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ABSTRACT
What is the role of face-to-face interactions in the diffusion of
health-related behaviors- diet choices, exercise habits, and
long-term weight changes? We use co-location and com-
munication sensors in mass-market mobile phones to model
the diffusion of health-related behaviors via face-to-face in-
teractions amongst the residents of an undergraduate resi-
dence hall during the academic year of 2008-09. The dataset
used in this analysis includes bluetooth proximity scans,
802.11 WLAN AP scans, calling and SMS networks and
self-reported diet, exercise and weight-related information
collected periodically over a nine month period. We find
that the health behaviors of participants are correlated with
the behaviors of peers that they are exposed to over long
durations. Such exposure can be estimated using automat-
ically captured social interactions between individuals. To
better understand this adoption mechanism, we contrast the
role of exposure to different sub-behaviors, i.e., exposure to
peers that are obese, are inactive, have unhealthy dietary
habits and those that display similar weight changes in the
observation period. These results suggest that it is possible
to design self-feedback tools and real-time interventions in
the future. In stark contrast to previous work, we find that
self-reported friends and social acquaintances do not show
similar predictive ability for these social health behaviors.

1. INTRODUCTION
According to the World Health Organization, we are cur-

rently in the midst of a global obesity epidemic, with over
a billion overweight and over 300 million clinically obese
adults worldwide[26]. This increasing trend is attributed to
lifestyle changes in our society, including increased consump-
tion of energy-dense, nutrient-poor foods with high levels of
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sugar and saturated fats, and reduced physical activity.
In addition to these factors, recent work suggests that

obesity and other health-related lifestyle decisions spread
through social networks, and in particular long-term face-
to-face networks may play an important role. Longitudinal
studies based on the Framingham Heart study social net-
work indicate that health-related behaviors from obesity [5]
to happiness [11] can spread through social ties. The effects
of social networks and social support on physical health are
well-documented [1, 18]. However, these studies depend on
self-reported information and do not quantify actual face-
to-face interactions that may lead to changes in behavior.
The availability of such data would be useful in answering
many open questions in the context of social contagion of
health behaviors. For example, to what extent are eating
habits of an individual influenced by those of their spouse,
roommate, close-friend or casual acquaintance? Is the adop-
tion of social behaviors a characteristic of the person being
influenced, or the influencer or simply the context of the re-
lationship? Is the underlying causal process social contagion
or is it practically impossible to disambiguate homophily and
confounding due to the limitations imposed by measurement
and estimation techniques?

In the past, due to the absence of pervasive wireless sen-
sors (mobile phones, sensor badges, or others), and accu-
racy limitations of self-reported surveys and human recall,
it was impossible to build fine-grained models of human in-
teractions. However, with ubiquitous mobile phones, we can
now use short-range bluetooth radios, cellular-tower identi-
fiers, Global positioning system (GPS) sensors and other lo-
cation technologies to model specific interactions, relation-
ships, and homogeneity of behaviors amongst people. In
this paper, we use wireless sensing techniques to automati-
cally capture these interactions and estimate their effects on
health behaviors. In addition to face-to-face interactions,
phone and email communication also deserve to be studied
as alternate modalities for diffusion of behaviors between
people.

Popular models of diffusion phenomena do not account
for continuous individual exposure. Cascade and threshold
models treat interactions between nodes as a point estimate
of tie-strength and not as a continuous multi-dimensional
interactions. SEIR (susceptible-exposed-infected-recovered)
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models are an extension of SIR epidemiological models that
include an exposure state, but only as an averaged incu-
bation period parameter common to the sample population
and not as a unique value for every node. In this paper,
exposure to different opinions for individuals as measured
using mobile phone sensors is used to explain BMI changes.

The analysis in this paper is based on social interaction
data and health related behavior self-reports collected using
mobile phone sensors at an undergraduate university dor-
mitory over an entire academic year. In the next section,
the experiment design, mobile data collection platform, and
dataset characteristics are described in more detail. Under-
standing the role of social network interactions in the ongo-
ing obesity epidemic will enable the design of novel technolo-
gies and better interfaces to control adverse spreading, and
facilitate social support real-time interventions for positive
reinforcement of a healthy lifestyle.

2. RELATED WORK
Until the start of this century, most of the data collected

on human interactions was through self-reported surveys
and experience sampling. More recently, long term moni-
toring has been implemented using a variety of technologies
including video [24], smartphones [8, 9, 10, 16] and wearable
sensing devices [23, 4, 14, 20, 21].

Social interactions in the real world present a great avenue
for understanding user behaviors. Using multiple sensors
(infrared sensors, proximity to bluetooth devices, proximity
to Wi-Fi or bluetooth base stations), we can detect social
proximity and face-to-face interactions between people and
quantify such interactions over time. Communication pat-
terns between individuals over the phone and the web can
be studies using smartphones.

Physiological sensing is being increasingly used to study
health [15, 22, 19]. However, the focus on the social deter-
minants of health is limited. Longitudinal studies based on
the Framingham Heart study social network indicate that
health-related behaviors from obesity [5] to smoking [6] to
happiness [11] can spread through social ties. This work
has generated greater interest in the study of peer effects
on health [12]. Further, the effects of social networks and
social support on physical and mental health and the pow-
erful role that they can play in health promotion are well
documented [1, 2, 3, 13, 7, 18].

While these studies clearly indicate the importance of so-
cial determinants on health, there is limited work studying
real-world interactions and their impact on health. The lat-
est sensing technologies provide us with the capabilities to
collect such fine-grained data and gather new insights. In
this work, we undertake such a mission and study a closely
connected network of individuals and how their interactions
are correlated with their behavior.

3. EXPERIMENT DESIGN
The dataset described below was collected as part of lon-

gitudinal study with seventy residents of an undergraduate
dormitory. These residents represent eighty-percent of the
total population– most of the remaining twenty percent of
residents that declined to participate citing privacy concerns
were spatially-isolated. The dormitory is known within the
university for its pro-technology orientation and the deci-
sion of students to reside was based on self-selection. The

Table 1: Monthly Social Health Survey for Depen-
dent Labels

Survey Question Possible Responses
Current weight and height
(weighing scales provided in
common areas)

Numeric values

Servings of salads consumed, on
average per week

0 to 7 (or more) serv-
ings

Servings of fruits and vegetables
consumed, on average per week

0 to 7 (or more) serv-
ings

Self reported level of healthiness
of diet

6-point Likert scale,
Very Unhealthy to
Very Healthy

Instances of aerobic exercise (20
mins or more), on average per
week

0 to 7 times

Instances of active sports, on av-
erage per week

0 to 7 times

students were distributed roughly equally across all four aca-
demic years (freshmen, sophomores, juniors, seniors) and 60
percent of the students were male. The study participants
also included the graduate resident tutors responsible for
each floor.

This overarching experiment was designed to study the
adoption of political opinions, diet, exercise, obesity, eat-
ing habits, epidemiological contagion, depression and stress,
dorm political issues, interpersonal relationships and pri-
vacy. A total of 320,000 hours of human behavior data was
collected in this experiment. In this paper however, we only
discuss the mobile platform, dataset and analysis related to
changes in dietary habits, weight changes and physical ex-
ercise. The overall experiment is described in more detail
here [16].

For training labels, participants completed social health
related survey instrument for the months of March, April
and June, shown in Table 1. Participants also listed their
close friends and social acquaintances (binary responses)
while completing each monthly survey. The histograms of
BMI changes and weight changes for all participants from
March to June is plotted in Figure 4. In addition, Figure 4
also shows the Pearson’s correlations between the dependent
variables.

3.1 Privacy Considerations
A key concern with such long-term user data collection ap-

proaches is securing personal privacy for participants. This
study was approved by the Institutional Review Board (IRB).
As financial compensation for completing monthly surveys
and using data-collection devices as their primary phones,
participants were allowed to keep the devices at the end of
the study. The sensing scripts used in the platform capture
only hashed identifiers, and collected data is secured and
anonymized before being used for aggregate analysis. To
minimize missing data from daily symptom reports, partici-



pants were compensated $1 per day that they completed the
on-device symptom survey.

4. MOBILE SENSING PLATFORM
The mobile phone based platform for data-collection was

designed with the following features and long-term sensing
capabilities.

4.1 Device Selection
The platform is based on Windows Mobile 6.x devices, as

they can be deployed with all four major American opera-
tors. Software was written using a combination of native-C
and managed-C#. The software-sensing package was sup-
ported for six different handset models in the Windows Mo-
bile product range. All supported devices featured WLAN,
EDGE and SD Card storage, and most featured touch screens,
flip-out keyboards. The HTC Tilt, a popular GSM phone in
our experiment is shown in Fig 1.

(a) Platform Architecture and Data Sources

(b) HTC Tilt:
the most popular
WiMo device in
our deployment

(c) On-
device
survey
launcher
screenshot

Figure 1: Data Collection Platform

4.2 Proximity Detection (Bluetooth)
The software scanned for proximate Bluetooth wireless de-

vices every 6 minutes. The Windows Mobile phones used in
our experiment were equipped with class 2 Bluetooth radio
transceivers, which have a realistic indoor sensing range of
approximately 10 feet. Scan results for two devices in prox-
imity have a high likelihood of being asymmetric, which is
accounted for in our analysis. Due to API limitations with
Windows Mobile 6.x, signal strength was not available to

Table 2: Raw Logged Data Formats
Bluetooth UTC timestamp
Scans 1-way hash of remote device MAC
WLAN UTC timestamp
Scans 1-way hash of Access Point MAC

AP ESSID
Signal Strength (0-100)

Call UTC Start timestamp
Records UTC end timestamp

1-way hash of remote phone number
Incoming vs. outgoing flag
missed call flag
user roaming flag 0-1

SMS UTC timestamp
Records 1-way hash of remote phone number

incoming/outgoing flag

the sensing application. Table 2 show the logged formats
for bluetooth data.

4.3 Approximate Location (802.11 WLAN)
The software scanned for wireless WLAN 802.11 Access

Point identifiers (hereafter referred to as WLAN APs) ev-
ery 6 minutes. WLAN APs have an indoor range of 125ft
and the university campus has almost complete wireless cov-
erage. Across various locations within the undergraduate
residence, over 55 different WLAN APs with varying signal
strengths can be detected. WLAN logs were captured in the
format shown in Table 2.

4.4 Communication (Call and SMS Records)
The software logged Call and SMS details on the device

every 20 minutes, based on recent events. These logs in-
cluded information about missed calls and calls not com-
pleted. The format for logging calls and SMS messages is
shown in Table 2.

4.5 Battery Impact
The battery life impact of periodic scanning has been pre-

viously discussed [10]. In this study, periodic scanning of
Bluetooth and WLAN APs reduced operational battery life
by 10-15%, with average usable life between 14-24 hours
(varying with handset models and individual usage). Win-
dows Mobile 6.x devices have relatively poorer battery per-
formance than other smartphones, and WLAN usage (web
browsing by user) had a bigger impact on battery life than
periodic scanning.

4.6 Backend Database
Daily captured mobile sensing data was stored on-device

on read/write SD Card memory. On the server side, these
logs files were merged, parsed and synced by an extensive
Python post-processing infrastructure, and finally stored in
various MySQL tables for analysis.

4.7 Open Source Availability
This sensing software platform for Windows Mobile 6.x

has been released under the LGPLv3 open source license for
public use, and is available for download here[25].

5. DATASET CHARACTERISTICS



In the following analysis, social interaction data for the en-
tire spring semester is considered. The mobile phone dataset
for this period includes of 20609 phone calls, 11669 SMS
messages and 2291184 scanned bluetooth devices, which in-
cludes communication with non-residents. As seen in Fig-
ure 2, even with the same set of individuals, differences in in-
teraction modalities produce different interaction networks.
Clear weekly and daily temporal structure is observed in
the interactions amongst individuals as seen in figure 3. for
example note the spike in SMS communication on Friday
nights compared to other nights of the week. Similarly,
the daily distribution of sample counts indicates that phone
calls subside around 5am, reflecting the practice of sleep-
ing late common to this community. In prior work [10, 16],
this temporal interaction structure has been used to iden-
tify friendship ties within the interaction network. In [17],
it is found that discriminating between interactions during
different hours can be used to identify self-reported political
discussant ties for an individual.

Figure 2: Interaction networks based on bluetooth
physical proximity, self-reported close friends and
phone calling network for the same set of partici-
pants

6. ANALYSIS
The effect of social influence on behavior has been well

established in the literature, and behavior is at the root of
the obesity problem with dietary choices and exercise habits
playing a significant role. Christakis and Fowler’s recent
work [5] on the effect of social ties on obesity has generated
greater interest in the study of peer effects on health [12].
While these studies have used networks of self-identified so-
cial contacts, they lacked data about real face-to-face inter-
actions that occur on a more regular basis. With the belief
that this information is useful in studying this phenomenon,
we set out to analyze the effect that friends, acquaintances
and face-to-face interactions have on weight change in our
study population.

6.1 Features that Reflect Exposure

(a) Weekly (24x7) distribution of bluetooth, call-
ing and SMS samples, aggregated across the entire
semester

(b) 24-hour distribution of bluetooth, calling and SMS
samples, aggregated across all weekdays for the entire
semester

Figure 3: Characteristics for Mobile Interaction Fea-
tures

Mobile phone interactions reflect exposure to opinions and
behaviors in physical proximity and phone communication.
For each individual, we compute exposure as the number
of alters reflected in the interaction modalities listed below,
conditioned upon health-related behaviors described in the
next section.

• Total Bluetooth exposure: alters reflected in Bluetooth
co-location data

• Late-Night & Early-morning Bluetooth exposure: al-
ters reflected in Bluetooth co-location data between
the hours of 9am and 9am the next morning

• Weekend Bluetooth exposure: alters reflected in Blue-
tooth co-location data only for Saturdays and Sundays

• Total Phone and SMS exposure: alters reflected in
phone communication and SMSs exchanged; both in-
coming and outgoing communication are included. Du-
ration of calls is currently not considered

• Weekend Phone and SMS exposure: alters reflected
in phone communication and SMS exchanged only for
Saturdays and Sundays

As an alternative, in the following analysis we also consid-
ered the interaction counts for the ego-alter pair as exposure
features. However, the number of auto-detected alters con-
ditioned by their behaviors outperformed the more complex
features in our dataset.



(a) Histogram of BMI changes across
all participants from March to June 09

(b) Histogram of Weight changes
across all participants from March to
June 09 (in lbs)

Figure 4: Characteristics of Self Reported Training
Labels

6.2 Exposure and its Impact on Body Mass
Index

Body Mass Index (BMI) is a commonly used metric to es-
timate healthy body weight, based on an individual’s height.
It is equal to the mass in kilograms divided by the square of
an individual’s height in meters. Individuals with a BMI of
30 or over are categorized as obese while those who have a
BMI between 25 and 30 are considered overweight.

In this work, we use an individual’s change in BMI as a de-
pendent variable and study the influence of various exposure-
based independent variables described above using linear re-
gression. BMI is used as it is a better indicator of healthy
weight because it takes into account some differences in an
individual’s physical stature. However, similar results as
described below were obtained while using an individual’s
change in absolute weight as a dependent variable (see ta-
ble 4) serving to depict that the results hold even if a differ-
ent measure is used for weight change.

6.2.1 Exposure to Overweight and Obese Peers
As per the definition of obesity, participants with BMI >=

30 are considered obese in our dataset. The independent

Figure 5: Pearson correlation coefficient matrix for
all dependent self-report variables for June 09, all p
<0.01. From top to bottom, left to right, the vari-
ables are salads per week (mean = 1.5, sd =1.4),
veggies and fruits per day (mean=1.9,sd=1.3),
healthy diet category (mean=3.8, sd=1.1), aero-
bics per week (mean = 2.1, sd=2.1), sports per
week (mean=0.8, sd=1.5), BMI change compared
to March 09 (mean=0.11, sd=0.68). BMI Change
does not show a strong correlation with either the
eating or exercise habits. A healthy diet shows some
correlation with the playing sports.

variables used in this analysis were the number of obese
persons that had actual interactions with the individual in
question in the form of Total Bluetooth exposure and Late-
Night & Early-morning Bluetooth exposure. A significant
correlation that explained about 17% of the variation was
found as reported in Table 3.

For comparison, this analysis was repeated using the num-
ber of self-reported close friends and social acquaintances
that were obese as independent variables. However, no sig-
nificant correlation was found between the self-reported in-
dependent variables and the dependent variable measuring
change in an individual’s BMI from March to June 2009.

As the dataset contains only a small number of obese peo-
ple, the previous analysis was repeated using exposure fea-
tures to include both overweight and obese individuals (BMI
>= 25) as opposed to just obese individuals. In this case,
Total Bluetooth exposure and Late-Night & Early-morning
Bluetooth exposure to individuals that are overweight or
obese explained about 25% of the variation (see Table 3).

As earlier, when this analysis was repeated using exposure
to self-reported close friends and social acquaintances that
were either overweight or obese, no significant correlation
was found between the self-reported independent variables
and the dependent variable measuring change in an individ-
ual’s BMI.

6.2.2 Exposure to Peers with Unhealthy Diets and
Poor Exercise Habits

So far, we have looked at exposure features that focused
on the physical aspects indicative of peer health. In this
section, exposure features indicative of healthy or unhealthy
diets and poor exercise habits are considered.

As explained previously, in monthly surveys, participants
reported their diet on a 6-point Likert scale ranging from
’Very unhealthy’ (1) to ’Very healthy’(7). Based on the dis-
tribution of responses, a response of 3 or less on this scale is
considered as unhealthy eating behavior. BMI Change for



Table 3: Regression Results: BMI Change

Features R-Squared p-value
Exposure to Obese Individuals 0.168 0.009
Exposure to Overweight and
Obese Individuals

0.251 0.001

Exposure to Individuals That
Eat Unhealthy

0.167 0.009

Exposure to Individuals That
Are Inactive

0.246 0.001

Exposure to Individuals That
Gained Weight

0.349 <<0.0001

the period of March to June 2009 was once again the de-
pendent variable and a similar pattern of results as earlier
were observed. Total Bluetooth exposure and Late-Night &
Early-morning Bluetooth exposure to peers with unhealthy
eating habits explained approximately 17% of the variation
in the dependent variable. The exposure to close friends
and social acquaintances with unhealthy eating habits did
not show significant correlation with BMI change in this pe-
riod.

Then, we try to understand the role of exposure to indi-
viduals who tend to be less physically active. Total activity
is the sum of self-reported responses for aerobics per week
and sports per week, from the survey responses in the pre-
vious section. Based on the distribution of responses, an
individual is considered inactive if the total activity is less
than or equal to 3. The results were again consistent with
the previous section, where Total Bluetooth exposure and
Late-Night & Early-morning Bluetooth exposure to peers
who were physically inactive explained about 23% of the
variance in BMI change.

6.2.3 Exposure to Peers Who Had Substantial Weight
Gain in the Same Period

Finally, we looked to see if there was a correlation be-
tween BMI change for an individual from March-June 2009
and exposure to peers who gained substantial weight during
the same period. Only individuals who gained more than 4
pounds were considered.

The Total Bluetooth exposure and Late-Night & Early-
morning Bluetooth exposure features show the most signif-
icant correlation to BMI change of all our analyses, and
these features together explain about 35% of the variability
in the independent variable. It is also interesting to note
that when the same analysis was repeated using individuals
who lost more that 4 pounds, none of the features showed
significant correlations suggesting that a different dynamic
might be at play for exposure to good behaviors. Consistent
with the above analysis, exposure to close friends and social
acquaintances who gained weight did not show significant
correlation.

7. CONCLUSIONS & DISCUSSION
In this work, we study the impact that social interactions

in real world face-to-face networks have on BMI and weight
changes in a co-located student community. Our approach
allows us to understand, the role of exposure to different
types of peers– those that are obese, overweight, have un-

Table 4: Regression Results: Weight Change

Features R-Squared p-value
Exposure to Obese Individuals 0.174 0.003
Exposure to Overweight and
Obese Individuals

0.259 0.0009

Exposure to Individuals That
Eat Unhealthy

0.086 0.06

Exposure to Individuals That
Are Inactive

0.252 0.001

Exposure to Individuals That
Gained Weight

0.373 <<0.0001

healthy dietary habits, and inactive lifestyles.
We find that exposure measured using bluetooth proxim-

ity to peers that are overweight or obese and to peers that
have unhealthy dietary habits or inactive lifestyles, can in-
fluence weight changes in an individual as opposed to expo-
sure to close friends and social acquaintances. The largest
correlations observed are with social exposure to peers with
large weight gains during the same period. In all cases, we
find that exposure measured via self-reported close-friend
and acquaintance relationships is not statistically signifi-
cant. These results are intuitive in that they suggest that
we are affected by the behaviors of those that we interact
with. However, there is potential for further validation with
larger studies in the future.

It is also important to note that these results are based
on a relatively small population of students that may not
be representative of large real-world communities. However,
they provide a starting point for the discussion on the im-
portance of studying social networks based on real world
interactions. We see statistically significant results indicat-
ing that face-to-face interactions might actually have a much
larger effect on individual behaviors affecting health. In re-
lated work, we have seen similar results with face-to-face in-
teractions affecting how individuals form political opinions
[17].

These results paint a bright picture for future studies of
social networks fueled by the latest advances in mobile sens-
ing technologies. These technologies allow us to collect fine-
grained data on a larger scale that would not have been
possible earlier. For our part, we will continue to study this
large observational dataset to tease out more interesting re-
sults around health and other behavioral aspects. We hope
that these results will guide the next generation of mobile
phone-based studies to gather much more interesting data
leading to far greater insights.
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