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ABSTRACT

The chemical diversity found in plants has served as a major source of inspiration to
many synthetic and biological chemists. Nature has evolved enzyme active sites to
catalyze the synthesis of structurally complex compounds that serve as pharmaceuticals,
insecticides, dyes, perfumes, and biofuels. In Catharanthus roseus, approximately 130
structurally complex monoterpene indole alkaloids are produced, including the clinically
used anti-mitotic drugs, vinblastine and vincristine. The common intermediate to all
monoterpene indole alkaloids is strictosidine, the product of an asymmetric Pictet-
Spengler condensation of tryptamine and the iridoid monoterpene secologanin. This
reaction is catalyzed by the enzyme strictosidine synthase. This thesis describes the use of
kinetic isotope effects, the rate dependence on pH, as well as structural and
computational data to propose a mechanism by which strictosidine synthase catalyzes the
Pictet-Spengler reaction. Notably, the data also shed light on the mechanism of the
widely used nonenzymatic reaction. Interestingly, the Pictet-Spenglerase strictosidine
synthase belongs to a superfamily of enzymes that have mainly been observed to catalyze
ester hydrolysis. Using the p-propeller fold conserved in both strictosidine synthase and
the related hydrolase, paraoxonase, rational mutagenesis was used to convert strictosidine
synthase into a hydrolase. Intriguingly, during the rational design process, the function of
a closely related strictosidine synthase homolog was also functionally characterized as a
hydrolase. In addition to reengineering proteins with new catalytic activity, the chemical
diversity in plants can also modified using metabolic engineering. However, this
approach requires knowledge of the genetic blueprints of the plant to be known. Using
the recently released C. roseus transcriptome sequencing data along with co-expression
analysis, this thesis describes the functional characterization of a new P450 gene involved
in metabolizing a key intermediate in the biosynthesis of bioactive bisindole alkaloids.
With the functional characterization of this new gene, a combination of gene silencing
and synthetic biology techniques will provide a greater understanding on how to "tune"
alkaloid biosynthesis in C. roseus in order to generate more functionally diverse
molecules.

Thesis Supervisor: Sarah E. O'Connor
Title: Associate Professor of Chemistry
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CHAPTER 1

BACKGROUND AND SIGNIFICANCE



1.1 Natural products

Natural products are organic molecules produced by living organisms found throughout nature.

These small molecules, which are also referred to as secondary metabolites, are not typically

considered to be essential for the growth, development, and reproduction of the organism, nor

are they produced under all environmental conditions or physiological stages [1]. In many

organisms, natural products are released as chemical responses to protect the host or to allow the

host to communicate with the environment. The structural complexity that Nature has evolved in

secondary metabolism has been of great interest to chemists and biologists for decades. Notably,

between 1981 and 2006, of all small molecule new chemical entities, 34 % were classified as

natural products or semisynthetic derivatives [2, 3] (Fig. 1.1). Because natural products have

evolved to exhibit biological activity, these compounds have successfully served as templates for

the development of pharmaceuticals, dyes, flavors, repellants, material protectants, perfumes,

herbicides, and bioenergy sources [4-6]. Furthermore, other applications for natural products can

be determined by studying their interactions with the proteins they target in their native host [7].

While a complete understanding of the mechanisms of action of these compounds is ideal,

natural products continue to serve as a rich source of novel structures with unique bioactivities.
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Figure 1.1 Examples of natural products and derivatives that are clinically approved drugs.



The wide array of stereocenters, rings, and oxygenation patterns found in natural products serves

as a major source of inspiration for organic chemists. Nature has provided a template for

chemists to discover new reactions to generate these interesting synthetic targets [8]. Synthetic

efforts are critical, as the isolation of a lead compound from a complex mixture of natural

products can be challenging and often fails to provide enough material for full structural and

biological characterization. Many synthetic research groups are interested in developing new

methodologies and catalysts for regio- and stereo-selective syntheses and semi-syntheses of

natural products and their derivatives [9, 10]. Additionally, chemists have constructed libraries of

compounds using "diversity oriented synthesis", a process whereby efficient synthetic routes to

combinatorial libraries are based on structural motifs found in natural products [11]. High-

throughput screens have been developed to identify bioactive small molecules produced in these

libraries [12, 13]. However, these synthetic approaches have their drawbacks. Synthesis is labor-

and time-intensive as well as expensive. While the use of combinatorial chemistry may yield

libraries of new pharmacophores for drug development, natural products are so skeletally diverse

that new synthetic strategies need to be developed to provide easy access to many natural

product analogs. Most importantly, identifying and subsequently deconvoluting the biological

target of the newly synthesized small molecules remains to be the bottleneck in high-throughput

methods aimed at creating new molecules with enhanced bioactivity [12].

Although synthetic methods have improved significantly in terms of providing access to natural

and unnatural products, the structural complexity of all natural products cannot be achieved via

synthesis. As the genetic blueprints for the biosynthesis of many natural products become

available, metabolic engineering has proven to be a powerful tool for the generation of natural



products and derivatives, especially in plants [14]. While the biosynthetic machinery required to

assemble natural products must be known, studying nature to identify, characterize, and

manipulate enzymes from these biosynthetic pathways can serve as a useful tool for increasing

chemical diversity and finding unique bioactivities.

Natural products have been isolated from microorganisms, marine life, insects, animals such as

venomous snakes, as well as from plants, which is the focus of my thesis. Although less than

15 % of higher plant species having been explored rigorously for bioactivity, plants harbor over

200,000 known chemical entities that are, for the most part, classified as secondary metabolites

[14-16]. Notably, plants are still a major source of drugs as evidenced by the 91 plant-derived

compounds that have been in clinical trials since 2007 [15, 16]. Plant natural products can be

divided into four major groups based on biosynthetic origins: (1) terpenoids, (2) glucosinolates

and cyanoglucosides, (3) alkaloids, and (4) phenylpropanoids and other phenolic compounds.

The building blocks of these natural products are acetyl/malonyl coenzyme A, shikimic acid,

mevalonic acid, 1-deoxyxylulose 5-phosphate, and a variety of proteogenic and non-proteogenic

amino acids (Fig. 1.2). These precursors are derived from primary metabolic pathways such as

glycolysis, the pentose phosphate cycle, and photosynthesis. Unlike the clustered, and therefore

more tractable, biosynthetic genes that direct the synthesis of natural products in

microorganisms, genes involved in the synthesis of plant natural products are typically scattered

throughout the genome, complicating the gene discovery process. However, the recent advances

in molecular biology, classic biochemical techniques, sequencing of genomes and

transcriptomes, and enzyme engineering have all provided major insight on natural product

biosynthesis in plants.
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1.2 Monoterpene indole alkaloid biosynthesis

The monoterpene indole alkaloids are derived from tryptophan (shikimate pathway), isopentenyl

diphosphate (IPP, 1-deoxyxylulose 5-phosphate pathway), and dimethylallyl diphosphate

(DMAPP, 1-deoxyxylulose 5-phosphate pathway). These alkaloids have been identified in eight

different plant families, but are most commonly found in Apocyanceae, Loganiaceae, and

Rubiaceae families. In the Apocyanceae family, Catharanthus roseus, also referred to as the

Madagascar periwinkle, produces approximately 130 monoterpene indole alkaloids. Many of

these compounds have important bioactivities, such as the anti-cancer properties of vinblastine

and vincristine (Fig. 1.3). In recent years, major progress has been made to identify the cDNAs

in C. roseus that encode the biosynthetic enzymes responsible for the production of monoterpene

indole alkaloids.
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Figure 1.3 Bioactive monoterpene indole alkaloids found in C. roseus.



The first committed step in monoterpene indole biosynthesis is the condensation of tryptamine

and secologanin. Tryptamine is formed by the pyridoxal-dependent decarboxylation of L-

tryptophan by tryptophan decarboxylase (TDC) (Fig. 1.4 A) [17]. Recently, Runguphan and

coworkers have shown that upon RNAi-induced silencing of tryptophan decarboxylase in planta,

alkaloid production is eliminated and can be rescued by the addition of tryptamine and analogs

[18]. Interestingly, overexpression of TDC did not result in an increase in monoterpene alkaloids

[19, 20]. Feeding studies with 3H-labeled monoterpenes suggest that secologanin is derived from

geraniol and the downstream biosynthetic intermediates 1 0-hydroxygeraniol, iridodial, and

iridotrial [21, 22]. To form secologanin, geranyl diphosphate synthase (GPPS) condenses one

unit of IPP and one unit of DMAPP in a head-to-tail fashion to form geranyl diphosphate (Fig.

1.4 B) [23]. Based on sequence similarity to the known Arabidopsis thaliana GPPS, a cDNA has

been identified for GPPS in C. roseus; however, this cDNA has not been functionally

characterized. Geraniol synthase (GS) then converts geranyl diphosphate to geraniol. A cDNA

encoding this enzyme has been isolated and characterized from Ocimum basillicum [24] and

Cinnamomum tenuipilum [25]. The isolation of the cDNA encoding geraniol synthase from C.

roseus has not yet been reported [26]. Geraniol is then hydroxylated at the 10-position by the

P450 geraniol-lO-hydroxylase (G10H, CYP76B6) (Fig. 1.3). The cDNA that encodes G10H has

been isolated and characterized in planta and in vitro via heterologous expression in yeast [27].

The G1OH enzymatic product subsequently undergoes cyclization and hemiacetal formation to

form an iridotrial intermediate. The oxidation of the iridotrial intermediate to a carboxylic acid

and subsequent glucosylation, hydroxylation, and esterification lead to the formation of loganin.

The order of these enzymatic steps is only speculative. Of the enzymes in this section of the

pathway, 7-deoxyloganin hydrolase (DL7H) [28] has been partially purified, and a cDNA that



encodes S-adenosyl methonine-dependent loganic acid 0-methyl transferase (LAMT) has been

isolated, cloned for heterologous expression in Escherichia coli, and functionally characterized

[29]. Loganin then undergoes oxidative cleavage via the heme-dependent P450 secologanin

synthase (SLS, CYP72A1) to form secologanin. The cDNA that encodes SLS has been identified

and heterologously expressed in E. coli for in vitro biochemical characterization [28].
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Tryptamine and secologanin undergo a diasteroselective Pictet-Spengler condensation reaction to

form (S)-strictosidine, a transformation catalyzed by strictosidine synthase (STR, Fig. 1.5) [30,

31]. STR has been isolated and cloned from other monoterpene indole alkaloid-producing plants

such as Ophiorrhizapumila [32] and Rauvolfia serpentina [33], the source of STR for

crystallographic studies [34, 35]. Strictosidine is the common intermediate for all monoterpene

indole alkaloids. The other epimer, 3-(R)-vincoside, has not been isolated in plants. Notably,

when in vitro assays of STR or downstream enzymes and various synthetic stereoisomers of

condensed tryptamine and desvinylsecologanin were performed, the enzymes demonstrated

stringent substrate preference for substrates with the S stereochemistry at C3 [36].

Once formed, strictosidine is then deglucosylated by strictosidine-@-D-glucosidase (SGD) to

form a hemiacetal species. The cDNA of SGD has been isolated, cloned, and heterologously

expressed in F. coli for in vitro characterization [37]. SGD has also been identified in other

plants, such as R. serpentina [38, 39]. After deglucosylation, the reactive hemiacetal undergoes

several allylic isomerizations, and the biosynthetic pathway diverges (Fig. 1.5). Several

reduction and rearrangement products are formed from deglycosylated strictosidine, including

dehydrogeissoschizine and cathenamine (Fig 1.5). Importantly, several medicinally important

compounds arise from the divergence of the biosynthetic pathway such as ajmalicine

(hypotensive agent), serpentine (topoisomerase II inhibitor), yohimbine (used for treatment of

erectile dysfunction) [40]. While most of the dedicated enzymes that control this branchpoint

remain unknown, some studies suggest that enzyme-catalyzed reductive and oxidative

chemistries are involved [41-46].
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Vindoline biosynthesis is the best characterized pathway, with five of the six predicted enzymes

required to catalyze the transformation from tabersonine to vindoline having been cloned (Fig.

1.6). Notably, all intermediates involved in conversion of tabersonine to vindoline are produced

in the aerial parts of differentiated C. roseus plants and are not found in roots (Fig. 1.6) [47]. The

specific localization of these enzymes has guided the search for the genes involved in vindoline

biosynthesis. For example, some enzymes are highly expressed in the early stages of leaf

development in specialized idioblast and laticifer cell types [48, 49] or in the epidermis of young

leaves [50]. Enzymes from these tissues can be purified to homogeneity and sequenced to

identify the corresponding cDNA. The localization of these enzymes can also help deconvolute

sequencing of C. roseus cDNA libraries prepared from whole organs. Additionally, the

expression of the transcripts involved in the late stages of vindoline biosynthesis is light

regulated in young leaves, which is also helpful in the identification of cDNA transcripts [51].

Starting with tabersonine, the NADPH-dependent tabersonine- 16-hydroxylase (Ti 6H,

CYP71D12) hydroxylates the 16-position of the indole moiety to produce 16-

hydroxytabersonine [52]. The cDNA for T16H has been isolated, cloned, and heterologously

expressed in E. coli for in vitro biochemical studies [53]. A cloned and characterized S-adenosyl

methionine-dependent 16-0-hydroxytabersonine- 16-0-methyl transferase (1 60MT) then

methylates 16-hydroxytabersonine to form 16-methoxytabersonine [54]. In vitro studies on

160MT were conducted using E. coli as a heterologous host for protein expression [50].

The only uncharacterized enzymatic step in vindoline biosynthesis is the hydration of the 2,3-

double bond of 16-methoxytabersonine to 16-2,3-dihydro-3-hydroxytabersonine. Following



hydration of 16-methoxytabersonine, the S-adenosyl methionine-dependent N-methyl transferase

(NMT) then transfers a methyl group to the indole nitrogen to form desacetoxyvindoline [55].

Interestingly, this enzyme has been recently identified as a homolog to tocopherol C-methyl

transferases involved in vitamin E biosynthesis [56]. A cDNA for the NMT has been isolated,

and E. coli was used as a heterologous host for in vitro biochemical characterization [56]. The

last two steps in vindoline biosynthesis involve a hydroxylation at the C4-position and a

subsequent acetylation. The first step requires a 2-oxyglutarate-dependent diooxgenase,

desacetoxyvindoline 4-hydroxylase [57], followed by an acetyl coenzyme A-dependent

deacetylvindoline-O-acetyl transferase [51]. cDNAs for both these enzymes have been identified,

cloned, and heterologously expressed in E. coli for in vitro biochemical characterization. Once

vindoline is made, the alkaloid catharanthine can dimerize with vindoline to ultimately form the

bisindole alkaloids, such as vinblastine and vincristine, in mature leaves [46, 58, 59].
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1.3 Why study monoterpene indole alkaloid biosynthesis in C. roseus?

Many enzymes involved in monoterpene indole alkaloid biosynthesis in C. roseus that remain to

be identified catalyze complex and unique biochemical transformations, making this an attractive

metabolic system to explore. Significant progress has been made despite the complexity of the

system, which contains an intricate network of natural products that are synthesized and

regulated in tissue-, organ-, and development-specific ways. In the past 15 years, the addition of

elicitors [60] has been demonstrated to increase the levels of secondary metabolites in plants,

which has aided in the elucidation of alkaloid biosynthesis in C. roseus. The plant stress

hormone methyl jasmonate has been found to upregulate the production of monoterpene indole

alkaloids and enhance enzyme activity during the germination stage of C. roseus and Cinchona

seedlings [61]. This increase in enzyme production can be used to facilitate identification of

enzymes involved in alkaloid biosynthesis for functional characterization and to determine where

these enzymes are localized in planta.

Elicitation has also been used to determine the flux of alkaloids in planta. The jasmonate-

responsive transcription factors, ORCA2 and ORCA3, have been identified using transfer DNA

tagging approaches and, in C. roseus, upon overexpression of these genes an increase in alkaloid

production has been observed [62, 63]. Interestingly, G1OH is not regulated by ORCA2 and

ORCA3, but is methyl jasmonate-responsive, indicating that other jasmonate-responsive

transcription factors exist. This detail can potentially be exploited to study GOH biosynthesis,

which is especially attractive since many of those steps leading to GOH production are

unknown.



Additionally, the compartmentalization of alkaloids, such as those involved in vindoline

biosynthesis, can be further exploited using elicitors such as methyl jasmonate to study to

metabolites made in specific plant tissues. For example, while tabersonine is converted to

vindoline in aerial parts of the plants, tabersonine is metabolized to produce different alkaloids in

the roots of C. roseus [64] (Fig. 1.7). The biosynthesis of the alkaloids produced in the roots is

highly susceptible to methyl jasmonate elicitation, and can thereby be used to aid in the

identification of the enzymes involved in monoterpene indole alkaloid biosynthesis [65] (Fig.

1.7).
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The study of plant natural products has also benefited by the discovery that heterologous genes

can be transformed into plants via the soil bacteria Agrobacterium tumefaciens and A.

rhizogenes. Dicotyledenous C. roseus plants infected with A. rhizogenes bacterium produce

"hairy roots" (Fig. 1.8 A) at the site of infection, which can be propagated in plant growth media.

The chemical stability and fast growth that can be achieved in hairy root culture have provided

biochemists with a robust system to study alkaloid biosynthesis and its regulation. It takes only

2-3 weeks to obtain gram quantities of hairy roots (Fig. 1.8 B) that accumulate high levels of

alkaloids. Other plant tissue such as seedlings (Fig. 1.8 C), used to study alkaloids produced in

more specialized tissues, such as the leaves, take longer to grow.

Precursor-directed biosynthesis in hairy roots has been used to assess the bottlenecks of

monoterpene indole alkaloid biosynthesis in C. roseus as well as to probe the substrate

specificities of the enzymes involved. Additionally, feeding substrates to hairy roots can guide

mutagenesis studies that may ultimately aid in reengineering the pathway enzymes to produce

more structurally diverse alkaloids. For example, McCoy [66, 67] and coworkers reported that

STR does not turnover 5-and 6-substituted tryptamine analogs. However, with the identification

and Agrobacterium-mediated transformation of the V214M STR mutant [67], Runguphan [68]

and co-workers were able to engineer the production of more structurally diverse molecules in

hairy root cultures.

Most importantly, with the development of sequencing technology, an increasing amount of

sequence data will become available for plant genomes and transcriptomes. To date, there are 11

plants for which the entire genome has been sequenced [69], all of which have been published



within the past 11 years. The transcriptomes of hundreds of plants, including C. roseus, have also

been reported. These data will enable the unknown steps in alkaloid synthesis to be

characterized, which could lead to the reconstitution of parts of plant secondary metabolism in

faster growing organisms, such as E. coli or yeast (Saccharomyces cerevisiae). Examples of

yeast reconstitution have been reported for portions of the plant pathways for artemisinin [70]

and benzoisoquinoline [71].

Finally, secondary metabolic pathway enzymes most likely arose from primary metabolism [72,

73], suggesting that studying the intricate chemistries catalyzed by plant natural product

biosynthetic enzymes may provide insight on how classes of enzymes may be evolutionary

related. Secondary metabolites outnumber primary metabolites by an order of magnitude, and

with roughly 300,000 documented species of higher plants, a large piece of unknown chemical

terrain remains to be explored [14].
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1.4. Research goals and thesis overview

A. Elucidation of the mechanism of a Pictet-Spengler catalyzing enzyme. The Pictet-Spengler

reaction is a key reaction in the synthesis of tetrahydro-p-carboline and tetrahydroisoquinoline

alkaloids [74]. In organic synthesis, acidic conditions are used to generate a mixture of

enantiomeric products from the condensation of a p-ethyl arylamine and an aldehyde, and the

mechanism of product formation is not clearly understood [74]. However, Nature has evolved a

"Pictet-Spenglerase," strictosidine synthase (STR), to catalyze the asymmetric synthesis of

strictosidine, the common tetrahydro-p-carboline intermediate for all monoterpene indole

alkaloids. Chapter 2 focuses on the use of biochemical techniques, such as kinetic isotope

effects, crystallographic studies, and theoretical calculations to propose a mechanism for the

STR-catalyzed diastereoselective synthesis of strictosidine. The results of this research have

provided a plausible mechanism for STR acid-base catalysis [31].

B. Use of rational design to convert strictosidine synthase into a hydrolase. STR belongs to the

lactonohydrolase/paraoxonase superfamily, which is comprised of a number of hydrolases

including paraoxonase and C20orf3, as well as other proposed hydrolases [75]. The unique

"Pictet-Spenglerase" catalytic activity of STR suggests that this enzyme may be an outlier in this

protein superfamily [76]. The crystal structures of paraoxonase [77] and STR [35] reveal that

both enzymes share a similar protein fold. Chapter 3 describes how the p-propeller fold is

exploited to convert STR into a hydrolase by using the sequences of closely related STR

homologs that do not display Pictet-Spenglerase activity as a guide for rational mutagenesis. The

results of this work reveal that one of the STR homologs from Vitis vinfera is a hydrolase.

Moreover, using the sequence of this V vinfera hydrolase as a target, STR from C. roseus was



converted into a hydrolase. In addition to the discovery and functional characterization of a new

protein, the data also demonstrate that the p-propeller architecture can indeed be used as scaffold

to introduce new activities within the lactonohydrolase/paraoxonase family. As such, there may

be a possible evolutionary link between STR and some of the hydrolases found in plants and

higher eukaryotes [72].

C. Discovery and characterization of a unique P450 involved in monoterpene indole alkaloid

biosynthesis. Many steps in monoterpene indole alkaloid biosynthesis remain to be characterized

at the enzymatic and genetic level. Tabersonine, the precursor to the clinically used bisindole

alkaloids, can undergo many oxygenation reactions. Some of these transformations are

speculated to be P450-dependent, but the cDNA of these enzymes remain unknown. With the

recent release of the C. roseus transcriptome sequence data, Chapter 4 describes how hierarchical

clustering and co-expression analyses enabled the identification of putative P450 enzymes

involved in the metabolism of tabersonine. A whole cell assay was designed to screen for P450

activity using tabersonine as a substrate. In this work, CYP71BJ1, the first member of a new

P450 family, was demonstrated to hydroxylate both lochnericine and tabersonine alkaloids at the

19-postion. Similar methods can be used to screen additional candidate P450 genes that oxidize

tabersonine, such as lochnericine-6,7-epoxidase.
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CHAPTER 2

MECHANISM OF STRICTOSIDINE SYNTHASE: A PICTET-SPENGLER

CATALYZING ENZYME

Part of this chapter is published in the
Journal of the American Chemical Society, 2008, 130, 710-723.



2.1 Introduction

The Pictet-Spengler reaction produces tetrahydro-@-carboline and tetrahydroisoquinoline

compounds that are essential in the (bio)synthesis of bioactive natural products. The

structural complexity that can be achieved using this reaction makes the Pictet-Spengler

reaction an important method for alkaloid synthesis [1]. A number of synthetic research

groups have focused on developing asymmetric catalysts to control the stereochemical

outcome of Pictet-Spengler reactions in the synthesis of complex molecules [2, 3].

However, Nature has evolved an enzyme with an active site built for asymmetric

synthesis at pH 7. Biochemists are interested in studying the Pictet-Spengler reaction

catalyzed by biosynthetic enzymes to understand how Nature developed the machinery to

catalyze such intricate chemistry.

The Pictet-Spengler reaction occurs in several steps [1, 4]. First, an electron-rich p-

arylethylamine such as tryptamine condenses with an aldehyde to form an iminium

intermediate (Fig. 2.1, steps 1-3). Second, the aryl amine attacks the electrophilic

iminium (the cyclization step) to yield a positively charged intermediate (Fig. 2.1, step 4),

which is then deprotonated to yield two possible enantiomers of a p-carboline product.

Intriguingly, after iminium formation, Pictet-Spengler reactions that utilize indole amine

substrates can proceed either by an attack of C2 on the indole moiety to yield the 6-

membered ring intermediate (Fig. 2.1, step 4) or by an attack of C3 to yield a

spiroindolenine intermediate (Fig. 2.1, step 4a) that can undergo a 1,2-alkyl shift (Fig.

2.1, step 4b) to form the product. Both C2 and C3 of the indole moiety of the aryl amine

are nucleophilic. According to Baldwin's rules [5], forming the 6-membered ring



intermediate via a 6-endo ring closure is favorable, while 5-endotrig cyclization to form

the spiroindolenine is unfavorable. However, evidence exists for both mechanisms in

solution [6-9], and at the outset of these studies, the predominant mechanism of the

nonenzymatic or the enzymatic Pictet-Spengler reaction was not entirely clear.
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To date, only four enzymes are known to catalyze the Pictet-Spengler reaction:

deacetylipecoside synthase [10], deacetylisoipecoside synthase [10], norcoclaurine

synthase (NCS) [11], and strictosidine synthase (STR) [12] (Fig. 2.2). These enzymes

have been isolated from several plant biosynthetic pathways [10, 13-16].

Deacetylipecoside and deacetylisoipecoside synthases catalyze a Pictet-Spengler

condensation of dopamine and secologanin to form (R)-deacetylipecoside and (S)-

deacetylisoipecoside, respectively (Fig 2.2 B). These enzymes form the common

precursor for a large family of tetrahydroisoquinoline alkaloids. NCS catalyzes a

condensation of dopamine and 4-hydroxyphenylacetaldehyde to form (S)-norcoclaurine,

the precursor to over 5000 benzoisoquinoline alkaloids (Fig. 2.2 C). Lastly, STR [17, 18]

catalyzes the first-committed step in the biosynthesis of thousands of monoterpene indole

alkaloids, a structurally diverse family of natural products that includes pharmaceutically

valuable compounds such as vinblastine, vincristine, and camptothecin [19, 20] (Fig. 2.2

A). This chapter focuses on understanding the mechanism by which STR converts

tryptamine and the iridoid monoterpene secologanin to form the product (S)-strictosidine

(Fig. 2.2), the common biosynthetic precursor to all monoterpene indole alkaloids.
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At the time of this study, little was known about the structures and mechanisms of the

Pictet-Spengler-catalyzing enzymes. STR was the first Pictet-Spenglerase to be identified

and was isolated over 30 years ago from Catharanthus roseus and Rauvolfia serpentina

(89 % sequence homology to the enzyme from C. roseus). Several steady-state kinetic

analyses had been conducted on STR to understand the enzyme's mechanism of catalysis

[21, 22]. Finally in 2006, STR from Rauvolfia serpentina was co-crystallized in the

presence of both secologanin (2FPC.pdb) and tryptamine (2FPB.pdb) substrates [23].

These structures provided the first insights into the orientation of substrate binding and

enzymatic mechanism. The STR crystal structure revealed the presence of three ionizable

residues, Tyr 151, His3 07, and Glu309 (R. serpentina numbering) in the enzyme active

site (Fig. 2.3) [23]. Site-directed mutagenesis of Tyr151 to phenylalanine did not alter the

catalytic activity significantly, suggesting that the ionizable hydroxyl group does not play

a key role in catalysis [23]. His307 appeared to be involved in binding to the glucose

moiety of secologanin as evidenced by the crystal structure and the significant increase in

secologanin Km after mutation of this residue to alanine [23]. Site-directed mutagenesis

of Glu309 resulted in a 900-fold decrease in catalytic activity, supporting the

involvement of this residue in catalysis [23].
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Figure 2.3 STR crystal structure highlighting select amino acids that comprise the active
site, which binds tryptamine and secologanin. The crystal structure of STR with
tryptamine (2FPB.pdb) is overlaid with structure of secologanin (2FPC.pdb). Both
substrates are shown in pink. The amine of tryptamine is highlighted with a blue arrow,
and the aldehyde of secologanin is highlighted with a red arrow. Surrounding polar
residues are shown in green, and the key Glu309 residue is shown in yellow. Nonpolar
residues are shown in gray (Numbering is from R. serpentina enzyme).



Using kinetic isotope effects (KIEs), pH rate profiles, and STR structural data, we

proposed a mechanism for enzyme catalysis. The rate-dependence on pH and KIE data

suggest the involvement of both an acid-catalyzed step presumably involved in iminium

formation (Fig. 2.1, step 3) and a base-catalyzed step involved in the final deprotonation

step (Fig. 2.1, step 5). Based on primary KIEs measured for enzyme assays between the

pH range of 3.10 to 9.19, we propose that an active site glutamate residue, previously

implicated by site directed mutagenesis [23], acts as a general acid and a base that

initially assists in formation of an iminium species (step 3, Fig. 2.1), and then acts to

deprotonate C2 to form strictosidine (step 5, Fig. 2.1). Additionally, ab initio and

crystallographic studies with a potential transition state mimic provided insight into the

nature of substrate binding and the productive transition states involved in the reaction.

Specifically, ab initio calculations provided insight into step 4 of Fig. 2.1 using

tryptamine and acetaldehyde as a model substrates for the Pictet-Spengler reaction.

Notably, ab initio calculations suggest that formation of the spiroindolenine intermediate

shown in Fig. 2.1 (step 4a) is nonproductive, and a 1,2-alkyl shift of this intermediate

(Fig. 2.1, step 4b) does not occur.

2.2 Results

2.2.1 Observed isotope effects of the maximum rate, V

Isotope effects of the enzymatic reaction catalyzed by STR from C. roseus were

measured with tryptamine and [2- 2H]-tryptamine to determine whether the isotopically

sensitive step is the rate-controlling. STR was expressed and purified as reported by

McCoy et al [24]. I collaborated with Dr. Justin Maresh, who prepared tryptamine and [2-



2H]-tryptamine (Fig. 2.1) substrates following parallel synthetic procedures to ensure

that any trace impurities that might affect the reaction rate would be present in both

labeled and unlabeled samples. Upon incubating purified STR with isolated secologanin

[24] and tryptamine/ [2-2 H]-tryptamine at 30 'C, differences in the rate of hydrolyzed

strictosidine (hydrolysis occurred because assays were quenched with 2 M NaOH)

formation were observed by HPLC (Fig. 2.4) [25]. At saturating concentrations of both

substrates tryptamine/ [2- 2H]-tryptamine and secologanin, a primary deuterium isotope

effect of 2.67 ± 0.13 on the maximum rate, DV, was observed [26]. For the purpose of

this chapter, isotope effects on limiting macroscopic rate constants Vmax and Vmax/Km are

referred to as DV and D(V/Kx), respectively (the subscript "x" indicates the varied

substrate). The maximum rate, V, expressed under saturating substrate conditions, is

controlled by the rate constants of all steps after substrate binding up to and including the

release of product [27]. As such, the isotope effect on V is essentially dependent on the

chemical reaction and product release. A primary KIE on DV indicates that the isotopic

sensitive step is rate-controlling. Since we observed a significant primary KIE for DV, the

data suggest that the chemical steps of the Pictet-Spengler reaction, namely deprotonation

of the 6-membered intermediate (Fig. 2.1, step 4) and not product release, are largely

rate-controlling.
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Figure 2.4 A) Representative HPLC trace for STR-catalyzed reaction of tryptamine with
secologanin to yield strictosidine. As a result of quenching the assays with NaOH, the
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kinetic data for tryptamine and [2- 2H]-tryptamine (2.5 mM secologanin, 80 nM STR,
30'C) obtained using this assay. The error bars represent the 95 % confidence of the
standard deviations of 4 experiments.



2.2.2 KIE V/K

At limiting substrate concentrations, V/K is the pseudo second order rate constant. The

magnitude of isotope effects on V and V/K can be used to estimate the relative rates at

which the substrates dissociate from the enzyme [27]. A smaller, but significant primary

KIE was observed at limiting concentrations of either tryptamine/[2- 2H]-tryptamine or

secologanin (D(V/Ktyp) = 1.87 + 0.37 and D(V/Ksec) = 1.45 L 0.28). When the varied

substrate forms products faster than it dissociates from the enzyme-substrate complex,

there are external commitments to catalysis, which lower the isotopic effect on V/K. As

such, tryptamine is most likely released at a faster rate than secologanin from the

enzyme-secologanin-tryptamine ternary complex [27]. The magnitude of D(V/K) isotope

effects also provides information about order of substrate binding for multi-substrate

enzymes. In an ordered mechanism, D(V/K) approaches unity if the varied substrate binds

to the enzyme first [27]. Our data show primary KIE values greater than unity were

measured (D(V/Ktrp) = 1.87 ± 0.37 and D(V/Ksec) = 1.45 ± 0.28), suggesting that the order

of substrate binding is random. The random binding of substrates is consistent with

structural data obtained of STR co-crystallized with tryptamine or secologanin, data

revealing that either substrate can bind to STR independently of one another [23].

Additionally, isotope effects on V and V/K can be used to describe the relationship

between the Michealis constant (Kn) and the dissociation constant KD [28]. Using the

equation derived from Klinman et al. (equation 2.1) [28], previously measured Km values,



and the isotope effects on V/K, the KD for secologanin and tryptamine were estimated to

be KD tryp = 2 pM (Km tryp = 4 pM) and KD sec = 22 pM (Km sec = 50 pM), respectively.

DV

D Dv 1= K ./KD (Equation 2.1)
(V / K) - 1

2.2.3 Rate dependence on pH

The effect of pH on V can be informative about the mechanism of an enzyme, especially

in this case where the chemical reaction, rather than for example product release, is rate-

controlling. Residues involved in acid or base catalysis, product release, substrate

binding, or maintaining the structural conformation of an enzyme can be titrated by

changing the pH of the assay conditions. Since, under steady-state conditions, the

enzyme-substrate complex dominates, we assumed that V is not sensitive to substrate

binding. Conformational changes may occur after both substrates are bound and can

contribute to V. However, upon examination of STR crystal structures with and without

substrates, the crystal structures appear to be the same, suggesting that this enzyme does

not undergo any obvious enzyme conformational changes. Furthermore, the relatively

large KIE measured on V led us to assume that V is primarily sensitive to the protonation

states of groups involved in catalysis, and not product release. To verify this, STR was

assayed with secologanin (at a concentration 50 fold above Km) and tryptamine/[2- 2H]-

tryptamine (concentration of 100 Km) over a pH range of 3.10 - 9.19 at 30 C (Fig. 2.5).

The data best fit a diprotic model (equation 2.2), which was used to estimate the pKa

values of two ionizable species to be 4.70 and 8.28. When the pH profiles of assays with



tryptamine and [2- 2H]-tryptamine were compared, a large primary isotope effect was still

observed from pH 4.6 to pH 9.19, indicating that the chemical step, and not product

release, is rate-controlling. The decrease in DV at acidic pH may be due to either rate-

controlling product release or another mechanism. This decrease prevents the exact

assignment of the pKa at acidic pH; however, the significant primary isotope effect that is

still observed indicates that the titrated residue is a catalytic species. Based on the pH

profile, we estimated the pKa of the residue to be 4.6. Loss of activity was observed at

extreme pH; however, circular dichroism (CD) spectroscopy suggested that the protein

secondary structure was unchanged at basic and acidic pH values, though CD

spectroscopy does not provide a detailed picture of enzyme structure.

Based on previously reported site-directed mutagenesis of the three ionizable residues

(Tyr151, His307, and Glu309) in the STR active site, we attributed the pKa of 4.60 to

Glu309, which was previously implicated to be critical for enzyme catalysis (a 900-fold

decrease in activity was observed when this residue was mutated to alanine) [23]. The

assignment of the residue responsible for the pKa of 8.28 was not clear. The pKa of the

hydroxyl group of tyrosine in solution is 10.2 [29]. However, even if the active site

environment modulated the pKa of this phenolic moiety to 8.28, mutation of Tyr151 to

phenylalanine resulted in only a small decrease in kcat of 78 min' (Tyr1 51) to 58 min'

(Tyr151 Phe), indicating that this residue is not involved in acid-base catalysis [23]. The

pKa of histidine in solution ranges from 5.5-7. Mutation of His307 to alanine resulted in

a 40-fold decrease in enzyme activity. This residue could be involved in catalysis, but the

mutation of Glu309 to alkaline resulted in a more significant decrease in rate (900-fold)



and, most importantly, the His307 is positioned further away from the primary amine of

tryptamine (4 A) and the aldehyde in secologanin (5 A) to be directly involved in

catalysis [23]. Based on the STR crystal structures, there are no other ionizable residues

within the active site that are positioned near the reactive moieties of tryptamine and

secologanin. Furthermore, there does not appear to be an ordered water molecule in the

active site that could account for this pH dependence of the enzymatic rate. Although the

pKa of tryptamine in solution is 10.2 [29, 30], the pKa value can shift in a hydrophobic

environment such as an enzyme active site, within a range of 7.5-10.5 [30]. Therefore,

the pKa of the basic species could be the tryptamine substrate. However, since the rate-

controlling step occurs after cyclization (Fig. 2.1, step 4), the deprotonation of tryptamine

may not be observed in the pH dependence of V. The iminium that forms during the

reaction (Fig. 2.1, step 3) could also be the ionizable species displaying the pKa of 8.28.

The pKa of an iminium is between 7 and 8 [31]. If the iminium is deprotonated, it is no

longer electrophilic, and then cyclization cannot occur. Since structural analyses did not

reveal any other obvious residues that have a basic pKa of 8.28, our best hypothesis is

that the either the tryptamine substrate or iminium intermediate is the basic species

observed in the pH rate profile.
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2.2.4 Co-crystallization of STR with an inhibitor

The Pictet-Spengler reaction of indole amine substrates has been proposed to proceed

through a spiroindolenine intermediate resulting from attack from the C3-position of the

indole (Fig. 2.1, step 4a and 4b) on to the carbon of the iminium, which can undergo a

1,2-alkyl shift and subsequent deprotonation (Fig. 2.1, step 5) to form product [9].

However, there is also evidence that a direct attack on the iminium carbon by C2 on the

indole (Fig. 2.1, step 4) contributes to the mechanism [8, 32, 33]. It is not clear what

mechanism is favored for the enzyme. Crystallographic studies could be used to

demonstrate how the iminium is oriented relative to C2 and C3 during the cyclization

step. However, the iminium intermediate is not stable enough for co-crystallization with

RsSTR. To examine step 4 in detail, a potential transition state mimic (Fig. 2.6 A) was

synthesized by Dr. Anne Friedrich via a reductive amination of the iminium intermediate

formed during a Pictet-Spengler condensation between tryptamine and secologanin. This

reductive amination product has a flexible sp3 hybridized amine linkage between the

indole and secologanin, which, once bound in the enzyme active site, could possibly

model the conformation of the transition state leading from the iminium to the cyclized

state in Fig. 2.1, step 4. When assayed with CrSTR (10 nM), tryptamine (20 tM), and

secologanin (80 tM), the reductive amination product was found to be a potent inhibitor

of CrSTR with an estimated IC50 of 3 ± 0.5 nM. The kinetic data was fit to a sigmoidal

logistic curve for the estimation of IC50 values, and the error represents the standard

deviation of three individual experiments.



The inhibitor readily co-crystallized with RsSTR, and a crystal structure of the complex

was obtained at 3 A resolution. Drs. Joachim St6ckigt, Santosh Panjikar, and Elke Loris

completed this work. The best fit to the electron density suggested that the indole of the

inhibitor did not match the orientation observed when tryptamine alone was bound to

RsSTR (2FPB.pdb) (Fig. 2.6) [23]. The data demonstrate that tryptamine can adopt

different binding modes whereas the secologanin moiety of the inhibitor overlaid well

with the previously reported enzyme-secologanin complex (2FPC.pdb). The electron

density of the inhibitor did not show a productive cyclization state since C2 (4.78 A) and

C3 (3.86 A) of the inhibitor were not positioned close to the electrophilic iminium carbon

(Fig. 2.6). We therefore concluded that the rigidity of the sp2 hybridized iminium moiety

appears to critical for productive binding that can lead to cyclization, and that the more

flexible sp3 hybridized amine of the inhibitor can adopt nonproductive conformations.

Unfortunately, these structural studies were not able provide insight into the mechanism

of the cyclization step (Fig. 2.1, step 4).
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2.2.5 Theoretical calculations

Since co-crystallization with a transition state mimic did not provide insight on the

orientation of the iminium species in the cyclization step, we turned to theoretical

modeling of transition states on the pathway to step 4 in Fig. 2.1. Dr. Baron Peters from

the lab of Dr. Bernhardt Trout used ab initio calculations to model the transition states of

the spiroindolenine and the 6-membered ring intermediates from the iminium species.

The free energies of intermediates and transition states (Fig. 2.6) were computed relative

to the trans form of the iminium species, the lowest calculated energy ground state

structure. To simplify the time required for computational analysis, calculations were

performed with the iminium species formed from the condensation of tryptamine and

acetaldehyde instead of secologanin. Eight different transition states were found for the

cyclization at both C2 (Fig. 2.1, step 4) and C3 of the indole (Fig. 2.1, step 4a). These

transition states link either the trans- or cis-iminium species with 5- or 6-membered ring

intermediates via attack of C2 or C3 of the indole with the methyl group (from

acetaldehyde) oriented either "over" or "away" from the indole during the cyclization

step (Fig. 2.7). Fig. 2.7 shows the free energies of the stable species that could potentially

form along the reaction coordinate with the lowest energy transition states required to

form this network of species. Some transition states of higher energies have been omitted

because they provide redundant connections in the network. On the left axis, transition

states can be accessed from the trans-iminium species and the corresponding reaction

timescales are shown on the right axis.



AF
kcal/mol

12 spiroindolenine F I
10 ml s IHI16

8 1 1-6 S100

CF6 CF _ [ 10:8 S
A G ( 10$

4
spiroindolenine 01$

2 D K
16-membered ring

E
trans iminium cis iminium

6-membered ring;M'N !H

trans iminium cis iminium 6-membered ring spiroindolenine

Figure 2.7 Free energy AF minima (represented by A, B, E, G, I, and K) and transition
states (represented by C, D, F, H, and J) plotted to show the free energy landscape. Trans
and cis refer to isomers of the iminium species. The timescales on the right correspond to
the time for passage through the network from the trans-iminium state.



This computational analysis indicated that a direct attack from C2 of the indole onto the

electrophilic carbon of the iminium (both cis and trans forms) to form the 6-membered

ring intermediate is orders of magnitude faster than forming a 5-membered ring

spiroindolenine. Previous mechanistic studies of the Pictet-Spengler reaction proposed

that 1,2-alkyl shifts occurred after the formation of 5-membered ring/spiroindolenine

intermediates to form the 6-membered ring intermediate, which is deprotonated to form

product(s) [33]. However, searches for the transition state between the spiroindolenine

and 6-membered ring intermediates repeatedly resulted in transition states leading in the

reverse direction to re-form the iminium species, as evidenced by a shift in the electron

density on nitrogen to the adjacent carbon to reform the sp2-iminium. A transition state

that invoked breaking the C-C (instead of the C-N bond) in the spiroindolenine to form

the 6-membered ring transition state could be found in the computational search, but the

energy of this transition state was calculated to be high (approximately 30 kcal mol-),

suggesting that a 1,2-shift involving a C-C bond cleavage also does not occur. Therefore,

the lower energy pathway is from the iminium to directly form the 6-membered ring

intermediate. Even if the spiroindolenine formed, the 1,2-alkyl shift required to convert

this intermediate to the strictosidine product would not occur.



2.3 Discussion

The Pictet-Spengler reaction, performed under acidic conditions, is widely used in the

total synthesis of alkaloids. Interestingly, Nature has evolved CrSTR, an asymmetric

enzyme catalyst, which at physiological pH forms (S)-strictosidine, the central

biosynthetic intermediate for thousands of plant monoterpene indole alkaloids. This

chapter describes the use of KIEs, rate dependence on pH, and crystallographic studies to

provide insight on the mechanism by which STR catalyzes the Pictet-Spengler reaction.

Surprisingly, a primary isotope effect on V and V/K was observed when STR is assayed

with tryptamine/[2- 2H]-tryptamine and secologanin, indicating that the final

deprotonation is the rate-controlling step of the reaction (Fig. 2.1, step 5). This

observation was initially difficult to rationalize, since loss of a proton at C2 on the indole

results in rearomatization, which is expected to be an energetically favorable process. We

propose a mechanistic rationale to address this observation. To regain the aromaticity of

the indole that is lost during the cyclization step (Fig. 2.1, step 4), the indole can undergo

either deprotonation (Fig. 2.1, step 5) or the reverse reaction to re-form the iminium (Fig.

2.1, step 3) intermediate [34]. If the rate of the reverse reaction to form the iminium is

faster than the rate of deprotonation to form the strictosidine product, the final

deprotonation step will be rate-controlling. Notably, Dr. Justin Maresh observed a

primary KIE for the nonenzymatic Pictet-Spengler reaction using tryptamine and

propanal as substrates [12], indicating that the rate-controlling step of the nonenzymatic

Pictet-Spengler reaction is also the final deprotonation step.



In the STR-catalyzed reaction, the pH dependence of V (Fig. 2.5) revealed the pKa

values of residues involved in acid-base catalysis. The acid-catalyzed step is involved in

forming the iminium intermediate (Fig. 2.1, step 3). The base-catalyzed steps are

involved in the initial deprotonation of the tryptamine substrate (Fig. 2.1, step 1) and the

final deprotonation of the six-membered intermediate to form strictosidine (Fig. 2.1, step

5). The STR pH profile suggests that a residue with a pKa of 4.6 is involved in catalysis,

which is close to the expected pKa of a carboxylate moiety. We propose that the Glu309

residue most likely acts as a general acid catalyst in STR-catalyzed reactions for three

reasons: (1) the measured pKa of 4.6 is in the pKa range of an active-site glutamate, (2)

the Glu309Ala mutant is less active by almost three orders of magnitudes (900-fold),

indicating that Glu309 is a catalytic residue, and (3) the Glu309 residue is closely

positioned to the aldehyde moiety and primary amine of secologanin and tryptamine,

respectively, involved in catalysis. Conversely, for the basic pH dependence observed in

the pH profile, we can only speculate which ionizable groups are involved in base-

catalysis. Mutagenesis of Tyr 151, an obvious candidate based on the pKa of the ionizable

residue, does not cause a significant loss in activity when mutated to phenylalanine,

suggesting that Tyr 151 is not involved in catalysis. The only other possible species that

can have pKa values close to 8.27 are the protonated tryptamine substrate or the iminium

intermediate. By studying the pH dependence of V/K, the pKa of the free tryptamine

substrate that the enzyme binds can be approximated, which would provide information

that could possibly be used to rule out the possibility of tryptamine substrate being

observed in the pH dependence of V. However, the low sensitivity of the HPLC assays at

extreme pH and low substrate concentrations prevented these data from being measured.



Based on the position of Glu309 in the crystal structure, and the lack of other available

ionizable active site residues, we also propose that Glu309 carries out the key general

base functions; namely that Glu309 deprotonates tryptamine and also performs the final

deprotonation step.

In the Pictet-Spengler reaction, the main driving force for cyclization is iminium

formation (Fig. 2.1, step 3). This pH dependent process proceeds by the addition of an

amine to a carbonyl to form a carbinolamine, followed by the loss of water to form an

imine (Fig. 2.1, steps 2-3). Mechanistic studies of enzymatic imine (or iminium)

formation have been previously reported for enzymes such as aldolases, acetoacetonate

decarboxylase, pyridoxal and pyruvate containing decarboxylases, and dehydratases [35,

36]. Enzymes that catalyze iminium formation are proposed to have a catalytic residue,

often a glutamic acid [36, 37] or an ordered water molecule [38] that protonates the

carbinolamine to catalyze the formation of iminium species. In STR, there is no visible

ordered active-site water molecule but Glu309 is positioned perfectly relative to the

aldehyde and amine to be involved in an acid-catalyzed step such as iminium formation.

Based on the pH dependence and structural data, we propose that Glu309 is involved in

the acid-catalyzed step of iminium formation.

After iminium formation, co-crystallization studies of STR with an inhibitor suggested

that the active site alone cannot orient the tryptamine in the correct position to undergo

electrophilic addition since a non-productive conformation of the flexible transition state

mimic in the STR crystal structure (Fig. 2.6) was observed. The sp 2 hybridized iminium



intermediate must also be properly positioned in a conformation that promotes

cyclization to form the correct stereoisomer (Fig. 2.1, step 4). As a result of the non-

productive conformation of the potential transition state mimic, we could not speculate if

an attack by C2 or C3 of the indole onto the electrophilic carbon of iminium produced

strictosidine in the STR active site. Other transition state analogs with different linkages

between tryptamine and secologanin can be synthesized and co-crystallized with STR to

establish a more vivid picture of the transition state to form (S)-strictosidine. Since co-

crystallization studies with a bisubstrate inhibitor did not reveal a productive transition

state, ab initio calculations were used to determine the energy landscape of a model

Pictet-Spengler reaction. Calculated geometries of both theoretical intermediates and

transition states, along with the corresponding free energy calculations suggested that the

transition state to form the spiroindolenine (Fig. 2.1, step 4b) intermediate is higher in

energy than the transition state on the pathway to forming the six-membered ring

intermediate via a direct attack by C2 on the indole. Additionally, after forming the

spiroindolenine intermediate, no transition state could be found for the 1,2-alkyl shift that

is also proposed to occur to form the 6-membered ring intermediate, which is

deprotonated to form product. Based on these computational studies, it appears that the

spiroindolenine intermediate is non-productive.

After the cyclization step, we propose the newly deprotonated Glu309 could also catalyze

the rate-limiting deprotonation step. Dr. Justin Maresh observed that a carboxylate ion

can act as a base in the nonenzymatic Pictet-Spengler reaction [12]. Since there are no

other ionizable residues in the active site and an ordered water molecule does not appear



to be present, the closely positioned Glu309 could deprotonate of the six-membered ring

intermediate to form strictosidine.

To summarize, we propose a mechanism by which STR catalyzes a Pictet-Spengler

reaction where tryptamine enters the active site in a protonated state (pKa 8.27) under the

conditions of the assay (pH 7), and transfers its proton to Glu309, supplying the proton

for general acid catalysis (Fig. 2.8). The primary amine of tryptamine becomes a better

nucleophile to attack the aldehyde moiety of secologanin, resulting in rapid generation of

a carbinolamine species (Fig. 2.8). Protonated Glu309 could then act as the general acid

and protonate the carbinolamine, and catalyze the formation of the iminium species

through loss of water (Fig. 2.8). During cyclization, we assume that the enzyme holds the

transition state in the appropriate conformation to achieve the correct diastereomer.

Lastly, Glu309 is positioned to deprotonate the 6-membered ring intermediate to form

strictosidine.
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The amino acid sequence and three-dimensional structure of an enzyme can reveal clues

regarding the exact nature of the biochemical mechanism. Out of the four Pictet-

Spenglerases, only the genes that encode norcoclaurine synthase (NCS) and STR are

known. Consequently, we can only speculate about the mechanisms by which these two

enzymes catalyze the Pictet-Spengler reaction. Interestingly, these enzymes do not share

any sequence homology, suggesting that they may be convergently evolved from

different ancestors [23]. Mechanistic studies on the Pictet-Spengler reaction catalyzed by

NCS utilizing 4-hydroxyphenylaldehyde and dopamine/[3,5,6- 2H]-dopamine (Fig. 2.2 C)

revealed that rearomatization of phenethylamine substrates to form

tetrahydroisoquinolines is also rate-controlling, since a primary isotope effect was

observed in this enzymatic system [11]. Therefore, although the enzyme sequences of

NCS and STR are substantially different, the final deprotonation step is rate-controlling

in both enzymatic mechanisms. However, since isotope effects were not measured for the

nonenzymatic Pictet-Spengler reaction condensation that occurs between 4-

hydroxyphenylaldehyde and dopamine/[3,5,6-2 H]-dopamine, we cannot speculate that the

final deprotonation step of the nonenzymatic reaction is also rate-controlling.

In 2009, a crystal structure of NCS co-crystallized with both dopamine and a nonreactive

4-hydroxybenzaldehyde substrate mimic was solved at 2.1 A resolution [39] (Fig. 2.9).

The structural data revealed the presence of four ionizable residues in the active site:

Lys 122, Asp141, Glul 10, and Tyr 108. Lys 122 appears to be closely positioned (2.6 A)

to the carbonyl oxygen of the aldehyde moiety of 4-hydroxybenzaldehyde (Fig. 2.9).

Upon mutating Lys 122 to alanine, the enzyme became completely inactive, indicating



that NCS utilizes a different enzymatic mechanism than STR; no active site lysine

residue is found in the STR structure. Further studies, such as mass spectrometry analysis

of enzyme incubated with the 4-hydroxyphenylaldehyde substrate that has undergone

sodium cyanoborohydride reduction to reduce possible linkages formed between 4-

hydroxyphenylaldehyde and Lys122 or crystal structures of NCS and transition state

mimics are required to illuminate the specific catalytic role of Lys 122. Another closely

positioned residue is Glul 10, which is 2.7 A away from the C5 atom of dopamine, which

attacks the iminium to form the tetrahydroisoquinoline. When Glu 110 is mutated to

alanine the catalytic activity drops more than 80-fold, also suggesting that this residue is

involved in catalysis. These data highlight a similarity between NCS and STR, as both

enzymes have active site glutamates that appear to be involved in catalysis. Glu 110 could

catalyze a proton abstraction to form norcoclaurine, analogous to the role that Glu309

plays in STR. Understanding the mechanism of other Pictet-Spenglerases will reveal how

Nature modifies its chemistry for catalyzing reactions with p-arylethylamine versus p-

phenethylamine substrates.
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2.4 Experimental Methods

2.2.1 Chemicals, general methods, and analytical techniques

The substrates [2- 2H]-tryptamine and tryptamine were synthesized by Dr. Justin Maresh

as previously reported [12]. The bisubstrate inhibitor was synthesized by Dr. Anne

Friedrich [12]. With the exception of secologanin, all other reagents were purchased from

Sigma-Aldrich. Secologanin was isolated as previously described [24]. HPLC separations

were carried out on a Beckman Coulter System Gold 125 HPLC equipped with a model

168 photodiode array detector, Hibar RT 250-4 LiChrosorb C18 column (Merck), and

home-built column heater set to maintain 30 0 C.

UPLC and MS analyses were performed in tandem on an Acquity Ultra Performance

BEH C18 column with a 1.7 mm particle size, 2.1 x 100 mm dimension, which was

coupled to a Micromass LCT Premier TOF Mass Spectrometer by Waters Corporation

(Milford, MA) with electrospray ionization source. The capillary and sample cone

voltages were 3000 V and 30 V, respectively for MS analyses. The source and

desolvation temperatures were 100 C and 300 'C, respectively. The cone and desolvation

gas flow were 60 and 800 L hf.

2.2.2 Enzymatic assays

CrSTR was expressed and the enzyme activity was measured via an HPLC assay

employing previously reported conditions [24]. The concentration of CrSTR was

estimated from the known extinction coefficient at 280 nm. Enzyme (80 nM) was

incubated with secologanin in 100 mM sodium phosphate buffer, pH 7.0 at 30 0C. An



internal standard, 1-naphthaleneacetic acid (NAA, 30 pM), was added to assays and was

shown to have no effect on the rate of the reaction. Assays were initiated by the addition

of tryptamine. D(V/K) values were measured with one substrate varied and the other

substrate held at a concentration at least 50-fold higher than the Km. The range of varied

substrate concentrations spanned 2.5 orders of magnitude with several data points below

the expected Km. When the concentration of secologanin concentration was held at 2.5

mM, tryptamine was varied (1 [tM-400 tM). Conversely, when tryptamine was held at 1

mM, secologanin concentrations was varied (3.13 pM-1.6 mM). The concentrations of

tryptamine and secologanin were verified from their measured extinction coefficients.

Extinction coefficients were measured by creating a standard curve on HPLC. The

extinction coefficient for tryptamine at 280 nm was determined to be 3.345 x 10-7 AU M 1

mm-1. The extinction coefficient of secologanin was determined by HPLC from partial

conversion to an iminium by reaction of 2,4-dinitrophenyl hydrazide, and the iminium

product was found to have an extinction coefficient of 4.064 x 10-7 AU M~1 mm~ in pH 5

acetic acid buffer.

Assays were quenched by the addition of 0.1 volume equivalents of 2.0 M NaOH to

denature the enzyme and prevent any background Pictet-Spengler reaction. Under these

quench conditions, the methyl ester of both secologanin and strictosidine were

hydrolyzed and remaining side products were not observed. Initial rates were obtained

from five time points. Quenched aliquots (74 tL) of the reaction were directly injected

onto an analytical HPLC using a solvent gradient of 22 % to 67 % acetonitrile in 0.1 %

aqueous trifluoroacetic acid. The absorbance of tryptamine, hydrolyzed strictosidine, and



NAA was measured at 228 nm and 280 nm. Peak areas of hydrolyzed strictosidine were

integrated and normalized to the internal standard. Initial rates were determined from the

slope of the linear fit of five normalized data points for each concentration of varied

substrate. Kinetic parameters were estimated from the initial rate data direct fit to

appropriate forms of the Michealis-Menten equation [40] by non-linear least squares fit

using Origin 7.0 software (OriginLab Corp, Northampton, MA). The accuracy of initial

rates is diminished at concentrations significantly below the Km for tryptamine because of

the low sensitivity of the HPLC assay. As a result, there is greater error in reported V/K

values than in the V values. The isotope effects on V and V/K were determined by

dividing the V or V/K values obtained from the Origin software for natural abundance

tryptamine by the values obtained for [2- 2H]-tryptamine. The errors were estimated from

the 95 % confidence of the standard deviations of three experiments. Although the

isotopic substitution of [2-2 H]-tryptamine was 90.42 %, reported KIE values were not

corrected since the applied isotopic corrections for the direct measurements in this study

were not found to be significant.

2.2.3 pH rate profiles

The effect of pH on enzymatic activity was observed by incubating secologanin (2.5

mM), 5 nM STR, NAA internal standard, and buffer (varying from pH 3.1-9.7) at 30'C.

The assays were initiated by the addition of tryptamine or [2- 2H]-tryptamine (0.3 mM).

Two different buffer systems were used to control for potential buffer effects on enzyme

activity. The effective pKa (pKa') for the experimental conditions was calculated for

each buffering agent from the Debye-HUckel equation as described by Ellis [41] using A

= 0.5161 for 30 'C [42]. A set of constant composition buffers with a constant ionic



strength (I = 0.31) were prepared from a mixed buffer system of acetic acid (pKa' =

4.64), Tris (pKa' = 6.32), and Bis-Tris (pKa' = 8.00) following the procedure of Ellis

[41] ranging pH 3.7 to 8.76 (pH at 30 'C: 3.70, 4.20, 4.62, 5.06, 5.52, 5.89, 6.89, 6.37,

6.83, 7.29, 7.81, 8.27, 8.76) and ionic strength of 0.2. Alternatively, overlapping constant

ionic strength buffers were also used: citric acid (pKa'1 = 2.97, pKa' 2 = 4.61, pKa' 3 =

6.25) ranging pH 3.1 to 9.46 (pH at 30 'C: 3.10, 3.42, 3.79, 4.10, 4.40, 4.79, 5.12, 5.59,

6.14, 6.67, and 6.93), potassium phosphate buffers (pKa' 2 = 6.72) covered an overlapping

pH range of 6.50 to 8.04 (pH at 30 'C: 6.50, 6.80, 7.19, 7.50, 7.87, and 8.04), and borate

(pKa' = 9.04) buffers were used for assays over a pH range of 8.17 to 9.19 (pH at 30 'C:

8.17, 8.35, 8.70, 8.92, and 9.19).

Initial rates from the slope of the linear fit of five data points were plotted on a

logarithmic scale. Using Origin 7.0 software, the data best fit a diprotic model shown in

equation 2.2. Both buffer conditions yielded equivalent results; identical pKa values were

calculated from both buffer systems.

Vma
V = H K (equation 2.2)

1+ -+ 2
K, H

2.2.4. Circular dichroism measurements

CD measurements were obtained on an Aviv Instruments, Inc. Circular Dichroism

Spectrometer Model 202 from 195-250 nm. Each wavelength step was 1 nm and the

averaging time for each wavelength was 6 seconds. Three CD spectra were obtained and

averaged for each sample at 30 'C. Scans of pure solvent were used for a baseline, which



was subtracted from the protein measurements. All samples were degassed. Spectra were

obtained of STR (14 iM) in a 50 mM phosphate buffer with 10 % glycerol at 30 'C. The

pH was adjusted to pH 3 or pH 9 (as evidenced by pH paper) by adding either

concentrated HCl or NaOH to the assay.

2.2.5 Ab initio calculations

Geometry optimizations and vibrational frequencies were computed by Dr. Baron Peters

using the 6-31 G* basis set and the PWl PW91 density functional provided by Gaussian

03 software (Gaussian, Inc., Wallingford, CT) [43] as previously described [12].

2.2.6 Inhibition kinetics of CrSTR with an inhibitor

The reductive amination product of the iminim formed during the Pictet-Spengler

condensation of tryptamine and secologanin was determined to be a potent inhibitor by

Dr. Anne Freidrich. Inhibition kinetics were measured by incubating CrSTR (10 nM)

with tryptamine (20 pM), secologanin (80 pM), varying concentrations of the inhibitor,

and NAA (60 jiM), in pH 7.0 sodium phosphate buffer (100 mM) at 30 'C as previously

reported [12].

2.2.7 Co-crystallization of RsSTR with an inhibitor

Using previously described procedures, the RsSTR gene was expressed by Drs. Joachim

St6ckigt, Santosh Panjikar, and Elke Noris [44]. The X-ray data were collected using

synchrotron radiation at the X1I beamline of the European Molecular Biology

Laboratory in Hamburg, Germany. The complete data were collected to 3.0 A resolution.

The data were processed as previously described [12] using DENZO and scaled using



SCALEPACK [45]. The data collection and refinement statistics are shown in the Table

2.1. The atomic coordinates have been deposited into the Protein Data Bank (2VAQ.pdb).

Table 2.1 Data collection and refinement statistics of the STR-inhibitor complex

wavelength (A) 0.8148

space group R3

Unit Cell (A)
a-b=150.0

c=121.7

total reflections 119018

unique reflections 20319

mosaicity 1.0

resolution (A) 20-3.00

completeness (%) 100 (100)a

I/0(I) 18.1 (3.6)

Rmerge (%)b 10.1 (52.9)

resolution (A) 20-3.00

Rcryst / Rfree (%)c 18.7/24.7

average B (A) for protein 48.6

average B (A) for inhibitor 52.4

average B (A) for water 30.5

Number of atoms

non-hydrogen 4896

water 14

RMSD

bond (A) 0.019
angles (deg) 1.94

aThe values in parentheses correspond to the last resolution shell.

bRmerge - Ehkl-iIli (hkl) - < I(hkl) >/EhklEi< i(hkl) >, where < I(hkl)> is the average
intensity over symmetry equivalent reflections.

cReryst (Rfree) = EhklIFo(hkl) -Fe(hkl)|| /hklIlFo(hkl)|, where F0 and F, are observed and
calculated structure factors, respectively.
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CHAPTER 3

REENGINEERING STRICTOSIDINE SYNTHASE: CONVERSION OF A PICTET-

SPENGLERASE INTO A HYDROLASE

Part of this chapter has been submitted to
Proteins: Function, Structure, and Bioinformatics, May 2011.



3.1 Introduction

Biocatalysts are used for a wide range of practical applications, including the generation

of energy sources, bioser-sor applications, food preservatives, starch processing,

diagnostics, therapeutics, and biomaterials [1-3]. Natural enzymes are often used as

biocatalysts since these enzymes can catalyze up to almost 1020-fold rate accelerations

with high regio- and stereoselectivity [4]. While the construction of a protein de novo,

with a defined catalytic function is the holy grail of protein engineering, it is important to

note that an exhaustive search of all sequence space for even a small protein with new

catalytic activity is impossible. Considering that there are 20 different amino acids for

each position in the protein, the sequence space of a 100 residue protein, which is a

relatively small protein, is 20100 [5]. Current strategies sidestep these limitations by

utilizing experimental and computational methods to narrow the sequence space when

designing new proteins [1]. Directed evolution is a highly successful experimental

method, which mimics Darwinian evolution in a test tube to create a protein with a

unique property without knowing any structural or mechanistic information. Iterative

rounds of random mutagenesis and/or gene recombination, followed by high throughput

screening or selection for a desired property, and gene amplification are performed until a

desired property or function is found [6].

When sequence, mechanistic, and/or structural information for a protein is known,

rational design can be a viable strategy to create enzymes with altered properties [6, 7].

Given the relatively small number of structural scaffolds compared to the numerous

diverse catalytic functions found in nature [8-10], methods to "mix and match" proteins



with similar folds can be a powerful "rational" strategy to create new catalytic activities.

The resulting "hybrid", which for the purposes of this chapter is defined as an enzyme

with structural elements from more than one enzyme, can be constructed in a number of

different ways. Single-point mutations based on the structure.s of existing or homologous

enzymes [11-13], introduction of secondary-structural elements [14, 15], domain-

swapping [16-19], and fusions [20] between two enzymes with different activities have

each been used to construct hybrid enzymes [7, 10, 20]. These rational design approaches

have been utilized extensively in the study and design of a number of proteins; the design

of zinc fingers with novel DNA recognition [21-23] and transcription factors [24, 25]

have been particularly successful.

Parallels can be drawn between the process of creating hybrid enzymes and the natural

evolutionary mechanisms that generate new enzymes. Presumably, when enzymes within

the same superfamily evolve in nature, new catalytic activities arise from changes in

catalytic motifs while a similar protein scaffold is maintained [26]. Enzymes involved in

natural product biosynthesis provide a rich source for understanding the evolution of new

enzyme functions from pre-existing scaffolds since many enzymes of secondary

metabolism are speculated to be derived from primary metabolism [27-29]. For example,

Trapp et al conducted a phylogenetic analysis of the amino acid sequences of 33 plant

terpene synthases and found that terpene synthases involved in primary metabolism, such

as kaurene synthase B and copalyl diphosphate synthase, have become specialized by

gene duplication and the loss of introns and domains to produce a superfamily of terpene

synthases that are involved in secondary metabolism [28]. Additionally, new and diverse



catalytic activities within enzyme superfamilies such as class I and II terpene synthases

have been speculated to have emerge from evolutionary conserved protein folds [8]. To

explore whether homologo is enzymes evolve from pre-existing scaffolds, this chapter

describes the introduction o a different catalytic activity into the highly conserved p-

propeller scaffold in the lactonohydrolase/paraoxonase superfamily. While most of the

enzymes within this superfamily are believed to catalyze a metal-dependent hydrolysis

reaction, a small subset of these enzymes catalyze a metal-independent Pictet-Spengler

reaction [30]. This superfamily appeared to be an excellent system for exploring how

Nature could use a single protein scaffold to catalyze two distinct chemical reactions.

Moreover, we envisioned that by exploring protein design efforts with this superfamily,

we could potentially better understand whether or not enzymes that catalyze the Pictet-

Spengler reaction evolved from preexisting hydrolases.

The lactonohydrolase/paraoxonase superfamily is composed of lactonases, hydrolases,

and Pictet-Spenglerases found in bacteria, mammals, and plants. With over 2,500

sequences, the majority of the members of this large superfamily have yet to be

functionally uncharacterized [31]. Five representative members of this superfamily,

however, have been functionally and structurally characterized: human senescence

marker protein 30 [32, 33], drug responsive protein-35 [34], diisopropyl

fluorophosphatase [35, 36], paraoxonase (PONI) [37, 38] and strictosidine synthase

(STR) [39, 40]. Human senescence marker protein 30 catalyzes a calcium/zinc-dependant

hydrolysis of various carbohydrate lactones and organophosphates [33]. Similarly, drug

responsive protein-35 from Staphylococcus aureus possesses calcium-dependent



lactonase activity [34]. Diisopropyl fluorophosphatase from the squid head ganglion of

Loligo vulgaris catalyzes calcium-dependent hydrolysis of organophosphates whereas

the calcium-dependent human PON1 also catalyzes the hydrolysis organophosphates, as

well as aryl esters and lactones (Fig. 3.1 A). STR, described in Chapter 2, catalyzes a

Pictet-Spengler condensation reaction between secologanin and tryptamine to form

strictosidine, a central biosynthetic intermediate for all monoterpene indole alkaloids [41-

43] (Fig. 3.1 B). Protein from cognate cDNAs for STR from Catharanthus roseus [43],

Rauvolfia Serpentina [44], and Ophiorrizapumila [45] have been functionally

characterized. Moreover, recent structural data indicate that all of five representative

members of the lactonohydrolase/paraoxonase superfamily, all with varying degrees of

sequence homology, share a common 6-bladed p-propeller fold (select examples shown

in Fig. 3.1 C) [33, 35, 37, 39, 46]. Despite these structural similarities, STR seems to be

an outlier as this enzyme catalyzes a metal-independent stereoselective Pictet-Spengler

condensation, a reaction fundamentally different from the metal-dependent hydrolase

chemistry exhibited by the other known family members.

Members of the lactonohydrolase/paraoxonase superfamily, often annotated as STR

homologs, have been found in many species, such as Vitis vinifera and Arabidopsis

thaliana plants, that do not produce strictosidine-derived alkaloids [47, 48]. Since

metabolic analysis of the host plants suggest that it is unlikely that these STR homologs

exhibit Pictet-Spengler activity, we and other researchers have speculated that these

homologs instead exhibit the lactonohydrolase or paraoxonase activity displayed by the

other known members of this superfamily [30]. Moreover, these STR homologs have also



been found in mammals [49, 50]. Notably, the human homolog of STR, C20orf3 does not

exhibit Pictet-Spengler activity [51], but does display weak calcium-dependent hydrolase

activity [52]. Ilhan et al reported that C20orf3 isolated from liver (HepG2) and pancreatic

(Rin-5F) cells hydrolyzes phenyl acetate and p-napthyl acetate. Furthermore, sequence

analysis indicates that STR and its homologs are weakly similar to the calcium-dependent

hydrolase PON1 [37, 38, 53]. Using the crystal structure of PONi,

We converted C. roseus STR into a calcium-dependent hydrolase by incorporating

calcium-binding residues. Additionally, we introduced three spheres of mutations in STR

based on conserved residues from other STR homologs that are speculated to catalyze

hydrolysis. Remarkably, one of the strictosidine synthase homologs from V vinifera,

which is homologous to STR, was functionally characterized as a hydrolase. The

structural similarities and the capacity to mutate one catalytic activity to another suggest

an evolutionary link between these highly distinct classes of enzymes, and illustrate the

plasticity of the P-propeller scaffold.
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3.2 Results

3.2.1 Design of CrSTR hyb:id proteiis

To rigorously explore the relationship among the STR superfamily members, Michael

Hicks, a graduate student in tl e laboratory of Professor Patsy Babbitt at UCSF,

performed a global computational sequence comparison of proteins that belong to the

lactonohydrolase/paraoxonase superfamily. A large subset of proteins, including the

small number of characterized hydrolases, was found to contain conserved metal-binding

residues [30]. Moreover, the sequences of homologs from Vitis vinifera and Arabidopsis

thaliana that also contained these metal-binding residues were found to be closely related

to STR. With this knowledge, we collaborated with graduate student Summer Thyme

from the laboratory of Professor David Baker at the University of Washington to explore

whether the residues responsible for hydrolase activity (and metal-binding) of closely

related STR homologs could be incorporated into STR. We predicted that these

substitutions would result in a change of activity from a Pictet-Spenglerase to a

hydrolase. We chose to use amino acid sequences of closely related STR homologs that

do not display Pictet-Spenglerase activity instead of using the PONI sequence; the

sequence of the structurally characterized PON 1 is too distant to be used effectively to

map mutations onto STR (12 % sequence identity). Also, PONI had to be evolved before

reproducible heterologous expression could be obtained [54]. Several of the hydrolases in

this superfamily are insoluble or unstable in vitro; hence, using STR as a template

seemed to be the more productive starting point to attempt to convert the Pictet-

Spenglerase into a hydrolase, rather than to begin with a hydrolase and convert it to a

Pictet-Spenglerase.



Thyme and Baker used BLASTp [55] to mine the GenBank database for STR homologs

that were closest in sequence to va1ndated Pictet-Spenglerases from C. roseus (CrSTR),

Rauvolfia serpentina, and Ophiorr. dza pumila. Homologs from Vitis vinifera

(CA067974.1, CAN77945.1, CA067963.1, CA066499.1) and A. thaliana

(NP_ 177542.1), proteins of notable similarity (37-49 % sequence identity), appeared to

be closest in sequence identity. The close similarity of STR with the STR homolog,

CAN77945.1, from V vinifera was also noted in Hick's and Babbitt's computational

network analysis [30]. Extensive metabolome analysis of the V vinfera and A. thaliana

plants indicated that no strictosidine or strictosidine-derived alkaloids are produced,

suggesting these homologs do not function as Pictet-Spenglerases. Moreover, STR

requires a key glutamate residue for catalysis [39, 56], and this key catalytic residue is

missing in each of these genes. Sequence analysis of these A. thaliana and V. vinfera

homologs indicated that there were conserved residues that were not found in any of the

validated Pictet-Spenglerases (Fig. 3.2). Notably, the five residues that bind the catalytic

calcium in PONI align with the putative metal-binding residues in A. thaliana and V

vinfera homologs (Fig. 3.2). Summer Thyme also created homology models of the V

vinifera homologs (CA067974.1, CAN77945.1), which were based on the crystal

structures of STR from Rauvolfia serpentina (RsSTR, 2FP8.pdb) and evolved PONI

(1V04.pdb). These homology models were used to determine which residues in CrSTR

should be mutated to the conserved residues amongst the homologs in order to introduce

hydrolytic activity and metal-binding. Summer Thyme made three spheres of mutations

extending outward from the putative active site to create three new hybrid proteins named

protein 1 (P1), protein 2 (P2), and protein 3 (P3) (Fig. 3.3). Wild type CrSTR already



contains one of the conserved metal-binding residues (Fig. 3.2). The P1 hybrid contained

four metal-binding residues, which are conserved amongst the A. thaliana and V vinifera

STR homologs (Fig. 3.3). P2 and P3 CrSTR hybrids contained five metal-binding

residues since PON1 and the STR homolog CA066499.1 contain a fifth metal-binding

residue (Fig. 3.2).
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Figure 3.2 Amino acid sequence alignment of recombinant PONI and A. thaliana and V
vinifera STR homologs with validated Pictet-Spenglerases, CrSTR and RsSTR. Sphere 1
(blue), sphere 2 (purple), and sphere 3 (green) mutations used to generate P1, P2, and P3
are annotated. Putative metal-binding residues are in red and known calcium-binding
residues in PON1 are in bolded red. The catalytic glutamate involved in STR Pictet-
Spengler condensation is highlighted in yellow. The G258 insertion that was made in
sphere 2 mutations is not listed. The alignment was generated by ClustalW [46].



Figure 3.3 Rauvolfia serpentina STR (2FP8.pdb) with 3 spheres of mutations stemming
outward from the active site. The spheres are annotated in different colors (sphere 1 =
blue, sphere 2 = purple, sphere 3 = green). The putative metal-binding residues in sphere
1 are shown in red. One of the five metal-binding residues already exists in wild type C.
roseus, three metal-binding residues were introduced in sphere 1 mutations, and the fifth
metal-binding residue was introduced in sphere 2 mutations.



3.2.2 Cloning. expression. and purification of CrSTR hybrids and STR homolog from V

vinifera

Dr. Peter Bernhardt used a synthetic gene assembly procedure to create hybrid proteins

P1, P2, and P3, and cloned each of these genes into a pET28b (+) vector for protein

expression in Escherichia coli BL21 DE3 cells. For posit ve controls that exhibit

hydrolase activity, the closely related STR homolog with putative hydrolase activity from

V vinifera (CAN77945.1) was cloned into pET32b (+) for expression in E. coli Rosetta

DE3 cells, and the PONI G2E6 variant was cloned into pET32b (+) for expression in E.

coli Origami DE3 cells. Tawfik and coworkers [57] have shown that the pET32 vector

facilitates the expression of the relatively insoluble PONI protein in E. coli. While

recombinant Pictet-Spenglerases have generally been produced in good yields [40, 58],

the STR homolog from V vinifera was difficult to express, similar to paraoxonases [59].

After lysis, most of the expressed protein from V vinifera remained associated with the

E. coli cell pellet. To maximize protein yield, the STR homolog V vinifera and the three

CrSTR hybrid proteins were solubilized in 0.1 % tergitol and purified from E. coli using

affinity chromatography with all buffers containing calcium (1 mM). CrSTR was purified

in the same manner to serve as a negative control for hydrolase activity. For a positive

control, the G2E6 variant of PONI was expressed and purified according to Aharoni et al

[57]. Protein purity was assessed by SDS-PAGE analysis (Fig. 3.4).
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3.2.3 Activity and substrate specificity assays of CrSTR hybrids; and STR homolog

(CAN77945.1) from V vinifera

The appropriate substrate to assess the hydrolase activity of the purified proteins was

difficult to choose; the physiological substrate(s) of PONi is not known with certainty,

and the substrates of the putative hydrolases in human, V viniera, and other species have

not been investigated. The proteins were assayed with p-nitrophenyl acetate (pNPAc) for

two reasons: (1) PON1 accepts this substrate and (2) hydrolysis of this substrate produces

a yellow color that can be readily and quantitatively measured at 405 nm on a UV-visible

spectrophotometer [38]. Biochemical assays of the STR homolog from V vinifera

(CAN77945.1) and CrSTR hybrids with pNPAc (0.5 mM, 1 mM, 1.6 mM, 2.1 mM, 2.6

mM, and 3.2 mM) gratifyingly resulted in the accumulation 4-nitrophenol (Fig. 3.5 A).

While background hydrolysis of pNPAc at pH 8 is observed, STR homolog from V

vinifera and CrSTR hybrids displayed rates of hydrolysis above background levels. P1,

P2, and P3 hybrids exhibited similar rates of hydrolysis. Variations in the rates of

hydrolysis for P1 prevented a quantitative analysis of the differences in rates between P1,

P2, and P3 hybrid proteins. Assays of CrSTR and purified extracts of K coli expressing

empty vectors [pET28a (+) and pET32b (+)] with pNPAc served as negative controls and

displayed negligible hydrolase activity with levels similar to the background pNPAc

hydrolysis. PON1 was also assayed with pNPAc as a positive control for hydrolase

activity (Fig. 3.5 B) [38]. PONI shows almost 100-fold higher activity with pNPAc than

P3, which is expected since PON 1 has been subjected to extensive directed evolution to

improve its solubility and catalytic performance [56].
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To explore the substrate scope of the STR homolog from V vinfera, which we now refer

to as the V vinfera hydrolase, and the most active CrSTR hybrid P3, these proteins were

assayed with 5-thiobutyl butyrolactone (TBBL) and phenyl acetate substrates. However,

the initial rates of hydrolysis were equal o the rates of spontaneous hydrolysis of these

substrates. A positive control, PONi, was assayed with TBBL and phenyl acetate

substrates and hydrolysis products wer - observed [38, 60], suggesting that the STR

homolog from V vinfera and P3 do aot share a similar substrate scope with PONI and

other substrates need to be explored with this subset of enzymes. P3 and the V vinifera

hydrolase were also assayed for Pictet-Spenglerase activity but these enzymes failed to

convert tryptamine and secologanin to strictosidine. LC-MS analysis indicated that

strictosidine (m/z 531) was only produced in assays with CrSTR (Fig. 3.6). Although P1

and P2 are not shown in Fig. 3.6, these hybrids also did not produce strictosidine as

evidenced by LC-MS analysis.
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Figure 3.4 SDS-PAGE gels of purified CrSTR, P1, P2, P3, and the STR homolog from
V vinfera.
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Figure 3.5 A) Hydrolysis of pNPAc by STR homolog from V vinfera (V. vinfera
hydrolase), P1, P2, P3, empty pET32b (+), empty pET28a (+), and CrSTR at pH 8. B)
Hydrolysis of pNPAc by PONI at pH 8 compared to V vinifera hydrolase, P1, P2, P3,
and CrSTR. The rate of background pNPAc hydrolysis has been subtracted from rates
obtained for each concentration of substrate. The error bars represent the 95 %
confidence of the standard deviation from three experiments.
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Figure 3.6 LC-MS selected ion chromatograms of strictosidine (m/z 531) produced by
assays of tryptamine and secologanin incubated with either V vinifera hydrolase, P3, or
CrSTR at pH 7.
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3.2.4 Steady-state kinetics of CrSTR hybrids and V vinifera hydrolase

The high Km values for CrSTR hybrids and the V vinfera hydrolase with pNPAc (Fig.

3.5), along with the limited substrate solubility of pNPAc, precluded the measurement of

initial rates in the concentration range of 2- or 3-fold greater than the apparent pNPAc

Km. The data did not facilitate an acceptable fit of the initial rate data to the Michealis-

Menten equation. As a result, steady-state kinetic constants for all proteins were

estimated by fitting the data to the Lineweaver-Burk plot. Steady-state kinetic analyses of

the V vinfera hydrolase assayed with pNPAc revealed that this enzyme exhibited a Vmax

of 220 ± 140 mol min' mol protein', Km of 8 ± 3 mM, and Vmax/Km of 29 ± 20 mol

min-' mol protein-' M -. The best representative CrSTR hybrid hydrolase, P3, was

assayed with pNPAc and estimated to have a Vmax of 90 ±40 mol min' mol protein-1, Km

of 20 ± 9 mM, and Vmax/Km of 5 ±4 mol min~' mol protein~1 mM ~1. Steady-state analyses

of PON1 were also conducted to compare the kinetic parameters to other hydrolases.

PON1 was assayed with pNPAc and this enzyme exhibited a Vmax of 640 ± 160 mol min1

mol protein', Km of 3 ± 0.6 mM, and Vmax/Km of 250 L 90 mol min' mol protein- mM .

The errors were derived from the 95 % confidence of the standard deviation of two

experiments from assays with the V vinifera hydrolase, P3, and PON1.

3.2.5 Assessing metal-binding capabilities of CrSTR hybrids

P1, P2, and P3 CrSTR hybrids were predicted to contain a calcium metal-binding site

(Fig. 3.2). Based on previous mechanistic studies on PON1, we hypothesized that

calcium was required for P1, P2, and P3 hydrolase activity [53, 57]. To verify this, P3,

the hybrid that demonstrated the most consistent expression and activity profiles, was
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exchanged into a buffer containing 10 mM EDTA and assayed with varying

concentrations of pNPAc in 100 mM pH 8 HEPES buffer containing 96 mM NaCl and 10

mM EDTA (Fig. 3.7 A). A re uction in hydrolase activity comparable to the rate of

background pNPAc hydrolysis was observed when P3 was assayed in the presence of 10

mM EDTA, suggesting that hydro ysis is metal-dependent (Fig. 3.7 A). Additionally,

when 4 mM calcium inhibitor, terbium chloride, was added to assays with P3, a decrease

of almost 80 % in hydrolase activity was observed (Fig. 3.7 B), also suggesting that P3

binds calcium.
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Figure 3.7 A) P3 hydrolysis of pNPAc in the presence of 1 mM CaCl2 (black circles) and
10 mM EDTA (red circles). The rate of background pNPAc hydrolysis has been
subtracted from these data. Red and black error bars represent the 95 % confidence of the
standard deviation of 2 and 3 experiments, respectively. B) Inhibition of P3 by 4 mM
calcium inhibitor, terbium chloride, in the presence of 1mM CaCl 2 and 2.6 mM pNPAc at
pH 8. Error bars represent the 95 % confidence of the standard deviation of 3
experiments.
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To validate that the five metal-binding residues in P3 (E17, N128, N189, D234, N234)

coordinate the calcium required for the hydrolysis of pNPAc as predicted, site-directed

mutagenesis was used to mutate these residues to alanine residues. However, when the

El 7A/N1 89A/D234A/N234A mutant was assayed with pNPAc, the same rate of

hydrolase activity was observed compared to wild type P3 hydrolase activity. In human

serum PON1, single mutations to convert metal-binding residues (E52A, D168A, or

D268A) to alanines resulted in a more than 95 % decrease in hydrolase activity compared

to wild type activity when these mutants were incubated with substrates such as phenyl

acetate and paraoxon [53]. Moreover, site-directed mutagenesis was used to generate a

E75A/D286A/N287A mutant of the V vin'fera hydrolase. This triple mutant also

displayed levels of hydrolysis activity similar to wild type levels, suggesting that other

residues in CrSTR hybrids and the V vinifera hydrolase are involved in metal-binding.

3.2.6 Mutations to introduce Pictet-Spenglerase activity into the V vinifera hydrolase

With the successful conversion of CrSTR into a hydrolase based upon conserved residues

in non-Pictet-Spenglerase STR homologs, the same strategy was used to attempt to

convert the V vinfera hydrolase into a Pictet-Spenglerase. A synthetic gene was obtained

such that the conserved residues in the V vinifera hydrolase were converted to those

residues in CrSTR, which included the catalytic glutamate required for Pictet-

Spenglerase activity. The gene was cloned into pET32b (+) and transformed into E. coli

Rosetta DE3 cells for protein expression. After protein purification, the mutant was

incubated with tryptamine and secologanin to assay for Pictet-Spenglerase activity. LC-

MS analysis indicated that no strictosidine (m/z 531) product (Fig. 3.8) was formed.
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In light of the failed attempts to eliminate hydrolysis activity in the V vinfera hydrolase

by mutating putative metal-binding residues systematically to alanine, the V vinifera

mutant that does not catalyze the Pictet-Spengler reaction was assayed with pNPAc to

confirm that there are other potential metal-binding residues involved in catalyzing

hydrolysis. Assays containing 53 nM of the V vinifera mutant in 100 mM HEPES buffer

containing 1 mM CaCl2 and 2.6 mM NaCl were initiated by the addition of pNPAc (0.5

mM, 1 mM, 1.6 mM, 2.1 mM, 2.6 mM, and 3.2 mM). Surprisingly, the V vinifera mutant

hydrolyzed pNPAc at a rate of hydrolysis slightly faster than the wild type V vinifera

hydrolase (Fig. 3.9). Since CrSTR lacks hydrolase activity we assumed that residues

mutated to convert the V vinifera hydrolase to CrSTR would not participate in

hydrolysis. However, these results further support the need for additional residues to be

mutated in order to identify the metal-binding residues involved in catalyzing hydrolysis.
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Figure 3.8 LC-MS selected ion chromatograms of strictosidine (m/z 531) produced by
assays of tryptamine and secologanin incubated with either the V. vinifera mutant or
CrSTR at pH 7.
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Figure 3.9 Hydrolysis of pNPAc by V vinfera hydrolase and mutant at pH 8. Error bars
represent the 95 % confidence of the standard deviation of three experiments.
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3.3 Discussion

Protein engineering has undergone major advances with the development of techniques

such as directed evolution and rational design [61-63]. While the current trend has been

moving away from using rational design alone and more towards combining rational

approaches with stochastic methods such as directed evolution [64], this chapter

highlights how the rational design of a h< mologous protein scaffold can be extremely

valuable for generating proteins with alternate catalytic activity, and as a framework for

understanding how protein evolution may have occurred. There are many successful

examples of the use of rational design to introduce new catalytic activities into

homologous protein folds found in secondary metabolism. For example, plant

sesquiterpene synthases such as y-humulene synthase [65], tobacco-5-epi-aristolchene

synthase [66], and henbane premnaspirodiene synthase [66], all with highly conserved

structural and mechanistic features, have been redesigned by rational mutagenesis to

yield novel protein activities. This chapter describes the introduction of conserved

mechanistic and structural features of closely related STR homologs into STR in an effort

to convert a Pictet-Spenglerase into a hydrolase. However, unlike the reengineered

sesquiterpene synthases, the mechanistic features of the Pictet-Spenglerase and hydrolase

enzymes used to create STR hybrids are quite different. The substrates for these two

distinct types of enzymes have diverse functionalities and the chemistries that takes place

to form products are also significantly different. Furthermore, in one reaction a metal co-

factor is required. This makes the conversion of STR into a hydrolase a unique

achievement with potentially significant evolutionary implications.
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The lactonohydrolase/paraoxonase superfamily comprises over 2,500 proteins, a few of

which have been functionally characterized [31]. Members of this superfamily, in

addition to STR, include mammalian paraoxonase [67], a lactonohydrolase from

Fusarium oxysporum AKU3702 [31], mammalian senescence marker 30 (regucalcin)

[33], a gluconolactonase from Zymomonas mobilis [68], the human strictosidine synthase

homolog C20orf3 [52], diisopropyl fluorophosphatase from Loligo vulgaris [36], and the

lactonase drug responsive protein 35 from Staphylococcus aureus [34]. Unlike STR, all

of these proteins have been reported to hydrolyze a variety of substrates such as

gluconolactones, lactones, paraoxon, and phenyl acetate.

In the work described in this chapter, we have identified the closely related STR homolog

from V vinfera (CAN77945.1) as having hydrolase activity, which can now be added to

the subset of characterized enzymes in the lactonohydrolase/paraoxonase superfamily. V

vinifera is known to produce phytoalexins and anthocyanins via a prenylpropanoid

biosynthetic pathway [69-71] but there is no evidence for the biosynthesis of alkaloids

derived from a Pictet-Spengler reaction. This is consistent with the lack of Pictet-

Spenglerase activity exhibited by the V vinifera hydrolase in vitro. Interestingly, the V

vinfera hydrolase is closely related to CrSTR (38 % sequence identity). The V vinfera

hydrolase lacks the catalytic glutamate required for Pictet-Spenglerase activity [39] and

contains residues conserved in the characterized hydrolases that are involved in metal-

binding (Fig. 3.2). A similar protein, sharing 35 % sequence identity to the V vinfera

hydrolase, was identified in A. thaliana (NP1 77541.1). E. coli lysates containing

overexpressed A. thaliana (NP_177541.1) protein were reported to hydrolyze the methyl
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ester of secologanin when incubated with secologanin and tryptamine [47]. However,

these proteins were not properly characterized for the followin(, three reasons: (1) Kibble

et al did not purify the protein, (2) there were no controls to C Zcount for the presence of

endogenous E. coli esterases, and (3) the methyl ester of sec( loganin can easily be

hydrolyzed, which can provide misleading results when detecting hydrolase activity.

When we assayed the V vinifera hydrolase with tryptamine and secologanin, a

secologanic acid product was not observed.

Using conserved residues (including putative metal-binding residues) from closely

related STR homologs from V. vinifera and A. thaliana, and the RsSTR and the G2E6

variant of PON1 crystal structures, three hybrid proteins (P1, P2, and P3) based on

CrSTR were constructed. Each of these hybrids exhibited hydrolase activity with pNPAc.

Since the CrSTR hybrids displayed similar levels of hydrolysis, quantitative correlations

could not be drawn between the rate of hydrolysis and the increase in sphere 1-3

mutations that were introduced into CrSTR. While P1 displayed hydrolase activity above

the levels of CrSTR and background pNPAc hydrolysis, the activity ranges lower than or

equal to the activity of the P3 hybrid. P3 was the most consistent and well-behaved

hybrid to assay. As such, kinetic parameters were only reported for P3. We suspect that

the mutations on the surface of P3 stabilizing the protein structure, similar to the V

vinifera hydrolase. A Lineweaver-Burk reciprocal plot of P3 initial rates estimated a high

Km value for pNPAc, suggesting that this is also a non-ideal substrate for P3. The rate of

pNPAc hydrolysis with P3 was lower than assays with the V vinfera hydrolase, which

exhibited a rate of pNPAc hydrolysis almost 10 times higher than P3. Additional
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mutations may be able to improve the rate of pNPAc hydrolysis of P3 such that the rate is

equal to that of the V vinifera hydrolase. I urthermore, as the physiological roles and

substrates for these STR/PONl homologs 3ecome clearer, we may be able to further

optimize hydrolase activity. Subjecting t se proteins to directed evolution may also

improve the hydrolase activity as has bee i achieved with paraoxonase.

Pictet-Spenglerases utilize a glutamate residue (Figs. 3.1 B and 3.2) to provide a general

acid/base during the course of the reaction mechanism [56]. Therefore, it is not surprising

that P1, P2 and P3 do not catalyze the Pictet-Spengler reaction since the key glutamate

residue was mutated to an alanine residue in the first sphere mutations. On the other

hand, it is difficult to predict a mechanism for hydrolases since, even among the

hydrolase members of this superfamily, the substrates, the identities of the metal, and the

details of the mechanisms vary. For example, in PON1, a His-dyad, along with the active

site Ca2 , has been proposed to activate a water molecule to hydrolyze lactone substrates

(Fig. 3.1 A) [72]. However, the STR homologs in this study (CA067974.1, CAN77945.1,

CA067963.1, CA066499.1, and NP_177542.1), as well as the human homolog C20orf3,

only contain one histidine residue aside from the hexahistidine tag required for affinity

purification. As such, we speculate that closely related STR homologs such as the V

vinifera hydrolase and P3 may have a somewhat different mechanism of catalysis to

PON 1. Notably, mutations made to change 4 of the 5 putative calcium-binding residues

did not eliminate hydrolase activity, in contrast to a similar experiment performed by

Josse et al after making single mutations to metal-binding residues in PON1 [53]. This

further suggests that there are important differences between PON1 and the STR-like
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hydrolases within this superfamily. Furthermore, our unsuccessful attempt to convert the

V vinifera hydrolase into a Pictet-Spenglerase by mutating the conserved residues in V

vinifera hydrolase to residues in CrSTR, resulted in a slightly more active hydrolase

compared to the wild type V vinifera hydrolase. This was an unexpected result as, again,

this V vinifera mutant contained only two of the four metal-binding residues found in the

wild type V vinifera hydrolase. These results lead us to believe that there may be another

metal-binding site that is not obvious from sequence alignments and homology modeling,

and that the mechanisms of pNPAc hydrolysis by the V vinifera hydrolase and CrSTR

could be quite different from PON1. Additional mutations are required to further explore

these mechanistic questions further. This will be key to understanding the roles certain

residues play in hydrolysis to draw hypotheses about the evolution of STR within the

lactonohydrolase/paraoxonase superfamily.

With the current data we cannot draw definitive conclusions about how STR may have

evolved to become a hydrolase, but we can speculate about how differences in sequences

may result in different substrate scopes. PON 1 is found in mammalian liver tissue, which

harbor products of fatty acid oxidation, and its physiological substrate is speculated to be

a lactone [38, 73]. Similar to PON1, the STR homolog C20orf3 is also expressed in

human liver [50]; however studies performed in our group have shown that C20orf3 does

not exhibit lactonase activity with the TBBL substrate. C20orf3 has only been shown to

hydrolyze aryl esters such as phenyl acetate and @-naphthyl acetate [52]. Similarly, both

the V vinifera hydrolase and CrSTR hybrids did not exhibit lactonase activity with

TBBL. While we cannot yet speculate about the physiological substrate of the V vinifera
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hydrolase, gene knockouts and metabolomic analysis may provide more information

about potential substrates as vell as help elucidate the role of the V vinfera hydrolase in

planta.

It is intriguing to speculate that, given the remarkable similarity between STR and STR

homologs from V vinifera (CA067974.1, CAN77945.1, CA067963.1, CA066499.1)

and A. thaliana (NP_177542.1) there may be an evolutionary link between Pictet-

Spenglerases and this class of hydrolases. Presumably, Nature evolved a large family of

hydrolases, many of which are promiscuous in terms of substrate specificity, to produce a

selective protein that catalyzes the highly diverse Pictet-Spengler reaction. The V

vinfera hydrolase (CAN77945.1), while definitively exhibiting hydrolase activity, could

potentially be a "missing link" or intermediate state in the evolution of Pictet-Spengler

activity from the hydrolase. Additional structural and mechanistic studies of these STR

synthase homologs should provide a better understanding of how Nature presumably

evolved Pictet-Spenglerases into hydrolases in other plants and higher eukaryotic

kingdoms.
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3.4 Experimental Methods

3.4.1 Chemicals

5-Thiobutyl butyrolactone (TBBL) was a generous gift from Daniel Tawfik (Weizmann

Institute of Science, Israel). Secologanin was isolated as previously described [40]. All

chemicals were purchased from Sigma Aldrich unless otherwise noted.

3.4.2 General methods and analytical techniques

HPLC separations were performed on a Lichrosorb reverse phase column (Select B, 25

cm x 4.0 mm column, 5 [tm particle size) using 10-90 % acetonitrile: water (0.1 %

trifluoroacetic acid) over 11 minutes and a flow rate of 1 mL min'. A Varian Cary 50 Bio

UV/Visible Spectrophotometer equipped with a Cary 50 microplate plate reader was used

to measure hydrolysis products in colorimetric assays. UPLC and MS analyses were

performed in tandem on an Acquity Ultra Performance BEH C18 column with a 1.7 mm

particle size, 2.1 x 100 mm dimension, which was coupled to a Micromass LCT Premier

TOF Mass Spectrometer by Waters Corporation (Milford, MA) with electrospray

ionization source. Analytes were separated using a 10-50 % acetonitrile: water (0.1 %

formic acid) over 5 minutes and flow rate of 0.5 mL min-. For MS analyses, the capillary

and sample cone voltages were 3,000 V and 30 V, respectively. The source temperature

was 100 'C and the desolvation temperature was 300 *C. The cone and desolvation gas

flow were 60 L hf and 800 L hr', respectively. All reported sequence identities were

obtained by using the Fold and Function Assignment 03 server (http://ffas.licrf.edu/ffas-

cgi/cgi/ffas.pl) [74-76].
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3.4.3 Predictions of mutations to convert CrSTR into a hydrolase

Michael Hicks, a graduate student in the laboratory of Professor Patsy Babbitt at UCSF,

performed a global computational sequence comparison of proteins that belong to the

lactonohydrolase/paraoxonase superfamily and found a large subset of proteins, including

closely related STR homologs from Vitis vinfera and Arabidopsis thaliana, were found

to contain conserved metal-binding residues [30]. Summer Thyme, a graduate student

from the laboratory of Professor David Baker at the University of Washington, used an

alignment of the V vinifera and A. thaliana homologs (Fig. 3.2), homology models of

two of the four V vinifera homologs (CA067974.1, CAN77945.1), the RsSTR crystal

structure (2FP8.pdb), and the crystal structure of PON1 (1V04.pdb) to replace residues

that were thought to be important for Pictet-Spenglerase activity in CrSTR with

conserved residues (and metal-binding) in V vin-fera and A. thaliana STR homologs that

are potentially important for introducing hydrolase activity. Three spheres of mutations

were made in CrSTR stemming from the active site outward to create P1, P2, and P3

STR hybrids.

3.4.3 Gene cloning

C-terminal hexahistidine tagged CrSTR in pET28a (+) with flanking NcoI and XhoI

restriction sites was provided by Peter Bernhardt. Primers containing mutations to

convert C-terminal CrSTR into a hydrolase were ordered from Integrated DNA

technologies (San Diego, CA) and gene assembly was used to amplify full-length genes.

NcoI and XhoI restriction sites were introduced by PCR for standard directional cloning

into pET28a (+). Mutations that arose from the gene assembly process were corrected
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using the Strategene (Santa Clara, CA) Quickchange Kit. Wild type CrSTR, P1, P2, and

P3 constructs were subsequently transformed into E. coli BL21 (DE3) cells for protein

expression. The PCR-Blunt II-TOPO vector containing the gene of the STR homolog

from V vinfera (CAN77945.1) was a generous gift from Patsy Babbitt (UCSF). NcoI

and XhoI restriction sites were introduced by PCR for standard directional cloning into

pET32b (+) to create an N-terminal hexahistine tagged a thioredoxin fusion protein. The

V vinfera mutant (putative Pictet-Spenglerase) was synthesized and cloned into pET32b

(+) by Genscript (Piscataway, NJ) to create and N-terminal hexahistidine tagged

thioredoxin fusion protein. Both V vinfera constructs were transformed into E. coli

Rosetta DE3 cells for protein expression. Recombinant PON1 (variant G2E6) in pET32b

(+) was a gift from Dan Tawfik (Weizmann Institute of Science, Israel) and transformed

into F. coli Origami B DE3 cells. All liquid and solid media were supplemented with 1

mM calcium chloride.

3.4.4 DNA sequences of CrSTR hybrids and V vinifera mutant in pET32b (+)

Pl:

ATGGGCAGCCCGATTCTGAAGAAAATCTTTATTGAGTCTCCATCTTATGCACCAGAAGCCTTC
ACGTTTGATTCTACGGATAAAGGCTTTTATACGTCTGTCCAAGATGGCCGCGTTATCAAGTAC
GAGGGTCCAAATTCTGGTTTTACCGATTTTGCGTATGCGAGCCCATTTTGGAACAAAGCGTTCT
GCGAAAACAGCACCGATCCGGAAAAGCGCCCGTTATGCGGCCGTACCTACGGCATCAGCTAC
GACTACAAGAACTCTCAGATGTATATTGTGGATGGTCACTATCATCTGTGCGTCGTGGGCAAA
GAAGGCGGCTACGCGACCCAACTGGCGACGAGCGTGCAGGGCGTGCCATTCAAGTGGCTGAA
TGCGGTTACGGTTGATCAGCGTACGGGTATTGTTTACTTTACGGATGTCAGCAGCATTCATGAT
GATTCTCCAGAAGGTGTCGAGGAGATTATGAACACCTCTGATCGCACCGGTCGCTTAATGAAA
TATGATCCATCTACCAAAGAAACCACCCTGCTGTTAAAAGAACTGCATGTTCCAGGTGGCGCG
GAAATCTCTGCCGACGGTAGCTTTGTCGTCGTTGCCGAGTTTCTGTCTAATCGCATTGTCAAAT
ATTGGTTAGAAGGTCCGAAAAAGGGCAGCGCCGAATTTCTGGTGACGATCCCGAACCCAGAT
AACATTAAACGTAATAGCGACGGCCACTTCTGGGTTAGCAGCTCTGAGGAATTAGATGGTGGT
CAGCACGGTCGTGTCGTCAGCCGCGGTATTAAGTTCGATGGTTTTGGTAACATTTTACAGGTT
ATCCCGCTGCCACCACCGTATGAAGGTGAACACTTCAGCGAAATTCAAGAGCATGACGGTTTA
CTGTATATCGGTTCTCTGTTCCACAGCAGCGTTGGTATCCTGGTTTACGATGACCACGATAATA
AGGGCAATAGCTACGTTTCTTCTCTCGAGCACCACCACCACCACCAC
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P2:

ATGGGCAGCCCGATTCTGAAGAAAATCTTTATTCCGTCTCCATCTGTGGGCCCAGAAGCCTTC
GCGTTTGATTCTACGGACAAAGGCCCGTATACGTCTGTCCAAGATGGCCGCGTTCTGAAGTAC
GAGGGTCCAAATTCTGGTTTTACCGATTTTGCGTATGCGAGCCCATTTTGGAACAAAGCGTTCT
GCGAAAACAGCACCGATCCGGAAAAGCGCCCGTTATGCGGCCGTCCGCTGGGCATCGGCTTT
GACTACAAGAACTCTCAGATGTATATTGCGGATGGTCACTATCATCTGTGCGTCGTGGGCAAA
GAAGGCGGCTACGCGACCCAACTGGCGACGAGCGTGCAGGGCGTGCCATTCAAGTTTCTGAA
TGCGGTTGATGTTGATCAGCGTACGGGTATTGTTTACTTTACGGATGTCAGCAGCATTCATGAT
GATTCTCCAGAAGGTGTCGAGGAGATTATGAACACCTCTGATCGCACCGGTCGCTTAATGAAA
TATGATCCATCTACCAAAGAAACCACCCTGCTGTTAAAAGAACTGCATGTTCCAAATGGCGCG
GAAATCTCTGCCGACGGTAGCTTTGTCGTCGTTGCCGAGTTTCTGTCTAATCGCATTGTCAAAT
ATTGGTTAGAAGGTCCGAAAAAGGGCAGCGCCGAATTTCTGGTGACGATCCCGGGCAACCCA
GATAACATTAAACGTAATAGCGACGGCCACTTCTGGGTTAGCAGCTCTGAGGAATTAGATGGT
GGTCAGCACGGTCGTGTCGTCAGCCGCGGTATTAAGTTCGATGGTTTTGGTAACATTTTACAG
GTTATCCCGCTGCCACCACCGTATGAAGGTGAACACATTAGCGAAGTGCAAGAGCATGACGG
TTTACTGTATATCGGTTCTCTGTTCCACAGCAGCGTTGGTATCCTGGTTTACGATGACCACGAT
AATAAGGGCAATAGCTACGTTTCTTCTCTCGAGCACCACCACCACCACCAC

P3:

ATGGGCAGCCCGATTCTGAAGAAAATCTTTATTCCTTCTCCATCTGTGGGCCCAGAAGCGTTC
GCGTTTGATTCTACGGGCAAAGGCCCGTATACGTCTGTCCAAGATGGCCGCGTTCTGAAGTAC
GAGGGTCCAAATTCTGGTTTTACCGATTTTGCGTATGCGAGCCCATTTTGGAACAAAGCGTTCT
GCGATGGCAGCACCGATCCGGAAAAGCGCCCGTTATGCGGCCGTCCGCTGGGCATCGGCTTTG
ACTACAAGAACTCTCAGATGTATATTGCGGATGCGCACTATGGCCTGTGCGTCGTGGGCAAAG
AAGGCGGCTACGCGACCCAACTGGCGACGAGCGTGCAGGGCGTGCCATTCAAGTTTCTGAAT
GCGGTTGATGTTGATCAGCGTACGGGTATTGTTTACTTTACGGATGTCAGCAGCATTCATGAT
GATTCTCCAGAAGGTGTCGAGGAGATTATGAACACCTCTGATCGCACCGGTCGCTTAATGAAA
TATGATCCATCTACCAAAGAAGTGACCGTGCTGTTAAAAGGCCTGAGCGTTCCAAATGGCGCG
GAAATCTCTGCCGACGGTAGCTTTGTCGTCGTTAGCGAGTTTCTGTCTAATCGCATTGTCAAAT
ATTGGTTAGAAGGTCCGAAAAAGGGCAGCGCCGAATTTTTTGTGACGATCCCGGGCAACCCA
GATAACATTAAACGTAATAGCGACGGCCACTTCTGGGTTGCGAGCTCTGAGGAATTAGATGGT
GGTCAGCACGGTCGTGTCGTCAGCCGCGGTATTAAGTTCGATGGTTTTGGTAACATTTTACAG
GTTATCCCGCTGCCACCACCGTATGAAGGTGAACACATTAGCGAAGTGCAAGAGCATGACGG
TTTGCTGTATATCGGTTCTCTGTTCCACAGCAGCGTTGGTATCCTGGTTTACGATGACCACGAT
AATAAGGGCAATAGCTACGTTTCTTCTCTCGAGCACCACCACCACCACCAC

V vinfera mutant (proposed Pictet-Spenglerase):

ATGAGCGATAAAATTATTCACCTGACTGACGACAGTTTTGACACGGATGTACTCAAAGCGGAC
GGGGCGATCCTCGTCGATTTCTGGGCAGAGTGGTGCGGTCCGTGCAAAATGATCGCCCCGATT
CTGGATGAAATCGCTGACGAATATCAGGGCAAACTGACCGTTGCAAAACTGAACATCGATCA
AAACCCTGGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACTCTGCTGCTGTTCAAAAA
CGGTGAAGTGGCGGCAACCAAAGTGGGTGCACTGTCTAAAGGTCAGTTGAAAGAGTTCCTCG
ACGCTAACCTGGCCGGTTCTGGTTCTGGCCATATGCACCATCATCATCATCATTCTTCTGGTCT
GGTGCCACGCGGTTCTGGTATGAAAGAAACCGCTGCTGCTAAATTCGAACGCCAGCACATGG
ACAGCCCAGATCTGGGTACCGACGACGACGACAAGGCCATGGAAGAAGGTGGTCTGGGCTTT
GACGGTTGTCGCCTGGTCCAAGAAGATGAAGGTCTGACGTTCGGTATTAGCACGGGCTCGGGC
CACCTGAGCTCTCGTGGCCTGGAAAGCCTGCTGGAAACCGCACTGCTGGCTCATGTGCTGTTT
ATTATCCCGAACATGTGGTATCTGTCCCACGTGGTTCTGCGCCTGAAACTGGAATCACCGACC
TACGCGCCGAATGCCATTACCTTTGATTATACGGACGCGGGCTTCTACGCATCGGTGGCTGAT
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GGTCGTGTTATTAAATGGCTGGATGCAAGCGCTGGTTTTGTTGACTTTGCATTCATCAGTCCGA
GCCGTAGCAAAAAACTGTGCGAAAACTCTACCGATCCGGCTCTGGAACCGACCTGTGGCCGT
ACGTATGACCTGAGTTATAACTACCGCACGGTCGATCTGTATATTGTGGACGGTTACCATCAC
CTGAATGTCGTGGGCCCGAAAGATGGTCGTATTATCCAGCTGGCAACCGCAGCAGAAGGCGT
GCCGTTTCTGTGGCTGTATGCTGTGACCGTTGATCAAGAAACGGGTATCGTTTACTTCACGGA
CGCGAGTGCCCGTTTTCAGCGTCGCGAATTTATGCTGGCCGTCCAAACCGGCGATATGACGGG
TCGTCTGATGAAATACGACCCGCGCACCCAGGAAACCACGCTGCTGCTGCGTGAACTGCATGG
CGCGGGCGGTGTTACCATTTCGAAAGATGGTAGCTTTATCCTGGTTGCCGAATTTGTCACGAA
CCGTATCCAACGCTTTTGGCTGAAAGGCCCGAAAGCAAATACCTCCGAACTGCTGCTGAAACC
GCCGGGCACGCCGGGTAACATTAAACGTAATGTGCGCGGTGAATTTTGGGTCTCTGTGAATAT
CGGTGCAGGCACCGCAGTTCTGCCGTCTGGCCTGCGCCTGAGTGAAGAAGGTAAAGTGCTGC
AGGTTGTCGCCTTTGGCACCGGTGATATTCCGAAAACGTTCGAACAGATCCAAGAATATTATC
GTGCCCTGTATATCGGTTCGCTGGCTCTGCCGTTTGTGGGTGTCTATCGCTCC

3.4.5 Expression of hydrolases

Overnight cultures were grown at 37 'C in sterile LB-broth containing 1 mM CaCl 2 with

the appropriate antibiotic selection. Cultures (500 mL) of wild type CrSTR, P1, and P2,

containing 1 mM CaCl 2 and 50 tg/mL of kanamycin were inoculated with overnight

cultures (1:100 dilution), and grown at 37 'C until the optical density at 600 nm reached

0.5-0.75. After cultures were chilled at 4 'C for 30 min, protein expression was induced

by the addition of 1 mM isopropyl- p-D-1-thiogalactopyranoside (IPTG). Cells were

harvested by centrifugation after 18 hours of protein expression at 18'C and stored at

-80'C. Cultures (500 mL) of P3 containing 1 mM CaCl 2 and 50 [tg/mL of kanamycin

were inoculated 1:100 fold with overnight cultures, and grown at 30 'C until an optical

density at 600 nm of 0.5-0.75 was reached. Protein expression was induced with 1 mM

IPTG and after 4 hours the cells were harvested by centrifugation and stored at -80 'C.

Cultures (500 mL) of the wild type V vinfera hydrolase containing 1 mM CaCl2 and 100

tg/mL of ampicillin and 34 [tg/mL of chloroamphenicol were inoculated with 1:100 fold

overnight culture, and grown at 37 "C until the optical density at 600 nm of 0.5-0.75 was

reached. Protein expression was induced with 1 mM IPTG, and after 6 hours the cells
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were harvested by centrifugation and stored at -80 'C. The V vinifera mutant was

expressed the same manner, however, the cells were harvested after only 2 hours. PONI

was expressed as previously reported by Aharoni et al [57].

3.4.6 Purification of hydrolases

PON 1 was purified following the procedure reported by Aharoni et al [57]. All other

hydrolases were lysed by sonication in lysis buffer (pH 8) containing 50 mM HEPES, 1

mM CaCl2, 300 mM NaCl, 10 mM imidazole, 10 % glycerol, 0.1 mg/mL lysozyme, and

0.4 [tg/mL leupeptin and pepstatin protease inhibitors. The lysate was then incubated in

0.1 % tergitol for 2.5 hours at 4 'C. After centrifugation at 15,808 x g, the supernatant

was incubated with 0.01 % pre-equilibrated Ni-NTA resin suspension for 1 hour before

the flow-through was collected. The resin was washed with one column volume of lysis

buffer and 2 column volumes of wash buffer containing 50 mM HEPES, 1 mM CaCl 2,

300 mM NaCl, 20 mM imidazole, 10 % glycerol, and 0.1 % tergitol. The resin was then

washed with increasing ratios of imidazole and the histadine-tagged proteins were eluted

in pH 8 buffer containing 50 mM HEPES, 1 mM CaCl 2, 300 mM NaCl, 20 mM

imidazole, and 10 % glycerol. The eluent was concentrated in Amicon Ultra centrifugal

filter units by Millipore (Billerica, MA) and buffer exchanged using 50 mM HEPES

buffer containing 162 mM NaCl, 1 mM CaCl2, and 10 % glycerol. The final protein

concentration was determined using a bichinchoninic acid assay by Pierce (Rockford,

IL).
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3.4.7 Hydrolase activity with p-nitrophenvl acetate and 5-thiobutVl butyrolactone

A stock of 300 mMp-nitrophenyl acetate (pNPAc) was prepared in HPLC-grade

methanol and diluted for enzyme assays. Colorimetric assays to detect the formation ofp-

nitrophenolate at 405 nm were prepared in a MICROTEST 96 well plate from Becton

Dickinson Labware (Franklin Lakes, NJ) with a final volume of 250 IL containing either

530 nM (CrSTR, P1, P2, and P3) or 53 nM (PONI, V vinifera hydrolase, and mutant) of

protein in 100 mM HEPES buffer containing 1 mM CaCl 2 and 2.6 mM NaCl. After pre-

equilibration at room temperature for 10 minutes, the assays were initiated by the

addition of pNPAc (2.6 mM). Kinetic parameters were measured using a range of pNPAc

concentrations (0.5 mM, 1 mM, 1.6 mM, 2.1 mM, 2.6 mM, and 3.2 mM). Time-points

were chosen such that the rate of product formation was linear, to ensure accurate

measure of initial rates (between 3 and 30 minutes after initiation of the reaction). The

measured pathlength of 0.79 cm and p-nitrophenol extinction coefficient of

18,000 M-1 cm-1 were used to convert the absorbance units ofp-nitrophenol into

concentrations by the Beer-Lambert law. Kinetic parameters were estimated by fitting the

data to the Lineweaver-Burk plot since limited substrate solubility did not enable an

acceptable fit to the Michaelis-Menten equation (maximal substrate concentration was

less than the 2-3 x Kin).

To determine lactonase activity, a 220 mM TBBL stock was prepared in HPLC-grade

acetonitrile and diluted to 125 mM. Colorimetric assays to detect hydrolase activity at

412 nm were prepared in a MICROTEST 96 well plate with a final volume of 250 tL

containing either 530 nM (CrSTR, P1, P2, and P3) or 53 nM (PON1, V vinfera
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hydrolase, and mutant) of protein in 100 mM HEPES buffer containing 1 mM CaCl2 and

2.6 mM NaCl. After pre-equilibration at room temperature for 10 minutes, the assays

were initiated by the addition of 21 tM TBBL.

3.4.8 Hydrolase activity with pheniyl acetate

HPLC assays were used to detect the hydrolysis of phenyl acetate. Assays were prepared

with a final volume of 250 tL containing either 530 nM (CrSTR, P1, P2, and P3) or 53

nM (PONI, V. vinfera hydrolase, and V vinifera mutant) of protein and 480 iM 1-

naphthaleneacetic acid internal standard in 100 mM HEPES buffer containing 1 mM

CaCl2 and 125 mM NaCl. After pre-equilibration at room temperature for 10 minutes,

assays were initiated by the addition of 2.6 mM phenyl acetate and 20 [tL of the assay

was quenched with an equal volume of HPLC-grade methanol every 20-30 minutes.

Quenched assays were clarified by centrifugation for 5 minutes in a microcentrifuge, and

products were analyzed by HPLC at 270 nm.

3.4.9 Assays to detect Pictet-Spenglerase activity

To detect Pictet-Spenglerase activity, assays were prepared in a final volume of 100 pL

containing 234 nM protein, and 200 tM tryptamine in 100 mM pH 7 phosphate buffer.

Assays were initiated by the addition of 1.2 mM secologanin and incubated at 30 'C

overnight. Ten percent of the assay volume was quenched with HPLC-grade methanol,

clarified by centrifugation for 5 minutes in a microcentrifuge, and analyzed by LC-MS

using selected ion monitoring at the mass of the strictosidine product, m/z 531.
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3.4.10 Inhibition of P3 pNPAc hydrolysis in the presence of EDTA and calcium inhibitor,

terbium chloride

To determine if P3 is metal-dependent, P3 was buffered exchanged into a pH 8 buffer

containing 50 mM HEPES, 133 mM NaCl and 10 mM EDTA, and 10 % glycerol. Protein

concentration was measured using the bichinchoninic assay by Pierce (Rockford, IL)

before assays were prepared. Colorimetric assays were prepared in the same manner as

described in section 3.4.7, however, the pH 8 buffer used in these assays contained 100

mM HEPES, 96 mM NaCl, and 10 mM EDTA.

Calcium inhibition assays with terbium chloride were prepared by buffer exchanging P3

into a pH 8 buffer containing of 4 mM terbium chloride, 50 mM HEPES, 6.5 mM NaCl,

and 10 % glycerol. After the protein concentration was measured, colorimetric assays

were prepared by incubating 530 nM P3, 4 mM terbium chloride, in 100 mM HEPES pH

8 buffer containing 1 mM CaCl2 and 2.6 mM NaCl. After pre-equilibration at room

temperature for 10 minutes, assays were initiated by the addition of 2.6 mM pNPAc.

3.4.11 Generation of mutants to eliminate hydrolase activity in P3 and V vinifera

hydrolases

The primers listed in Table 3.1 were used to mutate metal-binding residues in P3 and the

V vinifera hydrolase. Mutations were generated using the Quickchange Kit by Strategene

(Santa Clara, CA).
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Table 3.1 Primers for the amplification of full-length genes (mutations in bold)

Primer sequence 5' to 3'
V. viniferaE75Aforward
V. viniferaE75A reverse
V. viniferaN182Aforward
V. viniferaN182Areverse
V. viniferaD286A+N287Afor
V. viniferaD286A+N287Arev
P3E17Aforward
P3E17Areverse
P3N128Aforward
P3N128Areverse
P3N189Aforward
P3N189Areverse
P3D234A+N235Afor
P3D234A+N235Areverse

CAACCGTGGGTCCGGCGGCTATCGCGTTTG
CAAACGCGATAGCCGCCGGACCCACGGTTG
GCCGTTCCTGTTCCTGGCGGCGGTTGACGTTGACC
GGTCAACGTCAACCGCCGCCAGGAACAGGAACGGC
CCGCCGGGTACCCCTGCGGCGATCAAACGTAACGTTCGTGG
CCACGAACGTTACGTTTGATCGCCGCAGGGGTACCCGGCGG
CCATCTGTGGGCCCAGCGGCGTTCGCGTTTG
CAAACGCGAACGCCGCTGGGCCCACAGATGG
GGCGTGCCATTCAAGTTTCTGGCGGCGGTTGATGTTG
CAACATCAACCGCCGCCAGAAACTTGAATGGCACGCC
GGCCTGAGCGTTCCAGCGGGCGCGGAAATCTC
GAGATTTCCGCGCCCGCTGGAACGCTCAGGCC
GACGATCCCGGGCAACCCAGCGGCGATTAAACGTAATAGCGAC
GTCGCTATTACGTTTAATCGCCGCTGGGTTGCCCGGGATCGTC
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CHAPTER 4

A STEREOSELECTIVE HYDROXYLATION STEP OF ALKALOID BIOSYNTHESIS

BY A UNIQUE CYTOCHROME P450 IN CATHARANTHUS ROSEUS

Part of this chapter is published in the
Journal of Biological Chemistry, 2011, 286, 16751-16757.
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4.1 Introduction

Cytochrome P450-dependent enzymes (P450s) play a key role in the development and

survival of plants [1-3]. Adaptation to terrestrial conditions, the production of lignin for

structural reinforcement, pollination, and long range signaling for defense against

herbivores and pests are processes that each utilize biochemical pathways in plants.

P450s are involved in these pathways since oxygen is often utilized in building

structurally complex molecules. These enzymes participate in myriad biosynthetic

pathways, some of which lead to the production of fatty acids, terpenoids,

phenylpropanoids, cyanogenic glucosides, glucosinolates, and alkaloids [4]. P450s

catalyze hydroxylation, epoxidation, oxidation, deamination, dehalogenation, and many

other reactions [5]. In oxidation reactions, P450s initiate their chemistry by converting a

resting state iron (III) protoporphyrin-IX complex to a reactive oxoiron (IV) porphyrin

cation radical intermediate (Fig. 4.1). Specifically, these heme-containing enzymes use a

reductase partner to transfer an electron from an NAD(P)H cofactor to reduce the ferric

P450 to a ferrous state (Fig. 4.1, step 1) [6]. Molecular oxygen binds to the ferrous heme

(Fig. 4.1, step 3), which is subsequently reduced by another electron. Protonation and

heterologous cleavage (Fig. 4.1, step 4) forms a reactive iron-oxo complex (Fig. 4.1, step

5) that can catalyze oxygen transfer to a substrate to form the oxygenated product

complex (Fig. 4.1, step 6) [4, 6].
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Plants have an unusually large number of P450 genes compared to prokaryotes and other

eukaryotic organisms. P450 genes in the plant genome are estimated to comprise

approximately 1 % of total gene complements for sequenced plant species compared to

the 0.1-0.5 % of the gene complements found in human, mouse, Takifugu rubripes,

Anopheles gambiae, Drosophila melanogaster, Caenorhabditis elegans, Ciona

intestinalis, and Ciona savignyi genomes [2, 7]. In fact, P450s have evolved to be the

largest enzyme superfamily in plant metabolism. However, the catalytic functions of

most plant P450s are unknown because of insufficient knowledge of the pathways and

the chemistries these enzymes employ. For example, there are 256 annotated P450s in the

model plant Arabidopsis thaliana (www.arabidopsis.org/info/genefamily/p450.j sp), and

less than 20 % of those genes have been associated with a specific biochemical function

[8]. Plant P450s are typically highly substrate-specific enzymes that catalyze regio- and

stereo-selective transformations [7, 9]. While P450 genes possess high sequence identity

to each other, the lack of correlation between primary structure and catalytic function

makes it challenging to identify a P450 that catalyzes a specific biosynthetic

transformation [3].

Catharanthus roseus is the sole source of vinblastine and vincristine, alkaloids used

clinically to treat leukemia, Hodgkin's lymphoma, and other cancers [10]. The

biosynthetic pathway leading to these medicinally important bisindole alkaloids remains

to be fully understood. Although alkaloid biosynthesis in C. roseus involves several

biotransformations known or speculated to be P450-dependent [11], only five C. roseus

P450s have been functionally-characterized: flavonoid 3',5'-hydroxylase, cinnamate 4-
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hydroxylase, geraniol 10-hydroxylase (GiOH), secologanin synthase (SLS), and

tabersonine 16-hydroxylase (T16H) [12-16]. These P450 genes were functionally

characterized using various techniques, including "reverse genetics", a strategy in which

proteins are purified and partially sequenced. The partial protein sequence is then used to

screen a cDNA library for corresponding genes. These traditional approaches have

proven to be effective for the functional characterization of some P450 genes, but these

methods are labor-intensive and time-consuming [3]. Recently, a large-scale co-

expression analysis was performed to predict the functional characterization of orphan

P450 genes in Arabidopsis thaliana [17, 18]. Co-expression analysis assumes that genes

of the same biosynthetic pathway are similarly regulated on a transcriptional level. The

correlation between tissue-specific gene expression and biochemical function proves to

be extremely valuable for generating hypotheses about specialized gene function.

This chapter describes the use of a C. roseus EST collection generated by Illumina

transcriptome sequencing and in silico transcriptome analysis to create a corresponding

expression profile in order to predict the role of orphan P450s involved in alkaloid

biosynthesis. In C. roseus, the alkaloid tabersonine can be converted into the bisindole

precursor vindoline in aerial organs or to 19-0-acetylh6rhammericine in roots (Fig. 4.1)

[10, 19]. Although hydroxylation at the 16-position of tabersonine leads to vindoline, a

putative P450 6,7-epoxidase can convert tabersonine to lochnericine [20-22]. Similarly, a

putative P450 hydroxylase can convert tabersonine to 19-hydroxytabersonine [23]. Both

lochnericine and 19-hydroxytabersonine are proposed intermediates in 19-0-

acetylh6rhammericine biosynthesis (Fig. 4.2). Moreover, the only gene for which a
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cognate DNA has been isolated in 19-0-acetylh6rhammericine biosynthesis is

minovincinine 19-hydroxy-0-acetyltransferase (MAT) [19]. MAT catalyzes the 0-

acetylation of the 19-hydroxyl group of minovinicinine and h6rhammericine to form

echitovenine and 19-0-acetylh6rhammericine, respectively. Using hierarchical clustering

of C. roseus gene expression data, we identified putative P450 genes that clustered with

MAT. A whole cell yeast assay was developed to express and functionally characterize

these P450 gene candidates to complement in silico transcriptome analyses. Gratifyingly,

yeast cell cultures expressing one of these P450 gene candidates, CYP71BJ1, produced a

hydroxylated product in the culture medium when supplemented with tabersonine.

CYP71BJl is the first member of a new plant P450 subfamily, and appears to be a

tabersonine/lochnericine 19-hydroxylase.
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represent enzymes that may be involved in turning over a particular substrate.
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4.2 Results

4.2.1 Co-expression analysis using MAT as bait

Dr. David Liscombe performed hierarchical clustering with co-expression analysis of C.

roseus transcripts to identify P450 genes that clustered with MAT and may be involved in

the oxygenation of tabersonine. Expression profiles of known C. roseus alkaloid

biosynthetic genes [tryptophan decarboxylase, GI OH, loganic acid methyltransferase,

SLS, strictosidine synthase (STR), strictosidine glucosidase (SGD), T16H, 16-hydroxy-

16-0-methoxytabersonine (160MT), 2,3-dihydro-3-hydroxytabersonine-N-

methyltransferase, desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline

acetyltransferase, and MAT] that co-expressed with putative P450 genes were shown as a

heat map, the portion showing the clusters that we focused on in this study is presented in

Fig. 4.3 [10, 19, 24]. Contigs 92197, 80887, 63935, 91544, 89777 all represented partial

ORFs. Two partial length transcripts (contigs 88716 and 87898) were clustered with

MAT (Fig. 4.3) [19]. Fortunately, these partial ORFs were found to represent the same

gene transcript by manual sequence analysis and could be assembled to form the full-

length ORF encoding CYP71BJ1. Two other apparent full-length ORFs (41747 and

CYP81Z 1) were present in the cluster and were also selected for further characterization.

Dr. David Liscombe cloned gene candidates from methyl jasmonate-elicited C. roseus

seedling cDNA into the yeast expression vector pYeDP60. The candidate P450 proteins

were then expressed in Saccharomyces cerevisiae WAT 11 cells, a yeast strain optimized

for plant P450 protein expression [25].
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Figure 4.3. Section of hierarchical cluster analysis of putative P450 genes (full-length in
bold) co-expressed with MAT. This heat map was generated by the Treeview program
[26].

146

- ---- --- ---- -----------



4.2.2 Development of yeast whole cell assav

Using the S. cerevisiae WAT11 strain harboring the integrated Arabidopsis thaliana P450

reductase A TR1 and the T16H construct, we developed a whole cell assay to detect P450

activity with tabersonine. Yeast cultures expressing T16H were supplemented with 147

tM of tabersonine, and 16-hydroxytabersonine was detected in culture media after 5-10

days (varies between colonies, Fig. 4.4). To determine if other tabersonine-derived

alkaloid intermediates could be observed in culture media, two well-characterized

enzymes in C. roseus vindoline biosynthesis, T16H and 160MT, were reconstituted in S.

cerevisiae. Using a different selection marker from pYeDP60 plasmid, 160MT was

cloned into the pYES3-CT plasmid with a tryptophan selection marker. Both plasmids

were transformed into yeast. Cultures (5 mL) were grown, protein expression was

induced, and the media was supplemented with 147 tM tabersonine. Five days later,

selected ion monitoring via LC-MS analysis of the yeast culture media showed a peak

with a mass (m/z 353) consistent with that of 16-methoxytabersonine. Direct comparison

of the peaks showed that the enzymatic product peak was more hydrophobic than the

tabersonine starting material (Fig. 4.4). No enzymatic product was observed in cultures

harboring the empty pYES3-CT plasmid that were supplemented with tabersonine.
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Figure 4.4 A) Selected ion chromatograms of tabersonine (m/z 337), 16-
hydroxytabersonine (m/z 353), and 16-methoxytabersonine (m/z 367) in extracted media
from yeast cultures expressing either empty pYeDP60 vector (4 days), T16H-pYeDP60
(4 days), T16H-pYeDP60 and empty pYES3-CT vector (11 days), or T16H-pYeDP60
and 160MT-pYES3-CT (10 days) after being supplemented with tabersonine. B) The
accumulation of 16-hydroxytabersonine in the media of yeast cultures expressing T16H
nine days after being supplemented with tabersonine.
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4.2.3 Protein expression and activity assay

The whole cell yeast assay described in section 4.2.2 was used to screen the candidate

P45Os CYP71BJ1, 41747, and CYP81Z1, which may be involved in the oxygenation of

tabersonine. Yeast cultures that expressed CYP71BJ1 were supplemented with

tabersonine, which was completely converted to a more hydrophilic compound with a

mass consistent with hydroxylation or epoxidation within 24 hours (Fig. 4.5). Moreover,

the CYP71BJ1 product eluted at a retention time distinct from that observed for the Tl6H

product, 16-hydroxytabersonine. No enzymatic product was observed when tabersonine

was incubated with yeast cultures harboring the empty pYeDP60 plasmid (Fig. 4.5) or

those expressing the other candidate P450s, 41747 and CYP81Z1.

4.2.4 Structural characterization of CYP71BJl product

We isolated and purified milligram quantities of the CYP71BJ1 product from 1 L of yeast

culture supplemented with 147 pM tabersonine for structural characterization. The

enzymatic product was identified as (R)- 1 9-hydroxytabersonine, as evidenced by high

resolution mass spectrometry, 'H NMR, 13C NMR, COSY (Fig. 4.6), and HSQC NMR.

The 1H NMR spectrum shows a doublet at 1.55 pm and analysis of the COSY spectrum

confirmed that this peak represents the proton in the 19-hydroxyl group. The COSY

spectrum shows a crosspeak between the doublet at 1.55 ppm corresponding to the proton

in the 19-hydroxyl group and the doublet at 2.78 ppm corresponding to the proton at C19

(Fig. 4.6). Furthermore, we observed a crosspeak between the protons at C18 (0.88 ppm)

and the proton at C19 (Fig. 4.6) confirming that there is only one proton at C19.
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Figure 4.5 Selected ion chromatograms of extracted media from yeast cultures
expressing CYP71BJ1, T16H, and empty pYeDP60 vector.
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Figure 4.6 COSY of CYP71BJ1 product, (R)-19-hydroxytabersonine. The boxed
crosspeaks show the correlation between the 19-proton and the C18 methyl group and the
proton in the 19-hydroxyl group.
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4.2.5 Substrate scope of CYP71BJl

Microsomes were isolated from yeast cultures expressing CYP71BJl and assayed with a

variety of alkaloids with different monoterpene indole alkaloid skeletons to determine the

substrate scope of the enzyme. Neither lochnericine nor horhammericine alkaloids are

commercially available but both are known to be present in hairy root cultures and in the

roots of mature C. roseus plants [22, 23, 27]. We isolated small quantities of

lochnericine, a potential physiological substrate for CYP71BJ1 (Fig. 4.1), from hairy

roots. Although we could not obtain quantities sufficient for NMR characterization, the

isolated standard exhibited the expected exact mass and UV signature [28]. Moreover,

CYP71BJ1-enriched microsomes converted the isolated compound to a product with an

exact mass and UV signature consistent with h6rhammericine (Fig. 4.6) [27, 28]. Assays

lacking NADPH cofactor or CYP71BJ1-enriched microsomes served as negative

controls. Of all substrates tested (Fig. 4.7), CYP71BJ1 only turned over tabersonine and

lochnericine. To explore the substrate preference of this enzyme further, we assayed

CYP7 1 BJ1 -enriched microsomes with a 1:1 mixture of tabersonine and lochnericine

(each substrate had a final concentration of 55 p.M). After 15 hours of incubation, LC-MS

analysis indicated that while both substrates were turned over by the enzyme, all of the

lochnericine substrate was consumed, while most of the tabersonine substrate was not

converted to product, suggesting that lochnericine is the preferred substrate (Fig. 4.8).
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Figure 4.7 Selected ion chromatograms of CYP71BJ1 -enriched microsomes that accept
tabersonine and lochnericine substrates to produce products that coelute with (R)-19-
hydroxytabersonine and h6rhammericine authentic standards.
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Figure 4.9 Selected ion chromatograms of the formation of (R)- 1 9-hydroxytabersonine
(m/z 353) and h~rhammericine (m/z 369) from assays of CYP71BJ1-enriched
microsomes incubated with a 1:1 mixture of tabersonine (m/z 337) and lochnericine (m/z
353) in the presence and absence of NADPH.
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4.2.6 Kinetic analysis and oxygenase inhibition of CYP71BJ1

Steady-state kinetic analysis of CYP7 1 BJ1 -enriched microsomes assayed with

tabersonine revealed that CYP71BJ1 had a Km of 300 L 50 nM and an apparent Vmax of

5.0 ± 0.2 mM min~' mg~1 (Fig. 4.10 A). We also observed reduced activity when

increasing concentrations of the aminobenzotriazole (ABT), a P450 monooxygenase

suicide inhibitor [29], was added to CYP71BJ1 assays containing 9.2 [tM tabersonine.

P450 activity decreased to less than 1 % in the presence of 6.4 mM ABT (Fig. 4.10 B).
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Figure 4.10 A) Steady-state kinetics of CYP71BJl-enriched microsomes with
tabersonine obtained from linear initial rates. B) ABT-monooxygenase inhibition of
CYP71BJ1-enriched microsomes with 9.2 [M tabersonine substrate.
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4.3 Discussion

This chapter describes how the co-expression of genes serves as a useful tool for

predicting the function of orphan P450s. Hierarchical clustering of the C. roseus

transcriptome revealed three putative P450 genes that cluster with MAT, a gene involved

in the acetylation of the 19-position of hsrhammericine or minovincinine (Fig. 4.2).

These P450s gene candidates may catalyze the oxygenation of tabersonine, a common

intermediate in 19-0-acetyl harhammericine biosynthesis. Importantly, apart from in

silico analyses of the C. roseus transcriptome to develop hypotheses about the function of

P450 candidates, a simple assay was developed to identify P450s that turn over

tabersonine.

Current strategies used to identify and functionally characterize plant P450s employ a

combination of methods such as gene expression patterns [18], substrate binding assays

[30], in silico modeling of active sites [31, 32], mutations [33], and gene silencing [32].

The membrane-bound nature of P450s makes these enzymes difficult to express in

heterologous hosts, and the iron-heme cofactor requires suitable redox environments to

elucidate their function(s). Yet, in the past 20 years, a number of in vitro methods have

been developed to express P450s in S. cerevisiae, baculovirus, and Escherichia coli [25,

34, 35]. After protein expression, affinity purification may be non-trivial, and the

isolation of multiple P450-enriched microsomes can be tedious. To avoid problems with

P450 expression and purification, we focused on developing a whole cell assay to detect

a specific P450 activity using an expression system optimized for P450 expression.
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A common cytochrome P450 expression vector, pYeDP60, was used to express T16H in

S. cerevisiae WATl 1, which harbors an integrated plant P450 reductase redox partner.

Twenty-four hours after tabersonine was added to the media of yeast cultures, the 16-

hydroxytabersonine enzymatic product was detected in the media. To determine if other

tabersonine-derived products could be detected in the media, an important detail for the

functional characterization of other orphan P450s that turnover tabersonine-derived

alkaloids, T16H and 160MT were co-expressed in yeast. Days after the culture media

was supplemented with tabersonine, 16-methoxytabersonine was detected in the media

demonstrating that this whole cell assay is useful for detecting tabersonine-derived

products.

Hrhammericine biosynthesis is proposed to proceed either through a 6,7-epoxidation of

tabersonine to yield lochnericine, which is subsequently hydroxylated at the 19-position

[22]. Alternatively, tabersonine can be hydroxylated at the 19-position to yield 19-

hydroxytabersonine, which can then undergo a 6,7-epoxidation [22, 23]. Biochemical

evidence strongly suggests that both 6,7-epoxidase and the 19-hydroxylase are P450

enzymes [36, 37]. Using the whole cell assay, out of 3 candidate P450 genes CYP71BJl

was indeed found to catalyze the 19-hydroxylation of tabersonine and lochnericine to

form 19-hydroxytabersonine and h6rhammericine, respectively.

The CYP71BJ1 enzymatic product was isolated from large-scale whole cell assays for

complete structural characterization. 'H NMR chemical shifts of the enzymatic product

are consistent with those of the previously reported (R)-19-hydroxytabersonine [38, 39].
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Additionally, COSY correlations between the proton at C19 and the proton in the 19-

hydroxyl group support the formation of a hydroxylated product. Since both (R)- 19-

hydroxytabersonine and h6rhammericine share R-stereochemistry at C19, we conclude

that the 6,7-epoxide in the lochnericine substrate does not direct the stereochemistry of

the CYP71BJ1-catalyzed reaction. As such, the order of biosynthetic steps involved in

h6rhammericine biosynthesis is still ambiguous since CYP71BJ1 accepts lochnericine

and tabersonine in vitro. The kinetics of CYP71BJ1 were measured only with tabersonine

since limited amounts of lochnericine could be isolated from C. roseus hairy root

cultures. To examine the substrate preference of CYP71BJ1 qualitatively, we set up a

competition assay where microsomes were incubated with an equal ratio of lochnericine

and tabersonine substrate. Although both substrates were turned over, lochnericine was

completely consumed within 15 hours, while most of tabersonine was not turned over,

suggesting that lochnericine is the preferred substrate. Morgan et al observed a

concurrent reduction in h6rhammericine and accumulation of lochnericine in C. roseus

hairy roots after treatment with the P450 suicide inhibitor ABT, providing further support

for lochnericine being the precursor to h6rhammericine [37]. The ABT-sensitivity of

CYP71BJ1 (Fig. 4.10 B) also provides additional support for the involvement of

CYP71BJ1 in h6rhammericine biosynthesis in vivo, favoring a biosynthetic route via

lochnericine. Further studies to disrupt the function of CYP71BJ1 in plant tissue, such as

gene silencing in hairy roots via RNA interference, might provide further insight into the

physiological role of CYP71BJ1.
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The substrate scope of CYP71BJ1 seems to be controlled partially by the presence of the

2,3-double bond, as evidenced by the observation that dihydrotabersonine is not an

accepted substrate. Importantly, the vindoline precursors 16-hydroxytabersonine and 16-

O-methoxytabersonine are also not hydroxylated by CYP71BJl. Since hydroxylation at

the 16-position is the first step in the conversion of tabersonine to vindoline, we speculate

that the substrate specificity of CYP71BJl may play a role in preventing the 19-

hydroxylation of intermediates destined for vindoline biosynthesis. Silencing the gene

encoding CYP71BJ1 will provide further insight on the flux of tabersonine throughout C.

roseus, which will be useful in determining how to increase the metabolic flux towards

the commercially valuable vindoline-derived bisindole alkaloids. However, other

enzymes, such as the tabersonine 6,7-epoxidase, need to be identified and characterized

to be able to efficiently improve the metabolic flux of tabersonine towards bisindole

alkaloids. With the C. roseus transcriptome now available, the functional characterization

of orphan genes involved in alkaloid biosynthesis will hopefully increase, thereby

providing better understanding of how the biosynthesis of vindoline and 19-0-

acetylh6rhammericine are regulated in vitro and in planta.
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4.4 Experimental methods

4.4.1 Chemicals, general methods, and analytical techniques

Tabersonine was a generous gift from Viresh Rawal (University of Chicago, Chicago, I).

Unless otherwise noted, all other chemicals were obtained from Sigma-Aldrich. C. roseus

hairy root cultures were grown according to Morgan et al and C. roseus seedlings were

grown and elicited with methyl jasmonate as previously reported [25, 37].

UPLC and MS analyses were performed in tandem on an Acquity Ultra Performance

BEH C 18 column with a 1.7 mm particle size, 2.1 x 100 mm dimension, which was

coupled to a Micromass LCT Premier TOF Mass Spectrometer by Waters Corporation

(Milford, MA) with electrospray ionization source. Analytes were separated using a 10-

50 % acetonitrile: water (0.1 % formic acid) over 5 minutes at a flow rate of

0.5 mL min-. For MS analyses, the capillary and sample cone voltages were 3000 V and

30 V, respectively. The source and desolvation temperatures were 100 *C and 300 "C,

respectively. The cone and desolvation gas flow were 60 and 800 L hr'. Exact mass

measurements were made on a Bruker Daltonics APEXIV 4.7 Tesla Fourier Transform

Ion Cyclotron Resonance Mass Spectrometer (FT-ICR-MS) with electrospray ionization.

HPLC separations were performed on a Lichrosorb reverse phase column (Select B, 25

cm x 4.0 mm column, 5 tm particle size) using 20-50 % acetonitrile: water (0.1 %

trifluoroacetic acid) over 20 minutes and a flow rate of 1 mL min'. Preparative HPLC

was performed on a Beckman Coulter System Gold equipped with a 125 solvent module,
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and a 166P detector using the same gradient at a flow rate of 19 mL min~'. Analytes were

separated on a reverse-phase column (Grace Vydac 2.2cm x 25 cm, 10 tm particle size).

'HNMR, "C NMR, COSY, and 'H, 13 C HSQC spectra were recorded on a Bruker 400

MHz spectrometer.

4.4.2 Sequence and expression data

The C. roseus transcriptome and expression mapping data were generated by the NIH-

GO Medicinal Plant Consortium at Michigan State University. Illumina sequencing

technology was used to analyze transcripts expressed in different C. roseus plant tissues

such as cell suspension cultures, non-induced and methyl jasmonate induced hairy roots

and seedlings, mature plants, and TDC-silenced hairy roots. The data can be accessed at

http://medicinalplantgenomics.msu.edu/.

4.4.3 Hierarchical clustering and (co)-expression analysis for P450s in C. roseus

Dr. David Liscombe subjected expression levels of annotated P450 candidates (by pfam

analysis) and known alkaloid biosynthetic genes, in control and elicited seedlings, and

cell suspension cultures (CSC) to hierarchical clustering analyses using CLUSTER 3.0

for Mac (http://bonsai.hgc.jp/-mdehoon/software/cluster/software.htm). The resulting

dendrogram was visualized with Treeview [26].

4.4.4 Gene cloning

A T16H gene, codon-optimized for expression in S. cerevisiae was synthesized

(GenScript, Piscataway, NJ) with BamHI and XhoI restriction sites for directional
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cloning into pYeDP60. Dr. David Liscombe amplified CYP71BJ1, "Locus_41747", and

CYP81Z1 open reading frames (ORFs) from elicited seedling cDNA (6 days after

elicitation) using sense and antisense primers listed in Table 4.1 containing restriction

sites (underlined) and start codons (bold). Using directional cloning, the candidate P450

ORFs were cloned into pYeDP60, sequenced, and transformed into S. cerevisiae WAT 11

cells [25].

The 16-hydroxytabersonine 16-0-methyltransferase (160MT) ORF was amplified from

elicited seedling cDNA using the primers listed in Table 4.1. Directional cloning was

used to clone the ORF into pYES3-CT. After the construct was sequenced, lithium

acetate was used to transform the 160MT-pYES3-CT construct into S. cerevisiae

WAT 11 cells harboring the T16H construct [40].

Table 4.1 Primers for the amplification of full-length P450 and 160MT genes

Primer name Primer sequence 5' to 3'
CYP71BJ1-BamHIfwd AAAAAAGGATCCATGTTGTCTTCATTGAAAGAT

CYP7 IBJI-EcoRI rev AAAAAAGAATTCTTAAAAAATGGTAACCGGAGTTG

41747-BamHI fwd AAAAAAGGATCCATGAACTTCTCTCTCACCTCTCCCATTTTCC

41747-EcoRI rev AAAAAAGAATTCTTAGTTTCCTTCAACTACAGTTGAGATGCTAGG

CYP81Z1-BamHIfwd AAAAAAGGATCCATGGAGGTTTCCTTTTTCTACACCTC

CYP81Zi-Smalrev AAAAAACCCGGGTTATGGGTTATTTTCCAT

160MT-BamHIfwd AATAAAGGATCCATGGATGTTCAATCTGAGG

160MT-XhoIfwd ATTTTATTTTCTCGAGTCAAGGATAAACCTCAATG
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4.4.5 Whole cell assay for the detection of P450 activity

Growth conditions and protein expression of T16H (or both T16H and 160MT) in S.

cerevisiae WAT 11 strain were conducted according to Pompon et al [25]. S. cerevisiae

WAT 11 cell cultures expressing T16H were grown for 5 hours after induction at 28'C, at

which point cell cultures were supplemented with 147 4M of tabersonine (from a 73.3

mM DMSO stock solution). Every 24 hours, the optical density at 600 nm was recorded

on a UV-visible spectrophotometer. Additionally, 522 [tL of yeast cell culture was

centrifuged at maximum speed to remove cells and 400 tL of clarified media was

extracted into 400 [tL ethyl acetate. After vortexing and centrifuging the mixture to

separate aqueous and organic layers, 200 tL of the ethyl acetate layer was evaporated

and reconstituted in 400 [tL of HPLC grade methanol. An aliquot of 5 tL of the methanol

solution was diluted into 1 mL of HPLC grade methanol and 2 tL of this mixture were

analyzed by LC-MS.

4.4.6 Yeast strain, growth, and whole cell assay for activity of candidate P450s

Yeast S. cerevisiae WAT 11 strain harboring the desired plasmid to express candidate

P450 genes was grown in 5 mL cultures and protein expression was induced as

previously reported by Pompon et al. The whole cell assay discussed in section 4.4.5 was

used to detect product formation in order to characterize CYP71BJl, "Locus_41747", and

CYP81Z1.
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4.4.7 Isolation of CYP71BJ1 enzymatic product

Two 500 mL cultures of S. cerevisiae WAT 11 cells harboring the CYP71BJl construct

were grown and induced. The medium was supplemented with 147 p.M of tabersonine

after 5 hours of protein expression. Cells were removed 24 hours later by centrifugation

at 3810 x g for 15 min. The medium was then extracted with 1 L of ethyl acetate three

times and concentrated. The CYP71BJl enzymatic product was purified by column

chromatography using a mobile phase of hexanes: ethyl acetate (1:1) for the first column,

and dichloromethane: methanol (99.5: 0.5) was used for the second column. 'HNMR,

13 C NMR, COSY, and 'H, 13 C HSQC spectra were recorded for the isolated compound.

(R)-19-hydroxytabersonine

6
N \7 8

" 19
OH

16 / N CO 2 CH 3H

1H NMR (CDCl 3): d 8.91 (1H, s), 7.27 (1H, d, J 6.9), 7.15 (1H, t, J 7.7), 6.89 (1H, t,

J= 7.5), 6.82 (1H, d, J= 7.8), 5.92 (1H, dd, J= 4.9, 10.2), 5.80 (1H, d, J= 9.9), 3.79

(3H, s), 3.47 (1H, dd, J= 4.9, 15.9), 3.30 - 3.35 (1H, m), 3.23 (1H, d, J= 16.2), 3.06

(1H, t, J= 7.0), 2.89 (1H, dd, J= 15.4), 2.78 (1H, s), 2.73-2.79 (1H, m), 2.49 (1H, d, J=

15.4), 2.07-2.14 (1H, m), 1.83-1.87 (1H, m), 1.55 (1H, d, J= 3.3), 0.88 (3H, d, J= 6.4);

13C NMR (CDCl 3): d 168.54, 166.38, 143.03, 137.71, 129.44, 127.81, 126.31, 121.54,

120.93, 109.37, 91.26, 67.00, 66.62, 55.57, 51.29, 51.02, 50.10, 46.31, 43.90, 27.57,
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17.36; ESI-MS(C 21H24N2O3*) m/z calculated: 353.1860 [M+H]*, found: 353.1848

[M+H]*. The UV absorbance maxima were observed at 229 nm, 296 nm, and 331 nm.

4.4.8 Isolation of lochnericine and hrhammericine

Alkaloids were extracted from C. roseus hairy roots (5 g) by grinding roots in 50 mL of

HPLC-grade methanol followed by sonication for one hour. After filtration, the methanol

extract was analyzed by HPLC at 330 nm using a 20-5 0 % acetonitrile: water (0.1 %

trifluoroacetic acid) gradient over 20 minutes. To isolate lochnericine and

h~rhammericine, preparative HPLC was performed at 330 nm using the same gradient.

The absorbance maxima for isolated lochnericine were observed at 226 nm, 296 nm, and

330 nm [28]. Additionally, the exact mass for lochnericine was calculated to be 353.1860

[M+H]* and measured to be 353.1866 [M+H]*. The absorbance maxima for isolated

h6rhammericine were observed at 228, 296, 330 nm. The exact mass for h6rhammericine

was calculated to be 369.1809 [M+H]* and measured to be 369.1804 [M+H]* [27, 28].

4.4.9 Preparation of microsomes, CYP71BJ1 kinetics, and substrate specificity assays

Yeast microsomes enriched with CYP71BJ1 or T16H were prepared using the high-

density procedure according to Pompon et al. [25]. The total microsomal protein content

was determined using a bichinchoninic acid assay by Pierce (Rockford, IL). CYP71BJ1

assays were prepared in a final volume of 100 pL containing 55 ptg of microsomal

protein, 1 mM NADPH, 4 mM dithiothreitol, and 100 ptM ajmaline internal standard in

100 mM sodium phosphate buffer (pH 7.0). Assays were initiated by the addition of

30 pM substrate unless otherwise noted. The following substrates were assayed with
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microsomes: tabersonine, yohimbine, catharanthine, dihydrotabersonine, norharmane,

lochnericine, 16-hydroxytabersonine (3 tM), 16-methoxytabersonine (300 nM), and

vindolinine (5 [tM). Dihydrotabersonine was prepared as reported by Liscombe et al [24].

Assays lacking microsomes or NADPH served as negative controls. After incubation of

CYP71BJ1 with substrates at 30 *C for one hour or overnight after, 10 % of the assay

volume was quenched with 1 mL of HPLC-grade methanol. Assays were clarified by

centrifugation for 5 minutes in a microcentrifuge and then analyzed by LC-MS.

4.4.10 Steady-state enzyme kinetics

A DMSO stock (7.3 mM) of tabersonine was prepared and then diluted with water to a

final concentration of 5.9 mM. Serial dilutions of this stock were used for enzyme assays.

Enzyme assays (0.1 mL reaction volume) contained 1.2 mg of CYP7lBJ1 enriched

microsomes, 1 pM ajmaline (for an internal standard), 1 mM NADPH in sodium

phosphate buffer (100 mM, pH 7.0), and 4 mM dithiothreitol. Reactions were initiated by

the addition of tabersonine (290 nM, 550 nM, 570 nM, 590 nM, 1.2 [tM, 2.3 1 M, 4.8 tM,

5.3 [tM, 6.2 tM, 9.2 tM) and incubated at 30 *C. Timepoints were chosen such that the

rate of product formation was linear, to ensure accurate measure of initial rates. The

initial rates were determined from the slope of the line made from the linear fit of four

normalized data points (between 3 and 15 minutes after initiation of the reaction) for each

substrate concentration. The reactions were analyzed by LC-MS and values of Vmax and

Km were estimated using nonlinear fitting (OriginPro 7.0, Northampton, MA). The errors

reported are based on the 95 % confidence of the standard deviations of three

independent experiments.
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4.4.11 Inhibition assays

Aqueous stocks of the P450 suicide inhibitor ABT ranging from 64 mM to 250 tM were

used for inhibition assays. A concentration of 9.2 iM of tabersonine substrate in the

presence of 0, 25 ptM, 100 piM, 400 ptM, 1.6 mM, and 6.4 mM ABT was used. The errors

reported are based on the 95 % confidence of the standard deviations of three

independent experiments.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS
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5.1 Conclusions

Three unique studies described in this thesis highlight the benefits of understanding the

biosynthetic machinery that plants use to produce functionally diverse natural products.

The first study described in Chapter 2 utilized biochemical information derived from

kinetic isotope effects, rate dependence on pH, and structural data to propose a

mechanism by which strictosidine synthase (STR) catalyzes an asymmetric Pictet-

Spengler reaction, a key reaction in the synthesis of alkaloids. The mechanism of the

Pictet-Spengler reaction has been debated over the past 50 years [1-4] and by studying

how Nature evolved an enzyme to catalyze this chemistry, we were also able to gain

more insight on the mechanism of the nonenzymatic reaction.

Isotope effects were used to study the enzymatic mechanism, and the rate-controlling step

of the reaction, surprisingly, was the final deprotonation step (Fig 2.1 A). Furthermore,

the enzymatic rate dependence on pH was measured with secologanin and tryptamine/[2-

2H]-tryptamine, and the apparent pKa values of two ionizable residues involved in

catalysis were estimated to be 4.6 and 8.28. The pKa value of 4.6 implicated the Glu309

residue, which structural characterization has shown to be positioned closely to the amine

and aldehyde moieties of tryptamine and secologanin, respectively. The crystal structure

of STR and mutagenesis data did not reveal any other ionizable amino acid residues that

could be involved in catalysis with a pKa value of 8.27. However, this value could

represent the involvement of the iminium intermediate or protonated tryptamine substrate

in the reaction mechanism. Based on these results, we proposed a mechanism for the

enzymatic Pictet-Spengler reaction, which is shown in Chapter 2, Fig. 2.8.
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To identify whether the spiroindolenine intermediate (Fig. 2.1 A, step 4a) is formed in the

STR-catalyzed reaction, ab initio calculations were used to determine the ground and

transitions states from the iminium intermediate formed in a model Pictet-Spengler

reaction. The computational results indicated that forming the spiroindolenine

intermediate is a slightly higher energy process than directly forming the 6-membered

ring intermediate from the iminium. Furthermore, no transition state was found between

the spiroindolenine intermediate and the 6-membered ring intermediate, suggesting that

the proposed 1,2-shift from the spiroindolenine intermediate to form the 6-membered ring

intermediate does not occur; therefore, even if the spiroindolenine intermediate is formed

during the reaction, it is nonproductive.

Since the time of this study, several other mechanistic aspects of enzymatic and

nonenzymatic alkaloid synthesis have been explored using isotope effects to determine if

deprotonation is rate-controlling. Examples can be seen in the recently published work on

the mechanisms of norcoclaurine synthase [5], epimerization of cis to trans trisubstituted

1,2,3,4-tetrahydro-p-carbolines formed from the condensation of tryptophan derivatives

and aldehydes [6], and prenyl transferases [7]. These studies collectively demonstrate the

significant mechanistic insights that can be gained from studying the chemistry evolved

by Nature.

Chapter 3 highlights the catalytic plasticity of the p-propeller fold that, based on the few

proteins that have been structurally characterized, seems to be conserved within the

lactonohydrolase/paraoxonase superfamily. Global computational comparison of the
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sequences of proteins within this superfamily revealed that a large subset of proteins have

conserved metal coordinating residues and may catalyze metal-dependent hydrolysis [8].

The functionally characterized proteins that belong to this superfamily appear mainly to

catalyze ester hydrolysis whereas STR catalyzes the highly selective Pictet-Spengler

reaction [8, 9]. To experimentally determine whether the STR p-propeller fold could be

used as a scaffold to introduce hydrolase activity, rational mutagenesis was used to create

three STR hybrid proteins, P1, P2, and P3. These hybrids contained metal-binding

residues and the conserved residues amongst closely related STR homologs that have

been identified as putative hydrolases.

Mutations made to STR were based on sequence alignments of closely related STR

homologs from Arabidopsis thaliana and Vitis vinifera, homology models of STR

homologs from V vinfera, and the crystal structures of STR and paraoxonase (PON 1).

Gratifyingly, one of the STR homologs from V vinfera and the three STR hybrid

proteins displayed hydrolase activity with p-nitrophenyl acetate at rates that were above

levels of the spontaneous hydrolysis ofp-nitrophenyl acetate that occurs in solution.

Additionally, the P3 CrSTR hybrid became inactive in the presence of the metal chelator

EDTA and calcium inhibitor terbium chloride, indicating that the hydrolase activity

observed is calcium-dependent. However, upon mutation of four of the five putative

calcium-binding residues in P3 to alanine, hydrolase activity was not eliminated,

suggesting that the mechanism of hydrolysis for P3 and the other hybrids is distinct from

that of PON 1. The lack of two histidine residues in the putative active sites of CrSTR

hybrids that have been implicated in the catalytic mechanism of PON1 further
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emphasizes the differences in catalytic mechanisms between STR hybrids and PONI.

Moreover, when three of the four metal-binding residues in the V vinfera hydrolase

were mutated to alanine, the triple mutants were still active, suggesting possible

mechanistic similarities between the V vinifera hydrolase and STR hybrids. Additional

mutations that eliminate hydrolase activity need to be made to validate this hypothesis,

and other substrates also need to be assayed with P3 and the V vinfera hydrolase to gain

more insight on the native substrates for these proteins.

Typically, in the evolution of proteins within a superfamily, aspects of a catalytic

mechanism is conserved [10]. For example, in the mechanistically diverse enolase

superfamily, the base abstraction of protons alpha to the carboxylate moieties to form

enolates is conserved [11, 12]. Yet mechanistic similarities of hydrolysis or Pictet-

Spengler condensation between the enzymes in the lactonohydrolase/paraoxonase family

are not completely obvious as the substrates and chemical mechanisms vary. Both

reactions do appear to involve a nucleophilic attack of an electrophile. Once the

mechanisms of the V vinifera hydrolase and STR hybrids are elucidated, more insight

can be gained on how the Pictet-Spengler reaction evolved from hydrolytic reactions.

Structural characterization of the V vinfera hydrolase and STR hybrids may also help

elucidate potential mechanistic differences between PON 1 and other characterized

members of the lactonohydrolase/paraoxonase superfamily.

The final example in this thesis that emphasizes the importance of studying plant

biosynthetic enzymes is described in Chapter 4. Tabersonine is an alkaloid that can be
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transformed into several oxygenated species in addition to vindoline biosynthetic

intermediates such as 16-hydroxytabersonine. Morgan and coworkers suggested that the

oxygenation of tabersonine to produce other alkaloids, such as lochnericine and

hrhammericine, are P450-dependent reactions [13]. This chapter describes the

identification and biochemical characterization of a unique P450 enzyme that

hydroxylates the tabersonine at the 19-position to form 19-hydroxytabersonine.

Using recently sequenced C. roseus transcriptome data, hierarchical clustering and co-

expression analyses were used to identify orphan P450 transcripts that have a similar

expression profile to genes known to be involved in alkaloid biosynthesis. Three full-

length putative P450 transcripts were found to cluster with minovincinine 19-hydroxy-0-

acetyltransferase (MAT), an enzyme known to catalyze O-acetylation of the 19-hydroxyl

group of hdrhammericine and minovincinine, which are both derived from tabersonine. A

whole cell assay was developed whereby the media of yeast cell-culture expressing

tabersonine-16-hydrolase or candidate P450s was supplemented with tabersonine.

Remarkably, oxygenated tabersonine products could be detected in culture media. Using

this assay, the candidate P450, CYP71BJ1, was found to produce a product with a mass

consisted with epoxidation or hydroxylation of tabersonine. NMR structural

characterization revealed the enzymatic product to be (R)-19-hydroxytabersonine.

Substrate specificity studies indicated that lochnericine was the only other substrate

accepted by CYP71BJ1. The physiological substrate for CYP71BJI is not clear as both

lochnericine and tabersonine substrates are accepted by this enzyme. A qualitative
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competition assay of CYP71BJ1 incubated with equivalent amounts of lochnericine and

tabersonine revealed that lochnericine is the preferred substrate. However, gene silencing

of CYP71BJ1 using RNA interference will hopefully provide greater insight on the

physiological substrate of this enzyme. Additionally, with the sequences of the C. roseus

transcriptome now available, the cDNAs that encode other enzymes that are able convert

tabersonine into vindoline as well as other oxygenated alkaloids such as lochnericine and

hdrhammercine will be rapidly identified and characterized. Once these genes are

identified, gene silencing may reveal how to redirect tabersonine to upregulate vindoline

production, making it easier to access large quantities of vindoline for the semi-synthesis

of bisindole alkaloids.

5.2 Future Directions

5.2.1 Reconstituting vindoline biosynthesis

The whole cell assay used to identify P450 candidates in Chapter 4 was initially

developed to reconstitute vindoline biosynthesis in yeast (S. cerevisiae). Since the

tabersonine substrate is commercially available, and five of the six enzymatic steps that

convert tabersonine to vindoline are fully characterized, we can begin to test strategies to

reconstitute vindoline biosynthesis from the tabersonine starting substrate in microbial

hosts. Moreover, preliminary data indicate that the vindoline biosynthetic enzyme T16H

(Fig. 4.3), which hydroxylates tabersonine, can also hydroxylate the CYP71BJ1 product,

19-hydroxytabersonine (Fig. 5.1). This result suggests that novel products can be

fermented by co-expressing the biosynthetic enzymes 160MT, T16H, and CYP71BJ1

together in yeast. Examples of the potential products from this synthetic biology
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approach are shown in Fig. 5.2. The possible products that could be produced are limited

since the substrate scope of 160MT is highly specific [14]. However, additional efforts to

reengineer this enzyme to accept unnatural substrates may also increase the functional

diversity of the products formed. Together these experiments will provide a platform for

exploring the challenges of reconstitution in yeast such as the efficiency of substrate

uptake into the yeast cultures, product export into the media, and the expression ratios of

the three enzymes that maximize product yield.
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Figure 5.1 Selected ion LC-MS chromatograms of assays of T16H incubated with 19-
hydroxytabersonine, 1 mM NADPH, and 4 mM dithiothreitol with and without NADPH
for 4.5 hours at 30 *C.
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Figure 5.2 Predicted products and corresponding masses produced in the media of yeast
cultures co-expressing of Ti 6H, 160MT, and CYP71 BJ1 that have been supplemented
with tabersonine.
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5.2.2. RNAi-induced gene silencing of CYP71BJ1

There are currently no practical synthetic procedures available to obtain the

"blockbuster" antimitotic drugs vinblastine and vincristine. Total synthesis of vinblastine

requires a 67-step synthesis that is impractical for obtaining gram-quantities of material

[15]. Currently, 46.6 tg g 1 dry weight of vinblastine and trace amounts of vincristine are

isolated from the aerial parts of Catharanthus roseus for clinical use [14]. Alternatively,

vinblastine can be generated semi-synthetically from isolated vindoline and catharanthine

alkaloids, which can be dimerized in the presence of a peroxidase [16] or iron (III)

chloride [17]. While catharanthine can be fermented in large-scale cell suspension

cultures, limited success has been made with vindoline due to the enzymes under

developmental regulation that are involved in vindoline biosynthesis [18].

One way to obtain vindoline is to isolate the alkaloid from the leaves of C. roseus. Since

C. roseus plants can be regenerated from hairy root cultures that have been infected with

Agrobacterium rhizogenes [19], we can use RNA-mediated suppression to generate

seedlings in which genes, other than Ti 6H, that are involved in metabolizing tabersonine,

the precursor to vindoline, are silenced. We hypothesize that silencing the genes involved

in the tabersonine branchpoint, thereby closing the biosynthetic "valves" to shunt

pathways, will increase levels of tabersonine that can be turned over by downstream

enzymes involved in vindoline biosynthesis. The suppression of CYP71BJ1, a

tabersonine 19-hydrolase described in Chapter 4, is a good place to start "tuning"

vindoline biosynthesis to produce more vindoline that can be isolated from C. roseus

leaves.
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In order to generate CYP71BJ1 RNAi-silencing constructs, 400-500 bp fragments of the

CYP71BJ1 gene (Table 5.1) will be cloned into the pHELLSGATE vector using

Gateway® technology followed by transformation into A. rhizogenes. The

pCAMBIA1300 empty vector will also be transformed into A. rhizogenes to serve as a

control for normal levels of alkaloid production. Following the methods of Runguphan et

al, hairy roots with suppressed levels of CYP71BJ1 gene expression can be generated,

and LC-MS analysis will demonstrate the effects of silencing CYP71BJ1 on the hairy

root metabolome [20]. Additionally, we intend to regenerate the whole plants from

CYP7lBJ1-suppressed hairy roots using the methods of Choi and coworkers to hopefully

observe increased levels of vindoline and/or vindoline intermediates in C. roseus [19].

Table 5.1 Primers for
suppression

Primer name
BeginCYP71BJ1_fwd

BeginCYP71BJ1_rev

MiddleCYP71BJ1_fwd

MiddleCYP71BJIrev

EndCYP71BJJ fwd

EndCYP71BJIrev

amplification of CYP71BJ1 gene fragments for RNA-mediated

Primer sequence 5' to 3'
ATGTTGTCTTCATTGAAAGATTTCTTCGTT

TTGATTTATTTTTTCCAACATTGCCCTTAT

ATGTTGGAAAAAATAAATCAAGCTAGTAATAATTCAAGT

CTCTGTGATTACCCAATGCAAAAGCA

ATGACTAAATTACAAAAAGAGGTGAGAGAAATAGTCG

AAAAATGGTAACCGGAGTTGCCA
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5.2.3. Heterologous expression and functional characterization of STR human homolog.

C20orf3

Chapter 3 described an STR homolog (20 % homology to C. roseus STR) found in

humans, C20orf3 [21]. Our laboratory has verified that this enzyme does not catalyze the

Pictet-Spengler reaction [22]. Recent global sequence comparison of the sequences,

structure, and functions of the lactonohydrolase/paraoxonase superfamily revealed

conserved metal-binding residues that have been found in proteins that do not display

Pictet-Spenglerase activity but are very similar to strictosidine synthase [8]. Based on

homology modeling and global computational analyses of the amino acid sequences of

members of the lactonohydrolase/paraoxonase family, Babbitt and Hicks speculated that

C20orf3 was a putative hydrolase with a conserved metal-binding site comprised of

Glu49, Asn147, Asn206, and Asp252 residues [23]. To test this hypothesis, we cloned

C20orf3 into pYES2-CT with a C-terminal hexahistidine tag for heterologous expression

in yeast. The cells were lysed by sonication and protein was solubilized with 0.1 %

tergitol detergent. Ni-NTA affinity chromatography yielded protein that was buffer

exchanged into 50 mM HEPES pH 8 buffer with 1 mM CaCl 2, 0.2 M NaCl, and 10 %

glycerol. Using phenyl acetate as a substrate, the protein was assayed for hydrolase

activity using an HPLC-based assay (Fig. 5.3). Notably, we observed hydrolase activity

greater than background levels of the spontaneous hydrolysis of phenyl acetate that

occurs at pH 8. Furthermore, when this protein was exchanged into buffer containing 10

mM EDTA, the activity diminished to background levels, suggesting that C20orf3 is a

metal-dependent hydrolase (Fig. 5.3).
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In 2008 Ilhan and coworkers expressed C20orf3 in insect and E. coli cells to raise

antibodies against different C20orf3 epitopes [24]. These antibodies were used to identify

and isolate C20orf3 expressed in human liver and parts of the kidney. The isolated

C20orf3 protein was assayed with p-napthyl acetate and phenyl acetate substrates and

hydrolysis was observed. Although these were qualitative assays, and experiments to

control for background hydrolysis were not performed, these results corroborate the

results we obtained with protein heterologously expressed in yeast.

To continue further functional characterization of C20orf3, a faster, higher yielding E.

coli protein expression system is needed to obtain the quantities of proteins required for

rigorous biochemical assays. More substrates can then be tested with this heterologous

protein. The substrate preferences of this enzyme may provide clues about its

physiological role in human biochemistry. Additionally, mutational studies to identify

residues important for hydrolysis will also shed light on the mechanism of C20orf3

hydrolysis, and provide insights on the evolution of hydrolase activity in the

lactonohydrolase/paraoxonase superfamily.
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Figure 5.3 Phenol produced from C20orf3-catalyzed hydrolysis of A) phenyl acetate B)
phenyl acetate in the presence EDTA. Spontaneous (background) hydrolysis of phenyl
acetate has been included in both A and B. C) A representative HPLC trace of the assay
of C20orf3 incubated with phenyl acetate at 228 nm.
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5.2.4 Evolving V vinifera hydrolase

There are major challenges faced when working with proteins from the

lactonohydrolase/paraoxonase family. Poor protein expression, solubility, and stability

are characteristics of many of these proteins. To overcome these difficulties, directed

evolution has been used to generate stable and active proteins within this family; notably,

a high-expressing, stable paraoxonase variant has been evolved [25, 26]. Since the

mechanism of the V vinifera hydrolase is not entirely clear, it is critical to generate

abundant amounts of this proteins for more detailed studies. As such, directed evolution

using DNA shuffling and consensus/ancestor mutagenesis of the closely related STR

homologs from V vin'fera (CA067974.1, CAN77945.1, CA067963.1, CA066499.1)

and STR hybrids is an effective strategy for the production of abundant stable and active

protein. DNA shuffling and consensus/ancestor mutagenesis involves iterative rounds of

digesting 50-200 bp fragments of different members of a gene family and oligomers of

ancestral mutations followed by self-reassembly using PCR, selection, and screening to

create a library of mutants. This method of directed evolution was used to evolve PON3,

a member of the lactonohydrolase/paraoxonase superfamily, and we plan to follow a

similar procedure [27]. Moreover, the high-throughput methods that were successful in

evolving paraoxonases described by Aharoni et al will be employed to generate more

stable and abundant hydrolases [26].
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5.2.5 Functional characterization of closely-related STR homologs

Chapter 3 described the use of five closely related STR homologs that were used as target

sequences to convert CrSTR into a hydrolase. We were able to functionally characterize

one of the homologs from V vinifera (CAN77945.1) and we can utilize the same strategy

to express the other four homologs from V vinifera and A. thaliana (CA067974. 1,

CA067963.l, CA066499.1, NP_177542.1) to determine if they also exhibit hydrolase

activity with p-nitrophenyl acetate. Based on the global computational sequence

comparison of Hicks and coworkers, we expect that these enzymes will also be metal-

dependent [8]. As such, we also expect to observe reduced hydrolase activity in the

presence of metal chelators such as EDTA. Having a subset of functionally characterized

STR homologs that do not display Pictet-Spenglerase activity will enable us to better

understand the sequence and mechanistic requirements of hydrolase activity within the

lactonohydrolase/paraoxonase superfamily.
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