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Abstract

Bacteria are ubiquitous and play a critical role in many contexts. Their environment is
nearly always dynamic due to the prevalence of fluid flow: creeping flow in soil, highly
sheared flow in bodily conduits, and turbulent flow in rivers, streams, lakes, and oceans, as
well as anthropogenic habitats such as bioreactors, heat exchangers and water supply
systems. The presence of flow not only affects how bacteria are transported and dispersed
at the macroscale, but also their ability to interact with their local habitat through motility
and chemotaxis (the ability to sense and follow chemical gradients), in particular their
foraging. Despite the ubiquitous interaction between motility, foraging and flow, almost all
studies of bacterial motility have been confined to still fluids.

At the small scales of a bacterium, any natural flow field (e.g. turbulence) is experienced as
a linear velocity profile, or 'simple shear'. Therefore, understanding the interaction
between a simple shear flow and motility is a critical step towards gaining insight on how
the ambient flow favors or hinders microorganisms in their quest for food. In this thesis, I
address this important gap by studying the effect of shear on bacteria, using a combination
of microfluidic experiments and mathematical modeling.

In chapter 2, a method is presented to create microscale vortices using a microfluidic setup
specifically designed to investigate the response of swimming microorganisms. Stable,
small-scale vortices were generated in the side-cavity of a microchannel by the shear stress
in the main flow. The generation of a vortex was found to depend on the cavity's geometry,
in particular its depth, aspect ratio, and opening width. Using video-microscopy, the
position and orientation of individual microorganisms swimming in vortices of various
intensities were tracked. We applied this setup to the marine bacterium Pseudoalteromonas
haloplanktis. Under weak flows (shear rates < 0.1 s 1), P. haloplanktis exhibited a random
swimming pattern. As the shear rate increased, P. haloplanktis became more aligned with
the flow.

In order to study the detailed hydrodynamic interaction between shear and bacteria, we
developed a mathematical model employing resistive force theory. In general, the
modeling of a bacterium requires consideration of two factors: the rotating flagellar bundle
and the cell body to which the flagella are attached. To make the problem analytically
tractable, we study the hydrodynamics around the head and the flagellum separately. In
chapter 3, we present a combined theoretical and experimental investigation of the fluid



mechanics of a helix exposed to a shear flow. In addition to classic Jeffery orbits, resistive
force theory predicts a drift of the helix across streamlines, perpendicular to the shear plane.
The direction of the drift is determined by the direction of the shear and the chirality of the
helix. We verify this prediction experimentally using microfluidics, by exposing
Leptospira biflexa flaB mutant, a non-motile strain of helix-shaped bacteria, to a plane
parabolic flow. As the shear in the top and bottom halves of the microchannel has opposite
sign, we predict and observe the bacteria in these two regions to drift in opposite directions.
The magnitude of the drift is in good quantitative agreement with theory. We show that
this setup can be used to separate microscale chiral objects.

In chapter 4, a theoretical and experimental investigation of a swimming bacterium in a
shear flow is presented. The presence of the cell body results in a novel phenomenon:
chiral forces induce not only a lateral drift, but also a reorienting torque on swimming
bacteria. For typical flagellated bacteria, the magnitude of this drift velocity is much
smaller (-0.7 gm s-1) than typical swimming speeds of bacteria (-50 gm s-1). However,
with the addition of a head, the chirality-dependent forces that lead to a lateral drift also
lead to a reorienting torque. The model based on resistive force theory predicts that the
drift velocity of swimming bacteria is in the same order of magnitude as the swimming
speed. Experimental observations of the motile bacteria Bacillus subtilis exposed to shear
flows show good agreement with the theoretical prediction. This process is a purely
passive hydrodynamic effect, as demonstrated by further experiments showing that
bacteria do not behaviorally (i.e. actively) respond to shear.

This newly discovered hydrodynamic reorientation can significantly affect any process that
involves changes of swimming direction, so that bacterial 'steering' in a flow cannot be
understood unless the effects of chiral reorientation are quantified. Because swimming and
reorientation are central to the chemotaxis used by many bacteria for foraging, we expect
this coupling of motility and flow to play an important role in the ecology of many
bacterial species.

Thesis Supervisor: Roman Stocker
Title: Associate Professor
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Chapter 1

Introduction

Microorganisms are ubiquitous in the environment. Despite their tiny size, their combined
biomass is enormous. The functions performed by microorganisms play a critical role in
nearly every environment (Weeks and Alcamo 2008). In soil, almost every chemical
transformation involves active contributions from microorganisms. In particular, microbes
play a fundamental role in soil fertilization by mediating the cycle of nutrients like carbon
and nitrogen, which are crucial for plant growth (Wheelis 2008). In the ocean,
microorganisms are important not only because they form the base of the marine food web,
but also because they drive biogeochemical cycles, including carbon, nitrogen, sulfur and
iron (Willey et al. 2008). Their activities can affect local meteorological patterns and
potentially influence changes in global climate. Other microorganisms are pathogenic and
negatively affect humans, such as Salmonella, which contaminates water supply systems,
or Helicobacter, which gives ulcers, or Pseudomonas, implicated in cystic fibrosis (Willey
et al. 2008). Many species of bacteria form biofilms, surface-attached microbial colonies
encased in a polymeric matrix, which arise on nearly every surface in a wide range of
environments and cause huge economics losses resulting from equipment damage, product
contamination, and energy dissipation (Hui 2006).

Microbes nearly always inhabit a dynamic environment and are exposed to a range of flow
conditions: creeping flow in soil, highly sheared flow in bodily conduits, and turbulent
flow in rivers, streams, lakes, and oceans, as well as in anthropogenic habitats such as
bioreactors, heat exchangers, and water supply systems. The presence of flow not only
affects how microorganisms are transported and dispersed at the macroscale, but also their
ability to interact with their local habitat through motility and chemotaxis (the ability to
sense and follow chemical gradients), in particular their foraging. For example, the
development of biofilms in pipes and channels depends on the flow conditions (primarily
shear) at the surface on which the biofilm lives. For free-living (or 'planktonic')
microorganisms, motility has evolved as an important trait in escaping predators, finding
refuges and exploring new environments. Most importantly, microbes swim to take
advantage of spatially heterogeneous nutrient sources, which are often patchy down to
scales of micrometers (Azam 1998; Blackburn et al. 1998; Seymour et al. 2000; Stocker et
al. 2008).

Many microorganisms use one or more appendages to swim. At the length scales of
microorganisms, the inertia of both the cell and the fluid is unimportant and viscous effects
dominate: the Reynolds number is very low. The Reynolds number is a dimensionless
quantity defined as Re = pUL/u, where p and u are the density and dynamic viscosity of
the fluid, respectively, and U and L are the velocity and length scales of the flow,
respectively. In water (p ~ 1000 kg m-3, U 10-3 kg m- s-1), a swimming bacterium such as
Escherichia coli with U ~ 10 ptm s-1 and L ~ 1-10 pim has a Reynolds number Re ~ 10-



10-4. A human spermatozoon with U ~ 200 ptm s-land L ~ 50 jim moves with Re ~ 10-2
(Brennen and Winet 1977; Lauga and Powers 2009). Given the smallness of the inertial
effects, it is appropriate to study bacterial fluid dynamics in the limit of zero Reynolds
number, for which the governing equations of fluid motion are the Stokes equations

-Vp+pV 2u=0, V -u=0, (1.1)

where u and p are the velocity and pressure of the fluid.

Since Eq. (1.1) is linear, hydrodynamic forces are linearly related to the flow velocities. In
addition to this linearity, one other important property in Stokes flow is drag anisotropy, a
crucial ingredient for biological locomotion at zero Reynolds number (Hancock 1953;
Lauga and Powers 2009). For example, at low Reynolds number a rod has more resistance
when moving perpendicular rather than parallel to the flow. Therefore, to obtain the same
velocity, moving the rod in the perpendicular direction requires more applied force than
moving it in the parallel direction.

The linear and time-independent nature of the Stokes equations lead to kinematic
reversibility (Happel and Brenner 1965), where the distance travelled by a swimmer does
not depend on the rate of the motion, but only on the geometrical motion itself.
Furthermore, if the sequence of motions displayed by a swimmer in a time-periodic
fashion is identical when viewed after a time-reversal transformation, then the swimmer
cannot move on average. This property is also known as the 'scallop theorem', where
reciprocal motion, such as a clapping scallop that opens and closes its shell periodically,
generates no net motion (Purcell 1977; Lauga and Powers 2009). Therefore, in order to
swim in the low Reynolds number regime, microorganisms must adopt non-reciprocal
body motions. Well-known examples include sperm cells, which swim by sending
traveling waves of bending down flexible flagella (Bray 2001), and bacteria, which swim
by rotating helical flagella (Berg 2004). The detailed morphology of bacterial flagella
varies from one species to another (Fujii et al. 2008). For example, Escherichia coli forms
a left-handed helical flagellar bundle with 4 turns, a pitch angle of 410, and an axial length
of 10 gm. Bacillus subtilis forms a 3-turn left-handed helical bundle, with a pitch angle of
370 and an axial length of 6 gm (Fujii et al. 2008).

Wild-type swimming bacteria, such as E. coli and B. subtilis, typically display a so-called
'run-and-tumble' swimming behaviour (Berg 2004). During runs, the bacterium swims
along a roughly straight path, and its flagellar filaments are bundled together tightly behind
the cell. During a tumbling event, the flagella come out of the bundle, resulting in a
random reorientation of the cell before the next run. In the absence of chemical gradients, a
bacterium's trajectory has many characteristics of a random walk. In the presence of
chemical gradients, bacteria are able to swim up/down the gradients (i.e. performing
positive/negative chemotaxis) by biasing their random walk. When bacteria move towards
a food source, they prolong the duration of runs in that direction (or, equivalently, tumble
less often when going in the right direction). This allows them to head towards the food
source, with a net drift velocity or 'chemotactic velocity'. The chemotactic velocity



typically ranges between 6-23% of the swimming speed, but can be as high as 35%
(Ahmed et al. 2010b).

In addition to chemical gradients, the life of microorganisms is governed by flow. A naYve
treatment would only consider flow as a source of advection, which transports bacteria
along streamlines. However, fluid flow also involves velocity gradients (i.e. shear), which
could significantly alter bacterial swimming trajectories. The shear intensity varies from
one environment to another. For example, the shear rate can be as large as 1 s-1 in the open
ocean (Lazier and Mann 1989) and in lakes (MacIntyre et al. 1999, 2002), ~ 4 s-1 in the
coastal ocean (Kunze et al. 2006), ~ 20 s-1 in human's gastric tract (Kozu et al. 2010), and
shear rates above 40 s-I are usually found in engineered water treatment systems
(Crittenden et al. 2005).

At low Reynolds number shear flows, objects undergo periodic rotations known as Jeffery
orbits (Jeffery 1922): a sphere rotates with constant angular velocity, whereas for an
elongated body, the velocity depends on orientation. The more elongated a body, the
longer its relative residence time when aligned with streamlines. Non-chiral objects, such
as spheres and ellipsoids, follow streamlines in a low Reynolds number shear flow (Jeffery
1922). On the other hand, chiral objects, such as helices, drift across streamlines when
exposed to shear (Brenner 1964; Kim and Rae 1991; Makino and Doi 2005; Marcos et al.
2009). The interaction between the morphology of microbes and a shear flow is therefore
important in determining swimming trajectories, in particular the ability of bacteria to
swim across streamlines.

Despite the ubiquitous presence of flow in the environment of microorganisms, very few
studies have focused on the hydrodynamic interaction between flow and swimming in
microbes. The existing studies are prevalently numerical. It was shown that bacteria can
cluster around phytoplankton cells (Bowen et al. 1993; Luchsinger et al. 1999) and around
sinking aggregates such as marine snow particles (Kiorboe and Jackson 2001). Meanwhile,
solution of the stochastic evolution equations for a bacterial population (Bearon and Pedley
2000; Bearon 2003; Locsei and Pedley 2008) has shown that reorientation due to Jeffery
orbits can render run-and-tumble chemotaxis ineffective at high shear rates (Locsei and
Pedley 2008). However, in these studies, bacteria were simply modeled as either spheres
(Bowen et al. 1993; Kiorboe and Jackson 2001) or ellipsoids (Luchsinger et al. 1999;
Locsei and Pedley 2009), neglecting the detailed morphology of bacterial cells, and thus
chirality.

A small number of studies have considered the effects of flow on microbial motility.
Among these are the discovery of rheotaxis in spermatozoa (Bretherton and Rothschild
1961) and gyrotaxis in biflagellated swimming algae (Kessler 1985). Rheotaxis refers to
the tendency of organisms to align with the direction of flow. The organism exhibits a
positive/negative rheotaxis when its head points upstream/downstream, respectively. For
example, in a horizontal Poiseuille flow, live spermatozoa have been observed to exhibit
positive rheotaxis (Bretherton and Rothschild 1961). Rheotaxis can be either a
hydrodynamic or a behavioral effect. Gyrotaxis is a process in which the preferred
orientation of a bottom-heavy cell is determined by a balance between the viscous torque



and the gravitational torque. Due to gyrotaxis, in a downward cylindrical Poiseuille flow,
uniformly suspended algae swim towards the axis of the tube, whereas they swim toward
the periphery in an upward flow (Kessler 1985).

Other examples of the effect of flow on microbial motility concern phytoplankton and
spermatozoa. Using a Taylor-Couette apparatus, it was found that the orientation of
swimming dinoflagellates in a shear flow was significantly different from random, with a
preferential alignment at an angle with the flow (Karp-Boss et al. 2000). This observation
was rationalized as differences in drag forces on the body and flagella (Karp-Boss et al.
2000). Other studies found that fertilization success in the purple sea urchin depends on
intensity of the shear (Mead and Denny 1995; Riffel and Zimmer 2007). Low shear rates
improve fertilization through mixing enhancement and thus increasing the encounter rates
between sperms and eggs. On the other hand, large shear rates overwhelm the sperm's
ability to reach the egg. (Riffel and Zimmer 2007).

It has been known for some time that surfaces affect how nearby bacteria swim, giving rise
to circular trajectories in horizontally unconfined environments, or the "swimming on the
right" behavior in microchannels (Ramia et al. 1993; DiLuzio et al. 2005; Lauga et al.
2006). The circles result from the cell body and flagella rolling along the surface in
opposite directions, creating a torque that makes the cell swim in circular trajectories
(Lauga et al. 2006). In the presence of shear, this behaviour changes drastically: E. coli
were found to swim upstream in a microfluidic channel under shear flow (Hill et al. 2007).
This ability to swim upstream could be crucial in colonizing urinary tracts, causing
infection. These studies demonstrated that novel processes are uncovered and important
new insight is gained by 'simply adding flow' to the microbial world.

Most techniques used to date do not allow direct observation of bacterial movement
patterns in flow, due to the difficulty in setting up accurate and controllable flow fields
while visualizing and quantifying the microorganisms' response. Here we propose that
microfluidics enables one to work at the appropriate scales, both in terms of the
manipulation of flow, as well as the direct visualization of how microorganisms are
affected by flow.

Microfluidics has triggered important advances in a range of fields, from cellomics to
chemical engineering, due to the opportunity to carefully control geometries, flows and
chemical gradients, while observing the response of the system at the scale of micrometers
(Whitesides et al. 2001; Marcos and Stocker 2006; Seymour et al. 2007). Yet, the
application of microfluidics to understand fundamental interactions between flow and
swimming microorganisms has been lagging. This thesis takes a first step in this direction
by exploiting microfluidics to study the effects of shear on bacteria.

This research began with the use of microfluidic technology to understand the response of
microorganisms, such as bacteria and algae, to a highly simplified model turbulent
environment. At the small scales of these organisms, turbulence is experienced simply as
shear: understanding the interaction between shear and swimming is then a critical step
towards gaining insight in how the ambient flow favors or hinders microorganisms in their



quest for food. Realizing that microbial morphology plays an important role, this thesis
seeks to understand the hydrodynamic interaction between shear and shape in the bacterial
world.

The goal of this thesis is to investigate the role of flow on the motility of bacteria, both
experimentally and theoretically. The specific aims of this research were to:

1. Develop a mathematical model of a swimming bacterium in a shear flow.
2. Design and carry out experiments to study the effect of shear on bacterial motility.
3. Investigate whether bacteria display a behavioural response to hydrodynamic shear,

as evidence that they can sense hydrodynamic shear.

In chapter 2, we develop a new method to generate microscale vortices (akin to the
smallest components of turbulence in the ocean) using a microfluidic setup, with accurate
control and visualization of the flow. We discuss the effects of vortex strength on the
swimming of marine bacteria and algae.

In chapter 3, we develop a mathematical model employing resistive force theory to study
the hydrodynamic effect of shear on a rigid, non-swimming helix, relevant to the helical
shape of bacterial flagella and some species of microorganisms, such as spirochetes and
Spirulina. An experimental verification of the theory by exposing the non-motile, helically
shaped bacteria Leptospira biflexaflaB mutant to shear in a microfluidic channel is given.

We present the full model of bacteria swimming in a shear flow in chapter 4. We discuss
the role of randomness in swimming and the effect of cell size on the cell's ability to swim
across streamlines. A set of experiments is presented to verify the model by exposing the
smooth swimming bacterium Bacillus subtilis 014139 to a microfluidic shear flow. Finally,
to confirm whether the observations are the result of purely hydrodynamics effects, we
present a separate experiment to probe the bacteria's ability to actively respond to shear.



Chapter 2

Bacteria swimming in microvortices

Eddies at the Kolmogorov scale (e.g. Yamazaki et al. 2002) are the smallest remnants of
the turbulent cascade in the ocean, with time scales in the order of 1-100 s, depending on
the intensity of turbulence (Karp-Boss et al. 1996). Kolmogorov eddies represent fluid
motion at the scale most directly relevant to microbial dynamics, affecting nutrient
redistribution by shear (Bowen et al. 1993; Luchsinger et al. 1999), encounter rates with
predators and nutrient patches (Rothschild and Osborn 1988), and the ability of
microorganisms to swim and chemotactically orient in the flow. Quantitative experimental
information on microbial dynamics at these scales is still lacking. We propose to use
microfluidics as a first step in understanding the response of microorganisms to microscale
vortices. The generation of vortices at small Reynolds numbers has been investigated both
experimentally and numerically (Higdon 1985; Shen and Floryan 1985). At the microscale,
great attention has been devoted to flows that enhance mixing (e.g.: Liu et al. 2000;
Stroock et al. 2002), but the time-scales do not reflect those relevant in the environment
(e.g. Shelby et al. 2003). Yu et al. (2005) used side cavities to generate vortices in
microchannels and mapped out the regime in which flow separation is to be expected. Here
we apply a similar technique to generate stable microvortices on scales relevant to
microbial dynamics in the aquatic environment, and show that we can obtain detailed
information on the microorganisms' response.

2.1 Materials and procedures

2.1.1 Fabrication
Channels were fabricated using soft lithography (Whitesides et al. 2001, Seymour et al.
2007). Fabrication begins by creating a blueprint for the microchannels using computer-
aided design (CAD) software and printing it on transparency film with a high-resolution
image setter to create a 'mask' (Fineline Imaging, Colorado Springs, CO). A silicon wafer
is spin-coated with a layer of negative photoresist (SU8-2100, MicroChem, Newton, MA),
the thickness of which corresponds to the final depth of the channels. With the mask laid
on the coated wafer, the latter is exposed to UV light, polymerizing exposed regions of the
photoresist. After dissolving the unpolymerized photoresist, the channel structure is left on
the wafer (the 'master'). The soft polymer polydimethylsiloxane (PDMS, Sylgard 184;
Dow Corning, Midland, MI) is prepared according to the manufacturer's instructions and
poured on the master to cast PDMS channels. After curing the PDMS by baking for 12 h at
65 0C, the PDMS layer containing the channels is peeled off from the master, and holes for
inlets and outlets are punched with a gauge 16, sharpened luer tip. Finally, channels are
bonded to a glass slide after treating both the PDMS layer and the glass slide with oxygen
plasma for 1 min (HARRICK Plasma Cleaner/Sterilizer, Harrick Scientific, Ossing, NY).



2.1.2 Microchannel geometry
The channel has a rectangular cross section of width W and a rectangular side cavity of
length a and width b (Fig. 1). The depth, H, is the same for the main channel and the cavity.
Differently from Yu et al. (2005), we partially closed the area between the cavity and the
main channel, leaving an opening of length g. In our basic configuration, L = 10 mm, a =
W = 200 gm, H = 130 jm, d = 25 jm, g = 120 pm, and the cavity aspect ratio a= a/(b+d)
= 1. We also considered two additional configurations, g = a = 200 jm and a = 2,
respectively.
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Figure 2-1. Geometry of the microchannel. Gravity is in the -z direction (into the plane). The cavity and the
channel have the same depth, H. The dashed line shows the field of view where microorganisms are tracked.
Mean velocity in the main channel is UF; characteristic velocity inside the cavity is Uc. (Marcos and Stocker
2006).

2.1.3 Experimental setup
The microchannel was set on the stage of a Nikon Eclipse TE2000-E inverted microscope
(Nikon, Japan). PEEK tubing (0.762 mm ID, 1.59 mm OD, Upchurch Scientific, Oak
Harbor, WA) was used to connect the inlet to a 10 mL syringe (BD Luer-Lok Tip) via a
fitting (Part P-704-01, Upchurch Scientific, Oak Harbor, WA) and the outlet to a constant-
depth reservoir, to avoid capillary and gravity effects (Fig. 2-2). A constant flow rate in the
main channel was generated using a syringe pump (PHD 2000 Programmable, Harvard
Apparatus, Holliston, MA). For the appropriate geometrical configuration, the shear stress
of the main flow produced a vortex in the cavity of strength proportional to the mean
velocity UF in the main channel.
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Figure 2-2. Schematic of the experimental setup. The microchannel is set on the stage of an inverted
microscope and flow is driven by a syringe pump. Microorganisms in the cavity are imaged with a CCD
camera. (Marcos and Stocker 2006).

The flow field within the channel was visualized using 2-jm diameter beads (Polysciences,
Warrington, PA). Phase contrast was used to image the beads and the microorganisms,



with long-working-distance 20x (NA = 0.45) and 40x (NA = 0.6) objectives. The depth of
field can be calculated following Meinhart et al. (2000): for 2-pm beads, we obtained 28
Rm (20x) and 19 gm (40x). Sequences of images ('movies') were captured with a 1600 x
1200 pixels, 14 bit, cooled CCD camera (pixel size 7.4 x 7.4 gm2; PCO 1600, Cooke,
Romulus, MI) at 30 to 62 frames s-1 and processed using IPLab software (Scanalytics,
Fairfax, VA). In the images, beads or microorganisms appear as bright regions on a darker
background. Images of the trajectories were obtained by assigning to each pixel the
maximum light intensity recorded in that pixel over the duration of the movie (3D Time
Stacked View command in IPLab).

2.1.4 Numerical modeling
For preliminary screening of a range of design configurations, as well as for accurate
characterization of the flow field, we carried out a computational fluid dynamics
simulation of the cavity flow. We used the finite-element code Comsol Multiphysics
(Burlington, MA) to solve the steady-state Navier-Stokes equations in three-dimensional
space. The model geometry was that described above, except for L = 1 mm to save
computational time (we verified that the flow field in the cavity is the same as for L = 10
mm). The boundary conditions were no-slip on all solid boundaries, uniform velocity at the
inflow and zero pressure at the outflow. We adopted a multigrid solver using between
13,000 and 22,000 elements, each at most 30 jim in size.

2.1.5 Microorganisms
The marine bacterium Pseudoalteromonas haloplanktis (2 [tm length) was grown to
exponential phase in 1% Tryptic Soy Broth (TSB) at room temperature, before being
diluted 1:10 in Artificial Seawater. Experiments were performed 72 hours later. The motile
marine alga Dunaliella tertiolecta (5 jim diameter) was grown to exponential phase in f/2
medium.

2.2 Assessment and discussion

2.2.1 Generation of a vortex
Using the setup described above we were able to generate a stable and reproducible vortex
in a cavity of aspect ratio a = 1 (Fig. 2-3a). The numerical streamlines (Fig. 3b) closely
match the experimental trajectories, as expected for a steady flow. Good agreement is
further demonstrated by comparing the velocity measured experimentally at different
locations in the cavity with its numerical counterpart (Fig. 2-4). We can therefore use the
numerical model to investigate the vortex in more detail. For our geometry, the maximum
velocity in the cavity is Uc = 1.7% UF for a main-channel Reynolds number Re = UFW/v <

6 (where v is the kinematic viscosity), corresponding to UF < 30 mm s1. In contrast to
higher Reynolds number designs (e.g. Shelby et al. 2003), generation of the vortex does
not rely on inertial effects. While the flow inside the cavity is in principle three
dimensional, the vertical velocity (along z) is always much smaller than the horizontal
velocity at the mid-depth plane, where all observations are made.



Figure 2-3. The flow in a cavity of aspect ratio a= 1, main flow speed UF = 21.4 mm s-1. The characteristic
velocity in the cavity is Uc = 363 [tm s-1. Lengths of the cavity and the opening are a = 200 gm and g = 120
gm, respectively. Flow is from left to right. The cavity Reynolds number (Uc a/v) is 0.07. (a) Trajectories of
2 pm beads. The solid white line shows the outline of the channel. (b) Numerical streamlines at the mid-
depth plane (z = H/2 = 65 gm). Imperfections in the streamlines result from small numerical errors in
integrating the velocity field. (Marcos and Stocker 2006).
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Figure 2-4. Velocity inside the cavity in the x - direction, as a function of the transverse position y (dashed
line in the inset) for Uc = 363 [tm s-1. Experiments (circles) are compared with numerical results (solid line).
(Marcos and Stocker 2006).

2.2.2 Effects of the cavity geometry
Because of the fabrication processes involved in soft lithography, shallower channels are
easier and faster to fabricate and, in general, the depth H is limited to about 1 mm. On the
other hand, a minimum depth is required to generate a vortex. For our basic configuration,
a vortex starts to form for H = 80 pm (not shown) and is fully developed for H 90 pm (=
0.45 a; Fig 5b).



Figure 2-5. Numerical streamlines for UF = 21.4 [tm s-1 and two different depths: (a) H = 70 gm; (b) H = 90
jm. All other dimensions are as in Fig. 3. Crossing streamlines visible in panel (a) reflect small three-
dimensional effects.

It is interesting to note that this minimum depth changes with the cavity opening length g,
not considered in previous studies. It has been shown that a two-dimensional flow (i.e., H
-> oo) in a fully open cavity (g = a) generates a vortex for aspect ratios a< 2 (Higdon 1985;
Shen and Floryan 1985; Yu et al. 2005). In three-dimensional low Re nolds number flow
(Re* = Re Ac < 10), however, a vortex is expected only for Ac = (H/a) > 0.327, predicting
a minimum depth H = 0.57a for Re < 30.6 (Yu et al. 2005). We confirmed this prediction
numerically by testing the case g = a for H = 90 pm (Ac = 0.203, Re*= 1.25), finding
indeed no vortex. Partially closing the cavity opening g, on the other hand, introduces an
additional degree of freedom, which we discovered reduces the minimum depth required
for vortex formation. This can be seen by comparing Fig. 2-3 (g = 120 pm; a vortex forms)
with Fig. 2-6a (g = 200 pm; no vortex), both obtained with H = 130 gm. Finally, no vortex
formed for a= 2, even for g = a/2 (Fig. 2-6b).

a b

Figure 2-6. Two configurations in which no vortex formed, as shown by the trajectories of 2-jm beads: (a) a
= 1, g = a = 200 gm; (b) a= 2, g = a/2 = 200 jm. For both cases, H = 130 pm and UF = 21.4 mm s~. The
scale is the same in the two panels.
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2.2.3 Trajectories and orientation of swimming microorganisms
Our aim in designing the cavity flow was to obtain a controlled, well-characterized flow
field to study the response of microorganisms. In the previous sections, we have analyzed
the formation of the vortex numerically and experimentally. Here we show that this setup
also allows accurate visualization and quantification of the trajectories and instantaneous
orientation of microorganisms swimming in the vortex, by applying it to the marine
bacterium P. haloplanktis and the marine alga D. tertiolecta.

In order to have only motile organisms inside the cavity, we pre-filled the channel with
fluid, injected the microorganisms, then stopped the flow: this procedure allowed some
motile cells to spontaneously enter the cavity, at which point the flow was turned on again.
Trajectories were imaged in the field of view shown in Fig. 2-1 (dashed line) at mid-depth
(z = H12). A 40x objective was used for the bacteria and a 20x objective for the algae. No
effect of the microscope light on the microorganisms was observed.

Figure 2-7. Trajectories of the bacteria P. haloplanktis in vortices of different strength: (a) No flow; (b) Uc =
36.3 pim s1; (c) Uc = 363 tm s-1. The field of view is shown in Fig. 1; (d) and (e) are magnified views of
selected trajectories, showing the instantaneous orientations of individual bacteria; (f) A bacterium's
orientation is further magnified to highlight misalignment with the direction of travel.

In the absence of flow (Fig. 2-7a), P. haloplanktis swims in a random fashion, exhibiting a
combination of long, straight runs, reversals and changes of direction, with a mean speed
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of 55 gm s-1 and a maximum of 280 gm s-1. When the flow velocity in the vortex is
considerably larger than the swimming speed (Fig. 2-7c), advection by the flow
overwhelms motility and trajectories tend to streamlines. The elongated shape of P.
haloplanktis, characteristic of many species of bacteria, also allows detection of its
orientation in the flow field. In a strong vortex, bacteria not only follow streamlines, but
they are aligned with them as a result of the shear in the vortex (Fig. 2-7e), except for the
corner regions in the cavity, which the vortex does not reach (e.g. the top corners in Fig. 2-
7c). The most interesting case is that of a vortex of intermediate strength (Fig. 2-7b), where
bacteria can partially 'fight the flow': several trajectories cross streamlines and, even for
those that do not, the shear is not strong enough to always align bacteria with the flow
direction (Figs. 2-7d and 2-7f).

We further applied the microfluidic setup to the motile alga D. tertiolecta (Fig. 2-8), which
swims up to 375 gm s-1 using two flagella. Its large size (5 [m) makes it easy to capture
using video-microscopy, but its instantaneous orientation is more difficult to quantify due
td its nearly symmetrical shape. Many species of phytoplankton in the ocean are known to
use motility for phototaxis or chemotaxis, resulting in migration and clustering in
preferential regions of the water column (Sjoblad et al. 1978; Eggersdorfer and Hader
1991). Phytoplankton motility is altered by small scale vortices, and the proposed setup
can help to quantify these changes (Fig. 2-8b).

a b

Figure 2-8. Trajectories of the alga D. tertiolecta swimming in the cavity: (a) No flow; (b) Uc = 363 pm s- .
The field of view is shown in Fig. 2-1. The black spot inside each alga is a result of phase contrast
microscopy.

A preliminary quantification of the role of advection on motility can be obtained by visual
inspection of the trajectories and is summarized in Table 2-1. Motility of P. haloplanktis is
not significantly affected for Uc < 36 ptm s-1, while advection dominates for Uc > 182 [Im
s-1. D. tertiolecta, on the other hand, can swim faster and exhibits higher thresholds (182 -
363 [tm s-1) before being passively advected by the flow. In the ocean, turbulent dissipation
rates E range from 10-2 to 10- cm S-3 (Lazier and Mann 1989), corresponding to
Kolmogorov velocity scales of 1000 to 178 [tm s~1 (Yamazaki et al. 2002), respectively.
While the main purpose of this calculation is to demonstrate the viability of the
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experimental setup and not to provide a thorough quantitative analysis of the data, Table 2-
1 suggests that bacteria would be mostly advected and aligned in a turbulent flow, while
motile algae can overcome mild turbulence levels.

Table 2-1. The influence of advection on P. haloplanktis and D. tertiolecta in vortices of various strengths.
An equivalent dissipation rate E is calculated based on UC. Symbols indicate the importance of advection by
the vortex over motility as inferred from trajectories, from '++' (advection dominates) to - (motility
dominates).

UC P. haloplanktis D. tertiolecta
([m s- ) (cm2 S-3) (bacterium) (alga)

9 6.8x10" -- --

18 1.1 x 10-9  
-- --

36 1.7 x 108  
- --

91 6.8 x 10-7  + -

182 1.1 x 105  + + +
363 1.7 x 104  + + +

Shear flows are known to affect the orientation of elongated bodies. Rigid spheroids
undergo periodic rotation depending on their elongation (Jeffery 1922). In the case of
swimming bacteria, orientation is governed by motility in addition to shear, and no
theoretical prediction is available. We quantified the effects of shear on the ability of P.
haloplanktis to control its trajectory by determining the streamline-crossing angle AO
between a bacterium's trajectory and the local streamline (Fig. 2-9, inset). This angle is
between 00 and 1800. When the bacteria are good swimmers or when the flow is weak, we
expect the bacteria to swim randomly without following streamlines and thus the average
AO would be 900. On the other hand, when the bacteria are slow swimmers or when the
flow is strong, we expect the bacteria to follow the streamlines of the flow and thus small
values of AO . Under weak flows, P. haloplanktis shows a random swimming pattern
resulting in an average streamline-crossing angle close to 900. As the shear rate increases,
P. haloplanktis becomes more aligned with flow and thus AO decreases.

This result suggests that motile bacteria could stop swimming under highly turbulent
conditions where swimming becomes energetically inefficient, as swimming consumes
energy but no longer allows bacteria to move across streamlines into nutrient-rich
environments. To ascertain this hypothesis, we plan to conduct experiments of bacterial
active response to shear. Such experiments will be conducted in a parabolic flow field,
since the flow field in the microvortex described above is complex and difficult to
characterize.
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Figure 2-9. The average streamline crossing angle of P. haloplanktis swimming in a microvortex under
various shear rates. The size of the analysis region (blue box, upper inset) is chosen arbitrarily within the
field of view. The shear rate is averaged over the region of analysis. Red filled circles are the data obtained
from the region of analysis. Green and yellow crosses are the data obtained by increasing and decreasing the
region of analysis by 20%. The lower inset shows the definition of streamline crossing angle AO.

2.3 Summary
We presented a microfluidic setup to generate vortices on scales relevant to microbial
dynamics, while at the same time tracking responses of individual swimming
microorganisms. We found that the formation of a vortex in the side cavity is dependent on
the depth to width ratio (H/a) of the cavity, as well as the length of the opening (g) to the
main channel.

We illustrated the ability of the setup to yield quantitative single-cell information on the
behavior of microbes exposed to a recirculating shear flow. Steady flow in the cavity is
only an approximation of Kolmogorov-scale eddies in the ocean, which are three-
dimensional and unsteady (Karp-Boss et al. 1996), with time scales in the order of 1-100 s.
While it would be possible to incorporate unsteadiness by modulating the flow in the
microchannel over time using a programmable syringe pump, we believe the current setup
in itself offers valuable insight on the fundamental interaction between microorganisms
and their fluid dynamical environment (in particular the mean shear) at scales relevant to
microbial dynamics, at least over times shorter than the Kolmogorov time-scale.

We envisage that microfluidic methods such as the one presented here will provide novel
insight into the bounds that ambient flow imposes on the motility of microorganisms and
on the behavioral strategies and dynamics of motile microbes living in a turbulent ocean.
They will in turn impact our understanding of the role of microorganisms in the
biogeochemistry of aquatic environments.
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Chapter 3

Helix in shear

At the small scales of a bacterium, any natural flow field (e.g. turbulence) is experienced as
a linear velocity profile, or 'simple shear'. Therefore, understanding the interaction
between a simple shear flow and swimming is a critical step towards gaining insight on
how the ambient flow favors or hinders microorganisms in their quest for food. We
develop a mathematical model to study the microhydrodynamics of a flagellated bacterium
in a shear flow. In general, the modeling of a bacterium requires consideration of two
factors: first, flagella revolve around their long axis to generate thrust and propulsion;
second, a bacterium often has an inert head to which the flagella are attached. Because the
Reynolds numbers are small (l10-4), the flow is described by the Stokes equation. To make
the problem analytically tractable, we study the hydrodynamics around the head and the
flagellum separately, neglecting the hydrodynamic interactions between the two. This is a
good approximation as long as the length of the flagellum is much larger than the diameter
of the head. In this chapter, we present a combined theoretical and experimental
investigation of the fluid mechanics of a helix exposed to a shear flow. In addition to
classic Jeffery orbits, resistive force theory predicts a drift of the helix across streamlines,
perpendicular to the shear plane. The direction of the drift is determined by the direction of
the shear and the chirality of the helix. We verify this prediction experimentally using
microfluidics, by exposing Leptospira biflexa flaB mutant, a non-motile strain of helical-
shaped bacteria, to a plane parabolic flow. As the shear in the top and bottom halves of the
microchannel has opposite sign, we predict and observe the bacteria in these two regions to
drift in opposite directions. The magnitude of the separation is in good quantitative
agreement with theory. This setup can be used to separate microscale chiral objects.

3.1 Model formulation
We computed the hydrodynamic forces due to a shear flow on a helix by employing
resistive force theory (RFT). RFT is the lowest order approximation of slender body theory,
which provides an accurate solution of the Stokes equations for filaments with radius small
compared to the length scale of filament's deformation (i.e. the pitch length of the helix)
and total filament length (Gray and Hancock 1955; Childress 1981). RFT expresses the
drag force per unit length as f = 42/ V'/ + 41 v', with 4/, 41 being the resistive force
coefficients, and V,/, vrI the velocities relative to the fluid, parallel and perpendicular to a
segment of the helix (Childress 1981). Drag on a thin rod in low Reynolds number flow is
anisotropic, with a greater resistance when the rod is oriented perpendicular rather than
parallel to the flow (41 20;/). Integrating the local force and torque per unit length along
the entire helix yields the total force and torque on the helix. This yields the center-of-mass
linear velocity and angular velocity as a function of the orientation of the helix and the
shear rate.



In low Reynolds number world, a moving object ceases to move as soon as the applied
force or the propulsion force vanishes (i.e. no inertia). To see why this is the case, consider
an object or a swimmer of mass m and size L swimming with velocity U through a viscous
fluid of density p and viscosity u. When the swimmer suddenly stops propelling itself, it
will then decelerate according to Newton's law Fdrag = m a. The drag force Fdrag is the
viscous drag and it has the scaling of pUL. For simplicity, let's assume the swimmer is of
spherical geometry with density ps = p (which is true for bacteria) and therefore m pL .
This gives a ~ pU/(pL 2). We can now estimate the typical length scale over which the
swimmer will cruise due to the inertia of its movement: d - U2/a = pUL2/pu. For many
bacteria, U ~ 10 - 1OOL and the typical length scale for a bacterium L ~ 1Im. Using
properties of water (p = 1000 kg m-3, U = 10-3 kg m- s-) leads to d = 0.01 - 0.1 nm
(Purcell 1977; Lauga and Powers 2009). The corresponding time scale can be estimated as
t ~ d/U 1 Is. This analysis shows that inertia is completely negligible and as a result, the
total force and torque on a body would equate to zero in low Reynolds number world.

In the following, a general introduction to RFT is presented by solving the simpler two-
dimensional problem of a rigid straight rod in shear flow. We discuss the similarity of a
rod and an ellipsoid in shear flow by comparing with Jeffery's solution (Jeffery 1922). We
then solve the spatial evolution of a three-dimensional rigid helix in shear flow. We shall
see that a helix will drift across streamline due to its chirality.

3.1.1 A rigid straight rod in shear flow
Consider a rod of unit length in a simple shear flow V = (?y, 0, 0), where f is the shear
rate (Fig. 3-1). Using RFT, the force per unit length f on the rod obeys

f = /(V- i)H,+ 41(V- i)1 (3.1)

where x = x(s, t) is the position of a point on the rod with arclength s. Measure length in
units of the rod length, with s running from -1/2 to 1/2.

Figure 3-1. Schematic of a straight rod in a simple shear flow

Denote the tangent to the rod as t = (cos 0, sin 0,0); thus

X = X0 +At =x 0 +sii



where xO denotes the center of mass, 9 is the rotation rate of the rigid body, and
n =(-sin 9, cos 0,0) is the perpendicular direction to the rod. Thus

f, =, (V -o), f1 = 1 (V -o)± + 1s6

Since the direction of the rod tangent is constant (the rod is straight), we may get the
parallel and perpendicular total forces by integrating fil and fi over s. Terms that are linear
in s will vanish. Note that we need to evaluate V at y = yo + s sin 9. Integrating and setting
the total force equal to zero, we find that d drops out of the force balance equation and

x= (fy,0,0)= V

The center of mass moves with the flow velocity at the center of mass.

To find the rotation, we demand that the total moment vanish:

r xfds =0

where we use the center of mass as the origin for calculating moments. Note that only the

perpendicular component f± enters here. Plugging in r = st and our expression for f±
yields

#=-isin2o (3.2)

These results are consistent with Jeffery's solution (Jeffery 1922; Visser and Jonsson
2000), which describes the kinematics of an ellipsoid in simple shear flow and predicts that
the ellipsoid follows the streamline with the local fluid velocity and rotates with an angular
velocity (Trevelyan and Mason 1951)

2- 1 (r2 sin 2 9+cos 2 0) (3.3)
r2 +1

where r here is the aspect ratio of the ellipsoid. The more elongated a body, the longer its
residence time when aligned with streamlines. Note that when r -+ oo, we obtain Eq. (3.2).

The analysis of the fixed points 9 = 0 and 9 = )r is interesting. They are physically
equivalent. Each one is half-stable and half-unstable, since d is always decreasing. For

example, for small 9 (0 -> 0), Eq. (3.2) becomes 9= -f6 and thus 01= t+6'. If 9 is

small and positive, the shear will align the rod with the flow. The time it takes to align (i.e.

to reach 0 = 0), blows up, because t = 0-1 -0-1 - oo . Therefore, when 9 is small and

positive, it is stable. However, if 9 is small and negative, the shear will flip the rod around
to the opposite orientation and thus makes it unstable.



3.1.2 Helix in a shear flow
The general equations for the evolution of the orientation of a helix in shear flow in terms
of Euler angles are presented. We will see that unlike the rod, the center of mass of the
helix does not move at the speed of the flow velocity at the center of mass.

X

Figure 3-2. Schematic of helix in a body fixed frame OXYZ

Suppose that the helix has an integer number n of full turns and a total contour length of 1
and furthermore that the helix axis is parallel to the Z-axis (Fig. 3-2). In a body fixed frame
OXYZ, with the center of the helix as the origin 0, the helix is given by (Kim and Powers
2005)

r, =(R cos ,n R sin2 , sfcosa) (3.4)

where s runs from -1/2 to 1/2, R is the helix radius, a is the pitch angle, and X = +1 is the
handedness; it is convenient to keep a> 0 no matter what the handedness. Note that 2)zRn/l
= sina, where i/n is the contour length for one turn of the helix. Thus, the tangent to the
helix is

thelix sin a sin s, sin acos ,cos a (3.5)

Now consider the helix in an arbitrary position and orientation in a 3D fixed inertial space
oxyz. The center of the helix in the inertial frame is xO = (XG, YG, ZG). The orientation of the
helix can be expressed through three sets of Euler angles, such that the position of any
point on the helix can be expressed in the inertial frame oxyz by the following relation

r = x0 + [Tuler ]tr rhelix

and the tangent vector is given by

= r A

t [ Euler] .thelix



where the Euler rotation matrix [TEuler#] = [T] .[TV,] . [TO] is a result of three consecutive
rotations:

sin6 0 [cosy

Cos6 0 ; [TJ= 0
0 1 [sinV

0 -sin V 1

1 0 ;[T,]= 0

0 cosyV/ -0

0 0
cos#0 sin#0 (3.6)

-sin#0 cos#0_

The Euler rotations are performed as follows (Fig. 3-3):
e Rotation about the z axis through an angle 6 E [0,27c]
" Rotation about the new y axis through an angle y e [0,7r]
" Rotation about the new z axis (the Z axis in the OXYZ frame)

[0,27r]
Since the transformation is orthogonal [TEulerI = [TEuler tr

through an angle # E

In the standard spherical polar coordinate system, V and 6 would be the polar and the
azimuthal angles describing the orientation of the major axis of the helix. The angle # is
the rotation along the axis of the helix (Fig. 3-3). When all angles are zero (6 = V/ = # = 0),
the body fixed frame coincides with the inertial frame, i.e. OXYZ = oxyz and the helix axis
is along the z axis. The helix axis is pointing along the y axis when 6= V= n/2 and along
the x axis when 0= 0, V= i/2.

Figure 3-3. Euler angles describing the body orientation. The arrow represents the major axis of the body.

Consider the helix in a simple shear flow V = (fy, 0, 0). The velocity of the flow relative

to the helix in the inertial frame is

V,e = V - v-coxr (3.7)

where v and o are the linear and angular velocities of the center of the helix given by

v = (vs, vy, vZ); o = (O), (4, co)

Note that y = YG +[TEuler t r (0,1,0)

Cos [
[T,]= -sin6

-0

(3.8)



In resistive force theory, the force per unit length acting on the helix is given by the fluid
velocity relative to the helix velocity, with anisotropic resistance coefficients as previously
described. Therefore, the total forces on the helix are

f = ({,V,., +{ 4' Vrei)ds, -i
-l/2

(3.9)

where 6, (i = 1,2,3) is the space fixed basis vector. Noting that vreii =(Vre -.t)t and

vrel = vre + Vrei , Eq. (3.9) becomes

1/2

F;= { , Vre+ vreii ydsei
-1/2 ///

(3.10)

Similarly, the total torques on the helix are

|12
M = Jrx ,, Ly,,,e (3.11)

Equations (3.10) and (3.11) can be written in matrix form as:

M 
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V

v

0)COX
(A)

(3.12)

where {{} is the 6x6 symmetric resistance matrix
shear flow.

and {A } is the contribution due to the

Stokes flow requires total forces and total torques to be zero, which sets the left-hand-side
of Eq. (3.12) to zero and allows us to solve for the linear and angular velocities of the helix.
In the following, we will see that a helix drifts across streamlines when exposed to a shear
flow. We will present an intuitive explanation why this would be the case before looking at
the drift trajectory of a helix using the solution to Eq. (3.12).

+ 1 V,1 ds -e
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Figure 3-4. Schematic of a right-handed helix in simple shear flow. Red shading and black shading show the
top and bottom halves of the helix. Upper inset: The net force acting on one pitch of the helix is along -z.
Lower inset: Predicted normalized drift velocity v/vo versus helix orientation 9. 0 is the angle between a helix
in the x-y plane and the flow, and vo is the drift velocity of a helix aligned with the flow (9 = 0, yV= R/2).
(Marcos et al. 2009).

As described earlier, in a shear flow, objects undergo periodic rotations known as Jeffery
orbits (Jeffery 1922): a sphere rotates with constant angular velocity, whereas for an
elongated body, such as a helix, the velocity depends on orientation. The more elongated a
body, the longer its residence time when aligned with streamlines (see Eq. (3.3)). In
addition to undergoing Jeffery orbits, a helix drifts across streamlines, due to its chirality.
To see why, consider a right-handed helix aligned with a simple shear flow (Fig. 3-4), and
decompose the velocity at a segment of the helix into components perpendicular and
parallel to the segment. We have discussed that drag on a thin rod in low Reynolds number
flow is anisotropic, with a greater resistance when oriented perpendicular rather than
parallel to the flow (Childress 1981). Since the flows at the top (red) and bottom (black)
halves of the helix are in opposite directions, both halves have a drag component along -z
(Fig. 3-4, top inset). Thus, a right-handed helix aligned with the shear flow drifts in the -z
direction. Reversing the chirality of the helix or the sign of the shear produces a drift along
+z. Furthermore, the drift depends on the orientation of the helix. Suppose the right-handed
helix is reoriented by 90 degrees so that it is aligned with the y-axis. In this orientation, the
halves formerly labeled "upper" and "lower" are now the halves split in the +x and -x
directions, and the shear flow tends to rotate the helix in the vorticity direction of the shear
flow (-z direction). Due to the rotation, the component of the relative flow along the helix
axis past the formerly upper and lower halves is in the opposite direction compared to
when the helix was aligned with the x-axis. Therefore the force, and the drift, are in the +z
direction for the right-handed helix aligned with the y-axis. In general, the drift velocity v
of a helix lying in the x-y plane is a function of the angle 9 between the helix and the flow
(Fig. 3-4, bottom inset). Hence, the mean drift depends on the distribution of the
orientation of the helix relative to the flow. When the helix is preferentially aligned with
streamlines, for example due to Jeffery orbits, it has a net drift (Fig 3-5). When all
orientations are equally likely, for example due to strong Brownian rotational diffusion, the
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net drift is zero (Makino and Doi 2005). The mean drift depends on the probability
distribution of orientations of the helix relative to the flow (see section 3.2.3). This
distribution is determined by the competition between the two timescales: preferential
alignment due to shear (Tshear = 1/f) and isotropic distribution due to Brownian rotational
diffusivity (Thrown = 1/DR). From these two timescales, we can form a dimensionless
number: Peclet number Pe = Thrown /rshear = f /DR, which determines the relative
importance between shear alignment and Brownian rotational diffusivity. For large Pe,
alignment by shear dwarfs rotational diffusion and for small Pe, diffusion destroys the
alignment, resulting in zero net drift.

Figure 3-5 shows the lateral position of the center of a right-handed helix (ZG) when
exposed to a positive shear flow neglecting Brownian diffusion, obtained from the RFT
solution. The helix is initially at the origin (0, 0, 0) with its orientation pointing along the x
axis. The simulation shows that the helix drifts in the -z direction as predicted. The small
"bumps" in the trajectory are due to the fact that the helix performs a Jeffery orbit and at
some point the axis is aligned with the y axis, hence the helix briefly drifts in the +z
direction. However, due to its large aspect ratio, the helix is preferentially aligned with the
flow and thus experiences a net drift in the -z direction. The mean drift velocity V for this
helix is 0.008 k pm s-1 (e.g. for ? = 10 s-1, V = 0.08 im s-1) in the -z direction. For an E.
coli flagellar bundle (a left-handed helix with 4 turns, pitch angle of 410, and contour
length of 13 pm), the mean drift velocity V is 0.07 f gm s-1 in the +z direction.
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Figure 3-5. Predicted lateral drift of a right-handed helix in simple shear flow in the absence of Brownian
motion. The number of full turns is n = 25, pitch angle a = 450, total contour length 1 = 14.1 gm, and we
assumed L/{'= 2. The helix is initially at (0,0,0) and pointing along the x axis (0= 0, Vr= R/2).

In the next section, we present a microfluidic setup to verify this prediction by exposing
helically shaped bacteria to shear flows and measuring the associated lateral drift (Marcos
et al. 2009). We will also discuss the comparison with the model developed here and the
effect of Brownian rotational diffusivity.



3.2 Experimental verification

3.2.1 Experimental setup
We use a nonmotile, right-handed, helically shaped bacterium, Leptospira biflexa flaB
mutant (Picardeau et al. 2001) (Fig. 3-6a), as the microscale helix. These spirochetes have
an average length of 16 pm, thickness of 150 nm, and diameter of 200 nm (Fig. 3-6a and
Wolgemuth et al. 2006). Here L. biflexa flaB mutant acts as a convenient model organism
because of its helical shape.

To expose spirochetes to a shear flow, we fabricated a 110 cm long, serpentine-shaped
microfluidic channel via soft lithography (see section 2.1.1) (Figs. 3-6b,c). The channel has
a rectangular cross section with large aspect ratio (W/H ~ 11; Fig. 3-6c), such that the flow
is uniform across the width, except for a 150 [tm thick boundary layer at the sidewalls
(Doshi et al. 1978). Across the channel depth, the flow has a parabolic profile
u(y) = (3UF/2)[1-(2y/H) 2 ] , leading to a shear rate which varies linearly,

f(y)= du Idy = -1 2 yUF /H 2 , negative in the top half of the channel and positive in the

bottom half. We performed experiments in a channel with dimensions shown in Fig. 3-6c,
where a mean flow speed of 3.09 mm s-1 generated shear rates of order 100 s-1. The
microchannel is equipped with two inlets, one for spirochetes and one for buffer solution
(EMJH liquid medium: Picardeau et al. 2001 and see the Appendix for the media recipe).
Spirochetes were introduced through a microinjector, forming a band of width w ~ 100 pm
at the center of the channel, uniform over the depth, with buffer streams on either side. Due
to the linear variation in shear over depth, the lateral drift of the spirochetes is expected to
vary with depth: spirochetes should move laterally in opposite directions in the top and
bottom halves of the channel (Fig. 3-6c).

bufferpirochetes I cm

x=107.5 m out
(a) (b) (c)

Figure 3-6. (a) Scanning electron micrograph (SEM) of L. biflexa flaB mutant, with typical dimensions
(inset). The bent configuration is a result of SEM preparation and live organisms are nearly always straight.
(b) Microchannel design with separate inlets for spirochetes and buffer. The color-coded squares refer to the
locations of data collection (Fig. 3-7b). (c) Schematic of the separation process (for right-handed helices) in
the microchannel (W = 1 mm, H = 90 pm, w z 100 pm). The lateral drift direction depends on the sign of the
shear y, resulting in divergence of top and bottom streams. (Marcos et al. 2009).

We imaged the spirochete population using phase contrast microscopy with a 40x long-
working distance objective (NA = 0.6) and a CCD camera (PCO 1600, Cooke, Romulus,
MI). At ten locations along the channel (Fig. 3-6b), sets of 50 images were recorded at 1.5
s intervals at three depths: y = -H14 ("bottom"), y = 0 ("mid"), and y = H/4 ("top").
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3.2.2 Experimental results and discussion
Experiments revealed a clear and reproducible drift, with direction determined by the sign
of the local shear rate. A superposition of 50 images acquired at x = 107.5 cm shows drift
of comparable magnitude and opposite direction in the top and bottom halves, and no drift
at midplane, where f = 0 (Fig. 3-7c). Using image analysis to obtain the z position of
individual spirochetes, we determined the probability density function of the across-
channel distribution of cells, their mean position -Z, and the one-standard-deviation spread
a; for each imaging location (x, y). The drift of the top and bottom populations increases
monotonically with x or, equivalently, with time.

(a) 0.12-(b) (c)

top 0.08-H4 [ 0.04-
0.0
0.12- 22.5Cm

-- 43.7 cm
mid 0.08- - 6so cm

v=0 - 86.2 cm

x 0.04- - 07- 5 Cm X

0.0 0
0.12-

bottom
y= -H/4

x 0.04- ALX
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Figure 3-7. Observed spirochete distributions across the channel width for (a) x = 2 cm and (c) x = 107.5 cm.
Orange, black, and blue correspond to the top, mid, and bottom depths. The midpoint of each rectangle
corresponds to the mean position (T) of the distribution, while the half-width is 2 standard deviations (2o). b)
Probability distribution function, obtained from fifty images at each location, for various distances x along
the channel. Over 10,000 spirochetes were imaged for each location x, y. The broadening of the population
distribution is accounted for by the finite depth of focus of the imaging system, combined with variation of
shear (hence, drift) with depth. (Marcos et al. 2009).

The spread in the spirochete distribution with increasing distance x (Figs. 3-7b,c) was not
caused by an actual broadening of the spirochete band, but rather resulted from the
combined effect of a depth-variable drift velocity (v varies linearly with ? = -12yUF/H2
hence with y) and the finite depth of focus 5 of the objective. The resulting standard
deviation in the distribution is a(x) = co + V/ - v-/u- x12, where o0 = 25 gm is the

initial (x = 0) standard deviation, the superscripts ± refer to positions y ± /2 at the top and
bottom of the focus plane, and u and v are the local axial velocity (along x) and lateral drift
velocity (along z), respectively. The depth of focus of the 40x objective (NA = 0.6) taking
a particle diameter of 357 nm (Fig. 3-6a) was i= 10 gm (Meinhart et al. 2000). Using the
observed value v = 0.41 gm s-1 at y = H/4, we obtain v± = 0.50 and 0.32 pm s-1 at y = H/4
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± 62, respectively. The associated o(x) (Fig. 3-7) differs from observations by less than
20%, confirming the predicted effect of the objective's depth of focus. The best fit to the
data corresponds to 3= 14 gm, which is within the uncertainty bounds in the estimate of 3,
as its theoretical prediction (Meinhart et al. 2000) relies on an arbitrary cut-off intensity.
Furthermore, o(x) increases linearly with x, ruling out Brownian motion as the cause of the
increase in the spread. These observations also apply to the population at mid-depth (y = 0).
Brownian motion was negligible and can be calculated from the lateral and rotational drag
coefficients of a helix obtained from the resistance matrix Eq. (3.12) derived through RFT.
The linear and rotational Brownian diffusion coefficients can be estimated using the
Stokes-Einstein equations, D = kT/3 3 and DR= / 6, respectively. With the parameters
from Fig. 3-6a and assuming (J/ = 1.5 (see section 3.2.3), one obtains D = 5x10-14 m2 s1

and DR = 2.3 x 10 s-. This corresponds to a spread in the spirochete band of u-= Dt
6 m after t = x/UF= 348 s (x = 107.5 cm, UF= 3.09 mm s ).

Turns in the serpentine-shaped channel had no effect on the observed drift, for two reasons.
First, particle inertia was negligible, as the particle Reynolds number Re = fL 2/v << 1,

where k= 103 s-1 is the shear rate at y = H/4, L = 16 pm is the axial length of the helix and

v = 1.0 x 10-6 m2 s-I is the kinematic viscosity of the fluid (Di Carlo et al. 2007). Second,
while Dean vortices could in principle form when flow changes direction, they were
precluded by the high aspect ratio of the microchannel (WIH = 11), large radius of
curvature (R = 1 mm) and the low Reynolds and Dean number of the flow (ReF = UFHI v =
0.3 and De = (H/R)0 5 ReF = 0.09) (Howel et al. 2004; Sudarsan and Ugaz 2006). Separate
experiments with neutrally buoyant 1 pm spheres and fluorescent dye further confirmed
the absence of secondary flows. In addition, the bends can not influence separation because
they affect the top and the bottom spirochete populations in the same way.
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Figure 3-8. The standard deviation o- of the spirochete distribution versus distance x in the microchannel.
Circles are experimental data, color-coded according to depth as in Fig. 3-6c. Solid and dashed lines refer to
values calculated with a depth of focus 8 = 10 pm and 14 gm, respectively, while green and red lines
correspond to y = H/4 (or, equivalently, y = -H/4) and y = 0, respectively. (Marcos et al. 2009).

Since drift (T) increases linearly with distance x along the channel (Fig. 3-9a), the mean
drift velocity is constant (V = 0.41 jm s- ), resulting in a linearly increasing separation
distance Az between the top and bottom populations (Fig. 3-9b). Control experiments with
neutrally buoyant, spherical (i.e. achiral) 1 jm beads showed no drift at any depth (Fig. 3-
9a, empty squares), and thus no separation (Fig. 3-9b, empty squares), supporting the
conclusion that drift is a result of chirality.



The top and bottom streams separate linearly with distance down the channel (Fig. 3-9b).
We calculated a separation efficiency, 7 = INL-NRI/(NL+NR), with NL and NR the number
of spirochetes on the left and right sides of the mean position of the mid population; , = 0
for no separation, and 7 = 1 for complete separation. Whereas q < 0.2 for spheres, for
spirochetes q increases along the channel, plateauing at t~ 0.8 after x ~ 70 cm (Fig. 3-9c)
and demonstrating effective separation of the top and bottom populations over the length
of the channel. While we have demonstrated the lateral drift of right-handed helices in this
microchannel, this setup can also be used to separate racemic mixtures of chiral particles
relevant to pharmaceutical and agricultural industries (see section 3-3).
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Figure 3-9. Experimental quantification of spirochete distribution: a) Average lateral position at top, mid, and
bottom depths, and b) separation between top and bottom populations, as a function of distance x along the
channel. c) Hypothetical separation efficiency. In a), b), and c), full circles are data from spirochetes, lines
are linear fits, and empty squares are control data from spherical beads. (Marcos et al. 2009).

3.2.3 Comparison with theory
To confirm that the observed lateral drift is due to the coupling of shear and chirality, we
use resistive force theory as described in Section 3.1.2 and model a spirochete as a 25-tum
helix with dimensions shown in Fig. 3-6a. The resistive coefficients (, {1 can be
calculated by (Childress 1981)

4{- 8grp (3.13)
" n n(4A2 / a2)_ - I I(42 /a2)+

or

{__= ___p_ 
4nrp"l(2 Ia) 4 1 (3.14)

In (2A/ a) ln (2A / a)+
2

where a and A are the half-thickness and wavelength of the helix, respectively.

Thus the drag anisotropy {_ / ; depends on the thickness of the spirochete body and

varies between 1.4 [Eq. (3.13)] and 1.7 [Eq. (3.14)]. As mentioned earlier, in Stokes flow,
the linear and angular velocities of the helix are determined by total force and total
moment balance. This yields the drift velocity v of a spirochete for an arbitrary orientation
relative to the flow. Since we observe that the spirochetes lie in the x-y plane to within 100,
we adopt a two-dimensional model with orientations limited to the x-y plane. The mean
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drift velocity then depends on the probability distribution c(6) of orientations of the helix
relative to the flow. This distribution obeys

aC,=DRC- (bc) (3.15)

where DR = 2.3 x 10-3 s-1 is the rotational diffusivity of an L = 16 gm long spirochete and
d is the rotation rate caused by the shear flow. We approximate 6 as the rotation rate of

an ellipsoid with aspect ratio r, #=-f(cos2 +r 2 sin 2 6)/(1+r2) [Eq. (3.3), (Jeffery

1922)], with r = 70, as computed from the ratio of the rotation rates of the spirochetes at 0
= 0 and 9 = d2 obtained from resistive force theory. The steady-state solution (arc = 0) for
c(6) was obtained numerically (using COMSOL Multiphysics) and the mean drift velocity

computed as V= jrv(9)c(6)d6. This resulted in V= 0.81-1.22 pim s-1 , which is of the

same order of the measured value (0.41 gm s-1). The residual discrepancy might be
associated with the flexibility of the spirochetes and irregularities in their geometry.
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Figure 3-10. The effect of the polar angle Von the drift velocity v. vo is the drift velocity of a helix aligned
with the flow (0= 0; V/= x/2). (Marcos et al. 2009).

For the purpose of discussion, here we present the corresponding three-dimensional (3D)
model to justify the accuracy of the 2D model. The probability distribution c of
orientations of a helix in 3D can be described using the azimuthal and polar angles, 9 and
V(Fig. 3-3): c(y,) obeys

ac=DRV2CV.(c) (3.16)

where 6=e6, +609. We approximate 6 as the rotation rate of an ellipsoid with aspect

ratio r = 70, d given by Eq. (3.3), and

f = f(r2 -l)(cos sin Ocos ysin yf)/(1+r2) (3.17)

The drift velocity v is now also a function of V (Fig. 3-10), in addition to 9 (Fig. 3-4,
bottom inset). v is maximum when the helix is aligned with the flow and zero when it is
parallel to the z axis. The steady-state solution (arc = 0) for c(yo) was obtained



numerically (using COMSOL Multiphysics) and the mean drift velocity computed as

v = I f v(V/, 8)c(y, 0) sin ydydO. The mean drift velocity V is always lower in 3D

compared to 2D (Table 3-1), irrespective of the Peclet number Pe = f/DR. The difference
between 2D and 3D decreases with increasing Pe, as helices spend more time aligned with
the flow and thus in the x-y plane. This explains the observation that the spirochetes lie
within 100 in the x-y plane. For our experimental conditions (Pe ~ 4 x 104) results from the
2D and 3D models are within 0.7%.

Table 3-1. Comparison of V / vo between 2D and 3D models. vo is the drift velocity of a helix aligned with

the flow (0= 0, yr= n/2). (Marcos et al. 2009).
Pe 0.01 0.1 1 10 100 1000 10000 40000

3D v0  0.0000 0.0001 0.0137 0.3063 0.6532 0.8255 0.9236 0.9508

V2D V0 0.0000 0.0003 0.0289 0.4169 0.7275 0.8722 0.9377 0.9571

3.3 Application to chiral separation
Many biochemically active molecules are naturally chiral and can only bind to target chiral
molecules of a specific handedness (Ahuja 1997). The other enantiomer (i.e., the molecule
having opposite handedness) may be inactive or cause undesirable effects. Chemical
synthesis of chiral molecules usually produces a racemic mixture, with equal amounts of
both enantiomers, and their separation based on chirality is of importance in fields ranging
from agriculture to food and pharmaceutical industries. Currently favored approaches rely
on gas, liquid, or capillary electromigration chromatography (Scriba 2008), requiring
costly chiral media. Thus, simpler, alternative approaches to chiral separation are desirable.

Several alternative proposals for chiral separation exploit hydrodynamic forces. Some of
these, yet untested experimentally, rely on the presence of a surface (de Gennes 1999) or
array of microvortices (Kostur et al. 2006), while there has been successful chiral
separation of centimeter-sized crystals in a rotating drum (Howard et al. 1976). Other
methods (Kim and Rae 1991; Makino and Doi 2005) stem from the prediction that a chiral
particle in a simple shear flow experiences a lateral drift (Brenner 1964). However, the
feasibility of this approach has remained questionable, as measurements in Couette cells
reported that the drift of millimeter-sized chiral objects (Makino et al. 2008) and the forces
on centimeter-sized ones (Chen and Chao 2007) differ from predictions by 2 orders of
magnitude (Makino et al. 2008) or even in sign (Chen and Chao 2007).

Here we report that microscale chiral objects, 3 orders of magnitude smaller than previous
studies (Makino et al. 2008; Chen and Chao 2007), experience a lateral drift in a
microfluidic shear flow, and that the magnitude of the drift is in agreement with our theory.
Previous work has demonstrated the ability of microfluidics to separate and sort colloids
by size (Di Carlo et al. 2007), spermatozoa by motility (Cho et al. 2003), and microbes by
their preference for dissolved chemicals (Stocker et al. 2008). Our method uses
microchannels to sort particles by chirality (See section 3.2). We have shown that an



enantiomer (right-handed spirochete) drifts with direction determined by the local shear,
demonstrate the feasibility of this method for chiral separation, and indicate how the high
shear rates achievable in microchannels (>106 s- (Kang et al. 2005)) allow our method to
be extended to smaller scales (<40 nm).

For chirality-induced separation to take place, preferential alignment of helices with the
flow is required. In our experiments, spirochetes were aligned hydrodynamically via
Jeffery orbits. For smaller particles, rotational Brownian motion is more effective at
randomizing orientation. To determine the size of the smallest helical particles that can be
separated in this manner, we find the steady distribution for helices with r = 70 and length
L. The mean drift velocity V is uniquely determined by the Peclet number Pe = f/DR (Fig.
3-11, inset). For Pe >> 1, alignment by shear dwarfs rotational diffusion and V= vo, where
vo is the drift velocity of a helix aligned with the flow. Our experiments are in this limit,
with Pe = 4x10 4 ( k = 103 s- at y = H14). In contrast, for Pe < 10, diffusion destroys the
alignment and V -+ 0. Assuming isometrically scaled helices of length L, DR scales as L-3
decreasing Pe for smaller helices. This can be partially counteracted by increasing k, but

the particle Reynolds number Re = fL 2/v (Di Carlo et al. 2007) must remain small (Re <<
1) to operate in the Stokes regime. Hence, as L decreases, f can be increased as L2. The
competition between Pe and Re determines the smallest helices that can be separated for a
given shear rate, which we estimate as L = 20, 80, and 400 nm for f = 108, 106, and 104 S-,
respectively (Fig. 3-11, open symbols). Shear rates as high as 106 s- have been reported
(Kang et al. 2005) in microchannels, and current technology allows pressure heads of 2 x
108 Pa (Microfluidics Corp., Newton, MA), such that a 10 gm deep, 5 cm long channel
could generate shear rates of 107 s-1, sufficient to separate 40 nm particles.
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Figure 3-11. Size limit for separation of isometric helices of length L and equivalent aspect ratio r =70.

Dashed contours show constant Re (spaced by a factor of 10) and the thick contour is Re = 0.1. Solid
contours show constant Pe. The gray scale shows v7/v 0 . where vo is the drift velocity of a helix aligned with
the flow. The smallest helices which can be separated for a given shear rate, determined by V / vo= 0.66 (Pe=

50, marked by circle on inset) and Re < 0. 1, have L =20 (square), 80 (circle), and 400 nm (diamond) for k=
108, 106 , and 10

4 s-1, respectively. Full symbols mark the parameter regimes of our experiments: Re = 0.03
(triangle) and Re = 5 (hexagon). Inset: V/ vo vs Pe. (Marcos et al. 2009).



While we have demonstrated the lateral drift of chiral objects, one is ultimately interested
in separating a mixture of enantiomers. Because the top and bottom halves of the channel
produce drift in opposite directions, a racemic mixture would separate into four quadrants,
with opposite quadrants containing the same enantiomer. While we believe our technique
represents a significant step forward in enabling reliable chiral separation by shear, it
remains to be seen whether it can extend to the molecular scale (<10 nm). To this end, in
addition to increasing shear rates via improved manufacturing techniques, it will be
interesting to explore the feasibility of using alternative alignment mechanisms to
counteract rotational diffusion. One could operate at higher Reynolds number: preliminary
experiments show successful separation at Re = 5, but further research is required to
elucidate the role of inertia on separation and any constraints on microchannel operation,
such as Dean vortices and performance under high pressure. Finally, not all chiral particles
are helical, so it would be useful to understand what geometries lead to the best separation.

3.4 Summary
In this chapter, we develop a model based on resistive force theory to study the dynamics
of a helix in a simple shear flow. We find that shear flow produces a lift force on chiral
objects such as a helix. This provides a novel mechanism for transport across streamlines
in low Reynolds number. We verify this prediction by exposing a non-motile helical
bacterium in plane parabolic shear. The experiments are in good agreement with the
theoretical prediction. We discuss the application of such microfluidic setup in separating
chiral particles relevant to agricultural and pharmaceutical industries.

For typical flagellated bacteria, the magnitude of this drift velocity is much smaller (~ 0.7
jim s-1, when exposed to shear rate of 10 s-1) than typical swimming speed of bacteria (~50
Rm s- ). However, with the addition of a head, the chirality-dependent forces that lead to a
lateral drift also lead to a reorienting torque. We shall see in chapter 4 that the drift velocity
induced by chiral reorientation can be of the same order as the swimming speed.



Chapter 4

Bacteria swimming in a shear flow

We have seen in the previous chapter that the interaction between shear flow and a chiral
object, such as a helical flagellum, results in a lateral lift force, and therefore a lateral drift.
Here we show that the presence of the cell head results in a novel phenomenon: chiral
forces induce not only a lateral drift, but also a reorienting torque on bacteria. This
reorientation can qualitatively change swimming trajectories. Without chiral reorientation,
the drift velocity is small, but when chiral reorientation is accounted for, the drift velocity
becomes of the same order as the swimming speed. Because swimming and reorientation
are central to the chemotaxis used by many bacteria for foraging, it is important to
understand under what environmental conditions chiral reorientation affects motility. In
this chapter, a theoretical and experimental investigation of a swimming bacterium in a
shear flow is presented. Experimental observations of the motile bacteria Bacillus subtilis
exposed to microfluidic shear flows revealed a clear bacteria drift velocity across
streamlines. These results were in good agreement with the theoretical prediction. Finally,
to confirm whether the observations are purely hydrodynamics effects, we present a
separate experiment to probe bacterial ability to actively response to shear.

4.1 Model formulation
In the simplest form, a bacterium can be modeled as a rigid helix attached to a spherical
head (Fig. 4-1). To make the problem analytically tractable, we study the hydrodynamics
around the head and the flagellum separately, neglecting the hydrodynamic interactions
between the two. This is a good approximation as long as the length of the flagellum is
much larger than the diameter of the head (Childress 1981).

.E y

Figure 4-1. Schematic of a bacterium in a simple shear flow.



Consider a sphere of radius a in a simple shear flow V = ( fy, 0, 0). The center of the
sphere in the inertial frame is xO = (XG, YG, ZG) and the linear and angular velocities of the
center of the sphere are v = (vs, vy, v,) and o = (ao, W),, a@), respectively. The total
hydrodynamic force and torque due to the shear flow on the sphere are

= +{B} (4.1)
M CO

where

CF YG CF

0C 0 0 0 0 0

0 CF 0 0 0 0

0 0 0 CM 0 0 0

0 0 0 0 CM 0 0

0 0 0 0 0 C -fCM

and CF= 6uzua and CM= 8;rya3 (Happel and Brenner 1965).

Here, { } and { B } are the resistance matrix and the matrix capturing the effect of shear on
the sphere. The translational drag of the sphere in shear flow is the same as in uniform
flow, and that the effect of shear flow on rotational drag is to change the rotational rate by
the vorticity.

The dynamics of a bacterium swimming in a shear flow can be obtained by adding the total
forces and torques on the helix and the sphere and equating them to zero. We computed the
hydrodynamic forces and torques due to the shear flow on a helix using resistive force
theory (RFT), as shown Chapter 3 (Eq. (3.12)). It should be noted that the linear velocities
in Eq. (3.12) are computed at the center of the helix. Therefore, before we can add the total
forces and torques on the helix and the sphere, we need to choose one and the same point
where to compute velocities for both the helix and the sphere. For convenience, we shall
choose the center of the sphere to be the location where we calculate the linear velocities of
the bacterium. This will also facilitate comparison with experiments, since the flagellum is
not visible under light microscopy.

P. r

H (F, M, v, o)
(F', M', v', ')

Figure 4-2. Sketch showing the center of the helix (H) and the center of the sphere (S), which are separated
by a distance Ar in 3D space. p is a general point on the helix.



Let us denote the quantities computed at the center of the helix with an apostrophe and
those computed at the center of the sphere without an apostrophe (Fig. 4-2). Therefore the
forces and the torques are related by the following expression

F = ff'(r')dr'

Note that dr = dr' and r+Ar =r'

M = Jr'xf'(r')dr'

Or, in matrix form:

M= Jrxfdr=J(r'xf)-(Arxf)]dr,

M=M'-ArxF

F 1

M) -Arx

For a rigid body motion, the kinematics are related by o = o' and v = v'+ o x Ar :

v 1 -Arx(v' I
o 0 1 o or v' 1= ArxJ(vJ(O' 0 1 Co

(4.3)

Using the convention in Fig. 4-2, Eq. (3.12) becomes

(4.4)

(1
Multiplying Eq. (4.4) with (-Ar x

0
1J and using Eq. (4.3), we obtain

F v

M Co
where

ArxJ

1 )
I-Ar x

(1
and {A}= I

(-Arx

Here {4} and {A} are the resistance matrix and the matrix capturing the effect of shear on
the helix calculated at the center of the sphere with respect to the inertial frame oxyz. Since
the sphere is connected to the helix, Ar = [TEuler]tr (0, 0, a + 1 cos(a)/2), where [TEuler] is the
Euler rotation matrix of the cell body given by Eq. (3.6).

: f(r)dr = f'(r')dr' -> F=F'

note f =f'

(4.2)

(4.5)

j {A'} (4.6)' } I(

M COF o(Vm '



Due to the small Reynolds number of the flow, inertia is negligible and the total forces and
torques must equate to zero.

j + = 0 (4.7)
M )elx M shr

We apply kinematic boundary conditions such that the flagellum is moving together with
the head and the flagellum is rotating along the axis of the cell relative to the head:

= + (4.8)
( )ihelix = ( lO)sphere + ( )rel

where core, = [TEuzer]tr (0, 0, @ez) is the angular rotation rate of the flagellum relative to the
cell body along the axis of the cell.

Substituting Eqs. (4.1) and (4.5) into Eq. (4.7) and employing Eq. (4.8), we obtain

{{}Iip ee+ ~I(~e1+{A}+{~}~jj +{B}= 0
(V)sphere + rel V sphere

0)Isphere O rel -({{}+{{} [A}+B] (4.9)

We have seen in chapter 3 that in addition to rotating in a Jeffery orbit, a helix drifts across
streamlines, due to its chirality. With the addition of a head, the chirality-dependent forces
that lead to a lateral drift also lead to a reorienting torque (Fig. 4-3a). When the bacterium
is aligned with the shear flow in the x direction, the same force which results in chirality-
dependent drift acts upon the helical flagellum in the z direction. The non-chiral cell head
acts as an anchor and thus experiences drag in the opposite direction. This results in a
torque on the swimmer (Fig. 4-3a) and reorients the cell away from the x direction (Fig. 4-
3b). We saw in chapter 3 that the lateral drift velocity of a typical flagellum due to the
chiral force (- 0.7 [tm/s) is much smaller than typical swimming speeds of bacteria (- 50
tm/s). The magnitude of this lateral drift velocity V is rather small compared to a typical

swimming speed of many bacteria. In contrast, we will see that the drift velocity induced
by chiral reorientation can be of the same order as the swimming speed U. Furthermore,
the reorientation induced drift is in the opposite direction to the chiral-force induced drift.



(a) (b)

V

Figure 4-3. a) The chirality-induced lateral drift force on a right-handed helical flagellum and the drag on the
cell head lead to a reorienting torque on a bacterium. b) This chiral torque causes a swimming bacterium to
preferentially point away from the x direction and thus to experience a net drift velocity V that is of the same
order as the swimming velocity U.

To demonstrate that this effect is a direct result of the coupling of chirality, motility and
shear, we compare the net drift velocity among three populations: swimming bacteria, non-
swimming bacteria, and swimming ellipsoids (hypothetical non-chiral swimmers). As
described in chapter 3, the net drift on a chiral object depends on the distribution of the
orientation of the object relative to the flow. When the object is preferentially aligned with
streamlines, for example due to Jeffery orbits, it has a net drift. When all orientations are
equally likely, for example due to strong Brownian rotational diffusion, the net drift is zero.
Incorporating the effect of Brownian rotational diffusivity, we solved the Fokker-Plank
equation to compute the three-dimensional probability distribution c(',) of the
orientations of the bacteria (see also Section 3.2.3):

ac = DRV 2C _ V. (c) (3.16)

where DR is the Brownian rotational diffusivity and 6 = yi,+ 68,.

To model a swimming prolate ellipsoid, we prescribe a constant forward swimming
velocity along the ellipsoid's major axis. The angular velocities w are obtained from the
Jeffery orbit angular velocities, Eqs. (3.3) and (3.17). The Brownian rotational diffusivity
DR is estimated by using the Stokes-Einstein equation DR= eT4j , where {,' is the
torsional resistive coefficient of an ellipsoid perpendicular to its major axis (Steinberger et
al. 1994):

167zu(b 2 +a 1 )
Te (4.10)

3(bj,#6 +af 1a 0)

where aeli and bell are the half major and minor axis length of the ellipsoid, respectively, a
and o are given by
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2 - a -e = aell 1 a -eao =3n " "- 2 + in e" e" (4.11)
e'laela e eelb 2eel a +eeell al e a e ei el el eli eli

and el = a - ,bi is the ellipsoid's eccentricity.

For both swimming and non-swimming bacteria, DR= kT(5 5 + 55)- Here o can be
obtained from the angular velocities (o solved in Eq. (4.9) by realizing that (see section
3.1.2 on Euler angles):

a(" [0 -sinG sinyVcosO 0

m, = 0 cos0 sinyisin 0 V (4.12)

1 0 cos #
or

-cotVcosO -cotV/sinG 1 m

-sinG cosG 0 m, (4.13)

$ cosec y cos 0 sin 0 sin 0 0_i j)

The steady-state solution (ac = 0) for c(L,) was obtained numerically (using COMSOL
Multiphysics) and the net drift velocity V was computed as

V = I r v, (y, 9)c(VI, 0) sin V/d yd (4.14)

The net drift velocities of swimming bacteria, non-swimming bacteria, and swimming
ellipsoids populations are shown in Fig. 4-4.

0.0 ----------
..... Non-swimming bacteria

-0.2 -- - Swimming ellipsoids
- Swimming bacteria

V
U -0.4 -

-0.6-

-0.8 10 20 30 40
Shear rate (s-1)

Figure 4-4. Net drift velocity (V) of a population of swimming bacteria (black solid line), swimming
ellipsoids (blue dashed line), and non-swimming bacteria (red dotted line) in a simple shear flow. The drift
velocities of the three populations were normalized with the swimming speed of bacteria (U = 50 pm/s). The
bacteria were modeled by assuming a 1 gm radius spherical head and a left-handed helical flagellum with 4
turns, pitch angle of 410, and axial length of 10 gm, corresponding to the flagellar bundle of E. coli. For
swimming bacteria, the angular rotation rate of the flagellum relative to the cell body 4e1 = 127 Hz.
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In the absence of flow (zero shear rate), all swimmers are uniformly distributed in all
orientations and thus have zero net drift velocity (i.e. velocity along the z axis). In the
presence of shear, swimming ellipsoids (non-chiral swimmers) undergo Jeffery orbits and
preferentially align with the flow (i.e. the x-z plane). Even though swimming ellipsoids are
able to swim across streamlines, there is equal probability of swimming in the +z and -z
directions. Therefore, the net drift velocity of the ellipsoid population is always zero,
regardless of the shear rate or the size of the ellipsoid (Fig. 4-4, dashed blue line). On the
other hand, when a population of bacteria is exposed to shear, in addition to undergoing
Jeffery orbits, they experience a lateral drift in the +z direction (for a left-handed flagellum)
and a chiral torque that preferentially reorients them to point towards the -z direction. Due
to the chiral drift force, non-swimming bacteria will drift in the +z direction (red dotted
line). Note that the magnitude of the drift velocity due to the chiral drift force is much
smaller than a typical swimming speed of a bacterium, as noted at the end of Chapter 3. As
detailed above, addition of a head results in a chiral torque and, if bacteria are swimming,
this translates to a lateral drift (black solid line) that has opposite sign and considerably
larger magnitude compared to the chiral-force induced drift (red dotted line). Therefore,
due to the chiral reorientation, swimming bacteria with a left-handed flagellum are
predicted to drift considerably in the -z direction (Fig. 4-4). The net drift velocity increases
with the shear rate, due to stronger preferential alignment and chiral reorientation at larger
shear rates, and can be of the same order as the swimming speed, with V/U= 9% at f = 1

s, V/U= 47% at =10 s-, and V/U= 63% at= 30 s-.
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Figure 4-5. Effects of cell swimming speed on the net drift velocity (normalized with average swimming
speed) under various shear rates. The model assumes a 0.2 gm radius spherical head and a left-handed helical
flagellum with 3 turns, pitch angle of 370, and axial length of 6 [tm, corresponding to the flagellar bundle B.
subtilis.

The net drift velocity does not increase indefinitely with shear rate, because there is a
maximum alignment and reorientation when Brownian diffusivity becomes unimportant
(i.e. at large Peclet numbers, Pe = fIDR >>1). However, the net drift velocity will not hit a
plateau either. When the shear rate becomes really large, increasing the shear rate will
increase the chiral drift force enough that the drift velocity in the +z direction due to the
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chiral force on the flagellum becomes of the same order as the drift velocity in the -z
direction due to the chiral torque on the entire organism. When this happens, the net drift
velocity will decrease. This effect is evident at lower shear rates for slow swimming cells
(Fig. 4-5, blue line), compared to faster swimming cells of the same morphology (Fig. 4-5,
green line).
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Figure 4-6. Effect of head size on the net drift velocity, normalized with the swimming speed U, as a function
of the shear rate. The model assumes a left-handed helical flagellum with 3 turns, pitch angle of 370, and
axial length of 6 gm, corresponding to the flagellar bundle of B. subtilis. In all cases, U = 50 jm/s.

Because the chiral torque stems from the presence of the head, it is interesting to consider
the effect of the head's size on the drift velocity for given swimming speed (Fig. 4-6). We
find, as one would expect, that a larger head induces a larger chiral torque and thus a larger
net drift velocity. In addition to a larger torque, a larger head also reduces the Brownian
rotational diffusivity of the bacterium and thus larger Peclet number for a given shear rate,
allowing larger drift velocity for low shear rates.

4.2 The effect of tumbling
The discussion presented above is based on the assumption that the bacteria are smooth
swimmers and do not tumble. In other words, they only and always swim forward and
disperse by means of Brownian reorientation. Many bacteria, such as Escherichia coli and
Bacillus subtilis, adopt a "run and tumble" swimming strategy. During runs, the bacterium
swims along a straight path, and its flagella are bundled together behind the cell. Near the
end of a run, one or more motors reverses, and the flagella unwind from the bundle, which
allows the cell to change its swimming direction (tumble). Once the motors reverse again,
the bundle re-forms, and the cell swims in a new direction, performing a new run.

A Monte Carlo simulation of a population of bacteria was performed. The position x0 and
orientation 00 of each bacterium can be obtained as follows:

.. ........ ............................................................................. ...................... .................... ............................. . .. .. ......................................... : ............................



dt+ '. dt
( 6 rdm /t

(4.15)

where dt is the time step of the simulation, v is the linear velocity of the bacterium, 6 is
the angular velocity satisfying Eq. (4.13), vrdm and 6rdm are the linear and rotational

velocities due to Brownian diffusion.

The deterministic velocity of the swimming bacteria is given by Eq.
be written as

or )={p

where {p = PFF PFM
(FtFM PMM)

(4.9), which can also

(4.16)

is the 6x6 symmetric mobility matrix.

The random motion due to Brownian translational and rotational
the velocity vectors vrdm and a)rdm- These random vectors obey
characterized by (Makino and Doi 2005)

diffusion was modeled by
the Gaussian distribution

( Vrdm (t))=O0

Vrd, (t) vrd, (t')) = 2 kTFFS(t - 0

(vd (t)o0rd(t')) = 2 kTsFM0(t - t')

KO rd, (t)cord, (t')) = 2kTImm6(t - t')

where k is the Boltzmann constant, T is the temperature, 8(t - t) is a delta function, and

the notation ( )indicates an integral average over all time. These conditions essentially

reinstate the features of Brownian diffusivity: (i) the average linear and angular velocities
are zero; (ii) thermal fluctuations lead to Gaussian-distributed random velocity which is
uncorrelated in time. The width of the Gaussian distributions is related to the mobilities
via the Stokes-Einstein relation kTg.

These random vectors can be obtained by calculating the eigenvalues and eigenvectors of
the mobility matrix {p}. This would give us

v'r' = rdm, u,+rdm2 u 2 +rdm3 u3 + rdm4 u4 +rdm5 u5 +rdm6u6
( rdm )

(4.17)

(ord (t))= 0

(0 00t+dt \ 0X /t / t



where ut (i = 1, 2, ... 6) are the eigenvectors and rdmi are the Gaussian distributed random
scalar numbers generated at every time step with a variance of 2kTAf , where A are the
corresponding eigen-numbers.

To model run-and-tumble, we calculate the tumbling probability Ptumble = dt/r (Berg 2004),
where r is the mean run time (-1 s for E. coli). We then generate a uniformly distributed
random number Rungom at every time step of the simulation. If Ptumble > Runf 0 , the cell
tumbles, otherwise the cell continues along the current run. The tumble angle is taken from
a Gaussian distribution. For E. coli, the average change in tumbling angle (measured
relative to the current swimming direction) is 680, with a standard deviation of 390 (Berg
and Brown 1972).

We find that the net effect of tumbles is to decrease the drift velocity (Fig. 4-7).
Importantly, however, the drift still exists, despite the tumbles. The decrease in net drift is
due to the fact that a tumble destroys the alignment induced by shear, increasing
randomness and thus favoring a more isotropic distribution of orientations. Therefore,
given the same morphology, smooth swimming bacteria (i.e. no tumble) would experience
the maximum drift velocity than the ones that tumble. The more frequent they tumble, the
smaller drift velocity they experience. In the limit that they always tumble, the net drift
velocity will reduce to zero.
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Figure 4-7. The effect of tumbles on the drift velocity. The net drift velocity (V) of a population of smooth-
swimming bacteria (black) and run-and-tumble bacteria (blue). Effects of Brownian rotation are included in
the model. The bacteria were modeled by assuming a 0.4 pm radius spherical head and a left-handed helical
flagellum with 3 turns, pitch angle of 370, and axial length of 6 gm, corresponding to the flagellar bundle of
B. subtilis. The angular rotation rate of the flagellum relative to the cell body 4,1 = 250 Hz, giving swimming
speed U = 50 pm/s. The run-and-tumble swimmer had an average change direction of 680 and a standard
deviation of 390 with mean run time r= 1 s.
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4.3 Experimental verification

4.3.1 Experimental setup
We used a smooth-swimming strain of the bacterium Bacillus subtilis, strain 014139
(Szurmant et al. 2004). The cell has an ellipsoidal head with average size of 1x3 pm.
During normal swimming mode, the flagella of this bacterium form a 3-turn left-handed
helical bundle with axial length of 6 gm and diameter of 480 nm (Fujii et al. 2008). The
bacteria are grown using Cap assay minimal media (Zimmer et al. 2002), as described in
the Appendix.

To expose bacteria to a shear flow, we used a 110 cm long, serpentine-shaped microfluidic
channel (Figs. 4-8a,b), similar but not identical to what done before (see sections 2.1.1 and
3.2.1). In this experiment, we use only one inlet (instead of two) to continuously inject
bacteria into the channel. The channel has a rectangular cross section with large aspect
ratio (width/height = 1000Im/90im = WIH ~ 11; Fig. 4-8a), such that the flow is uniform
across the width, except for a 150 [m thick boundary layer at the sidewalls (Doshi et al.
1978). Across the channel depth (far from the side walls) the flow has a parabolic profile,
u(y) = (3UF 12)[1-(2y/H) 2 ], where UF is the average flow speed, leading to a shear

rate which varies linearly over depth, f(y) = du/dy = -1 2YUF /H 2 . The shear rate is

therefore negative in the top half of the channel and positive in the bottom half. We
performed experiments at various flow speeds, resulting in shear rates ranging from 0 to 36
S~.

We imaged the bacteria using phase contrast microscopy with a 40x long-working distance
objective (NA = 0.6) and a CCD camera (PCO 1600, Cooke, Romulus, MI). At a fixed
location ~1 m downstream from the inlet (Fig. 4-8b, blue squared box), 25 sets of 1000
images were recorded at 8.2 ms intervals at a quarter depth, y = -H14 from the midplane.
This was repeated for each shear rate. We assayed 11 shear rates: 0, 2, 4, 6, 8, 10, 15, 21,
26, 31, and 36. Six independent replicate experiments were performed, each time using a
fresh bacterial culture (each culture was assayed over all shear rates).

Images were analyzed using BacTrack, an in-house cell-tracking Java software developed
by Scott Stransky (see Appendix for tracking algorithm and Sekora 2005 for full
documentation of BacTrack). BacTrack locates bacteria in each image and track them
among two consecutive images (Fig. 4-8c) through a search radius: the maximum distance
a bacterium can move between successive frames. Since bacteria were also advected by the
flow, different search radius was used for different shear rates. The search radius for each
shear rate was determined by adding the corresponding flow speed at y = -H/4 with 100
jm s-1 and multiply by the time between two frames (8.2 ms). Given the locations of
bacteria in each frame obtained through BacTrack, we can calculate the swimming velocity
and the net drift velocity through by dividing the distance (displacement) over time
between successive frames.
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Figure 4-8. (a) Schematic of the chiral reorientation process at a quarter depth in the channel, i.e. y = -H14,
for a left-handed flagellum. The microchannel had width W = 1 mm, height H = 90 pm. (b) Microchannel
design showing inlet and outlet. Note that only one inlet was used in this experiment. The square refers to the
location of data collection and was located 110 cm downstream of the inlet. (c) Two sample trajectories of B.
subtilis bacteria in a shear flow, imaged at y = -H14. The center of the colored circles corresponds to the
locations obtained by the image processing routine.

4.3.2 Experimental results and discussion
Experiments performed at a quarter depth from the bottom, y = -H/4, revealed (i) a clear
and reproducible net drift velocity in the -z direction, and (ii) a monotonic increase of the
absolute drift velocity with increasing shear rates (Fig. 4-9). Both features are in agreement
with the theoretical prediction. Also in agreement with theory is the magnitude of the drift
velocity, which is of the same order as the swimming speed, with V/U reaching 9% at a
shear rate of 10 s' and 22% at 36 s 1.
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Figure 4-9. Net drift velocity of B. subtilis 014139 under various shear rates at y = -H/4, normalized by the
mean average swimming speed U = 55 pm s-. Each set of colored squares indicates a separate batch of
bacteria. Six replicates were performed. Solid lines refer to the theoretical prediction assuming a left-handed
helical flagellum with 3 turns, pitch angle of 370, and axial length of 6 pm, and a spherical head of radius 0.4
pm (black line) and 0.8 pm (blue line).
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To further verify that the drift was due to chiral reorientation, a separate set of experiments
was conducted at a quarter depth form the top, y = H/4. Since the shear rate has the same
magnitude but opposite sign compared to the depth y = -H/4, theory predicts that the net
drift at y = H/4 should be equal in magnitude but opposite in sign to that observed at y = -
H/4. These experiments showed that indeed the net drift velocity at both y = -H/4 and y =
H/4 increase in magnitude with increasing shear rate, that they have the same magnitude,
and that they of opposite sign (Fig. 4-10). This provides strong confirmation of the
predicted mechanism.
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Figure 4-10. Net drift velocity of B. subtilis 014139 under various shear rates at y = H/4 and y = -H/4,
normalized by the mean average swimming speed U = 55 pm s-1. Since the shear rates between the top and
bottom layer are opposite in sign, we present the absolute values of the shear rate. Two separate sets of
experiments (light and dark colors) were conducted at y = H/4 (red) and y = -H/4 (green). For each case, two
replicates were performed. The two experiments at y = -H/4 were performed in addition to the ones shown in
Fig. 4-9.

B. subtilis has a prolate ellipsoidal body with average size of 1x3 gm. To determine the
equivalent spherical radius, we can match the average linear and torsional resistive
coefficients between an ellipsoid and a sphere. The linear resistive coefficients parallel and
perpendicular to the ellipsoid's major axis are given by (Steinberger et al. 1994):

{ el = 1 6 x + a 2 a

1 a - e
where qO = In "el" el

eel, ael +ee
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The torsional resistive coefficients are given by:
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where cro and 8o are given by Eq. (4.11)
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The average linear resistance E'j"vg and torsional resistance Eeag over all orientations can
be computed as (Berg 1993)

3 I 2 )
ravg = --- /+ 7 Ti
'eu eul enl

(4.20)

Recall that the linear and torsional resistances for a sphere are CF= 6)qa and CM = 8,rua 3

respectively. For a 1x3 ellipsoid, by matching CF = Se;avg , the equivalent spherical radius

is 0.807 pm. By matching Cv= e;"v, we obtain 0.8023 gm. Both conditions give an
equivalent spherical radius close to 0.8 gm. Using a spherical head of 0.8 pim radius (Fig
4-9, blue line), the model predicts a larger net drift velocity than what observed in the
experiments. It should be noted that the 0.8 gm equivalent radius was obtained by
performing a resistance average over the three principal directions (i.e. by assuming that
bacterial motion in all directions is equally likely). However, not all directions are equally
likely, because bacteria tend to swim along their longitudinal axis. Therefore, one might
expect that an equivalent sphere radius close to the minor axis of the ellipsoid (0.5 pm)
would be more appropriate to model the head. It turns out that a smaller equivalent
spherical head (0.4 jm) was required to be in good agreement with the experiments (Fig.
4-9, black line).
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Figure 4-11. Swimming trajectory of B. subtil
helical pattern, visualized as a sinusoidal path v

is 014139 in the absence of flow. Several
hen viewed from the top.

The discrepancy could be caused by the fact that the trajectories of B. subtilis are not
straight. Experimental trajectories clearly show that B. subtilis performs a helical
swimming trajectory, which we shall refer to here as "wiggle" (Fig. 4-11). In a top view,
the wiggle appears as a side-to-side oscillation superimposed on otherwise nearly straight
swimming segments. These wiggles have been known for a long time for E. coli (Berg

trajectories show a

3 1
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2004; Darnton et al. 2007). The wiggle is important in the present context because it could
increase the effective rotational diffusivity or decrease the preferential alignment, thus
reducing chiral reorientation. However, one should note that this wiggling motion is not
random, because the motion is generated by the offset of the flagellar bundle relative to the
cell body axis (Darnton et al. 2007). To study the effect of this wiggle on the net drift
velocity, we present a new model incorporating the wiggle-dynamics in the next section
(section 4.4).

4.4 Modeling cell head elongation and "wiggling"

In addition to B. subtilis observed in this experiment, wiggling has also been observed in E.
coli (Darnton et. al. 2007) and likely in many other species, since perfect alignment
between the flagellar bundle and the body axis is unlikely. In general, the cell body is not a
sphere and the flagellar bundle does not form exactly at the end-tip of the cell body. In
addition, the bundle axis could be at an angle relative to the cell body's major axis. In this
section, we will develop a model to incorporate the body elongation and the offset of
flagellar bundle relative to the cell body axis.

Top view

xx
Z X

B

Figure 4-12. Schematic of a generalized swimmers, based on three spheres to model an elongated cell head
and on an off-axis flagellar bundle, which induces wiggling. Angle AA denotes the contact point between
cell body and the flagellar bundle. Lower inset: Angles BB and CC are the polar and azimuthal angles of the
flagellar bundle (thick green arrow) relative to the cell body (body fixed frame OXYZ).

For simplicity, we model an elongated cell body as multiple spheres connected in series.
Since the average aspect ratio of B. subtilis is 1:3, we use three identical spheres connected
to one another, as shown in Fig. 4-12. The orientation of the cell body in the inertial frame
is determined by the Euler angle rotation matrix [TEuler] (See Fig. 3-3). Three additional
angles (AA, BB, and CC) are required to generally define the offset location and
orientation of the flagellar bundle relative to the cell body (Fig. 4-12). Angle AA sets the
location where the bundle forms. BB and CC are the polar and azimuthal angles
determining the orientation of the flagellar bundle relative to the cell body axis (Fig. 4-12).
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When AA = 0, the contact point is at the end-tip of the cell body. Also, when AA = 0, there
is only one degree of freedom to determine the offset angle (i.e. either BB or CC is needed
to determine the off-axis angle).

We shall choose the center of the cell head (i.e. the center of the middle sphere) as the
location where we calculate the linear and angular velocities of the bacterium. The
dynamics of a swimming bacterium in a shear flow can be obtained by adding the total
forces and torques on the helix and the spheres and equating them to zero, as done before
(see sections 3.1 and 4.1). The total hydrodynamic forces and torques due to the shear flow
on a sphere of radius a and on a helix are given by Eqs. (4.1) and (3.12), respectively. The
linear and angular velocities in those equations are computed at the center of the sphere
and the helix, respectively. Therefore, we need to calculate the corresponding resistance
and shear contribution matrices of the helix and the other two spheres at the center of the
middle sphere. This can be obtained by employing Eq. (4.6) (following the identical
procedure presented in section 4-1):

{{=( 1 { Arhelix A 1 0
-Arheix 1 0 1 -Arhelix x 1

1 0 1 Arsph_front/ba
sph -front /back _Arsph _front I back X Ar 1 0kj

( 1 0
{B} sph=frontiback _o/a ( j{B '} (4.21)

sph-_frontlIbackX I

The distance measured from the center of the middle sphere Ar for the helix and the two
spheres are given by:

Arheix = [TEuler] tr {[TCC] t r [TBB t r (I cos(a)/2, 0, 0) + [TM tr (a, 0, 0) + (2a, 0, 0)} (4.22)

Asph-front [TEuler] tr (-2a, 0, 0) Arsph-back= Euler tr (2a, 0, 0) (4.23)

where
cos AA 0 -sin AA cos BB 0 -sin BB

[TA] 0 1 0 [TBB] 0 1 0

sin AA 0 cosiA L sin BB 0 cos BB

cosCC sin CC 0

[Tcc= sin CC cos CC 0 (4.24)
0 0 1

After obtaining the resistance matrices {$}, {Jphfront}, {jph mid1, and I sph back} and the
shear contribution matrices {A}, {Bsph-front}, {Bsphmid}, and {Bsph-back}, we calculate the
total forces and torques on the assembly and equate them to zero.



+ i + +() =0 (4.25)
M )hei, M )sph-front +M sphmid M sph -back

We apply the following kinematic boundary conditions, expressing the fact that the
flagellum is moving together with the head and the flagellum is rotating along its axis
relative to the head:

s )ph _ front / sph _back = V sphmid V K head

= + (4.27)
helix = Kjhead + (47rel

where orel = [TEuIer]tr [TCC]tr [TBB] tr (0, 0, wrel) is the angular rotation rate of the flagellum
relative to the cell body along the axis of the flagella.

After putting everything together and simplifying by combining the resistance matrices of
the head into one matrix { } and similarly for the shear contribution matrices into {B }, Eq.
(4.25) becomes

L )head + rel head +{ B =

where

I ~1 {~}sph- front + I Jsphmid + I I sphback
and

{ B} {B} h - front +{B mid +{B} sph back

We can now solve for the linear and angular velocities of the head:

(IO head O rel {A}+{B}] (4.28)

Because of the off-axis position of the flagellar bundle, one expects a wiggle in the
swimming trajectories. To test this, I conducted a simulation tracking the position and
orientation of a single bacterium by setting AA=CC=0 and BB=180, in the absence of
shear flow and Brownian motion (Fig. 4-13). As expected, the model produces a helical
trajectory, which appears as a sinusoidal path when viewed from the top, in general
agreement with the experimental observations (Fig. 4-11). However, using this parameter,
the pitch length and the radius of the helical trajectory predicted by the model (1 gm pitch
length and 0.4 gm radius) are smaller than those observed in the experiment (4 jim pitch
length and 1 gm radius). It turns out that for the parameters of the cell head and flagellar



bundle used in this model (3 spheres of radius 0.5 gm and a left-handed helical flagellum
with 3 turns, pitch angle of 370, and axial length of 6 gm), no combination of offset angles
AA, BB, and CC would be able to give a helical trajectory with 4 gm pitch length and 1
gm radius. This suggests that other aspects of the physics are absent in the model. In fact,
recently, it was shown that B. subtilis could form two flagellar bundle (personal
communication with Martin Li, University of Edinburgh). This aspect is not explored in
this thesis. Here, we would first like to investigate if wiggle swimming has an effect on the
drift velocity.

Using the new model, we first quantify the effect of cell head elongation on the net drift
velocity, in the absence of wiggling (i.e. without offset or misalignment in the flagellar
bundle, or AA = BB = CC = 0). This model is compared to the earlier, simpler model of a

single spherical head. As discussed above, a 1x3 jim ellipsoid has nearly exactly the same
mean drag (both translational and rotational) as a 0.8 jm radius sphere. One might expect
that an elongated cell body would give rise to more alignment and thus a stronger chiral
reorientation, in turn yielding a larger drift velocity. However, the model shows that the
two configurations are in good agreement (Fig. 4-14), confirming that a single sphere is a
good approximation of an elongated cell head as long as the resistive coefficients are
matched. This is not unexpected, because the forces and the torques acting on the body
between the two configurations becomes nearly the same.

Top view 1 Pm

Figure 4-13. Wiggling in the trajectory of a swimming bacterium in the absence of flow. The ellipsoid
represents the cell head of the bacterium. The flagellar bundle is offset relative to the cell body axis by 180.
The red point shows the initial position of the bacterium at the start of the simulation and the solid line shows
that trajectory of the center of the middle sphere. The inset shows the trajectory as viewed from the top. The
model assumes a left-handed helical flagellum with 3 turns, pitch angle of 370, and axial length of 6 gm,
corresponding to B. subtilis flagellar bundle and a cell head made of three spherical heads of radius 0.5 pm.
The three angles determining the flagella bundle offset are AA = CC = 0 and BB = 180. Brownian motion
was neglected in this simulation.
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Figure 4-14. Effects of elongation and wiggle on the net drift velocity. The model assumes a left-handed
helical flagellum with 3 turns, pitch angle of 370, and axial length of 6 pm. The black line shows the
theoretical prediction that agrees well with the experimental data (see Fig. 4-9). The 3-sphere model was
calculated using 3 identical spheres of radius 0.5 gm (cyan). The three angles determining the flagellar
bundle offset are AA = CC = 0 and BB = 5' (red).

When we introduce a small offset angle between the body axis and the flagellar bundle
(AA = CC = 0, BB = 50), we see that the net drift velocity decreases significantly (Fig. 4-
14, red line). Although the helical trajectory produced by these offset parameters do not
match the pitch and radius measured in the experiments, it is clear that wiggle has an
equivalent effect in reducing the preferential alignment, thus reducing chiral reorientation.
This model proves that wiggling induces a decrease the net drift velocity.

4.5 Bacteria active response to shear
Given that shear is prevalent in many bacterial habitats, one is led to hypothesize that
bacterial might have adapted to life in shear. One potential adaptation would be the ability
to tune motility depending on flow conditions, for example to conserve energy by shutting
down motility at high shear rates. Results in the previous sections have shown that shear
can markedly impair swimming, implying a potential waste of propulsion energy for
organisms swimming in flow. The ability to adapt motility to flow conditions, however,
implies the capability of measuring shear. Larger organisms, including copepods (Strickler
and Bal 1973) have been shown to possess the ability to sense velocity gradients, yet
nothing is known in this respect regarding bacteria. Whereas we know that bacteria can
very accurately sense chemical gradients, nothing is known about their ability to sense
velocity gradients. Here, we investigate for the first time whether bacteria can sense
velocity gradient, by conducting a dedicated set of experiments to measure whether
motility changes in response to shear.

To test this, we have designed and carried out novel experiments to determine if bacteria
change swimming behavior (in particular, speed) after being exposed to high shear. We
investigated four different bacterial strains from different natural environments:
Escherichia coli (human gut), Pseudoalteromonas haloplanktis (coastal ocean),



Pseudomonas aeruginosa (soil and human respiratory system), and Bacillus subtilis (soil).
We use the microchannel set-up described in section 4.2, which we filled with a
suspension of bacteria before the onset of the experiments. We begin by recording a movie
at a location close to the inlet, at a quarter depth from the bottom (y = -H14). We then
expose bacteria to a shear flow having a mean shear 500 s-1 for 9 minutes using a
programmable syringe pump (PHD 2000 Programmable, Harvard Apparatus, Holliston,
MA). Since we are probing motility changes in response to shear, we are only interested in
the mean value of shear, instead of the precise shear value at a given location. Shear rate of
500 s-1 is small enough to keep the Reynolds number of the bacteria below unity (Re =
fI2/v= 0.05, using characteristic length of a bacterium including its flagella L = 10 gm),

but much larger than typical shear rates experienced in their natural habitat. Imposing them
to large shear rates would ensure their response if they are able to sense velocity gradient.
Due to the finite length of the microchannel, we program the syringe pump to alternate
between the "infuse" and "refill" mode, so that the same bacteria are retained in the
microchannel. Alternating between these two modes would alternate the flow directions
and thus the sign of shear. However, here, we are only interested in the magnitude of the
shear and not the sign. We then acquired movies every 10 s for 300 s, and analyzed them
to quantify swimming speed. This was done first by locating and tracking the positions of
bacteria using BacTrack. Given the locations in each frame, we can then calculate the
speed by dividing the distance (displacement) over time between successive frames.
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Figure 4-15. Time evolution of the mean swimming speed of a bacterial population after exposure to a shear
rate of 500 s-1 for 9 minutes. Colors refer to Pseudoalteromonas haloplanktis (blue), Bacillus subtilis (black),
Escherichia coli (green), and Pseudomonas aeruginosa (red). Solid lines refer to the values before shear
exposure.

The mean swimming speeds of all bacteria probed in this experiment do not change after
exposure to strong shear (Fig. 4-15). These results show that bacteria do not respond to
shear by changing their motility. However, this does not conclude that bacteria are not able
to sense and/or response to velocity gradient. There could be other ways they might
respond that are not assayed in this experiment, for example by releasing chemical
compounds, changing metabolic rate, or self-dividing (reproduction).
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4.6 Summary
We presented a complete model based on resistive force theory to study the dynamics of a
swimming flagellated bacterium in a simple shear flow. We discussed that the presence of
the cell head results not only in a lateral drift, but also in a reorienting torque. Due to this
reorientation, bacteria swim with a preferential drift perpendicular to the shear plane. We
showed that the magnitude of the drift velocity is in the same order of the swimming speed.
We learned that run and tumble swimming strategy and wiggle swimming behaviour
reduce the net drift velocity. Experiments by exposing motile soil bacteria Bacillus subtilis
in microfluidic shear flows reveal a good agreement with the theoretical prediction. Finally,
further experiments suggest that bacteria do not actively respond to shear, which confirms
that the chiral reorientation process is a purely passive hydrodynamic effect.

The current theoretical model could be improved. We are not able to match the helical
trajectories observed in the experiments. One could pursue modeling two flagellar bundles
and investigate a set of offset angles that would give helical trajectory that matches the
observation.



Chapter 5

Summary and conclusion

This thesis explored the coupling between bacterial motility and ambient fluid flow. In
chapter 2, we presented a microfluidic setup to generate vortices on scales relevant to
microbial movement, while at the same time tracking responses of individual swimming
microorganisms. We illustrated the ability of the setup to yield quantitative single-cell
information on the behaviour of microbes exposed to a recirculating shear flow. We
applied this setup to the marine bacterium P. haloplanktis and the marine alga D.
tertiolecta. The experiments suggest that bacteria will be mostly advected and aligned in a
turbulent flow, whereas motile algae can overcome mild turbulence levels. Furthermore,
the experiments also suggest that P. haloplanktis swimming trajectories are not affected
under typical turbulent conditions in the open ocean, whereas their trajectories are
significantly aligned with the flow under coastal ocean and breaking waves turbulence.

Since most natural flow fields are experienced simply as shear by bacteria, we developed a
mathematical model to study the microhydrodynamics of a flagellated bacterium in a
simple shear flow. We studied the hydrodynamics of the head and the flagellum separately,
neglecting the interactions between the two. In chapter 3, we presented the dynamics of a
helix in a simple shear flow and found that the helix drifts across streamlines due to its
chiral morphology. We verified this prediction by exposing a strain of non-motile helical
bacteria, Leptospira biflexa flaB mutant, to a plane parabolic shear flow. Experiments
showed that the drift velocity was in good agreement with that computed from the model.
The residual discrepancy might be associated with the flexibility of the spirochetes and
irregularities in their geometry, which could be explored in future investigations. We
discussed the application of such a microfluidic setup in separation processes of chiral
particles, which are relevant to agricultural and pharmaceutical industries.

After understanding the physics of a helix in shear, we discussed the dynamics of a
swimming flagellated bacterium in a simple shear flow in chapter 4 through modeling and
experiments. We showed that the presence of the cell head results in a reorienting torque.
This causes bacteria to swim at an angle to the shear plane. Our model predicted that the
streamline crossing velocity (the average velocity perpendicular to the streamline) is of the
same order as the swimming speed. We learned that a run and tumble swimming strategy
and the off-axis orientation of the flagellar bundle cause a 'wiggle' in the swimming
trajectories, reducing the streamline crossing velocity. Experiments in which smooth
swimming Bacillus subtilis bacteria were exposed to microfluidic shear flows gave good
agreement with the theoretical prediction. The wiggling trajectory produced by the
theoretical model matched the experiments qualitatively. However, we were not able to
produce a trajectory that matches the observations. Improvements to the model, such as the
incorporation of two flagellar bundles (recently observed at the University of Edinburgh;
Martin Li, pers. comm.), could reduce the discrepancy. Further experiments suggest that



bacteria do not actively respond to shear, confirming that the observations regarding chiral
reorientation are a purely passive hydrodynamic effect.

This thesis provides a fundamental understanding of the hydrodynamic effects of shear on
swimming bacteria. Our findings contribute to our understanding of bacterial transport in
the natural environment. Since we expect that this hydrodynamic reorientation can
significantly affect chemotaxis, it is important to understand under what environmental
conditions chiral reorientation affects chemotactic motility. For example, one could study
the dispersion of a bacterial population through direct numerical simulations (DNS) by
coupling realistic flow fields (e.g. turbulence in the ocean or groundwater flow in soil)
with the microhydrodynamic effect of chiral reorientation.

Our understanding of the effects of flow on swimming bacteria is far from comprehensive
and there is ample scope for future work. While the model has successfully been validated
against experiments, there are still discrepancies between the theory and observations. The
model presented here is based on a rigid body assumption, whereas in reality cells can be
flexible. The interaction between the external forces due to a shear flow and the elastic
flagellum could change the shape of the bacteria (Kim and Powers 2005). Furthermore,
recent work reveals that B. subtlis can form two flagellar bundles (Martin Li, pers. comm.).
A theoretical model incorporating cell elasticity and/or two flagellar bundles could
potentially resolve the discrepancy between the experimental observations and the current
model.

In addition, the present study is limited to a shear flow away from a surface. The behavior
of bacteria near surfaces is a fundamental determining factor in biofilm formation, where
cell attachment occurs mostly under flow conditions. When shear flows occur near
boundaries, the additional hydrodynamic effects of the wall on motility must be accounted
for. In the presence of shear, E. coli was observed to preferentially swim upstream in a
microfluidic channel (Hill et al. 2007). However, our understanding of how shear at
boundaries affects swimming and attachment is primitive at best. One could study this by
extending the current model based on resistive force theory to incorporate boundary effects,
by making the resistive force coefficients a function of the distance from the boundary.

The calculation of instantaneous dynamics, demonstrated in this work, is only a first step
towards understanding chemotactic behavior. Although previous work (Bowen et al. 1993;
Luchsinger et al. 1999; Bearon and Pedley 2000; Bearon 2003; Locsei and Pedley 2008)
has demonstrated an effect of shear on chemotaxis, the interaction of the shear flow with
the chiral morphology of bacterial flagella was not included in the analysis. Experimentally,
one could study bacterial chemotaxis in shear flow using a microfluidic setup that can
generate shear flows and steady linear concentration gradients (see Ahmed et al. 2010a), to
determine whether shear hinders or favors chemotaxis.
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Appendix

Growth media recipe for Pseudoalteromonas haloplanktis

1% TSB (1 L)
10 grams of TSB
25 grams of NaCl
IL of mQ water
Autoclave before use.

Glycerol Stocks
20% glycerol final concentration

Growth Protocol
Inoculate 1:10 (from glycerol stock) in the growth media at room temperature with shaking
at 150 rpm for 15 hours.



Growth Media recipe for Leptospira biflexa (modified from Current Protocols in
Microbiology) Current Protocols in Microbiology (2007) 12E.4.1-12E.4.12
Copyright 2007 by John Wiley & Sons, Inc.

Albumin supplement (200 mL)
Dissolve 10 g Bovine Serum Albumin (BSA) into 50 mL distilled water with stirring (-30
min). Add the following:
1 mL 1.5% (w/v) MgCl 2.6H 20
1 mL 0.4% (w/v) ZnSO4.7H 20
1 mL 1.5% (w/v) CaCl2.2H 20
1 mL 0.02% (w/v) vitaimin B12
1 mL 10% (w/v) pyruvic acid (prepared from sodium salt)
0.4 g glycerol (-0.4 mL)
1.25 g Tween 80 (-1.25 mL)
Adjust final volume to 100 mL with H20
Sterilize by filtration through a 0.22-jim filter
Store indefinitely at -20 0C

EMJH, base (1.6 L)
1.8 g Na2HPO4
0.54 g KH2PO4

1.8 g NaCl
0.45 g NH 4Cl
0.009 g thiamine chloride
Add H20 to 1.6 L

EMJH liquid medium (1 L)
800 mL EMJH base
100 mL albumin supplement (see recipe above)
100 mL 0.5% (w/v) FeSO 4.7 H20 to final concentration of 0.05% (w/v)
Adjust pH to 7.4 with NaOH or HCl as necessary
Sterilize by filtration through a 0.22-jm filter
Divide into aliquots as needed for experiments
Store up to 2 months at 4"C

Glycerol Stocks
5% glycerol final concentration

Growth Protocol
Inoculate 1:10 (from glycerol stock) in EMJH liquid medium at 30'C with shaking at 80
rpm for 3 to 4 days.



Minimal Media Growing Protocol for Bacillus subtilis
1. Streak out cells o/n on a TBAB plate, grow overnight at 30 C.
2. Start 5ml day culture in Cap Assay Minimal (CAM) with a starting OD 600 = 0.030.

(add 1mM IPTG for smooth swimming strain 014139)
Scrape the cells off the plate, and re-suspend them in 500 gL of CAM. Take the OD 600
of the cell suspension, and dilute them so that the final concentration in the 5 mL
culture is at an OD 600 = 0.030.

3. Grow until OD 600 = 0.40 (around 5 hours) at 37 C, shaking at 250 rpm.
4. Add 50gL 5% Glycerol, 0.5M Na-lactate (filter sterilized).
5. Shake for additional 15 minutes.

Glycerol Stocks
1. Streak out cells o/n on a TBAB plate, grow overnight at 30 C.
2. Pick a single colony from the plate, and grow in a 3 mL culture of LBr for 6 hours.
3. Add 900 gL of glycerol (or 300 gL DMSO).
4. Freeze in a -80 C freezer. The stocks should be good for many years.

Solutions
Cap Assay Minimal (1L)
50mM KPO4 (6.805 g KH2PO4 + 8.71 g K2HPO4) pH=7
1mM MgCl 2 (0.203 g MgC12.H2O)
1mM NH 4SO4
1:1000 Sporulation Salts
Autoclave
for every 20ml, add:
60gL HMT (5 mg/mL each of histidine, methionine and tryptophan, filter sterilized)
200pL TBr
200gL IM Sorbitol (filter sterilized)

LBr
10 g Tryptone
5 g Yeast Extract
5 g NaCl
qs to 1 L water
autoautoclave

TBr
10 g Tryptone
5 g NaCl
qs to 1 L water
autoclave



Tryptose Blood Agar Plates
33 g Tryptose Blood Agar
3 g Agar
qs to IL water
autoclave

1X Sporulation Salts
0.14M CaCl2
0.01M MnCl 2

0.20M MgCl2



BacTrack particle tracking algorithm - adopted from Sekora 2005.

Basic Rule:

1. Each child (particle in frame n+1) comes from one parent (particle in frame n).
2. Each parent begets one child.

Algorithm:

1. Locate particles in frame n (parent particles) and frame n+1 (child particles).
2. Define a cutoff radius (the search radius): R, the maximum distance an object can

move between successive frames.
3. Consider all particle pairs (parent from frame n, child from frame n+1). Compute

distances for all pairs. Throw out all pairs whose distance exceeds R.
4. Consider one parent particle at a time. There are three possibilities:

4a. Parent has no children: when no child-particle is within the search radius of
that parent (for example the particle could have gone out of focus). The
trajectory ends for that parent.

4b. Parent has one and only one child: when one and only one child-particle is
within the search radius of that parent. In this case, one needs to check if the
child could have more than one parent. There are two possibilities:
4bi. Child has only one parent: consider this a match. The parent and the

child are the same particle.
4b2. Child has more than one parent: end the trajectory of that parent.

4c. Parent has more than one child: when more than one child-particle is within
the search radius of that parent. The trajectory ends for that parent. This
case is analogous to 4b2.

5. After one cycles through all of the parents, there will be some children left without
a parent. Those children are new trajectories (for examples, particles coming in
focus).

6. Repeat the process for the next exposure starting from Step 2.


