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Abstract

In addition to the four canonical ribonucleosides (adenosine, uridine, guanosine, cytosine),

transfer RNAs (tRNA) and ribosomal RNAs (rRNA) are comprised of more than 100 enzyme-

catalyzed modifications, with about 20-35 found in any one organism. Many of these

modifications are highly conserved in all domains of life, which suggests important biological

roles for RNA modifications in cell physiology. Several recent studies have demonstrated that

individual tRNA modifications and their biosynthetic pathways affect cellular stress responses.

The presence of 20-35 different RNA modifications in all translationally-related non-coding

RNAs suggested the possibility of systems behavior of RNA modifications in translational facets

of cellular responses. The studies presented in this thesis utilize a quantitative systems-level

approach to test the hypothesis that the spectrum of tRNA modifications represents a cellular

program involved in modulating stress response pathways.
To initiate these studies, a novel mass spectrometric platform was developed to

characterize and quantify the spectrum of modified ribonucleosides in an organism, starting

with the ~25 ribonucleosides in S. cerevisiae tRNA. This approach was used to compare tRNA
modification spectra from cells exposed to four mechanistically distinct toxicants: hydrogen
peroxide, methyl methanesulfonate, arsenite, and hypochlorite. Multivariate statistical analysis
revealed both dose- and agent-specific signatures in the relative quantities of tRNA
modifications. Further, modifications that change significantly after exposure were shown to
confer resistance to the cytotoxicity of the agent. These observations demonstrate the

dynamic nature of tRNA modifications and their critical role in translational control of cellular

stress responses. Also, application of the mass spectrometric method revealed several new

biosynthetic pathways for tRNA modifications in yeast. These studies comprise Chapters 2 and
3.

Chapter 4 is aimed at characterizing the link between tRNA modifications and
translational control of cellular responses. One of the tRNA modifications that increased



significantly following exposure of yeast to hydrogen peroxide is 5-methylcytosine (m5 C), which
is located at the wobble position of the leucine tRNA for coding UUG. This suggested that it
might affect translation of mRNA containing this codon. While there are 6 codons for leucine,
the usage of the codon UUG for specifying leucine in the set of homologous ribosomal proteins
differs widely. Using proteomics approach, it was demonstrated that m5C regulates the levels
of the homologous ribosomal protein genes rp/22a and rp/22b, with hydrogen peroxide
exposure causing an increase in the proportion of ribosomes containing rpI22a. Further, loss of
rp/22a conferred sensitivity to hydrogen peroxide exposure. These results suggest that the
system of tRNA modifications controls cellular responses partly by determining the composition
of ribosomes involved in the selective translation of critical response proteins.

As observed in Chapter 3, tRNA modifications spectrum changes specifically in responses
to mechanistically distinct toxic agents; in Chapter 5, a series of studies was designed to test the
hypothesis that each of these unique signatures represents a common response to different
toxicant classes. To test this hypothesis, yeast cells were exposed to four different oxidizing
agents (hydrogen peroxide, tert-butyl hydroperoxide, peroxynitrite, and gamma-radiation) and
five different alkylating agents (methyl methanesulfonate, ethyl methanesulfonate, isopropyl
methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, and N-nitroso-N-methylurea) at
concentrations producing similar levels of cytotoxicity. The spectrum of tRNA modifications
was then quantified and the results subjected to multivariate statistical analysis to identify
consistent patterns. The results reveal class-specific patterns of changes, with distinct tRNA
modification spectra for oxidants and alkylating agents. At a finer level of analysis, the studies
revealed subclass signatures for SN1 and SN2 alkylating agents. The results from these
experiments were used to develop a data-driven model that predicts exposures to the two
classes of toxic agents accurately. Such a model may be useful for assessing ribonucleoside
spectra as biomarkers of exposure.

Appendix A describes the preliminary characterization of the spectrum of modified
ribonucleosides from Mycobacterium bovis BCG tRNA. Surveys of tRNA enzymatic hydrolysates
with mass spectrometric techniques reveal the presence of modified ribonucleosides that are
highly conserved among various species of organisms, as well as candidates of novel
modifications.
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Chapter 1

Background and Significance



Goals of this thesis

The goals of this thesis project are to further our understanding of the biological roles of

tRNA secondary modifications in cellular response to stress and to explore the utility of changes

in the spectrum of tRNA modifications as biomarker of specific physiological states. We

hypothesize that changes in the levels of specific tRNA modifications are involved in regulating

translation by selection of specific codons enriched in stress response proteins and by

regulating other facets of the interaction of tRNA molecules with ribosomes.

Cellular responses to stress

To survive in an ever-changing environment, cells maintain biological homeostasis by

balancing a wide variety of biological processes, with alterations of any of these processes

affecting all others. Imbalance in these systems can be deleterious to cell survival. For instance,

increasing the temperature of a cell by only several degrees can disrupt protein homeostasis by

causing proteins to unfold, misfold, and aggregate (1-4). To survive these insults, cells have

developed a large number of response pathways to adapt to environmental changes. The

response begins with changes in biochemical homeostasis in a variety of metabolic pathways by

changes in protein secondary modifications caused by signaling cascades (5, 6). At the next

level of response, signaling cascades lead to changes in transcription levels of hundreds of

genes (7-14). From here, there are numerous mechanisms controlling expression of genes,

including alternative splicing of pre-mRNA, RNA interference, and protein degradation. These

pathways will be considered in the following sections.
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One common cellular response mechanism among all organisms involves modulating

protein activity by post-translational modifications or allosteric regulation. One of the most

intensively studied post-translational modifications is phosphorylation of serine and threonine

amino acid residues by protein kinases and dephosphorylation by phosphatases. This

modification activates or deactivates proteins for various functions, including signaling cascades,

metabolism, and regulation of transcription. In signaling pathways, one kinase regulates the

activity of another kinase by phosphorylation, for example in the signaling cascades mediated

by mitogen-activiated protein kinases (MAPKs), MAPK kinases (MAPKK) and MAPKK kinases (15,

16). These pathways magnify the signal intensities when signals reach downstream of the

cascades; also as each protein can be phosphorylated by more than one kinase, the diversity of

signaling is promoted (15, 16). Some of these signaling pathways lead to activation or

deactivation of enzymes directly involved in the stress response. For instance, carbamoyl

phosphate synthetase 11, a rate-limiting enzyme in pyrimidine nucleotide biosynthesis, is

activated by phosphorylation under oxidative stress (17). However, the purpose of most of

these signaling pathways is to regulate transcription. Using p53 as an example, during cellular

exposure to a broad range of genotoxic stress, this transcription factor is subjected to several

modifications, including phosphorylation, at multiple amino acid residues (18, 19). These

modifications activate p53 to initiate the transcription of genes related to DNA repair, cell-cycle

arrest, and apoptosis; p53 can potentially bind to more than 100 genes in human genome (20).

A second level of control of gene expression involves alteration of mRNA sequence by

alternative splicing. While expression levels of proteins can be controlled at the level of

transcription, it is now clear that this is not the only mechanism of regulation because the levels

17



of mRNA and protein for most genes are not well correlated (21, 22). Also, some studies have

demonstrated that most genes that are up-regulated in transcription level in response to stress

do not confer resistance to the stress (23). At the post-transcriptional level, alternative splicing

of pre-mRNA plays important roles in cellular response in higher eukaryotes. Pre-mRNA splicing

is catalyzed by the spliceosome that is composed of both protein and RNA, with the activities of

dozens of RNA-binding proteins, regulated by expression level and post-translational

modifications (24, 25). Depending on the cellular conditions, different parts of a DNA transcript

are removed to form mature mRNA. Thus, different proteins can be expressed from the same

gene to adapt changes in cellular state. For instance, heat shock induces alternative splicing in

the non-coding region of HSP47 pre-mRNA, which results in a mature mRNA that is translated

more efficiently under the stress (26). Also, the pre-mRNA of a negative regulator of p53,

MDM2, is alternatively spliced following exposure to genotoxic agents, which leads to the

activation of DNA damage response (27). Finally, cold shock causes alternative splicing in pre-

mRNA of neurofibromatosis type 1 in many types of cells (28). In general, more than half of

mammalian transcripts are spliced differently in different cells of the same organism (29).

Another mechanism of post-transcriptional regulation of cellular response is RNA

interference (30, 31). mRNAs hybridize with complementing small RNA fragments

(approximately 22 nucleotides in length) to form a double-stranded structure that inhibits the

mRNA from being translated and, in many cases, initiates cleavage of the mRNA (32). These

small RNA fragments include small interfering RNAs, PIWI interacting RNAs, and micro RNAs

(miRNAs). miRNAs are generated from DNA transcripts that form a single-stranded stem-loop

structure that is cleaved at specific position by an RNase Ill enzyme, such as Dicer, to form

18



miRNAs. It has been shown that miRNAs are involved in cellular response. For instances,

translation of p53 mRNA is suppressed by miRNA miR-125b in normal conditions. The level of

this miRNA decreases following DNA damage to allow a higher level of expression of p53 (33).

A similar mechanism is employed to regulate the expression of a cationic amino acid

transporter during amino acid depletion (34). Interestingly, individual deletion of some miRNA

genes causes no changes in normal conditions (35-37). However, they lead to an increase in

sensitivity to stress (38-41).

The issue of translational control of cellular stress responses will be addressed shortly, but

it is important to note mechanisms for protein degradation. As cellular response to stress,

asides from regulations during transcription and post-transcription, abundance levels of

proteins can also be controlled by protein degradation, with considerable variation in protein

half-life (42, 43). The rate of degradation of specific proteins changes during stress. For

example, one of the pathways of degradation is initiated by post-translationally modifying the

target protein with poly-ubiquitin. Under normal conditions, half-life of the transcription factor

p53 is short as it is frequently poly-ubiquitinated by MDM2, while under stress, poly-

ubiquitination of p53 is reduced to allow p53 to initiate the transcription of stress-response

genes (44-47).

In the remaining portions of this chapter, I will review the mechanisms involved in

protein synthesis, with a focus on the role of the family of transfer RNAs (tRNA) and their

extensive system of ribonucleoside modifications. I will explore the molecular functions of



tRNA secondary modifications and how this leads to the hypothesis that tRNA secondary

modifications are involved in cellular response.

Protein synthesis is a RNA-catalyzed process

As illustrated by several studies, multiple stresses induce the phosphorylation of protein

elF2 to stop translation (48, 49) and thus to conserve resources for the cell to express specific

stress-related genes (50). While cellular response to stress occurs in all other steps of the

lifetime of proteins, it is logical to expect regulations during the process of protein synthesis. It

has been demonstrated that changing the rate of translating a mRNA can alter the function of

protein products (51). This implies that alternating the speed of translation may gain the same

benefits as gaining from alternative splicing. Also, changing in the fidelity of translation can

promote cellular immune responses (52, 53). However, mainly due to the complexity of

ribosomal machinery, mechanisms of its regulation remain eluded. Following the advances in

our understandings in the mechanism of protein synthesis, evidence of regulation during

protein synthesis is emerging from recent studies.

Protein synthesis in biological systems is one of the most extensively studied facets of cell

and molecular biology. The process involves at least three species of RNA: messenger RNA

(mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA) (54, 55). mRNAs carry sequence

information of proteins from the genome. They convey information in a linear reading frame

with 64 codons, with each codon comprising three nucleotides that represent one of the

twenty amino acids or termination of synthesis. The information is read by tRNAs that interact
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with the ribosome-mRNA complex to form polymers of amino acids. Each amino acid is coded

by at least one tRNA, with the amino acid physically linked to the tRNA by an ester linkage at

the 3'-0 catalyzed by a specific aminoacyl-tRNA synthetase. Activated by acylation, the amino

group of the amino acid carries out nucleophilic attack on the carbonyl group at the C-terminus

of the growing peptide that is bound to an adjacent tRNA (peptidyl-tRNA). A new peptide bond

is then formed and the peptide is elongated by one amino acid.

This whole process of protein synthesis is carried out on the ribosome, a protein-RNA

complex consisting two subunits. In prokaryotes, the large subunit contains two rRNAs, 23S

and 5S, so named for the sedimentation coefficient of the RNA molecule, and the small subunit

contains only one rRNA, 16S rRNA. In eukaryotes, the large subunit contains three rRNAs, 28S,

5.8S, and 5S, and the small subunit contains an 18S rRNA. These two subunits play distinct

roles. The formation of peptide bonds is carried out in the large subunit and the binding

between mRNA and tRNA is controlled by the small subunit. Previous studies demonstrated

that the two ribosomal subunits are able to perform their functions independently. Without

the small subunit, the large subunit is still able to catalyze the formation of peptide bonds

between analogs of peptidyl-tRNA and aminoacyl-tRNA (56, 57). Similarly, the small subunit,

with only itself, binds mRNA; this mRNA-small subunit complex then binds specific tRNAs by

hybridization of complementing codon and anticodon (58). The large subunit interacts with the

acceptor stems of tRNAs, especially with the 3'-terminus that always ends with the sequence

CCA, while the small subunit interacts with the anticodon stems. With the two subunits

together in a complex, a ribosome contains three tRNA binding sites that are known as the A, P.

and E. During protein synthesis, two adjacent codons in the mRNA, from 5' to 3', are localized
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in the P and A sites respectively. These two codons determine which tRNAs are bound to the

two sites. At the beginning of each cycle of elongation, a peptidyl-tRNA is located at the P site,

a deacylated tRNA at the E site, and no tRNA at the A site. With the selection based upon the

mRNA codon in the A site, a specific species of aminoacyl-tRNA is delivered to the A site by a

protein complex, EF-Tu. This binding initiates the release of deacylated tRNA in the E site.

tRNA in the P site is then deacylated by the formation of peptide bond between the peptide

and the amino group of the aminoacyl-tRNA at the A site. With the aid of protein complex EF-G,

the deacylated tRNA in the P site is then transferred to the E site and the peptidyl-tRNA in the A

site to the P site. Through this process, one amino acid is added to the peptide and a new cycle

of elongation can be started again. In this complex biological process, RNAs contribute to two

reactions. First, they catalyze the formation of peptide bonds and second, they decode the

information stored in mRNAs.

Both rRNA and tRNA play key roles in catalyzing peptide bond formation. The crystal

structures of H. marismortui ribosomal large subunit and its complexes with tRNA analogs were

determined (59). These structures suggest that the active site of peptide bond formation is

solely composed of rRNAs; in the P site, C74 and C75 of the peptidyl-tRNA base-pair with two

Gs from 23S rRNA, and, in the A site, C75 of the aminoacyl-tRNA also base-pairs with a G from

23S rRNA. These binding patterns fix the orientations of substrates so that the amino group of

aminoacyl-tRNA in the A site is pointed directly to the carbonyl group of the peptide that is

covalently linked to the tRNA in the P site. It was proposed that substrate orientation accounts

for most of the catalytic power of ribosome (60). The crystal structures also suggest that the 2'-

OH group of A76 from peptidyl-tRNA at P site interacts strongly with the amino group of
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aminoacyl-tRNA in the A site. Replacing A76 with a 2'-deoxyA76 leads to a decrease in reaction

rate of 102- to 106-fold (61, 62). It is proposed that the 2'- OH group catalyzes the reaction by

acting as both general acid and general base (63). To activate the formation of peptide bond, it

removes a proton from the amino group to make it a better nucleophile. To favor the break of

ester bond between peptide carbonyl group and the P site tRNA, it donates the proton to 3'- 0

of A76 in the leaving tRNA.

tRNA and rRNA are also involved in maintaining translational fidelity. Binding of

aminoacyl-tRNA to the A site is primarily determined by the base-pairing between codon and

anticodon. However, forming a completely complementary codon-anticodon (cognate)

complex is only slightly more energetically favorable than forming one that has one mismatch

(near-cognate) in many cases. This small difference in free energy is predicted to result in one

misincorporation in every ten amino acids (64). In reality, however, the error rate of amino acid

incorporation is one in every 1000 to 100,000 (65), due to several factors. Several pieces of

information point to enhancement of fidelity by 16S rRNA. Studies support that three

nucleotides on 16S rRNA (A1492, A1493, and G530) are essential for mRNA decoding (66, 67).

Crystal structures of the ribosome small subunit reveal that the conformation of these three

nucleotides changes when cognate codon-anticodon interactions occur in the A site (58, 68, 69).

This induces A1493 to form hydrogen bonds with the first base of the codon, and with its

pairing base from the anticodon. Similarly, the base pair that consists of the second base of the

codon interacts with A1492 while the conformation of A1492 is stabilized by G530. These

interactions stabilize the mRNA-tRNA complex. However, the rRNA-tRNA-mRNA interactions



cannot be formed if the two bases of the pair are not complementary. Thus, the formation of

cognate pairs is much more energetically favorable than the formation of non-cognate ones.

The evidence described above points to a central role for RNA in the structure and activity

of the protein synthesizing machinery. Indeed, it has been hypothesized that the earliest

"ribosome" is composed entirely with RNA (70).

Maturation of transfer RNA

Among the several species of RNA involved in protein synthesis, tRNA is particularly

interesting as it is involved in both decoding the mRNA and forming the peptide bonds. To

become fully functional, transcripts of pre-tRNA proceed through a series of maturation steps

(71) that differ for the various tRNA species (72-74). One of the first steps involves removal of a

5'-terminal sequence from pre-tRNAs with ribonuclease P (75, 76). Interestingly, this enzyme is

composed of both RNA and protein, with the RNA subunit of E. coli or B. subtilis capable of

catalyzing this reaction in vitro (77). An additional 3'-terminal sequence is removed by any of

several exoribonucleases and endoribonucleases that differ for the various species of pre-tRNA

(78). This end is then capped with a CCA sequence in some eukaryotic tRNA species by the

action of ATP(CTP):tRNA nucleotidyl transferase (79, 80). Some pre-tRNAs have a 14-60 nt

intron located one nucleotide downstream of the anticodon (81, 82), with the intron removed

in three reactions in nucleus. First, the intron is removed by a tRNA splicing endonuclease that

is located at the nuclear membrane (83). A tRNA ligase then rejoins the two cleaved fragments



using GTP and ATP (81, 84), which leaves a 2'-phosphate at the junction of ligation. The

phosphate is removed by a NAD-dependent 2'-phosphotransferase to finish the process (85).

RNA secondary modifications

In addition to these changes in tRNA sequence, maturation of tRNA also requires

modification of the nucleobases and ribosyl moieties. Current estimates place the number of

known RNA post-transcriptional or secondary modifications at approximately 100, each

requiring one or more specific RNA modifying enzymes (86). The known set of 25

ribonucleoside modifications in S. cerevisiae tRNA are shown in Figure 1-1. The modifications

range in complexity from simple methylations at endo- and exocyclic nitrogens of the

nucleobases and the 2'-hydroxyl group, to complex and branching modifications of the

nucleobase such as N-threonyl-carbamoyl-adenosine and wybutosine (Figure 1-1). These

modifications are positioned throughout the tRNA molecules in a variety of conserved locations,

but the most frequently modified site involves the anticodon loop (Table 1-1 and 1-2).

Currently, about 50 genes encoding tRNA modifying enzymes have been identified in S.

cerevisiae (Table 1-2).

While all other RNA processing steps appear to take place in the nucleus, reactions to

generate the ribonucleoside secondary modifications occur in both the nucleus and cytoplasm.

The modified nucleosides are derivatives of the four canonical nucleosides (adenosine, uridine,

guanosine, and cytosine) and are formed at different steps during pre-tRNA processing. For

example, when yeast tRNATyr was injected into nuclei of Xenopus laevis oocytes, 5 modifications

25



were observed to form before 5'-terminal processing occurred, 11 modifications formed after

the 5' processing, and 2 modifications formed after splicing (87). While the size and sequence

of pre-tRNAs direct the formation of modifications, these processes are also affected by several

other factors.

Another example of the complexity of RNA modification involves the distinction between

tRNAs generated from a single transcript and those arising as a single transcript. In some cases,

several tRNA genes are transcribed as a single multimeric pre-tRNA that is cleaved to form

monomeric pre-tRNAs. In a strain of E. coli with lack of nucleases to process pre-tRNAs, the

accumulated multimeric pre-tRNAs already contained some modifications, including m5U54, Y,

and D (88). For the precursor of a specific leucine tRNA, the modification m'G37 only exists in

monomeric pre-tRNA but not in the multimeric form, while another modification, Gm18, is only

formed on mature tRNA (89). However, in wild-type E. coli, most modifications are generated

after all the cleaving and splicing steps (90). For example, in vitro studies on tRNA m5U54-

methyltransferase demonstrated that monomeric pre-tRNAs are preferred as substrates over

multimeric pre-tRNAs (91). These studies suggest that tRNA modifications are determined by

the abundance level of tRNAs and their precursors, and the activities of modifying enzymes.

In addition to control by substrate and enzyme concentrations, the timing and location of

tRNA modifications is also affected by cellular compartmentalization of enzymes. Many

enzymes for modifying tRNA at position 34 and 37 are located in cytoplasm or in mitochondria

(92). Thus, modifications on these positions are usually the last steps of the maturation

processing as they can only occur when pre-tRNAs are translocated to the cytosol (93).



Furthermore, the sequence of modifications may be affected by interactions between enzymes.

Some tRNA modifying enzymes are a part of large multi-enzyme complexes, which may lead to

specific ordering of individual processes (94, 95). For example, m5C can only be formed at

position 34 in pre-tRNA with an intron, though the sequence of the intron does not affect its

formation (96). This suggests that the splicing is coupled with the formation of m5C.

Degradation of transfer RNA

Matured tRNAs are extremely stable with half-lives in the range of days as determined by

several studies (97, 98). Recently, Chernyakov and coworkers found that two 5'-3'

exonucleases Rat1 and Xrnl are involved in degradation of hypomodified tRNAs and this

process is regulated by Met22 (99), suggesting the presence of a biological mechanism for tRNA

quality control.
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Figure 1-1. Structures of modified nucleosides from S. cerevisiae tRNA. R represents ribosyl
group.
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Table 1-1. Locations of modifications in S. cerevisiae tRNA. In this table, each column
represents one species of tRNA; each row represents one species of modifications.



tRNA modification

m 11
m'A
t 6A
i6A
Ar(p)
Am
m C
ac C
m3C
Cm

m'G

m2Gm2G

m2 2

Gm

m7G
yW
Y

Position of modification
34
37
58
37
37
64
4
34, 40, 48, 49
12
32
32, 34

28, 34, 36, 65, 67

55
31
13, 35
32
1
16, 17
20
47
20A, 20B
54m5U

Um
mcmU 5

mcm5 S U
ncmU 5

ncm 5Um

Unknown
DUS1
DUS2
DUS3
DUS4
TRM2
Unknown
TRM9, ELP1-ELP6, KTI11-KTI13
TRM9, NFS1, ELP1-EPL6, KTl11-KT113
ELP1-EPL6, KTl11-KT113
ELP1-EPL6, KTl11-KT113

Table 1-2. Genes those are responsible for the formation of tRNA secondary modifications in S.
cerevisiae.

Genes responsible for modification
TADZ TAD3
TAD1, TRM5
TRM6, TRM61
Unknown
MOD5
RIT1
Unknown
TRM4
TAN1
Unknown
TRM7
Unknown
TRM10
TRM5
TRM11
Unknown
TRM1
TRM3
TRM7
TRM8, TRM82
TRM5
Pusi
PUS3
PUS4
PUS6
PUS7
PUS8, PUS9



Functions of tRNA secondary modifications

Modified ribonucleosides are present in all organisms that have been studied. As noted

earlier, there are at least 107 RNA modifications; 92 of which are found in tRNA (86, 100, 101).

Some modifications are common to all three phylogenetic domains of life and some are even

located at the identical locations in specific tRNA species from widely differing organisms (102).

This high degree of conservation suggests that the modified ribonucleosides have important

functions in cell physiology. However, while it has been shown that individual tRNA

modifications are involved in many biological processes, including aminoacylation of tRNA and

decoding of codon during translation, there is surprisingly little known about the biological

function of the system of modifications.

Some tRNA modifications are essential to maintain the specificity of tRNA aminoacylation.

For example, unmodified yeast tRNAAsP has an altered tertiary structure that causes

mischarging of the tRNA by arginine aminoacyl tRNA synthetase (ArgRS) (103, 104).

Modifications at several positions are particularly important in aminoacylation. At position 10

of yeast tRNAPhe, the modification m2G affect the kinetics of aminoacylation (105). E. coli

tRNAPhe has no modification at G1O and replacing G1O with m2 G10 makes this tRNA a better

substrate for yeast PheRS. Interestingly, m2 GO on the E. coli tRNAPhe diminishes the efficiency

of aminoacylation by the E. coli PheRS. It is proposed that m2G10 affects aminoacylation by

altering tRNA structure, since this modification is not directly involved in interacting with PheRS

or catalyzing the reaction. For direct interactions, tRNA recognition by aminoacyl tRNA

synthase involves mainly the anticodon region. In an E. coli tRNA1e, the wobble position 34 is



modified as lysidine (k2C) and, the absence of this modification causes mischarging by MetRS

(106, 107). Another example involves loss of mnm 5s2U34 in tRNA Gn, tRNAGlu, and tRNA' in E.

coli, which leads to a significant decrease in the acylation activities on these tRNAs (108-111).

The modification mannosyl-queuosine at position 34 of mammalian tRNAASP has a similar effect

(112). At position 35, the middle base of the anticodon, Y35 of tRNA T r is proposed to form

hydrogen bonds with TyrRS (113). However, modifications surrounding the anticodon also

affect aminoacylation. For example, m'G37 of yeast tRNAAsp prevents misaminoacylation and

t A37 of tRNA"* promotes aminoacylation (114).

Besides aminoacylation, modified ribonucleosides in the anticodon region play significant

roles in the efficiency of codon reading. Some modifications at the wobble position stabilize

the codon-anticodon interactions. For example, a yeast leucine-inserting amber suppressor

tRNA (SUP53) contains m5C at the wobble position, with loss of the modification leading to less

efficient suppression of the amber stop codon (96). This indicates that the modification plays a

significant role in binding of the tRNA to its corresponding codon. In some situations, lacking a

modified nucleoside causes misreading of codons. In E. coli, deletion of either mnmE or gidA,

the products of which are involved in the synthesis of mnms2 U34, causes a +2 frameshift when

reading the sequence GAGAGA (115). More importantly, tRNA modifications are involved in

codon recognition. Codons in some codon boxes correspond to two different amino acids (the

four codons that have the same first and second bases are listed in the same codon box). Some

modified nucleotides restrict wobbling to avoid misincorporation. For example, mcm 5s2 U34 in

yeast tRNAGlu limits the tRNA to pair with A (116). Similarly, mnms2 U at the wobble position of

E. coli tRNA l, tRNALys, and tRNA only forms a strong base pair with A, with the base pair to G
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being weak (108, 117). Many wobble modifications with similar structures, including mcm 5 U,

ncm5 U, cmnm5 U, and mchm 5 U, are involved in restricting codon recognition (118). These

modifications restrict the conformation of the nucleobases to favor base pairing with A (119-

121). Modifications on cytosine, such as Cm, ac4C, f5C, and k2C, can also stabilize a

conformation that promotes base pairing with A and inhibits that with other ribonucleotides

(122-125). In contrast, some other modifications elevate the flexibility of base pairing. In some

codon boxes, all four codons code for the same amino acid and so, efficiency of translation can

be improved if a single species of tRNA can recognize all four codons. However, no canonical

nucleobases can base pair with all four ribonucleosides. Some organisms have modified

ribonucleosides at wobble position to extend the number of codons recognized by specific

species of tRNA. For example, E. coli, tRNA Val, tRNASer, and tRNAAla contain cmo U34 and B.

subtilis tRNA Va, tRNA P, tRNA Thr, and tRNAAla contain mo U34 (126-129), in which these two

modification allow the tRNA to interact with codons with A, U, and G at the wobble position

(126, 128, 130, 131).

There are also other functions for modified ribonucleosides. For example, tRNA

modifications may be involved in signaling for translocation of tRNA. In bean (Phaseolus

vulgaris) and potato (Solanum tuberosum), a nuclear-encoded tRNAVal is located in both cytosol

and mitochondria. While the tRNAval in mitochondria has Gm18, this modification is absent in

cytosolic tRNAVal (132, 133). Methyltransferase activities for formation of Gm have been

identified in cytosol but not in mitochondria (134), which suggests that Gm18 determines the

final destination of the tRNAvaI. Modified nucleotides also affect the lifetime of tRNA. In yeast,

tRNAVal(AAC) lacking m7G and m5C is degraded rapidly by some 5'-3' exonucleases (99, 135).
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Degradation of tRNAser(CGA) and tRNAser(UGA) is also observed when these tRNAs lack ac4C and

Um (136). As the roles of many modified nucleotides are poorly understood, tRNA

modifications are potentially involved in many other biological pathways.

Changes in levels of tRNA modifications as cellular response to stress

There are emerging evidence that tRNA modifications are involved in cellular responses to

stress. From the discussion above, it is obvious that modifications in tRNA affect both the rate

and fidelity of protein synthesis. There are several examples in which misincorporation of

amino acids and frameshifts in codon reading frame are employed as regulatory mechanisms

(137-139). For instance, protein synthesis of a mammalian glutathione peroxidase involves site-

specific frameshift by suppressor serine tRNAs, which is necessary to incorporate a non-

canonical amino acid, selenocystein, into the enzyme active site for adapting changes in

physiological conditions (140). Modified ribonucleosides thus have the potential to regulate

these pathways.

Many genes for tRNA modifying enzymes are not essential for cells growing in rich culture

medium. However, deletion of these genes generates an increase in the cellular sensitivity to

specific stresses. For example, the methyl transferase TRM1 is responsible for the formation of

m 22G in yeast tRNA. While it does not affect cell growth, loss of trml leads to sensitivity to heat,

benomyl, 5-florouracil, and cycloheximide (141-143). Similarly, the m5C-methyltransferase

TRM4 confers resistance to heat, caffeine, and rapamycin (144, 145), while 2'-0-

methyltransferase TRM7 confers resistance to hydrogen peroxide, streptomycin, sulfanilamide,
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and cycloheximide (146-148). The m7G-methyltransferase TRM8 confers resistance to heat,

cycloheximide, and 5-fluorouracil (142, 146, 149) and m2G-methyltransferase TRM11 confers

resistance to killer toxins and papulacandin B (150). These studies suggest that modified

ribonucleotides in tRNA are components of cellular response pathways.

While the presence of some tRNA modifications confers resistance to specific stresses, it

has also been shown that the level of individual modified nucleotide can alter in responses to

physiological states. An example of this phenomenon involves starvation of different nutrients,

which leads to unique changes in the level of tRNA modifications. In Salmonella typhimurium,

ms 2io A37 is replaced by ms2i6A37 under anaerobic conditions, probably because the

hydroxylation of ms2i6A requires molecular oxygen (151). Interestingly, if the hydroxylase for

this reaction is absent, the cells are not able to use intermediates of the TCA cycle, including

malate, fumarate, and succinate, as sources of energy (152). This suggests that ms2io6A37 plays

a role in regulating metabolic pathways. While the formation of ms2io6 A depends on the

availability of its precursor, this is not always the case. Deficiency in leucine, histidine, or

arginine causes under-modification at several positions in an E. coli phenylalanine tRNA,

including decreases in the levels of acp 3 U47 and Y55, as well as loss of D16 and ms2i6A37 (153,

154). The under-modification occurs even though the growth rate of the cells is not affected,

which suggests that changes in the spectrum of modified ribonucleosides are not caused by lack

of biosynthetic precursors (155).

Besides responding to changes in environment, tRNA modifications also change as a

function of cell cycle. In mammalian cells, one of the leucine tRNAs, tRNALeu(2), is under-



modified in some stages of the cell cyle, with the under-modified tRNA known as tRNA Leu(4)

(156, 157). The level of tRNALeu(4) is high during cell growth in G1 phase, while it decreases

when cell enters S phase and increases again the cell is ready to go to G2 phase (158). For

temperature-sensitive mutant that are trapped in G1 phase during heat-shock or deficiency in

leucine, the level of tRNALeu(4) remains low (156). These studies support a role for tRNA

modifications in control of the cell cycle

There are a number of observations that suggest that tRNA modifications play a role in

cellular responses to stress, though the mechanisms linking the RNA modification and the

response are not well understood. For example, recent studies indicate that a specific

modification in S. cerevisiae is involved in regulation of protein synthesis that somehow confers

resistance to DNA damage. It is known that a tRNA methyltransferase, Trm9, modulates the

toxicity of exposure to alkylating agents and ionizing radiation, with the transcription level of

the trm9 gene elevates in cells exposed to these stresses (159-161). Trm9 catalyzes the last

step of the formation of mcm5U and mcm 5s2U at the anticodon wobble position of tRNAArg(UCU)

and tRNAGlu(CCU), respectively (162, 163). These two modifications enhance the binding of the

tRNA to a specific codon: AGA for tRNA Ar(UCU) and GAA for tRNA Glu(UUC) (164). Several

studies have demonstrated that the levels of Trm9-catalyzed tRNA modifications control the

translation of genes with high usage of the AGA or GAA codons, with most AGA- and GAA-rich

genes are associated with responses to DNA damage (165). In humans, tRNA Arg (UCU) also

contains mcm 5 U34 and its formation is catalyzed by a Trm9 homolog, ABH8 (166), an enzyme

that possesses both a domain homologous to Trm9 and a dioxygenase domain (166). It has

been demonstrated in vitro that ABH8 can catalyze hydroxylation of mcm 5U34 on tRNAArg(UCU),
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with the hydroxyl group added to the a-carbon attached to C5 of uridine to form 5-

methoxycarbonylhydroxymethyluridine (mchm 5U) (167). This hydroxyl group could potentially

activate the release of the side chain from C5 to form uridine (Figure 1-2). These results

suggest that the level of mcm 5U34 is under dynamic control, and, since this modification affects

the translation of specific group of genes, the dynamic control of mcm 5U34 level on

tRNAArg(UCU) may serve to regulate protein expression to adapt to changes in environment.

Methylase domain
of ABH8

SAM

5-carboxymethyluridine (cm5U)

0

HN

ON

Postion 34

Uridine (U)

Postion 34
5-methoxycarbonylmethyluridine (mcmsU)

Dioxygenase domain
of ABH8

Fe2 , a-ketoglutarate

Hypothetical reaction HN I

O10 N O

Postion 34

5-methoxycarbonylhydroxymethyluridine
(mchmsU)



Figure 1-2. Proposed metabolic cycle of 5-methoxycarbonylmethyluridine (mcm5U) in
mammalian tRNA. U34 in tRNAArg(UCU) is modified to 5-carboxymethyluridine (cm5 U) in a
multi-steps reaction. In S. cerevisae, this process involves at least 9 proteins: ELP1-EPL6, KT/11-
KT/13 (168). The methylase domain of ABH8 then catalyzes the methylation of cm5 U to form mcm5U.
The dioxygenase domain of ABH8 catalyzes hydroxylation of mcm5 U to form mchm 5U. The hydroxyl
group activates the release of this side chain from C5 of uridine to from uridine again.

Studying functions of tRNA modifications with systems approach

From the studies discussed above and other studies, there is a clear role for individual

RNA modifications in a variety of cellular responses to chemical exposures and other stimuli.

However, given the presence of 25-35 RNA modifications in any organism, the study of

individual modifications ignores possible relationships between two or more modifications

functioning as a system to control translational efficiency and thus limits our understanding of

how these modifications contribute to cell physiology and cell survival with toxic exposures.

Further, tRNA modifications could have overlapping roles or they can function cooperatively, as

illustrated by the apparent redundancy of modifications that leads to a lack of phenotypic

change with the loss of a modification (99, 135, 136, 169). The larger biological system in

which these modified nucleotides are involved is thus hidden from traditional genetic and

molecular biology approaches. To understand the biological roles of tRNA modifications and

those in other RNA species in cellular responses, we must study the modifications as a systems.

To this end, the research described in this dissertation aims to understand the functions

of RNA modifications at a systems level, in terms of identifying interdependent patterns and

behaviors of some or all of the modifications (170). Systems-type studies involve an initial



identification of the biological parameters, the individual RNA modifications here, followed by

analysis of the behavior of the parameters under different conditions. This requires the

development of a model to explain the network structures of the biological system, with the

structures identified with a bottom-up or a top-down approaches. In a bottom-up approach,

the system is relatively well characterized and the parameters of interest can be determined by

literature search, with subsequent targeted analysis of each parameter. For instance, in studies

with goals of understanding the regulatory relationships between transcription factors and

transcriptional activities, the model for this biological system is that transcription factors

regulate transcription; parameters to be monitored are the abundance levels of the mRNAs and

the levels of the transcription factors. This approach has been used in understanding a wide

range of biosystems, such as studies of embryonic developments of Drosophila (171-174). The

top-down approach mainly relies on collecting large amounts of data to construct networks in a

system. For instance, some studies predict the function of genes based on DNA microarray

data using clustering analysis (175-178). The parameters monitored in systems-level studies

vary widely, including lipids, metabolites, proteins, microRNA, mRNA, and carbohydrates. Data

can also be generated by measurements of the frequency of biological processes, such as

protein-protein interactions and assembly of organelles. Systems biology studies increasingly

involve image-based spatial and time-lapse microscopic observations, including protein

localization and subcellular responses (179, 180). In many cases, specialized tools must be

developed to acquire quantifiable data for subsequent behavior analysis. Generally, the goal is

to analyze the dynamic behaviors of the parameters of the system under various conditions,

such as external perturbations or cell cycle phases. In addition to a systems-level understanding,



these behavior analyses may reveal targets for modulating activities in the biological system,

which can also be targets of medical treatments. Also, with statistical tools and computational

power, the response of biological systems to different situations can be simulated and

predicted. Such simulations can provide the fundamentals for designing new biosystems or

modifying existing systems for various applications.

To understand the roles of tRNA modifications in stress response, the theme of this thesis

is to study modified ribonucleosides as a system of interrelated components. Based upon the

examples mentioned above, we hypothesize that level of modified ribonucleosides in tRNA

changes in response to specific stresses to control the translation of critical stress response

proteins. To test this model, a mass spectrometry-based platform was developed to quantify

modified ribonucleosides in populations of tRNA (Chapter 2). This platform was then used to

assess changes in the spectrum of modified ribonucleosides in tRNA from S. cerevisiae exposed

to toxic agents with various mechanisms of action. Statistical methods, including hierarchical

clustering and principle components analysis, were employed to determine unique patterns of

changes in response to different stresses (Chapter 3). We then examined the mechanism

linking RNA modifications to the stress response. One of the changes noted in response to

exposure to hydrogen peroxide involved trm4, the gene responsible for formation of m5C in

tRNA. It was observed that m5C is mechanistically linked to expression of specific ribosomal

proteins and its presence, along with the altered ribosomal proteins, confers resistance to

hydrogen peroxide toxicity. These studies demonstrate a novel translational regulation

pathway in response to stress (Chapter 4). Furthermore, we developed a data-driven model

from changes in spectrum of S. cerevisiae tRNA modifications for predicting the behavior of
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specific classes of toxicant exposures (Chapter 5). This work is then summarized and discussed

in a larger context in Chapter 6.
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Abstract

There are over 100 tRNA modifications in transfer RNA (tRNA) and ribosomal RNA (rRNA)

across all organisms and many of these modifications are conserved in widely different species.

However, the biological roles of RNA modifications are poorly understood. To further our

understanding, we developed a quantitative systems approach to study the spectrum of tRNA

modifications in any organism, beginning with S. cerevisiae. All species of tRNA were isolated

under conditions that minimize artifacts, such as oxidation and deamination of RNA, and the

tRNA rigorously quantified. The RNA was then hydrolyzed enzymatically to nucleoside level.

Liquid chromatography-coupled mass spectrometric techniques (LC-MS) were then developed

to characterize and quantify the spectrum of tRNA modifications in the hydrolysate. Based on

high mass accuracy MS (QTOF), collision-induced dissocation fragmentation patterns,

comparisons with synthetic standards, and changes in the levels of ribonucleosides in mutants

lacking tRNA modifying enzymes, we identified 23 modified ribonucleosides in S. cerevisiae

tRNA. These modifications include Y, D, m C, m 3C, Cm, ac 4C, Am, m A, t A, i'A, I, m l, m'G, m G,

m 2G, m 2G, Gm, m U, Um, mcm U, mcm s 2U, ncm U, and yW. We then developed a liquid

chromatography-coupled tandem mass spectrometry (LC/MS-MS) method to quantify the

spectrum of S. cerevisiae tRNA modifications. These methods provide tools for comparing

changes in the spectrum of RNA modifications in cells under different stress conditions ans

stimulations.



Introduction

Since the first discovery of RNA modifications more than 50 years ago, over 100 modified

ribonucleosides have been reported in literature (1-3). Many of these modifications are found

in organisms from all three phylogenetic domains; some of them are even conserved at the

same position in tRNA across all organims (4). Although this conservation strongly suggests that

these modifications play important roles in cell physiology, their function of many remains

undefined.

To elucidate the biological function of RNA modifications, it is essential to identify the

modifications and study their changes as a function of cellular states. Classically, one of the

approaches is to enzymatically hydrolyze RNA to nucleosides and post-label them with 32P; the

[5'- 32P]-NMPs are separated with 2-dimension thin-layer chromatography (TLC) and the identity

of modified nucleosides is defined by migration in relation to standards (5, 6). This method can

determine absolute quantity. However, it is not chemically specific due to co-migrations and it

is not applicable to all modified nucleosides as many modification groups significantly affect the

efficiency of enzymatic 32P-labeling (7). Another approach to quantify modifications involves

blocking reverse transcription by the modifications on RNA. Specific modified nucleosides can

be derivatized chemically; for instance, pseudouridine can be modified by N-cyclohexyl-N'-(2-

morpholinoethyl)-carbodiimid-metho-p-toluolsulfonate. These derivatives stop reverse

transcription and thus, provide indicators of the presence of the modifications (8). While the

modification is quantified, this approach also provides information of its location. The major



pitfall of this approach is that the quantification of each modification requires a specific

chemical for derivatization and the modifications themselves alter reverse transcription.

For the purpose of characterizing the full spectrum of tRNA modifications and studying all

modifications with a quantitative systems approach, we developed a liquid chromatography-

coupled mass spectrometric platform (LC-MS). Previous studies demonstrated that a wide

range of modified nucleosides are separable by high-performance liquid chromatography (HPLC)

and in some cases, the resolved nucleosides can even be identified and quantified by

comparing the UV spectrum and retention time relative to synthetic standards (9). With limited

amounts of samples, the sensitivity of detection can be increased using mass spectrometric

techniques. Also, mass spectrometry is able to structurally characterize and identify most

ribonucleosides (10). By using these techniques, we developed a robust and sensitive method

to characterize and quantify these modifications in tRNA from S. cerevisiae.

S. cerevisiae is one of the most studied organisms, in which at least 25 tRNA secondary

modifications (11) and more than 50 enzymes responsible for catalyzing their formation (12)

have been identified. For the convenience of manipulating genetic behaviors and analyzing

changes in cellular compositions, we employed S. cerevisiae as a model to study roles of tRNA

modifications in cellular responses. The spectrum of tRNA modifications was first characterized

using approaches including analysis of collision-induced dissocation (CID) fragmentation

patterns of modified nucleosides with tandem quadrupole (MS/MS) techniques. Nucleosides

were also identified by comparison with synthetic standards. Further, we monitored changes in

the levels of the modified ribonucleosides in mutants lacking the genes for tRNA modifying

enzyme. With 23 tRNA modifications identified, a LC/MS-MS method was developed to



quantify them. This method provides the basis for us to compare changes in the spectrum

under different physiological conditions.

Materials and Methods

Materials. All chemicals and reagents were of the highest purity available and were used

without further purification. Yeast extract and peptone were purchased from Biomed

Diagnostics (White City, OR). PureLink miRNA Isolation Kit was purchased from Invitrogen

(Carlsbad, CA). 2'-O-Methyluridine (Um), pseudouridine (Y), N1-methyladenosine (m'A), N2,N2_

dimethylguanosine (m22G), N,N 6-dimethyladensoine (m6
2A), and 2'-O-methylguanosine (Gm)

were purchased from Berry and Associates (Dexter, MI). N-threonylcarbamoyladenosine (t6A)

was purchased from Biolog (Bremen, Germany). N6-isopentenyladenosine (i6A) was purchased

from International Laboratory LLC (San Bruno, CA). 2'-O-Methyladenosine (Am), N4-

acetylcytidine (ac4C), 5-methyluridine (m5 U), inosine (1), 2-methylguanosine (m2G), N7-

methylguanosine (m7G), 2'-O-methylcytidine (Cm), 3-methylcytidine (m3C), 5-methylcytidine

(m5C), alkaline phosphatase, lyticase, RNase A, ammonium acetate, geneticine, bovine serum

albumin, deferoxamine mesylate, butylated hydroxytoluene, and glucose were purchased from

Sigma Chemical Co. (St. Louis, MO). Nuclease P1 was purchased from Roche Diagnostic Corp.

(Indianapolis, IN). Phosphodiesterase I was purchased from USB (Cleveland, OH). HPLC-grade

water, acetonitrile, and chloroform were purchased from Mallinckrodt Baker (Phillipsburg, NJ).

All strains of S. cerevisiae BY4741 and were purchased from American Type Culture Collections

(Manassas, VA).



Culturing S. cerevisiae BY4741. Yeast cells were grown in YPD (yeast extract, peptone,

and dextrose) media. To prepare this culture media, 5 gram of yeast extract, 10 gram of

peptone, and 10 gram of dextrose were dissolved in 500 mL of water. The solution was

sterilized by autoclave. Cultures were incubated at 30 *C with shaking at 220 rpm until they

reached mid-log phase (OD660 is in the range of 0.6 to 0.8). Cells were then collected by

centrifugation at 12000x g for 10 min. Cell pellets were snap-frozen with liquid nitrogen and

stored at -80 0C before use.

Isolation of tRNA from S. cerevisiae BY4741. Approximately 5 x 107 cells were

resuspended in ~200 ptL of a buffer containing 5 pg/mL coformycin, 50 Ig/mL tetrahydrouridine,

0.1 mM desferrioxamine, 0.1 mM butylated hydroxytoluene, 10 mM Tris-HCI, and 1mM EDTA,

pH 8.0. This solution was incubated with 10 pg of lyticase at 300C for 10 min to digest the cell

wall of yeast. Yeast cells were then recollected by centrifugation with 12000x g for 5 min. After

removing the supernatant, tRNA was isolated from the pellet by using the PureLink miRNA

Isolation Kit. The yield of tRNA was determined by UV absorbance at 260 nm and using Agilent

bioanalyzer.

Enzymatic hydrolysis of S. cerevisae tRNA. An amount of 6 ptg of tRNA was mixed with 50

pL of a solution at pH 6.8 that contains 30 mM of sodium acetate, 2 mM of ZnCl 2, 0.02 Unit/pL

of nuclease P1, 0.1 Units/pL of RNase A, 5 pg/ml coformycin, 50 mg/ml tetrahydrouridine, 0.1

mM deferoxamine mesylate, and 0.1 mM butylated hydroxytoluene. The solution was



incubated at 37 *C for 3 h before adding an additional 50 ptL of solution at pH 7.8 with 30 mM

sodium acetate, 0.2 Units/pL of alkaline phosphatase, and 0.01 Units/pL of phosphodiesterase 1.

This mixture was incubated at 37 0C overnight to ensure reactions were complete. As

illustrated in previous studies, artifacts of modified ribonucleosides generated during this

process were neglectable (13). Proteins were removed from the nucleosides with a Microcon

YM-10 filter.

Characterizing the modified ribonucleosides from S. cerevisiae tRNA by LC-QTOF.

Modified nucleosides from hydrolyzed tRNA were resolved by a Thermo Scientific Hypersil

GOLD aQ reverse-phase column (150x2.1 mm, 3tm particle size) on a HPLC system with 0.1%

(v/v) acetic acid in water and in acetonitrile as mobile phases. The gradient of organic phase is

as follow: 0-20 min, 0-1%; 20-25 min, 1%; 25-35 min, 7%; 35-50 min, 7%; 50-60 min, 100%; 60-

70 min, 100%. The flow rate was 0.25 mL/min and the temperature of column was 50 0C. The

HPLC column was coupled to an Agilent 6510 quadrupole time-of-flight LC/MS mass

spectrometer with an electrospray ionization source. The mass spectrometer was operated in

the targeted MS/MS mode with the following MS parameters: gas temperature, 350 'C; gas

flow, 10 L/min; nebulizer, 35 psi; fragmentor voltage, 110; and capillary voltage 3500V. For

scanning nucleosides, ions in the range of m/z 100 to m/z 1000 were monitored with an

acquisition rate of 2 spectra/second. [M+H]* ions of modified nucleosides were targeted for

collision-induced-dissociation. The fragmented ions were monitored with an acquisition rate of

2 spectra/second. The retention time, time period for monitoring, m/z of the parent ion, and

collision energy for each modification are as follows: dihydrouridine (D): 2.5 min, 1.75-3.25



min, m/z 247.9246, 5 V; pseudouridine (Y): 2.6 min, 2-3 min, m/z 245.07681, 5 V; 5-

caramoylmethyluridine (ncmsU): 3.0 min, 2-6 min, m/z 302.09828, 10 V; 3-methylcytosine

(m3C): 3.7 min, 3-5 min, m/z 258.10846, 9 V; 5-methylcytosine (m5C), 4.2 min, 3-5 min; m/z

258.10846; 9 V; 1-methyladenosine (m'A): 4.2 min, 4-5 min, m/z 282.11968, 15V; 7-

methylguanosine (m7G): 6.0 min, 4-8 min, m/z 298.11460, 9 V; 2'-O-methylcytosine (Cm), 6.2

min, 6-7 min, m/z 258.10846, 9 V; inosine (1): 6.2 min, 5.2-7.2 min, m/z 269.08805, 10 V; 5-

methyluridine (m5U): 7.0 min, 6-10 min, m/z 259.09246, 7 V; 2'-O-methyluridine (Urn), 8.7 min,

6-10 min, m/z 259.09246, 7 V; 1-methylguanosine (m'G): 12.3 min, 11.5-16.5 min, m/z

298.11460, 9 V; 1-methylinosine (m'l): 12.4 min, 11-14 min, m/z 283.10370, 10 V; 5-

methoxycarbonylmethyluridine (mcm 5 U): 12.7 min, 11.8-13.8 min, m/z 317.09794, 7 V; 2'-0-

methylguanosine (Gm): 13.0 min, 11.5-16.5 min, m/z 298.11460, 9 V; 4-acetylcytosine (ac4C):

14.5 min, 13.5-15.5 min, m/z 286.10336, 6V; N2-methylguanosine (m2G): 15.0 min, 11.5-16.5

min, m/z 298.11460, 9 V; 2'-O-methyladenosine (Am): 17.6 min, 17-19 min, m/z 282.11968, 15

V; N2, N2-dimethylguanosine (m22G): 26.0 min, 24.7-26.7 min, m/z 312.13025, 8 V; 5-

methoxycarbonylmethyl-2-thiouridine (mcm s2U): 26.2 min, 25.5-27.5 min, m/z 333.07510, 7 V;

N6-threonylcarbamoyladenosine (t6A): 41.4 min, 40-42 min, m/z 413.14154, 8 V; wybutosine

(yW): 57.4 min, 56.5-58.5 min, m/z 509.19905, 10 V; and N-isopentenyladenosine (i6A): 58.1

min, 57-59 min, m/z 336.16663, 15 V.

Developing an LC-MS/MS method to quantify the spectrum of S. cerevisiae tRNA

modifications. Samples of ribonucleosides were resolved with a Thermo Scientific Hypersil

GOLD aQ reverse-phase column (150x2.1 mm, 3 pm particle size) eluted with the following



gradient of acetonitrile in 8 mM ammonium acetate at a flow rate of 0.3 mL/min and 360C: 0-

18 min, 1-2%; 18-23 min, 2%; 23-28 min, 2-7%; 28-30 min, 7%; 30-31 min, 7-100%; 31-41

min, 100%. The HPLC column was coupled to an Agilent 6410 triple quadrupole mass

spectrometer with an electrospray ionization source where it was operated in positive ion

mode with the following parameters for voltages and source gas: gas temperature, 350*C; gas

flow, 10 L/min; nebulizer, 20 psi; and capillary voltage, 3500 V. The first and third quadrupoles

(Q1 and Q3) were fixed to unit resolution and the modifications were quantified by pre-

determined molecular transitions. Q1 was set to transmit the parent ribonucleoside ions and

Q3 was set to monitor the deglycosylated product ions, except for Y for which the stable C-C

glycosidic bond led to fragmentation of the ribose ring; we used the m/z 125 ion for

quantification. The dwell time for each ribonucleoside was 200 ms. The retention time, m/z of

the transmitted parent ion, m/z of the monitored product ion, fragmentor voltage, and collision

energy of each modified nucleoside and 15N-labeled internal standard are as follow: D, 1.9 min,

m/z 2474115, 80 V, 5 V; Y, 2.5 min, m/z 245-4125, 80 V, 10 V; m5C, 3.3 min, m/z 2584126, 80

V, 8 V; Cm, 3.6 min, m/z 258-112, 80 V, 8 V; msU, 4.2 min, m/z 2594127, 80 V, 7 V; ncmsU,

4.3 min, m/z 302->170, 90 V, 7 V; ac4C, 4.4 min, m/z 286->154, 80 V, 6 V; m3C, 4.4 min, m/z

258-126, 80 V, 8 V; ncm 5Um, 5.5 min, m/z 3164170, 90 V, 7 V; Um, 5.1 min, m/z 2594113, 80

V, 7 V; m7G, 5.1 min, m/z 2984166, 90 V, 10 V; m'A, 5.7 min, m/z 2824150, 100 V, 16 V;

mcm 5 U, 6.4 min, m/z 3174185, 90 V, 7 V; m' I, 7.3 min, m/z 2834151, 80 V, 10 V; Gm, 8.0 min,

m/z 2984152, 80 V, 7 V; m'G, 8.3 min, m/z 2984166, 90 V, 10 V; m2G, 9.4 min, m/z 2984166,

90 V, 10 V; I, 10.9 min, m/z 269+137, 80 V, 10 V; mcm 5s2U, 14.2 min, m/z 3334201, 90 V, 7 V;

[15 N]5-dA, 14.4 min, m/z 2574141, 90 V, 10 V; m2G, 15.9 min, m/z 312+180, 100 V, 8 V; t'A,



17.2 min, m/z 4134281, 100 V, 8 V; Am, 19 min, m/z 2824136, 100 V, 15 V; yW, 34.2 min, m/z

5094377, 80 V, 5 V, and i6A, 34.4 min, m/z 3364204, 100 V, 17 V. The mass spectrometer

monitored ions with the molecular transitions of D, Y, m5C, and Cm from 1 to 4 min; molecular

transitions of msU, ncmsU, ac4C, m3C, ncm5Um, Um, m7G, m'A, and mcm 5 U from 4 to 7 min;

molecular transitions of m'l, Gm, m1G, and m2G from 7 to 10 min; molecular transitions of 1,

mcm 5s2U, [15N]5-dA, m2
2G, t A, and Am from 10 to 30 min; molecular transitions of yW and i6A

from 30 to 40 min.

Results

Isolation of tRNA. Obtaining tRNA samples of high quality is one of the key features of

rigorous quantitative comparison of changes in levels of tRNA modifications. Each organism

contains various species of RNA, including tRNA, rRNA, and mRNA, which makes purification of

tRNA a challenging task. As the size of tRNA is about 70 nucleotides and most other species of

RNA are much larger, we decided to purify tRNA with a commercial kit that can isolate RNA

below 200 nucleotides. While most species of RNA in this range of size are tRNA, there is also a

small amount of other species of RNA, including microRNA (~21 nt) and 5S rRNA (~120 nt) (14).

To assess the purity of each sample, we used an Agilent Bioanalyzer (microfluidics-based sizing

and quantification against an internal standard) for quantification of total tRNA species, which

amounted to 85±5% (N = 39) in the mixture of small RNA. Based upon the quantification, an

internal standard ([15Ns]-2'-deoxyriboadenosine) was added before enzymatic hydrolysis to

minimize variation in the levels of the individual ribonucleosides.



Characterization of the spectrum of S. cerevisiae tRNA modifications by LC-QTOF mass

spectrometry. In S. cerevisiae, 25 modified ribonucleosides in tRNA are reported in the

literature (11). To identify these modified ribonucleosides in the hydrolyzed tRNA samples, we

used an LC-QTOF system to obtain high mass accuracy (error < 10 ppm) characterization of the

ionized ribonucleosides. Ions with expected mass were selected for collision-induced

dissociation (CID) to determine the fragmentation patterns of the ribonucleosides. These

fragmentation patterns further confirm the identities of these molecules; they were compared

with the fragmentation patterns of commercially available nucleosides (Y, I, m5 U, Gm, Um, m5C,

m 3C, Cm, m 2G, ac 4C, t A, m G, Am, m 2G, i A, and m'A). For those modified nucleosides with no

available standards (D, ncmsU, mcmU, mi G, mcm s 2U, mil, and yW), they were compared to

the fragmentations reported in the literature (10, 15, 16). Two of the 25 known S. cerevisiae

modifications were not detected (ncm5Um and Ar(p)). The mass spectra of CID fragmentation

for the other 23 modified nucleosides are shown in figure 2-1.
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Figure 2-1. Mass spectra of fragmentized nucleosides by collision-induced dissocation. These
characterizations were performed with LC/QTOF as described in the Materals and Methods. A
total of 23 modifications were analyzed, including m3C, m5C, Cm, m5 U Urn, I, m7G, m'G, Gm,
m 2G, mcm U, miA, ac 4C, Am, m 2G, mcm 5s2U, i A, t A, yW, D, m1l, ncm U, and Y.
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LC-MS/MS-based quantification of the spectrum of modified nucleosides in S. cerevisiae

tRNA. An LC-MS/MS method was developed to quantify S. cerevisiae tRNA modifications.

Based upon the fragmentation of nucleosides in high mass-accuracy mass spectrometry, the

modifications were quantified by pre-determined molecular transitions during CID. The

transitions monitored for all nucleosides are the dissociation of ribosyl group from the base,

except for pseudouridine that the base is linked to the ribose via a C-C bond. CID of

pseudouridine leads to the formation of a fragment, consisting of the base and the 1'-CH 2' from

ribose, which we chose as product ion for quantification (17). Even though the ncm 5 Um was

not observed with quadrupole time-of-flight mass spectrometer (QTOF), an ion with the

expected molecular transition for this nucleoside was detected by triple quadrupole mass

spectrometer (QQQ). This could be because the sensitivity of QQQ is higher than QTOF. A

chromatogram of nucleosides quantified by this method is shown in Figure 2-2. By analyzing a

series of samples with different quantity of hydrolyzed tRNA (0 pig, 0.05 Ipg, 0.1 pg, 0.2 p1g, 0.4

Ig, 0.8 pg, 1.2 pg, 1.6 pg, and 2.0 pg), we determined that the signal intensities of all modified

nucleosides are linear to the amount of samples in the range of 0.05 pg to 0.8 pg (Figure 2-3).
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Figure 2-2. Total ion chromatogram of S. cerevisiae tRNA modified ribonucleosides from LC-
MS/MS analysis. A total of 23 ribonucleosides were monitored.
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Figure 2-3. Mass spectrometer signal intensities for tRNA ribonucleoside modifications. Small
RNA isolates containing tRNA were enzymatically hydrolyzed and quantities ranging from 0.1 to
2 pg were analyzed by LC-MS/MS. Mass spectrometric signal intensities were determined for 23
of 25 modified ribonucleosides from yeast tRNA and plotted against total tRNA. Data represent
mean ± SD for three analyses of the same sample.

Monitoring levels of modified nucleosides in yeast mutants. With the quantitative method

developed, we further confirmed the identity of modified ribonucleosides by comparing the

levels of specific modifications in a wild-type strain to those in mutant strains each lacking a

corresponding tRNA modifying enzyme. If the identity of the modification is correct, a decrease

in MS signal intensity is expected with loss of its biosynthetic pathway. As shown in Table 2-1,

we used 17 mutants to confirm 15 modifications. Deletion of some tRNA modifying enzyme

genes led to their corresponding modifications to drop below detection limit; these include

trmlA for m22G, trm2A for m5U, trm9A for mcm U and mcm-s 2U, trmllA for m2G, trml2A fro

yW, and tadlA for m11. As formation of some modifications is catalyzed independently by

multiple enzymes, modifications in corresponding mutants did not disappear completely; these

overlaps in gene function include trm3 and trm7 for catalyzing Gm, trm5 and tad1 for m1 \, trm5

and trmlO for m G, and, trm7 and trm13 for Cm. However, for m'C, m G, Um, i A, and ac4C,

even though only one biosynthetic pathway was discovered for each of these modifications,

these modified nucleosides were still observed in the corresponding mutants. These

observations suggest that the formation of these modified nucleosides involves more than one

pathway, or the modified nucleosides were from other speices of RNA, such as 5S rRNA.



Genesied de iModified MS Modified MS. Modified .. Fold-changeGenes deleted in nucleoside(s) signal intensity signal intensity (mutant:wild-
mutants from the gene in wild-type (Avg in mutant (Avg t type)

± SD) SD)
trm1 m22G 52029 1233 nd 0
trm2 m5U 1419± 15 nd 0
trm3 Gm 25736 1145 24948 ±1261 0.97
trm4 m5C 52457 1254 3883 159 0.07
trm5 mil 5775 ±420 3687 149 0.64

yW 153 ±21 43 ±9 0.28
m1G 148698 13388 90329 ±6727 0.61

trm7 Cm 34402 ±614 16373 ±500 0.48
Gm 25736 1145 19694 ±6660 0.77

trm8 m7G 66810 ±8171 7642 ±160 0.11
trm9 mcm 5U 457 ± 42 nd 0

mcm5s2U 638 ±67 nd 0
trm10 m'G 105441 ±7738 31437 ±1898 0.30
trm11 m 2G 19552 ±835 nd 0
trm12 yW 71± 28 nd 0
trm13 Cm 37912 ±4121 25946 ±568 0.68
trm44 Um 1569± 413 331 ± 31 0.21
trm82 m7G 66810 ±8171 8509 184 0.13
tadi mIl 3941 622 nd 0
mod5 i6A 3115 ±39 39 ±6 0.01
tani ac4C 14277 ±2248 4419 ±237 0.31

Table 2-1. Quantitative assessments of
corresponding enzymes. "nd" indicates

changes in modified nucleosides in mutants with loss of
the modification was not detectable in that mutant.

Discussion

Mass spectrometry-based methods for quantifying spectrum of tRNA modifications in

S. cerevisiae. We developed an LC-MS/MS method capable of quantifying 23 of the 25 known

ribonucleoside modifications in cytoplasmic tRNA in S. cerevisiae. This method begins with



isolation of small RNA species below 200 nt and quantification of the tRNA content with

bianalyzer and UV-vis spectrophotometer. Individual ribonucleosides in enzymatic hydrolysates

of tRNA were resolved by HPLC and determined by their characteristic fragmentation pattern

using mass spectrometry.

As modifications in S. cerevisiae are well-studied, we identified them using high mass-

accuracy mass spectrometry to compare fragmentation patterns with chemical standards and

literature in a highly targeted manner. Each ribonucleoside was subsequently quantified by

pre-determined molecular transitions during CID in the LC-MS/MS system. We were able to

identify and quantify 23 of the 25 tRNA modifications in yeast, with 2'-O-ribosyladenosine

phosphate (Ar(p)) not detected in positive ion mode (18, 19), possibly due to the negatively

charged phosphate, and only tentative identification of ncm5 Um by CID due to weak signal

intensities.

A critical feature of our approach is quantitative rigor given the need for highly precise

measurement of even small changes in the relative quantities of ribonucleosides. To this end,

we used an Agilent Bioanalyzer (microfluidics-based sizing and quantification against an internal

standard) for quantification of total tRNA species in the mixture of small RNA and an internal

standard (['5N5]-2'-deoxyriboadenosine) to minimize variation in the levels of the individual

ribonucleosides.

We monitored specific modified ribonucleosides in mutants with deletion of

corresponding tRNA modifying enzyme genes. As shown in Table 2-1, the abundance of

modifications decreased when the responsible gene was lost. The formation of some

modifications is catalyzed by multiple genes independently, including Gm, m Il, mIG, and Cm,



and these modifications were not completely lost in the mutants. However, for some

modifications (m5C, m7G, Um, i6A, and ac4 C that only one biosynthetic pathway is characterized,

they were still detectable in their corresponding mutants. It is possible that these modifications

were formed via alternative pathways. For instance, m'A and m7G are common adducts that

can be formed chemically (20, 21). One caveat here is low-level contamination (a few percent)

with 5S rRNA that also contains ribonucleoside modifications. We were able to obtain highly

reproducible data for the signal intensity associated with each ribonucleoside (see Figure 2-3

for linearity of signal intensity for the 23 ribonucleosides). Multiple reaction monitoring (MRM)

mode yielded no detectable background signal in the absence of tRNA hydrolysates except for

i6A (9 ± 2%). Analysis of tRNA from wild type cells revealed a three-log range of signal intensity,

with I and ac4C producing the highest intensity and ncm5Um the lowest (Figure 2-2 and Table 2-

2). In general, modifications can be categorized in high (1, ac4C, miA, m22G, Am, Y), medium

(Cm, m C, Gm, m G, tA, m G, m2 G, m3C, i A) and low signal intensities (mlI, D, m U, ncm Um,

mcm U, mcm5 s 2U, Um, yW, ncm5 U), with signal intensity reflecting both the abundance and

mass spectrometric sensitivity for each ribonucleoside. This MS quantification method is used

to study the changes in the spectrum of S. cerevisiae tRNA modifications in response to

exposure to different type of toxic agents (Chapter 3).



0.4 pg of hydrolyzed tRNA

Expt. I Expt. 2 Expt. 3 Average Std. Dev.

D 424088.4 423640.7 427548.5 425092.5 2138.689

Y 2600599 2388005 2463198 2483934 107803.5

ncm5U 10587.98 9967.097 10180.51 10245.2 315.4535

I 41189.76 39247.89 39772.93 40070.19 1004.483

m5U 102418.4 100054.1 100503.1 100991.9 1255.656

ncm"Um 4582.739 4674.049 4448.249 4568.345 113.5859

Gm 223923.7 210210.5 212587.9 215574 7328.098

UM 18719.91 16800.13 17000.06 17506.7 1055.413

m3C 45560.77 42904.79 40723.55 43063.04 2422.486

m5C 424830.2 400425.2 408744.8 411333.4 12406.74

Cm 122686.3 117802.3 114972.7 118487.1 3902.139

mcm5 U 9778.705 9686.143 9617.348 9694.065 80.9694

m7G 306670.2 287031.1 295568.3 296423.2 9847.455

m'G 397554.9 379427.3 384249.4 387077.2 9388.839

m 2G 178295.5 166431.3 174566 173097.6 6066.884

ac4C 77889.31 71419.34 71098.4 73469.01 3831.446

t6A 79569.02 74730.69 77152.04 77150.58 2419.163

mcm 5s2 U 4356.895 4381.075 4653.992 4463.987 164.9921

m 11 17948.28 16791.12 17414.55 17384.65 579.1582

Am 307639.5 288643.2 290306.1 295529.6 10520.39

m2
2G 350220.4 325874.8 338643.6 338246.2 12177.65

i A 244157.1 227802.4 230786.3 234248.6 8709.734
mIA 535454.3 517797.7 513667.6 522306.5 11572.01

Table 2-2. MS Signal intensities of modified nucleosides from S. cerevisiae tRNA. An amount of
1 pmol of [15N5]-2'-deoxyadenosine was added per pg of tRNA as internal standard. After
enzymatic hydrolysis, 0.4 ptg of nucleosides were analyzed with LC/MS-MS. Quantity of signal
for each nucleoside in the three experiments was normalized by the signal intensity of the
internal standard.
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Chapter 3

A Quantitative systems approach reveals dynamic control of tRNA

modifications during cellular stress

Part of this chapter is published as an article in

PLoS Genetics 2010, 6 (12): e1001247



Abstract

Decades of study have revealed more than 100 ribonucleoside structures incorporated as

post-transcriptional modifications mainly in tRNA and rRNA, yet the functional dynamics of this

conserved system are unclear. To this end, we used a highly precise mass spectrometric

method to quantify tRNA modifications in Saccharomyces cerevisiae. Our approach revealed

several novel biosynthetic pathways for RNA modifications and led to the discovery of signature

changes in the spectrum of tRNA modifications in the damage response to mechanistically

different toxicants. This is illustrated with the RNA modifications Cm, m5C, and m22G, which

increase following hydrogen peroxide exposure but decrease or are unaffected by exposure to

methylmethane sulfonate, arsenite, and hypochlorite. Cytotoxic hypersensitivity to hydrogen

peroxide is conferred by loss of enzymes catalyzing the formation of Cm, m5C, and m22G, which

demonstrates that tRNA modifications are critical features of the cellular stress response. The

results of our study support a general model of dynamic control of tRNA modifications in

cellular response pathways and add to the growing repertoire of mechanisms controlling

translational responses in cells.

Introduction

The complexity of the transfer RNA (tRNA) system confers great potential for its use in

cellular regulatory programs. There are hundreds of tRNA-encoding genes in S. cerevisiae and

human genomes, with extensive post-transcriptional processing that includes enzyme-



mediated ribonucleoside modifications (1). Considering both tRNA and ribosomal RNA (rRNA),

there are more than 100 known ribonucleoside modifications across all organisms in addition to

the canonical adenosine, guanosine, cytidine and uridine (2, 3). In general, tRNA modifications

enhance ribosome binding affinity, reduce misreading and modulate frame-shifting, all of which

affect the rate and fidelity of translation (4-7). However, information about the higher-level

biological function of ribonucleoside modifications has only recently begun to emerge. We

have approached this problem with a systems-level analysis of changes in the spectrum of

ribonucleosides in tRNA as a function of cell stress, which has revealed novel insights into the

biosynthesis of tRNA modifications and their role in cellular responses.

Emerging evidence points to a critical role for tRNA and rRNA modifications in cellular

responses to stimuli, with evidence for a role in tRNA stability, cellular stress responses, and

cell growth (8-13). We recently used high-throughput screens and targeted studies to show

that the tRNA methyltransferase 9 (Trm9) modulates the toxicity of methylmethanesulfonate

(MMS) in S. cerevisiae (11, 14). This is similar to the observed role of Trm9 in modulating the

toxicity of ionizing radiation and of Trm4 in promoting viability after methylation damage (15,

16). Trm9 catalyzes the methyl esterification of the uracil-based cm5 U and cm5s2U to mcm 5 U

and mcm5 s2U, respectively, at the wobble bases of tRNA ucu-ARG and tRNAccu-GLU, among

others (17). These wobble base modifications in the tRNA enhance binding of the anticodon

with specific codons in mixed codon boxes (18). Codon-specific reporter assays and genome-

wide searches revealed that Trm9-catalyzed tRNA modifications enhanced the translation of

AGA- and GAA-rich transcripts that functionally mapped to processes associated with protein

synthesis, metabolism and stress signaling (11). The resulting model proposes that specific



codons will be more efficiently translated by anticodons containing the Trm9-modified

nucleoside and that tRNA modifications can dynamically change in response to stress.

To assess the dynamic nature of tRNA modifications proposed by this model, we

quantified the full set of tRNA modifications in S. cerevisiae with a systems-oriented approach

using liquid chromatography-coupled, tandem quadrupole mass spectrometry (LC-MS/MS) as

described in Chapter 2. Mass spectrometry-based methods have recently emerged as powerful

tools for identifying and quantifying RNA modifications (19, 20). We applied such an approach

to quantify changes in the spectrum of tRNA modifications in yeast exposed to four toxicants:

hydrogen peroxide (H20 2), sodium hypochlorite (NaOCI), sodium arsenite (NaAsO 2), and methyl

methanesulfonate (MMS). H20 2 is an oxidizing agent that can form hydroxyl radical by reacting

with reduced transition metal ions (Fenton reactions) (21). Hydroxyl radical leads to DNA

damages via various mechanisms (22-24). While NaOCI also induces oxidative stress and forms

hydroxyl radical at low pH, it can also from singlet oxygen, molecular chlorine, and chloramines

that are all cytotoxic (24). Arsenite is a carcinogen, as indicated by studies with animal models;

even though its mechanism of action is not understood, evidences suggest that it generates

oxidative stress and leads to adduction in both proteins and DNA (25). MMS is an alkylating

agent that methylates nucleophiles, such as amines, in a wide range of biological

macromolecules (26). These four reagents generate stress with dissimilar mechanisms.

Multivariate statistical analysis of the data reveals dynamic shifts in the population of RNA

modifications as part of the response to damage, with signature changes for each agent and

dose. Further, analysis of yeast mutants lacking specific modification enzymes revealed novel

biosynthetic pathways and compensatory or cooperative shifts in the population of RNA



modifications as part of the response to damage, with signature changes for each agent and

dose. Further, analysis of yeast mutants lacking specific modification enzymes revealed novel

biosynthetic pathways and compensatory or cooperative shifts in the levels of other

modifications.

Materials and Methods

Materials. All chemicals and reagents were of the highest purity available and were

used without further purification. 2'-O-Methyluridine (Um), pseudouridine (Y), N'-

methyladenosine (m'A), N2,N2-dimethylguanosine (m22G), and 2'-O-methylguanosine (Gm)

were purchased from Berry and Associates (Dexter, MI). N6-Threonylcarbamoyladenosine (t6A)

was purchased from Biolog (Bremen, Germany). N-lsopentenyladenosine (i6A) was purchased

from International Laboratory LLC (San Bruno, CA). 2'-O-Methyladenosine (Am), N4-

acetylcytidine (ac4C), 5-methyluridine (m5 U), inosine (I), 2-methylguanosine (m2G), N7-

methylguanosine (m7G), 2'-O-methylcytidine (Cm), 3-methylcytidine (m3C), 5-methylcytidine

(m5C), alkaline phosphatase, lyticase, RNase A, ammonium acetate, geneticine and

desferrioxamine were purchased from Sigma Chemical Co. (St. Louis, MO). Nuclease P1 was

purchased from Roche Diagnostic Corp. (Indianapolis, IN). Phosphodiesterase I was purchased

from USB (Cleveland, OH). PureLink miRNA Isolation Kits were purchased from Invitrogen

(Carlsbad, CA). Acetonitrile and HPLC-grade water were purchased from Mallinckrodt Baker

(Phillipsburg, NJ). All strains of S. cerevisiae BY4741 were purchased from American Type

Culture Collections (Manassas, VA).



Sensitivity assay of S. cerevisiae to toxic agents. All strains of S. cerevisiae BY4741 were

cultured in YPD (yeast extract-peptone-dextrose) media with 200 pig/mL of geneticine at 30 *C

with shaking at 220 rpm. Cultures were grown to mid-log phase (OD660 ~ 0.6 to 0.8) followed

by addition of water, to serve as untreated control, or toxic agents, including hydrogen

peroxide (H202), methyl methanesulfonate (MMS), sodium hypochlorite (NaOCI), or sodium

arsenite (NaAsO 2). After 1 hour, these cultures were diluted 10 4- to 106-fold with YPD media

and then plated to YPD agar plates. Survival rates of exposed cells were determined by

comparing the number of colonies formed from untreated culture with that from each exposed

culture after two days.

Exposure of S. cerevisiae. Cultures of S. cerevisiae BY4741 were grown to mid-log phase

followed by addition of toxicants to the noted final concentrations (cytotoxicity of ~20%, 50%

and 80%): H20 2, 2, 5 or 12 mM; MMS, 6, 12 or 24 mM; NaAsO 2, 20, 40 or 60 mM; NaOCI, 3.2,

4.0 or 4.8 mM. The sensitivity of the following mutant strains to toxicant exposure was also

determined (doses producing ~80% cytotoxicity in wild-type: 12 mM H20 2, 24 mM MMS, 60

mM NaAsO 2, or 4.8 mM NaOCI ): trml, trm2, trm3, trm4, trm7, trm8, trm9, trmlO, trmll, trm12,

trm13, trm44, trm82, tadi, mod5, and tan1. Since trm5 is essential, a diploid strain (GBY1)

lacking one copy of trm5 was used. After a 1 h, cells were collected and viability determined by

plating.



tRNA isolation and quantification of cytoplasmic tRNA modifications. tRNA isolation

and quantification of modified nucleosides are described in details in Chapter 2. This process

involves lyzing cells with lyticase, extracting tRNA from cell lysate by using Invitrogen PureLink

small RNA isolation kit, enzymatically hydrolyzing tRNA to nucleosides, resolving these

nucleosides by HPLC, and monitoring each species based on pre-determined molecular

transitions by mass spectrometer (MS2).

Quantification of m7G in control and MMS-treated yeast. To assess the direct and

indirect effects of MMS on levels of methylated ribonucleosides, the absolute levels of m7G

were quantified in small RNA hydrolysates isolated from MMS-exposed and unexposed mutant

and wild type strains of yeast by the LC-MS/MS method described above. Calibration curves

were generated by mixing variable amounts of m7G (final concentrations of 0, 5, 50, 300, 600,

1000, and 2000 nM) with a fixed concentration of [15 N]5-dA (40 nM). A volume of 10 pl of each

solution was analyzed with the LC-MS/MS system described earlier.

Statistical analysis of changes in the levels of tRNA modifications. Differences in the

levels of ribonucleosides in exposed versus unexposed and in mutant versus wild-type yeast

were analyzed by Student's t-test. Hierarchical clustering analyses were performed using

Cluster 3.0. Data were transformed to log2 ratios of modification levels in treated cells relative

to unexposed controls. Clustering was carried out using the centroid linkage algorithm based

on the distance between each dataset measured using the Pearson correlation, with heat map

representations produced using Java Treeview. Principal component analysis was performed



using XLStat (Addinsoft SARL, Paris, France), with a Pearson correlation matrix consisting of data

that were mean-centered and normalized to the standard deviation. Correlation analysis was

used to assess the degree of covariance among the various sets of fold-change values for each

mutant, with correlation coefficients calculated using Excel (Microsoft).

Results

Cytotoxicity dose-response studies with S. cerevisiae exposed to various toxic agents.

To test the hypothesis that the changes in spectrum of tRNA modifications are unique to

different stress, we decided to expose cells to four different toxic reagents with doses that

cause the same survival rate. The doses for exposures were determined by assessing the

sensitivity of cells to a serial concentration of H202 (1, 2, 5, 7, 9, 11, 12, 13, and 15 mM), MMS

(0, 1.2, 6, 12, 24, 36, and 48 mM), NaOCI (0, 0.16, 0.8, 1.6, 3.2, 4, 4.8, 8, and 16 mM), and

NaAsO 2 (0, 10, 20, 40, 60, 80, and 100 mM). Based on these assays (Figure 3-1), we decided to

quantify spectra of tRNA modifications in cells exposed to 2, 5, and 12 mM of H202, 6, 12, and

24 mM of MMS, 20, 40, and 60 mM of NaAsO2, and 3.2, 4.0, and 4.8 mM of NaOC. The three

doses of each reagent led to cytotoxicity of approximately 20%, 50%, and 80%.
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Figure 3-1. Cytotoxicity dose-response studies with S. cerevisiae exposed to H20 2, MMS,
NaAsO4, and NaOCI. Data represent mean ± SD for three biological replicates. The dotted line
marks the 80% survival level.
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Changes in spectrum of tRNA modifications in response to stress. By using the LC/MS-

MS method described in Chapter 2, we compared the spectrum of tRNA modifications from

cells exposed to the three doses of each of the four reagents as described above. Each

exposure condition was carried out in biological triplicates. Signal intensities from all

nucleosides were normalized by that from the internal standard, [15N5]-labeled 2'-

deoxyadenosine, so that the relative quantity of each modification can be compared across

samples; average of normalized signal intensities was calculated (Table 3-1). Changes in the

spectrum were expressed as fold-change of the levels of nucleosides in treated cells relative to

in untreated cells; statistical significance of these changes were determined by Student's t-test

(Table 3-2). The results demonstrated that levels of m5C, Cm, and m22G increased, and level of

yW and m'G decreased statistically significantly (p<0.1) after exposed to all three doses of H202.

For MMS-exposed cells, levels of 1, Gm, Cm, t A, Am, m 2G, and yW decreased and that of m7G

and m3C increased. Exposures of NaAsO 2 led to a general decreases in the level of all

modifications. Cells treated with NaOCI had a decrease in the level of m1l and an increase in

the levels of Um and Am. Hierarchical clustering analysis and principle components analysis on

this set of fold-change data demonstrate that the spectrum of tRNA modifications changed

specifically in response to each toxic agent (Figure 3-2 and 3-3).
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H2O& mM _ MMS, MM NaAsO mM NaOCl, mM

2 5 12 6 12 24 20 40 60 3.2 4 4.8
D____ 1.17762 1.008073 1.177209 1.138843 0.925642 1.117973 0.921993 1.176083 1.413422 1.367941
Y 1.048207 1.011943 0.906502 0.942232 0.852851 0.891963 0.86479 0.856079 0.783348 1.113707 1.024734 0.996259

ncm'U 1.151324 1.056956 1.094415 1.063012 1.106319 1.166317 0.954578 1.171254 1.033215 1.109587 1.262151 1.383549
1__ 1.026212 0.965643 0.998282 0.924478 0.948808 0.986754 1.143359 1.078319

msU 0.917486 0.853888 0.832692 0.966747 1.011623 10.906295 1.137101 0.944218 0.826607 0.974009 0.881178
Gm 1.078032 0.910225 0.93788 0.913613 0.898294 0.919625 1.237301 1.066641

Um0.947464 1.09091210.8336691 0.91136 |10.891144 0.860356 0.949127 0.959982 1.204729
m C 057 2.148977 1.97494 0.846477 0.845219 10.719437 0.937362 0.848824 0.464038 0.59621 0.735072
m SC 11.00289 11.0686-47 0.9146681M 1.198253 1.056243 0.932754 0.0451.003756 0.919617 0.944877
CM _ 092 9220.882314 0.849917 0.921497 0.914356 0.929981

mcm SU 10.866434 0.84255710.84245811.00879311.155832 11.080345 0.86817 0.921413 1.11455 1.967932 0.993679

m7G 0.903554 1.178655 0.77581 1.778017 1.028016 0.959749 1.0235 0.97289 0.899333
M1G 0.804767 0.935312 10.964822 1.078963 1.022186 0.910449 0.921813 0.881423

maG 0.845636 0.7864 0.76856 0.902425 v1.041745 1.012757 m.8f43i9 0.945365 0.935283 0.885212
acC 11.06273711.031264 1.075229 1.00156 10.942444 1 0.938 0.958734 0.926895 0.6611.07839 1.086729 0.981309
t' 0.921653 g i l 0.893989 0.86578 0.980664 0.955176 0.923151

m msaU 0.892 0.873775 0.86 98 0.9320340.904726 .847081
mte 0.948333 0.863812 0.829329 0.9762771 0.99663 10.85528511.027179 77
Am 0.89334210.9876 = 0.78879 1132

mzaG 0.2261 M1.-013808 0.5920.959165 0.923232 0.863837

i'A 0.756877 0.717579 0.7043371 0.7938741 0.71939 1 0.680728 0.82324 0.868636 0.2750.86 907 1 0875 0.820137

W 0 2 0.8376581 0.815594 0.9716 L .9370848
I mjA 0.887864 1078 1.2162 1.068969 0.99238 1.036885 0M947231 0.8977561

Table 3-2. Fold-change values for S. cerevisiae tRNA modifications in treated cells relative to
untreated controls. Shading color indicates significant difference from control by Student's t-
test: blue, p<0.05; yellow, p<0.1.
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Figure 3-2. Hierarchical cluster analysis of toxicant-induced changes in tRNA modification
spectra in wild-type yeast exposed to concentrations of MMS, H202, NaOCI, and NaAsO2
producing 20%, 50%, and 80% cytotoxicity. Scale of fold-changes is indicated by the color bar
on the top-left of this figure.
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Sensitivity of tRNA modifying enzyme-deficient mutants to various stresses. To

determine the importance of modified nucleosides in stress responses, we assessed sensitivity

of tRNA modifying enzyme-deficient mutants of S. cerevisiae to the four toxic agents. Each
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mutant had a knock-out of one of the following genes: trml, trm2, trm3, trm4, trm5, trm7,

trm8, trm9, trml, trmll, trm12, trm13, trm44, trm82, tad1, mod5, and tan1. As trm5 is an

essential gene, we used a diploid strain of yeast (S. cerevisiae GBY1) with deletion of one of the

copies of trm5. Besides that, all mutants were originated from the haploid strain S. cerevisiae

BY4741. As shown in figure 3-4, cells were increased in sensitivity to H20 2 in the absence of

trm4 or trm7; also, the genes trml, trm4, trm7, trm9, and trm44 conferred resistance to MMS;

trml, trm4, and trm9 conferred resistance to NaAsO 2; at last, trm4A mutant was sensitivity to

NaOCI.

Changes in spectrum of modified nucleosides in tRNA as a function of deficiency in tRNA

modifying enzymes. Spectra of tRNA modifications from those tRNA modifying enzyme-

deficient mutants of S. cerevisiae were compared to that of wild-type cells. The results shown

in Table 3-3 illustrated that knockout of each tRNA modifying enzyme led to the loss of its

corresponding modification(s): trmlA mutant lost m22G; trm2A lost m5U; trmlOA lost m'G;

tadlA lost m l; trm4A lost m5C; trm8A and trm82A lost m G; mod5A lost i A; tanlA lost ac4C;

trm5A and trml2A lost yW; trmllA lost m2G; and trm9A lost mcm 5 U and mcm 5s2U. However,

as the formations of some modifications are catalyzed by several enzymes, loss of one of these

enzymes did not lead to complete depletion of the modified nucleoside. For instance, both

TRM3 and TRM7 catalyze the formation of Gm; TRM7 and TRM12 catalyze the formation of Cm.
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Figure 3-4. Phenotypic analysis of cytotoxicity induced by H202, MMS, NaOCI, and NaAsO 2 in S.
cerevisiae mutants lacking tRNA methyltransferase and other modification genes. The mutants
were exposed to 12 mM H202, 24 mM MMS, 60 mM NaAsO2, or 4.8 mM NaOCI, which
generated ~80% cytotoxicity. Data represent mean ± SD for three biological replicates.
Asterisks denote values statistically different from unexposed controls by Student's t-test,
p<0.05. Associated RNA modifications are listed below each enzyme.
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Table 3-3. Fold-changes of levels of tRNA modifications in mutant strains relative to in wild
type S. cerevisiae. Underlined: Mutant was determined to be significantly different from wild
type by Student's t-test with P<0.05; Yellow: ratios <0.02 (values of 0.00001 indicate
undetectable ribonucleosides in the mutant strains); Green: ratios <0.6; Red: ratios >1.5.

Discussion

Yeast exposure parameters. To quantify the dynamics of tRNA modifications in cellular

responses, we selected four well studied chemicals that possess distinct mechanisms of toxicity:

MMS, hydrogen peroxide (H20 2), sodium arsenite (NaAsO 2), and sodium hypochlorite (NaOCI,

pKa 7.5 (27)). The behavior of yeast upon exposure to MMS, NaAsO 2 and H20 2 has been

extensively studied in terms of transcriptional response and cytotoxicity phenotyping (11, 12,

28). We also chose NaOCI since it produces an oxidative stress distinct from that of H20 2 and

could thus affect the tRNA modification spectrum differently. We then performed cytotoxicity

dose-response studies in S. cerevisiae exposed to agents (Figure 3-1), choosing concentrations

that produced ~20%, 50% and 80% cytotoxicity to ensure a common phenotypic endpoint for

comparison.

One important issue with the methylating agent, MMS, was the possibility that changes in

methyl-based modifications in tRNA could be due to both enzymatic methylation and direct

chemical methylation. Literature precedent indicates that MMS reacts with DNA to form

adducts mainly at guanine N7 (68%), adenine N1 (18%) and cytosine N3 (10%) (29, 30). To

address the extent of direct methylation of RNA by MMS, control studies were performed and
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revealed that direct alkylation by MMS contributes <25% to the cellular burden of m7G in small

RNA, with the bulk of m7G arising by enzymatic methylation of tRNA (Figure 3-5). No other

agent affected tRNA modifications in this manner, with changes in the relative quantities of the

modifications resulting from alterations in biosynthesis, tRNA gene transcription or tRNA

degradation.
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Figure 3-5. Quantification of absolute level of m7G in different strains of yeast with or without
MMS-exposure. (A) External calibration curve for m7G. (B) Absolute quantities of m7G. Data
represent mean ± SD for three biological replicates.
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Reprogramming tRNA modifications during the stress response. With exposure and

analytical parameters established, we tested the hypothesis that the spectrum of tRNA

modifications would dynamically change as a function of the S. cerevisiae stress response. In

addition, we predicted that these changes would serve as biomarkers of each exposure. Cells

were exposed to three concentrations of each chemical and 23 tRNA modifications were

quantified by LC-MS/MS, with the results shown in Tables 3-1 and 3-2, the latter as the ratio of

treated to control signal intensities. A crude analysis of the data shows fold-changes ranging

from 0.2 to 4, with 25% and 36% of the exposure data significantly different from control values

by Student's t-test at p<0.05 and p<0.1, respectively (Table 3-2). These results point to the non-

random and regulated nature of the exposure-induced changes in the levels of the tRNA

modifications.

Multivariate statistical analyses revealed important patterns or signatures in the toxicant-

induced changes in tRNA modifications. As shown in Figure 3-2, hierarchical clustering

distinguished both agent- and dose-specific changes in the modification spectra, with unique

patterns of increase and decrease apparent in all cases. H202 consistently increased the levels

of m5C, Cm and m2
2G and, at the highest concentration, t6A, with dose-dependent decreases in

m U, m IG, m 2G, mcm s 2U, i A, yW and m'A. MMS consistently increased the level of m7G, and

decreased Am, m C, Cm, mcm5 s 2U, i6A, and yW. NaAsO 2 caused only decreases in modification

levels at the highest concentration, most notably for mcmsU, m3 C, m G, mcm s 2U, i A, yW, m C,

and Cm. Interestingly, the dose-response for NaOCI showed an inverse correlation between

concentration and increased levels of Am and Um and decreased levels of m5C. Given the
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reproducibility of the data, the changes in tRNA modification spectra can be considered

signature biomarkers of exposure for these four classes of chemical stressor.

Principal component analysis (PCA) creates a model that reduces the complexity of a data

set by identifying hidden correlations (the principal components) comprised of weighted, linear

combinations of the original variables, with the first principal component (P1) accounting for

the largest portion of the variation of the data and so on. The results of PCA of the dataset of

nucleoside fold-change values (Table 3-2) are shown in Figure 3-3. With 88% of the variability

expressed in the first 3 principal components (56%, 22% and 10%, respectively), individual

agents contributed variance to each as shown in Table 3-4, with H202 contributing 74% in P1,

MMS and NaOCI each contributing >40% in P2 and NaAsO2 contributing 53% in P3. The scores

plots (Figure 3-3) clearly distinguish the four agents, with H202-induced changes as the major

determinant of P1 and with MMS, NaOCI and NaAsO2 distinguished best in P2. While H202 and

NaOCI are negatively correlated in P1, they are more closely grouped in P2 and P3, which

suggests that the changes in tRNA modifications reflect both common and unique facets of the

toxic mechanism of each agent. For example, H202 and NaOCI are both oxidizing agents, but

H202 generates hydroxyl radicals by Fenton chemistry while the protonated form of NaOCI

yields hydroxyl radicals, chloramines and singlet oxygen (24, 31-33). Similarly, MMS and

NaAsO 2 are negatively correlated in P3 and more positively correlated in P2, with the latter

consistent with recent evidence for alkylation-like adduction of arsenic to DNA and proteins

following its metabolism (25, 34). This would also explain the negative correlation of NaAsO 2

and H202 in P1, while the recognized oxidative stress caused by arsenite is consistent with a

positive correlation between NaAsO 2 and H202 in P2 (35).
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PCI PC2 PC3
H20 2  74% 6.9% 0.45%
MMS 11% 42% 21%

NaAsO 2  6.2% 2.8% 53%
NaOCI 8.7% 49% 26%

Table 3-4. Contribution of each agent to variance in principal component analysis.

Both PCA (Figure 3-3) and cluster analysis (Figure 3-2) revealed that mC, m2 2G, Cm and

t6A are major features of the H202 response, while m'A, m3C and m7G were associated with

MMS. Increases in Gm, Um, I and Am were responsible for the variance induced by NaOCI,

which is consistent with the inversely related doses and levels for Am and Um observed in

cluster analysis. NaAsO2 was poorly distinguished in P2, with only m2G accounting for variance

only at the highest concentrations (Figure 3-2).

tRNA modification biosynthetic pathways are critical to the stress response. The

observation of toxicant- and dose-dependent changes in the levels of the 23 tRNA modifications

is consistent with a model in which cells respond to toxicant exposure by modifying tRNA

structure to enhance the synthesis of proteins critical to cell survival, as has been proposed in

previous studies with yeast exposure to MMS (11). In these studies, the conversion of cm5 U to

mcm5 U by Trm9 was found to be critical for surviving MMS exposure. To define the roles of
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specific tRNA modifications in the toxicant response, cytotoxicity phenotypic analyses were

performed with yeast mutants lacking each of 13 trm tRNA methyltransferase genes and 3

other types of RNA modification biosynthetic genes. As shown in Figure 4, heightened

sensitivity to H202 was observed in mutants lacking Trm4 and Trm7, which catalyze formation

of two modifications elevated by H20 2 exposure: m5C and Cm, respectively (36, 37). The simple

explanation is that the increase in a specific tRNA modification is needed to promote an

efficient stress response. However, m22G was also elevated by H20 2 (Figure 3-2), yet loss of an

enzyme involved in its biosynthesis, Trml, did not confer H20 2 sensitivity, as shown in Figure 3-

4 (38, 39). This behavior draws a comparison to mRNA, as it has been reported that many of

the transcripts induced in response to a stress are not essential for viability during a challenge

from that stress (40, 41). MMS sensitivity was identified in trml, trm4 and trm9 mutants,

whose corresponding proteins synthesize m2G, m5C and mcm 5U/mcm5s2 U, respectively.

However, these modifications were not strongly associated with MMS exposure in PCA (Figure

3-3). Somewhat surprisingly, loss of Trml, Trm4, Trm7 and Trm9 conferred NaAsO 2 sensitivity.

These methyltransferases are responsible for forming m2G, m5C, m1G and mcmSU/mcm 5s2U,

respectively, of which only m2G was found to vary significantly in PCA (Figure 3-3). For NaOCI,

only trm4 was sensitive to exposure and the m5C product of Trm4 was not associated with

NaOCI exposure (Figure 3-3). Again, this behavior parallels that of mRNA transcripts the levels

of which do not change after exposure but that encode proteins important for viability after

exposure (40, 41).
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Potential mechanisms linking tRNA modifications and the stress response. These results

reveal a complex and dynamic control of tRNA modifications in cellular survival responses and

suggest models for homeostasis of the modifications. One example involves modifications for

which the biosynthetic mutant is sensitive to exposure but the modification level does not

change in wild type cells following exposure (e.g., MMS exposure and trml/m2G, trm4/m 5 C,

trm9/mcm 5U or mcm5s2U). The simplest explanation here is that the modification change

occurs in a single tRNA species and the change is masked by an inverse change in the level of

the modification in the larger population of tRNA molecules; it is known that both m2G and

m5C occurs in mutiple tRNAs (2-4). A second explanation parallels the idea of both pre-existing

mRNA and stressor-induced transcription during a stress response. We have observed stress-

induced increases in the levels of several modifications required for the survival response.

However, other modifications may already exist on tRNA molecules involved in selective

translation of stress response messages. In both cases, the modifications are absolutely

required for survival, but some are already present in unstressed cells and others are induced.

Finally, it is possible that a modification, though its level may not change, is required for the

subsequent synthesis of other modifications that are critical to the survival response. Such

"cooperativity" is suggested by data from mod5-deficient cells, in which i6A decreases by ~75-

fold while D is reduced by ~2-fold. The presence of i6A may signal downstream biosynthetic

events, with deficiencies promoting a general reprogramming of tRNA. Similarly, cells deficient

in Trm82, a subunit of m7G methyltransferase, had a ~7-fold reduction in m7G and a >1.5-fold

increase in m3C, mcmsU, m G, m2 G, t A, mcms2 U and m2
2G (Table 3-3), which raises the

possibility that Trm82 itself or m7G inhibits other tRNA modifying enzymes. With the caveat of
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possible increases in tRNA copy number, the ~50% increase in these modifications suggests a

pool of unmodified tRNA molecules, an observation supported by increases in m3C after

exposure to MMS, mcm5U after exposure to NaOCI, and both t6A and m22G after exposure to

H202 (Figure 3-2).

Cooperativity could also explain the case in which the level of a modification changes

significantly following exposure yet the mutant strain is not sensitive to the exposure. For

example, loss of trml did not confer sensitivity to H202 but its product, m22G, rose significantly

with H20 2 exposure (Figure 3-2 and Figure 3-4). The stress-induced change in m22G may be a

response to a change occurring with another modification for which the mutant strain might be

sensitive to the exposure. In support of this argument, msC modifications increase along with

m 22G after H202 exposure and deficiencies in the msC-producing methyltransferase Trm4 confer

sensitivity to H202. Some other studies have also demonstrated such cooperativity among RNA

modifications in the observation of the negative regulation of wobble position C-to-U editing by

thiolation of a U at position 33 outside the anticodon in T. brucei (42).

Finally, there is the case in which a modification decreases with exposure to a stressor and

a deficiency in the enzyme responsible for that modification confers sensitivity, as in the case of

m5C, trm4 and NaOCI (Figure 3-2 and Figure 3-4). The population level of m5C may decrease

with NaOCI exposure in spite of a protective increase in the level of m5 C at some critical tRNA

location. This may reflect a decrease in the transcription of tRNA substrates of Trm4 or the

targeted degradation of specific tRNA species. It is important to note that biosynthetic

redundancy, as in the case of Gm with Trm3 and Trm7, could mask any major changes in tRNA

modification levels that are associated with mutational loss of one enzyme (Table 3-3), yet loss

113



of one of the redundant enzymes can induce sensitivity, such as the case of H202 and trm7.

These observations lead to many questions that obviously require more mechanistic study to

define the precise role of tRNA modifications in cellular responses to stress.

One consistent feature that arose from our studies of modifications affected by or

protecting against toxicant exposure was the frequent involvement of the wobble position, 34

(Table 1-2 in Chapter 1 and Table 3-2). The correlation between the wobble modification and

the importance of a corresponding enzyme after toxicant exposure is not surprising in light of

recent observations of the critical role played by these modifications and anticodon loop

ribonucleosides in translational fidelity and efficiency (4). Controlled alteration of

ribonucleoside structure at position 34, and that at the conserved purine at position 37, is

proposed to allow reading of degenerate codons by modulating the structure of the anticodon

domain to facilitate correct codon binding. As the most frequently modified ribonucleosides,

positions 34 and 37 also have the largest variety of modifications, so it is reasonable that they

would be extensively involved in translational control of the survival response (43, 44). This is

also consistent with previous studies that mcm 5 U at the wobble position was critical to the

translation of a specific group of genes related to DNA damage response (11).

Perhaps more interesting is a potential role for putative non-anticodon loop

ribonucleoside modifications in the survival response. For example, Trm44 is the 2'-0-

methyltransferase in yeast responsible for formation of 2'-O-methyl-U (Um), which occurs only

at position 44 in yeast tRNA (45, 46). Loss of Trm44 conferred sensitivity to NaAsO 2 exposure.

This observation suggests three possibilities: (1) that Trm44 synthesizes or influences the

synthesis of modifications at other positions in tRNA; (2) that Um occurs in positions other than
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44 (e.g., anticodon loop); or (3) that Um(44) plays a role in modulating translation in response

to NaAsO2 exposure. Another example involves Trml and m22G at position 26. Current

evidence suggests that m2 2G occurs only at position 26 in yeast tRNA and that Trml is the

methyltransferase responsible for its formation (39, 45). The fact that loss of Trm1 conferred

sensitivity to MMS and NaAsO 2 exposure and that H202 exposure increased the level of m22G

again suggest the three possibilities analogous to those for Trm44 and Um. Similar arguments

can be made for Trm3 and Gm at position 18 with NaOCI exposure, for Trmll and m2 G at

position 10 with NaOCI and NaAsO2 exposure, and for Trm8/82 and m7G at position 46 with

MMS exposure.

All of these observations point to participation of wobble and non-wobble RNA

modifications in a complex and dynamic network of translational mechanisms in cellular

responses. This expands the repertoire of translational control mechanisms, which includes

recent discoveries about the effect of ribonucleoside modifications on tRNA stability (8, 9). In

this model, cell stress leads to rapid degradation of specific tRNAs and subsequent effects on

translational efficiency. Another similar stress response involves cleavage of cytoplasmic

transfer RNAs by ribonucleases released during the stress [10]. One consequence of these

degradation pathways would be to decrease the amount of modified ribonucleoside detected

in our assay, which may explain some of our observations with the toxicant stresses. Our

approach to quantifying tRNA modifications provides information only about population-level

changes, so the observed changes could result from modification of existing tRNA molecules or

changes in the number of tRNA copies. Of particular importance here is the observation by

Phizicky and coworkers that loss of m7G at position 46 leads to degradation of specific tRNAs [9],
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which suggests that our observation of changes in the levels of RNA modifications could be

amplified by both reduction in the activity of modifying enzymes and by tRNA degradation. On

the other hand, one argument against large increases in tRNA copy number arises from recent

observations of repressed tRNA transcription during S-phase and, of direct relevance to the

present studies, during replication stress induced by MMS, hydroxyurea and likely other

toxicants (47). Finally, our findings may also parallel recent work on tRNA charging. Reactive

oxygen species have been implicated as a methionine misacylation trigger and modification

status could help promote these programmed changes to the genetic code (12). As we are

beginning to appreciate the precision and coordinated nature by which cells mount a regulated

stress-response, it is most likely the observed changes in tRNA modification levels promote

multiple biological responses.

Novel biosynthetic pathways for tRNA modifications. As recognized by several groups,

the LC-MS/MS platform facilitates definition of biosynthetic pathways for RNA modifications

(19, 20). This is illustrated in Table 3-3, which contains ratios of the basal levels of tRNA

modifications in yeast mutants lacking various tRNA modification enzymes compared to wild

type yeast. These data corroborate known substrate/enzyme pairs and further demonstrate

the highly quantitative nature of our approach (45). For example, the level of m'l drops to

nearly undetectable levels with loss of Tad1, the adenosine deaminase producing the inosine

precursor to m'l (48). That a diploid heterozygous mutant of trm5, the product of which

catalyzes N-methylation of I [47], caused a ~40% reduction in total m'l attests to the accuracy

of our assay and demonstrate that gene dosage effects alter the level of tRNA modification (49).
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A similar ~50% reduction in yW occurred in the trm5 mutant due to the absence of the m'G37

precursor to yW, while complete loss of Trm12, which methylates the 4-demethylwyosine

precursor of yW, made yW undetectable. Other pathways critical to yW are apparent in the

smaller decreases in yW (0.3- to 0.5-fold) occurred in cells deficient in other enzymes (Trm8,

Trm82, Tad1, Mod5, Tan1, Trmll, Trm5).

The data in Table 3-3 also reveal several novel observations. It has been observed that

Trm7 catalyzes 2'-O-methylation of G and C nucleosides at positions 32 and 34, but they could

not detect the ncm 5Um product of 2'-0-methylation of ncm 5 U (37). While we could only

tentatively identify ncm5Um, we observed a quantifiable signal for a species with the correct

molecular transition for ncm 5Um and observed that loss of Trm7 led to a lowering of putative

ncmsUm to undetectable levels. This supports their prediction that Trm7 catalyzes formation of

ncmsUm in yeast.

Another example involves the formation of Um. While Trm44 catalyzes synthesis of Um at

position 44 in tRNA(ser) (46), analysis of trm mutants as shown in Table 3-3 suggests a

redundancy in methyltransferase activity capable of 2'-O-methylation of U(44), including Trm7,

which methylates U at positions 32 and 34 (37), and Trm13 methylation of C and A at position 4

in several yeast tRNAs. Cells lacking Trm44, Trm7 or Trm13 have 53%, 50% and 76% of wild

type levels of Um, respectively.

In summary, a quantitative bioanalytical approach to the study of tRNA modifications has

revealed several novel biosynthetic pathways for RNA modifications and has led to the

discovery of signature changes in the spectrum of tRNA modifications in the damage response

to different toxicant exposures. The results support a general model of dynamic control of
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tRNA modifications in cellular response pathways and add to the growing repertoire of

mechanisms controlling translational responses in cells (9, 10, 13, 50). Further, these cellular

response mechanisms almost certainly involve parallel changes in spectrum of ribonucleoside

modifications in rRNA and perhaps other RNA species.
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Chapter 4

Changes in composition of ribosome caused by trm4-deletion and by

exposure to hydrogen peroxide
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Abstract

As noted in Chapter 3, the relative level of 5-methylcytosine (m5 C) in the yeast S.

cerevisiae tRNA increases after the cells are exposed to hydrogen peroxide and loss of tRNA

m5C-methyltransferase Trm4 reduces the survivability of cells under this stress. While m5C is

found in many species of tRNA, only a leucine tRNA for coding the codon UUG comprises this

modification at the wobble position which may affect the translation efficiency of UUG.

Intriguingly, S. cerevisiae contains many duplicated ribosomal genes with significant difference

in usage of UUG. Through quantitative studies of homologous ribosomal proteins with liquid

chromatogarpahy-coupled time-of-flight mass spectrometiry (LC-QTOF), we demonstrate that

in relative to its homologue, the protein expression of a UUG-enriched gene rp/22a decreases in

the absence of Trm4 and increases in H202-exposed cells. Moreover, exposing H202 to trm4

mutant does not lead to changes in relative level of Rp122a. Also, only the gene rp/22a confers

resistance to H202 but not rp/22b. These results support a model of which Trm4 and m5C are

involved in regulating the expression of homologous ribosomal proteins by modulating the

translation efficiency of UUG.

Introduction

Modifications in tRNA are known to confer resistance to specific stresses but the

underlying mechanisms are not well-studied (1, 2). Recently, Begley and coworkers have

shown that a S. cerevisiae tRNA methyltransferase Trm9 confers resistance to DNA damage by
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promoting the translation of a specific set of genes (3). The enzyme Trm9 catalyzes the last

step of the formation of mcm 5U and mcm5s2U at the wobble position of tRNAArg(MCM5UCU) and

tRNAGlu(mcm 5S2 UUC) respectively (4, 5). These two modifications modulate the efficiency of

these two species of tRNA in translating their corresponding codon, AGA for tRNAArg(mcm5UCU)

and GAA for tRNAGlu(MCM5S2UUC) (6). Through this mechanism, Trm9-catalyzed modifications

on tRNA control the translation level of genes with high usage of AGA or GAA while many of

them are associated with DNA damage responses (3). The studies suggest that modifications at

wobble position of tRNA can affect the efficiency of translating specific codons and thus, they

can be used as mechanisms of translational regulation in response to stress.

In chapter 3, differential patterns of changes in the spectrum of tRNA modifications are

observed in the yeast S. cerevisiae exposed to four mechanistically distinct toxic agents,

hydrogen peroxide, methyl methanesulfonate, sodium hypochlorite, and sodium arsenite,

which suggests that responses to different stress involve different subsets of modifications.

After exposing to H202, the levels of several modifications, including 5-methylcytosine (m5 C),

increase and also, tRNA m5C-methyltransferse Trm4 protects cells against this toxic agent;

these observations strongly suggest that m5C is involved in stress response to H202. In addition,

this modification may be involved in a broad range of cellular responses as trm4A mutant is also

sensitive to heat-shock, killer toxins, and various chemicals (7-10).

The modification m5C is reported in at least 34 different species of tRNA and is located at

position 34, 40, 48, and 49 (11). However, only a leucine tRNA for translating UUG on mRNA

contains m5C at the wobble position. As m5C at wobble position has previously been

demonstrated to promote the efficiency of translation (12), we then hypothesized that Trm4
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modulates the translation of UUG by regulating the level of m5C. To test this, we searched for

DNA transcripts enriched in this specific codon, UUG, and found that many of them are

encoding for ribosomal proteins while the others are mostly related to energy metabolism

(Table 1).

Yeast ribosomes comprise 78 proteins in which 59 of them have two duplicated genomic

copies. Even though the amino acid sequences of homologous ribosomal proteins are very

similar, UUG codon usage patterns of the two proteins can be significantly different (Table 4-2).

Homologous ribosomal genes were arose from a whole genome duplication; while most

duplicated genes were eliminated as they were redundant, some of them were retained by

evolving to new functions (13). Indeed, evidence supports that ribosomal homologues play

specific biological roles; for instances, the lack of specific ribosomal homologue leads to defects

in ribosomal assembly (14), sporulation (15), actin organization (16), and bud-site selection (17).

Komili and coworkers have provided insights in mechanistic roles of ribosomal homologous

proteins by demonstrating that a specific subset of ribosomal homologues is necessary for the

translation of localized ASH1 mRNA during bud tip formation (18). These observations led us to

hypothesize that Trm4 regulates the protein composition of ribosome for adapting changes in

cellular conditions.
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Systematic Freq. of Protein Functions
Name #UUG UUG

YLR029C 13 1 Protein component of the large (60S) ribosomal subunit

YJL189W 2 1 Protein component of the large (60S) ribosomal subunit

YLR110C 9 1 Cell wall mannoprotein

2P 1fso

YPR143W 3 1 Protein component of the large (60S) ribosomal subunit

YLR185W 2__ 1 Protein component of the large (605) ribosomal subunit

YOLO40C 9 1 Protein component of the small (40S) ribosomal subunit

YHR072W-A 5 1 Constituent of small nucleolar ribonucleoprotein particles

YFL014W 3 1 Plasma membrane localized protein

YJR009C 20 0.95 Glyceraldehyde-3-phosphate dehydrogenase, isozyme 2

YHL033C 19 0.95 Ribosomal protein L4 of the large (60S) ribosomal subunit
ck TMTtQ ( AM

YPLO90C 19 0.95 Protein component of the small (40S) ribosomal subunit

YBR031W 26 0.93 Protein component of the large (60S) ribosomal subunit

YDR064W 13 0.93 Protein component of the small (40S) ribosomal subunit

YHR174W 35 0.92 Enolase 11

YALO38W 32 0.91 Pyruvate kinase

YLRO44C 49 0.91 Major of three pyruvate decarboxylase isozymes

YLLO45C 19 0.90 Ribosomal protein L4 of the large (60S) ribosomal subunit
Y c o ftl (o

YKL189W 9 0.90 Protein component of the large (60S) ribosomal subunit

YBR189W 18 0.90 Protein component of the small (405) ribosomnal subunit
YGLI47C * T 7" "
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Table 4-1. List of S. cerevisiae genes with transcripts with highest usage frequency of UUG.
This table includes the systematic name, the number of UUG, the UUG usage frequency, and a
description of the function of gene product. UUG usage frequency is the number of UUG codon
in a transript divided by the total number of leucine that its protein is comprised of. Only genes
with UUG usage frequency above 0.9 are listed.
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Gene TTG Different Difference Gene TTG Different Difference

Name #TTG frequency In #TTG in TG Name #TTG frequency In #TTG u T
RPL1A 22.8 frequency . frequency Name 5.
RPL1A 22 0.88 RPL23A 5 0.56
RPL1 B 22 0.88 RPL23B 4 0.44 ____

RPL2A 13 0.81 3 0.19 RPL24A 6 0.86 0 0.00
RPL2B 10 0.63 RPL24B 6 0.86

RPL3 18 0.86 -- -- RPL25 9 0.82 -- --

RPL4A 26 0.93 RPL26A 9 0.64
0 0.00 0 0.00

RPL4B 26 0.93 RPL26B 9 0.64

RPL5 17 0.74 -- -- RPL27A 5 0.71 0 0.12
RPL6A 13 0.68 2 0.07 RPL27B 5 0.83

RPL6B 15 0.75 RPL28 9 1.00 -- --

RPL7A 17 0.85 0 0.00 RPL29 2 0.67 -- --

RPL7B 17 0.85 RPL30 11 0.85 -- --

RPL8A 19 0.95 0 0.05 RPL31A 6 0.55 0 0.00
RPL8B 19 0.90 RPL31B 6 0.55

RPL9A 9 0.90 RPL32 7 0.78 -- --

RPL9B 8 0.89 RPL33A 5 0.83 1 0.17
RPL1O 16 0.94 -- -- RPL33B 4 0.67

RPL11A 8 0.73 1 0.09 RPL34A 4 0.80 0 0.00
RPL11B 7 0.64 RPL34B 4 0.80

RPL12A 6 0.55 4 0.36 RPL35A 11 0.85 1 0.08
RPL12B 10 0.91 RPL35B 10 0.77

RPL13A 5 0.45 4 0.36 RPL36A 4 0.67 2 0.33
RPL13B 9 0.82 RPL36B 6 1.00

RPL14A 7 0.64 RPL37A 2 1.00
RPL14B 7 0.64 RPL37B 2 1.00 0_0.00

RPL15A 13 1.00 RPL38 8 0.89 -- --

RPL15B 8 0.62 5 0.38 RPL39 2 1.00 -- --

RPL16A 9 0.50 RPL40A 12 0.86
RP1B 1 .2 5 0.32 2 0.14

RPL16B 14 0.82 RPL41B 10 0.71 0_0.00

RPL17A 9 0.90 RPL41A 0 0.00
RPL1 7B 9 0.90 0 .0 RPL41 B 0 0.00 0___ 0.00___

RPL18A 11 0.73 RPL42A 7 1.00
RPL18B 10 0.67 RPL42B 6 0.86

RPL19A 9 0.56 1 0.06 RPL43A 3 1.00 2 0.67
RPL19B 10 0.63 RPL43B 1 0.33
RPL20A 8 0.89 RPPO 21 0.84 -- --

2 0.29
RPL20B 6 0.60 RPP1A 9 0.82 5 0.32
RPL21A 4 0.50 2 0.36 RPP1B 4 0.50
RPL21B 6 0.86 RPP2A 5 0.50
RPL22A 7 1.00 4 0.63 RPP2B 5 0.56 0 0.06

RPL22B 3 0.38 1 1 1 1 _ _ _ _
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Gene TTG Different Difference Gene TTG Different Difference

Name #TTG frequency in #TTG in TTG ame #TTG frequency in #TTG In TTG
frequency frequency

RPSOA 9 0.47 RPS17A 13 0.87
RPSOB 14 0.70 5 0.23 RPS17B 13 0.87 0 0.00

RPS1A 16 0.73 RPS18A 11 0.73
RPS1B 19 0.83 3 0.10 RPS18B 10 0.67 1 0.07

RPS2 19 0.90 -- -- RPS19A 6 0.75

RPS3 12 0.63 -- -- RPS19B 7 0.88 1 0.13

RPS4A 16 0.64 RPS20 5 0.83 -- -

RPS4B.2 0.08 RPS21A 4 0.57
RPS5 13 0.93 -- -- RPS21B 5 0.71 1 _0.14

RPS6A 19 0.95 RPS22A 8 0.80
RPS6B 19 0.95 RPS22B 6 0.55 2 0.25

RPS7A 18 0.86 RPS23A 10 0.77
RPS7B 14 0.67 RPS23B 10 0.77 0 0.00

RPS8A 5 0.50 RPS24A 3 0.18
RPS8B 5 0.50 0 0.00 RPS24B 6 0.67 3 0.49

RPS9A 12 0.60 RPS25A 4 0.44
6 0.30 2 0.22

RPS9B 18 0.90 RPS25B 6 0.67

RPS10A 7 0.78 RPS26A 2 0.50
RPS1OB 9 1.00 RPS26B 4 1.00
RPS1 1A 3 0.60 RPS27A 3 0.33
RPS1 1 B 3 0.60 0 0.00 RPS27B 5 0.56 2 0.22

RPS12 11 0.73 -- -- RPS28A 3 0.50

RPS13 13 0.93 -- -- RPS28B 4 0.67 1 0.17

RPS14A 4 0.67 0 0.10 RPS29A 1 0.50 0 0.00
RPS14B 4 0.57 RPS29B 1 0.50
RPS15 9 1.00 -- -- RPS30A 2 0.50

RPS16A 7 0.64 RPS30B 2 0.50 0 0.00

RPS16B 8 0.73 1 RPS31 11 0.79 - --

Table 4-2. Usage of TTG of S. cerevisiae ribosomal protein genes for proteins in (A) large
subunit and in (B) small subunit. The number of TTG used for coding leucine (#TTG) and the
proportion of leucine coded by TTG (TTG frequency) are included in this table. For the genes
having a homologue, the differences in #TTG and in TTG frequency are also listed.
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In the following studies, we sought to determine whether Trm4 is involved in regulating

the levels of homologous proteins in ribosomes. We showed that the translation level of

ribosomal protein Rpl22a decreases relative to its homologue Rpl22b in the trm4 knockout, the

rp/22a gene has a higher usage frequency of TTG. Also, rp/22a confers resistance to hydrogen

peroxide toxicity but rpl22b does not. Further, we showed that the relative level of Rpl22a

protein to Rpl22b protein increases after cellular exposure to hydrogen peroxide only when

Trm4 is present. These results are consistent with the hypothesis that Trm4 confers resistance

to stress by regulating the translation of homologous ribosomal proteins, which is a novel

pathway of stress response.

Materials and Methods

Materials. All chemicals and reagents were of the highest purity available and were used

without further purification. Hydrogen peroxide, trypsin, ammonium chloride, magnesium

chloride, potassium chloride, magnesium acetate, ammonium acetate, dithiothreitol, and

glucose were purchased from Sigma Chemical Co. (St. Louis, MO). Yeast extract and peptone

were purchased from Biomed Diagnostics, Inc. (White City, OR). Tris-acetate was purchased

from USB Corp. (Cleveland, OH). HEPES was purchased from EM Science (Darmstadt, Germany).

Micron YM10 filters were purchased from PALL Corp. (Port Washington, NY). HPLC-grade water

and acetonitrile were purchased from Mallinckrodt Baker (Phillipsburg, NJ). Biorad Protein

Assay was purchased from Biorad laboratories (Hercules, CA). All strains of S. cerevisiae BY4741

were purchased from American Type Culture Collections (Manassas, VA).
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Exposure of S. cerevisiae. Cultures of wild-type, rpl16aA, rpl16bA, rpI22ad, and rpI22bA

strains of S. cerevisiae BY4741 were grown to mid-log phase. A final concentration of 2 mM

hydrogen peroxide was then added into each culture and cells were harvested after 3 hours by

centrifugation at 8000x g for 15 minutes. The H202 sensitivity of these strains of yeast was also

assessed by exposing each mid-log phase culture to 5 mM of hydrogen peroxide; after 1 hr,

cells were plated on YPD agar plate to determine the viability.

Isolation of ribosome. Approximately 1010 cells were resuspended in 10 mL of the lysis

buffer with 50 mM Tris-acetate, 50 mM ammonium chloride, 12 mM magnesium chloride, and

1 mM dithiothreitol, pH 7.0. Cells were then lyzed mechanically by bead-beating. Lysate was

centrifuged at 10000x g for 10 minutes and the supernatant was collected to repeat the

centrifugation two more times to remove all particulates. The supernatant was layered over

2.5 mL of a solution with 1 M sucrose, 20 mM HEPES, 500 mM KCI, 2.5 mM magnesium acetate,

and 2 mM dithiothreitol, pH 7.4 and centrifuged for 110 minutes at 60000 rpm in a Beckman 70

Ti rotor. Supernatant was removed and the pellet of ribosomes was resuspended in 1.5 mL of a

digestion buffer with 100 mM ammonium acetate, pH 8.5. The samples were concentrated by

centrifuging on a YM10 filter and re-diluted with the digestion buffer for 5 times to remove the

remaining salts. Approximately 300 ig of ribosome was obtained based on the results of

Biorad Protein Assay.

Identification of ribosomal proteins. An amount of 1 pg of proteomics-grade trypsin was

added into 50 ptg of ribosome in 200 pL of the digestion buffer (100 mM ammonium acetate
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solution, pH 8.5). Samples were incubated at 37 0C for 12 hours before dried by lyophilization

and resuspended in 100 pL of a 0.1% formic acid solution. Roughly 2.5 pg (5 PL) of peptide

products from tryptic digestion were resolved with an Agilent ZORBAX 300SB-C18 column (100

x 0.3 mm, 3p particle size) eluted with the following gradient of acetonitrile in 0.1% formic acid

at a flow rate of 20 pL/min and 45 *C: 0-25 min, 1-30%; 25-30 min, 30-60%; 30-31 min, 60-95%;

31-36 min, 95%. The HPLC column was coupled to an Agilent 6510 QTOF LC/MS Mass

spectrometer with an electrospray ionization source. The mass spectrometer was operated in

positive ion mode to scan for ions within the range of m/z 100 to m/z 1700 at an acquisition

rate of 1.4 spectrum/second with the following parameters for voltages and source gas:

fragmentor voltage, 110 V; gas temperature: 300 *C; gas flow: 5 L/min; nebulizer: 20 psi; and

capillary voltage: 3500 V. Compounds detected by the mass spectrometer were identified using

the molecular feature extraction function in the Agilent MassHunter Workstation Software with

the following filter parameters: minimum peak height: 300 counts; and maximum charge state:

2. The lists of compounds were then analyzed with the Agilent Spectrum Mill mass

spectrometric data analysis software to identify proteins based upon peptide mass fingerprints.

A search was performed against the NCBlnr protein database for Sacchromyces cerevisiae with

no protein modifications and missed cleavage considered. The search parameters were set

with a mass tolerance of 20 ppm and protein coverage of at least 25%.

Identification of peptides. Samples of tryptic-digested peptides were resolved with the

same HPLC method as described in the above section. The HPLC column was coupled to the

same mass spectrometer that was operating in positive ion, targeted MS/MS mode with a
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constant collision energy of 15 V to monitor ions within the range of m/z 100 to m/z 3000; the

acquisition rates for MS scan and MS/MS scan were both 1.4 spectrum/second and all the

parameters for voltages and source gas are the same as in the LC/MS analysis for characterizing

ribosomal proteins. The peptides monitored in MS/MS analysis are described in Figure 4-5.

Transcription level assay. Total RNA was isolated from S. cerevisiae BY4741 using the

Qiagen RNeasy Mini kit. An amount of 100 ng of total RNA was used to perform real-time

quantitative PCR with Applied Biosystems Power SYBR Green RNA-to-CT kit and an Applied

Biosystems 7900HT Fast Real-Time PCR System to determine the relative transcription levels of

ribosomal protein genes rp/l6a, rp/l6b, rp/22a, and rp/22b with act1 chosen as a housekeeping

gene for normalization. Primer sequences are listed in Table 4-3. The A£CT method was used

to compare the transcription levels in different samples (19).

Gene Forward (5' to 3') Reverse (5' to 3')
acti GAAAAGATCTGGCATCATACCTTC AAAACGGCTTGGATGGAAAC
rp/l6a AGGTCGTTTAGCTTCCGTTGTTGCT GCGGCCTTACCACGAGCAGT
rp/l6b GTTGGGTCGTTTGGCCTCCACTA GCCTTACCACGGGCGGTCTT
rp/22a AGATTGCCAAGACCTTTACCGTCGA CCATCTTCAGTGACAGTGACAGCGT
rp/22b AAACGGAGTCTTCGATCCGGCTT GTCAGCATCTTCAGGGGTGACTTGA

Table 4-3. Sequence of primers for RT-qPCR.
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Results

Identification of ribosomal proteins. As the mass of ribosomal complex is significantly

larger than any other biological macromolecules, ultracentrifugation can isolate ribosomes

from cell lysate to high purity (20). Ribosomes were digested by trypsin to peptide fragments

before analyzed with a liquid chromatographic-mass spectrometric approach. Compounds

detected by high mass accuracy mass spectrometry were compared to theoretical tryptic

fragments from proteins in the yeast protein database. From this analysis, a total of 39

proteins were identified consistently in three biological replicates (Table 4-4). Either because

the two homologous proteins have identical amino acid sequence or the detected tryptic

peptides did not cover the regions with difference, we could not distinguish the proteins from 9

pairs of homologous genes. These proteins include Rpl9a/b, Rpllla/b, Rpl22a/b, Rpsla/b,

Rps4a/b, Rps9a/b, Rpsl7a/b, Rps25a/b, and Rps28a/b. Also, we were able to identify Rpl2b,

Rpll5a, Rpl18b, Rpll9b, Rpl20a, Rpl23a, Rpl27a, Rpl35a, Rpsl9b, Rps24a, and Rps26b but not

their homologues. Some ribosomal proteins with no homologues were also identified,

including Rpl32, Rps2, Rps3, and Rps13. For proteins that both homologues were identified,

there were Rpl6a and Rpl6b, Rpl7a and Rpl7b, Rpl16a and Rpll6b, Rpl22a and Rpl22b, Rpl33a

and Rpl33b, Rpl36a and RpI36b, and Rps7a and Rps7b. These 7 pairs of homologous ribosomal

proteins served as the basis for studying the changes in ratios of homologues.

137



Protein Coverage (%) Mass Error Mean (Std. Dev.) (ppm)
Proteins Expt. 1 Expt. 2 Expt. 3 Expt. 1 Expt. 2 Expt. 3

RPL2B 46 38 40 -5.5 (5.8) -5.3 (6.4) -6.1 (6.3)
RPL6A 37 40 32 1.2 (6.1) -3.3 (6.6) -2.7 (7.3)
RPL6B 48 44 36 -5.9 (5.9) -3.1 (4.7) -2.1 (7.0)
RPL7A 40 35 40 1.1 (6.5) -1.8 (4.5) -2.5 (7.0)
RPL7B 40 35 40 0.8 (6.6) -2.0 (4.6) -2.8 (7.1)
RPL9A/B 50 41 41 -2.1 (8.2) -3.3 (8.3) -3.1 (10.7)
RPL11A/B 28 31 25 1.5 (3.2) -0.9 (4.4) -1.8 (2.6)
RPL15A 31 33 33 0.3 (2.3) 2.3 (6.5) -0.3 (8.6)
RPL16A 44 37 44 -2.6 (8.7) -2.5 (8.4) -2.1 (7.6)
RPL16B 45 42 39 -1.8 (8.5) -3.9 (8.3) -3.8 (8.6)
RPL18B 41 38 46 -1.3 (8.2) -2.5 (8.3) -2.4 (7.0)
RPL19B 29 32 63 -4.3 (6.3) -2.7 (9.3) -4.4 (7.3)
RPL20A 51 47 48 1.8 (7.3) 1.9 (7.3) -0.6 (5.1)
RPL21A/B 46 46 46 -3.7 (4.8) -3.2 (6.1) -2.4 (5.5)
RPL22A 35 68 54 1.7 (12.3) 0.2 (6.6) 3.3 (9.4)
RPL22B 49 50 50 0.2 (5.8) 1.1 (6.2) 1.8 (10.8)
RPL23A 55 48 55 -0.4 (6.6) -0.5 (9.4) -1.1 (8.0)
RPL27A 46 46 43 -0.4 (9.4) -2.6 (8.7) -4.4 (6.5)
RPL32 46 56 53 0.1 (4.2) 0.5 (6.2) -1.2 (1.2)
RPL33A 49 44 49 0.7 (8.8) -5.3 (10.2) -0.8 (8.5)
RPL33B 49 44 49 0.7 (8.8) -5.3 (10.2) -0.8 (8.5)
RPL35A 30 37 37 -0.3 (6.2) -4.8 (5.0) -4.2 (5.5)
RPL36A 52 52 39 -5.3 (5.7) -2.4 (8.3) -0.1 (1.9)
RPL36B 52 52 52 -4.8 (6.1) -2.0 (8.4) -4.8 (6.1)
RPS1A/B 45 36 36 1.4 (7.5) -4.0 (5.6) -0.9 (5.9)
RPS2 38 38 36 -0.4 (10) -4.7 (4.5) -1.6 (8.7)
RPS3 48 56 56 -2.7 (4.7) -3.5 (4.8) -4.0 (4.5)
RPS4A/B 59 57 63 -1.5 (8.3) -2.1 (8.2) -3.7 (9.3)
RPS7A 64 64 66 -0.5 (5.8) -1.5 (7.0) -2.5 (7.1)
RPS7B 68 64 66 -2.3 (6.6) -5.1 (6.6) -5.6 (6.6)
RPS9A/B 54 54 54 -0.5 (7.5) -1.4 (7.2) -1.8 (6.9)
RPS13 68 62 58 -2.1 (4.0) -2.8 (5.8) -3.5 (3.7)
RPS17A/B 62 52 52 -0.6 (10.3) -2.3 (7.4) -5.5 (8.6)
RPS19B 59 67 63 -4.2 (6.9) -3.8 (6.9) -4.4 (7.3)
RPS20 52 52 52 -0.6 (7.1) -3.5 (4.3) -2.0 (5.4)
RPS24A 36 36 36 0.4 (1.4) -0.8 (1.6) -1.2 (1.4)
RPS25A/B 52 52 52 -1.0 (5.0) -1.1 (6.4) -1.3 (7.3)
RPS26A 49 42 50 2.3 (5.9) -1.8 (7.3) -4.6 (5.1)
RPS28A/B 70 58 64 -2.3 (11.7) -3.6 (7.6) -3.4 (5.6)
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Table 4-4. List of ribosomal proteins identified from LC/MS analysis of tryptic peptides. Data
was obtained from three biological replicates. The table contains the percent of amino acid
residues covered by the detected peptides and the average mass difference between the MS
detections and theoretical values for all detected peptides of each protein.

Characterization of unique peptides from ribosomal proteins. Amino acid sequences of

homologous ribosomal proteins are nearly identical. Thus, most tryptic fragments from the two

ribosomal homologues are the same. Therefore, instead of monitoring all peptides from each

ribosomal protein, the quantification of each ribosomal protein was based on mass

spectrometric signal intensities from a unique peptide. These peptides are listed in Table 4-5.

Even though the mass values detected by mass spectrometer were highly accurate (error < 10

ppm), identity of peptides can still be mis-assigned as peptides with different amino acid

sequence and even different amino acid composition can have the same mass. For

confirmation, these unique peptides were subjected to targeted MS-MS analysis to determine

their amino acid sequence based upon the detection of b- and y- ions formed in collision-

induced dissociation (CID). CID mass spectra of the 14 unique peptides, each from one protein

of the 7 pairs of ribosomal homologues, are shown in Figure 4-1.
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V

Freuecy UG Protein Sequence (location of the peptide) Thortc2 /zo

0.85 17 RLA TAEQVAAER (22 to 30) 1487.7433
17 RPL7B TAEQIAAER (22 to 30) 494.751

1.00 7 RPL22A LAFYQVTPEEDEEEDEE (105 to 121) 1036.4233
0.38 3 RPL22B LVFYQVTPEDADEEEDDE (105 to 121) 1071.9418

0.67 4 RPL36A VTSMTPARK (17 to 25) 466.2443
1.00 6 RPL36B VTQMTPARK (17 to 25) 486.7573

Table 4-5. The list of peptides selected for quantification.
frequency of each gene transcript, the number of UUG, the
is originated, the sequence of the peptides, the position of
the ion of these peptides.

This table contains the UUG usage
name of protein that each peptide
the peptide, and the m/z value of

140



bI b2 b3 b4 b5 b6 b7 b8 b9 b1o

E A N L! F P E Q! Q N K
y10 y9 y8 y7 y6 y5 y4 y3 y2

y1

b4

yA.NH

Ii~ I
1 11 11. i

4 C2 w iaw xc o0 xc wO P80451 070W700 I804304402

bI b2 b3 b4 b5 b6 b7 b8 b9 b1O

E A N L: F P E IQ Q: T K
y10 y9 y8 y7 y6 y5 y4 y3 y2 y1

V6

b4
b5

AU0 zWw2 300 150 400 460 560 550 eo0 w 700 70
Ceow , 0 7ow0mp(w,

RPLB
b-Ions __ons

Expected Detected Expected Detected
mm mm man mess

1 - - 147.1128 --

2 201.0870 201.0815 248.1605 248.1659
3 315.1299 315.1357 376.2191 376.2193
4 428.2140 428.2057 504.2776 504.2426
5 575.2824 575.2701 633.3202 633.3251
6 672.3352 - 730.3730 730.3743
7 801.3777 - 774414 877.4486
8 929.4363 - 990.5255 --
9 1057.495 - 1104.568 1104.575
10 1158.543 - 1175.606 --

11 - - - -

V7

Y9
S I

g 850 900 9w0 1(0 10 1140 110

141

RPLGA
b-Ions pions

Expected Detected Expected Detected
mas mas mms mam

1 - 147.1128 -

2 201.0870 201.0902 251.1557 -

3 3.1299 315.1233 2 372.18463 1519 (y3-NH3)
4 428.2140 428.1977 517.2729 517.2711
5 575.2824 575.2824 646.3155 -
6 672.3352 - 743.3682 743.3624
7 801.3777 - 890.4357 890.4251
8 929.4363 - 1003.521 -

9 1057.495 - 1117.564 --
10 1171.538 - 1188.601 -

11 -- -- -

- i.. .111 -I.A.- lI

1102

b2
16

02 --

I A.... =nm meerme m

120 1 W Ad0 ew g1



b1 b2 b3 b4 b5 b6 b7 b8

T|AIE Q|VIAIA| E|R
Ly> Ly> L> L L > L> L> Ly>

y8 y7 y6 y5 y4 y3 y2 yl

ceotsva mhs-tO#.wp(.)

bi b2 b3 b4

T A E Q
I I I

L-> L-> L..>

y8 y7
y6

y2

63

b5

ii

->
y5

L

b6

Al
L.

y4

b7 b8
<-- .(

A E

y3 y2

V4

1111j

R

y1

, "'ill

RPL7A
b-Ions pons

Expected Detected Expected Detected
mas mms mms mas

1 -- - 175.1190 175.1188

2 173.0921 173.0912 304.1615 304.1673
3 302.1347 302.1428 375.1987 375.1913
4 430.1932 430.2103 446.2358 446.2319
S 529.2617 545.3042 545.3009
6 600.2988 - 673.3628 673.3674
7 671.3359 - 802.4054 802.4009
8 800.3785 - 873.4425 --

9 - - - -

y5

y6

10 s o 560 60 so s10 do d 740 72o 760 740 i

b-Ions pons
Expected Detected Expected Detected

mm mm mm mm
1 - - 175.1190 175.1173

2 173.0921 173.0917 304.1615 304.1671
3 302.1347 302.1226 375.1987 375.2017
4 430.1932 -- 446.2358 446.2388
5 543.2773 - 559.3198 559.3198
6 614.3144 ~ 687.3784 687.3663
7 65.3515 - 816.4210 816.4269
8 814.3941 - 887.4581 -

9 -- -- -

142

Cwtvs mam40O w(V5

if ii|1 1

00 1 | li

1,111likkiiWAII 
il fillk..

W9 - -- - -



b1 b2 b3 b4 b5 b6 b7 b8 b9 b1o b1l b12 b13 b14

VI A S A! N A T! A A El SI D Vi A K
+- +- +- '+> L+> + L+ -y L+ L~y+ L- + L+> L+
y14 y13 y12 yll y1O y9 y8 y

7
y6 v5 y4 y3 y2 y1

b6

b3 v45
Vd i

y2y

RPL16A
b-Ions pions

Expected Detected Expected Detected
mms mmss msmas

1 -- - 147.1128 147.1103

2 171.1128 171.110 218.1499 28.1502
3 258.1448 258.240 317.2183 317.2167
4 329.1819 329.14 43.2453 43.2375
5 443.2249 443.21 519.2773 519.2664
6 514.2620 514.25 648.3199 648.3131
7 615.3097 - 719.3570 719.3486
8 686.3468 - 790.3941 790.3827
9 757.3839 - 8914418 891A268
10 886A265 - 962A789 962.4716
11 973A585 - 1076.522 1076A12
12 1088A86 -- 1147.559 1147.557
13 1187.554 - 1234.591 --

14 1258.591 - 1305.628 -
___ 0

15 -- - . -

y1 VII

1.1. V11

~~I i..
020 21 0 80 40 4 0 If ow0 low 400 1110 1&0 19 M!~~1i ~

C.,w 00-w"m

bI b2 b3 b4 bS b6 b7 b8 b9 b1o b1l b12 b13 b14

ViS IS IA S A A A S E S Di V: Al K
y14 y13 y12 y11 y1O y9 y8 y

7  
y

6  
y5 y

4  
y

3  
y

2  
y1

:20

1 11 V9

b4

V1 b3 V7

v2

b5 s6

20 3 10 4 50 0 * 500 * d o 6 0 7 10 6o *o 100 -* 1 ibD 110D IAO 1i0
cof uss a..90owe

RPL16B

b-Ions Ions
Expected Detected Expected Detected
m ms mm m

1 - 147.1128 147.1074

2 187.1077 187.1054 218.1499 218.1457
3 274.1397 274.1341 317.2183 317.2075
4 345.1769 345.17 432.2453 --
5 432.2089 432.2041 519.2773 519.2682
6 503.2460 503.2423 648.3199 648.3192
7 574.2831 574.2731 735.3519 735.3468
8 645.3202 - 806.3890 806.3727
9 732.3523 - 877A262 877.4169

10 861.3949 - 948.4633 948.4472
11 948.4269 - 1035.495 1035476
12 1063.454 - 1106.532 1106.517
13 1162.522 - 1193.564 1193.561

14 1233.559 - 1280.597 1280.629

15 -. - - -

y10

y13

L 12 ~ I
________.bL~~

143

Ai



b1 b2 b3 b4 b5 b6 b7 b8 b9 blO bil b12 b13 b14 b1S b16

L A F Y QIV T P E E D Ei E E IDI E IE
y16 y15 y14 y13 y12 y11 y1o y9 y8 y7 y6 y5 y4 y3 y2 yl

y2

64 b5 b

b3b v3 s

IllS

1. 1.1I. Ii .tii I I

bil

y11

b12

RPL22A

b-koft vr....l-l

Ex e Detected Expected Detected
ms m ms mas

1 - - 148.0604 148.0576

2 185.1285 185.1251 277.1030 277.0992
3 332.1969 332.1974 392.1300 392.1257
4 495.2602 495.2576 521.1726 521.1600
5 623.3188 623.3119 650.2152 650.2152
6 722.3872 722.3821 779.2577 779.2301
7 8234349 8234325 894.2874 -
a 920A876 - 1023.327 -
9 1049.530 1049.528 1152.370 --
10 1178.573 1178.583 1249423 1249.415
u 1293.600 1293.584 1350.470 1350A66
12 1422.642 1422.601 1449.539 -

13 1551.685 1551.671 1577.597
14 1680.728 1660.718 1740.661 -

15 1795.755 1795.767 1887.729
16 1924.797 -- 1958.766
17 - - -! -

613 bL4 b45~1.~~III h~hI 11M~b ri rmw~.
1

jj pl I *..13 .w IIi. .. I..Ij LI... .. I

Mdd0 A *oe o i 1 0 t1e ti o
Cv., M..o. "...

bi b2 b3 b4 bS b6 b7 b8 b9 blo b1l b12 b13 b14 b15 b16 b17
I1 <I <--11 1 I I I I <--I

L V F Y Q V T P E D Al D! E E E D D E
y17 y16 y15 y14 y13 y12 yll y1O y9 y8 y7 y6 y5 y4 y3 y2 y1

63 V4 .154Io
b3

62

y3

\ 
b9 

b1ObI

lVii17~~hI..L~ h

III m y4om
Expetd Detected Expected Detected

1 - 14&.0604 148.064
2 213.1595 213.1677 263.074 263.0625
3 560.2282 360.2146 378.1143 378.224
4 523.2915 523,2985 507.169 507.1633

5 651.3501 651.356 618.1689 M18189

6 MAN41S 750.4258 7652421 -
7 8514952 8514892 8802690 60.2449

8 948.5189 ____ 91.31062 931.3154
9 1077.562 1077.576 1066.333 1066.541
10 1192.589 1192.39 1195.376

11 1263.626. - 1292A29 -

1.2 1378.653 - 1395.476

13 1507.695 - 14923S45 -

14 1636.738 1636.733 1620.603 -

i5 1765.780 1765.83111753.67 -

16 188.807 - 1930.735 -
17 1995.854 .. 2029.803

1

y13

144

yl

.1 L 101

C0ft IA#0*pt1o do 21. do 10do d do se so do ajo 1 0 do o as do do teso .*dle 12cot tra ube 1tidi t41 iab tehio ide idio noe useso
-- iIJ



bI b2 b3 b4 b5 b6 b7 b8 b9 b1o b1l b12 b13 b14 b15
I I I11 I I I I I

l E G V A T P QIDQ I QD A F Y L G K
L-> L-> L-> L> L-+ L+ L-+ L+ L+ L-y L-> L-y L-> L- L->

yiS y
1
4 y3 y12 Vii y10 y9 y8 y7 y6 V5 y4

y3
y

2 V1

b5
'74

b2 b
bb4

b2 W 3 V6I iiV7 .~

yo

RPL33A
b4ons I

Expected Detected Expected Detected
m um am= ma

1 - ~ 147.1128 -

2 243.1339 243.1356 204.1343 204.1336
3 300.1554 300-1547 317.2183 317.2199
4 399.2238 399.2216 480.2817 480.2965
S 470.2609 470.2603 627.3501 627.3487
6 571.3086 571.3072 755.4087 755.4039
7 668.36 - 826.4458 82.4454
8 796.4199 - 9414727 9414765
9 911.4469 - 1069.531 --
10 982.4840 - 1166.584 1166.585
11 1110.543 - 1267.632 1267.630
12 1257.611 - 1338.669 1338.669

13 1420.674 - 1437.737 -

14 1533.758 - 1494.759 -

15 1590.780 - 1623.801 -

16 - -

V12

1 0 0 ' 0 1 0 7 0 t 0 00 1W 0 1 11k 1200 12% 130 1300

b1 b2 b3 b4 b5 b6 b7 b8 b9 blo b1l b12 b13 b14 b15

I E G V A T P QIE A Q!F Y L G K
y15 y14 y13 y12 yll yiO y9 y8 y7 y6 y5 y

4  
y3 y

2  
y1

x105
11

b-Ions pion

Ep Detected -pected Detected
ma- mnss mass manss

1 - - 147.1128 -
2 243.1339 243.1369 204.1343 204.1328
3 300.1554 300.1513 317.2183 317.2187
4 399.2238 399.2188 480.2817 480.2843
5 470.2609 470.2501 627.3501 627.3490
6 571.3086 571.3026 755.4087 755A096

7 668.3614 - 826A458 826.4491
8 796A199 - 955.4884 -
9 925A625 - 1083.547 1083.51
10 9964997 - 1180.600 1180.597
11 1124.558 - 1281.647 --
12 1271.627 - 1352.6B5
13 1434.690 - 1451.753 -

14 1547.774 - 1508.774
15 1604.796 - 1637.817
16 - - - -

b5
'73 V4 bG Y5

2% WI 2% 100 %o 2% 010 2% 7% I ~
Ml 88 20 $6 1K0 108 110 1150 1200

145

ro

0 -1 - . - - I . I II- . I .

V7

I

Cous we Ma-*orgew .



bl b2 b3 b
+-, +-, +-,

VT S M

y8 y7 y6

4 b5 b6 b7 b8

T P A P1 K
'+ '+ '+ '-> ->

y5 y4 y3 y2 Y1

11] t.

y4

V5~L~Lti
Coui0 vs e kO ed e63 6 *7

b1 b2

V T
L Y8

5 y1

2 ii 2

5 vi j

b3 b4 b5 b6 b7 b8

S.M!T| P A| P1 K
I 1 i I I t S

.Ly L>y L.. Ly L..y L>y
y7  

y6 yS y4 y3 y2 Y1

y3

yS

~ ~i I
V.

ii 1. 1

vs

-~ * ~ A~S .,bd,..~JI~d.-fiI.& mmLd..i. .... 5..~.4. *~

146

IMA

b-ions y-ons

Expected Detected Expected Detected
mams mM mass masm

1 - - 147.1128 147.112

2 201.1234 201.118 244.1656 244.1587
3 288.1554 - 315.2027 315.188
4 419.1959 - 412.2554 412.2505
5 520.2436 - 513.3031 513.311
6 617.2963 - 644.3436 644.3206
7 688.3334 - 731.3756 731.3698
8 785.3862 - 832.4233 832.4210
9 - - - -

III

RP36B
b-Ions y-on

Expected Detected Expected Detected
mms m mms mm

1 - - 14*7.1160
2 201.1234 201.1254 244.1656 244.162A
3 329.1819 329.1705 315.2027 315.198E
4 460.2224 -- 412.2554 412.534
5 561.2701 - 513.3031 513.303
6 658.3229 - 644.3436 644.3
7 729.3600 ~ 772.4022 772.395
a 826.4128 - 873.4499 873.451
9 - - -- --

Cowfts M06.-Chow(V

Yll

111.1kil.. I
0 -I I I

3

|

L



b1 b2 b3 b4 b5 b6 b7 b8 b9 blO bll b12 b13

I L E D L V F P T E I G K

y1S y14  y13  y12 y11 ylO y9 y8 y7 y6 v5 y4  
y3

X10 3

bS

v4

y7

b3 b4

3L
b7 j

9w vw Im w /Il ow mu an

rWS7A
b-ons y ___

Expected Detected Expected Detected
ma ms mas mms

1 - - 147.1128 -

2 227.1754 227.1761 204.1343 204.133E
3 356.2180 356.21 303.2027 303.1994
4 471.2449 471.24 416.2867 416.293!
5 584.3290 584.327 545.3293 -
6 683.3974 683.397 646.3770 -
7 830.4658 830A64 743.4298 743.4294
8 927.5186 - 890A982 890.4975
9 1028.566 - 989.5666 989.560
10 1157.609 - 1102.651 1102.620
11 1270.693 - 1217.678 1217.665
12 1369.761 - 1346.720 1346.701
13 1426.783 - 1459.804 -

14 - -

lO Yll y12

I I
OW ins O in it IbO t2M tan aM 140D

b1 b2 b3 b4 b5 b6 b7 b8 b9 b1o bil b12 b13

V L E D M V F P T E I V G K

yIS y14 y1 3 y12 y11 ylO y9 y8 y7 y6 YS Y
4 y3

y2

b3

b2

y3 J I
IL 4,l

Y6

y7

b5

b6
11 y12

y10

147

RPS7B
b-Ions yaons

Expected Detected Expected Detected
mms mms mms mms

1 - - 147.1128 --

2 213.1598 213.1608 204.1343 204.1347
3 342.2023 342.2066 303.2027 303.2047
4 457.2293 457.2358 416.2867 416.2812
5 588.2698 588.2790 545.3293 545.3308
6 687.3382 687.3451 646.3770 646.3582
7 834A066 834.3809 743.4298 7434263
8 931A594 -- 890.4982 890.5018
9 1032.507 -- 989.5666 989.5959
10 1161.55 - 1120.607 1120.619
11 1274.634 - 1235.634 1235.666
12 1373.702 - 1364.677 1364.663
13 1430.724 - 1477.761 --

14 . . . -

2 2 0 2 o 4 do is o d-E A40 860 'O . 0 i 60 t fO O It C2nn M2aO 1o -Gr M
C*Oftv, Kern KD"etfz

. ... ..... .

0 Im,



Figure 4-1. Collision-induced dissociation mass spectra of peptides. Each peptide is unique to
one of the 14 proteins in the 7 pairs of homologues: (A) Rpl6a; (B) Rpl6b; (C) Rpl7a; (D) Rpl7b;
(E) RpIl16a; (F) RpIl16b; (G) Rpl22a; (H) Rpl22b; (1) Rpl33a; (J) Rpl33b; (K) Rp136a; (L) Rp136b; (M)
Rps7a; and (N) Rps7b. The table in each figure lists the m/z values of expected b- and y-ions
and the m/z values of detected ions.

Changes in composition of ribosome at various cellular conditions. With the seven

pairs of ribosomal homologues identified, we first determined the relative level of each pair of

homologues in wild-type and trm4A strains of cells (Table 4-6 and 4-7); relative level was

defined as ratio of the level of homologue with high usage of UUG to that with low usage. As

shown in Table 4-5, the difference of UUG codon usage frequency between the two genes,

rp/22a and rp/22b is about 0.6, which is the largest within the 7 pairs of homologous proteins.

Absence of Trm4 caused a statistically significant decrease in the relative level of Rpl22a to

Rp122b; the relative level decreased 40% in trm4A mutant with p < 0.01 in student's t-test.

Similarly, as the pair of homologues with the second largest difference in UUG usage frequency

(the difference is about 0.3), relative level of Rpl6a to Rp116b also decreased in trm4A mutant

by 10% (p < 0.05). Relative levels of the other 5 pairs of homologues had no statistically

significant changes in trm4A mutant.

We then assessed changes in relative levels of these 7 pairs of homologues in response to

H202-exposure (Table 4-5 and 4-6). In wild-type cells, exposure of H202 led to a 30%-increase in

the relative level of Rpl22a and Rpl22b. However, in the absence of Trm4, the relative level

between these two homologous ribosomal proteins did not change in response to H202.

Changes in relative level of Rpl16a to Rp116b also followed the same trend but with a smaller
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amplitude. Relative levels of the other 5 pairs of homologues were not affected by H20 2 in

either wild-type or trm4A cells.

Table 4-6. Relative quantification of ribosomal homologues in S. cerevisiae under various
cellular conditions. Ribosomes were isolated from three biological replicates of untreated wild-
type cells, H202-exposed wild-type cells, untreated trm4A mutant cells, and H202-exposed
trm4A mutant cells and were digested to peptide fragments as described in Materials and
Method section. Numerical values unshaded: MS signals detected from the unique peptide of
each ribosomal homologue; numerical values shaded in grey: ratio of MS signals from the
homologue with high TTG usage to that from the homologue with low TTG usage.
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Untreated wild type H202-exposed wild type Untreated trm4A Hz0 2-exposed trm4A
Expt. 1 Expt. 2 Expt. 3 Expt. 1 Expt. 2 Expt. 3 Expt. 1 Expt. 2 Expt.3 Expt.3 Expt.2 1 t. 3 2

RPL6A (Low TTG) 37202 34838 32168 29167 35729 36437 34839 33189 45467 34448 37473 36774
RPL6B (High TTG) 37772 34787 35296 32688 37779 42100 35890 31606 45913 35444 35900 38462

RPL7A (High rTG) 52125 58358 63886 74369 82757 83302 62527 54725 68598 57060 44969 48997
RPL7B(Low TrG) 17710 19592 17632 23190 27501 25342 16287 12382 22589 12710 15531 14762

RPL16A (Low 1TG) 26441 25322 26059 30370 32684 32427 24239 21581 29295 23720 22763 25216
RPL16B (High 1TG) 47808 48619 45449 61319 65143 64909 40599 34275 49250 35821 37258 41661

RPL22A (High TTG) 82104 78812 79959 100923 113122 104331 68494 62884 91551 65753 72045 75433
RPL22B (Low TTG) 5135 4540 4855 5003 5433 4238 6567 5868 7976 6229 7390 6490

RPL36A (Low TrG) 19685 21034 20425 24329 25429 23785 22614 15387 23366 22005 18688 18690
RPL36B (High TTG) 66330 64554 59024 71843 80215 78331 56138 51568 68440 49292 52990 58109

RPL33A (High TTG) 98668 93021 100545 118034 139000 129200 92192 81121 113781 85621 91965 100247
RPL33B(Low TTG) 38656 36228 38861 41246 53358 46685 37164 31947 41556 32080 37467 36725

RPS7A (High TTG) 114436 112016 117772 134724 165935 149546 99232 96376 149868 118242 132693 131115
RPS7B(LowTTG) 33420 33119 32254 38212 46501 40892 30173 26912 45140 36514 38219 38574

Expt. 31
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H20rexpoed WT:untreated WT tn4 A mutant: WT H20rtreatad tm4A:untreated trm44
Ratio____________ Fold change t-Test Fold change t-Test Fold change t-Test
Ratio (RPL6A:RPL6B) 1.07 0.15 0.96 0.36 1.01 0.72
Ratio (RPL7A:RPL7B) 1.00 0.96 1.18 0.27 0.95 0.77
Ratio (RPL16B:RPL16A) 1.10 0.03 0.90 0.04 0.97 0.42
Ratio (RPL22A:RPL22B) 1.32 0.02 0.65 0.00 0.98 0.73
Ratio (RPL36B:RPL36A) 1.01 0.89 0.94 0.55 0.93 0.62
Ratio (RPL33A:RPL33B) 1.07 0.08 1.01 0.84 1.01 0.79
Ratio (RPL7A:RPL7B) 1.03 0.35 0.97 0.51 0.99 0.83

Table 4-7. Fold-change of relative levels of ribosomal proteins in various cellular conditions.
Results in this table were based on calculation on data in Table 4-6. These include changes in
H202-exposed wild-type cells relative to unexposed wild-type cells, changes in unexposed
trm4A mutant relative to in unexposed wild-type, and changes in H202-exposed trm4A mutant
relative to unexposed trm4A mutant. Statistically significant changes (p < 0.05) are highlighted
in red.

Sensitivity of mutants lacking ribosomal protein genes to hydrogen peroxide toxicity. As

described above, hydrogen peroxide treatment led to increases in the protein levels of RPL16B

and RPL22A relative to their homologues. To assess the importance of these changes in stress

responses, we assayed the H202 sensitivity of rpl16aA, rpl16bA, rpl22a, and rpl22bA mutants.

As shown in Figure 4-2, rpI22aA mutant was more sensitive to H202 than the wild-type strain.

However, the loss of any other ribosomal proteins (Rp116a, Rpll6b, and Rpl22b) did not result

in changes in phenotype toward H202.
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Figure 4-2. Sensitivity of ribosomal protein-deleted mutants to hydrogen peroxide toxicity. The
cytotoxicity assay was performed as described in the Materials and Methods section. Survival
rate for each strain of cells was represented by the ratio of number of colonies formed from the
H202-exposed culture to that from the unexposed culture.

Transcription levels of ribosomal protein genes. To understand the underlying

mechanism of regulation of ribosomal homologous proteins expressions, we compare the

transcript levels of rp/l6a, rp/l6b, rpI22a, and rp/22b as a function of Trm4 availability and of

H202-exposure by using RT-qPCR. Results as shown in Table 4-8 illustrates that expressions of

mRNA for these four genes were statistically the same in all conditions.
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uniueLMeu w I

WT with H20 2
Untreated trm4A
Trm4A with H20 2

13.U3 2 U.o IL.W zU.Z u.u4Ut U.z U ±U./2 1 (U.6-1.7)
13.05 ±0.24 13.12±0.26 -0.08 ± 0.35 -0.11 ±0.35 1.1 (0.8-1.4)
12.63 ±0.28 13.27 ± 0.24 -0.64 ± 0.37 -0.68 ±0.37 1.6 (1.2-2.1)
12.58 ±0.55 13.09 ±0.14 -0.51 ±0.57 -0.55 ±0.57 1.5 (1.0-2.2)

B

Untreated WT 13.43 ±0.60 12.99 ± 0.23 0.44 ±0.64 0 ±0.64 1(0.6-1.6)
WT with H20 2  13.36 ± 0.20 13.12 ± 0.26 0.23 ±0.33 -0.21 ±0.33 1.2 (0.9-1.5)
Untreated trm4A 13.24 ±0.38 13.27 ± 0.24 -0.02 ±0.45 -0.46±0.45 1.4 (1.0-1.9)
Trm4A with H20 2  12.76 ± 0.17 13.09 ± 0.14 -0.33 ± 0.22 -0.77 ±0.14 17 (1.4-2.0)

C

A* T A * SD AAC* SDD
CT* SD

Untreated WT 14.20 ±0.26 12.99 ±0.23 1.21 ±0.35 0 ±0.35 1(0.8-1.3)
WT with H20 2  14.57 ± 0.67 13.12 ±0.26 1.44 ±0.72 0.24 ±0.72 0.8 (0.5-1.4)
Untreated trm4A 14.18 ±0.11 13.27 ±0.24 0.92 ±0.27 -0.29 ± 0.27 1.2 (1-1.5)
Trm4A with H202 14.22±0.65 13.09 ±0.14 1.13 ±0.67 -0.09 ± 0.67 1.1 (0.7-1.7)

D

Averag A A""a ACr*SD ASDSO af
Cr*SD Cr*SD relft to ACn

Untreated WT 16.65 ± 0.32 12.99 ±0.23 3.66 ± 0.40 0 ±0.40 1(0.8-1.3)
WT with H20 2  16.83 ±0.16 13.12 ±0.26 3.70 ± 0.30 0.04 0.30 1(0.8-1.2)
Untreated trm4A 16.54 ±0.15 13.27 ± 0.24 3.28 ± 0.28 -0.39 ±0.28 1.3 (1.1-1.6)
Trm4A with H2O2 16.44 ± 0.22 13.09 ±0.14 3.35 ±0.26 -0.31 ±0.26 1.2 (1.0-1.5)

Table 4-8. Relative transcript levels of ribosomal protein genes in cells under various cellular
conditions. These genes include: (A) rp/l6a; (B) rpl16b; (C) rpI22a; and (D) rpI22b. Experiments
and analyses were performed as described in Materials and Methods section.
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Discussion

Characterization of ribosomal proteins. Our goal of characterizing ribosomal proteins is

to define a sample set for testing the hypothesis that tRNA mSC-methyltransferase Trm4

regulates the selection of homologous proteins for ribosome assembly based upon the

difference in UUG codon usage frequency between the two homologues. Thus, we aimed to

identify homologous pairs with a coverage of a wide range of difference in UUG codon usage

frequency. A proteomics approach was used to serve this purpose which involves isolation of

ribosomes from cell lysate by ultracentrifugation, cleavage of proteins to peptide fragments

with trypsin, resolution of peptides with HPLC, and monitoring of these peptides by mass

spectrometric techniques. By comparing the mass of peptides determined by mass

spectrometry with the peptide mass fingerprints of proteins in S. cerevisae database, we

identified 39 ribosomal proteins reproducibly in three biological replicates (Table 4-4). These

proteins include 7 pairs of ribosomal homologues, Rpl6a and Rpl6b, Rpl7a and Rpl7b, Rp116a

and Rpll6b, Rpl22a and Rpl22b, Rpl33a and Rpl33b, Rpl36a and Rp136b, and Rps7a and Rpl7b;

the difference in UUG codon usage frequency between the two homologues of these pairs

cover the range from 0 to 0.62 (Table 4-5). The transcripts of rp/22a and rp/22b, with a value of

0.62, have the largest difference in UUG codon usage frequency among all ribosomal

homologue pairs in S. cerevisiae. These 7 pairs cover the whole range of difference in UUG

codon usage frequency and thus, are adequate to serve as the testing targets for our studies.

As the sequences of the two homologues of each ribosomal protein pair are only different

by a few amino acids, most tryptic fragments from the two proteins are identical. Thus, instead
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of including all peptides from each protein for quantification, we only selected one specific

peptide (Table 4-3) which is unique in the whole S. cerevisiae protein database. To avoid

mistakes in assigning peptides, as peptides with different amino acid sequences or different

amino acid compositions can have the same mass, each peptide was analyzed with MS-MS

studies to determine its amino aicd sequece based on b- and y-ions formed in collision-induced

dissociation (Figure 4-1).

In S. cerevisiae, each ribosome is composed by 78 proteins with 59 of them preserve two

homologues in the genome, while the homologues of 22 of these proteins are identical (these

identical proteins include RPS4A/B, RPS6A/B, RPS8A/B, RPS11A/B, RPS16A/B, RPS17A/B,

RPS18A/B, RPS23A/B, RPS24A/B, RPS30A/B, RPL2A/B, RPL1A/B, RPL12A/B, RPL18A/B, RPL20A/B,

RPL19A/B, RPL23A/B, RPL35A/B, RPL42A/B, RPL43A/B, RPL40A/B, and RPL41A/B) (21). Thus, S.

cerevisiae ribosomes potentially comprise 115 sequence-specific proteins. While we only

identified 39 of them, the detection can be improved with at least two ways. First, the

sensitivity of detection can be improved by purifying each protein before MS analysis. Carroll

and coworkers studied ribosomal proteins in Arabidopsis by resolving each protein with SDS-

PAGE gels before enzymatic digestions and LC/MS analysis (22). With this approach, they were

able to identified 87 ribosomal proteins. Second, coverage of peptides identified can be

improved by including peptides with modifications in database search. In protein identification,

we only considered peptide with no post-translational modifications. Even though no post-

translation modifications are found on the 14 peptides that we have identified, it has been

shown that a number of modifications are present in ribosomal proteins, including

phosphorylation, lysine N-methylation, N-terminal acetylation, and N-terminal methylation (22,
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23). Including these modifications in database search and validating these modified peptides

with MS-MS analyses may increase the number of proteins identified.

As a conclusion on this method, it is sufficient for understanding the correlations between

expression level of proteins with different UUG codon usage and level of m5C on tRNA.

However, the method can be improved to include a larger number of proteins for quantification.

tRNA m5C-methyltransferase Trm4 regulates the relative level of Rpl22a and Rpl22b in

ribosome. The 7 pairs of ribosomal homologues identified in proteomics analysis were used to

investigate the relationship between UUG usages and protein expression levels as a function of

activities of tRNA m5C-methyltransferase Trm4. Strobel and Abelson found that an amber

suppressor tRNA, tRNA SUPs, comprises an m5C at the wobble position, in which the lack of this

modification reduces the efficiency of suppressor activity (12). This study has demonstrated

that m5C at wobble position of tRNA can affect translation of the corresponding codon. In S.

cerevisale, m5C is located at the wobble position of a leucine tRNA for coding the codon UUG in

mRNA. Thus, the translation of UUG may be regulated by the activity of tRNA m5C-

methyltransferase.

To test this hypothesis, we quantified the relative protein levels of the 7 pairs of

ribosomal homologues in wild-type and trm4-deleted strains of cells. These homologous pairs

are an ideal system for testing the hypothesis because amino acid sequences between the two

homologues in each pair are very similar but the UUG usage frequency varies from 0 to 0.62. As

shown in Table 4-6 and 4-7, the relative level of RPL22A/B and RPL16A/B are affected, in which

the absence of trm4 led to decreases in protein levels of the genes with high usage of UUG
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relative to that of their homologous gene with low usage of UUG in both cases. Differences in

the usage frequency of UUG and in the number of UUG between rp/22a and rp/22b are 0.62

and 4 respectively; the relative protein level of RPL22A decreased 1.5-fold in trm4A mutant (p <

0.01 from Student's t-test). Those between rp/l6a and rp/l6b are 0.32 (UUG usage frequency)

and 5 (number of UUG) and the relative level of RRPL16B decreased only 1.1-fold in the

absence of Trm4 (p < 0.05). For rp/36a and rpI36b, while the difference in UUG frequency is

0.33, the difference in number of UUG is only 2, the lack of Trm4 did not affect the relative

protein expression level of this homologous pair. These observations suggest that the activity

of Trm4 affect the protein expression levels based upon both the UUG codon usage frequency

and the number of UUG codon.

Changes in the relative protein. level between Rpl22a and Rpl22b in response to

hydrogen peroxide. As described in Chapter 3, level of m5C in S. cerevisiae tRNA increases after

exposing to hydrogen peroxide and Trm4 confers resistance to this toxic agent which indicates

that m C and Trm4 are important for stress responses. To investigate the cellular response

pathways that Trm4 is involved, we compared the relative levels of ribosomal homologous pairs

in H20 2-exposed and unexposed cells. For the proteins Rp122a and Rpl22b in wild-type cells,

relative level of homologue with high usage of UUG in H202-exposed cells increases 1.3 folds

compared to that in unexposed cells. However, exposure of H202 to trm4A mutant does not

cause any statistically significant changes in the relative expression level of this pair of

homologues. Similarly, the relative level of Rpl16a and Rpl16b increases 1.1 folds in wild-type
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cells exposed to H202 but that in trm4A mutant does not change after the same treatment.

These results suggest that Trm4 is involved in regulating the composition of ribosome.

Rpl22a and Rpl22b may perform different biological roles. The changes in ribosome

composition in response to hydrogen peroxide exposure led us to the question that whether

these changes contribute to improvement in survival rate under the stressful condition. We

assessed the sensitivity of S. cerevisiae mutants with rpl16aA, rpl16bA, rpl22aA, or rpI22bA to

hydrogen peroxide relative to wild-type strain of cells and determined that only Rpl22a confers

resistance to H202 within these four genes. Prior studies have suggested that ribosomal

homologue-specific defects are simply due to differences between expression levels of the two

homologues (24-28). Indeed, based on the CT values from RT-qPCR (Table 4-7) and MS signal

intensities (Table 4-6), expression of Rp122a was significantly higher than that of Rpl22b in both

transcription level and translation level. However, Komili and coworkers have illustrated that

translation of ASH1 requires a specific subset of ribosomal homologues, which suggests that

ribosome composed by different homologues are specialized for differential cellular functions

(18). Applying this model to our case, ribosome with Rpl22a may responsible for the translation

of genes that are important for responding to H20 2.

Correlations between H202-sensitivity of trm4A and rpI22aA strains. In chapter 3, we

have observed that H20 2 cytotoxicity increased in cells lacking Trm4. As described above, the

lack of Trm4 leads to a decrease in the relative level of ribosomal protein Rpl22a to Rpl22b, in

which Rpl22a also confers resistance to hydrogen peroxide. The ribosomal protein expression
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level pattern in trm4 knockout and the role of Rpl22a can then be correlated to the fact that

Trm4 also confers resistance to H20 2 toxicity. However, this may not be the only related

pathway that Trm4 is involved. As illustrated in Table 4-1, genes encoding many ribosomal

proteins and metabolic enzymes are also enriched in UUG which may also participate in critical

processes for stress responses.

tRNA modifying enzymes as components of translational regulation pathways. Our data

is consistent with a model in which Trm4 modulates the translation of UUG by catalyzing the

formation of m5C at wobble position of the tRNA for coding UUG and this leads to selection in

protein expression between UUG-enriched genes and UUG-depleted genes. In 66 species of S.

cerevisiae tRNA that were completely sequenced, 28 of them have modifications in the

anticodon region, including Y, Gm, Cm, I, m5C, ncm 5 U, ncm 5 Um, mcm 5U, and mcm's 2U (11), and

these modifications have high potential to be utilized in regulating translation of genes

enriched in different codons. Indeed, as described above, Trm9, which is responsible for the

formation of mcm 5 U, modulates the translation of a group of AGA-enriched genes (3).

Our studies have specifically demonstrated that the relative level of two ribosomal

homologues is modulated by Trm4 to improve survivability during H202 exposure. This level of

regulation may be extendable to other homologous protein pairs. Kellis and coworkers

proposed that whole genome duplication occurred in an ancestor of S. cerevisiae and about

90% of these redundant copies were lost during evolution while the last 10% of duplicated

genes retained because they have evolved to serve new functions (13). Interestingly, codon

usage patterns of some duplicated genes diverged significantly; one example is the two
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pyruvate kinase genes, cdc19 and pyk2, which pyk2 is expressed preferentially during

conditions of low glycolytic flux (29). In cdc19, 32 of 35 leucines are coded by UUG (frequency

= 0.91) while in pyk2, only 15 of 45 leucines are coded by UUG (frequency = 0.33). Thus, Trm4

may also involve in translational regulation of these two genes.

In conclusion, our studies support the hypothesis that Trm4 is involved in translational

regulation by selectively affecting translation of genes enriched in UUG. As a specific example,

we demonstrated that Trm4 promotes the relative level of Rpl22a comparing to it homologue

Rpl22b in response to H202-exposure, for which Rp122a confers resistance to H20 2. Similar

pathways may be applied generally to genes with high usage of UUG, which provide a new level

of regulation in gene expression.
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Chapter 5

Spectrum of tRNA modifications as a source of biomarkers
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Abstract

In previous studies, we observed unique patterns in the spectrum of tRNA modifications

from cells exposed to mechanistically distinct toxicants, which lead us to hypothesize that the

spectrum can serve as index of cellular conditions. To test this hypothesis, we characterized

changes in the spectrum from cells exposed to four oxidizing agents, hydrogen peroxide, tert-

butyl hydroperoxide, peroxynitrite, and gamma-radiation, and five alkylating agents, methyl

methanesulfonate, ethyl methanesulfonate, isopropyl methanesulfonate, N-methyl-N'-nitro-N-

nitrosoguanidine, and N-nitroso-N-methylurea. Multivariate statistical analysis on these data

indicates class-specific features for both oxidizing agents and alkylating agents, involving 14

modifications, Am, m 2G, mcm5U, mcm5s2U, m3C, m G, yW, Gm, m C, ncmsU, m22G, i6A, and Cm.

These features were used to develop a data-driven model that can accurately predict the class

of toxic agents. These results demonstrate that spectrum of tRNA modifications is a potential

source of biomarkers, which may be abe to provide a new level of information for development

of diagnostic and prognostic tools.

Introduction

Each organism is a complex biological system that comprises proteins, DNA, RNA, lipids,

and various types of metabolites. In such complex systems, the expressions of all components

are correlated and so, small deviations in physiological conditions may lead to significant

changes in different parts of the system and vice versa, changes in a specific set of biological,
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biochemical, or chemical features or characteristics can be used as index of health, disease, or

response to a therapeutic intervention. Indeed, with advances in DNA sequencing, microarray

technologies, mass spectrometry and many other quantitative techniques in recent years, many

biomarker signatures of exposures and diseases were determined. For instance, C-reactive

protein is identified as a biomarker of health risk and inflammation, as this protein increases

several orders of magnitude during states of systemic inflammation and is directly and

positively correlated with the risk of cardiovascular diseases (1-3). Another well-studied

biomarker is a DNA adduct, aflatoxin-B1-N7-guanine, which is used to indicate food poisoning

as it is found in urine from patients ingested the fungal toxin, aflatoxin (4, 5). In the systems

level, signature patterns for exposure to toxicants and for disease states were discovered in

profiles of transcripts, proteins, and metabolites (6, 7).

tRNA secondary modifications are also a part of complex biological systems. Using S.

cerevisiae for illustration, there are more than 50 genes encoding tRNA modifying enzymes, 280

genes encoding tRNA, and at least 25 tRNA modifications (8, 9). A combination of changes from

so many factors can potentially serve as highly specific biomarkers with a large dynamic range.

In chapter 3, we have shown that the spectrum of tRNA modifications changes specifically

when cells are exposed to 4 mechanistically distinct toxic agents, which implies that the

patterns of changes can reflect cellular conditions of the cells. Expanding along this line, in this

study we tested whether toxic agents with similar mechanisms of action can lead to common

features in the spectrum of tRNA modifications.

By using a liquid chromatography-triple quadrupole mass spectrometric method, we

characterized the changes in spectra from cells exposed to oxidizing agents and alkylating
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agents relative to spectrum of unexposed cells. Multivariate statistical analysis on the data

revealed that spectra from cells exposed to the same class of toxicants share common features

that are unique from the other class. Based upon these class-specific features, we developed a

data-driven model that can identify alkylating agent-exposed cells, oxidizing agent-exposed

cells, and unexposed cells with high accuracy.

Materials and Methods

Materials. All chemicals and reagents were of the highest purity available and were used

without further purification. Methyl methanesulfonate, ethyl methane sulfonate, N-nitroso-N-

methylurea, hydrogen peroxide, RNase A, alkaline phosphatase, and tert-butyl hydroperoxide

were purchased from Sigma Chemical Co. (St. Louis, MO). Isopropyl methanesulfonate was

purchased from Pfaltz & Bauer, Inc. (Waterbury, CT). N-methyl-N'-nitro-N-nitrosoguanidine

was purchased from TCI America (Portland, OR). Sodium peroxynitrite was purchased from

Cayman Chemical Co. (Ann Arbor, MI). Nuclease P1 was purchased from Roche Diagnostic Corp.

(Indianapolis, IN). Phosphodiesterase I was purchased from USB (Cleveland, OH). Yeast extract

and peptone were purchased from Biomed Diagnostics, Inc. (White City, OR). Micron YM10

filters were purchased from PALL Corp. (Port Washington, NY). HPLC-grade water and

acetonitrile were purchased from Mallinckrodt Baker (Phillipsburg, NJ). S. cerevisiae BY4741

cells were purchased from American Type Culture Collections (Manassas, VA).
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Sensitivity assay of S. cerevisiae to toxic agents. S. cerevisiae BY4741 was cultured in YPD

(yeast extract-peptone-dextrose) media with 200 pg/mL of geneticine at 30 'C with shaking at

220 rpm. Each culture was grown to mid-log phase (OD660 ~ 0.6 to 0.8) followed by exposing

to one of the following chemical in one of the dosages: hydrogen peroxide (H20 2; 0, 2, 3.5, 5, 10,

15, and 20 mM); tert-butyl hydroperoxide (TBHP; 0, 0.7, 2, 4, 7, 14, 22, 25, and 29 mM); sodium

peroxynitrite (ONOO~; 0, 0.3, 0.5, 0.8, 1.0, 1.5, and 2.0 mM); y-radiation (0, 21.3, 168, 327, 513,

and 606 G); methyl methanesulfonate (MMS; 0, 1.2, 6, 12, 24, 36, and 48 mM), ethyl

methanesulfonate (EMS; 0, 0.19, 0.29, 0.39, 0.49, and 0.58 M); isopropyl methanesulfonate

(IMS; 0, 8, 17, 33, 50, and 66 mM); N-methyl-N'-nitro-N-nitrosoguanidine (MNNG; 0, 41, 61, 82,

102, and 136 mM); and N-nitro-N-methylurea (NMU; 0, 1.3, 2.3, 3.2, and 4.2 mM). After 1 hour,

these cultures were diluted 104 folds with YPD culture media and 50 PL of the diluted culture

was plated to YPD agar plates. Survival rates of exposed cells were determined by comparing

the number of colonies formed from untreated culture with that from each exposed culture

after two days.

Exposure of S. cerevisiae. Cultures of S. cerevisiae at mid-log phase (OD660 ~0.6) was

exposed to 5 mM H202, 25 mM TBHP, 0.8 mM ONOO~, 500 G y-radiation, 24 mM MMS, 190 mM

EMS, 50 mM IMS, 82 mM MNNG, or 3.2 mM NMU for 1 h, in which each of these exposures

produced approximately 80% cytotoxicity (Figure 1). Three unexposed cultures were also

prepared to serve as control. Approximately 2 x 107 cells from each culture were then pelleted

by centrifugation. The whole set of experiments was replicated five times.
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Isolation of tRNA from S. cerevisiae. Pellets of cells were resuspended in TRIZOL reagent

with the addition of antioxidants (0.1 mM desferrioxamine and 0.1 mM butylated

hydroxytoluene) and deaminase inhibitors (5 pg/mL coformycin and 50 ig/mL

tetrahydrouridine). Cells in this solution were lyzed by mechanical disruption. The solution was

mixed with chloroform and this mixture was centrifuged to separate the aqueous phase and

the organic phase. The aqueous phase, which contained all species of RNA, was collected and

tRNA in this solution was isolated by using PureLink miRNA Isolation Kit, following

manufacturer's instructions. Approximately 6 pg of tRNA was isolated from 2 x 107 cells based

on quantification with UV-vis spectrophotometer and bioanalyzer.

Enzymatic hydrolysis of S. cerevisiae tRNA. The procedure has already been described in

Chapter 2. An amount of 6 pg of tRNA was mixed with 50 pL of a solution at pH 6.8 that

contains 30 mM of sodium acetate, 2 mM of ZnC12, 0.02 Unit/pL of nuclease P1, 0.1 Units/pL of

RNase A, 5 pg/ml coformycin, 50 mg/ml tetrahydrouridine, 0.1 mM deferoxamine mesylate,

and 0.1 mM butylated hydroxytoluene. Also, 6 pmol of ['5N]5-labeled 2'-deoxyadenosine

([15 N]5-dA) was added to serve as internal standard. The solution was incubated at 37 *C for 3

hours before adding an additional 50 ptL of solution at pH 7.8 with 30 mM sodium acetate, 0.2

Units/pL of alkaline phosphatase, and 0.01 Units/lpL of phosphodiesterase 1. This mixture was

incubated at 37 0C overnight to ensure reactions were completed. Proteins were removed from

the nucleosides with a Microcon YM-10 filter.
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Method to quantify spectrum of S. cerevisiae tRNA modifications with LC/QQQ. An

amount of 0.4 ptg of ribnucleosides were resolved with a Thermo Scientific Hypersil GOLD aQ

reverse-phase column (150x2.1 mm, 3 pam particle size) eluted with the following gradient of

acetonitrile in 8 mM ammonium acetate at a flow rate of 0.3 mL/min and 360C: 0-18 min, 0%;

18-23 min, 0-1%; 23-28 min, 1-6%; 28-30 min, 6%; 30-40 min, 6-100%; 40-50 min, 100%. The

HPLC column was coupled to an Agilent 6410 Triple Quadrupole LC/MS mass spectrometer with

an electrospray ionization source where it was operated in positive ion mode with the following

parameters for voltages and source gas: gas temperature, 350*C; gas flow, 10 L/min; nebulizer,

20 psi; and capillary voltage, 3500 V. The first and third quadrupoles (Q1 and Q3) were fixed to

unit resolution and the modifications were quantified by pre-determined molecular transitions.

Q1 was set to transmit the parent ribonucleoside ions and Q3 was set to monitor the

deglycosylated product ions, except for Y for which the stable C-C glycosidic bond led to

fragmentation of the ribose ring; we used the m/z 125 ion for quantification. The dwell time for

each ribonucleoside was 200 ms. The retention time, m/z of the transmitted parent ion, m/z of

the monitored product ion, fragmentor voltage, and collision energy of each modified

nucleoside and i5 N-labeled internal standard are as follow: D, 2.2 min, m/z 2474115, 80 V, 5 V;

Y, 2.3 min, m/z 2454125, 80 V, 10 V; m5C, 5.4 min, m/z 2584126, 80 V, 8 V; Cm, 6.4 min, m/z

2584112, 80 V, 8 V; m5U, 7.9 min, m/z 2594127, 90 V, 7 V; ncm5 U, 8.7 min, m/z 302-4170, 90

V, 7 V; ac4 C, 19.7 min, m/z 2864154, 80 V, 6 V; m3C, 5.0 min, m/z 2584126, 80 V, 8 V; Um,

10.7 min, m/z 2594 113, 90 V, 7 V; m7G, 8.5 min, m/z 2984166, 90 V, 10 V; m'A, 6.9 min, m/z

282+150, 100 V, 16 V; mcm 5U, 15.5 min, m/z 3174185, 90 V, 7 V; m'l, 16.9 min, m/z 2834151,

80 V, 10 V; Gm, 18.2 min, m/z 2984152, 80 V, 7 V; m'G, 18.8 min, m/z 2984166, 90 V, 10 V;
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m2G, 22.2 min, m/z 298->166, 90 V, 10 V; I, 7.8 min, m/z 2694137, 80 V, 10 V; mcm5s2 U, 31.3

min, m/z 3334201, 90 V, 7 V; ['5N]s-dA, 31.0 min, m/z 2574141, 90 V, 10 V; m2G, 31.7 min,

m/z 3124180, 100 V, 8 V; t A, 32.8 min, m/z 413->281, 100 V, 8 V; Am, 33.1 min, m/z 282->136,

100 V, 15 V; yW, 37.1 min, m/z 509+377, 120 V, 10 V, and i6A, 37.9 min, m/z 3364204, 120 V,

17 V. The mass spectrometer monitored ions with the molecular transitions of D, Y, m3C and

m5C from 1 to 4.4 min; molecular transitions of mcmsU, ncm5U, m7G, m I, m'A, I, m5U, m3C,

msC, and Cm from 4.4 to 6.5 min; molecular transitions of mcm 5U, ncm5 U, m1G, Gm, ac4C, m' I,

m1A, I, m5U, Um m5C, and Cm from 6.5 to 9 min; molecular transitions of mcm 5U, ncm 5 U, m2G,

Gm, ac4C, m I, m1A, I, m5U, Um, and [15N1s-dA from 9 to 13 min; molecular transitions of t6A,

mcm s 2U, mcm U, m 2G, m 2G, Gm, ac 4C, m I, Am, m U, Um, and [15 N]s-dA from 13 to 24 min.

The signals from each modified nucleoside were normalized with the signals from [15 N]5-dA for

the purpose of comparison between samples.

Hierarchical clustering analysis. To eliminate batch-to-batch variations between the five

sets of replicates, the MS signal intensity of each ribonucleoside in each sample was divided by

the averaged MS signal intensity of the same nucleoside in three controls (unexposed cells) in

the same batch. This ratio is considered as the fold-change in the level of modification in

response to the exposure. These fold-change data were transformed to log 2 ratios before being

used to perform hierarchical clustering analysis with the centroid linkage algorithm in the

software Cluster 3.0, based on the distance between each dataset measured using the Pearson

correlation, with heat map representations produced using Java Treeview.
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Classification of toxic agents associated with tRNA modifications. All data from five

batches are combined together with exposure labels. There were three classes of exposures: CT

(unexposed), AA (alkylating agent-exposed) and OX (oxidizing agent-exposed). K-nearest

neighbor (KNN) classification method was used to establish the classification model; from each

class of exposures, changes of each ribonucleoside were compared to those in the other classes

by using multiple t-test with bonferroni correction and those with p values < 0.01 were assigned

as unique features of that exposure group. All these unique features were set as parameters to

construct a data-driven model by using the programming software R, in which all data were

randomly assigned into 2 groups; one group was used as a training set to build the model and

the other group was used as a testing set to evaluate the prediction accuracy of this model. For

this evaluation, the confusion matrix method was used to determine prediction sensitivity and

prediction specificity with one of these matrices shown in Table 5-1 for illustration. These

experiments were performed in collaboration with Dr. Fugen Li.

Predicted classes
AA CT OX Total

actual AA 8 0 0 8

classes CT 0 6 1 7
OX 2 0 7 9

Total 10 6 8 24

Table 5-1. Confusion matrix for evaluation of prediction accuracy. Our model is to predict the
classes of samples: alkylating agent-exposed (AA), unexposed (CT), and oxidizing agent-exposed
(OX). In this matrix, each column represents a predicted class and each row represents an
actual class. This exercise used 8 samples of AA, 7 samples of CT, and 9 samples of OX, as
shown on the last column and the number of samples predicted as each of the classes is shown
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on the last row. For AA, all 8 samples in this actual class were predicted correctly and thus the
prediction sensitivity was 100% (8 out of 8). However, two other samples actually from OX
were also classified into the AA predicted class and so, the prediction specificity was only 80%
(8 out of 10). Similarly, for CT, prediction sensitivity was 86% (6 out of 7) and prediction
specificity was 100% (6 out of 6), and for OX, prediction sensitivity was 78% (7 out of 9) and
prediction specificity was 86% (7 out of 8). The exercise was repeated 20 times with randomly
selected samples.

Results

Cytotoxicity dose-response studies of S. cerevisiae to various toxic agents. The dosage

of toxic agents may affect which cellular response pathways to be activated. We thus decided

to expose cells to nine toxic agents in which each with a dosage that causes a cytotoxicity of

80%. These nine toxic agents includes five alkylating agents: methyl methanesulfonate (MMS),

ethyl methanesulfonate (EMS), isopropyl methanesulfonate (IMS), N-methyl-N'-nitro-N-

nitrosoguanidine (MNNG), and N-nitro-N-methylurea (NMU), and four oxidizing agents:

hydrogen peroxide (H202), tert-butyl hydroperoxide (TBHP), gamma-radiation (y-radiation), and

sodium peroxynitrite (ONOO~). To determine the LD80 of these reagents, we assessed the

sensitivity of cells to a serial concentration of each of the reagents. As shown in Figure 5-1, the

survival rates of S. cerevisiae to different dosages of these nine reagents were determined and

based upon these results, we exposed cells to 5 mM H202, 25 mM TBHP, 0.8 mM ONOO~, 510 G

y-radiation, 24 mM MMS, 190 mM EMS, 50 mM IMS, 82 mM MNNG, and 3 mM NMU.
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Figure 5-1. Cytotoxicity dose-response studies with S. cerevisiae exposed to H202, TBHP, ONOO~,
y-radiation, MMS, EMS, IMS, MNNG, and NMU. Data represents mean ± SD for three biological
replicates.

Characterization of changes in the spectrum of tRNA modifications in response to

different toxic agents. With the exposure conditions determined, a liquid chromatography-

triple quadrupole mass spectrometric (LC/QQQ) method was used to relatively quantify the
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spectrum of 23 tRNA modifications from cells exposed to each of the toxic agent. Identification

of modified nucleosides and validation of this LC/QQQ method was described in Chapter 2. The

method was used to characterize nine samples from cells exposed to different toxic agents (5

mM H202, 25 mM TBHP, 0.8 mM ONOO, 510 G y-radiation, 24 mM MMS, 190 mM EMS, 50 mM

IMS, 82 mM MNNG, and 3 mM NMU) and three samples from unexposed cells (a total of 12

samples). From the three samples of unexposed cells, mass spectrometric signal intensities of

each modification were averaged and this average was used as the basal level to determine the

fold-change of modification levels in each of the 12 samples. This set of experiments was

replicated 5 times to increase statistical power for distinguishing differences between spectra

(Table 5-2) and the results reveal that in overall, about 40% of modified nucleosides changed

statistically significantly (p values are less than 0.05 in Student's t-test) in response to these

nine toxic agents. The mean values of data points from these 5 sets of data and the nucleosides

with significant changes are shown in Table 5-3.
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Set 1

Nucleosides Ctril_1 Ctrl1_2 Ctrl1_3 EMS1 y-rad_1 H2 02.1 IMS_1 MMS_1 MNNG_1 NMU_1 ONOO_1 TBHP 1

D 1.023 1.003 0.973 1.298 1.098 1.048 1.103 0.996 1.030 1.071 1.073 1.092
Y 1.011 1.001 0.988 1.225 1.092 1.035 1.079 0.972 1.024 1.054 1.085 1.082

ncm'U 1.034 1.055 0.911 1.354 1.557 1.412 1.018 0.927 1.075 0.987 1.365 1.481

1 1.042 0.942 1.015 0.842 1.018 0.965 1.091 0.985 1.012 1.074 1.002 1.022

msU 1.054 0.959 0.988 1.158 1.043 1.007 1.078 0.989 1.029 1.028 1.040 1.032
Gm 0.964 1.000 1.036 0.803 1.031 1.009 1.556 1.136 1.285 1.120 1.026 1.055
Um 1.012 0.977 1.011 1.278 1.025 0.891 1.262 0.977 1.104 1.188 1.604 1.257

m'C 1.034 0.971 0.995 1.112 1.243 1.282 1.094 1.021 1.045 1.055 1.313 1.294

m3C 1.019 1.004 0.976 1.703 1.105 1.043 1.190 1.515 1.088 1.157 1.074 1.083

Cm 1.028 0.950 1.022 0.828 1.048 1.207 1.099 0.993 0.996 1.063 1.073 1.319

mcm5U 1.026 0.968 1.006 1.125 1.068 1.083 1.158 1.052 1.074 1.164 1.043 1.128

m1G 0.974 1.008 1.018 0.853 1.059 1.020 1.095 1.074 0.969 1.040 1.041 1.075

m2G 0.962 0.992 1.046 0.718 1.035 1.012 1.183 1.098 1.074 1.159 0.994 1.044

ac4C 1.022 0.991 0.988 1.312 1.085 1.024 1.061 0.956 0.973 0.969 1.113 1.086

t'A 0.970 1.016 1.014 0.929 1.044 1.171 1.164 1.056 1.075 1.138 1.000 1.064

mcm's 2U 1.008 1.005 0.987 1.053 1.045 1.043 1.054 1.031 1.051 1.043 1.014 1.094

mG 1.065 0.985 0.949 1.214 1.105 1.034 1.098 1.433 0.900 1.289 1.106 1.087

mil 0.958 1.003 1.039 0.670 1.065 0.791 0.988 0.902 0.838 0.882 1.027 1.075
Am 1.008 0.991 1.001 0.989 1.063 0.972 1.666 0.982 1.526 1.604 1.619 1.065

m2
2G 0.961 1.003 1.035 0.708 1.349 1.440 1.159 1.005 1.047 1.126 0.997 1.042

16A 1.044 0.991 0.966 1.429 1.125 1.059 1.122 1.012 1.010 1.053 1.130 1.145

yW 1.456 0.712 0.832 1.005 0.743 0.715 1.313 0.612 1.429 1.244 1.624 0.720

m1A 1.013 1.007 0.979 1.106 1.086 1.046 1.103 1.002 0.998 1.072 1.071 1.082

Set 2

Nudeosides Ctrl2_1 Ctrl2_2 Ctrl2_3 EMS_ y-rad_2 H202_2 IMS_2 MMS_2 MNNG_2 NMU_2 ONOO_2 TBHP_2

D 1.016 1.065 0.918 1.065 1.128 1.093 1.249 1.131 1.023 1.031 1.016 1.011
Y 1.098 1.006 0.895 0.941 1.074 1.082 1.133 1.083 0.953 0.953 1.063 0.987

ncm5U 0.982 0.897 1.121 0.765 1.071 1.274 0.990 0.949 0.836 1.057 1.250 1.112

1 1.111 0.972 0.917 0.994 1.034 1.002 1.186 1.052 0.899 0.947 1.006 0.932

m5U 1.089 0.997 0.914 1.049 1.129 1.072 1.241 1.097 0.995 1.041 1.052 1.099

Gm 0.945 1.063 0.992 1.184 1.037 1.062 1.768 1.149 1.250 1.029 0.922 0.981
Um 1.089 0.988 0.924 0.814 0.704 1.129 0.985 0.823 0.868 0.997 1.142 0.834

m5C 1.029 1.033 0.937 0.933 1.319 1.366 1.121 0.958 0.870 0.942 1.226 1.224

m3 C 0.993 1.052 0.954 1.608 1.028 1.056 1.375 1.763 1.141 1.194 0.962 1.015
Cm 1.052 1.028 0.920 0.915 1.015 1.218 1.182 1.027 0.850 0.894 0.910 1.227

mcmSU 0.969 1.051 0.979 1.207 1.113 1.043 0.986 1.103 0.973 1.320 0.985 0.960

miG 0.971 1.079 0.950 1.045 1.084 1.067 1.206 1.092 0.958 0.995 0.972 1.014

m2G 0.960 1.063 0.977 1.081 1.085 1.070 1.347 1.211 1.063 1.107 0.914 1.017

ac4C 1.013 1.050 0.936 1.000 1.068 1.040 1.160 1.059 0.929 0.988 0.984 0.979

t'A 0.996 1.036 0.968 1.132 1.040 1.910 1.296 1.215 1.001 1.129 0.955 1.031

mcm5s2U 0.986 1.079 0.935 1.102 1.005 1.448 1.701 1.259 0.946 1.053 1.175 1.166

m7G 1.004 1.050 0.946 1.487 1.073 1.076 1.285 1.802 0.999 1.461 0.979 1.021

mil 0.958 1.151 0.891 0.787 0.988 0.676 0.949 1.022 0.717 0.934 0.916 0.827

Am 0.934 1.076 0.990 1.056 1.045 1.036 1.526 1.157 1.618 1.611 1.530 0.980

m2
2G 0.960 1.052 0.988 1.114 1.581 1.757 1.294 1.157 1.044 1.085 0.948 1.035

16A 0.914 1.104 0.982 1.157 1.067 1.250 1.349 1.151 1.036 1.155 1.008 1.029

yW 1.037 0.988 0.975 0.802 1.026 1.170 0.738 0.378 0.627 0.674 1.214 0.929

m1A 0.984 1.084 0.931 1.084 1.096 1.092 1.318 1.163 1.010 1.070 0.986 1.022
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Set 3

Nucleosides Ctrl3_1 Ctrl3_2 Ctr3_3 EMS_3 y-rad_3 H202_3 IMS_3 MMS_3 MNNG_3 NMU_3 ONOO_3 TBHP_3
D 1.069 0.975 0.956 1.026 0.898 0.963 1.084 0.998 1.072 1.040 0.841 0.875
Y 1.084 0.943 0.974 1.044 0.892 0.930 1.069 0.976 1.134 1.012 0.888 0.880

ncm5U 0.982 1.112 0.905 1.165 1.086 0.951 1.095 1.014 1.118 1.138 0.817 1.035
1 1.062 0.940 0.998 0.989 0.877 0.971 0.996 0.925 1.034 0.941 0.885 0.802

m5U 0.989 1.015 0.996 1.007 0.935 0.976 1.154 1.058 1.125 0.999 0.994 0.994
Gm 0.965 1.043 0.991 1.268 0.991 0.994 1.681 0.950 1.307 1.039 0.955 0.960
Um 1.085 0.816 1.100 0.675 1.494 0.642 1.288 0.812 1.110 1.114 1.524 1.097
m5C 0.982 1.029 0.989 1.069 1.257 1.310 1.095 1.064 1.122 1.038 1.268 1.229

m3C 0.962 1.041 0.997 1.752 0.970 0.984 1.300 1.493 1.218 1.142 0.948 0.963
Cm 1.011 0.986 1.003 0.967 0.933 1.103 1.009 0.923 0.992 0.944 0.883 1.138

mcm5 U 0.798 1.164 1.038 1.529 1.211 1.348 1.408 1.284 1.480 1.241 1.188 1.247

m1G 1.000 1.028 0.972 0.988 0.957 0.952 1.033 0.962 1.045 0.972 0.874 0.908

m2G 1.001 1.011 0.988 1.179 0.992 0.991 1.176 1.064 1.209 1.141 0.961 0.974

ac4C 1.069 1.025 0.906 1.066 0.961 0.946 1.071 0.970 1.043 1.016 1.016 0.888

t'A 0.956 1.029 1.015 1.180 0.998 1.586 1.165 1.115 1.164 1.113 1.022 0.990

mcm5s2U 0.840 1.059 1.100 1.267 1.209 1.341 1.392 1.462 1.550 1.065 1.249 1.155
m'G 1.006 1.011 0.983 1.454 0.909 0.940 1.116 1.812 1.190 1.505 0.872 0.893
m11 1.103 0.972 0.925 0.885 0.861 0.813 0.764 0.679 0.852 0.777 0.879 0.669
Am 0.992 1.025 0.983 1.103 0.995 0.991 1.640 1.005 1.725 1.663 1.396 0.956

m2

2G 0.976 1.044 0.980 1.143 1.445 1.449 1.168 1.061 1.162 1.066 0.987 0.991
16A 0.957 1.061 0.981 1.258 1.339 1.181 1.291 1.091 1.092 1.042 1.172 1.117
yW 1.103 1.002 0.894 0.506 0.977 0.912 0.558 0.512 0.631 0.588 0.829 0.772
mIA 0.999 1.035 0.967 1.113 1.003 0.995 1.140 1.051 1.217 1.092 0.997 0.950

Set 4

Nucleosides Ctrl4_1 Ctrl4_2 Ctr43 EMS_4 y-rad4 H202-4 IMS_4 MMS-4 MNNG_4 NMU_4 ONOO_4 TBHP_4
D 0.976 1.011 1.013 1.092 1.038 1.176 1.230 1.104 1.074 1.095 1.056 1.165
Y 0.973 1.016 1.011 1.117 1.033 1.273 1.259 1.063 1.097 1.084 1.089 1.166

ncm5U 1.050 0.995 0.954 1.032 1.042 1.440 1.100 0.898 0.939 1.128 1.187 1.198
1 0.995 1.055 0.950 1.176 1.098 1.267 1.197 1.085 1.051 1.187 1.145 1.223

m5U 0.686 1.362 0.952 0.918 0.732 0.891 1.036 0.976 1.052 1.124 1.474 0.909
Gm 0.993 1.008 0.999 1.237 1.036 1.069 1.519 1.072 1.264 1.121 1.047 1.091
Um 0.960 1.032 1.007 1.190 1.106 0.958 1.290 1.052 1.265 1.275 1.572 1.412
m5C 0.984 0.998 1.017 1.101 1.169 1.614 1.172 1.031 1.074 1.206 1.360 1.391
m3C 0.948 1.027 1.025 1.546 0.993 1.002 1.252 1.657 1.188 1.223 0.995 1.071
Cm 0.959 0.982 1.059 1.043 0.954 1.386 1.137 1.028 1.099 1.164 1.082 1.384

mcmsU 0.914 1.034 1.052 1.204 1.093 1.061 1.224 1.217 1.132 1.200 1.039 1.130
m G 0.979 1.006 1.015 1.029 1.085 1.127 1.059 1.006 1.023 1.062 1.058 1.158

m2G 0.990 1.012 0.998 1.080 1.048 1.141 1.167 1.046 1.086 1.138 1.063 1.114

ac4C 0.972 1.015 1.013 1.072 1.044 1.351 1.133 0.985 1.026 1.184 1.163 1.166

t'A 1.395 0.845 0.760 0.803 0.936 1.377 0.819 0.814 0.933 0.819 0.952 0.682

mcm s2U 0.954 1.027 1.020 1.014 0.959 0.822 1.023 0.999 1.085 1.208 0.878 0.825
m7G 0.896 1.027 1.077 1.454 0.888 1.084 1.189 1.720 1.141 1.635 0.987 1.082

m11 0.967 1.003 1.030 0.935 1.022 0.775 0.951 0.955 0.913 0.911 0.982 0.926
Am 1.095 0.979 0.926 0.977 1.017 0.941 1.380 0.992 1.640 1.550 1.612 0.926
m2

2G 1.143 0.957 0.900 0.977 1.364 1.516 1.019 0.924 1.012 1.009 1.117 0.925
16A 1.442 0.794 0.765 0.870 1.024 1.601 0.914 0.720 0.784 0.991 1.544 1.205
yW 1.056 1.038 0.906 0.764 1.103 1.268 0.622 0.644 0.604 0.599 1.158 1.088
m1A 0.968 1.022 1.009 1.119 1.040 1.053 1.174 1.116 1.078 1.156 1.011 1.090
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Set 5

Nucleosides Ctrl5_1 CtrlS_2 Ctrl5_3 EMS_5 y-rad_5 H202.5 IMS_5 MMSS MNNG 5 NMU_5 ONOOS TBHP_5

D 1.156 0.948 0.896 0.994 0.946 1.065 1.077 0.945 0.929 0.950 1.008 1.008
Y 1.171 0.939 0.890 1.005 0.993 1.160 1.071 0.938 0.938 0.938 1.084 1.090

ncm5U 0.992 0.995 1.013 1.018 1.056 1.377 1.109 0.947 1.050 1.138 1.178 1.089

1 1.248 0.885 0.868 0.977 0.979 1.200 1.078 0.897 1.028 1.049 1.159 1.094

m5U 1.016 0.976 1.008 1.487 0.968 1.148 1.144 1.044 1.044 1.095 0.975 1.056

Gm 1.102 0.953 0.945 1.108 0.960 0.969 1.415 0.968 1.153 0.987 0.952 0.962
UM 0.868 0.998 1.134 1.083 0.945 0.902 1.377 1.020 1.264 1.197 0.682 1.196

m5C 1.117 0.934 0.948 1.028 1.081 1.474 1.098 0.935 0.997 1.072 1.278 1.229

m3C 1.115 0.946 0.939 1.358 0.956 1.025 1.118 1.482 1.009 1.046 0.954 0.926

Cm 1.080 0.956 0.964 0.980 0.966 1.230 1.049 0.949 0.969 1.004 0.999 1.248

mcmsU 0.912 1.011 1.077 1.057 0.927 0.970 1.152 1.130 1.221 1.107 0.857 0.932

mIG 1.085 0.963 0.952 0.927 0.993 1.044 0.963 0.901 0.881 0.901 0.989 0.999

m2G 1.089 0.955 0.957 1.017 0.974 1.030 1.079 0.989 1.023 1.036 0.968 0.992

ac'C 1.092 0.955 0.953 0.912 0.941 0.895 0.985 0.937 0.926 0.922 0.920 0.941

t'A 1.101 0.944 0.955 0.811 0.982 0.827 0.814 0.823 0.789 0.777 0.944 0.879

mcm 5s2U 0.526 1.167 1.306 1.234 0.929 0.748 1.245 1.112 1.406 1.309 0.846 1.035

m'G 1.048 0.991 0.961 1.364 0.991 1.058 1.058 1.479 0.949 1.368 0.987 1.016

m11 1.102 0.944 0.954 0.835 0.947 0.696 0.851 0.820 0.806 0.799 0.921 0.803

Am 1.034 0.978 0.989 1.004 0.977 0.961 1.451 1.002 1.638 1.593 1.557 0.959

m2

2G 0.985 0.992 1.023 1.058 1.341 1.616 1.105 1.003 1.105 1.136 1.140 1.112

16A 0.946 1.001 1.053 1.097 1.109 1.695 1.183 0.965 1.112 1.244 1.581 1.207

yW 1.102 0.932 0.965 0.662 1.046 1.121 0.598 0.629 0.590 0.586 1.057 0.995

m1A 0.894 1.071 1.035 1.005 1.075 1.016 0.986 0.978 0.996 1.035 1.021 0.965

Table 5-2. Fold-change of levels of nucleosides in 5 biological replicates. In the 5 sets of data,
each set contains 12 samples, including 3 samples from unexposed cells and 9 samples from
cells which each one was exposed to a different toxic agent. Levels of each nucleoside from the
three replicates of unexposed cells were averaged; fold-change of the nucleoside in each
sample was relative to this mean value.
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Table 5-3. Mean values of fold-change data. In the 5 biological replicates of each exposure as
shown in Table 5-1, the fold-change of abundance of each modification was averaged and then
presented in this table. The changes that are statistically significant (p < 0.05) are highlighted.

Patterns of tRNA modifications spectrum in response to toxic agents are class-specific.

Relative quantification of modified nucleosides with statistical analysis has illustrated that the

spectrum alters in response to a group of alkylating agents and of oxidizing agents. These

results provide us the information to test the hypothesis that patterns of changes in tRNA

modification spectrum share common features in cells exposed to toxic agents with similar

mechanisms of action. Our first step was to use hierarchical clustering to analyze the data in
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Oxidizing agents Alkylating agents

Nucleosides TBHP y-rad H202 ON00 MMS MNNG NMU IMS EMS
D 1.030 1.021 1.069 0.999 1.035 1.026 1.037 1.149 1.095
Y 1.041 1.017 1.096 1.042 1.007 1.029 1.008 1.122 1.066

ncm'U 1.183 1.162 1.291 1.159 0.947 1.004 1.090 1.062 1.067
I 1.015 1.001 1.081 1.039 0.989 1.005 1.039 1.110 0.996

m5U 1.018 0.961 1.019 1.107 1.033 1.049 1.057 1.131 1.124
Gm 1.010 1.011 1.021 0.981 1.055 1.252 1.059 1.588 1.120
Urn 1.159 1.055 0.905 1.305 0.937 1.122 1.154 1.240 1.008
m5c 1.273 1.214 1.409 1.289 1.002 1.021 1.063 1.116 1.049
m' c 1.012 1.010 1.022 0.987 1.582 1.129 1.152 1.247 1.593
Cm 1.263 0.983 1.229 0.989 0.984 0.981 1.014 1.095 0.947

mcm'U 1.079 1.082 1.101 1.022 1.157 1.176 1.207 1.185 1.224
m G 1.031 1.036 1.042 0.987 1.007 0.975 0.994 1.071 0.969
m2G 1.028 1.027 1.049 0.980 1.081 1.091 1.116 1.191 1.015
acc 1.012 1.020 1.051 1.039 0.981 0.979 1.016 1.082 1.072
t'A 0.929 1.000 1.374 0.975 1.005 0.992 0.995 1.051 0.971

mcm's 2U 1.055 1.029 1.080 1.032 1.173 1.208 1.135 1.283 1.134
m'G 1.020 0.993 1.038 0.986 1.649 1.036 1.452 1.149 1.395
mil 0.860 0.977 0.750 0.945 0.876 0.825 0.860 0.901 0.822
Am 0.977 1.019 0.980 1.543 1.027 1.629 1.604 1.533 1.026

ma2G 1.021 1.416 1.556 1.038 1.030 1.074 1.084 1.149 1.000
16A 1.140 1.133 1.357 1.287 0.988 1.007 1.097 1.172 1.162
yW 0.901 0.979 1.037 1.176 0.555 0.776 0.738 0.766 0.748
m1A 1.022 1.060 1.040 1.017 1.062 1.060 1.085 1.144 1.085

. .... .. ....... ... .......



Table 5-3, which the spectrum from each exposure condition is the average of 5 biological

replicates. As shown in Figure 5-2, samples from alkylating agent-exposed cells clustered into

one group and those from oxidizing agent-exposed cells clustered into another group, which

implies that the patterns of changes in the spectra caused by the same class of toxic agents are

more similar than those caused by the other class.

Ribonucleosides responsible for defining the unique patterns can be indicated from the

heat map (Figure 5-2). The relative levels of yW and m'l decreased in all alkylating agent-

exposed cells but the changes in oxidizing agent-exposed cells were not significant. Also, all

alkylating agents caused an elevation in the levels of Um, m2G, mcm5 s2U, mcm 5U, and mIA,

while these modifications responded to oxidizing agents mildly. In contrast, the levels ncm5 U,

m5C, and i6A did not change in all alkylating agent-exposed cells but they increased significantly

in response to all oxidizing agents.

Subclass signatures were also observed among the alkylating agent group. Modifications

spectra from cells exposed to MMS and EMS were clustered to form one group while IMS,

MNNG, and NMU were clustered to form another group; the formation of subgroups suggests

that the responses to different reagents of the same class may be different. Indeed, the

relative levels of m3C and m7G increased in MMS- and EMS-exposed cells but their responses to

IMS, MNNG, and NMU were weaker. Another group of subclass signatures was the rise of Um

and Am levels in cells exposed to IMS, MNNG, and NMU while the levels of these modifications

in MMS- and EMS-exposed cells did not increase.
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Figure 5-2. Hierarchical clustering analysis of averaged tRNA modifications spectra from cells
exposed to different alkylating agents and oxidizing agents. The fold-change data was
originated from the average of five biological replicates as presented in Table 5-2 and
hierarchical clustering analysis was performed in log space (log base 2). Color code of the heat
map was shown on the left-top corner.

Hierarchical clustering analysis of the averaged tRNA modification spectra from the five

data sets indicates clearly the presence of class-specific patterns of changes in responses to

toxic agents. However, when hierarchical clustering analysis was carried out with the data from

raw spectra (the five data sets in Table 5-2), signatures for the two groups of toxic agents were

less clear (Figure 5-3). In Figure 5-3, most spectra from alkylating agent-exposed cells were

grouped together with exceptions of those spectra from EMS-, IMS-, NMU-, and MNNG-

exposed cells in data set 1. For the 15 spectra from unexposed cells (3 spectra from each data

set), 13 of them were clustered into one subgroup while the other two were mixed with spectra

from oxidizing agent-exposed cells. Spectra from cells treated with oxidizing agents were

divided into two groups. One group mainly comprised ONOO~- and TBHP-exposed samples, and

this group shared more common features with the unexposed samples than with the H20 2- and

y-rad-exposed samples in the other cluster group. Further, two spectra from y-rad-exposed

cells were clustered into the unexposed group.
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Figure 5-3. Hierarchical clustering analysis of individual tRNA modifications spectra from
unexposed, alkylating agent-exposed, and oxidizing agents-exposed cells. The fold-change data
for this analysis was presented in the 5 data sets in Table 5-1. Hierarchical clustering analysis
was performed in log space (log base 2) and color code for the heat map was shown on the left-
top corner. Clusters of samples that exposed to the same class of reagents are boxed with the
following color code; oxidizing agent-exposed: yellow; alkylating agent-exposed: blue; and
unexposed: grey.

Data-driven model to describe biomarker signatures for distinguishing alkylating agent-

exposed and oxidizing agent-exposed cells. Hierarchical clustering analysis of tRNA

modifications levels in cells exposed to alkylating agents and oxidizing agents demonstrates

that the patterns of changes in the spectrum are specific to these two classes of reagents

(Figure 5-2). These results led us to ask if these changes can be used to identify biological

statuses and what changes in the spectrum are important for classifying cells from different

exposure groups. To this end, we developed a data-driven model with the K-nearest neighbor

method (KNN) to describe differences in changes in tRNA modifications spectrum as responses

to the two classes of stimuli (alkylating agents and oxidizing agents). Following 20 training and

test cycles of supervised learning by using the programming software R, a stable model has

been established. The overall confusion matrix demonstrates prediction sensitivities for the

alkylating agent-exposed group (AA) is 95%, for oxidizing agent-exposed group (OX) is 94%, and

for unexposed group (CT) is 78%, and prediction specificities for AA is 95%, OX is 76%, and CT is

98% (Figure 5-4). Based upon this model, the modified ribonucleosides that contributed in

identifying exposures to alkylating agents include m3C, m7G, yW, mcm5 U, Am, Gm, m1A, m5C,

m 2G, mcm5s2 U, and m'l, and those for identifying oxidizing agent-exposures are mSC, m 3C, m G,
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Gm, ncmsU, m22G, i A, yW, and Cm. These features match with those in the hierarchical

clustering analysis (Figure 5-2). With high prediction sensitivity and specificity for akylating

agents, this class of chemicals is significantly different from the others. The prediction

specificity of OX is relatively low (76%) due to high variation of the controls, which causes

misclassification of controls into the oxidation agent group.

A 100 B 00
90 -90
so -s

70 -70-

-I 60 0 -

50 50 -

C o 40 -

so3 - 30

20 i- 20

10 - 10

0 0

AA CT OX AA CT OX

Chemical agents Chemical agents

Figure 5-4. Prediction (A) sensitivity and (B) specificity of the data-driven model. A total of 20
training and test cycles have been performed for the combined data to determine the average
prediction sensitivity and specificity. The data driven model is stable due to low standard error
with less than 2%.
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Discussion

Experimental design for assessing changes in tRNA modifications spectrum. One of our

goals of this study is to compare the spectra of tRNA modifications from cells exposed to two

classes of toxicants, oxidizing agents and alkylating agents, in which we hypothesized that

exposures to reagents of the same class lead to common features of changes. We first isolated

tRNA from cell lysates and quantified tRNA in each samples. An isotope-labeled nucleoside was

added in proportion to the quantity of tRNA and the samples were hydrolyzed enzymatically to

nucleosides. In each sample, the spectrum of modified ribonucleosides was monitored with a

LC/MS method. The level of each modified nucleoside was normalized by MS signal intensity of

the isotopic standard. In each sample of cells, changes in tRNA modifications spectrum was

defined by the fold-change of nucleoside levels relative to that in the unexposed cells.

Hierarchical clustering analysis was then used to identify spectra with common features for

which we expected spectra from cells exposed to the same class of toxicants to cluster.

However, as shown in Figure 5-3, samples from cells with no exposures and with exposures to

oxidizing agents and alkylating agents did not distinctly characterized into three groups and

these observations suggest that the pattern of changes in each tRNA modifications spectrum

contains noises, which can be originated from measurement errors. For instance, spectra from

cells exposed to EMS, IMS, NMU, and MNNG in data set 1 were clustered into the oxidizing

agent-exposed group while all the other alkylating agent-exposed samples clustered to form

another group; these observations strongly suggests that systematic errors occurred in
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experiments for data set 1. Besides, fluctuations in levels of modifications can be caused by

deviations in environment, such as temperature, aeration, and nutrients supply.

To solve this problem, we reduced the noises in our data by replicating the experiments.

As all spectra were compared to the spectrum of unexposed cells, fluctuations in this spectrum

would affect the fold-change data of all samples. Thus, we triplicated the quantification of

tRNA modifications from unexposed cells and used the average for data analysis. Also, the

whole set of experiments was repeated with 5 biological replicates. Mean values of the 5 data

sets were analyze with hierarchical clustering to generate Figure 5-2, which have shown class-

specific signatures as responses to the two mechanistically different groups of toxic agents.

Correlations between subclass signatures and mechanisms of action among alkylating

agents. Results of hierarchical clustering analysis as shown in Figure 5-2 illustrate that patterns

of changes induced by the 5 alkylating agents were also classified into two subgroups, where

changes induced by MMS and EMS were more similar to each other and so as those by IMS,

MNNG, and NMU. For instances, the relative levels of m7G and m5C in MMS- and EMS-exposed

cells increased more significantly than in IMS-, MNNG-, and NMU-exposed cells. In contrast,

the levels of Am and Um did not change in response to MMS and EMS but they were elevated

when cells were treated with the other three alkylating agents. These results suggest that

depending on chemical properties of the alkylating agents, a unique set of cellular response

pathways was activated. It has been shown that alkylating agents can react with various

biological molecules, including proteins and DNA (10-12), in which DNA adducts caused by

these reagents were studied extensively (Table 5-4). As listed in Table 5-3, MMS and EMS can
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alkylate DNA via a SN2 mechanism while IMS, MNNG, and NMU only via SN1 - The difference in

reaction mechanisms affects the alkylation reactivity at different sites. For instance, in in vitro

reactions, less than 0.5% of DNA adducts are formed at 06 of guanine when DNA reacts with

MMS or EMS but 7.0% to 23.7% of adducts formed by IMS, MNNG or NMU are at this position

(Table 5-4). DNA adducts are generally repaired by either direct transfer of the modifying alkyl

group to a transferase, or removal of the modified base by a glycosylase, followed by excision

of the apurinic or apyrimidinic site (13). In cases that the structure of DNA helix was distorted,

nucleotide excision repair may be employed (14). Each transferase and glycosylase is

responsible for repairing a specific set of adducts. For 0 6-alkylguanines that mentioned above,

these adducts are exclusively repaired by O-alkylguanine-DNA alkyltransferase in both rat and

E. coli (13, 15-17) and a homologue of this enzyme was also found in S. cerevisiae. Thus, in

response to each alkylating agent, the translation machinery may be reprogrammed to favor

the expression of enzymes responsible for repairing the specific group of adducts, and these

changes may be reflected as subclass signatures in tRNA modifications spectrum for SN1 and

SN2 alkylating agents.

For the four oxidizing agents, we used one reactive nitrogen species (RNS), ONOO~, one

species of strong ionizing radiation, y-rad, and two reactive oxygen species (ROS), H202 and

TBHP. Potentially, reactive oxygen species and reactive nitrogen species can induce different

response pathways as they generate widely different species of adducts (18-20). Hierarchical

clustering analysis (Figure 5-2) indicates that spectrum of ONOO contains unique features from

spectra of other oxidizing agents. For instance, Am increased in ONOO-exposed cells but not in

other oxidizing agent samples. Experiments with more species of oxidants are necessary to
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define subclass signatures between ROS and RNS. Interestingly, among spectra of the other

three oxidizing agent, H202 is more similar to y-rad than to TBHP. Both H202 and y-rad generate

hydroxyl radical that leads to DNA strand breaks, and formations of abasic sites and a broad

spectrum of adducts. Thus, the cellular responses for both reagents may be very similar.

Sit of MMS EMS IMS MNNG NMU
Alkylation

Adenine
N1  3.8 1.7 -- 1.0 1.3

N3  11.3 4.9 0.4 12.0 9.0

N 7  1.8 1.9 -- -- 2.0

Cytosine
N3  <1.0 0.6 -- 2.0 0.6

Guanine
N3 0.6 0.9 -- -- 1.9

O 0.3 0.2 23.7 7.0 8.2
N7  83.0 65.0 47.4 67 70

Thymidine
02 nd nd 4.3 0.3 --

N 0.1 nd 0.4 0.3 --

04 nd nd 4.3 0.7 --

Mechanisms SN2 SN1/N2 SN1 SN1 SN1

Table 5-3. In vitro alkylation patterns of DNA by MMS, EMS, IMS, MNNG, and NMU. Adducts
formed at different sites are expressed as percent of total adducts. 'nd' indicates the adduct is
not detectable and '--' indicates information is not found. The proposed mechanism (SN1 or SN2)

for each alkylating agent is also listed at the last row of this table. Information was collected
from several studies (21-27).
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tRNA modifications spectrum as a source of biomarkers. Given that the spectra of

tRNA modifications formed class-specific patterns, we developed a data-driven model to

predict the type of stress that cells were exposed to, based upon the unique features induced

by each class of stimuli. The purposes of this exercise are to gain insight in the biological

functions of tRNA modifications in stress responses, and also, to explore the utilities of tRNA

modifications spectra as biomarkers. Based on our model, 14 tRNA modifications were

involved in defining unique patterns and they are listed in Table 5-4. As shown in this table,

some modifications are located at more than one position and at multiple species of tRNA,

which complicated the scenario as our method cannot assess their quantitative distribution.

Interestingly, 10 of these 14 model-defining modifications are found at anticodon region, which

suggests that they can be involved in interacting with codons and in recognizing aminoacyl-

tRNA synthetases (28). For instance, level of m5C increased in response to oxidizing agent and

it is located at the wobble position of the tRNA for coding the codon UUG; in Chapter 3 and 4,

we gained evidence to support our hypothesis that m5C confers resistance to H202 by regulating

translation of H202-resisting genes that are enriched in TTG. Further studies are necessary to

test if other modifications are involved in similar regulatory pathways. In contrast, some

model-defining modifications are only located at a single species of tRNA, which allow us to

study their biological roles directly by altering their biosynthetic pathways. These modifications

include, mcm U, mcms2U, m3 C, Am, yW, and mIl. The increases in relative level of mcm-U and

mcm s 2U are consistent with the results of a study by Begley and coworkers, using trm9-

knockout to demonstrate that mcm 5 U confers resistance to MMS by promoting the expression

of a specific group of DNA damage-response genes (29). For Am and m3C, the same approach
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cannot be used to study their functions as genes responsible for the formation of these two

modifications are not identified (30). Also, gene-knockout experiments cannot be used to study

yW and m'l as formation of both modifications require an essential gene, trm5. Niu and

coworkers suggested that trm5 is involved in regulation of cell cycle (31) and thus, the

decreases in both yW and m'l levels may be indicating that cells were not ready for

differentiation under stress from alkylating agents.

To validate the predictive power of our data-driven model, we used it to distinguish

spectra from cells with the three classes of exposures (alkylating agents, oxidizing agents, and

no exposure) and results showed that both sensitivity and specificity for predicting the three

classes are all above 75%. Previously, numerous studies used transcriptomes, proteomes, and

metabolomes to indicate disease-states and toxicant-exposures (6, 7, 32, 33). However, to our

awareness, this is the first time that spectrum of tRNA modifications was demonstrated to be a

potential source of biomarkers. tRNA of each organism comprises 20-30 modifications, which

combination of changes can potentially result as a wide range of patterns that can be used for

identifying subtly different physiological conditions. This is supported by the presence of

subclass signatures for SN1 and SN2 alkylating agents.

In conclusion, we employed mass spectrometric-based quantitative techniques and

computational statistical tools to demonstrate that the patterns of changes in tRNA

modifications spectrum are specific to classes of toxicants. To serve as a proof of principle, we

developed a predictive model to show that unique features from the spectra can be used as

toxicant class-specific identifier of cellular exposures. We expected that tRNA modifications in

other organisms also change dynamically as a function of cellular conditions, and this may
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provide a new level of information to develop diagnostic and prognostic biomarkers for various

diseases.

tRNA
modification
Increased in
alkylating agents
m3C
m7G
mcm 5 U
mcm 5s2 U
Am
Gm

m2G

Decreased in
alkylating agents
yW
mil

Increased in
oxidizing agents
m5C

ncm 5U
m22G
i6A
Cm

Position of modification

32 of tRNAThr(IGU)
46 of multiple tRNAs
34 of tRNA Arg(MCMSUCU)

34 of tRNAGI(mcms 2UUC)
4 of tRNAHiS(GUG)
18 of multiple tRNAs
34 of tRNAPhe(GmAA)
10 of multiple tRNAs
26 of tRNAVaI(CAC)

37 of tRNAPhe(GmAA)
37 of tRNAAla(IGC)

34 of tRNALeu(mCAA)
40 of tRNAPhe(GmAA)
48 and 49 of multiple tRNAs
34 of tRN Val(ncmsUAC)
26 of multiple tRNAs
37 of multiple tRNAs
32 of multiple tRNAs
34 of tRNATrp(CmCA)
4 of multiple tRNAs

Genes responsible for
modification

Unknown
TRM8, TRM82
TRM9, ELP1-ELP6, KTl11-KT113
TRM9, NFS1, ELP1-EPL6, KTI11-
Unknown
TRM3
TRM7
TRM11
Unknown

TRM5
TAD1, TRM5

TRM4
TRM4
TRM4
ELP1-EPL6,

TRM1

MOD5
TRM7
TRM7
Unknown

KTI11-KTI13

Table 5-4. tRNA modifications for defining class-specific patterns of changes in response to
alkylating agents and oxidizing agents. The modifications are organized into three groups,
depending on whether their levels increased or decreased in response to the two classes of
stimuli. The species of tRNA are only mentioned if the modification is only located in that single
species of tRNA. For tRNA modifying genes, 'unknown' indicates that no genes were identified
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to our awareness. Information was collected from Modomics Database (9) and Sacchromyces
Genome Database (34).
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Chapter 6

Conclusions and Future Directions
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Goals of this thesis

The purpose of studies described in this thesis is to advance our understanding on the

biological functions of tRNA secondary modifications in cellular response to toxic agents. Prior

studies have demonstrated the sensitivities of levels of tRNA modifications to metabolic stress

conditions and developmental stages and the functional roles of many modifications in

conferring resistance to specific stress (1-3). These evidences strongly suggest that tRNA

modifications are involved in cellular responses. However, the complex nature of tRNA and

function redundancy of modification has limited our knowledge on cellular functions of these

modifications.

A platform for characterizing and quantifying the spectrum of tRNA modifications.

To achieve our goals, a quantitative systems approach was used to study the spectrum of

tRNA modifications in S. cerevisiae under different stress. The first step was to characterize the

ribonucleosides from enzymatically hydrolyzed tRNAs with the following three approaches.

First, liqud chromatography-mass spectrometry (LC-MS) was used to determine the mass and

collision-induced dissocation (CID) patterns of ribonucleoside candidates with high mass

accuracy. Second, these candidates were compared to synthetic standards in retention time,

mass, and fragmentation patterns. Third, changes in abundance of tRNA modifications in

mutants lacking tRNA modifying genes were monitored to further confirm the identities of

these modified ribonucleosides. Based upon the characterization, we have developed a

sensitive and robust LC-MS/MS method to quantify 23 modified ribonucleosides. However, this

method cannot provide information on the positions of these modifications while some
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modified nucleosides are located at various locations and species of tRNA (4). As a future

direction, we can use cleavage site-specific endonucleases to generate oligonucleotide

fragments and monitor them with mass spectrometry (5). Location of modifications can then

be derived from the sequence of nucleotides.

Changes in spectrum of tRNA modifications in response to mechanistically distinct toxicants

Quantification of modified ribonucleosides from yeast tRNAs reveals agent-specific and

dose-specific patterns in the spectrum of tRNA modifications in response to exposures to

mechanistically distinct toxic agents, including hydrogen peroxide, methyl methanesulfonate,

hypochlorite, and arsenite. Specifically, the modifications Cm, m5 C, and m22G increase

following hydrogen peroxide-exposures but decrease or do not change in response to methyl

methanesulfonate, arsenite, and hypochlorite. Moreover, sensitivity to hydrogen peroxide

increases in cells lacking specific enzymes that catalyze the formation of Cm or m5C on tRNAs,

which demonstrates critical roles of tRNA modifications in cellular stress responses. The results

of our study support a general model of dynamic control of tRNA modifications in cellular

response pathways. Besides, characterizing changes in the spectrum of tRNA modifications of

cells lacking specific tRNA modifying enzymes reveal several potential biosynthetic pathways of

tRNA modifications.

Potential roles of tRNA modifications in translational regulation

As observed in quantification of tRNA modifications, m5C increases after exposure to

hydrogen peroxide and loss of tRNA m5C-methyltransferase Trm4 reduces the survivability of
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cells under this stress. It is known that m5C is found in many species of tRNA but only a leucine

tRNA translating the codon UUG comprises this modification at the wobble position. Thus, m5C

may affect the translation of UUG as previous studies have suggested that m5C at wobble

position can be involved in codon-anticodon interactions (6). S. cerevisiae contains many

duplicated genes encoding ribosomal proteins with differences between the UUG usages of

these homologues.

These observations led us to hypothesize that trm4 and m5C are involved in regulating the

expression of ribosomal protein homologues. Through studies of ribosomal protein

homologues with a quantitative proteomics approach, we demonstrate that the protein level of

a UUG-enriched gene, rpI22a, decreases in the absence of Trm4 and increases in H202-exposed

cells relative to its homologue, rp/22b. In contrast, exposing H202 to trm4A mutant does not

lead to changes in relative level of this pair of homologues. These data indicate involvements

of Trm4 in modulating expression of ribosomal proteins under stress. Moreover, only the

rp/22aA mutant is sensitive to H202 but not the rp/22bA mutant which indicates distinct

functional roles of ribosomal homologues in stress responses. Together, these results support a

model that tRNA m5C-methyltransferase Trm4 regulates translation of rp/22a to confer

resistance to specific stress.

Besides understanding the biological role of m5C, this study opens up the opportunity to

investigate the functions of ribosomal homologues in stress response with a quantitative

approach. Within 115 sequence-specific ribosomal proteins, our LC/MS method can only

monitor 39 of them. The next step is to optimize this method to cover the full spectrum of

ribosomal proteins and use it to assess changes as a function of cell states.
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Spectrum of tRNA modifications as a potential source of biomarkers of class-specific

exposures

The observations of unique signatures in spectrum of tRNA modifications for exposures to

mechanistically distinct toxicants led us to ask whether the patterns of changes are common

among stimuli with similar mechanisms of action. We characterized changes in the spectrum

from cells exposed to four oxidizing agents, hydrogen peroxide, tert-butyl hydroperoxide,

peroxynitrite, and gamma-radiation, and five alkylating agents, methyl methanesulfonate, ethyl

methanesulfonate, isopropyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, and N-

nitroso-N-methylurea. Multivariate statistical analysis on these data indicates class-specific

features for both oxidizing agents and alkylating agents, involving 14 modifications, Am, m2G,

mcm U, mcm s 2U, m 3C, m G, yW, Gm, m C, ncm U, m 2G, i A, and Cm. Further, signatures

specific to SNi and SN2 alkylating agents were observed, which suggests that the spectrum can

potentially serve as an identifier of cellular conditions with subtle differences. These features

were used to develop a data-driven model with predictive power on the class of toxic agents,

which demonstrates that the spectrum of tRNA modifications is a potential source of

biomarkers of exposures. To explore the utilities of profiles of tRNA modifications as index of

diseases and pharmaceutical exposures, this study has to be translated to models of human

cells and animals.

Overall, we demonstrate that tRNA modifications are involved in cellular response to

stress. To investigate a specific response pathway, we have shown that the modification mSC

regulates the expression of a H20 2-resistance-conferring gene based on codon usage. On the
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application side, the spectrum of tRNA modifications has potential to be used as biomarkers of

exposures. Further studies with other classes of stimuli may reveal more biological pathways

that tRNA modifications are involved.
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Appendix A

Preliminary characterization of tRNA modifications in M. bovis BCG

In October 2009 to April 2010, I worked in the Infectious Disease IRG (ID-IRG) of

Singapore-MIT Alliance in Research and Technology in Singapore to set up a new research

group and to explore the possibilities of new projects. Projects in this recently established

center have to be related to infectious diseases, which gave me unique opportunities to

experience different fields of sciences. The work I accomplished in ID-IRG is presented in this

Appendix because the studies are not directly related to the story of my thesis. However, these

experiences are also an important part of my Ph.D. education and training.
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Abstract

The observations of specific tRNA modifications conferring resistance to different

toxic stimuli suggest that the biosynthetic pathways of this family of molecules are

potential targets of antimicrobial agents. To understand the biological roles of tRNA

modifications in Mycobacterium and to explore the utility of these modifications in drug

development, we have characterized the spectrum of tRNA modifications in

Mycobacterium bovis BCG by various mass spectrometric techniques. With our methods,

26 candidates of nucleoside-like species are observed in tRNA; the structure of 12 of them

was identified while one of them, N , N-dimethyladenosine, was previously only observed

in ribosomal RNAs.

Introduction

Tuberculosis (TB) is a disease caused by Mycobacterium, such as M. tuberculosis and M.

bovis, with an estimation of about 10 millions new TB patients in 2010 (1). The high prevalence

of TB is partly due to increases in drug resistance of pathogens and lack of new medications;

the last drug with a novel mechanism of action for curing TB was discovered in 1963 (2). A

major obstacle for development of anti-mycobacterial agents is the lack of understanding on

cellular processes of Mycobacterium.

tRNA modifications in the Mycobacterium family have not been characterized

systematically. However, modified nucleosides in tRNA of many organisms have been studied
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extensively. About 20 to 30 of these modifications are present in each organism studied with a

total of more than 100 distinct structures (3). It is clear that these modifications must be of

high importance or else this complexity would not have evolved. In recent years, some

derivatives of canonical nucleosides have been demonstrated to have anti-mycobacterial

properties, including 2-methyladenosine (4, 5). It is possible that these ribonucleosides disrupt

the formation of essential RNA modifications. To modify these candidates for discoveries of

new TB drugs, advances in the understanding on modifications of RNA in Mycobacterium are

necessary. To this end, we initiate the characterization of spectrum of tRNA modifications in

Mycobacterium Bovis BCG with mass spectrometric techniques.

M. bovis BCG is used as vaccine for TB and more than 90% of its genome is identical to the

infectious M. tuberculosis (6). Thus M. bovis BCG is frequently used as a model organism to

understand TB. By using a mass spectrometry-based approach, we identified 26 candidates of

tRNA modifications; the identities of 12 of them are determined, including Y, m5C, m3C, m1A, I,

m G, Cm, m U, Gm, m 2G, t A, and m6
2A, in which m 62A was previously only observed in rRNA.

Besides providing the knowledge on Mycobacterium, the strategy we developed can also be

used as a tool for characterizing spectra of modified nucleosides in any organisms.

Materials and Methods

Materials. All chemicals and reagents were of the highest purity available and were used

without further purification. OADC solution, 7H9 culture media powder, and 7H11 agar powder

were purchased from Biomed Diagnostics (White City, OR). TRIZOL reagent and PureLink
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miRNA Isolation Kit was purchased from Invitrogen (Carlsbad, CA). 2'-O-Methyluridine (Urn),

pseudouridine (Y), N1-methyladenosine (m'A), N2,N2-dimethylguanosine (m22G), N6,N6 -

dimethyladensoine (m6
2A), and 2'-O-methylguanosine (Gm) were purchased from Berry and

Associates (Dexter, MI). N-threonylcarbamoyladenosine (t6A) was purchased from Biolog

(Bremen, Germany). N-isopentenyladenosine (i6A) was purchased from International

Laboratory LLC (San Bruno, CA). 2'-O-Methyladenosine (Am), N4-acetylcytidine (ac4C), 5-

methyluridine (m5U), inosine (1), 2-methylguanosine (m2G), N-methylguanosine (m7G), 2'-0-

methylcytidine (Cm), 3-methylcytidine (m3C), 5-methylcytidine (m5C), alkaline phosphatase,

RNase A, ammonium acetate, geneticine, bovine serum albumin, deferoxamine mesylate,

butylated hydroxytoluene, glucose, sodium chloride, nuclease P1, formic acid, and 20%

Tween80 solution were purchased from Sigma Chemical Co. (St. Louis, MO). Glycerol was

purchased from SinoChem Corp. (Beijing, China). Phosphodiesterase I was purchased from USB

(Cleveland, OH). Ambion RNA structure buffer, RNase A, RNase V1 and RNase T1 were

purchased from Ambion Inc. (Austin, TX). HPLC-grade water, acetonitrile, and chloroform were

purchased from Mallinckrodt Baker (Phillipsburg, NJ). M. bovis BCG was purchased from

American Type Culture Collections (Manassas, VA).

Culturing M. bovis BCG. M. bovis BCG cells were grown in 7H9 culture media at 37 *C in

an incubator with 5 % CO2. After the culture reached an optical density of OD600 ~0.6, at which

the concentration of cells was ~3 x107 /mL, the cells were harvested by centrifugation at

12000x g for 10 min at 4 0C. Cell pellets were snap-frozen with liquid nitrogen and stored at -80

0C.
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For glycerol stocks, the post-centrifugation cell pellet was resuspended in 1 mL of 7H9

culture media with 25% glycerol. The solution was then further diluted to a final concentration

with OD600 1 and the stocks stored at -80 *C. To determine the quantity of living cells in a

glycerol stock or a culture, the cell culture was serially diluted and 100 pL of each dilution was

plated onto a 7H11 agar plate. The plates were incubated at 37 *C with 5% CO2 and resulting

colonies were counted.

The 7H9 media were prepared by mixing 4.9 g of 7H9 powder, 10 mL of 50% glycerol, 2.5

mL of 20% TWEEN 80, 900 mL of double-deionized water, and 100 mL of ADS solution. The ADS

solution was prepared by mixing 50 g of BSA, 20 g of glucose, and 8.1 g of sodium chloride in

950 mL of double-deionized water. The 7H11 agar plates were prepared by mixing 4.2 g of

7H11 agar powder, 2 mL of 50% glycerol, 180 mL of double-deionized water, and 20 mL of

OADC solution. The solution was then heated in a microwave oven until a clear solution was

achieved and the solution was transferred to petri dishes. The agar plates were cooled and

solidified at ambient temperature.

Isolation of tRNA. tRNA was isolated from several organisms, including BCG (~109 cells),

S. cerevisiae (5x10 7 cells), human B lymphoblastoid TK6 cells (3x10 7 cells), and rat liver (~150

mg). Cells or tissues were suspended in 1.5 mL of Trizol reagent with 5 mg/mL coformycin, 50

tg/mL tetrahydrouridine, 0.1 mM deferoxamine mesylate, and 0.5 mM butylated

hydroxytoluene to prevent ribonucleoside modification artifacts (7, 8). BCG and S. cerevisiae

cells were lyzed by 3 cycles of bead beating in a Thermo FP120 Bead Beater set at 6.5 m/s for

each 20 s cycle, with 1 min of cooling on ice between cycles. The TK6 cells and rat liver tissues
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were lyzed with a Qiagen TissueRuptor. Following cell or tissue disruption, all lysates were

warmed to ambient temperature for 5 min and extracted with 0.3 mL volume of chloroform,

with subsequent incubation at ambient temperature for 3 min. The solutions were centrifuged

at 12000x g for 15 min at 4 0C and the aqueous phase was collected. Absolute ethanol was

added to the aqueous phase to reach a final concentration of 35% (v/v) and tRNA was then

isolated using the PureLink miRNA Isolation Kit according to manufacturer's instructions. The

quality and concentration of the resulting small RNA mixture was assessed by Bioanalyzer

analysis, with tRNA comprising >95% of the small RNA species present in the mixture (Figure 2).

There was no detectable 5S rRNA present in the samples, as illustrated in Figure 2.

Enzymatic hydrolysis of tRNA. Samples of purified small RNA (6 pg) were lyophilized

and redissolved in 100 pL of a solution with 10 ng/pL RNase A, 0.01 units/pL RNase T1, 0.001

units/piL RNase V1, 0.15 units/pL nuclease P1, 2.5 mM deferoxamine mesylate, 10 pig/mL

coformycin, 50 ptg/mL tetrahydrouridine, 0.5 mM butylated hydroxytoluene, and 1xRNA

Structure Buffer from Ambion (provided with RNases T1, V1 and A). The solution was incubated

at 37 *C for 3 h, after which alkaline phosphatase was added to a final concentration of 0.1

Units/mL. The sample was incubated at 37 *C overnight, followed by removal of proteins by

filtration (YM10 filter). The resulting filtrate was used directly for mass spectrometric analysis.

Identification of ribonucleosides in BCG small RNA. The samples of ribonucleosides were

resolved with a Thermo Hypersil aQ column (100 x 2.1 mm, 1.9 p) with acetonitrile in 0.1% (v/v)

formic acid in water as mobile phase. The flow rate was 0.3 mL/min. The gradient of
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acetonitrile was as follow: 0-12 min, 0%; 12-15.3 min, 0-1%; 15.3-18.7 min, 1-6%; 18.7-20 min,

6%; 20-24 min, 6-100%. The HPLC column was directly connected to a triple quadrupole mass

spectrometer (LC-MS/MS) in positive ion, neutral loss mode for loss of m/z 132 and 146 in the

range of m/z 200-700. The voltages and source gas parameters were as follow: gas

temperature, 300 *C; gas flow, 6 L/min; nebulizer, 15 psi; and capillary voltage, 4000 V. The

ions that were detected in the neutral loss scan were selected for identification with the LC-

MS/MS system in MRM mode using the same HPLC method and mass spectrometer parameters.

The retention times, m/z of the transmitted parent ions, and m/z of the monitored product ions

for ribonucleoside-like species are listed in Table A-1.

Structural characterization of N, N-dimethyladenosine in BCG small RNA. The

ribonucleoside-like species eluting at 20.1 min and possessing an [M+H] ion with m/z of 296.13

was subjected to structural characterization by collision-induced dissociation (CID) using both

MS2 and pseudo-MS3 (i.e., in-source fragmentation) performed on the LC-QTOF system using a

Thermo Hypersil aQ column (100 x 1 mm, 3 ptm particle size) at a flow rate of 90 pL/min using

the same mobile phase described earlier, with a gradient of organic phase as follow: 0-9 min,

0%; 9-18 min, 0-7%; 18-22 min, 7%; and 22-30 min, 7-100%. The mass spectrometer was

operated in positive ion mode with the following voltages and source gas parameters: gas

temperature, 325 *C; drying gas, 8 L/min; nebulizer, 30 psi; capillary voltage, 3500 V. The m/z

detection range for parent ions was 100 to 800 and that for product ions was 50 to 800. For

MS2 analysis, the fragmentor voltage was 85 V and the target ion for the unknown was m/z

296.1, while the fragmentor voltage was increased to 250 V for MS3 analysis, which caused an
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in-source fragmentation of m/z 296.13 to give m/z 164.1 for further CID analysis. The m/z

164.1 ion was fragmented with collision energies of 0 V, 20 V, 30 V, and 60V.

Absolute quantification of m6
2A in tRNA from BCG and other organisms. For tRNA

samples from each organism (BCG, S.cerevisiae, TK6, and Rat liver tissue), 4 pmol of [15N]s-2-

deoxyadenosine ([15N]5-dA) internal standard was added to 4 pg of tRNA and the samples were

subjected to enzymatic hydrolysis as described above. Following volume adjustment to achieve

final concentrations of ~40 nM [15N]-dA and ~40 ng/pL ribonucleosides, 10 p1L of sample was

analyzed by LC-MS/MS. Ribonucleosides were resolved on a Thermo Hypersil aQ column (100 x

2.1 mm, 1.9 pm particle size) with acetonitrile in 0.1% (v/v) formic acid as mobile phase and a

flow rate of 0.3 mL/min. The gradient for acetonitrile in 0.1% formic acid was as follow: 0-10

min, 5%; 10-12 min, 30%; 12 min, 95%. The HPLC column was coupled to a triple quadrupole

mass spectrometer with electrospray ionization operated in positive ion mode with the

following parameters for voltages and source gas: gas temperature, 350*C; gas flow, 10 L/min;

nebulizer, 20 psi; and capillary voltage, 3500 V. The mass spectrometer was operated in

multiple reaction monitoring mode (MRM) to quantify two ribonucleosides with the following

parameters (retention time, m/z of the transmitted parent ion, m/z of the monitored product

ion, fragmentor voltage, collision energy): [i5N]-dA, 3.0 min, m/z 2574141, 90 V, 10 V; and

m 62A, 11.1 min, m/z 2964164, 90 V, 15 V. The dwell time for each ribonucleoside was 200 ms

and these two ions were monitored throughout the whole HPLC run. Linear calibration curves

were obtained using a fixed concentration (40 nM) of [i5N]-dA and varying concentrations of

m 62A (5, 10, 50, 100, 500 nM).
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Results

Growth rate of BCG and yield of BCG tRNA. As the spectrum of modified nucleosides

may differ significantly according to the growth conditions, it was essential to standardize the

culturing procedures. The OD600 of M. bovis BCG culture was measured each day in the first

eight days after inoculation from a glycerol stock. Results were summarized in Figure A-1. At

day 7, OD600 of the culture was approximately 0.6. Cells were harvested at this point for all

experiments. Based upon the quantification by using bioanalyzer and UV-vis

spectrophotometer, approximately 4 pig of tRNA can be isolated from 109 BCG cells.

Characterization of the tRNA samples by bioanalyzer (Figure A-2) determined that the average

size of tRNA in M. bovis BCG was about 65 nt.
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Figure A-1. Growth curve of M. bovis BCG. The population of cells was determined by
absorbance at 600 nm as described in Materials and Methods. The data points were obtained
from a single experiment.
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Figure A-2. Bioanalyzer chromatograph of BCG tRNA.

Survey of ribonucleosides in BCG. Ribonucleosides from enzymatic hydrolysis of BCG

tRNA were characterized by using reverse phase HPLC-coupled triple quadrupole mass

spectrometer (LC/QQQ). Most nucleosides share a characteristic neutral loss of 132 Da during

collision-induced dissociation (CID) with low collision energy. This loss corresponds to the

dissociation of the ribose from the base. For nucleosides that are methylated at 2'-0 or other

positions of the ribose, they have a loss of 146 Da instead of 132 Da. Based on this property of

nucleosides, we screened for modified nucleosides by searching for molecules with either one
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of these two neutral losses. As a control experiment, a sample of double-deionized water was

used for tRNA isolation, enzymatic hydrolysis, and neutral loss scan; results of neutral loss

screening of the water sample was compared to that of the tRNA samples. After removing the

artifacts that were also present in the control, there were 26 candidates of modified

nucleosides in the hydrolyzed tRNA. Based upon the retention time and m/z value of these

candidates, the hydrolyzed tRNA samples were analyzed in MRM mode. By comparing with

synthetic chemical standards, we determined that these 26 candidates include Y, m5C, m3C,

miA, m G, I, Cm, Gm, m U, t A and m2G (Table A-1).
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RT Precursor Product Quantity Identification
1.3 255.1 123.1 11100 ?

1.43 245.1 125.1 110 Y
2.15 258.1 126.1 70 m C
2.45 258.1 126.1 279 m3C
2.47 282.1 150.1 500000 mIA
3.85 298.1 166.1 500000 m7G
3.97 320 188 3000 ?
4.21 280 133.9 7000 ?
4.22 258.1 112.1 2500 Cm
4.4 269.1 137.1 80000 1
5.16 352 220 16000 io6A??
5.16 368 236 17000 ?
5.18 285.1 153.1 40000 ?
5.27 322 190 24000 imG-14??
8.22 259.1 127.1 30 m U
8.6 282.1 150.1 7000 mA??

10.69 298.1 166.1 3500 mG??
10.7 320 188 40000 ?
11.4 298.1 152.1 450 Gm
12.9 282.1 150.1 17000 mA??
13.8 320 188 1800 ?

13.91 298.1 166.1 600 m2 G
17.6 416.2 270.1 700 ?
20.1 296.1 164.1 25000 dimethylA??

21.08 307.4 161.3 1000 ?
21.88 413.1 281.1 2500 t A

Table A-1. List of candidates of modified ribonucleosides identified by neutral loss scan using
LC/QQQ. The quantity of each species is the approximate raw counts obtained by mass
spectrometer. In the column of identification, nucleosides with '??' are not certain due to the
lack of standards for comparisons; they are assigned based on m/z values of the ions. The
nucleosides that are not assigned (with a '?') have no known modifications with same mass (9,
10).

Structural characterization of unknown with m/z 296.13. To gain information of

chemical structure of these candidates of modified nucleoside, LC/QTOF was used to obtain
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exact mass (error < 10 ppm). An ion with m/z value of 296.1350 ± 0.0011 (this value is the

average ± SD of all mass spectra of the chromatographic peak) was observed (Figure A-3).

Based upon this m/z value, this ion was most likely to have a chemical formula of C12Hi8NsO4*

(m/z 296.1359). This formula corresponded to an adenosine with 2 methyl group or 1 ethyl

group.

296.13

100 120 140 160 180 200 220 240 260 280 300 320 340 360
Counts vs. Mass-to-Charge (m/z)

21.5 22 22.5 23 23.5 24 24.5 25 25.5 26 26.5 27 27,5 28 28.5 29 29.5 30 30.5 31 31.5 32 32.5 33

Counts vs. Acquisition Time (min)

Figure A-3. Extracted ion chromatogram and mass spectrum of [M+H]* ion of m6
2A. The peak

in the small graph (black) represents the m/z of all ions observed between time = 31 to 31.5
minutes. The large graph (red) represents MS signal intensity of ions with m/z 296.1359 (error
< 10 ppm) in HPLC eluent.
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We carried out MS2 and pseudo MS3 analysis on the unknown ion m/z 296.13 to gain

structural information for identification. In MS2 analysis, the unknown was fragmentized to

form an ion m/z 164.09, which the loss of mass was corresponded to a ribose (Figure A-4). The

free base was likely to have a chemical formula of an adenine with a C2 H4 (m/z 164.0936).

Pseudo MS3 analysis was used to gain structural information on this adenine derivative. The

ribosyl group was detached from the base by in-source fragmentation which produced an ion

m/z 164.09. This ion was then selected for collision-induced dissociation to generate the mass

spectrum on Figure A-5(A). The mechanism of collision-induced dissociation of adenosine was

studied previously (11); based upon that dissociation model and the fragmentation pattern, we

derived that the structure of the m/z 296.13 ion was N,N-dimethyladenosine (m6
2A). This

conclusion was confirmed by the retention time and MS2 and pseudo MS3 fragmentation

patterns of synthetic m6
2A (Figure A-5(B)).
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Figure A-4. MS2 mass spectrum of m6
2A. This CID mass spectrum was obtained with by

LC/QTOF as described in the Materials and Methods section.
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Figure A-5. (A) Pseudo-MS3 spectrum of m6
2A from tRNA hydrolysate. (B) Pseudo-MS3

spectrum of synthetic m6
2A. The nucleoside was fragmentized to form the free base by high

ionization energy at ion source (fragmentor voltage = 250V). The free base (m/z 164.09) was
selected to pass through the first quadrupole (Q1) and fragmentized in the second quadrupole
(Q2) by collision-induced dissociation with collision energy of 30 V. Proposed structure of
fragmented ions with m/z 108.06, 119.04, 121.05, 123.07, 148.06, and 164.09 are presented in
(A).

Absolute quantification of m6
2A. We quantify m62A in BCG small RNA samples by using

external calibration (Figure A-6). In M. bovis BCG, the level of m6
2A was 0.88 pmol per 1 pg of
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tRNA (Table A-2). Based upon the results from bioanalyzer, the average size of tRNA in M. bovis

BCG is 65 nt (Figure A-2). Assuming that each nucleotide is 340 Da, there was approximately

one molecule of m6
2A in every 51 tRNA molecules. It is known that m6

2A is present in ribosomal

RNA of yeast, rat and human (12). However, it was not observed in tRNA previously (13-17). To

illustrate the m6
2A observed in M. bovis BCG tRNA samples were not from contaminating rRNA,

we employed the same method to isolate tRNA from yeast, rat liver tissues and human TK6

cells and quantify m6
2A in these samples. The amount of m6

2A in these samples is below

quantification limit (Table A-2).

0 1

y = 13.061x + 0.9682
R2 = 0.9973

2 3 4

Amount of m6
2A (pmol)

Figure A-6. External calibration curve
Methods section.

for quantifying m6
2A as described in Materials and
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tRNA samples

M. bovis BCG Human TK6 Rat liver Yeast
Normalized MS signals (0.4 pg 5.8 0.9 0.0054 ± 0.0056 ± 0.0054±
tRNA) 5. ± 0.0002 0.0002 0.0004
Amount of m6

2A (pmol/pg 0.88 ± 0.14 < 0 < 0 < 0
tRNA)

Table A-2. Quantification of m6
2A in tRNA from M. bovis BCG, human TK6 cells and rat liver

tissue. Quantity of MS signals is converted to molarity of m6
2A by fitting into the external

calibration curve in Figure A-6.

Discussion

Spectrum of M. bovis BCG tRNA modifications. We developed a general approach to

characterize spectra of modified ribonucleosides. This method begins with isolation of small

RNA species below 200 nucleotides and quantification of the tRNA content with bianalyzer and

UV-vis spectrophotometer. Individual ribonucleosides in enzymatic hydrolysates of tRNA were

resolved by HPLC and determined by their characteristic fragmentation pattern using mass

spectrometry. In samples of M. bovis BCG small RNA, we obtained 26 candidates of modified

nucleosides and identified 12 of them. They include Y, m5C, m3C, m1A, m7G, Cm, I, m5U, Gm,

m 2G, t6A, and m6
2A. Besides m'A, the presence of these modifications in Mycobacterium is not

reported in the literature to our awareness (18, 19). All these modifications are found in tRNA
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of other organisms except m6 2A (9, 10) and they have important biological functions.

Pseudouridine (Y) is the most abundant modifications in tRNA; it is found in at least 15 positions.

While most Y on tRNA are non-essential, loss of Y38, Y39, or Y40 leads to a decrease in growth

rate in both E. coli, S. typhimurium, and S. cerevisiae (20-22). 5-methylcytosine (m5C) is also

located at several locations (position 34, 37, 48, and 49) including wobble position, which is

suggested to affect the affinity of codon-anticodon binding (23). 3-methylcytosine (m3C) is

located at position 32 and e2 in bacterial and eukaryotic tRNA. 1-methyladenosine (m1A) is

formed at position 58 of tRNA in Mycobacterium tuberculosis and many organisms (19, 24);

mutants with deletion of the gene trm6 or trm6l, which is the m1A-methyltransferase in S.

cerevisiae, are nonviable. 7-methylguanosine (m7G) is found at tRNA position 36 and 46 of

many organisms, such as E. coli, mammalian cells, and plants; this modification promotes tRNA

aminoacylation and enhances the stability of tRNA (25-27). 2'-O-methylcytosine (Cm) is located

at position 32, 34, and 56; Cm34 in E. coli affects fidelity of codon reading (28). Inosine (1) is

found at wobble position of tRNA from all three phylogenetic domains; genes that are

responsible for the formation of 134 are essential in S. cerevisiae (29). 5-methyluridine (m5 U) is

located at position 54; m-U54 is conserved in all three domains of life (3). 2'-0-

methylguanosine (Gm) can be formed at position 18 and 34; Gm34 promotes the accuracy of

mRNA decoding (30). 2-methylguanosine (m2G) forms at position 6, 10, and 26; m2G10

promotes the efficiency of aminoacylation in some tRNA (31). N -theonylcarbamoyladenosine

(t6A) is located at position 37; it promotes the codon-anticodon interactions (32). As these

highly conserved tRNA modifications play important roles in other organisms, they may also be

involved in centric biological processes of Mycobacterium.
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Among these modifications, one of them was previously not observed in tRNA. This

modification has a m/z value of 296.13. To obtain information of the structure of this

ribonucleoside, we used high mass accuracy MS, MS2 and pseudo-MS3 analysis to study its

fragmentation patterns. The modification is confirmed to be N6,N6-dimethyladenosine (m6
2A)

by comparing with the synthetic standard. m6 2A is only reported to be present in rRNA of

several organisms, including yeast, human and rat (9, 10, 33). It is possible that this

modification may be originated from contaminating rRNA in the tRNA sample. For validation,

we quantified m6 2A in tRNA samples from M. bovis BCG, yeast, human TK6 cells, and rat liver

tissue that were isolated with the same method. The results show that there was about one

m 2A per 51 copies of tRNA in M. bovis BCG; levels of m6
2A in samples from human TK6 cells

and rat liver tissue were below detection limit. These results suggest that m6
2A is from tRNA in

M. bovis BCG.

There are 14 unidentified candidates of ribonucleosides. All of these candidates have a

loss of m/z 132 or m/z 146 in collision-induced dissociation. These fragmentations are common

features of ribonucleosides corresponding to the loss of a ribose or a 2'-0-methylribose.

Molecular transitions of some candidates are the same as that of monomethylated adenosine

(m/z 282 to m/z 150), monomethylated guanosine (m/z 298 to m/z 166), N6-(cis-

hydroxyisopentenyl)adenosine (m/z 352 to m/z 220), and 4-demethylwyosine (m/z 322 to m/z

190). These modifications have been observed in tRNA. Molecular transitions of nine

candidates are unique to all known RNA modifications. These candidates can possibly be

modifications that have not been discovered yet.
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Besides characterizing the spectrum of tRNA modifications in M. bovis BCG, here we also

present a general strategy to identify modified ribonucleosides. In this strategy, candidates of

RNA modifications were identified with LC/QQQ in neutral loss mode based upon the

characteristic loss of ribose or 2'-O-methylribose during collision-induced dissociation. The

highly accurate mass of these candidates were identified with LC/QTOF to predict their

chemical formulae. Then, these candidates were analyzed with MS2 and MS3 (i.e., in-source

fragmentation) by using LC/QTOF to gain structural information. This strategy can potentially

be used to characterize the spectrum of modifications of all species of RNA in any kind of

organisms.
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