before those subqueries are sent

to their respective SPARQL endpoints. For those endpoints that require credentials

from the querying user, the Orchestrator forwards the policy proofs generated by the

Proof Generator using the credentials supplied by the client. Once all the queries

have returned with the results, the Orchestrator combines the result sets and returns

the combined result set back to the client via the web-form.

4.1.8 Proof Generator

The Proof Generator generates a proof that demonstrates that a given client is privy

to the information contained in an endpoint that restricts access to its data to a subset

of users. To generate this proof, the Proof Generator makes use of user credentials,

provided by the client, and the data usage policies for an endpoint, which the endpoint

provides the Federation Engine with (in addition to the source description) during

the registration/update process. The endpoint would provide the data usage policies

defined in AIR2 , a policy language grounded in Semantic Web Technologies.

The authorization mechanism proposed for the Federation Engine is based on

Proof-carrying Authorization (PCA) [2, 3] and earlier work on Policy-Aware Web

(PAW) [17, 29, 25, 26] done at DIG. PCA is an authorization framework that is

based on a higher-order logic (AF logic) where clients have to generate proofs using

2AIR (AMORD In RDF) is a policy language that is represented in Turtle (subset of N3) +
quoting and supports AMORD-like constructs. The language describes several classes and properties
that can be used to define policies [16]

a subset of AF logic and the authorizing server's task is to check if the proof is

grounded and consistent. This allows objects in the system to have a finer-grained

control of information and enables a smaller trusted computing base on the server.

DIG's work moved these ideas to the open Web using Semantic Web technologies to

express policies and proofs.

Though proof generation may be performed by the client, by delegating it to

the federation, the load on the client is reduced as are the round trips between the

client and secure SPARQL endpoints to obtain required credentials. As a result, if

a client does not possess the necessary credentials, she can be notified well before

the subqueries are sent off to the endpoints, thereby improving the efficiency of a

federated setup.

The Proof Generator is a forward chained reasoner [27] that uses client credentials

and online resources to generate a proof for how the client meets a specific policy. This

proof is forwarded to the orchestration engine, which uses it to execute subqueries

at endpoints that require proofs. If the Proof Generator is not able to generate a

required proof based on the client's credentials, the client is informed and is afforded

the option to provide additional credentials.

4.1.9 PAW-enabled SPARQL Endpoint

SPARQL endpoints exist as autonomous entities that interact with the secure Federa-

tion Engine via SPARQL queries and responses. Each endpoint may, and ideally will,

have some data and corresponding descriptions that are unique to it. Any endpoint

that wants to operate as part of the architecture described here, would provide the

Federation Engine with a source description and, if applicable, usage policies that

suit its needs. Those secure endpoints that have usage policies and require proofs

from the Federation Engine to allow user access would have a built-in proof checking

component [29], which verifies the proofs. If the proof is valid, the endpoint provides

the Federation Engine with the results to the query. If not, the Federation Engine is

notified of the failed proof check.

If the Proof Generator in the Federation Engine functions properly, it is very

unlikely that the proof check would fail. However, the proof check is still necessary

because the SPARQL endpoints do not implicitly trust the Federation Engine.

56

Chapter 5

Implementation

It is now time to describe how the design presented in chapter 4 was put into practice

and the roles that various languages and tools played in making the design come to

fruition. The functioning system consists of a user interface and the Federation Engine

back-end that processes the queries. The Web Interface, described in 5.1 serves as

the user interface. The Federation Engine is implemented (described in 5.2) using a

combination of C/C++ and Python. The reason for using two languages and a tool

that allow them to work in unison is explained in the following subsections. This

implementation, however, does not include the proof generation and checking, and

the overall policy enforcement mechanisms described in chapter 4. The reasons for

this missing functionality is explained in 5.2.1.

5.1 Web Interface

Clients interact with the Federation Engine using a web-form (shown in Figure 5-1)

that is written in Python. It has a text box, which allows them to submit a query

to the Federation Engine. The result of the query or an explanation for the lack of

results is displayed immediately below the query box. The web-form also provides

clients with a description of the types of data that are available to the Federation

Engine. A handful of sample queries, which give those users who are simply interested

in exploring the functionality of the system, are made available as well.

SPARQL Federator (http://dig.xvm.mit.edu/-mcherian/sparql.cgi)
Welcome to the Decentralized information Group's Semantic Federation Engine.

This interface allows you to submit a single query to the Federation Engine, which then attempts to find a solution in the endpoints that are
registered with the system.

Currently, four DBPedia datasets are hosted on four endpoints that are registered with the Federation Engine - Mapping based infoboxes;
Pole Data ; Article Ca ri ; and, Cataory Labels.

You could get a feel for the functionality of the Federation Engine by selecting and executing one or more of the sample queries below.
Alternatively, you could also create and run your own queries based on the information you may have on the four datasets.

Hollywood actors bom in Paris
German musicians from Berlin
American Presidents and their Vocations
Athletes who played in the NBA and Minor League Baseball (Uh ohl)
Input your own

presidents of the united states and their vocations

PREFIX Mpedia: <http://dbpedia.org/ontology/
PREFIX dc: <http://purt.org/dc/elements/1.1/>
PREFIX dc terms: <http://purt.org/dc/terms/>
PREFIX fof: Chttp://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: < http://www.w3.org/20091/rdf-schema#>
SELECT ?name ?job
WHERE
?p foaf:name ?name
?p dkeedia:occupation ?job
?p dc terms:subject <http://dbpedia.org/resource/Category:Presidents of the United States>

Query:
Gie Results!

Query Validation time: 0.00709319114685 Query Mappingirewriting time: 0.00588297843933 optimized query: SELECT ?name ?job WHERE {
SERVICE { ?p. I SERVICE { ?p ?job. } SERVICE { ?p ?name. } } Query Optimization time: 0.0980219841003 Query Execution time:
0.0727241039276 Total time (End-to-End): 0.184302091599 Query Results http://dbpedia.org/resource/Politics_of_the_UnitedStates William
Henry Harrison http://dbpedia.org/resource/Militaryofficer William Henry Harrison http:/dbpedia.orgiresource/Education James Abram Garfield
http:/idbpedia.org/resourceAawyer James Abram Garfield htp://bpedia.org/resource/Minister_%28Christianity%29 James Abram Garfield
http://dbpedia.orgiresource/Civil servant Roosevelt, Theodore, Jr. http://dbpedia.org/resource/Historian Roosevelt, Theodore, Jr.
http://dbpedia.or/resource/Statesman Roosevelt, Theodore, Jr. http://dbpedia.org/resource/Explorer Roosevelt, Theodore, Jr. http-//dbpedia.org
Aresource/Author Roosevelt, Theodore. Jr. http:/dbpedia.org/resource/Conservationist Roosevelt, Theodore, Jr. http://dtpedia.org/resource/Lawyer
Franklin Delano Roosevelt http:/dbpedia.org/resource/Lawyer Gerald Rudolph Ford http:/Idbpedia.org/resource/Petroleum industry George
Herbert Walker Bush http:i/dbpedia.orgftesource/Businessperson George Herbert Walker Bush http://dbpedia.orgresoumceCivilengineering
Herbert Clark Hoover http://dbpedia.org/resource/Humanitarianism Herbert Clark Hoover http://dbpedia.org/esource/Engineer Herbert Clark
Hoover http:/dbpedia.org/resource/Businessperson Herbert Clark Hoover http://dbpedia.org/resource/Officer_%28armedforces%29 George
Washington http-//dbpedia.orgresource/Plantation George Washington http://dbpedia.org/resource/Author John Fitzgerald Kennedy
http://dbpedia.org/resource/Newspaper John Fitzgerald Kennedy http://dbpedia.org/resource/General-in-Chief Ulysses S. Grant http://dbpedia.org
/esource/Soldier Dwight David Eisenhower http://dbpedia.org/resource/Soldier Andrew Jackson http://dbpedia.org/esource/Farmer Andrew
Jackson http:/Atpedia.org/resource/Lawyer Millard Fillmore http://dbpedia.org/resource/Soldier Zachary Taylor http:/dbpedia.org/resource
/Lawyer James Knox Polk http://dbpedia.org/resource/Farmer James Knox Polk http://dbpedia.org/resourceALawyer Abraham Lincoln
http:/Idbpedia.org/resource/Politician Abraham Lincoln http://dbpedia.org/resourceJurist William Howard Taft http://dbpedia.orgfresource
/Small business Harry S. Truman http://dbpedia.org/resource/Farmer Harry S. Truman http://dbpedia.org/resource/Communityorganizing Barack
Obama http:/dbpedia.org/resource/Lawyer Barack Obama http://dbpedia.org/resource/Constitutional law Barack Obama http://dbpedia.org
/resource/Author Barack Obama http://dbpedia.orgftesource/Businessperson Warren Gamaliel Harding http://dbpedia.orgresource
)Petroleum industry George Walker Bush http:/dbpedia.org/resource/Baseball George Walker Bush http:/dbpedia.org/resource/Businessperson
George Walker Bush http://dbpedia.org/resource/Planter James Monroe http://dbpedia.org/resource/Lawyer James Monroe http://dbpedia.org
/resource/Lawyer Rutherford B. Hayes http://dbpedia.org/resource/Lawyer John Tyler http://dbpedia.org/resource/Lawyer Grover Cleveland
http://dbpedia.org/resource/Teacher Lyndon Baines Johnson http://dbpedia.org/resource/Congressionalstaff Lyndon Baines Johnson
http:lidbpedia.org/resource/Lawyer Martin Van Buren http://dbpedia.org/resourceLawyer Franklin Pierce http://dbpedia.org/resource/Actor Ronald
Wilson Reagan http://dbpedia.org/resource/Lawyer John Quincy Adams http://dbpedia.orgftesource/Lawyer James Buchanan http:/dbpedia.org
/resource/t)iplomat James Buchanan http://dbpedia.org/resource/Tailor Andrew Johnson http://dbpedia.org/resource/Teacher Thomas Jefferson
http:/Idbpedia.org/resourcelLawyer Thomas Jefferson http:/dbpedia.org/resource/Plantation Thomas Jefferson http://dbpedia.orgf/esource
/Lawyer Calvin Coolidge http://dbpedia.orgresource/Lawyer James Madison http://dbpedia.org/resource/Lawyer William Mackinley
http://dbpedia.orgresource/Education Chester Alan Arthur http://dbpedia.org/resource/Civil_service Chester Alan Arthur http://dbpedia.org
/resource/Lawyer Chester Alan Arthur http://dbpedia.orgftesource/Lawyer Benjamin Harrison http://dbpedia.orgftesourceLawyer Richard Milhous
Nixon

Figure 5-1: User Interface

5.2 Federation Engine

The Validator, Map Generator, and Optimizer are implemented in Python. The

source descriptions exist as N3 files. The Mapper and Orchestrator modules are

implemented in C/C++. During the design stages of the system, the intention was

to implement the entire system in Python. However, the review of existing work in the

field led to the discovery of SWObjects - a Semantic Web Objects Library. SWObjects

provide general support for Semantic Web applications including SPARQL Query,

SPARQL Update, and rule-based query and data transformations, among others [18].

Because SWObjects had the functionality of the Mapper and the Orchestrator, it was

efficient to use it rather than reproduce its capabilities from nothing.

The ease of implementing the other modules in Python compared to C/C++ made

the language of choice for the rest of the design obvious. However, such a dichotomous

setup meant that a way to integrate the components in different languages had to

be devised. After comparing a number of tools that integrates Python and C/C++,

Simplified Wrapper and Interface Generator (SWIG) was chosen.

5.2.1 SWIG

SWIG is a software tool that allows developers to interface programs written in

C/C++ with higher-level languages including Perl, PHP, and Python. With SWIG,

programs written in a target language are able to access objects and methods in the

C/C++ code as if they were part of a native library [14]. After comparing SWIG with

other tools such as Cython and SIP, SWIG was found to have relative advantages

against them across two categories. First, SWIG provided better support for native

C features than SIP. Second, SWIG allowed the SWObjects code to be used with

other high-level language such as Java, Lua, and PHP. While this capability was not

necessary for the Federation Engine, the ability to interface SWObjects and Java, for

instance, is of great use for the Semantic Web Health Care and Life Sciences (HCLS)

Interest Group 1. As the main developer behind SWObjects, who is a member of

1http://www.w3.org/2001/sw/hcls/

Federator.py

SWObjects.py
SWObjects.cG

Validatorpy

MapGenr~ator~py

Optirizerpy

SWObjects.py

Note: c* donates all necessary C/C++ files (.cpp, .hpp, etc.)

Figure 5-2: Python/SWIG/C

HCLS, was a collaborator on this thesis work, the use of SWIG would turn out to be

mutually beneficial. Hence, SWIG was chosen as the tool for integrating the existing

C/C++ code with the new code that would be implemented in Python.

Figure 5-2 illustrates how SWIG facilitates the use of SWObjects - implemented

in C/C++ - for the rest of the Python code. SWIG generates a Python wrapper that

encapsulates the SWObjects code. The SWIG processing is quite time consuming and

computationally taxing. However, this takes place offline and once SWIG-processing

is done, SWObjects.py exists as a standalone Python module than can be imported

into any other Python module. No further SWIG-processing is required at run time.

Although without SWIG a lot of code might have had to be rewritten in Python,

in hindsight the decision to use SWIG might not have been the ideal one. While,

it has the capacity to make most features of C and C++ available in Python, there

was often little information available for using it for purposes beyond the very simple

use cases. This lack of detailed documentation meant that it took much longer than

expected to make SWIG operational for this project. As a result, there was no time

left for the implementation of the policy verification and proof generation mechanisms.

Hence, in the current implementation, the Federation Engine can only query open

SPARQL endpoints that do not have any access restrictions. However, implementing

the policy reasoning framework should not be difficult as the system contains hooks

for calling proof generation and checking components.

5.2.2 Fyzz and RdfLib

The Python implementation would not have been possible without two libraries,

which have been developed for Semantic Web Technologies. Fyzz2 is a Python parser

for SPARQL. Fyzz was used for implementing the Validator. Because the latest

version (0.1.0) of Fyzz is compatible with the SPARQL 1.0, it was necessary to

update the Fyzz SPARQL grammar to include the SPARQL 1.1 features that the

Federation Engine uses. Specifically, this meant updating the grammar so that Fyzz

can handle SERVICE keywords.

RdfLib3 is a Python library for working with RDF. It includes parsers and se-

rializers for RDF/XML, N3, NTriples, Turtle, Trix and RDFa. For the purposes of

implementing the Federation Engine, the N3 parser in RdfLib was used to extract

information from the source description files.

2http://www.logilab.org/project/fyzz
3 http://www.rdflib.net/

62

Chapter 6

Evaluation

This chapter details the tests that were designed to evaluate the Federation Engine

as well as discusses the Engine's performance on these tests. Section 6.1 details the

rationale behind the choice of test queries, their coverage, and the endpoints whose

data were used for running the test queries. The Discussion section (6.4) provides

some explanations for the test results.

6.1 Test Plan

As presented in chapter 4, the novelty of this system stems from the integration of

various Semantic Web technologies as well as the Optimizer. The evaluation assesses

the system's performance on these two distinct aspects. The metric used to evaluate

the system is the time it takes to perform various task associated with the system. For

the purposes of assessment, five distinct time metrics were identified: Validation time

- the duration from when the client submits the query to when the Validator sends

the query to the Mapper; Mapping time - the time it takes for the Mapper to perform

its functions; Optimization time - the time it takes for optimization, Transformation

time - the sum of Mapping time and Optimization time; Execution time - the time it

takes for the Orchestrator to take an optimized query, execute it against the various

endpoints, and recombine the various result sets; and Total time - the end-to-end

time. All times were calculated using the time function in Python's time module.

For all tests, queries that would generate three subqueries based on the mapping

rules were used. Two different types of tests were conceived; the first to evaluate the

Optimizer, and the second to evaluate the overall system. Every test was run three

times and the average time was calculated. The Federation Engine was hosted on a

64-bit virtual machine running Ubuntu 10.04 Lucid Lynx Server with 512 Megabits

(MB) of Random Access Memory (RAM) and 10 Gigabytes (GB) of hard disk space.

6.2 Optimizer Tests

The metrics used to assess the optimizer were Mapping Time, Optimization Time,

and Transformation time. The Optimizer functions independently of query execution

and only makes use of the endpoint source descriptions to do the optimization. As

such, all optimizer tests were performed using a set of mock source descriptions, which

were auto-generated using a python script. A sample mock description is presented

in Appendix B.

SELECT ?s1 ?s2 ?s3

wHERE {

?s1 p1 ?ol

?s2 p2 ?o2

?o2 p3 ?o3

}

Note: p1, p2, and p3 were replaced in each test with the

predicates in the auto-generated source descriptions.

Listing 6.1: Optimization Test Query

6.2.1 Number of Predicates vs. the Number of Triples per

Predicate

The first set of tests involved varying the number of predicates and the triples. Three

endpoints, each with a total of 300,000 triples were used for this test. A test was run

25

20

15Mapping Time
U Optimization Time

Transformation Time

10

5

0
35,10 30,50, 100 300, 500, 1000 3000 5000, 10000

Figure 6-1: Number of Predicates vs. Number of Triples per Predicate

such that the sum of the products of the number of predicates in an endpoint and the

number of triples associated with each predicate added up to 300,000. For instance,

if an endpoint had 30 predicates, it would have 10,000 triples associated with each

endpoint. Four tests with the number of predicates at each endpoint ranging from 3,

5, and 10 to 3000, 5000, and 10000 (across the three endpoints, and the corresponding

number of triples per endpoint such that the total number of triples would be 300,000)

were run. For each test iteration, the query in Listing 6.1 was mapped and optimized.

The results for this test are shown in Figure 6-1. Increasing the total number of

triples in an endpoint and the number of triples per predicate for each of the four cases

tested above did not have any noticeable impacts on the Mapping and Optimization

times.

#Variables
SELECT ?sl
WHERE {
?s1 p1 ?01
?s2 p2 ?o2
?s3 p3 ?o3

}

#Variables
SELECT ?si
WHERE {
?s1 p1 ?01
?ol p2 ?o2
?s3 p3 ?o3

}

#Variables
SELECT ?si
WHERE {
?s1 p1 ?01
?ol p2 ?o2
?o2 p3 ?sl

- No Sharing
?s2 ?s3

- Some Sharing
?s2 ?s3

- Full Sharing
?s2 ?s3

Listing 6.2: Variable Sharing between Subqueries

6.2.2 Sharing of Variables between Subqueries to Different

Endpoints

Next, the impact of different types of queries on the optimizer was assessed. For

this, the three source descriptions with 300, 500, and 1000 predicates, respectively,

were used. The following cases were tested: Variable subjects and objects with no

variables sharing between endpoints; Variable subjects and objects with two endpoints

sharing variable; and, Variable subjects and objects with variable sharing between all

endpoints. The three test cases are illustrated in Listing 6.2.

The results are shown in Figure 6-2. Similar tests were conducted with bound

subjects and objects. The queries are in Listing 6.3. Notice in the queries that

the values for subjects and objects need not be present in the endpoint for successful

optimization. The optimizer only cares whether the subjects and objects are variables

or not. It has no knowledge of the contents of an endpoint beyond the predicates in

2

Mapping Time
Optimization Time

0 Transformation Time

0-
Variables - No Sharing Variables - Some Sharing Varibles - Full sharing

Figure 6-2: Variables Sharing between Service-Subqueries

the source descriptions. A separate graph for the results are not provided because

the results were identical to the tests with variable subjects and objects.

6.2.3 Number of Triples

Three tests were run to observe whether increasing the total number of triples and

the number of triples per predicate, while holding the number of predicates constant,

had any effect on optimization times. This time the three source descriptions with

30, 50, and 100 predicates, respectively, were used.

First, tests were run with 30,000, 300,000, 3,000,000, 30,000,000, and 300,000,000

total triples, and the corresponding number of triples per predicate. For example, the

50 predicate endpoint had 600,000 triples per predicate for the test with total triples

of 30,000,000. The results are shown in Figure 6-3.

#Bound Subjects/Objects - No Sharing
SELECT ?sl ?s2 ?s3
WHERE {
<ht tp : //www. alpha . org /as:193856> pl ?ol
?s2 p2 <http://www. alpha. org/as:193856>
?s3 p3 ?o3

I

#Bound Subjects/Objects - Some Sharing
SELECT ?sl ?s2 ?s3
WHERE {
<http ://www. alpha. org/as:234?> pl ?ol
?ol p2 <ht tp://www. beta. org /bo:341209>
?s3 p3 ?o3

I

#Bound Subjects/Objects - Full Sharing
SELECT ?sl ?s2 ?s3
WHERE {
<http://www.alpha.org/as:183095> p1 ?ol
<http://www.beta.org/bs:IGe23> p2 <http://www. alpha. org/as:183095>
?o2 p3 <http://www. beta. org/bs:IGe23>

Listing 6.3: Variable Sharing between Subqueries (Bound Subjects/Objects)

0.35

0.3

0.25

0.2

0.15

0.1

0.05

* Mapping Time
U Optimization Time
O Transformation Time

30K 300K 3M 30M 300M

Figure 6-3: Total Number of Triples/Number of Triples per Predicate

Table 6.1: Datasets for Federation
Endpoint Dataset (Number of Triples)

El DBPedia Person Data (1.7 million)
E2 DBPedia Article Categories (12 million)
E3 DBPedia Category Labels (632,000)
E4 DBPedia Infoboxes (13.8 million)

6.3 Federation Tests

A set of tests were run to assess the end-to-end performance of the Federation Engine

and to test whether the optimization had worked. All time metrics described in

section 6.1 were measured in these tests. As in the case with the Optimizer tests,

queries that would generate three or more subqueries were used to run these tests.

However, unlike the Optimizer tests, there needed to be actual endpoints and datasets

to execute the subqueries against. The motivation for the type of queries and the

datasets were taken from [40].

Four SPARQL endpoints 1 were set up using 4store 2 - a scalable RDF database

- for testing the performance of the Federation Engine. They were populated with

datasets from DBPedia 3. The 4store endpoints are used are shown in Table 6.1. El,

E2, and E3 are hosted on 64-bit virtual machines(VM) running Ubuntu Server 10.04.

El is hosted on a VM, which has 4 GB of hard drive space and 256 MB of RAM. E2

and E3 are co-hosted on a single VM, which has 10 GB of hard drive space and 256

MB of RAM. E4 is hosted on a server (details...). The source descriptions for these

endpoints were created by issuing a number of queries, the results to which contained

predicate and statistical information, directly at the endpoints.

To compare unoptimized query execution against optimized query execution, a

duplicate of the Web Interface was created. The source code of the two interfaces

were identical, except for the the set of subqueries that was executed (optimized for

optimized execution and vice versa).

'http://mcherian.xvm.mit.edu:8000/sparql, http://matminton.xvm.mit.edu:9000/sparql,
http://matminton.xvm.mit.edu:9090/test/, and http://air.csail.mit.edu:9000/sparql

2 http://4store.org/
'http://wiki.dbpedia.org/Downloads36

Four queries (shown in Listings 6.4, 6.6, 6.7, and 6.5) of varying difficulty were

created. These were submitted to two instances of the Web Interface.

German Musicians who were born in Berlin

PREFIX dbpedia: <http://dbpedia.org/ontology/>

PREFIX dbp-resource: <http://dbpedia.org/resource/>

PREFIX dbp-category: <http:// dbpedia. org/resource/Category:>

PREFIX dcterms: <http ://purl. org/dc/terms/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX rdfs: <http: //www.w3. org /2000/01/ rdf -schema#>

SELECT ?person ?name ?birthday

WHERE

{
?person foaf:name ?name

?person dbpedia: birthDate ?birthday

?person dbpedia: birthPlace dbp-resource: Berlin

?person dcterms: subject dbp-category:German-musicians

OPTIONAL {

dbp-category: German-musicians rdfs:label ?label

}
}

Listing 6.4: Q1: German Musicians Who Were Born In Berlin

Listing 6.5: Q4: Presidents of the United States & Their Vocations

Presidents of the United States and their Vocations

PREFIX dbpedia: <http:// dbpedia. org/ontology/>

PREFIX dbp-category: <http:// dbpedia. org/resource/Category:>

PREFIX dcterms : <http ://purl . org/dc/terms/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?job

WHERE {

?person foaf:name ?name

?p dbpedia: occupation ?job

?p dcterms: subject dbp-category: Presidents-of-theUnitedStates

}

People who played professional baseball and basketball
PREFIX dbpedia: <http: // dbpedia. org/ontology/>
PREFIX dbpedia-category: <http:// dbpedia. org/resource/Category:>
PREFIX dc: <http:// purl. org/dc/elements/1.1/>
PREFIX dcterms: <http:// purl. org/dc/terms/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/ 2 2 -rdf-syntax-ns#>
PREFIX r d fs : <http: / /www. w3. org /2000/01/ rdf -schema#>

SELECT ?name
WHERE

{
?p dc-terms : subject dbpedia-category : Minor _league_baseball-players
?p foaf:name ?name .
?p dc-terms : subject dbpedia-category: American-basketball-players

}
Listing 6.6: Q4: Athletes Who Played Professional Baseball & Basketball

#Paris born Movie Stars
PREFIX dbpedia: <http://dbpedia.org/ontology/>
PREFIX dbp-resource: <http:// dbpedia. org/resource/>
PREFIX dc: <http:// purl . org/dc/elements/1.1/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3. org/1999/02/ 2 2 -rdf -syntax-ns#>

PREFIX rdfs : <http://www.w3.org /2000/01/ rdf -schema#>

SELECT ?name ?m
WHERE

{
?m dbpedia: starring ?p
?p dbpedia: birthPlace dbp-resource : Paris
?p foaf:name ?name .
FILTER (?city = dbp-resource :Paris)

}
Listing 6.7: Q3: Hollywood Actors Who Were Born In Paris

These queries were selected for the varying sizes of the result sets they produced

and the number and combinations of endpoints the subqueries had to be sent off to

during execution.

It was noted that the Validation and Mapping Times were identical while running

optimized and unoptimized versions of all four queries. This was in line with expec-

tations as the Federation Engine code as well as query structures involved in both

cases are the same.

Q1 Q2 Q3 Q4

Figure 6-4: Transformation Times

Table 6.2: Queries, Endpoints, & Result Set Sizes
Query Endpoints RS Size(expected) RS Size(optimized) RS Size(unoptimized)

Q1 E1, E2, E3 1 1 1
Q2 E1,E4 1 1 1
Q3 E2, E4 8 8 8
Q4 E1, E2, E4 69 69 1

Table 6.2 shows all the endpoints needed to answer a query, the expected size

of the result set, and the sizes of the result sets obtained from the execution of the

optimized and unoptimized versions of the query. These numbers were calculated by

manually issuing the subqueries to the endpoints and tabulating the size of the result

set.

The expected result sizes and the actual result sizes are included to track a be-

havior often seen in most well-established SPARQL endpoints. Such endpoints limit

the number of results it outputs to prevent poorly designed queries from consuming

a large amount of system resources. Therefore, even when an unoptimized query is

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

U Optimized Query
U Unoptimized Query

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.054

0

U Optimized Query
* Unoptimized Query

91 QZ 93 (4

Figure 6-5: Total (End-to-End) Times

fired against an endpoint, a result set is returned in a reasonable amount of time,

instead of a hung query. However, because of the limit on the results, the returned

result set would only be a subsection of the amount of data that matches the Basic

Graph Pattern in the query. During testing, this limit could have been done away

with as the endpoints were set up purely for testing purposes. However, the decision

was made to leave the limits in place to simulate real-world behavior.

Figure 6-4 compares the Transformation times of the optimized and non-optimized

versions. Figure 6-5 compares the Total time between the two.

6.4 Discussion

6.4.1 Optimizer Tests

The results of the Optimizer tests provide several insights. As seen in Figure 6-3,

the total number of triples and the number of triples per predicate had no impact

on the Mapping or Optimization times. This result was indeed in line with pre-test

expectations. The mapping rules contain no statistical information; hence varying

the statistical information such as number of triples should not have any effect on

the Mapping time, which is the time it takes for mapping and rewriting the query by

scanning the mapping rules file. The Optimizer, on the other hand, does make use

of endpoint statistics. However, it only uses this information to do basic arithmetic

operations to rank the various endpoints. Therefore, it was expected that the range

of the numbers used in testing (30,000 to 300,000,000) should not have any effect on

the time taken for optimization.

By the above line of reasoning, it is clear why the Mapping times and Optimization

times increased when the number of predicates increased (see Figure 6-1). As the

number of predicates increases, both the Mapper and the Optimizer have to read in

and parse larger mapping rules file and source descriptions, respectively, to perform

their functions.

Furthermore, the number of bound variables in queries and the level of sharing of

variables between subqueries had little impact on the timing values, as seen in Figure

6-2. First of all, the Mapper functions are independent of these two characteristics.

And, once again, it was not surprising that the optimization times were unaffected.

Regardless of whether the variables are bound or not, and irrespective of whether two

or more subqueries share variables, the optimizer performs the same number of checks

and iterations when it parses a query with SERVICE bound subqueries. Hence, the

extent of sharing of subjects and objects, and the number of bound subjects and

objects would not have any impact on the optimization times.

The various Optimizer tests reveal that increasing the size of the mapping and

source description files have a significant impact on mapping and optimization times.

Varying other aspects of queries and endpoints had little effects on said times. There-

fore, it is possible that decreasing the scan/parse times for the file would have signifi-

cantly improve the performance of the Federation Engine on the whole. The use of a

faster file I/O library could go a long way towards achieving this goal. However, this

possibility was not explored in this research.

6.4.2 Federation Tests

The results of the Federation tests were more interesting than the ones from testing the

Optimizer by itself. The obvious observation was the fact that Transformation times

(Figure 6-4) were noticeably higher across all four queries for the Engine with the

Optimizer when compared to the one without it. There is no surprise here because

the Transformation time is the sum of Mapping time and Optimization time, and

Optimization time is zero for the federator without the optimizer. However, notice

that the Transformation time is only a fraction of the Total time.

A first glance at Total times (Figure 6-5) gives the impression that the unopti-

mized federator did better than the optimized one in 3 out of 4 queries. However,

a closer look reveals some interesting outcomes. As the complexity of the query

increased, the Total time advantage that the unoptimized version has markedly dis-

appear. While the unoptimized version did 50% better than its optimized counterpart

in Q1, by Q3 the advantage diminishes to about 13%, and in Q4 the optimized query

takes 50% to return the result set after query submission.

The other key observation from the Federation tests is seen by comparing the

Total time (Figure 6-5) to the expected and actual number of results (Table 6.2).

Note that for Q4, the expected size of the result set was 69. While the optimized

version, did return all 69, the unoptimized version returned a result set of size 1. What

happened here was that the federator without the optimizer sent the subquery that

contains the triple ?p dbpedia:occupation ?job in its WHERE clause to be executed

first. However, because this subquery has a low selectivity (with a result set size of

approximately 140,000), the endpoint hit its upper bound and returned only a subset

of the results. And, this result set only had one U.S. President in it, which caused

the conjunctions with the subsequent subqueries to return exactly one result.

The Federation tests demonstrate that, although the addition of the Optimizer

contributes to an increase in Total time, this increase is a price worth paying. Even

with a marginal increase in the complexity, the disadvantage of having the Optimizer

starts to disappear and we also see that without it in line, incomplete result sets

would be returned.

Another lesson learned from testing relates to SPARQL endpoints. Initially, the

plan was to use existing SPARQL endpoints to run the queries. Three or four end-

points, which shared Graph elements, would be chosen and queries designed such that

the Mapper would generate subqueries that hit three or more of them. Choosing pop-

ular existing endpoints would also buttress the practical relevance of the Federation

Engine. Moreover, it would have involved not repeating work that is not fundamental

to the design or implementation of the Federation Engine. As a result, a few of the

Bio2RDF endpoints 4 were identified. However, the task of identifying the overlap

between Graphs on different endpoints was more daunting than initially expected.

The large size of the datasets meant that the queries required to extract endpoints'

predicate and statistical information required to create the source description files

did not run to completion.

Both the Optimizer and Federation tests are very pertinent to the proposed ap-

plication of the Federation Engine at the Massachusetts Department of Education

in chapter 3. The database that holds student MCAS information, for instance,

would contain approximately 12 millions triples 5 of raw test data. School districts

would maintain student demographic information databases that contain, on aver-

age, approximately 75,000 triples 6. The test demonstrate that even if the number

of triples were to increase an order of magnitude, the Optimizer would continue to

perform sufficiently. Moreover, the hardware that hosts the education datasets would

be much more powerful and feature-rich than the virtual machines used for evaluating

the Federation Engine.

However, the effects of the size of data transferred between endpoints on federation

capabilities are still unknown. A query similar to the one described in Listing 3.1

might involve tens or even hundreds of school endpoints. Even in those cases where the

number of endpoints is in the single digits, the data transferred might be much larger

4http://www.freebase.com/view/user/bio2rdf/public/sparql
5550,000 students * 3 tests/year * 7 testing years = 11.55 million
6(550,000 students/391 districts) * 52 student characteristics = 73,146

than what was encountered during testing. For instance, MCAS math scores from

all previous years of all tenth grade students from a particular school (approximately

1800 7) might have to be pulled to observe an interesting pattern. The Federation

Engine's performance under such circumstances cannot be assessed until a commercial

scale test system is deployed at the DESE and in districts around the Commonwealth.

6.5 Limitations

Although the Optimizer and the Federation Engine as a whole proved quite successful

in the various tests, this system has a few shortcoming. First, if a user wished to

execute queries beyond the sample ones provided on the Web Interface, she would

find it very difficult to do so. It would require knowledge of the underlying ontology

and the predicates contained in the endpoints registered with the Federation Engine.

However, currently this information is not being furnished to the user in any form.

Second, the Optimizer is based on an algorithm that makes use of a simple cost

model. This set up would prove insufficient for queries that are much more complex

than the ones explored in testing.

Third, the requirement for bound predicates limits the types of queries that a

user is able to execute using the Federation Engine. This limitation can prevent the

engine from gaining a large user base.

7300 students * 6 years = 1800 data points

78

Chapter 7

Summary

The ability to query distributed heterogeneous data sources and aggregate information

across them is a key requirement for realizing the full potential of the Semantic Web.

In this thesis, I presented the design, implementation, and a relevant application of

a secure SPARQL federation engine that takes a big step in that direction. First,

I detailed the current research in the field and the existing technologies that made

this engine possible. Then, I discussed a specific use case for this system, which

illustrated the importance of this system for a large public sector agency. After

this, I described the architecture of the system, paying particular attention to design

choices. The system was implemented using a variety of software tools, including

a C/C++ wrapper for Python, which although very useful, was a major cause for

the lack of security mechanisms in the final version of the system. The Federation

Engine underwent a series of tests - both at the system level and at the level of novel

components, which showcased the engine's capabilities and a few limitations. Section

7.1 highlights the key contributions of this thesis work and section 7.2 identifies a few

areas of research that can improve the performance and features of this novel system.

7.1 Contributions

e Designed and implemented an end-to-end SPARQL Federation En-

gine

Although the Semantic Web had made many advances over the past decade,

there did not exist an integrated secure environment to perform federated

queries to mash up data from distributed heterogeneous data sources. I de-

signed the architecture for a secure Federation Engine that can aggregate infor-

mation from multiple SPARQL endpoints, while adhering to appropriate usage

policies. I also implemented the said architecture, albeit without the security

layer, by using existing Semantic Web tools such as the Fyzz and RdfLib Python

libraries, and SWObjects - a C/C++ Semantic Web objects library.

e Developed query optimizer that facilitates efficient query execution

I also developed an Optimizer that reorders subqueries, which are directed at

different endpoints, to ensure efficient and complete query execution. The Op-

timizer depends on the endpoint statistics based cost model described in [6].

Without the Optimizer, all queries, but the ones with very low complexity,

would fail to execute in practical settings. This is because most SPARQL end-

points that exist today have a low upper bound on the number of results they

would return to any query to prevent the exploitation of system resources.

Given this status quo, subqueries, which have low selectivity, if executed first

(as would be the case without the Optimizer) would return incomplete or NULL

result sets.

o Initiated the Use and Integration of SWIG into the SWObjects project

SWObjects is a large open source C/C++ code base that provides general

support for Semantic Web applications including SPARQL queries, SPARQL

updates, and rule-based query and data transformations, among others. Re-

search Groups, notably the Semantic Web Health Care and Life Sciences Group

(HCLS), is interested in using SWObjects library for many of their Web 3.0 ap-

plications. However, HCLS uses Java for their research activities. In fact, many

research undertakings these days use higher level languages, such as Java and

Python. My thesis work spearheaded the inclusion of SWIG - a C/C++ wrap-

per for higher level languages - in the SWObjects project so that the Federation

Engine could make use of some of the features of SWObjects. The work done

on interfacing SWIG and SWObjects is invaluable for HCLS' and other projects

that depend on the SWObjects library.

In addition to the Python/C++ back-end that facilitates query federation, this

research has also produced a web-form that users can use to run a custom query or

a range of queries, that exhibit the Federation Engine's capabilities. Also integrated

into the end-to-end system is a framework that makes available to a user the various

time metrics associated with the execution of a federated query.

7.2 Future Work

Although the prototype of the Federation Engine breaks new ground on many fronts, a

number of features and improvements can better the current state of the system. The

first obvious feature addition is the policy reasoner and checker that were described

in chapter 4. The Proof Generator and Checker components, as described in [27]

and [29], respectively, and implemented as part of the Policy Aware Web project

completed by DIG, may easily be integrated into the Federation Engine. The fact

that both systems are implemented in Python should make this integration seamless.

Second, advances need to be made to automate the generation of source descrip-

tions. For the purposes of the Federation Engine, source description files had to be

manually created using the results of queries, which were formulated to obtain pred-

icate and statistical information, issued to each individual endpoint. This process

was cumbersome, and, moreover, impractical for endpoints that have a large number

of predicates. A tool, which can automatically generate the source description files

using the results of a number of predetermined queries, would facilitate easier regis-

tration of new endpoints and updates of existing ones. The end result of developing

and issuing such a tool would be an increase in the range of queries the Federation

Engine can provide results for.

Third, for demonstrating the capabilities of the Federation Engine, four SPARQL

endpoints were set up with subsets of DBPedia data. However, the practical rele-

vance of the engine would become much more evident once more persistent SPARQL

endpoints, whose Graphs overlap, are present on the Web. These endpoints must also

provide easy interfaces for a tool such as the automatic source description generator

to obtain relevant predicate and statistical information.

Fourth, in the current implementation, mapping of subqueries to endpoints are

done before optimization. The performance of the Federation Engine may improve

dramatically if the Mapper is implemented as a sub-component of the Optimizer. For

example, in such an arrangement, mapping to a particular endpoint maybe avoided

altogether if the optimizer determines that the cost of querying that endpoint with a

particular subquery is prohibitively high.

Fifth, much work has been done on optimization techniques for relational database

federations. Until either those techniques are made applicable to Semantic Web

data models, or current research into SPARQL optimization progresses further, the

Federation Engine would not be able to handle very complex queries, the successful

execution of which are essential for the SPARQL federation paradigm to become a

key player among data integration technologies.

Lastly, as with most applications on the web, the user base of the Federation

Engine would grow dramatically with advancements in natural language processing.

The ability of clients to issue natural language queries and obtain results from a large

number of endpoints could considerably increase the mass appeal of the Semantic

Web.

Appendix A

Family Educational Rights and

Privacy Act, Section 37

20 U.S.C. 1232g; 34 CFR Part 99, Section 37

What conditions apply to disclosing directory information?

(a) An educational agency or institution may disclose directory information if it

has given public notice to parents of students in attendance and eligible students in

attendance at the agency or institution of:

(1) The types of personally identifiable information that the agency or institution

has designated as directory information;

(2) A parent's or eligible student's right to refuse to let the agency or institution

designate any or all of those types of information about the student as directory

information; and

(3) The period of time within which a parent or eligible student has to notify the

agency or institution in writing that he or she does not want any or all of those types

of information about the student designated as directory information.

(b) An educational agency or institution may disclose directory information about

former students without meeting the conditions in paragraph (a) of this section.

84

Appendix B

Test Source Description

@prefix sd: <http:// dig. csail . mit .edu/service-description#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf -syntax-ns#>.

@prefix alpha: <http://www. alpha. org/ns#>.

<http://www.300k-3_100k

sd:

sd:

.com/sparql> rdf:type sd:Endpoint ;

sd:name "Mock Description"

description "Created for Running Tests"

read-latency 4 ;

alpha :XohmTqLs

alpha:OnSBQviK

alpha :VahZCMrK

sd :tot al-triples

sd: hasPredicate

sd: hasPredicate

sd: hasPredicate

sd: num-objects

sd: num-objects

sd: num-objects

300000 ;

sd:num-predicates 3

alpha:XohmTqLs

alpha:OnSBQviK

alpha:VahZCMrK

sd: num-triples 100000

79631 .

sd: num-triples 100000

86672 .

sd : num-triples 100000

96906 .

86

Bibliography

[1] David F. Andersen and Sharon S. Dawes. Government Information: A Primer

and Casebook. Prentice-Hall, Englewood Cliffs, NJ, 1991.

[2] Lujo Bauer. Access Control for the Web via Proof-carrying Authorization. PhD
thesis, Princeton University, November 2003.

[3] Lujo Bauer, Scott Garriss, and Michael K. Reiter. Distributed proving in access-
control systems. In Proceedings of the 2005 IEEE Symposium on Security and
Privacy, pages 81-95, May 2005.

[4] Tim Berners-Lee. Notation 3. http://www.w3.org/DesignIssues/Notation3.html,
March 2006.

[5] Tim Berners-Lee, James Hendler, and Ora Lasilla. The Semantic Web. Scientific
American, May 2001.

[6] Abraham Bernstein, Christoph Kiefer, and Marcus Stocker. OptARQ: A
SPARQL Optimization Approach based on Triple Pattern Selectivity Estima-
tion. Technical Report ifi-2007.03, Department of Informatics, University of
Zurich, March 2007.

[7] Alexandre Bertails and Gautier Poupeau. Lapport des tech-
nologies du Web smantique la gestion des donnes structures.
http://www.slideshare.net/lespetitescases/lapport-des-technologies-du-web-
smantique-la-gestion-des-donnes-structures, 2008.

[8] Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. http://www.w3.org/TR/rdf-schema/, February 2004.

[9] K.S. Candan, S. Jajodia, and V.S. Subrahmanian. Secure Mediated Databases.
In Proceedings of the Twelfth International Conference on Data Engineering,
March 1996.

[10] Mathew Cherian. Lalana Kagal, and Eric Prud'hommeaux. Policy Mediation

to Enable Collaborative Use of Sensitive Data. In The Future of the Web for

Collaborative Science - World Wide Web Conference, Raleigh, NC, USA, 2010.

[11] E.F. Codd. A Realtional Model of Data for Large Shared Data Banks. Commu-

nications of the ACM, June 1970.

[12] Mitchell D. Chester Commissioner. Welcome to the Mas-
sachusetts Department of Elementary and Secondary Education.
http://www.doe.mass.edu/mailings/welcome.html, 2008.

[13] Robert Bickerton (Associate Commissioner) and Robert Lei (Chief Data An-
alyst MCAS Group). -Interview @ Department of Elementary and Secondary
Education, 75 Pleasant St, Malden, MA 02148 on October 13, 2010.

[14] Dave Beazley. SWIG. http://sourceforge.net/apps/mediawiki/swobjects/index.php,
2010.

[15] Sharon S. Dawes. Interagency Information Sharing: Expected Benefits, Manage-
able Risks. Journal of Policy Analysis and Management, Summer 1996.

[16] Decentralized Information Group. AIR Policy Language.
http://dig.csail.mit.edu/2009/AIR/, 2009.

[17] Decentralized Information Group and MINDSWAP. Policy-Aware Web Project.
http://www.policyawareweb.org/, 2006.

[18] Eric Prud'hommeaux. SWObjects Semantic Web Library.
http://sourceforge.net/apps/mediawiki/swobjects/index.php, 2010.

[19] Executive Office for Administration and Finance Mass.Gov. The Benefits of
E-Government, 2010.

[20] Decentralized Information Group. Secure Federation Systems for Semantic Web
Sources. http://dig.csail.mit.edu/2009/AFOSR/index.html.

[21] Decentralized Information Group. Accountable Information Usage in Fusion Cen-
ter Information Sharing. http://dig.csail.mit.edu/2009/DHS-fusion/index.html,
2009.

[22] RDF Working Group. Resource Description Framework (RDF).
http://www.w3.org/RDF/, February 2004.

[23] J. Keith Harmon and Rae N. Cogar. The Protection of Personal Information in
Intergovernmental Data-Sharing Programs, 1998.

[24] David Landsbergen Jr. and George Walken Jr. Realizing the Promise: Govern-
ment Information Systems and the Fourth Generation of Information Technology.
Public Administration Review, March/April 2001.

[25] Lalana Kagal, Tim Berners-Lee, Dan Connolly, and Daniel Weitzner. Self-
Describing Delegation Networks for the Web. In IEEE POLICY '06: Proceedings
of the Seventh IEEE International Workshop on Policies for Distributed Systems
and Networks, pages 205-214, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[26] Lalana Kagal, Tim Berners-Lee, Dan Connolly, and Daniel J. Weitzner. Using
Semantic Web Technologies for Policy Management on the Web. In 21st National
Conference on Artificial Intelligence, 2006.

[27] Lalana Kagal, Chris Hanson, and Daniel Weitzner. Using Dependency Tracking
to Provide Explanations for Policy Management. In IEEE Policy 2008, 2008.

[28] Dave Kolas. Query Rewriting for Semantic Web Information Integration. In
Sixth International Workshop on Information Integration on the Web, 2007.

[29] Vladimir Kolovski, Yarden Katz, James Hendler, Daniel Weitzner, and Tim
Berners-Lee. Towards a policy-aware web. In In Semantic Web and Policy
Workshop at the 4th International Semantic Web Conference, 2005.

[30] Andreas Langegger, Martin Blochl, and Wolfram Woss. Sharing Data on the
Grid using Ontologies and distributed SPARQL Queries. In 18th International
Workshop on Database and Expert Systems Applications, pages 450-454, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[31] Deborah McGuinnes and Frank van Harmelen. OWL Web Ontology Language.
http://www.w3.org/TR/owl-features/, February 2004.

[32] Dennis McLeod and Dennis Heimbimger. A Federated Architecture for Database
Systems. In National Computer Conference, 1980.

[33] N/A. None. http://www.ibm.com/developerworks/data/library/techarticle/dm-
0504zikopoulos/Part2Figure2. gif, April 2005.

[34] N/A. The Data Deluge. The Economist, February 25 2010.

[35] N/A. Linked Data - Connect Distributed Data across the Web.
http://linkeddata.org/, 2011.

[36] Department of Elementary and Secondary Education. Massachusetts Com-
prehensive Assessment System: Participation Requirements for Students.
http://www.doe.mass.edu/mcas/participation, 2010.

[37] Sharon Wright (Chief Information Officer). Interview @ Executive Office of
Education, 1 Ashburton Place, Boston, MA 02108 on July 22, 2010.

[38] Oregon.gov. Oregon E-Government Program.
http://www.das.state.or.us/DAS/EISPD/EGOV/benefits.shtml, 2010.

[39] Eric Prud'hommeaux and Andy Seaborne. SPARQL Query Language for
RDF W3C Recommendation. http://www.w3.org/TR/rdf-sparql-query, January
2008.

[40] Bastian Quilitz and Ulf Leser. Querying Distributed RDF Data Sources with
SPARQL. In 5th European Semantic Web Conference (ESWC2008), pages 524-
538, June 2008.

[41] Kim Sopko and Nancy Reader. Public and Parent Re-
porting Requirements: NCLB and IDEA Regulations.
http://www.projectforum.org/docs/PublicandParentReportingRequirements-
NCLBandIDEARegulations.pdf, 2007.

[42] Tim Berners-Lee. Naming and Addressing: URIs, URLs,...
http://www.w3.org/Addressing/, 1993.

[43] Tim Berners-Lee and Vladimir Kolovski and Dan Connolly and
James Hendler and Yoseph Scharf. A Reasoner for the Web.
http://www.w3.org/2000/10/swap/doc/paper/, October 2000.

[44] Jinpeng Wang, Zhuang Miao, Yafei Zhang, and Jianjiang Lu. Semantic Integra-
tion of relational data using SPARQL. In Second International Symposium on
Intelligent Information Technology Application, pages 422-426, 1996.

[45] Sumudu Watugula. Designing Customizable End User Applications using Se-
mantic Techologies to Improve Information Management. MEng Thesis, MIT,
Department of Electrical Engineering and Computer Science, May 2006.

