
Th e Soft Grid

by

Ari Kardasis

MArch, Princeton University 2009

ScB, Mathematics Brown Univerity 2001

SUBMITTED TO THE DEPARTMENT OF ARCHITECTURE IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN ARCHITECTURE STUDIES

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2011

©2011 Ari Kardasis. All rights reserved.

Th e author hereby grants to MIT permission to reproduce

and to distribute publicly paper and electronic

copies of this thesis document in whole or in part

in any medium now known or hereafter created.

Signature of Author: __

Department of Architecture

May 20, 2011

Certifi ed by: __

Terry Knight

Professor of Design and Computation

Th esis Supervisor

Accepted by:__

Takehiko Nagakura

Associate Professor of Design and Computation

Chair of the Department Committee on Graduate Students

Reader:

Athanassios Economou

Visiting Associate Professor

Th e Soft Grid

by

Ari Kardasis

MArch, Princeton University 2009

ScB, in Mathematics Brown Univerity 2001

Submitted to the Department of Architecture

on May 20, 2011 in Partial Fulfi llment of the

Requirements for the Degree of Master of Science in

Architecture Studies

ABSTRACT

Th e grid in architecture is a systematic organization of space. Th e means that architects use to
organize space are, almost by defi nition, rigid and totalizing. Th e Cartesian grid, which will serve
as the antagonist of the soft grid, is geometrically and topologically unyielding on both the local
and global scales. Th ere are, however, alternatives to such hard grids. Th rough a series of stud-
ies, this thesis will catalog and analyze the soft girds, i.e. those that are adaptive, variable, scalable,
asymmetrical and entropic.
Computational tools in architecture have, in recent years, enabled designers to manage geom-
etries that until now have been realizable only by analog means. Th e instrumental capacity for
complex designs has lead to increased demand for soft gridding systems as is evidenced by the
profusion of Voronoi diagrams, pixelations, distorted grids and Danzer tilings in student and
conceptual work. However, the built scale of such projects is rarely beyond installation largely
because of the diffi culty in managing spatial organizations that are not essentially Cartesian. Th is
thesis will lay the groundwork for a systematic understanding of the possibilities of soft grids
while providing much of the computational tools to generate and manage specifi c examples.

Th esis Supervisor: Terry Knight

Title: Professor of Design and Computation

Acknowledgements:

First, a great thanks to my adviser, Terry Knight and my reader, Th anos Economou.

Additionally, I’d like to thank Erik Demaine, Neil Gershenfeld, Daniel Rosenberg, Duks Kos-

chitz, Daniel Cardoso and Kaustuv DeBiswas for intellectual guidance as well as Th e Design

Computation Group and the MIT community at large. Th is thesis would not have happened

without the conversations with and general infl uence of my peers including Steff en Reichert,

Skylar Tibbits, Xiaoji Chen, Grant Alford, William Patera, Moritz Kassner, Carl Lostritto and

many more. Finally, I want to thank my parents Nick and Arline Kardasis without whom none

of this would be possible.

6

0| Table of Contents

1| Introduction
The Grid

The Purpose of this Thesis

2| Context
A Brief History of the Grid

Contemporary Condition

3| The Soft Grid
Adaptivity

Variability

Entropy

Asymmetry

Scalability

4| Hard Grids
The Antagonists

Square Cartesian Grid

Equilateral Triangular Grid

Hexagonal Grid

5| High-Symmetry Grids

6| Local Forcing
Local Stretches

Local Meshing

6

8

9

10

12

13

16

18

20

20

21

21

22

24

25

26

26

28

30

34

36

36

7

7| Global Systems
Continuous Planar Distortion

Surface Distortion

Surface Meshing

8| Voronoi Diagrams
Random Arrangements

Structured Arrangements

3D

9| Subdivision Schemes
Danzer Tilings

L-Systems and Fractal Grids

Penrose Subdivision Scheme

10| Parallelepiped Packing
P-ped Packing of Order 3

P-ped Packing of Oreder k>3

The Crawling Grid

11| Conclusions
In Toto

Self-Contradiction

Attributes

Classifi cation

Questions and Future Work

A| Appendix
Code

B| Bibliography

38

40

42

44

46

48

50

50

54

56

56

58

62

64

66

68

72

73

74

74

74

75

78

79

100

1| Introduction

9

The grid

A grid is a systematic organization of space. Whether planomet-

ric, graphic, crystallographic or structural, a grid is a geometrical

abstraction that allows designers to give structure to space. In the

context of design, a grid is an explicit tool that aff ords the de-

signer a geometrical system within which to work and provides

hierarchy, adjacency and continuity across a particular design. Th is

work will focus primarily on the use of two dimensional grids in

architecture as a means of structuring plans, sections and three

dimensional organizations.

Grids occupy the space between geometry and topology. While

populated with shapes, they maintain the graph-like relationships

of adjacency, vertex-adjacency, etc. It is this duality that makes

the grid such a powerful tool for architectural design, encom-

passing elements of organization as well as form. Traditionally,

grids maintain a uniformity from one area of the organization to

another. Th is consistent format which will be discussed more in

chapter 4 is the result of the technology used to generate such

grids, namely, architectural drafting equipment such as the right

angle and straight edge.

10

This Purpose of this Thesis

Th e purpose of this thesis is three-fold. First, it is an exploration of what a soft grid is and a

search for a defi nition. Second, it is a survey of existing soft girds with signifi cant contributions

particularly in the area of parallelepiped packing. Th ird, it is meant to act as a design guide for

students, practitioners and teachers interested in exploring alternative systems for spatial orga-

nization. Th e sum of these eff orts is a codifi cation of a strong trend in architectural schools and

practices to design using systems that are free from the the totalizing mentality of the Modernist

grids that have dominated the fi eld for the last several decades. With the advent of easily acces-

sible scripting environments (both visual and textual), the designer’s ability to create complex,

intricate and customized grids has exploded in recent years. Th e Soft Grid captures this idea.

In searching for a description of an idea which is self contradictory and elusive, it is fair to say

that results are themselves diffi cult to nail down. In this spirit, the following chapters, with

their graphical and descriptive content, will give the reader an intuition for a notion rather than

a defi nitive description of a complete concept. Th e analyses are critical and at no point should

softness be taken to be a blanket assertion of quality. Like any tool, a soft grid is quite capable of

being misused and, at the end of the day, the designer is responsible for his/her own decisions.

Chapters 1 through 4 are meant as an introduction to the idea of grids, both soft and hard with

a brief survey of the historical uses of grids in architecture. Here, the primary terms of the the-

sis, namely ‘grid’, ‘soft’ and ‘hard’, will be defi ned and expanded on using examples from art and

architecture as a means of contextualizing the ideas in the following chapters.

Chapters 5 through 10 are organized into six categories of soft grids: High-symmetry, Local forc-

ing, Global systems, Voronoi diagrams, Subdivision schemes and Parallelepiped packing. In no

way do these classifi cations cover the entire space of soft grids nor are they independent from one

another. Th e boundaries of what qualifi es as a soft grid are themselves soft and, because of this,

no totalizing classifi cation scheme can exist. However, the survey is designed to take a represen-

tative sample of the fi eld and the material that has been added is meant to advance the principles

that have been seen in the observed cases.

Finally, this thesis serves as a tool for anyone looking for a soft gird to advance a design project

of their own. I will discuss issues such as how to grid oddly shaped regions which are directly

relevant to the design process and will give guidance to those seeking alternatives to hard grids.

11

Moreover, the typological analysis of the major classes that I list will provide a basis for compari-

son and a way to move forward with this fundamental choice in the design process.

In combining these agendas, I hope to bring clarity and insight to an otherwise uninvestigated

design tool which is in need of codifi cation in a way that is simultaneously academic and appli-

cable to design practice. Th is thesis does not purport to settle any issue with fi nality but instead

to shed light on an emerging collection of ideas and practices that, taken as a whole, constitute a

comprehensive addition to the design fi eld at large.

2| Context

13

A Brief History of the Grid

Th e grid in architecture is a device which is pervasive throughout

history but whose manifestation changes signifi cantly through

the ages. As far back as antiquity, and further, buildings have

been designed and built using rectilinear systems with regular

spacing. But the post facto recognition of a grid does not im-

ply the conscious deployment of a grid in the design process.

It wasn’t until the early Modern era that girds were employed

explicitly in the service of design.

In the 17th century, Descartes posited the numerical treatment

of the rectilinear geometry that had been used for millennia to

describe space rather than the implicit geometric mapping. Th is

philosophical and mathematical idea translated into rigorous

design principles in the 18th century most notably at L’École des

Beaux-Arts. Th is is not to say that the grid was geometrically ab-

sent before the 18th century but rather that its use was not itself

the object of scrutiny.

In the late 18th and early 19th century, Jean-Nicolas-Louis Du-

rand brought further rigor to the practice of gridding in architec-

ture with a series of lectures describing organization as a practice

14

for design.1 Following Durand, the 19th century saw a profusion of grids on all scales including

the 1811 plan for New York’s rectangular grid, Haussmann’s organizational system of Paris, early

skyscrapers, and the factory designs of industrialization. Grids in architecture arose because

designers were dealing with larger and more complex systems which needed an organizational

system to be maintained.

Th e early 20th century is marked architecturally and artistically with an explosion of grids. Per-

haps most prominent among the grids in art are those of Piet Mondrian who explored the grid

for its own sake in his series of compositions (Figure 1). In fact, these grids introduce a kind of

softness through the adjustment of the overall system. Th is is a local forcing as we will discuss in

chapter 6. Th ese principles were translated into the design community by the De Stijl movement

and the Bauhaus. Th e grid’s lineage in modern architecture continues from there including, most

prominently, the work of Mies van der Rohe and LeCorbusier.

Buckminster Fuller made a signifi cant contribution to the conceptualization of space with his

trademark geodesic structures. Th e building of these overtly non-rectilinear structures highlight-

ed the potential for alternative organizations in the built form. Fuller’s reconsideration of the

way things are designed and made was ultimately not a material or structural argument, but an

organizational one played out in his innovative and novel grids.

In the 1950’s John Hejduk introduced the nine-square grid2 as a tool specifi cally as an aid for

design and not an element of the built form. By calling into question the grid as a tool for de-

sign and using it as a teaching technique, Hejduk brought to light the importance of the grid as a

fundamental aspect of design practice.

In the 1960’s and 70’s, the grid made a resurgence in the conversations of architecture and art.

Le Corbusier expanded the idea of the grid as an infi nite overlay of space with his design for

the Venice hospital (Figure 2) which proposed an unbounded rectilinear organization. Bernard

Tschumi’s Parc de la Villette similarly highlighted the gridded organization of space. Artists like

Agnes Martin and Sol Lewitt explored the grid at its most fundamental level, using methodical

grid-making as a form of visual art itself.

Hannah B Higgins, in her book Th e Grid Book3 takes a much broader approach to the study of

grids than I will here but she nonetheless manages to identify some essential qualities from art,

1 Durand

2 Love / Caragonne

3 Higgins

15

Figure 1. Piet Mondrian. Composition A. 1923
witcombe.sbc.edu/modernism-b/artsake.html

Figure 2. Venice Hopsital. LeCorbusier
www.revistaau.com.br/arquitetura-urbanismo/182/imprime134779.asp

16

graphic design, mathematics, technology and more. While her defi nitions diff er from mine1, her

treatment of the network and the fractional dimension grids is especially relevant to the idea of

softness.

Contemporary Condition

Th e impetus for the study of soft grids in this thesis comes from the profusion of organizational

techniques facilitated by the introduction of computational tools into the architectural design

process. In architecture schools and in practice, there is a search for grids which are variable,

dynamic and otherwise soft, but a lack of the specifi c knowledge required to implement them. As

a design guide, the following survey will introduce some of the concepts to achieve these grids

while maintaining a critical eye toward the value of such systems.

Much of the desire for soft grids comes from the introduction of advanced geometry and script-

ing practices into the design community by small fi rms like Aranda/Lasch2 and Th eVeryMany3

but also the large-scale geometrically-advanced practices like Gehry Partners and Zaha Hadid

Architects. Th ese geometrical practices are driving not only complexity but novel spatial systems

for its understanding.

Among the most explored soft grids that have resulted from recent technologies is the Voronoi

diagram which, although rarely built, has seen a huge amount of popularity in student and con-

ceptual architecture projects in the fi rst decade of the 21st century. Th e Voronoi diagram will be

discussed more in chapter 8, but it is worth noting here that it is a strong motivating factor for

this study. Additionally, the Danzer tiling is becoming increasingly prevalent in certain practices.

Th is will come up again in chapter 9.

1 While Higgins’ grids are often organizational, she also includes chapters on the brick and the box, which generate grids in
their assemblage, not as design tools or a means of structuring space.

2 Ben Aranda and Crish Lasch

3 Marc Fornes, Skylar Tibbits, Mathew Staudt

17

3| The Soft Grid

19

A soft grid is a way of organizing space that is
adaptive, variable, entropic, asymmetrical or scal-
able. Th e term is intentionally enigmatic as it arises at the bor-

der of the rigid and the malleable and its defi nition is somewhat

elusive because of this contradiction. Th e intent is to introduce a

quality (softness) into a concept which is strongly opposed to that

quality. Th is is a precarious balance and we will see in chapter 8

how grids can be too soft.

Th ere is no single qualitative or quantitative metric for soft-

ness. One of the primary results of this thesis is a discussion of

what softness is and the reader will have a sense, albeit tacit, of

what makes a grid soft as well as why and when this is a valuable

quality. Th e fi ve attributes of softness listed below should not be

taken as a complete description, nor should they be understood

as completely independent of one another. (e.g. we cannot have

entropy without variability.) Th e sum total of these descriptors

taken together should give an overall sense of what it means for a

grid to be soft.

20

Adaptivity
A grid can be said to be adaptive if it reacts, either locally or globally, so some enforced condi-

tion. Th is can be a manual change made by a designer or an algorithmic process for organizing a

given space with given conditions. In this way, the grid adapts to it’s environment whether this

is a one-time a priori adaptation or an interactive process of adaptivity, in which the designer is

changing the grid as it is being used.

Figure 3. Th e enforced condition, an imposed unadaptive grid and an adaptive grid

Variability
Perhaps the most evident attribute that lends softness to a grid is variability. Th is can be seen by

observing the hard grids and noting that all geometry and topology is constant throughout which

is to say that there is no variability at all. Variability may be the most fundamental aspect of soft-

ness for without it, any grid is quite hard.

Figure 4. Th e grid on the left has no variability. Th e grid in the middle has very little and the one on the right has a lot.

21

Entropy
Borrowing from information theory, entropy is a measure of the surprise1 when one gains a new

piece of information. Th is idea has vast consequences but in the context of the soft grid, it is

meant to express how ‘knowable’ a grid is. If one were to slowly reveal a grid and that grid were

hard in the sense that it was the same everywhere and had no choices to be made, one would fail

to be surprised by the successive revelations. On the other hand, if the successive exposures of the

cells gave new information to the observer, she would be surprised by the content on view. In this

sense, we can say that the grid is entropic in that it contains a great deal of information.

Figure 5. Zero entropy in the hard grid and high entropy in the random Voronoi diagram.

Asymmetry
Symmetry exists in many diff erent forms but the way that it is being used here is primarily in re-

lation to symmetries in the plane, specifi cally, wallpaper symmetry.2 Simply put, symmetry is the

capacity for a grid to look like itself when moved in some way. Th is movement can be a transla-

tion, rotation, refl ection or glide3 but it can also be a scaling if we are discussing fractal grids.

Figure 6. Th e square grid has translational, rotational and mirror symmetry while the Penrose tiling has none of these.

1 Shannon, etc

2 See March and Steadman and Grünbaum and Shephard for further discussions on symmetry.

3 A glide symmetry is a translation and refl ection along the same axis. See March and Steadman p 60

22

Scalability
Scalability is the ability of a grid to operate across scales. Simply put, it is a variation in the size

rather than in the shape of the elements of a grid. Th e idea of a fractal1 is essentially infi nite scal-

ability where a grid can operate at every scale from the gigantic to the minute. Being scalable can

mean having scaling symmetry and therefore puts this attribute in opposition to asymmetry when

the symmetry in question is scalar.

Figure 7. Th e square grid operates at only one scale while the deformed grid in the middle has many and the Sierpinski
carpet on the right works at an infi nite number of scales.

1 Mandelbrot

23

4| Hard
Grids

Figure 8. Th e Square Cartesian Grid is highly uniform.

25

The Antagonists

Before delving into the wide variety of soft grids, it is worthwhile

to establish a set of observations about our antagonists, the hard

grids. Just as soft grids are variable, adaptive, scalable, asymmetric

and entropic, their counterparts are uniform, static, unscalable,

symmetrical and highly ordered. From a mathematical perspec-

tive, hardness can be thought of as sameness across the grid.

Sameness of cells, edges, vertices etc. is apparent for square grids

as well as triangular and hexagonal. Th ese three grids constitute

absolute hardness. In the next chapter, I will discuss rectangular

and skew grids as well as regular tilings, which demonstrate a

great deal of rigidity and structure but are not as hard as the three

in this chapter.

26

Square Cartesian Grid

Although there is no softest grid, the opposite is not true. I will argue that there is in fact a hard-

est grid and it is the Square Cartesian Grid . While detractors may argue that the square grid can

lend a great deal of softness to a design process, I assert that it is through the various softening

processes that it gains these properties, not from its essential nature.

Th e square grid is generated by evenly spaced lines in two orthogonal (or perpendicular) direc-

tions, the spacing in one direction being the same as in the other. Th is simple construction yields

a uniform array of square cells which demonstrate a zero on the scale of adaptivity, variation,

asymmetry, scalability and entropy. It is the canonical grid in architecture and has been used for

millennia because of its ease of management and construction. It is strongly associated with the

Cartesian coordinate system whereby points in the plane can be located by two numbers (x and y)

each of which has no eff ect on the other. Th e grid lines are the places at which one of the coordi-

nates is an integer and the intersections of those lines are where they are both integers.

Unlike the triangular and hexagonal grids, the square grid has 4-fold symmetry around its cell

vertices1. Th is is deeply tied to the 90° angles at the corners and to the overall orthogonal na-

ture of the square grid. It is this separation of space into two totally independent directions that

makes the square grid that much harder than the other two discussed in this section.

Equilateral Triangular Grid

Th e equilateral triangular grid, much like the square, is generated by sets of evenly spaced parallel

lines. Th e diff erence being that the triangular grid is composed of three sets of lines which are at

120° angles to one another, removing the 4-fold rotational symmetry and introducing 6-fold sym-

metry around the vertices and 3-fold symmetry around the centers of the cells (Figure 10). In a

sense, the triangular grid (as well as the hexagonal) are harder than the square in that they have

more rotational symmetries althought in the case of the triangular grid, an alternating orientation

of the cells creates some small amount of softness.

1 March and Steadman p. 56. I will discuss symmetry in more detail in the next chapter.

27

Figure 9. Th e Barcelona Pavillion. Ludwig Mies van der Rohe.
Th e tiling pattern is a clear manifestation of the square grid on which the design was made.

Figure 10. Symmetries in the triangular grid Figure 11. Th e Frank Lloyd Wright House in Ebsworth Park.

28

Hexagonal Grid

Th e hexagonal grid, often referred to as a honeycomb, is dual1 to the triangular grid (Figure 13)

and exhibits all of the same symmetries as it. Unlike the previous two hard grid types, the hex-

agonal grid is not constructed from continuous straight lines but instead exhibits a more cell-like

organization characterized by trinodal2 vertices and large (120°) angles. Th e hexagonal grid has a

certain biological look because of the relationship to the Voronoi diagram3 and is, at fi rst glance,

less hard looking than the other two hard grids in that it lacks the linearity and continuity that

they have.

 Hexagonal grids are rarely used in architecture and tend to be something of a novelty when

they are. Th ere is a strong aesthetic that the hexagonal grid carries with it (Figure 12) and its use

tends to imply a connection to nature despite the strong hardness of the grid. Th is is partly due

to Voronoi diagram connection but also a cultural bias relating such grids to an era of late mod-

ernism marked by a return to nature.

1 For a defi nition and discussion of duality, see Grünbaum and Shepard p.97.

2 Each vertex is at the intersection of three edges.

3 See chapter 8.

29

Figure 12. Auldbrass. Frank Lloyd Wright

Figure 13. Th e duality of the triangular and hexagonal grids.

 5| High-Symmetry
Grids

31

After the hard grids described in the previous chapter, the

high-symmetry grids are the most rigid and familiar grids. Th ey

are characterized by translational symmetry, which gives them

very low variation, adaptivity, scalability, asymmetry and entropy,

although in each of these categories they do (or can) display a

small amount of softness over the hard grids. Beyond the trans-

lational symmetry, high-symmetry grids are often associated with

the wallpaper symmetries1 which include rotation, refl ection and

glide symmetries.

Carsten Nicolai’s2 vast and exhaustive study of every imaginable

grid near the hard end of the spectrum is a beautiful collection.3

Grünbaum and Shephard provide a highly detailed and robust

mathematical exploration of tilings of all sorts with a great deal

of formalism and rigor.

1 See March and Steadman p. 64

2 Nicolai

3 Nicolai also looks at quasiperiodic tilings of 5-, 7-, 8-, 9- and 12- fold symmetry,
which will be discussed further in chapter 9.

32

Figure 14. Examples of grids produced with regular polygons which demonstrate a high degree of symmetry.

Th e tartan grid1 (Figure 15) is closely related to the square grid but has a syncopated spacing of

the grid lines yielding an opportunity to insert walls between the narrowly spaced lines and open

space in the larger space. In a sense, this is an adaptation of the square grid to accommodate

the thickness of walls, which would be on the grid lines of the square grid. Trying to place walls

on the infi nitesimally small lines leads to inevitable diffi culty and the tartan grid is the logical

solution to this problem. In this way, the tartan grid is highly adaptive because it responds to a

specifi c need.

Th e street grid in the city of Barcelona (Figures 16-17) is an example of high-symmetry grid

which, like the tartan grid, permits a space between the primary elements. Here, the edges are

thickened as in the tartan grid but also the vertices are expanded into rotated squares to allow the

intersections to open up and allow for better traffi c fl ow.

1 See Stiny and Mitchell.

33

Figure 15. Th e tartan grid of Palladio’s Villla Malcontenta.

Figure 16. Blocks from the Barcelona street grid.

Figure 17. Th e Barcelona street grid abstracted.

6| Local Forcing

Figure 18. Local forcing.

35

A fi rst step in generating softness in a grid is to

start with a hard grid and to make local adjustments to fi t some

organizational requirement. Local forcing is a design move made

to meet a specifi c need after a grid has been established. Th is ap-

proach can be interpreted as breaking the rules that of a particu-

lar grid and although that grid can be hard, the same logic can be

applied to grids that are soft in various ways.

Grids generated by local forcing necessarily show a great deal of

adaptivity. As far as the other criteria for softness, the defi nitions

are not always applicable because of the fact the local forcing is

dependant on the initial grid. Th e specifi c techniques for gen-

erating local forcing grids are wide ranging and diffi cult to fully

categorize. Th e ideas of local stretching and local meshing will be

discussed but it should be born in mind that this is by no means a

complete description of the possibilities of local forcing.

36

Local Stretches

Applying a point-wise interruption to an otherwise hard grid can be extended to the construc-

tion of a grid based on a set of points or a set of obstacles or interruptions such as, in the case of

architecture, a street, a river or a tree. In the case of a point-set, we can look at algorithms for

charges in a fi eld (Figure 19) and laminar fl ow (Figure 20). Th ese types of local forcing allow the

grid to expand or contract at certain specifi ed points in order to accommodate design elements

that may not fi t into an existing hard grid. Clearly, the systems are highly adaptive but the other

soft properties that are introduced are done so only at a local level, leaving the bulk of the grid

relatively hard.

Local Meshing

A variety of meshing algorithms and techniques exist to grid a region which will not adhere to

hard gridding techniques. Th is is a form of local forcing in that the grid will adapt locally to the

space that it is responsible for organizing. Th is topic will be expanded on in the section on sur-

face meshing in the next chapter.

For obstacles, this can be accomplished using meshing algorithms from computational geometry1

as a way of subdividing the region after it has been interrupted (Figure 21). Here we see a square

grid and a set of six circles which do not fi t nicely into the organization. In this case, a triangula-

tion of the surroundings is being used to organize the interstitial space in a way that makes it us-

able. Th is is a relatively simple meshing but they can be highly involved and there is a large body

of material on the subject.

1 Berg et al.

37

Figure 19. A discrete stretching and contracting.
See appendix for code.

Figure 20. A continuous laminar fl ow local forcing.
See appendix for code.

Figure 21. A local forcing based around six circles.

 7| Global Systems

Figure 22. D’Arcy Th ompson’s global gridding system.

39

After local forcing, one might consider the grid in
its entirety as the subject of softening instead of approach-

ing it at the scale of the vertex, cell or edge. D’Arcy Th ompson’s

treatment (Figure 22) of the continuously distorted square grid1

is a beautiful introduction to the logic of non-linear transforma-

tions. In his case, the grids are being used as an analytical tool for

morphology. In addition to these transformations, this chapter

will discuss grids induced by global functions in the plane as well

as surface tesselations which is a important not only in the fab-

rication of geometry but also for computational purposes as in

Finite Element Analysis2.

Global distortions are easily generated by many contemporary

software packages so their use has become quite common in ar-

chitectural practice and speculation. NURBS surfaces are param-

eterized by u-v coordinates which are a means of stretching the

square grid onto a geometry in order to impart on it an organiza-

tional system for design or fabrication. Adaptive meshing tech-

niques decompose a surface based on its intrinsic geometry rather

than forcing on it a foreign coordinate system.

1 Th ompson pp 268-325

2 Hughes

40

Continuous Planar Distortions

Th e continuous distortions presented here are a mapping from the plane to itself. In mathemati-

cal notation, we can say:

Such that the mapping does not overlap itself. Th is condition is called injectivity i.e., there do not

exist x, y  R2 such that D(x) = D(y). We also require that this mapping be continuous, so that it

does not jump quickly from one place to another. What this means is that the distortion bends

and stretches the plane into a new confi guration without making any overlaps or jumps.

As shown in Figures 24-25, we can compress certain regions all the way into individual points.

Th is gives a topological change that is most familiar in polar coordinates or in the standard grid

applied to a sphere, namely, latitude and longitude, as we will discuss further in the section on

surfaces. Any grid can be used as the initial organization as is shown in Figure 26.

Figure 23. A continuous planar distortion. See appendix for code.

41

Figure 24. Continuous planar distortion.

Figure 25. Continuous planar distortion.

Figure 26. A continuous planar distortion of the hexagonal grid.

Figure 27. A large scale planar distortion.

42

Surface Distortions

Just as a grid can be used to map the plane onto itself, so too can a plane be mapped onto some

other surface. Th is technique is most commonly used in computational practices with NURBS

surfaces, which are parameterized using u-v coordinate systems, a direct extension of the square

grid in the plane. Th is transformation has a deep relationship to the surface in question as can be

seen in the images of the torus and the sphere in Figures 28-29.

In the case of the sphere (Figure 28), we see that there are two points (the north and south

poles)1 at which many lines converge. Th is is a result of the non-Euclidean geometry of the

sphere that allows many seemingly parallel lines to intersect in one point. Th e same phenomenon

occurs in a distortion of the plane when we look at the polar coordinates, which is the interpreta-

tion of the cardinal directions when one is at the north or south pole.

In a very diff erent way, the topology of the torus is apparent in its canonical gridding (Figure 29)

which does not have any points that are fully collapsed but instead wraps around in two direc-

tions, one going around the hole in the middle and one wrapping the thin tube of the torus.

In this way, the grid is highly specifi c to the topology of the surface, meaning that bending or

stretching the surface (without closing up holes) can be achieved with the same grid.2

Surface distortions are in common use in today’s architectural practice (Figure 30) but they are

not a new device. As far back as antiquity in many cultures, domes, arches and other curved sur-

face geometries in architecture have been realized with the help of a surface distortion grid such

as is the case in the Pantheon in Rome (Figure 31) which uses a spherical mapping to organize

the small vaults in the interior dome3.

1 Th e poles of Earth are an artifact of the gridding system that is applied to it. Cardinal directions (north, east, south, west)
were originally a local square grid on a plane derived from the movement of the sun in the sky, which is a result of the spin-
ning of the orb. Th is leads to the poles lying on the axis of rotation.

2 For a good introduction to topology and geometry and the relationship between the two see Reid and Szendroi

3 Th e dome of the Pantheon is, in fact, spherical.

43

Figure 28. Th e sphere with the canonical lati-
tude and longitude grid.

Figure 29. A torus with a grid that wraps in two direc-
tions

Figure 30. Museo Soumaya by FREE Fernando
Romero EnterprisE.

Figure 31. Th e Pantheon, Rome.
Photo by : Kristoff er Winther Balling.

44

Surface Meshing

Just as grids can have a deep relationship with the topology of a surface, so too can they relate to

the geometry of a surface in the sense of intrinsic properties. An intrinsic property is one that

appears only locally like the curvature at a point. If we cut away an area of a surface, it maintains

its intrinsic properties there unlike the topological properties which exist only in relation to the

whole surface.

In the examples in Figures 32-33, a grid is applied to a surface in the form of a triangular mesh.

In some cases, this type of triangulation is done to an existing surface as a way of representing

it in a computational context or fabricating it, but the meshes can also be a consequence of the

construction or calculation of the surface itself. Th e SoaPy algorithm for computing minimal

surfaces generates the surface using a dynamically generated mesh.1 It simulates the behavior

of soap fi lms on wires by calculating surfaces with zero mean curvature or minimal area. Th is is

achieved by repeatedly minimizing the curvature on the mesh and refi ning it. Th e mesh refi ne-

ment takes into account the intrinsic properties in order to fi nd an optimal confi guration that

suits the surface with the greatest precision possible.

Th is type of procedure for grid generation is extremely powerful and is commonly used not only

in architectural projects but also in computer graphics, gaming and a wide range of other digital

environments. It is highly adaptive in that the grid is a result of that which it is gridding. It is

asymmetrical, as much as the surface is, but not very entropic as it is quite predictable. It is vari-

able, again, to the extent that the surface is and it is highly scalable as it creates a fi ner grain to

map fi ner geometry.

1 see http://fab.cba.mit.edu/classes/MIT/864.11/people/Ari_Kardasis/Soapy/index.html

45

Figure 32. A mesh generated for a minimal surface by the software
package SoaPy, by the author.

Figure 33. Two views of a minimal surface using a Delaunay mehs on a wire. Generated with SoaPy.

8| Voronoi Diagrams

Figure 34. Th e Voronoi diagram marks the regions in a plane which are closest to a point.
Th is can be generated by drawing the perpendicular bisectors of the lines that
connect the points, which are the Delaunay triangulation .

47

Voronoi diagrams are often presented in conjunction with

their relationship to nature. Butterfl y wings, leaf venation, cell

structures, bubbles, etc, are all examples of naturally occurring

Voronoi diagrams. Th is is however, only a very small part of the

story. Any point set, in any number of dimensions, will generate

a Voronoi diagram and only a small subset of these are those that

are found in nature. Th e natural patterns arising from Voronoi

diagrams, while beautiful, tend to be only moderately structured

and lack the hierarchy necessary for design. Th ese are the same

versions borrowed by architects and due to their lack of order,

direction or scale, they fail to be capable of imposing the will of

the designer on a project. In short, they are too soft.

But the depth of the Voronoi diagram does not stop at the

mimicry of natural phenomena. We must not forget that a square

Cartesian grid is the Voronoi diagram of a square lattice of

points. Similarly, rectangular grids are the Voronoi diagram of a

rectangular lattice and hexagonal grids are the Voronoi diagram

of a triangular lattice and vice versa.

48

Random Arrangements

Th e Reichert Interestingness Curve (Figure 35), which estimates the intellectual value of the Vor-

onoi diagram over time, is marked by two major features. Th e fi rst, a sharp spike at the beginning

corresponding with the initial intrigue associated with the Voronoi diagram, is primarily associ-

ated with Voronoi diagrams generated from randomly placed points in the plane. Because there

is little to no overall structure from these types of grids, they lack the organizational capacity of

many of the other grids discussed in this thesis.

Because of this lack of structure, the randomly generated Voronoi diagram is in many ways too

soft. In opposition to the hard grids, they have 100% variability, asymmetry, scalability and en-

tropy. Adaptivity is a diff erent issue but they can be adapted to nearly any situation although not

while maintaining randomness. Th e one structural property that they do maintain is trinodal

vertices1.

1 Th ree edges meeting at each vertex.

time

in
te

re
st

in
gn

es
s

Figure 35. Th e Reichert Interestingness Curve. Steff en Reichert.

49

Figure 36. A Voronoi Diagram generated from 500 random points

50

Structured Arrangements

Th e story with Voronoi diagrams does not end with random arrangements. In fact, any set of

points can be used as input to generate grids in the plane and the second feature of the Reichert

Interestingness Curve is largely due to the realization that Voronoi diagrams can be controlled in

highly specifi ed ways. Figure 371 shows how square and hexagonal grids are in fact special cases

of the Voronoi diagram and that this distinction need not be absolute. Th e power of Voronoi

diagram is in its ability to morph, shift and in fact mimic other grids but with control.

Th e fact that Voronoi diagrams cover the space of the hard grids gives them the ability to make

transitions from one type of grid to another. Figure 38 shows the continuous transformation

from a square grid to a hexagonal one. Th e use of voronoi diagram to stitch together hard grids is

quite powerful. In design situations, there is often the case where disparate grids intersect leaving

an unresolved edge condition between them. Th is also applies to the design problem of a con-

tinuous scale shift (Figure 39) where a system has to be maintained but multiple local conditions

must be met.

Figure 40 shows a grid generated from a phylotaxis pattern2. Th is particular grid displays some

important qualities that the Voronoi diagram aff ords. We can see an overall radial organization

with one central cell. As the spiral moves outward, the local conditions shift from a rectangular

grid, to a hexagonal one, to square, back to hexagonal and then to rectangular again. Th is is a

complex system of local organization bleeding continuously into one another based on a separate

global organization, all of which come together to make an intricate grid.

3D

Voronoi diagrams can also be used to grid three dimensional space although the applications to

design are not as apparent as they are in the planar case. Spatial organizations like these are often

refered to as foams in material science and their structural and physical properties are quite in-

credible3.

1 See appendix for code.

2 Points are generated using Fermat’s spiral: r = 

3 Weaire & Hutzler

51

Figure 37. Th e degeneration of a square and a hexagonal grid into randomized Voronoi Diagrams

52

Figure 38. Th e continuous change from a square to a hexavonal grid
using Voronoi diagram

Figure 39. An intruption in a hard grid using the fact that Voronoi
diagrams can stitch together the square and rectangular.

53

Figure 40. A Voronoi Diagram generated from a phylotaxis pattern.

Figure 41. Soap bubbles creating a 3D Voronoi diagram
http://www.thepigeon.org.uk/?p=1

9| Subdivision
Schemes

55

A subdivision scheme is a technique for gridding

that starts with some unit or cell and recursively cuts it up into

smaller pieces, eventually giving suffi cient structure to the space

to warrant a grid. Much like Voronoi diagrams, subdivision

schemes can be used to make the hard grids (square, rectangular,

triangul etc.) thereby making them a prime candidate adapting

hard grids to soft.

In general, subdivision schemes aff ord a high degree of scalabil-

ity above all. Th ey can also be highly adaptive1, variable and to a

lesser extent entropic and asymmetrical. Because of the recursive

nature of the generation process, computational algorithms lend

themselves quite well to subdivision schemes which can require

a lot of numerical calculation. For this reason, many of the soft

grids in contemporary practice are generated with subdivision

schemes.

1 Charalampous

56

Danzer Tilings

Danzer tilings have been used in several architectural and design projects, most notably the

Watercube for the Beijing 2008 Olympics (Figure 43) but also a fair number of student and

speculative projects from geometry minded designers such as the Grotto project by Aranda/Lasch

(Figure 44). Th e Danzer subdivision scheme is a three dimensional example of an aperiodic

tiling1, which means that a fi nite number of tiles can be arranged in an infi nite number of ways

without ever repeating the same confi guration. Th is property leads to infi nite variation with a

fi nite number of unit types, a property that is appealing when one needs to fabricate the units. In

a thesis from the Bartlett School in 2007, Charis Charalampous extended Danzer tilings to be a

responsive subdivision capable of altering the density depending on conditions in space.

L-System and Fractal Grids

L-Systems, fi rst explored by Aristid Lindenmayer, are a powerful mathematical tool that can be

applied to generate a wide range of subdivision grids. Th e Danzer tilings as well as the Penrose

tiling (see below) can be generated using this clever, bottom-up, approach. Th e most common

implementation of L-Systems is the fern type drawings (Figure 42), which display much of the

fractal and biomimetic properties seen in many of the L-Systems geometries.

1 See Grünbaum & Shephard pp. 520 - 604

Figure 42. Ferns generated using L-Systems.

57

Figure 43. Th e Water Cube by PTW Architect.
Photo from Flickr user inkelv1122
http://www.fl ickr.com/photos/inkelv1122/4865475411/sizes/l/in/photostream/

Figure 44. Th e Grotto. An entry into PS1’s young architects competition.
Aranda/Lasch

58

Penrose Subdivision Scheme

Roger Penrose’s discovery in the 1970’s of a set of aperiodic1 tiles (the Penrose Tiles) has been

thoroughly studied by mathematicians over the past four decades. Although the resulting grids

can be generated in a number of diff erent ways2, Penrose originally used a subdivision scheme

which we will show here3. Th e following description is outlined visually in Figure 49.

First, we have six prototiles, a star, a ‘half pentacle’ a rhombus and three regular pentagons. Al-

though the pentagons are idential in shape, they have diff erent labels, or rules, that determine

how they will be subdivided with each step.

Each of these prototiles has a rule that determines how it is to be divided into smaller versions

of the same prototiles. After this division, we have a new set of smaller tiles and we can again

subdivide those according to the same rules. Th is procedure can be repeated indefi nitely, generat-

ing not a set of tiles, but a true grid which organizes space in a systematic way. Th e resulting grid

does not have any translational symmetry and has 5-fold rotational symmetry around only one

point.

Furthermore, the six prototiles described can each be divided into a set of rhombuses whose

angles are multiples of π/5 (or 36°). Th ere are only two rhombuses that satisfy this property so

the entire aperiodic tiling that Penrose created can be built with only two tiles. Th is property

makes the tiling especially appealing for fabrication purposes as it is only slightly more diffi cult to

manufacture than a perfectly hard grid! (Figure 45)

In their 2007 paper4, Peter Lu and Paul Steinhardt discuss the techniques used by medieval

Islamic architects and designers to generate aperiodic Penrose-like tilings at the Darb-i Imam

shrine in Isfahan, Iran (Figure 51). Th ese types of grids were known long before the ‘discovery’ by

Penrose in the 1970’s. In that paper, they discuss yet another technique for generating such grids.

1 For defi nitions and explainations of aperiodic, see Grünbaum and Shepard p 520.

2 I will discus one of the other approaches in the next chapter.

3 Th is method is adapted, and corrected, from Grünbaum and Shepard.

4 Lu and Steinhardt

59

Figure 46. A Sierpinski carpet.

Figure 48. An L-System grid based on
repeated scaling

Figure 47. An L-System based on propor-
tional subdivision.

Figure 45. Roger Penrose on a Penrosed tiled fl oor.

60

Figure 49. Th e Penrose subdivision scheme.

 P
1

A
 P

1
B

 P
1

C
 P

1
D

 P
1

E
 P

1
F

 P
1

A
A

 P
1

BB
 P

1
CC

 P
1

D
D

 P
1

EE
 P

1
FF

 P
2

A
A

 P
2

BB
 P

2
CC

 P
2

D
D

 P
2

EE
 P

2
FF

61

Figure 50. A Penrose tiling based on the subdivision scheme.

Figure 51. Darb-i Imam shrine in Isfahan, Iran

10| Parallelepiped
Packing

63

Th is chapter is devoted to a series of computational design

experiments performed by the author in the search for soft grids.

A great deal of research into the aperiodic tilings revealed that

the mathematics involved in generating Penrose tilings and other

n-fold symmetrical tilings was extensible to a type of grid which

was softer in many respects such as variation and adaptivity, while

maintaining the requisite structure to be considered a grid.

In this chapter, the techniques used to generate these grids will be

explained and some examples of the results will be shown. Th is

being the fi nal chapter of this thesis should not be taken as an

indication that the p-ped packings presented here are in any way

an ideal version of the soft grid or a culmination of the previous

chapters. While there is a great deal of potential in these grids,

they have not had the benefi t of being tested in a design context

and thus are immature as organizational tools. However, their

benefi ts are apparent and while they meet the criteria of softness,

they do not overextend it.

64

P-ped Packing of Order 3

Th e simplest parallelepiped1 packing, other than the square, rectangular and parallelogram grids2

is the one generated by the 60°-120° rhombuses as detailed in Figure 52. Th e generation of such

a grid can be thought of as a motif on a hexagonal lattice, as a packing of one tile oriented in

three directions, or as three diff erent p-ped cells each specifi ed by two initial vectors chosen from

three. It is this last defi nition that allows an extension into higher dimensions with a wider variety

of p-peds.

Taking a relatively hard grid as a basis (Figure 53), we can successively soften it by determining

larger scale regions (Figure 54), specifying more complex local conditions (Figure 55) and taking

diff erent initial cells as the generators for the entire grid (Figure 56). Th ese steps will serve as the

motivation for generating much more complex girdding systems that involve all of these together.

One may note that the images on the opposite page can be taken as a two dimensional projection

of three dimensional space. Th is is not a coincidence. Th e nature of these grids is that they are

generated from three vectors in the plane. If these three vectors are taken to be projections from

three dimensional space, our 3-D tuned brains will reconstruct that space. As we will see in the

next section, using more than three vectors to start the process gives us what we may consider to

be a glimpse into four, fi ve, etc, dimensional space.3

1 Th e word parallelepiped is used here as an n-dimensional generalization of the parallelogram, particularly in two and three
dimensions. Th is choice is made to for the sake of the 3D case.

2 Again, the hardest grids are a special case of these soft grids.

3 Talking about numbers of dimensions higher than three inevitably leads to a great deal of confusion. Th e simplest way
to think about higher dimensional spaces is as a numerical extension of Cartesian space, i.e. (x, y, z) coordinates are three
dimensional

120°

60°

60°

120°

Figure 52. Th e construction of the 60°-120° p-ped packing.

65

Figure 53. A hard grid built from three orientations of
the same cell.

Figure 54. Th e same cells organized into three primary
regions

Figure 55. Th e organization of the cells can assume a
much less regular form.

Figure 56. Altering the shape of the p-peds gives us a
diff erent organization entirely.

66

P-ped Packings of Order k>3

As mentioned in the previous section, the p-ped packings shown there are projections of three

dimensional space into the two dimensional plane. In this section, we will extend this idea to

higher dimensions and explore the consequences of four and fi ve dimensional spaces and their

projection into the plane.

Interestingly enough, the familiar 3-to-2 dimensional projection of a hyper-cubic lattice can be

extended1 to higher dimensions simply by adding numbers. It is through this method for gen-

erating p-ped grids that allows for a much greater degree of freedom in their softening. Th e

Penrose subdivisions from the last section were generated by recursive subdivision of prototiles

but the same grids can be generated using the cut-and-project method2 which slices a lattice in

k-dimensions and projects the remaining faces into the plane. Th is method can be seen in action

in Figures 53-56 by noticing that those grids appear to be three dimensional latices.

Now if the original lattice is four dimensional, we can perform the same sort of cutting and pro-

jecting to get a p-ped packing with six diff erent rhombuses.

Th ere are six diff erent rhombuses because we can take any two of the initial four directions and

because :

In three dimensions, there are three orthogonal directions (x, y and z) and four dimensional space

is defi ned by having four directions3 Th us, in three dimensions we have three rhombuses and in

fi ve dimentions, we have ten:

Using this logic, we can generate p-ped packings using any number of dimensions as the project-

ing space but the results provided by high dimensional projections are limited.

1 Th is extension is ‘by analogy’ or not depending on whether one considered 4, 5, 6, etc. dimensions to be something real or
strictly a construction. In mathematics, n-dimensional space is as real as 2 or 3.

2 de Bruijn

3 Th e fourth is often called w.

67

Figure 57. Instead of three types of cells, we can do the same with six.

Figure 58. When we have fi ve input vectors there are ten types of
p-peds.

68

The Crawling Grid1

Th e two methods described so far to generate p-ped grids2 are good for the mathematical produc-

tion of aperiodic grids. However, generating worthwhile design grids requires a diff erent tech-

nique all together. Th e manual propagation of such grids is extremely tedious and makes no sense

as a design practice. Th e alternative is a customized algorithm for propagation which allows a

user to vary parameters in real time as grids are generated to suite their needs.

Start by choosing a small number3, k, of vectors in the two dimensional plane. Ideally, no two are

at very small angles to one another because very narrow, acute p-peds will result. We then deter-

mine the possible combinations of any two of these vectors to produce a set of p-peds of which

there are N where:

Th en, starting with a single p-ped, attach adjacent p-peds growing outward and checking for

collisions each time. Th is is the basic method employed for propagation but it does not fully

describe the technique. At each step two choices must be made to completely determine the

process. First, we need to decide which p-ped and on which face to place the next p-ped. Second

we have to decide which p-ped to place there. Because we know the face on which we’re placing,

when we decide which to place, we only have to choose one new vector instead of two because

one is already determined. Because we cannot pick the same vector twice, this leaves us with only

k-1 choices instead of N for the next p-ped once we know where it is going. Once collisions are

taken into account, there is very little choice left once a face for propagation has been chosen,

making that choice the important one.

Th is process mimics the cut-and-project method although here we are fi rst determining the

projected vectors rather than the angle of cutting.4 It allows a controlled propagation of the grid

while maintaining organizational structure and allows for a great deal of local and global specifi c-

ity.

1 Th e Python code for this algorithm along with mathematical infrastructure can be found in the appendix.

2 Penrose subdivision and the cut-and-projet method

3 Th ree to six seems ideal although there is nothing magial about this choice.

4 See de Bruijn for a detailed explanation of this.

69

Figure 59. Five input vectors lead to ten diff erent types of p-peds.

70

71

Figure 60. One result from the parallelepiped packing algorithm.

 11| Conclusions

73

In Toto

Th e study of soft grids presented here has lead to two

primary realizations. Th e fi rst is the working defi nition of a soft

grid in the form of the fi ve attributes given in chapter 3. Th ese,

though presented at the beginning of the document, are actually a

consequence of the research and not a presumption. Th e second

is the typological classifi cation of soft grids and the interrelation

of these types to each other. Both of these results are presented

as discrete, concrete concepts but in reality the attributes as well

as the classes are imperfectly defi ned, overlapping and incom-

plete.

Th at being said, the goal of the research presented here was never

a mathematical grade qualitative or quantitative defi nition of

softness but rather an exploration and codifi cation of an emerg-

ing set of ideas in architecture and design that, according to this

author, are underexplored despite a growing profusion of use in

the community. I hope that those who have read this thesis will

have a foundation for a vocabulary and a basis for understanding

soft girds as they come up in design work.

74

Self-contradiction

Th ere is something in the name “Soft Grid” that speaks volumes about the nature of the project.

It is the juxtaposition of the rigid and the fl exible, the forgiving and the totalizing. Perhaps

this dichotomy is the manifestation of a backlash against the Modernist notion organization

compounded with the inherent need for systematization in design. Maybe it is a by-product

of the democratizing power of computers and the irony that that produces with the systematic

formalism of their architecture. Either way, this tension is a powerful component of the idea of

the soft grid and has been a fruitful source of motivation.

 Attributes

Th e fi ve attributes that I have used as a metric for softness (Variability, Adaptivity, Asymmetry,

Scalability and Entropy), have provided a means of discussing what makes a grid soft while si-

multaneously serving to defi ne precisely what a soft grid is. Th rough the investigation of the grid

types, the attributes have born out some of their weaknesses such as when they become non-ap-

plicable1 or when they fail to recognize certain types of softness2. But they have also proved quite

useful as a descriptive language for the grids that I’ve been studying.

Th e fi ve descriptors are divisible into two groups, the chaotic and the ordering. Th e chaotic (en-

tropy, variability and asymmetry) tend to reduce order in the grid, especially entropy. Th e order-

ing (adaptivity and scalability) tend to add more structure. It is a balance of these two that keeps

the soft grids in the sweet spot between order and chaos, maintaining the self-contradiction.

Classifi cation

Th e categories of grids that have been enumerated over the preceding chapters3 are a rough

outline of some of the soft grids circulating in the design world. Some of the specifi cations of

these categories are more descriptive, such as local forcing and global systems, while some are

generative such as Voronoi diagrams and subdivision schemes. Th e construction of a typology for

a loosely defi ned set of things is a diffi cult task as the defi nition and the typological study tend to

be reciprocal processes and each aff ects the other.

1 As in the case of local forcing.

2 P-ped packing.

3 Hard grids, High-symmetry, Local forcing, Global systems, Voronoi diagrams, Subdivision Schemes and P-ped packing.

75

Questions and future work

How can the attributes be refi ned and expanded to more completely
defi ne and describe soft grids?
Th e fi ve attributes developed in this thesis are a good starting point in the description of a soft

grid but they are somewhat redundant and fail to address certain aspects of softness that haven’t

been identifi ed here. Also, they should to be subcategorized into groups like the chaotic and the

ordered or the geometrical and the topological.

What other classifi cations and types of soft grids can be added to cover
the fi eld?
Th e classes of grids that have been enumerated here fall into two categories, the descriptive and

the generative, and because of this, they do not make a coherent typology of soft grids. Th ese

two issues should be addressed separately and each should be expanded to include a wider array

of classes.

Beyond the examples given, what are the applications and advantages of
generating soft grids?
While the study of the use of soft grids in contemporary architecture are fruitful, more work

needs to be done to understand the implications for design when the soft grids are brought to the

design process as a precondition. Th is question could be answered in detail in the context of a

class where students explicitly apply soft grids to design problems and scenarios.

How can these ideas be further developed into the study of a three-
dimensional soft grid?
While this thesis mentions 3-D grids a few times, it does not address the fi eld in general which

is large and fruitful. Any one of the chapters of this thesis could be extended to three dimensions

and expanded into a book. Th is is integrally related to the discussion on the implications for

architecture.

Variability

Asymmetry

Adaptivity

Scalability

Entropy

Figure 61. Th e fi ve attributes of softness.

77

Hard
Grids

Local
Forcing

Global
Systems

Voronoi
Diagram

Subdivision
Schemes

Parallelepiped
Packing

High
Symmetry

P
lanar

S
urface

S
ingular

Pointw
ise

Tartan

R
egular

R
andom

S
tructured

M
esh

S
quare

H
exagonal

Triangular

D
anzer

Fractal

Penrose

3-type

n-type

Figure 62. Th e seven types of grids from chapters 4-10

A| Appendix

79

Code

Th is section contains all of the code used to generate

the fi gures in this document. Some code is nearly trivial while

some is quite intricate and algorithmically diffi cult. Not all of

what is presented here will stand alone because it was used in

conjunction with numerical or geometrical data that cannot be

included. In these cases, it is my hope that the interested reader

will at least be able to extract the logic of the program even if it

will not be executable.

In some cases, the code presented1 was not the only tool used to

generate the images such as is the case with the Voronoi dia-

grams which were generated using the algorithm packaged with

the Grasshopper plug-in for Rhinoceros. Th e code for the p-ped

packings is written in Python and uses PyGame’s openGL pipe-

line for rendering.

1 generally Python, often in the context of McNeel’s Rhinoceros

80

Figure 19 - Pointwise charges

import rhinoscriptsyntax as rs
import random
import math

def p_and_b_1():
 x_count = 50
 y_count = 50

 x_space = 1
 y_space = 1

 num_points = 50
 att_points = []
 att_weights = []

 falloff_distance = x_space*x_count / 5
 gravity_scale = 200

 rs.EnableRedraw(False)
 for i in range(num_points):
 x = x_count*x_space*random.random()
 y = y_count*y_space*random.random()
 att = rs.VectorAdd([x, y, 0], [0,0,0])
 weight = 2*random.random()-1
 att_points.append((att, weight))

 att_objs = rs.AddPoints([aw[0] for aw in att_points])
 for obj in att_objs:
 rs.ObjectLayer(obj, “Layer 01”)

 grid_points = {}
 for i in range(x_count+1):
 for j in range(y_count+1):
 grid_points[(i, j)] = rs.VectorAdd([i*x_space, j*y_space, 0],
[0,0,0])

 for i in range(x_count+1):
 for j in range(y_count+1):
 shift = rs.VectorAdd([0,0,0], [0,0,0])
 for att, weight in att_points:
 sub = rs.VectorSubtract(grid_points[(i, j)], att)
 uni = rs.VectorUnitize(sub)
 mag = rs.VectorLength(sub)
 shift = shift + (gravity_scale*weight/(mag + falloff_
distance)**2)*uni
 grid_points[(i,j)] = grid_points[(i,j)] + shift
 rs.AddPoint(grid_points[(i,j)])

 for i in range(x_count):
 for j in range(y_count+1):
 rs.AddLine(grid_points[(i,j)], grid_points[(i+1,j)])

 for i in range(x_count+1):
 for j in range(y_count):

81

 rs.AddLine(grid_points[(i,j)], grid_points[(i,j+1)])

 rs.EnableRedraw(True)

def p_and_b_2():
 x_count = 100
 y_count = 100

 x_space = 1
 y_space = 1

 spring_func = lambda p : 1 + (math.sin(0.5 * rs.VectorLength(rs.
VectorSubtract(p, [20,40,0]))))

 steps = 10
 k = 0.3

 rs.EnableRedraw(False)

 grid_points = {}
 for i in range(x_count+1):
 for j in range(y_count+1):
 grid_points[(i, j)] = rs.VectorAdd([i*x_space, j*y_space, 0],
[0,0,0])

 pt_objs = rs.AddPoints(grid_points)

 shifts={}
 for step in range(steps):
 for i in range(1, x_count):
 for j in range(1, y_count):
 #up
 shift = rs.VectorAdd([0,0,0], [0,0,0])
 midpoint = (grid_points[(i, j)] + grid_points[(i, j+1)])/2
 spring_val = y_space * (spring_func(midpoint))
 sub = grid_points[(i, j)] - grid_points[(i, j+1)]
 uni = rs.VectorUnitize(sub)
 d = spring_val - rs.VectorLength(sub)
 shift_up = k * d * uni

 #down
 midpoint = (grid_points[(i, j)] + grid_points[(i, j-1)])/2
 spring_val = y_space * (spring_func(midpoint))
 sub = grid_points[(i, j)] - grid_points[(i, j-1)]
 uni = rs.VectorUnitize(sub)
 d = spring_val - rs.VectorLength(sub)
 shift_down = k * d * uni

 #right
 shift = rs.VectorAdd([0,0,0], [0,0,0])
 midpoint = (grid_points[(i, j)] + grid_points[(i+1, j)])/2
 spring_val = x_space * (spring_func(midpoint))
 sub = grid_points[(i, j)] - grid_points[(i+1, j)]
 uni = rs.VectorUnitize(sub)
 d = spring_val - rs.VectorLength(sub)

82

 shift_right = k * d * uni

 #left
 shift = rs.VectorAdd([0,0,0], [0,0,0])
 midpoint = (grid_points[(i, j)] + grid_points[(i-1, j)])/2
 spring_val = x_space * (spring_func(midpoint))
 sub = grid_points[(i, j)] - grid_points[(i-1, j)]
 uni = rs.VectorUnitize(sub)
 d = spring_val - rs.VectorLength(sub)
 shift_left = k * d * uni

 shifts[(i, j)] = shift_up +shift_down +shift_left +shift_
right

 for i in range(1, x_count):
 for j in range(1, y_count):
 grid_points[(i,j)] = grid_points[(i,j)]+shifts[(i, j)]
 rs.EnableRedraw(True)
 rs.DeleteObjects(pt_objs)
 pt_objs = rs.AddPoints(grid_points.values())
 rs.EnableRedraw(False)

 for i in range(x_count):
 for j in range(y_count+1):
 rs.AddLine(grid_points[(i,j)], grid_points[(i+1,j)])

 for i in range(x_count+1):
 for j in range(y_count):
 rs.AddLine(grid_points[(i,j)], grid_points[(i,j+1)])

 rs.EnableRedraw(True)

p_and_b_2()

83

Figure 20 - Laminar fl ow

import rhinoscriptsyntax as rs
import random
import math

def acot(x):
 if x<0:
 return -math.atan(x)-math.pi/2
 else:
 return -math.atan(x)+math.pi/2

#pts = [[8* random.random() + 1, 8* random.random() + 1, 0] for i in
range(8)]
pts = rs.GetPoints(“Choose obstacles”)
obstacles = [rs.VectorAdd(pt, [0,0,0]) for pt in pts]
weights = [(1 + random.random())/50 for i in obstacles]
weights = [.2 for i in obstacles]
rs.AddPoints(obstacles)

stretch = .5
width = 1

rs.EnableRedraw(False)

for j in range(61):
 ystart = 10*j/60
 crv_pts = []
 for i in range(1001):
 x = 10*i/1000
 y = ystart
 for ob_index in range(len(obstacles)):
 yo = obstacles[ob_index][1]
 xo = obstacles[ob_index][0]
 w = weights[ob_index]
 y += w * acot(stretch*(ystart-yo)) / (((x-xo))**2+width)
 crv_pts.append((x,y,0))

 rs.AddPolyline(crv_pts)

for i in range(61):
 xstart = 10*i/60
 crv_pts = []
 for j in range(1001):
 y = 10*j/1000
 x = xstart
 for ob_index in range(len(obstacles)):
 yo = obstacles[ob_index][1]
 xo = obstacles[ob_index][0]
 w = weights[ob_index]
 x += w * acot(stretch*(xstart-xo)) / ((y-yo)**2+width)
 crv_pts.append((x,y,0))

 rs.AddPolyline(crv_pts)

rs.EnableRedraw(True)

84

Figure 23 - Continuous plane distortion

import rhinoscriptsyntax as rs
import math

points = {}
lines = []
objPts = []

iMax = 50
jMax = 50

def x(i, j):
 return 2*math.pi*(i/iMax) + 0.9*math.sin(2*math.pi*i/iMax)*math.
sin(2*math.pi*j/jMax)

def y(i, j):
 return 2*math.pi*(j/jMax) + -0.3*math.sin(2*math.pi*j/jMax)*math.
sin(2*math.pi*i/iMax)

rs.EnableRedraw(False)
for i in range(iMax+1):
 for j in range(jMax+1):
 point3d = [x(i,j), y(i,j), 0]
 points[(i,j)] = rs.VectorAdd([0,0,0], point3d)
 objPts.append(rs.AddPoint(points[(i,j)]))

xmin = points[(0,0)].X
xmax = points[(0,0)].X
ymin = points[(0,0)].Y
ymax = points[(0,0)].Y
for pt in points.values():
 if pt.X<xmin:
 xmin = pt.X
 if pt.X>xmax:
 xmax = pt.X
 if pt.Y<ymin:
 ymin = pt.Y
 if pt.Y>ymax:
 ymax = pt.Y

for i in range(iMax):
 for j in range(1,jMax):
 lines.append(rs.AddLine(points[(i,j)], points[(i+1,j)]))
for i in range(1,iMax):
 for j in range(jMax):
 lines.append(rs.AddLine(points[(i,j)], points[(i,j+1)]))

xScale = 10/(xmax - xmin)
yScale = 10/(ymax - ymin)

rs.ScaleObjects(objPts, [xmin, ymin, 0], [xScale, yScale, 1])
rs.ScaleObjects(lines, [xmin, ymin, 0], [xScale, yScale, 1])

rs.EnableRedraw(True)

85

Figure 37 - Voronoi degeneration

import rhinoscriptsyntax as rs
from random import *

pts = rs.GetObjects(“pts”)
for pt in pts:
 rs.MoveObject(pt, [.03*(random()-.5), .03*(random()-.5), 0])

Figures 58 & 60 - Penrose Subdivision

import rhinoscriptsyntax as rs
import math

rules = dict([[“P1 “+ x, “P1 “+ x + x] for x in [“A”, “B”, “C”, “D”, “E”,
“F”]])
steps = 3
tt = ((1+math.sqrt(5))/2)**2

initial_block = rs.GetObjects(“select initial”, rs.fi lter.instance)

blocks = initial_block

def subdivide_group(all_blocks):
 new_blocks = []
 for block in all_blocks:
 type = rs.BlockInstanceName(block)
 xform = rs.BlockInstanceXform(block)
 new_block = rs.InsertBlock2(rules[type], xform)
 new_blocks.append(new_block)
 rs.DeleteObjects(all_blocks)
 return (rs.ScaleObjects(new_blocks, [0,0,0], [tt, tt, tt]))

step = 1

while step:
 rs.EnableRedraw(False)
 news = subdivide_group(blocks)
 rs.SelectObjects(news)
 blocks = rs.Command(“Explode”)
 blocks = rs.GetObjects(“Enter to repeat”, preselect=True)
 rs.EnableRedraw(True)
 step = rs.GetInteger(“0 to stop, 1 to continue”)
for i in range(30):
 for j in range(int(i) + 10):
 rs.AddPoint([i, (j)/(int(i) + 9), 0])

86

The remaining code is for the p-ped packing algo-
rithm, presented by fi le name.

aperiodic_2D_propagate.py

import math
import random
from vector import *

class Pped:
 max_strikes = 10
 def __init__(self, corner, v1, v2, parent, parent_spot, prop):
 random_neighbor_order = False
 self.prop = prop
 self.v1 = v1
 self.v2 = v2
 n=self.prop.n
 greyval = (1 - fl oat(v1*v2)/(n-1)**2)*.7
 self.color = [greyval, greyval, greyval]
 #strikes is a counter to identify troublesome pped’s
 self.strikes = 0
 self.lats = [corner,
 lat_bump(corner, [v1]),
 lat_bump(corner, [v1, v2]),
 lat_bump(corner, [v2])]
 self.verts = map(prop.lat_to_coords, self.lats)

 self.edges = [[self.lats[0], self.lats[1]],
 [self.lats[1], self.lats[2]],
 [self.lats[2], self.lats[3]],
 [self.lats[3], self.lats[0]]]

 self.center = (self.verts[1] + self.verts[3])/2
 self.mag_square = self.center.dot(self.center)
 neigh = []
 for i in range(4):
 n1 = range(prop.n)
 if i in (0,2):
 n1.remove(v1)
 else:
 n1.remove(v2)
 neigh.append(n1)

 self.parent = parent
 self.neighbors = []
 for n1 in neigh:
 self.neighbors.append([randomize(n1), None])
 if parent:
 self.parent_spot = parent_spot
 self.neighbors[parent_spot] = [[], parent]

 if random_neighbor_order:
 self.neighbor_order = randomize(range(len(self.neighbors)))
 else:
 self.neighbor_order = range(len(self.neighbors))

87

 def relocate(self):
 self.verts = map(self.prop.lat_to_coords, self.lats)
 self.center = (self.verts[1] + self.verts[3])/2

 def intersects(self, other):
 #self.prop.renderer.draw(red = [self, other])
 if (self.center-other.center).mag() > self.prop.max_dist:
 return False
 if other.is_in(self.verts[0]):
 return True
 if self.is_in(other.verts[0]):
 return True
 for e0 in self.edges:
 for e1 in other.edges:
 if self.prop.lines_intersect(e0, e1):
 return True
 #raw_input(“no touches”)
 return False

 def square_to_origin(self):
 return dot(self.base, self.base)

 def is_in(self, pt):
 if (self.verts[1]-self.verts[0]).dot(pt-self.verts[0]) > 0:
 return False
 if (self.verts[2]-self.verts[1]).dot(pt-self.verts[1]) > 0:
 return False
 if (self.verts[3]-self.verts[2]).dot(pt-self.verts[2]) > 0:
 return False
 if (self.verts[0]-self.verts[3]).dot(pt-self.verts[3]) > 0:
 return False
 return True

 def remove_neighbor(self, neigh):
 for n in self.neighbors:
 if n[1]:
 self.prop.add_to_queue(n[1])
 if n[1]==neigh:
 n[1]=None

 def o_2r_plus_current(self):
 c = self.center
 cc = self.prop.current_cell.center
 r = c.mag()
 r_c = (c-cc).mag()
 return 2*r + r_c

 def o_mouse(self):
 x = self.prop.renderer.plane_x
 y = self.prop.renderer.plane_y
 mouse = Vector([x,y,0])
 return (mouse - self.center).mag() + 10*self.center.mag()

def lat_bump(lat, indices):
 res = list(lat)
 for i in indices:

88

 res[i] += 1
 return tuple(res)

def lat_thump(lat, indices):
 res = list(lat)
 for i in indices:
 res[i] -= 1
 return tuple(res)

def ccw(A,B,C):
 return (C[1]-A[1])*(B[0]-A[0]) > (B[1]-A[1])*(C[0]-A[0])

def intersect(A,B,C,D):
 return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)

def randomize(lst):
 n = len(lst)
 if n == 1:
 return lst
 r = random.randint(0, n-1)
 elem = lst[r]
 del lst[r]
 return [elem] + randomize(lst)

class Aperiodic_2D_propagate:
 def __init__(self, vects, renderer):
 self.renderer = renderer
 self.vects = vects
 self.n = len(self.vects)
 self.tree = []
 self.queue = []
 for v in self.vects:
 if v[0]<0 : v = -v
 vects.sort(key = lambda v : v[1] / v[0])
 max_dist=0
 for i in range(self.n):
 for j in range(i+1):
 dif = self.vects[i]-self.vects[j]
 if dif.mag() > max_dist:
 max_dist = dif.mag()
 self.max_dist = max_dist + 0.0001

 i = random.randint(0, self.n - 1)
 j = random.randint(0, self.n - 2)
 if j >= i:
 j += 1

 i, j = sorted([i,j]) #this just makes i the smaller of the two

 self.root = Pped(tuple([0] * self.n), i, j, None, None, self)
 self.queue = [self.root]
 self.cells = [self.root]
 self.current_cell = None
 self.orderer = Pped.o_2r_plus_current
 self.order_index=1
 self.orderer = Pped.o_2r_plus_current

 def nudge_vects(self):

89

 for i in range(len(self.vects)):
 self.vects[i] += Vector([0.05*(random.random()-.5), 0.05*(random.
random()-.5), 0])
 for cell in self.cells:
 cell.relocate()

 def nudge_one_vect(self, i, axis, direction):
 “””axis ==0 -> x, axis==1 -> y
 direction = +1 or -1”””
 if axis==0:
 self.vects[i] += Vector([direction*0.05,0, 0])
 elif axis==1:
 self.vects[i] += Vector([0, direction*0.05, 0])
 for cell in self.cells:
 cell.relocate()

 def lines_intersect(self, e0, e1):
 if e0[0] in e1 or e0[1] in e1:
 return False
 return intersect(self.lat_to_coords(e0[0]),
 self.lat_to_coords(e0[1]),
 self.lat_to_coords(e1[0]),
 self.lat_to_coords(e1[1]))

 def kill_cell(self, c):
 if c.parent:
 self.add_to_queue(c.parent)

 for n in c.neighbors:
 if n[1]:
 self.add_to_queue(n[1])
 if n[1].parent != c:
 n[1].remove_neighbor(c)
 else:
 self.kill_cell(n[1])

 while c in self.cells:
 self.cells.remove(c)
 while c in self.queue:
 self.queue.remove(c)

 for n in c.neighbors:
 if n[1]:
 self.add_to_queue(n[1])

 def lat_to_coords(self, lat):
 res = Vector([0,0,0])
 terms = [l*v for l, v in zip(lat, self.vects)]
 for t in terms:
 res += t
 return res

 def next_ordering(self):
 self.order_index = (self.order_index + 1) % 2
 if self.order_index == 0:
 self.orderer = Pped.o_2r_plus_current
 if self.order_index == 1:

90

 self.orderer = Pped.o_mouse

 def add_to_queue(self, c):
 if not (None in [n[1] for n in c.neighbors]):
 return
 if c in self.queue:
 return
 self.queue.append(c)
 self.queue.sort(key = self.orderer)

 def try_neighbor(self, i, v):
 v_try = self.current_cell.neighbors[i][0].pop()
 if i == 0:
 v = self.current_cell.v1
 if v < v_try:
 lat_try = lat_thump(self.current_cell.lats[0], [v_try])
 v1, v2 = sorted([v, v_try])
 cell_try = Pped(lat_try, v1, v2, self.current_cell, 2, self)
 else:
 lat_try = self.current_cell.lats[0]
 v1, v2 =sorted([v, v_try])
 cell_try = Pped(lat_try, v1, v2, self.current_cell, 3, self)
 if i == 1:
 v = self.current_cell.v2
 if v < v_try:
 lat_try = lat_thump(self.current_cell.lats[1], [v_try])
 v1, v2 =sorted([v, v_try])
 cell_try = Pped(lat_try, v1, v2, self.current_cell, 2, self)
 else:
 lat_try = self.current_cell.lats[1]
 v1, v2 =sorted([v, v_try])
 cell_try = Pped(lat_try, v1, v2, self.current_cell, 3, self)
 if i == 2:
 v = self.current_cell.v1
 if v < v_try:
 lat_try = self.current_cell.lats[3]
 v1, v2 =sorted([v, v_try])
 cell_try = Pped(lat_try, v1, v2, self.current_cell, 0, self)
 else:
 lat_try = lat_thump(self.current_cell.lats[3], [v_try])
 v1, v2 =sorted([v, v_try])
 cell_try = Pped(lat_try, v1, v2, self.current_cell, 1, self)
 if i == 3:
 v = self.current_cell.v2
 if v < v_try:
 lat_try = self.current_cell.lats[0]
 v1, v2 =sorted([v, v_try])
 cell_try = Pped(lat_try, v1, v2, self.current_cell, 0, self)
 else:
 lat_try = lat_thump(self.current_cell.lats[0], [v_try])
 v1, v2 =sorted([v, v_try])
 cell_try = Pped(lat_try, v1, v2, self.current_cell, 1, self)

 self.cells.append(cell_try)
 self.add_to_queue(cell_try)

 shapes_intersect = False
 for enum_other in self.cells:

91

 other = enum_other
 if other != cell_try:
 if cell_try.intersects(other):
 self.kill_cell(cell_try)
 shapes_intersect = True
 return True

 if not shapes_intersect:
 #Add the try_cell to the tree
 self.current_cell.neighbors[i][1] = cell_try

 #check for adjacencies
 for other in self.cells:
 for my_edge in cell_try.edges:
 for other_edge in other.edges:
 if my_edge[0]==other_edge[1] and my_edge[1]==other_
edge[0]:
 my_index = cell_try.edges.index(my_edge)
 other_index = other.edges.index(other_edge)
 cell_try.neighbors[my_index][1] = other
 other.neighbors[other_index][1] = cell_try
 #midpoint = (self.lat_to_coords(my_edge[0]) +
self.lat_to_coords(my_edge[1]))/2
 return False

 def queue_step(self):
 self.current_cell = self.queue[0]

 for j in range(len(self.current_cell.neighbors)):
 neighbor_i = self.current_cell.neighbor_order[j]
 if self.current_cell.neighbors[neighbor_i][1] == None:
 if neighbor_i in (0,2):
 v_adj = self.current_cell.v1
 else:
 v_adj = self.current_cell.v2

 shapes_intersect = True
 while self.current_cell.neighbors[neighbor_i][0]:
 shapes_intersect = self.try_neighbor(neighbor_i, v_adj)

 if not shapes_intersect:
 break
 if shapes_intersect:
 self.kill_cell(self.current_cell)
 break

 if self.current_cell in self.queue:
 self.queue.remove(self.current_cell)

92

render.py

SCREEN_SIZE = (1030, 640)

from math import radians

from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
from OpenGL.GLE import *
from vector import *
import pygame
from pygame.locals import *
import random
from aperiodic_2D_propagate import *
import time

class Renderer:
 def init(self):
 glEnable(GL_DEPTH_TEST)

 self.zpos = 5
 self.tx, self.ty = (0,0)

 glShadeModel(GL_FLAT)
 glClearColor(1.0, 1.0, 1.0, 0.0)

 glEnable(GL_COLOR_MATERIAL)

 glEnable(GL_LIGHTING)
 glEnable(GL_LIGHT0)
 glLight(GL_LIGHT0, GL_POSITION, (0, 0, -1, 0))

 def resize(self, width, height):
 glViewport(0, 0, width, height)
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()

 gluPerspective(45.0, fl oat(width)/height, .1, 1000.)
 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()
 gluLookAt(0,0,5, 0,0,0, 0,1,0)

 def export(self):
 t = time.time()
 f = open(‘./output/’ + str(t) +’.stl’, ‘w’)
 for cell in self.propagator.cells:
 f.write(‘C’ + str(cell.center) + ‘V’ + str(cell.verts) + “\n”)
 f.close()

 def draw(self, red =[], draw_tree=False, draw_dual=True, draw_
cells=False):
 glLoadIdentity()
 glTranslate(self.zpos*self.tx/500., self.zpos*self.ty/500., - self.
zpos)

93

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 #glLight(GL_LIGHT0, GL_POSITION, (0, 0, 1, 0))

 #mouse tracker
 glPushMatrix()
 glTranslatef(self.plane_x, self.plane_y, 0)
 glutSolidSphere(0.1,32,32)
 glPopMatrix()

 p = self.propagator
 if draw_cells:
 for cell in p.cells:
 if False: #cell==p.root:
 glLineWidth(3)
 glColor3f(0.0, 0.0, 1.0)
 glBegin(GL_LINE_LOOP)
 for v in cell.verts:
 glVertex3f(v[0], v[1], 0)
 glEnd()

 glColor3f(0.0, 0.0, 0.0)
 glBegin(GL_QUADS)
 for v in cell.verts:
 glVertex3f(v[0], v[1], 0)
 glEnd()

 else:
 if cell in red:
 glColor3f(1.0, 0.0, 0.0)
 glBegin(GL_QUADS)
 for v in cell.verts:
 glVertex3f(v[0], v[1], 0)
 glEnd()
 else:
 glLineWidth(1)
 glColor3f(0.0, 0.0, 0.0)
 glBegin(GL_LINE_LOOP)
 for v in cell.verts:
 glVertex3f(v[0], v[1], 0)
 glEnd()

 if cell in p.queue:
 glColor3f(0.3, 1.0, 0.3)
 else:
 glColor3f(*cell.color)
 glBegin(GL_QUADS)
 for v in cell.verts:
 glVertex3f(v[0], v[1], 0)
 glEnd()

 if draw_tree:
 glLineWidth(2)
 glColor3f(1.0, 0.0, 0.0)
 for cell in p.cells:
 if cell.parent:
 glBegin(GL_LINES)
 glVertex3f(cell.center[0], cell.center[1], .001)
 glVertex3f(cell.parent.center[0], cell.parent.center[1],

94

.001)
 glEnd()

 if draw_dual:
 glLineWidth(2)
 glColor3f(0.0, 0.0, 1.0)
 for cell in p.cells:
 for n in cell.neighbors:
 if n[1]:
 glBegin(GL_LINES)
 glVertex3f(cell.center[0], cell.center[1], .001)
 glVertex3f(n[1].center[0], n[1].center[1], .001)
 glEnd()

 pygame.display.fl ip()

 def run(self):
 glutInit()
 pygame.init()
 screen = pygame.display.set_mode(SCREEN_SIZE,
HWSURFACE|OPENGL|DOUBLEBUF)

 self.init()
 self.resize(*SCREEN_SIZE)

 clock = pygame.time.Clock()
 glMaterial(GL_FRONT, GL_AMBIENT, (0.1, 0.1, 0.1, 1.0))
 glMaterial(GL_FRONT, GL_DIFFUSE, (1.0, 1.0, 1.0, 1.0))

 vects = [Vector([random.random(),random.random(),0]) for i in
range(4)]
 num_vects = 5
 vects = []
 for i in range(num_vects):
 r = 1+random.random()
 theta = -math.pi/2 + i*math.pi/num_vects + random.random()*math.
pi*0.3/num_vects
 vects.append(Vector([r*math.cos(theta), r*math.sin(theta), 0]))
 self.propagator = Aperiodic_2D_propagate(vects, self)
 self.propagator.next_ordering()

 going = True
 fi lming = False
 do_draw_cells = False
 do_draw_tree = False
 do_draw_dual = False
 random_nudging = False
 move = False
 nudge_axis = frame_no = 0
 nudge_index = 0

 count =0
 while True:
 #Calculate mouse possition
 mouse_x, mouse_y = pygame.mouse.get_pos()
 model = glGetDoublev(GL_MODELVIEW_MATRIX)
 proj = glGetDoublev(GL_PROJECTION_MATRIX)

95

 view = glGetIntegerv(GL_VIEWPORT)
 mouse_z = glReadPixels(mouse_x, mouse_y, 1, 1, GL_DEPTH_COMPO-
NENT, GL_FLOAT);

 self.plane_x = self.tx + (mouse_x-SCREEN_SIZE[0]/2.0) * self.
zpos/SCREEN_SIZE[0]
 self.plane_y = self.ty - (mouse_y-SCREEN_SIZE[1]/2.0) * self.
zpos/SCREEN_SIZE[1]

 for e in pygame.event.get():
 if e.type == QUIT:
 sys.exit()
 elif e.type == KEYDOWN and e.key == K_ESCAPE:
 sys.exit()
 elif e.type == KEYUP and e.key == K_ESCAPE:
 return
 elif e.type == KEYUP and e.key == K_SPACE:
 going = not going
 elif e.type == KEYUP and e.key == K_e:
 self.export()
 elif e.type == KEYUP and e.key == K_f:
 fi lming = not fi lming

 #Drawing
 elif e.type == KEYUP and e.key == K_c:
 do_draw_cells = not do_draw_cells
 elif e.type == KEYUP and e.key == K_t:
 do_draw_tree = not do_draw_tree
 elif e.type == KEYUP and e.key == K_d:
 do_draw_dual = not do_draw_dual

 elif e.type == KEYUP and e.key == K_o:
 self.propagator.next_ordering()

 #Nudging of vectors
 elif e.type == KEYUP and e.key == K_r:
 random_nudging = not random_nudging
 elif e.type == KEYUP and e.key == K_n:
 nudge_index = (nudge_index + 1) % num_vects
 elif e.type == KEYUP and e.key == K_RIGHT:
 self.propagator.nudge_one_vect(nudge_index, 0, 1)
 elif e.type == KEYUP and e.key == K_LEFT:
 self.propagator.nudge_one_vect(nudge_index, 0, -1)
 elif e.type == KEYUP and e.key == K_UP:
 self.propagator.nudge_one_vect(nudge_index, 1, 1)
 elif e.type == KEYUP and e.key == K_DOWN:
 self.propagator.nudge_one_vect(nudge_index, 1, -1)

 elif e.type == MOUSEBUTTONDOWN:
 if e.button == 4: self.zpos = max(1, self.zpos-1)
 elif e.button == 5: self.zpos += 1
 elif e.button == 1: rotate = True
 elif e.button == 3: move = True
 elif e.type == MOUSEBUTTONUP:
 if e.button == 1: rotate = False
 elif e.button == 3: move = False
 elif e.type == MOUSEMOTION:
 i, j = e.rel

96

 if move:
 self.tx += i
 self.ty -= j

 if fi lming:
 print “Frame Number”, frame_no
 frame_no += 1
 pygame.image.save(screen, “png/”+str(count).zfi ll(5) +’.png’)
 if going:
 pygame.time.wait(50)
 self.propagator.queue_step()

 #print “Cells: “, len(self.propagator.cells)
 if random_nudging:
 self.propagator.nudge_vects()

 self.draw(draw_cells = do_draw_cells,
 draw_tree = do_draw_tree,
 draw_dual = do_draw_dual,
 red=[self.propagator.current_cell])
 count += 1

r = Renderer()
r.run()

97

vector.py

import math
class Vector:
 def __init__(self, coords):
 self.coords = coords

 def __repr__(self):
 return self.coords.__repr__()

 def __add__(self, other):
 return Vector([a+b for a,b in zip(self.coords, other.coords)])

 def __sub__(self, other):
 return Vector([a-b for a,b in zip(self.coords, other.coords)])

 def __mul__(self, scale):
 return Vector([scale*a for a in self.coords])

 def __div__(self, scale):
 return Vector([a/scale for a in self.coords])

 def __rmul__(self, scale):
 return self*scale

 def __getitem__(self, index):
 return self.coords[index]

 def dot(self, other):
 return sum([a*b for a,b in zip(self.coords, other.coords)])

 def mag(self):
 return math.sqrt(self.dot(self))

B| Bibliography

99

Aranda, Benjamin, and Lasch, Chris. Pamphlet Architecture 27: Tooling. 1st ed. Princeton Ar-

chitectural Press, 2005.

de Berg, Mark, M. van Krefeld, M. Overmars, and O. Schwarzkopf. Computational Geometry:

Algorithms and Applications, Second Edition. 2nd ed. Springer, 2000.

de Bruijn, N G. “Algebraic theory of Penrose’s nonperiodic tilings of the plane. I, II.” Nederl.

Akad. Wetensch. Indag. Math. 43, no. 1 (1981): 39-66.

Caragonne, Alexander. Th e Texas Rangers: Notes from the Architectural Underground. Th e MIT

Press, 1995.

Charalampous, Charis. “Responsive spatial growth of the Danzer packing”. London, England:

Bartlett School of Graduate Studies University College London, 2007.

Dimitrie, Stefanescu. “f* Voronoi.” Improved, October 28, 2010. http://improved.ro/

blog/2010/10/f-voronoi/.

Durand, Jean-Nicholas-Louis. Precis of the Lectures on Architecture: With Graphic Portion of

the Lectures on Architecture. 1st ed. Getty Research Institute, 2000.

Dyer, Ramsay, Hao Zhang, and Torsten Möller. “Delaunay mesh construction.” In Proceed-

ings of the fi fth Eurographics symposium on Geometry processing, 273–282. Aire-la-Ville,

Switzerland, Switzerland: Eurographics Association, 2007. http://portal.acm.org/citation.

cfm?id=1281991.1282027.

Evans, Robin. Th e Projective Cast: Architecture and Its Th ree Geometries. Th e MIT Press, 1995.

Giedion, Siegfried. Space, Time and Architecture: Th e Growth of a New Tradition, Fifth Revised

and Enlarged Edition. Harvard University Press, 1967.

Grünbaum, Branko, and G. C. Shephard. TILINGS AND PATTERNS. 1st ed. W.H. FREE-

MAN, 1990.

Higgins, Hannah B. Th e Grid Book. Th e MIT Press, 2009.

100

Hughes, Th omas J. R. Th e Finite Element Method: Linear Static and Dynamic Finite Element

Analysis. Dover Publications, 2000.

Janot, C. Quasicrystals: A Primer. 2nd ed. Oxford University Press, USA, 1997.

Kobayashi, Kei, and Kokichi Sugihara. “Crystal Voronoi diagram and its applications.” Future

Generation Computer Systems 18, no. 5 (April 2002): 681-692.

Kramer, Peter. “Gateways towards quasicrystals.” 1101.0061 (December 30, 2010). http://arxiv.

org/abs/1101.0061.

Ledieu, J., R. McGrath, R. D. Diehl, T. A. Lograsso, D. W. Delaney, Z. Papadopolos, and G.

Kasner. “Tiling of the fi vefold surface of Al70Pd21Mn9.” Surface Science 492, no. 3 (October 20,

2001): L729-L734.

Lim, Jin-young, and Kengo Kuma. “New types of geometry.” Space, no. 479 (October 2007).

Love, Timothy. “Kit-of-Parts Conceptualism.” Harvard Design Magazine 19 (Fall / Winter 2004

2003).

Lu, Peter J., and Paul J. Steinhardt. “Decagonal and Quasi-Crystalline Tilings in Medieval Is-

lamic Architecture.” Science 315, no. 5815 (February 23, 2007): 1106 -1110.

Mandelbrot, Benoit B. Th e Fractal Geometry of Nature. W. H. Freeman, 1982.

March, Lionel, and Philip Steadman. Th e Geometry of Environment: An Introduction to Spatial

Organization in Design. Th e MIT Press, 1974.

March, Lionell. “A Class of Grids.” Environment and Planning B 8, no. 3 (1981): 325-332.

Minsky, Marvin. Th e Society of Mind. Pages Bent. Simon & Schuster, 1988.

Mitchell, William J. Th e Logic of Architecture: Design, Computation, and Cognition. Th e MIT

Press, 1990.

Nicolai, Carsten. Grid Index. Die Gestalten Verlag, 2009.

101

Okabe, Atsuyuki, Barry Boots, Kokichi Sugihara, Dr Sung Nok Chiu, and Sung Nok Chiu. Spa-

tial Tessellations: Concepts and Applications of Voronoi Diagrams. 2nd ed. Wiley, 2000.

Pottmann, Helmut. “Geometry and new and future spatial patterns.” Architectural design 79, no.

6 (November 2009): 60-65.

Prusinkiewicz, Przemyslaw, and James Hanan. Lindenmayer Systems, Fractals, and Plants.

Springer, 1989.

Reid, Miles, and Balazs Szendroi. Geometry and Topology. Cambridge University Press, 2005.

Rowe, Colin. Th e Mathematics of the Ideal Villa and Other Essays. Th e MIT Press, 1982.

Shannon, Claude E. “Prediction and Entropy in Printed English.” Th e Bell System Technical

Journal 30 (January 1951): 50-64.

Shubnikov, A. Symmetry In Science and Art. 1st ed. Springer, 1995.

Stiny, George, and William J. Mitchell. “Th e Palladian Grammar.” Environment and Planning B

5 (1978): 5-18.

Th ompson, D’Arcy Wentworth. On Growth and Form: Th e Complete Revised Edition. Revised.

Dover Publications, 1992.

Weaire, Denis, and Stefan Hutzler. Th e Physics of Foams. Oxford University Press, USA, 2001.

Williamson, Jack H. “Th e Grid: History, Use, and Meaning.” Design Issues 3, no. 2 (October 1,

1986): 15-30.

Wittkower, Rudolf. Architectural Principles in the Age of Humanism, 2nd Edition. 2nd ed.

Academy Press, 1998.

Wolfram, Stephen. A New Kind of Science. 1st ed. Wolfram Media, 2002.

