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Abstract
Human movement encodes information about internal states and goals. When these goals involve 
dyadic interactions, such as in language acquisition, the nature of the movement and proximity 
become representative, allowing parts of our internal states to manifest.

We propose an approach called Visually  Grounded Virtual Accelerometers  (VGVA), to aid with 
ecologically-valid video analysis investigations, involving humans during dyadic interactions. 
Utilizing the Human Speechome (HSP) [1] video corpus database, we examine a dyadic 
interaction paradigm taken from the caregiver-child ecology, during language acquisition. 
We proceed to characterize human interaction in a video cross-modally; by  visually  detecting and 
assessing the child’s bodily dynamics in a video, grounded on the caregiver’s bodily  dynamics of 
the same video and the related HSP speech transcriptions [2]. 

Potential applications include analyzing a child’s language acquisition, establishing longitudinal 
diagnostic means for child developmental disorders and generally establishing a metric of 
effective human communication on dyadic interactions under a video surveillance system.

In this thesis, we examine word-learning transcribed video episodes before and after the age of 
the word’s acquisition (AOA).  As auditory stimulus is uttered from the caregiver, points along 
the VGVA tracked sequences corresponding to the onset and post-onset of the child-caregiver 
bodily responses, are used to longitudinally mark and characterize  episodes of word learning. 

We report a systematic shift in terms of caregiver-child synchrony in motion and turning 
behavior, tied to exposures of the target word around the time the child begins to understand and 
thus respond to instances of the spoken word. The systematic shift, diminishes gradually after the 
age of word acquisition (AOA).

Thesis Supervisor: Deb Roy
Title: Professor of Media Arts and Sciences, Program in Media Arts and Sciences
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1 Introduction

  Human motion can entail vast arrays of information for an observer. While at  first, the 

plethora of information can be attributed to high degrees of freedom characterizing an organic 

body, beyond that, it seems the ability  of the body itself to manipulate its position and shape 

while exploiting environmental and semantic contexts, such as establishing feedback channels 

from other persons or agents, can result in meaningful configuration states for the observer, such 

as head or limb turns. By  encoding appropriate communication schemes to be perceived, It is up 

to the observer to reduce the space of possible configuration states. From now on, for the 

purposes of this study, when we refer to ‘agents’ we imply humans under a video surveillance 

system

 A given internal state maybe exhibited through the body’s possible configurations, but one 

can easily  infer, there exists no guarantee of one to one correspondence between our external and 

internal states. For example, in many cases, a bodily reaction can be characterized as a head turn, 

limb motion, happiness, angriness crying, etc, but cases such as the receptive ability  of an agent, 

cannot permit any kind of standard characterization. The problem lies on the fact   that  internal 

states that can’t be characterized invariantly by external configurations, can be either products of 

longitudinally acquired processes such as history of learning and experience, or products of 

interactive processes involving more than one agent. In both of those cases, an observer maybe 

dealing with missing information. Respectively, this may occur when the observation is non-

longitudinal, prohibiting access to historical data that lead to a particular state, and may occur 

again if only one agent  (or partial context) is taken into account in an observation; then again the 
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observer is missing data. This is where the value of longitudinal observation and dyadic analysis 

comes.

 This thesis, builds up  on the scheme of human dyadic interaction, as a means to reduce 

dimensionality on longitudinal video observations by modeling visually grounded interactions 

between agents. This becomes possible by assessing the synchrony in head and limbs motion 

between two agents, using a novel mixture of computer vision techniques that launches “virtual” 

accelerometers around a body’s figure in a video. In particular, It  is demonstrated that during a 

child’s word learning, dyadic motion features such as rotations and body jerkiness, originating 

from caregiver and child bodily interactions, can exhibit effectively longitudinal 

phenomenologies that cannot be directly hypothesized from current theories of language 

acquisition.  In this work we aimed for a systematic analysis of the child - caregiver proximics, 

and their respective bodily  responses around the time a word is uttered by the caregivers. To do 

this, we have formulated a methodology for pinpointing discontinuities in developmental 

progressions, as assessed by a technique we call VGVA. We then proceed by examining whether 

the progression of dynamics exhibits unexpected changes in close temporal proximity of 

receptive/expressive word onsets.

 While this thesis touches on the caregiver-child bodily response ecology during language 

acquisition, through the required methodology  investigation, it links directly with the general 

problem of establishing a metric for effective communication on dyadic interactions under a 

video surveillance system.
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1.1 The Human Speechome Project

The Human Speechome Project (HSP) is an effort to understand the language acquisition of a 

child, in-vivo, over the first three years of his life. [1] The result is a longitudinal audio and video 

corpus.  Along with the corpus come speech transcriptions of everything spoken during the 

child’s presence. [2] Video and speech data originate from fourteen 1MP fish-eye lens cameras  

and 11 microphones embedded into the ceiling of each room. All data are naturalistic[1].
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1.2 Motivation

 In this research, the initial motivation was born within the context of Human Speechome 

Project (HSP) corpus; to employ a novel combination of computer vision methods that can 

potentially model and evaluate the child’s word comprehension in longitudinal videos grounded 

on speech transcriptions [1][2]. This lead to a natural selection of video analytics tools which can 

be used to assess bodily human interactions in a transcribed video via cross modal means.

 Within a naturalistic observation context, our vision is to upgrade and if necessary 

redefine behavioral and cognitive experimentation methodologies by introducing computer 

vision methods to  serve as  new plaforms for experimental evaluation in psychophysics, 

psychometrics and other experimentation that can help in the behavioral phenotyping of 

individuals or other organisms. Examples may include new diagnostic means for developmental 

disorders, measures for evaluation of receptive onset/offsets upon a visual, auditory or other 

kinds of stimulus delivery. In these thesis we propose visually grounded  methodologies that can 

serve as metrics of effective communication between subjects and researchers under a video 

surveillance system. 

  Many classic behavioral and cognitive experimentation methods involve the use of 

electrodes, fMRI, body temperature sensors, heart beat sensors, or accelerometers attached on the 

human body. While these methods have proved invaluable, they inherently prohibit the design of 

in-vivo observation schemes. With the exception of thermal cameras, todays technology, 

practically allows remote in-vivo observations to be made effectivelly and economically only on 

an audio / video level. At first, both of these media may not offer any intuitions about the 

measurement of bodily reactions within agents. Under the lens of speech analytics and computer 
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vision, new kinds of augmented sensory abstractions can become capable to  leverage cross-

modal analysis based on virtual sensors [52]. Here, we propose virtual accelerometers to measure 

bodily responses grounded together with speech text or other contextual agent signals. Virtual 

accelerometers can be designed solely based on the output level of a plain photosensory 

platform. Hence, the first line from the title of this thesis is “Visually Grounded Virtual 

Accelerometers”. Visually grounded  to tell us about the bodily measurement “upon stimulus 

delivery” methodology involved when a virtual accelerometer is engaged. The next lines, “ A 

Longitudinal Video Investigation of Dyadic Bodily Dynamics around the time of Word 

Acquisition’ aims to highlight the longitudinal examination of word learning on the child based 

on dyadic bodily motion signals.

                                                                   16



1.3  Problem Statement

 Our problem can be divided in two sections: the analytical and the methodological.

For the analytical, we consider that every time the word was uttered by a caregiver, during those 

episodes, word comprehension may have taken place, learned or accumulated, depending on how 

the child and caregiver was situated, when he/she delivered the word stimulus. It is this kind of 

video sequence we are interested in capturing motion primitives of, and analyzing from.

Every time an episode sequence is analyzed, word learning is hypothetical.  On the child, we are 

looking to infer if receptive ability is present. This ties better with the idea of communication 

inference. According to its trivial defintion [53] : “Communication is a process whereby 

information is enclosed in a package and is channeled and imparted by a sender to a receiver via 

some medium.”  In our case, during an isolated word-learning episode, we usually don’t know 

much about the imparting, we know about the information (caregiver delivery) , we know about 

the package   (transcription- grounded bodily motion ), we know the sender and the intented 

receiver. To serve our purposes, we would like to define what can be chosen as a medium.  This 

can be done by establishing a method to infer the degree of dyadic interaction between agents.  

We are choosing the degree of dyadic interaction as a medium because it entails the cross-modal 

nature of  caregiver-child ecology. This nature shall  inherently constitute a platform of 

communication medium itself . The problem can then be translated to the definition of a dyadic 

interaction metric under an HSP video.  

 For the methodology we consider that under the HSP video corpus, the child’s response 

space will include visual and auditory responses.Visual bodily  responses on a video, can be 
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studied and characterized using computer vision techniques. For this reason, our problem 

requires the development of  a computer vision motion interface to analyze dyadically agent 

proximics, in an attempt to uncover possible linguistic acquisition indicators of internal states 

grounded in longitudinal video recordings. The technique will be used to study word learning 

dynamics from the HSP corpus.
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1.4 Contribution - Methodology Highlights

 It is notable that on a longitudinal basis, there haven’t been any studies in Dyadic Bodily 

Dynamics and in particular around the time of a word’s acquisition. A novelty on this approach, 

is the systematic measurement of the child-caregiver synchrony in bodily response movements, 

near the moments the related given word stimuli was provided. Studies such as Robertson’s 

[36-39-46], employ various pressure sensors in infants and use eye reflection technologies to 

capture the image that a child sees. A limitation of  these studies and their technologies, is that 

one cannot collect data that exceed a few hours per day  and most importantly cannot capture ‘in -

vivo’ data. Many others have installed accelerometers on the body [8][15]. 

 In our approach, we are looking at bodily responses by taking advantage of the captured 

video and transcribed speech in HSP corpus.  With respect to the technology we use,  many of 

the attempts to study human motion or link it  with actions, [20-25] are computational, operating 

strictly on the video level. Due to the amount of data, longitudinal analysis requires 

computational tools of preferably  lower complexities. Using transcriptions to provide ground 

truth, we employ vector fields of ‘virtual’ accelerometers each one ‘made up’ by optical flow 

trackers. The tracker vector fields are collecting motion from each body’s silhouette. In this way 

we exploit the advantages of computer vision, while at the same time, we preserve the 

abstraction of the ‘accelerometer‘, in order to combine the methodologies from both fields 

leaving their simple algorithmic benefits intact. Examples of studies indicating a distant degree 

of correlation on the nature of this innovation are 2008 Bregler[6][7] and 2002,1998 

Decarlo&Metaxas [29][30],2005, Kidron[34]. From a cognitive architecture aspect, with the help 

of an EEG-ERP[13][17] sensory architecture, we sampled the motion responses around the body 
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figure. Considering carefully what makes a good feature[19], we decided to abstract away spatio-

temporal features as localized rotation and body jerk detectors. The features are exhibited from 

the body figure. A Body figure (the line defining the body) in a video,  is one of the most 

representative platforms offering sensory exposure to the maximum perceptual aspect of a 

human body’s activity. We are essentially capturing unidentified motion that, with the help of our 

spatio-temporal features, is  guaranteed enough to originate either from the head or limbs. 
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1.5 Outline

 In Chapter 2 first, we examine  aspects of developmental monitoring literature and 

Language Acquisition that are relating with the justification of our problem. By Highlighting the 

longitudinal nature of HSP data, we start to examine past and present approaches to Body 

Motion Analysis and Tracking. Once the motion analysis tools of choice for bodily response 

capture are established, we move on a higher level to present aspects from the literature of 

biological motion and its traits that will later help  with the motion analysis. This will prepare the 

ground for chapter 3, where in an eight  step process, we definine  the methodology used for 

video analysis and bodily motion capture. 

 In Chapter 3, the methodology for longitudinal video processing grounded on speech 

transcriptions is introduced, providing an explanation of the processing, sampling and annotation 

approach imposed by the nature of the data. The design of the bodily  response detection and 

annotation Interface is mentioned and revisited later on section 3.6. Possible means to identify 

appropriate features that will support the analysis is discussed, leading to the proposed spatio-

temporal approach. We then describe the architectures and motivation of spatio-temporal features 

used , that will enable us to characterize video episodes of word learning, captured from the HSP 

corpus. The possibility  for other applications is discussed while the inspiration for the spatio-

temporal features is demonstrated. We move on to explain how the idea of word learning under 

the Dyadic Analysis lens works. Next, the actual encoding of motion (bodily response) features 

is revisited,  bringing into consideration the dyadic modeling necessary in order to discover the 

final appropriate features intended to characterize caregiver-child interactions. On section 3.6 We 

test on live data and other various video dataset, and the annotation interface’s performance is 
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discussed. A discussion of alternative approaches follows, examining the current limitations - 

mainly the  semi automatic (relatively slow) nature of the methodology. Extensions for solution 

of this limitation are proposed as parts of the future direction of this work.

 In Chapter 4, results are presented exhibiting the longitudinal phenomenology of Dyadic 

Bodily  Dynamics  around the time of Word Acquisition, using two different types of 

representations. One based on the so called  ‘Motion Profiles’  assuming the individual caregiver 

and child motion scores, and the second based on the dyadic synchrony scores, the so called 

‘Interaction Profiles’.

 In Chapter 5, Experimental evaluation is performed, by creating a 3rd order polynomial 

fit curve of the data from the first five words, and applying it on the next five words to test AOA 

within (-1 )  episodes.

 In chapter 6, Some extra unexpected results encountered  within the analysis featuring  

caregiver-child correlational discontinuities in terms of bodily motion during a word delivery  and 

their progression are presented, discussed but not analyzed. This motivates discussion for future 

directions. Other suggestions on how to upgrade the semi-automatic nature of the VGVA method 

to a more automatic one are discussed. The possibility for other types of features and virtual 

sensory platforms is also discussed.
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2 Background and Literature Review

 The essence of this work is an attempt to map the behavioural phenotyping of caregiver-

child ecology in terms of bodily motion dynamics, before and after word acquisition (AOA).

This is performed under the constraints of a camera perspective that is fixed on the center of a 

ceiling. The thesis  draws on an interdisciplinary field that has at least two facets; one is from the 

congitive science literature in language acquisition, the other one from Computational cognitive 

science literature in Computer vision and biological motion. In this chapter, we first touch base 

with enough aspects of language acquisition  literature, in order to relate with our problem 

definition. After the problem becomes more concrete, we connect it with the nature of the 

observational data. Initially, everything translates to the actual low level computational challenge 

of capturing bodily responses from agents. Because there is no past studies relating to 

longitudinal data, we gently introduce the available computational tools that will motivate the 

proposed methodological design. Once the bodily response tools of choice are established, we 

move on a higher level trying to present aspects from the literature of biological motion and its 

traits. This will prepare the ground for next chapter, to definine architectures for spatio-temporal 

features that will enable us to characterize video episodes of word learning, captured from the 

HSP corpus. 
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Fig 2.1 Motivating through a hard problem  such as  Language Acquisition....
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2 .1 About Child Language Acquisition

 In this chapter we examine so limited aspects of developmental monitoring literature and 

Language Acquisition that are relating enough  for the justification of our problem.

2.1.1 Word learning as communication effort.

 Children usually learn to recognize words before they first  produce them. (Fig 2.1). During 

these periods, the  nature of the mechanisms underlying children's word learning, may be relating 

to the development of possible early  communication attempts (Bates, Benigni, Bretherton, 

Camaioni & Volterra 1979, Mundy, Sigman & Ruskin 1995, Olson, Bates and Bayles 1984, 

Tomaselo 1995, Laakso 1999 [35-45]).  According to Ninio & Wheeler 1984 [54] one aspect of 

language that children have to acquire is how to use speech to perform social acts such as 

regulate activities, draw attention and many others. We consider that these can be seen as 

acquisition of communication affordances on behalf of the child. 

 Robertson’s studies (2001, 2007) [36],[37],[38],[46], suggest a tight link between an 

infants motor activation and overt attention on small timescales (seconds).  Dynamic examples of 

this linking, include gaze shifts preceded by rapid bursts of body movement. Gaze shifts or other 

body moves, can highlight the potential long term functional significance of possible 

communication efforts. In theory, these efforts could range anywhere from a single neuron’s 

firing, to a full internal representation span, encoding the concept of the word, capable to be used 

for actual word production.
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2.1.2 From communication efforts ~ to dyadic interactions 

“Dyadic interaction is based upon the history of exchange relations between partners“

(Emerson, 1976).

 The backbone of our motivation is that during a child’s dyadic interaction  the quality of a 

word production depends on the related caregiver bodily responses and gestures, the child’s 

motor skills related to speech delivery  (or reception) and the encoding of the word’s concept. 

Part of the encoding of a word’s concept, depends on the way the word stimulus is delivered by 

the caregiver on a temporal and systematic basis. For example, encoding a word concept can 

imply the child’s ability to combine what  is perceived, with  stored information from any visual 

or auditory  experiences (Casasanto 2008[39])  In short, the encoding of a word concept shall be 

subject to any available models of dyadic interactions a caregiver has to offer. 

 According to Ninio & Wheeler 1984 [54] If a child’s word learning dependents on copying 

adult-provided models for verbal performance, then the investigation of word learning should 

include tracing the relationship  between adult models and the children’s subsequent word 

productions. Identifying the correct social experience maybe the key  to success. An assumption 

underlying theories of language learning is that acquisition is based on the child’s matching of 

novel verbal forms to known meanings. (Anderson 1976, Macnamara 1972). Meanings are 

encapsulated in the available models.
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2.1.3 Bodily motion as a linguistic parameter

 In a caregiver-child environment, most world-learning experiences are expected to be of a 

simultaneous visual and auditory nature. When this simultaneity is evident, Mehrabian [30-33] 

suggested the majority of communication happens via general body language. During 

communication, speech reception and production can become synchronized, complementing 

each other, allowing us to observe synchrony in bodily  motion. Bodily  motion, will be 

originating from the child’s or caregiver motor skills relating to speech delivery or reception.  

Speech delivery in turn,  will be originating from the intent to produce a word, or more generally 

the need to build up communication affordances by auditory and visual means.  It is this visual 

communication affordance that we are targeting on this thesis. If we consider the child - 

caregiver motion interactions to be a dyadic system, the intent to produce a word can be seen as 

an affordance of the child-caregiver coupling, that can emerge from their social interaction.
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2.1.4 Transferring the problem to Body Motion Analysis

 The HSP video corpus together with the respective video retrieval technology[4], contains 

information about all word-learning episodes encountered by the child. This enables us to 

transform the problem to the one of studying visual information by computational means. Part of 

the motivation for this thesis proposal is to examine a hard problem such as language acquisition 

of a child [1][2], Fig.1, utilizing the HSP corpus, in order to establish a bodily  response capturing 

technique and bodily dynamics evaluator, called VGVA (Visually Grounded Virtual 

Accelerometers). VGVA aims to investigate cross-modally,  how a child begins to understand 

instances of a word, before its initial production - the productive word birth [4], between the ages 

of nine and twenty four months.
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2.2 Body Motion Capture under a Video 

 Bodily motion capture techniques in computer vision are emerging from various fields 

and in a fast pace. Tradionally they are used in surveilance, cinematic arts, and computer gaming.  

Some of the emerging areas that  have started to exploit motion capture include  the industry of 

Facial Expression capture [55] where the motion originating from various face muscle groups is 

captured and used to perform inferences about human emotional states.  An emerging area is the 

one of medical appications where motion capture is currently used to describe flow in an organ

[56], or pace: Poh, McDuff, Picard 2010 [57].

 Some intrinsic examples of the techniques involved can be categorized in the following 

tasks  relating to motion estimation [58]:

-Egomotion : Determining the 3D rigid motion (rotation and translation) of the camera from an 

image sequence produced by the camera.

-Tracking: Following the movements of a smaller set of interest points or objects such as objects 

or humans in an image sequence.

-Optical Flow: Determine how each point in the image moving relative to the image plane.

ie: its apparent projected motion. The projected motion is the result of how that point is moving 

relative to a point of reference in the scene and how the camera is moving relative to the same 

point of reference in the scene. For our case, in HSP project we have a static camera mounted  

close to the center of the ceiling of each room. In this section we will examine possible 

approaches that can relate to our problem and these are techniques in tracking and optical flow.
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2.2.1 Approaches in Tracking

 In this part we are summarizing parts of the literature with classic and modern approaches 

in the area of tracking. Subject to our problem of bodily motion, we highlight their possible 

benefits and limitations.

Background Substraction [59]

 Background subtraction (background differencing) is the most fundamental image 

processing operation for video applications, responsible for spanning a greate repertoire of 

algorithms. Here we are not going to mention details but generally speaking in order to perform 

it, we have to learn a model of the actual background. Once the model is learned it is compared 

against the current image and then the known background parts are substracted away. 

Presumably, what is left will be the foreground object ‘blob’ and changes on this blob can be 

captured as motion.

MeanShift [59]

  The mean shift algorithm can be used for visual tracking. The simplest such algorithm 

would create a confidence map in the new image (like a search window) based on the color 

histogram of the object in the previous image, and use mean shift to find the peak of a 

confidence map near the object's old position. A few algorithms, such as Ensemble Tracking

(Avidan, 2001), expand on this idea.

CamShift [59]

 The Camshift tracker algorithm  differs from the meanshift in that the search window 

adjusts itself in size. If we have well-segmented distributions (such as compact textures), then 

this algorithm can be scale invariant ie: will automatically adjust itself for the size of face as the 

person moves closer to and further from the camera.
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Tracking Edge corners, Keypoints and other scale invariant features

 Since these pages are not enough to fit the literature in detection, we are including here a 

principle behind most of the approaches in detection. For an object or body in an image, [58][59] 

interesting points on the object can be extracted to provide a "feature description" of the object. 

This description, extracted from a training image, can then be used to identify the object when 

attempting to locate the object in a test image containing many other objects. It is important that 

the set of features extracted from the training image is robust to changes in image scale, noise, 

illumination, and local geometric distortion to perform reliable recognition. One modern 

example is Lowe's patented method[60];   it can robustly identify objects even among clutter and 

under partial occlusion. 

 Another very important algorithm is Histogram of oriented gradient (HOG) descriptors 

[61]; these are feature descriptors used for the purpose of object detection. The technique counts 

occurrences of gradient orientation in localized portions of an image. This method is similar to 

that of edge orientation histograms, SIFT descriptors and shape context algorithm[62] , but 

differs in that it on a dense grid of uniformly spaced cells and uses overlapping local contrast 

normalization for improved accuracy.

 Most of these techniques, involve the assesment of motion between two frames by taking 

into account prior knowledge about the content of those frames.
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2.2.2 Optical Flow

  [59] Often, we may want to assess motion between two frames (or a sequence of frames) 

without any other prior knowledge about the content of those frames. Usually the motion itself is 

what indicates that something interesting is going on. 

[59] We can associate some kind of velocity with each pixel in the frame or, equivalently, some 

displacement that represents the distance a pixel has moved between the previous frame and the 

current frame. Such a construction is usually referred to as a dense optical flow, which associates 

a velocity with every pixel in an image. 

 In practice, calculating dense optical flow is not easy [59]. Another option, is sparse 

optical flow. Algorithms of this nature rely on some means of specifying beforehand the subset 

of points that are to be tracked. If these points have certain desirable properties, such as the 

“corners” discussed earlier, then the tracking will be relatively robust and reliable. For many 

practical applications, the computational cost of sparse tracking is so much less than dense 

tracking that at least for today, the latter is relegated to only academic interest.[59]

The most popular sparse tracking technique, is Lucas-Kanade optical flow[10]; this method also 

has an version that works with image pyramids, allowing us to track faster motions.

Lucas-Kanade Method

 The Lucas-Kanade (LK) algorithm [Lucas81][10], as originally proposed in 1981, was an 

attempt to produce dense results. Yet because the method is easily applied to a subset of the 

points in the input image, it has become an important sparse technique. The LK algorithm can be 

applied in a sparse context because it relies only on local information that is derived from some 

small window surrounding each of the points of interest. 
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 The basic idea of the Lucas Kanade algorithm rests on three assumptions. We list the 

three assumptions here because they are important when the architecture of VGVA will be 

definened in the next Section 2.2.3 and the next Chapter 3.

1)  Brightness constancy. A pixel from the image of an object in the scene does not change in 

appearance as it (possibly) moves from frame to frame. For grayscale images (LK can also be 

done in color), this means we assume that the brightness of a pixel does not change as it is 

tracked from frame to frame.

2) Temporal persistence or “small movements”. The image motion of a surface patch

changes slowly in time. In practice, this means the temporal increments are fast

enough relative to the scale of motion in the image that the object does not move

much from frame to frame.

3) Spatial coherence. Neighboring points in a scene belong to the same surface, have

similar motion, and project to nearby points on the image plane.

The rest of the details and mathematics of Lucas Kanade optical flow can be found in: [10]
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2.2.3 The Ingredients of our approach

 The HSP video resolution is at 1 Megapixel and ~15 frames per second, taken under a 

fisheye lens. The ceiling height is above 7 feet, and that results for each human body  to range 

between 50 and 200 pixels, with the head ranging between 20 and 80 pixels[63]. One third of 

those estimates or less are expected for the child.  Before each body measurement is taken, 

VGVA’s motion capture interface, requires manually  annotating the sizes of the heads and 

ensures they both contain comparable number of pixels among episodes. For example, if one 

head on the first  episode was 20 pixels and on the next episode is 80 pixels, we make sure all of 

them are around 50 pixels, by using bilinear interpolation to fill up the gaps after we scale the 

image[59]. It is apparent that the quality of data are not suitable for adopting any  motion tracking 

approach that entails prior knowledge about the content on a frame. Motion is still present 

though, and this can be captured  as soon as we consider only  our image to be moving relative to 

the image plane.

 After extensive experimentation with all methods described above, we chose the Lucas 

Kanade optical flow method to be the main pipeline for our motion capture. As mentioned on the 

previous section, optical flow requires assumptions 1)-4) Sec 2.2.2. In order to relax those 

assumptions, we are adopting a modular approach that will ensure 1)-4) Sec 2.2.2 will be 

satisfied in as many as possible cases. The need to combine a modular architecture does not only 

arise from this problem, but also from the nature of our bodily response problem that entails the 

initiation of as many as possible virtual “sensing devices” (accelerometers). The virtual 

accelerometers  ‘maintain’ contact with the body  figure. In that way we collect  motion data from 
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all the body. Fig (2.2) Describes the ingredients of our approach:  edge detect+laplacian+ 

filtering+optical flow. That is, we employ a generic edge detection approach, we take the 

laplacian and thresholding in order to perform detection on the resulting silhouette. Then we pass 

the candidate points to optical flow trackers. The details of this approach is discussed extensively 

in section 3 with the VGVA methodology .

Fig. 2.2 The VGVA detection steps in a nutshell

A superior alternative involved HOG [62] combined with optical flow but this proved to be 

computationally expensive. HOG was tested and does exceptionally well in automatic 

architectures that will discussed in the last section ‘Future Directions’.

                                                                   36



2.3     The bodily response capture problem

 To our knowledge, up  to date there haven’t been any longitudinal efforts to apply  computer 

vision methods for the measurement of human bodily  motion responses under any  video 

platform. However, the philosophy and problem statement from our approach maybe similar 

with two other areas. There is an extensive literature on facial expressions, micro-gestures and 

micro-facial expressions [Metaxas 2002,1998][29][30] [2010 Picard][57]. All of these methods 

are operating in a video and they assume the existence of ‘micro-expression grammars’. 

To summarize:

1)  The area of Facial Expression capture [55] where the motion originating from various face    

muscle groups is captured and used to perform inferences about human emotional states may 

have some similarities in our approach. 

2) The area of the so called “Microexpressions” was first discovered by Haggard and Isaac

[1966],  searching for indications of non-verbal communication between therapist and patient. 

[64]

 It is important to stretch that our thesis study, is not referring to bodily responses below 

1/15 of a sec but only general series of responses over many  frames. Even if the VGVA 

methodology can  operate on this platform and extract micro-expressions assuming we had 

enough resolution and the availability  to capture data below 1/15/sec, the philosophy  of micro-

expressions that  are purely unconscious expressions and their causal analysis of a speculative 

nature [64], are not the aim of this thesis. Still, it is highlighted that even if we could, we would 

not exclude any unconscious bodily  responses from our analysis. These responses maybe related 
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to intentional body language or receptive body  language Mehrabian [32] [33], respectively,  

within the context of intentional or receptive communication and hence are of great interest to us.

 Many other bodily  capture methods operate outside the video platform. Bodily responses 

are currently  captured by  various pressure sensors (Robertson) [36-39-46] and accelerometers 

installed on the body. Other methods employ human judgement on video observations. 

[Ninio] [54]
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2.3.1  The traits of Biological Motion
         
 It appears, in our physical universe, that when it comes to rigid bodies, there are many 

kinds of motion behaviour. 

Motion behaviour shall be the result of a combination of (at least) the following causes:

1) Sole physical causes such as any of the four fundamental forces in the universe

3) The number of causal forces (or how many agents involved in the cause)

4) The number of DOF’s (articulation) in a body

5) Biological agent causes

 What is it computationally, that  can characterize and separate Biological motion from the 

rest of the kinds of motion? We know that biological motion originating from a single agent  can 

be exhibited in human perception and in many cases reported as ‘intention’ or ‘emotion’[66][65]. 

A famous example involving more than one agents interacting, is the Heider Simmel experiment 

[65], where animations of moving geometric shapes are perceived as social interactions laden 

with intention and emotion[66]. Furthermore, The PointLight experimentation literature [67][68]

[69] has demonstrated that the number of configuration of points underlying the degrees of 

freedom of a body, along with their respective motion is what activates our biological motion 

percepts. [69] 

 It seems plausible then, that two interacting biological agents, maybe possible to be 

detected computationally  if we look at the ‘way’ they orchestrate their actions, the same way 

point-light and Heider-Simmel experiments orchestrate during action execution. It seems this 

‘way’ underlies social and material context. What else maybe hidden in this “way”? In the 

original 1960’s Heider-Simmel experiment, the motion was originating from human hands 
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behind a white light board. A question that maybe raised here is regarding the origin and causes 

that moved those simple geometric shapes. However, there are similar results with other variants 

of Heider-Simmel-esque experiments[70] where the motion was rendered by computational 

(mechanical) means and the social interactions, intentions and emotions where still present, 

although one may ask if the results are similar with the original 1960. [70] 

[47] 2009 Soyka, F. while working on linear motion simulation, asks if Jerk has to be considered 

in linear motion simulation: 

“ It has been shown neurophysiologically [71] and psychophysically [71,72,73] that sensation 

and perception of linear motion depend upon a combination of acceleration and jerk of the 

underlying motion profile. If the distortion due to constraining the motion to the range of the 

platform introduces more jerk, motion detection thresholds could be altered. This would 

ultimately alter the perceived motion and yield poor fidelity of the motion simulator.”

 Braitenberg vehicles [74] can sometimes make us believe they are ‘alive’ if we are to perceive 

their motion. Still, a question that can be asked is if Braitenberg vehicles could pass any visual 

motion ‘touring test’. The question remains: 

What is it that a biological agent’s motion has, that the rest of the motions don’t have? 
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2.3.2 Bodily Motion and Jerk

 While it seems one of the most important qualities producing ‘emotion’ and ‘intensionality’  

in humans is the social context, where particular actions take place, other aspects of single 

biological agents  cannot be ignored. It is apparent  that one of the most obvious traits of 

biological motion is the jerkiness of motion. With regards to changes in bodily acceleration, it 

has been previously  shown that observing an action made  by a human and not a machine, 

interferes with other executed action tasks. [Kilner,Hamilton 2007]. One of the oldest and most 

original studies is Hogan’s 1985[48] where experimental observations of voluntary  coordination 

of arm movements, reveals a unique trajectory of motion that can be characterized with a jerk 

minimization pattern.  In other words, we can intuitively imagine that  when things are becoming 

more ‘coordinated’ or ‘voluntary’ , or intentional, a body  Jerk minimization pattern that leads to 

‘smoothness’ of motion maybe present. Finally, Studies in autistic and ASP syndrome cases, have 

demonstrated luck of sensitivity in perceiving ‘jerk minimization’ in motion. [50]. It  appears that 

attention and intentionality is closely tied with a tasks generated amount of Jerk.
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2.3.3 Social Context as Fluid Dynamics

 Human sensitivity on Heider -Simmel- type experiments and Pointlight sihluette 

experiments, involves the sensitivity in a configuration of a set of points acting in particular 

orchestrated motion trajectories. Since we are dealing with a set of points originating from more 

than one agents, subject to their actions, it may be worth to consider encoding all points as part 

of a social context. Instead of tracking agents, a fluid dynamics scheme enables us to track, the 

actual information flow among the social context. For this reason, some of the features - the so 

called ‘Interaction Profiles’ among with the actual architecture of VGVA considered in later 

chapters, are inspired by fluid dynamics.
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3 VGVA - Methodology 

 Under the HSP corpus, the child’s response space will include visual and auditory 

responses. Visual bodily responses on a video, can be studied and characterized using computer 

vision techniques. We developed VGVA, a computer vision motion capture technique to analyze 

agent proximics and possible linguistic acquisition indicators of internal states grounded in 

longitudinal video recordings and audio transcriptions. The technique is used to study word 

learning dynamics from the HSP corpus. For each word, using the available HSP transcriptions 

[2], we are sampling word-learning video episodes from the same word learned between the ages 

of nine and eighteen months. Every time the word was uttered by  a caregiver,  the child had 

already encountered a number of previous word-learing episodes with the same word. During 

those episodes, word comprehension may have taken place, learned or accumulated,  depending 

on how the child and caregiver states was situated, when he/she delivered the word stimulus. It  is 

this kind of video sequence we are capturing, studying  and analyzing motion primitives from.

In this chapter, we describe the details of VGVA steps and explain how it works.
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  Fig 3.1  VGVA Steps    
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3.1  The Architecture of Bodily Response Measurements

  Our methodology for VGVA can take for input videos that are grounded in any kind of 

stimulus delivery of choice. In our case the transcribed word uttered by the caregiver. VGVA 

then  employs a semi-automated body annotation technique along with a combination of 

computer vision algorithm modules. Each module can afford many variants in the algorithm 

choice when it comes to performance improvement.  

 The idea behind this method starts from the need to sample  collectively from the 

beginning of a video, points from the human body that are good candidates to be tracked during 

the video interaction. Each point is passed on to an accurate optical flow local tracker. The 

trackers begin to record optical flow trails from the human body, until the video under 

examination is over. The body tracklets act as a vector field representing the “fluid” motion 

dynamics originating from the human body. Using this rich vector field as a sensory platform, 

over a given time window and some extra processing, the trackers can simulate the notion of an 

accelerometer, head turning detectors and other spatio-temporal feature abstractions that will be 

presented in this chapter.

  Once the motion tracks are collected, they are packaged in what we call “Motion Profiles” 

that are essentially metadata containing extracted features characterizing  the “motion signature” 

exhibited by each agent during a word learning episode.The challenge is to recover this 

characterization. During the next sections we are defining  three spatiotemporal motion features 

forming each agent’s motion profile. To summarize the motivation behind it, the bodily motion 
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profiles on each agent, are based on the way their bodily dynamics evolve during an episode. 

Since there is no unilateral way to infer automatically the degree of the child’s word learning, we 

chose to asses dyadically the synchrony on the bodily motion profiles exhibited between 

caregiver and child, around the moment a word was uttered by the caregiver. If there was indeed 

word comprehension on behalf of the child,  it is hoped that this synchrony should encapsulate it 

and if there was no comprehension, the changes in motion profile should also reflect that.  

 In our bodily response measurement architecture, we are hypothesizing  a systematic shift 

in terms of caregiver-child synchrony in motion and turning behavior, tied to exposures of the 

target word around the time the child begins to understand and thus respond to instances of the 

spoken word.  After the motion profiles are collected, they are post-processed in order to be  

examined longitudinally. Post-processing and longitudinal analysis are also discusssed in this 

chapter.

 To clarify the whole idea with an analogy, imagine the video frames under examination 

having textures and that we are actually able to feel the body textures of individuals moving 

under our palms, and we do this by using our many neural layers forming our haptic system. We 

would have been able to tell if the textures under our palm are approaching each other slowly, 

fast, circularly, partially, if they are discontinous, jerky, sparse,  smooth or rough, perhaps there 

would be synchrony or order such as turn-taking when they interact etc. After a year of weekly 

sampling  and habituation, It may have been the case that we can even tell what is the 

‘mood’ (motion profile) for our textures today, log them and compare them with the “old days”. 
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3.1.1 Video Sampling and Pre-processing

 The VGVA interface, can allow the user to annotate human bodies,scale each agent’s  body 

size  in order to take comparable measurements with the same amount of sensors, unwarp the 

frame, create masks of regions of interest (ROI’s), and run motion capture algorithms live. 

Between the age of nine and eighteen months, we run VGVA incrementally  on all word episodes 

from ten of the child’s first five hundred words. The ten noun words are sampled from Mcarthy-

Bates categories. For the preservation of the onset and post - onset of each bodily response in a 

video, VGVA operates on the 120 frame video chunks, by capturing motion and reducing its 

dimensionality enough for the word hypothetical comprehension onset to be preserved. 

Specifically, we define a word episode to be a set of maximum 120 video frames at 15fps (=8 

seconds) with the 60th frame (4th second), corresponding to the frame with the time-stamp being 

the same as the stimulus word transcription. This is ensured by the VGVA interface that allows 

annotation confirmation and correction between audio, video frame timestamps and transcription 

record timestamps. It  is expected, that the word comprehension onset and post-onset, lay 

somewhere in those 120 frames, before or after word stimulus delivery. In this kind of dyadic 

analysis we are interested on communication delivery between either party. For example we 

could find ourselves interested in cases where the caregiver says “ Look! Butterfly!” and the 

child simply turns or exhibits an unusual change in jerkiness of the body or says ‘muhmmmm”. 

Another case of interest maybe that the child is pointing or engaged with a butterfly  concept and 

then the caregiver steps in and says ‘ yes! Butterfly!’. Therefore, we would like to cover the 

cases where the onset was initiated earlier, that is where the child may already had interest on the 
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concept either because of the related context, or by  watching the caregiver body language etc. 

And after stimulus delivery to cover the cases where the onset simply occurs after. It is believed 

that a time window of +-4 seconds is consistent with the average cognitive and neuroscience 

studies [13]-[17] where a neural response or execution trigger upon visual or audio stimulus 

delivery averages anywhere between 200 msecs and 1000 msec[13][17]. In the longest case, we 

offer 1000 msecs for caregiver to conceive, 1000msecs to execute delivery, then another 1000 

msecs to the child to sense, and 1000 msecs for the child to exhibit response a total of 4000 

msecs.
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3.1.2 The VGVA motion extraction in a Nutshell 

                  

Fig 3.2 (VGVA Steps again)

 The VGVA motion capture procedure  launches a swarm of optical flow trackers around the 

human body silhouette. with the help of edge extraction, thresholding and detection. For our 

problem, we designed a swarm of Lukas Kanade [10] Optical flow trackers that proved to be  

very reliable and responsive, the tracklets can stay around the body for hundrends of frames and 

they can detect and separate localized subtle changes in motion. Robustness to noise is another 

advantage. It is notable that the procedure can afford variants on its modules. For example edge 

detection can range anywhere from Canny Edge detection[12] , “Good Features To Track “[11] 

to HOG features [61] and 3-D Gabor Filters [75]. Optical flow tracking can be replaced with  

SIFT flow[76]. All replacements have their respective computational tradeoff.
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                 The VGVA method consists of eight main steps that can be summarized below:

Step  1 Extract silhouette by performing background subtraction on a user annotation mask   

while adequately filtering image.

Step 2 The Laplacian of the step 1 is taken and added to the original copy. Adaptive thresholding 

is applied on the summed original, and together, the Laplacian of the image is taken for a second 

time.  (Canny edge detection [12] can also be used.) The result is a well defined human 

silhouette, defining the human body by two surrounding border lines. Adaptive thresholding is 

applied again and we invert the result.

Step 3 A detection algorithm is applied. In our case we look for “Good Features to Track” [11] in 

order to sample the body’s silhouette, resulting in a “dotted” body silhouette. 

Step 4 Each one of the dots are passed to a Lucas Kanade [10] optical flow tracker. Each dot 

now, is recording the bodily response originating from separate unidentified body parts, acting 

like a little 2-D 'computational' accelerometer[8][15]. Note, the 2-D samples, originate from 

different planes, sampling arbitrary aspects of the body,  that happen to be on the related frame.

At this stage after post-processing, a VGVA swarm can augment  an N-dimensional 

accelerometer, where is N =(the 2 dimensions of the image) * (No of sampled dots).

Step 5 (this step only for fully automated processing) can be skipped

Note: for this study we used carefull user annotations to ensure the quality of the data, hence this 

step can be skipped by the reader if there is no interest for automatic approaches.

 All extracted point coordinates are recorded in a database, and later clustered on each one or 

more frames, using KMeans++ algorithm [9]. Clustering helps assign the correct dot tracks 
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belonging on different people on the video. (ie: red dots belong to caregiver and green dots to the 

child). Each set of a colored dot sequence, represents an instance of a VGVA.  At this point, the 

centroids from each VGVA set are taken, to calculate child-caregiver proximity using  the 

available unwarped  fish-eye geometry and perspective correspondence maps. We let the tracks 

propagate through enough  frames to include the comprehension onset. 

Step 6  After all extracted point coordinates are recorded in a database, VGVA proceeds by 

converting each dot’s coordinates data and calculating the first three derivatives of motion  over  

500 msecs that is among a fixed number of 8 frames : (speed, acceleration and jerk). Motion 

analysis is  generally taken for a number of frames (max of 120 = 8 Secs).

Step 7 (Optional - does not apply on this kind of anlysis but usefull for future EEG ERP inspired 

directions) , in an  attempt to introduce ground truth to the process, we start to annotate VGVA 

dots belonging to corresponding important body parts such as head or hands. We do this for the 

same word among different episodes of that word. The idea is to ensure that a dot from the head 

on the current episode, remains a dot from the head on the next episode etc.  

Step 8 On the final step, the resulting signals are calculated as a score discussed in next sections. 

The score signals in turn, generate dyadic scores that will eventually  characterize the caregiver-

child interaction during word delivery. Step 8 is the backbone of our analysis and will be 

discussed extensively   in the next sections after the definition of our three motion primitive 

features: Curl, Jerk, and Work. 
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Fig (3.3) The VGVA Motion Profiling Data Pipeline.
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3.1.2 Data Sampling

 The video corpus under examination currently contains the following ten different words 

that the child acquired between the ages of 9 and 24 months. :

word AOA No of Episodes:

Airplane Feb 12,2007 62

Ambulance Mar 2, 2007 48

Camera Dec 23,2006 65

Elephant Feb 12, 2007 58

Helicopter Jan 9,Mar 30,2007 39

Octopus Jan 16,2007 60

Peacock Jan 11,2007 28

Puzzle Jan 2,2007 22

Turtle Dec 10 2006 68

Alligator Apr 2 ,2007 15

Fig 3.4 The ten words AOA and respective number of episodes

Each word ranges on an average of ~50 episodes, that are relatively uniformly sampled between 

September 2006 and May 2007 . Each episode contains 120 frames. To identify the frames where 

each word was uttered  from the caregiver, we used the HSP transcriptions [2] database. Special 

scripts have been developed and integrated with VGVA implementation, to extract a given 

word’s timestamp upon demand. The user enters a word of choice and a list is created containing  

all the timestamps when the word was said. The list contains the respective transcripts and other 
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metadata such as speker id. A special video browser taking as input this list of timestamps allows 

for the extraction of video and renders 120 frame word episodes for each word.

3.1.3 Video Annotations

 The HSP corpus transcripts contain only the timestamps where each particular utterance 

containing the word under examination started. For quality assurance, once the 120 frames are 

extracted using the transcripts, we annotate manually the exact frame where the caregiver started 

to  utter the particular word within the related sentence. On each word episode, this annotation is 

used as the stimulus delivery point for our analysis that will follow. 
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3.2    Spatio-Temporal Features 

 In this section we start by investigating possible means to identify appropriate features that 

will support the nature of our analysis. This leads to the definition of three spatio-temporal 

features borrowing names from the area of physics: “Curl”, “Jerk” and “Work”.

3.2.1 Examining means for feature discovery

 During a video episode, our objective is to study “how” the two agents (caregiver-child) 

interact and approach each other during the time of a word utterance. In this thesis, we are doing 

this in terms of motion, aiming to evaluate “how” this  motion evolves temporaly among two 

agents. At this point, the word ‘how’ appears ambiguous and in this section in an attempt to 

uncover this ambiguity, we examine possible ways to characterize and compress human bodily 

motion into meaningfull features. We aim to design and justify features by engaging into the 

following types of analogies: computational,  cognitive,  biological and artistically inspired.

 According to Richards & Jepson 1992 [19], it has been proposed, that “...useful features 

reflect non-accidental or suspicious configurations that are especially informative yet typical of 

the world... “ In our case, we consider as informative and suspicious configurations, any bodily 

motion among the two agents, around the frame that contains the beginning of the word to be 

uttered. Subject to our ceiling camera perspective, the informative motion aspects are originating 

                                                                   55



from the torso, head or limbs. Richards&Jepson [19] continues by proposing that what makes a 

good feature, should include the property of having a ready explanation for its appearance. [Mac 

Kay,1978,1985],[Richards & Jepson] . Hence, It would be reasonable to consider what kind of 

features  a human body can exhibit from the appearances of the head, limbs or torso when the 

camera is on the top ceiling. Assuming a static torso, from the head we should be getting circular 

or rotational features that encase angular momentums. For the limb movements, depending on 

the perspective, we will either be getting features encasing angular momentums, or various 

changes in accelerations originating from articulated movement projections on the camera sensor

[Hogan 1985] [48]. As mentioned earlier, changes in acceleration can be captured through Jerk. 

Assuming a non-static torso with lower speeds, we will have rotations, or again, various changes 

in accelerations either due to articulated movement, or due to unexpected internal state 

configuration changes and attention shifts.  It is worth to consider that bodily motion on each 

word-learning video episode, maybe originating from exogenous actions,( ie: the agent was 

already engaged with an external move before the 120 frames started) or endogenous actions (ie: 

the agent is static, and engages into movement that has endogenous origins). The wanted 

features, should be invariant for both cases being  able to characterize changes related with the 

word-learning episode.

During the VGVA evaluation method, we have tried different data sets including  live 

experiments with cameras that are capturing video  from agents engaging in ‘exogenous’ kind of 

motions , and cases with endogenous motion. A plain visual inspection of the vector field, on the 

resulting optical flow tracklets can reveal the existence of major differences (see DVD videos). 

Tracks appear to be curly and continuous for the endogenous motion and sparse or discontinuous 
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for the exogenous motion, with the differences being salient enough to characterize the two types 

of motion. Further experimentation on this issue are discussed on the last section of future 

directions.

 As mentioned earlier, [Kilner&Hamilton 2007] [49] highlights the differences between 

mechanical motion and biological, by distinguishing them respectively, by having constant 

velocity and minimum jerk.  [Kilner&Hamilton 2007] [49] is finding that when an observing  

action is made  by a human and not a machine, then it interferes with other executed action tasks. 

This allows us to draw on a scenario in which the child is engaging into some arbitrary action, 

and the caregiver delivers a word stimulus. Based on that,  a child, while observing the biological 

motion traits relating to word uterance and respective body language, will somehow allow 

interference of this motion on its own actions, resulting in coordination. We are very interested 

on this kind of scenario as this will later give support for our motivation of dyadic features. This 

scenario is also parallel with Ninio and Wheelers 1984 [54] proposal about a child’s word 

learning depending on copying adult-provided  models for verbal performance that depend on 

adult actions and context.

  Before we attempt to give rise on meaningfull aspects of bodily motion, we may want to 

switch the discussion into a different level, about the human visual system and how it perceives 

art, and in particularly comics and cartoon animations. 

 Most of us who are familiar with comics, can recall the related (Fig 3.5), motion lines or 

action lines used abstractly, appearing around a moving object to make them look like they re 

moving quickly. A quick examination of the cartoon  animation design literature reveals formulas 

and ‘grammars’ (Fig 3.5) of sketching bodies. Recipes or rules on how to add ‘life’ to the 
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characters, how to make them ‘tell the story’ or to emit ‘action’. Some of the example features 

used can be summarized in this sort list taken from (Fig 3.5)

1) ‘pushing’ the poses’ adds “life”, by making the characters exhibiting angles between their 

torso’s and their context or the second character.

2) “Telling the story “by making the body torsos and limbs more ‘curvy’ 

3)  Acting and ‘Movement’ by drawing contrast,  angles and curves.

                                                                   58



Fig 3.5  An example of a popular ‘recipe’ on how to add motion when drawing a cartoon.
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Fig(3.6) What if we define computationaly the cartoon’s feature lines?

 The idea is, if a cartoon artist manages to convince our percepts with these motion features 

successfully, that what we are seeing is a particular bodily behavior, then the artist has somehow 

approximated features involving the spatio-temporal  encoding of bodily motion perception.

(See Fig 3.6)
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 It is noteworthy that in many cases, those features can ‘tell’ the story, in a single frame.  

Our intuition is that some of the real body motion features for action tracking, are already 

captured by our VGVA swarm of optical flow.   VGVA  contains inherently in its algorithm 

modules that are algorithmically  capturing the ‘movement’ , ‘contrast , ‘angles and ‘curves’ 

mentioned in those cartoon recipes. 

Fig(3.7) Looking for intuitive features
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3.2.2 Spatiotemporal features  
 Our method, operating like a simulated primitive ‘retina’, is sampling the whole human 

body, by imposing a swarm of optical flow trackers around the human shiluette. Each generated 

optical flow tracklet is typically 120 frames long and can report localized aspects of bodily 

motion. In order to consider more “globalized” aspects of this bodily motion, we are looking to 

exploit all those reports in a collective manner, by treating the swarm of tracklets as a vector 

field. From now on when we refer to features we imply features that can be found within this 

vector field platform and not the frame. In this section, we are defining features from this vector 

field, by considering meaningfull changes in its flow within 500 msecs, collective changes of 

acceleration within 500 msecs,  as well as the physical ‘work’ done along each tracklet during 

500msecs (8 frames)

Curl

 We choose our first feature to be the Curl of the optical flow vector field. In our case, we 

are looking for head or limb rotations and hence notable meaningfull changes in the  flow of a 

vector field shall be expressed in the quantity of its Curl. Those changes are cosidered 

meaninfull since we interepret any circular behaviour or vortex within this field as either a head, 

whole body or limbs rotation when viewed form the top of the camera ceiling perspective.
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Fig (3.8) Our sensory platform : Optical flow swarm exhibiting curl in its vector field

 According to its mathematical definition  The Curl of a vector field [77] representing 

“flow” speeds, captures immediately the circulation density of that field :  eq. (3.1)

(Curl F) =  

At every point in the field, the curl is represented by a vector. Curl(n),  The length and direction 

of this vector can characterize the degree of rotation at the related n’th point . For our case, of an 

unwarped fish-eye image, we operate on a two dimensional vector field. For two-dimensional 

vector fields the Curl reduces to the third part of eq.(3.2) :

(Curl F) = 

Other more complex examples of meaningfull changes in a vector field include:

The Vorticity [77] that is essentially the Curl of the ‘fluids’  velocity, where in our case fluid is 

the optical flow swarm. Vorticity can tell us about the tendency for elements of the fluid to 

‘spin’.

The Divergence [77] can characterize the degree of outward “flux” of a vector feild, in other 

words the tendacy of a region to ‘expand towards all directions except the current. This could 
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prove usefull if we wanted to characterize the propensity among two agents, to expand or 

contract towards each other.

For the purposes of our analysis we will use Curl and the rest of the above are left to be 

discussed on the future direction section. The reason we mention Vorticity and Divergence is to 

highlight parts of the repertoire of features that a vector field can offer, especially if when it 

comes to analogies from the area of fluid dynamics.

Jerk 

For our second feature we choose  the rate of changes in accelerations originating from each 

optical flow tracker. Jerk  (77), J is the third derivative of position: (Eq.3.3)   

 As mentioned in the literature section earlier, biological motion can be characterized by the 

amount of Jerk that an agent generates, and in particular, how that Jerk is minimized during an 

action.(Hogan [48]) This minimization procedure, can be informative about goals or 

intentionality of an agent. In this thesis, while we do not attempt to characterize the last two,  it 

seems plausible, to attempt and capture any aspect of Jerk that originates from the human body.

 By collecting Jerk values among 500msecs  from all around the body, through our VGVA 

sensor, we are creating a very informative bodily motion response map that can enable us to 

characterize collectively motion originating from the limbs and head, without having to consider 

the exact position of these. Figure (3.9) Shows an example VGVA measurement  that is applied 

on both caregiver and shild together. Our analysis separates measurements between the two, but 

for this example we want to highlight the turn-taking effect of Jerk, even if we attempt to 
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segregate the sensory platform between caregiver and child. This part is discussed further on 

future directions where we consider the possibility of automated agent measurement without 

annotations.

     ..................................................................Caregiver:you see this?.....Child:ughhhh.......

Caregiver:This......................IS..........................A Butterfly................

Fig (3.9)  A Comic - like frame sequence representing Jerk motion captured from the white 

optical flow trackers. Here we can notice the turntaking of white points between caregiver and 

child. In this case, white points representing the emition of jerk, originated from vibrations of the 

head, fingers and arms.
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Work

So far, we defined features that can capture arbitrary rotations and sudden changes in forces 

originating from the body, limbs or head. The motivation behind Curl and certain aspects of 

articulated origin for Jerk appears to hide on the human body’s skeletal structure. Even if Jerk 

can encapsulate other aspects that do not rely on the human body’s structure, such as  sudden 

bodily responses leading to a change of overal configuration state, still, we would like to have 

one more feature that can evaluate the degree of “complexity” or ‘effort’ that an action imposes 

on each optical flow tracker. In other words, how much “energy” to maneuvre around that path 

was spend?. A complex path will be at least curly and perhaps contain some unusual pattern.  

Each optical flow tracker is ‘travelling’ across 8 frames (500 msec), regardless whether its 

originating from the torso, head or limbs, during these frames, the minimum distance to be 

traveled will be a straight path between the 8 frames, versus an infinetely complex- perhaps even 

circular path. We choose to measure the amount of work that was done during the tracklet’s path, 

If the path is closed, we consider the total length.

(Eq.3.4)

where d is is the  total of discrete distance lengths between the 500 msecs. As it can be seen in 

Fig (3.11-12), the distance between them can take a lot of forms. 
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 Fig (3.10) Defining  work among frames A and B.

Fig (3.11) Cases of high “complexity”, resulting in high amount of ‘work’ for each tracker.

 
(3.12) Cases of lower “complexity”, resulting in lower amount of ‘work’ for each tracker
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3.2.3 Post Processing, Extraction and 
Encoding of Features from Motion

Fig(3.13) Introducing the n-th Descriptor...

 The definition of the features above, require infinitensinal calculus but for our case, since 
we are operating in a naturally discrete video frame space, we will be using difference calculus to 
define their equivalents in the discrete space. When it comes to the calculation of any derivative, 
we are using the following  typical formulas defining the n’th discrete differential equivalents:

Eq. (3.5)

Eq. (3.6)
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3.2.4 Motion Profiling and 
         Score Signal Construction
 All of the three features defined in the previous sections, are used to construct our bodily 
response formula signal from each agent. Overall, we would like a formula that will reduce the 
dimensionality of the optical flow’s vector field measurements, while preserving as much 
meaningfull information as possible. Each virtual accelerometer is operating on a 2-D image and 
currently, the maximum dimensionality that can emerge from each one is, 2 *N where  N is the 
number of accelerometers or optical flow trackers on the body (ie: the optical flow trackers).

Fig (3.14) Reducing the dimensionality of our ‘virtual accelerometer’ - trackers

We want the score formula to provide us with a signal that is most representative of any bodily 
changes that will include changes in force configurations (Jerk) and rotations (Curl), while take 
into account the energy changes between original and final configurations during a measurement 
(work). Hence we choose to add each signal after we normalize with the help of a Sigmoid:

(Eq.3.7)

Score = (Curl of the field V(x,y) taken between last 0-500msecs ) 
          + Sigmoid(  Sum  (  [ length of path taken between last 0-500msecs ] *  acceleration(x,y) )
          -  Shortest d(x,y) between  last 0-500msec  *  acceleration(x,y) )

+       + Sigmoid(  Sum (Jerk(x,y) taken between last 0-500msecs  )  )    
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Fig (3.15) Reducing the dimensionality of our tracklets
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Fig (3.16) Examples of Caregiver and Child Scores
           Green: Child Signal, Red: Caregiver Signal, 
          Yellow: cummulative correlation changes between Red and Green Signal, 
          White: cummulative Chi-Square score changes
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(Fig.3.17) Example of our sensory platform: optical flow swarm measuring bodily dynamics)
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3.4    Dyadic Analysis on Motion Profiles
 In this section, we are investigating means to intrinsically  link dyadic interaction between 

caregiver and child,  with the degree of their synchrony in terms of observed motion. We do this 

by assesing the actual synchrony on each bodily motion-profile exhibited between caregiver and 

child around the moment a word was uttered by the caregiver.

3.4.1 In search of Dyadic Features
 So far, under a unilateral analysis context, we have modeled each agent’s response as a 

significant series of amplitudes during the 120 frames. We would like to enrich our analysis 

repertoire by introducing features defined under a dyadic context. In that way  we exploit any 

mutual information present between caregiver and child, while effectively reducing the 

dimensionality of our signal intepretation space. 

 Comparing the spatio-temporal relations between two different agent’s scores, can enable 

us to create tools for the asssement of synchrony  between the caregiver-child scores. One way to 

compare signals is by looking at the correlation between them and one way to compare them 

temporally, is to consider the rate of change of this correlation within a specific time window. 

Specifically, over time, we would like to know how the two behaviours, caregiver and child’s 

corellate or de-corellate from each other.
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3.4.2 Dyadic Score Rates and Decorelation Spectrums

 

Under our new dyadic context, we define the ‘dyadic response’ to be the spectrum of changes  in 

de-correlation between the two agents signals:

Hk(i) = k’th agent’s  score observation from i’th frame  Eq[3.9]

Fig (3.18) The Anatomy of an Interaction Profile

Frames VS Score Correlation rates   Red: Caregiver Scores, Green: Child Scores  , 

Yellow: Decorellation Rate, White: Pearsons Chi-Square test, Purple: Word Delivery Frame 
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Fig (3.19) The anatomy of our de-corellation ‘meta-feature’
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Fig (3.20) Examples of  interaction profiles during word delivery from the caregiver (Yellow 

vertical lines indicate the frame when word was said to the child). Observe In some case the 

Discontinuities in the yellow curve ie: discontinuities in the rate of correlation change exactly 

the  the moment the word is said or after. 
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Fig (3.21) Examples of  interaction profiles during word delivery from the caregiver (Yellow 

vertical lines indicate the frame when word was said to the child). Observe In some cases the 

Discontinuities in the yellow curve ie: discontinuities in the rate of correlation change exactly 

the  the moment the word is said or after.
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3.4.3 The anatomy of an Interaction Profile
        

 By defining meta-features that are build up on our motion feature scores, the basic question  

we are asking is : During the N’th episode of a word’s learning, how did the two agents 

correlate? how did their correlation changed during that episode?, and where did the correlation 

scores ranged during that interaction? (Fig 3.18)&(Fig 3.19)

 In other words our decorrelation meta-feature, captures two dimensions that we are interested in:   

1) What was the correlation spectrum during the word-learning interaction? 

Since Correlations or Decorrelations are taken in terms of our motion score features, a high 

correlation or decorrelation value, shall indicate high degree of synchronization in terms of 

Jerkiness in the body, head or limb turning, degree of ‘work’ that the trackers encountered.

Intuitively, turntaking should imply decorellation while perfect synchrony correlation.

 Imagine two agents synchronizing heads or bodily responses towards each other perfectly with 

correlation one, or two agents performing perfect turn-taking with decorellation -1. 

Therefore, we consider the correlation spectrum during an interaction to be a measure of 

synchronization and turn-taking between agents during that interaction. We would like to see 

how did this spectrum evolved during the development of a word’s learning over the sampled 

world-learning episodes from a particular word.
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2) We want to know how did that correlation spectrum varied over time during a word’s learning. 

This can essentially capture discontinuities in the correlation values in terms of our motion 

features. ie:  was it smooth? was it  a sudden correlation? was it smooth or sudden head turn 

taking? was it a smooth or sudden bodily response turn taking?  was it a smooth or sudden  

simultaneous bodily response in concert? was it a smooth or sudden simultaneous head-turn in 

concert? etc. This constitutes another dimension that will be interesting to see how ti evolves 

longitudinally during the development of a word’s learning. From now on we refer  to our new 

dyadic “meta-feature” as “interaction profile” over an episode. On Chapter 4 where results are 

presented, we will be mapping our interaction profiles sequencially  for  single and many words, 

over months in order to reveal their longitudinal trend. 
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3.5 VGVA in Different Data

 Our Methodology, VGVA,  was applied in other kinds of video data including live data, 

the Center of Future Banking corpus, the Human Speechome phase II Speechome Recorder, 

various YouTube videos, including news and musical videos. A dvd library of video samples is 

now in place with this thesis to demonstrate the performance and clearance of the feature score 

signals and dyadic features. To our knowledge, without exaustive evaluation, VGVA operates 

robustly in any kind of video with moderate noise, including the Caviar dataset [78].
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3.6 Software Implementation   

3.6.1 Libraries used 

 For the implementation of VGVA we are using C++ language with Opencv and OpenGL 

libraries. [59] For the Dyadic Analysis we use Matlab scripts. Matlab implementation includes a 

clickable interface that connects with the HSP Database. The interface presents our longitudinal 

results from this thesis (see Section 4) and the user is able to click on a feature trend and

bring up the corresponding video episode related to the particular word-learning instance.

The interface can allow for new feature evaluation studies and inspections.
 
 

3.6.2 Computational Performance 
        and Current Limitations
 

 The current VGVA procedure is  semi automatic requiring human annotation on every 

video episode. During the execution and postprocessing performance on a dual core 2.5Ghz 

peformace was relatively slow with processing time approaching 5-6fps. Note that VGVA hasn’t 

run yet on a parallel platform.
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4   Developmental Progression Results

 In this chapter we present developmental word-learning progression trends from ten 

different words. Results of how our motion feature scores evolve over months, and how the 

dyadic features evolve over months.We will be using two types of cross-modal representations to 

present the longitudinal trends:

-One based on the evolution of Child vs Caregiver Motion Profile Scores, and

-One based on the evolution of Child-Caregiver Interaction Profile Scores.

We are using polynomial fitting  to determine agreegate data trends on the Child, Caregiver and 

dyadic Data repectively. The p-values of the polynomial curve fitings presented below are all 

well below p<0.025
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4.1  Motion Profile Progressions (Child vs Caregiver)

 In this section we present results from all word-learning episodes for the word 

‘ambulance’ and some more examples below. Child in Green, Caregiver in Red and some others 

are : Child in Blue and Caregiver in Red. The data on the Y axis represent the  logarithmic score 

scale from the motion profile scores. The X axis contains the distribution of 120 frame episodes 

sampled relatively uniformly from HSP corpus and arranged in incremental time order. Each dot 

belongs to a frame that originated from the particular month, and indicates the 500ms cumulative 

score from that word-learning  interaction. The green (or blue) curve is a polynomial fit for the 

child data and the red for the Caregiver. For all words, the degree of increasing correlation 

between red (or blue) and green curve around the time of word acquisition (AOA) is apparent. 

Results from ten words exhibiting the longitudinal phenomenology are reported. We also 

targeted unrelated "non-characterized" motion samples that are  perturbed across time randomly. 

There was luck of phenomenology when the data was taken in a perturbed random order.
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Word: Ambulance

Fig(4.01) WORD: AMBULANCE  Child and Caregiver Scores vs Time
 For the word ‘Ambulance’ Child Scores (inGreen) and Caregiver Scores (inRed)
Each dot is a score from a frame belonging to the respective month, carying commulative prior 
score drames from the last 8fps (500 msecs). Here we compare of motion profile Scores 
progressions over months. The black vertical line is the moment of word -birth’ or Word 
Acquisition (AOA)  is: the moment the word “Ambulance” is said for first time by the child. 
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Word: Elephant

Fig(4.02) WORD: ELEPHANT  Child and Caregiver Scores vs Time
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Word: Octopus

Fig(4.04) WORD: OCTOPUS  Child and Caregiver Scores vs Time
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Word: Airplane

Fig(4.05) WORD: AIRPLANE Child and Caregiver Scores vs Time  
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Word: Camera

Fig(4.06) WORD: CAMERA Child and Caregiver Scores vs Time  
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Word: Helicopter

Fig(4.07) WORD: HELICOPTER Child and Caregiver Scores vs Time
  Notice for the case of word “Helicopter” after carefull video observation that has been 
archived, this particular word was “learned” by the child twice with two different names. First  
was ‘capt’  on Jan 9th and the other one that occured later on March 30th and converged to 
‘helicopter’ was ‘appreburger’. In these cases we observe evidence of two separated increasing 
correlations between the child and the caregiver polynomials (polynomials are touching twice 
exactly around the time of ‘capt’  and then again for ‘appreburger’.

The fact that the curves are ‘touching’ and de-touching after AOA, can give us an intuitive idea 

about the existence of some motion-profile score correlation between caregiver and child around 

that time, but in order to capture this better, we choose first  to change representations to dyadic. 

On the next section we present the progressions from the dyadic scores “Interaction Profiles”.

                                                                   90



4.2 Interaction Profile Progressions (Child vs Caregiver)

Here we start by presenting results from all word-learning episodes for the word ‘camera’.

More examples  follow after that.

Each episode has its corresponding Interaction Profile 

Interaction Profile = ( decorelation “worm” ranging from long to short length)

The data on the Y axis is de-correlation from 1 to -1. X axis contains the incremental distribution 

of each Interaction Profile sampled from a particular month. Each ‘Interaction profile’ episode 

lasts 120 frames, is sampled relatively uniformly from HSP corpus,  and hence arranged in 

incremental time order. Each dot belongs to a frame that originated from the particular month, 

and indicates the 500ms windowed de-correlation score from that word-learning  interaction. 

The different colors of each interaction profile indicate the origin of the room that the video took 

place (Bedroom in Cyan, Living Room in Yellow, Kitchen in Blue , Guest room in Red.

The blue curve is a polynomial fit for all the data.

More Words are presented below all of them, with the same “shallow” pattern around the vertical 

black line that indicates Age of Word Acquisition (AOA).

For all words, the degree of decreasing correlation spectrums around AOA is evident. This can 

be seen by simple visual inspection, or by looking at the polynomial fit.
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(Fig.4.08  WORD: CAMERA Interaction Profiles vs Time )

(Fig. 4.09 WORD: AMBULANCE Interaction Profiles vs Time)
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(Fig. 4.10 WORD: AIRPLANE Interaction Profiles vs Time)

(Fig. 4.11 WORD: ELEPHANT Interaction Profiles vs Time)
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(Fig. 4.12 WORD: OCTOPUS Interaction Profiles vs Time)
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(Fig.4.13  WORD: PUZZLE Interaction Profiles vs Time)

(Fig. 4.14 WORD: HELICOPTER Interaction Profiles vs Time)
 Again here we notice for the case of word “Helicopter” after carefull video observation that has 
been archived, this particular word was “learned” by the child twice with two different names. 
First  was ‘capt’  on Jan 9th and the other one that occured later on March 30th and converged 
to ‘helicopter’ was ‘appreburger’. In these cases we observe evidence of two separated 
decreasing  correlation spectrums.
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4.3  Aggregation and Allignment  Results

 Here we present Interaction profile results from all word-learning episodes and from all 

ten words aggregated together and alligned around the time of AOA. We subsequentily apply a 

single polynomial curve fit, exhibiting the exact same phenomenology: Decreased corellation 

spectrum around AOA. This translates to increased degree of synchronization in terms of head 

turns, bodily jerkiness and amount of “work” on the VGVA’s around AOA. The motivation for 

using polynomial fitting is that a single interaction profile for an episode, as mentiond above, 

carries at least two dimension we are interested for. One is how large is the spectrum of 

decorellation, but at the same time we want to compensate for large discontinuites in that 

spectrum. Using a curve fit we should be able to interpolate capturing both of those qualities.
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Fig (4.15) Alligned interaction profiles from 10 words . Allignment is performed towards each 
word’s AOA.Black curve: A 3rd order polynomial indicating a general decrease in the 
decorellation spectrum ranging from -0.65 to -0.77. The minimum is right before general AOA.
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4.4 Conclusion
 We report a systematic shift in terms of caregiver-child synchrony in motion and turning 

behavior, tied to exposures of the target word around the time the child begins to understand and 

thus respond to instances of the spoken word. The systematic shift, diminishes gradually after the 

age of word acquisition (AOA).  

 We sampled 10 words out of the 517 [2] that the child learned between 9 and 24 months 

of age. The degree of decreasing correlation spectrums around AOA is evident. This can be seen 

by simple visual inspection on each word’s figure on the previous sections, or by looking at the 

third order agreegated polynomial fit in Fig (3.35). The minimum of this cubic curve is at two 

episodes before AOA.  

 In the next section, we will be evaluating our method by choossing any five words to 

construct a description model  by fiting a polynomial third order curve. The model is evaluated 

on the next five words called the test set. Comparing  the model curve with test curve enables us 

to observe a minimum in the de-correlation spectrum being always present 1-2 episodes before 

AOA.  As mentioned above, intuitively, the decrease in the decorelation spectrum during our 

episodic profiles, is an indicator of increasing head turns near AOA and increased bodily 

jerkiness synchronization. In the figure Fig. (3.36) below, we plot all the scores associating 

solely with the Curl feature for the Caregiver vs Child.  The Yellow area indicates timing around 

AOA. The presence of increased head turns and limb turns is evident around AOA.
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Fig. (4.16) We plot all the scores associating solely with the Curl feature for the Caregiver vs 
Child.  The Yellow area indicates timing around AOA. The presence of increased head turns and 
limb turns is evident around AOA.
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5  Evaluation 

 In this chapter, we evaluate our method by choossing five random words for training set 
and we fit a third order polynomial model. The model is compared with a new model of the same 
order on the next five words, exhibiting AOA occurence within a week before AOA 
(with -1 episodes error rate ~ a week).

5.1 Evaluation model

Fig. 5.01                                                                                      Fig. 5.02
OUR MODEL Cubic Fit  on current 5 words                        TEST Cubic Fit on next 5 words

Model (black) (Eq.3.8) Test   (red) (Eq.3.9)

y = 0.058*z^{3} + 0.012*z^{2} - 0.086*z - 0.73
where z = (x - 3.2e+03)/1.6e+03

y = 0.0054*z^{3} + 0.16*z^{2} - 0.19*z - 0.63
where z = (x - 3.2e+03)/1.6e+03

                                                                   100



Solving for a minimum on “Model ” in this range yields to a suggested AOA  for X axis to be 1 
episode before actual AOA.
Solving for a minimum on Test   in this range yields AOA for X min at 2 episodes before actual 
AOA. Which means the “Model” has error rate of -1 episodes, that for the currrent data is 
approximately a week.
The estimation for Ymin is -0.771 and the actual is -0.695 that yields a +0.076 error in the 
de-correlation estimation. (See Graphical Solution below)

Fig. (5.03)  For our data from 10 words, AOA was always 1-2 episodes before AOA, 
decorrelation in terms of motion between caegiver and child remained around -0.695 to -0.771
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5.3 Comments 

 For Evaluation, we took the captured VGVA interaction profile data from 5 words,

we fit a cubic polynomial and consider its minimum (Xmin,Ymin) to be our descriptive model, 

where Xmin is observed approximately one episode away from the time of AOA. Ymin is the 

estimated amount of ‘decorelation spectrum’ or degree of synchronization around that time. The 

model describes what happens when its minimum is encountered: observing AOA coming up 

within an episode (that is approximately a week).

The error rate is judged by taking a set of 5  new words, fitting another 3rd order test cubic 

polynomial, and comparing the test cubic with our allgined cubic model. This comparison yields 

an error rate of -1 episodes that is a week earlier from the time described on the the model curve. 
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6 Future Work 
 

 Our investigation’s methodology, along with the recovered phenomenology has the 

potential  to enable  new understandings of the effects of social context on language 

development. Following is a roadmap of possible research directions:

 In Section 3.5 during testing of live data, we observed very particular patterns; including 

synchrony and turn taking among body parts when an agent was exposed on VGVA and 

engaging in motion of “endogenous” causes. By endogenous we imply tasks that require micro-

muscles, head or eye sacades etc. Endogenous examples of motion  include: being  attentive to 

someone, or tracking something  (such as a fly), or reading. In contrast, when an agent was 

engaged in motion originating from ‘exogenous’ causes such as full body motion  or high jerk 

motion that is distributed towars the whole body, we observed discontinuous and   

desynchronized patterns among the Virtual Accelerometers. 

In particular, a plain visual inspection of the vector field, on the resulting optical flow tracklets 

can reveal the existence of major differences (see DVD videos). Tracks appear to be curly and 

continuous for the endogenous motion and sparse or discontinuous for the exogenous motion, 

with the differences being salient enough to characterize the two types of motion.  These kind of 

observations deserve great attention for future analysis and  experimentatal setups.

 We  aim to ground  on other kinds of stimulus, and apply VGVA on children with 

developmental disorders such as autism. The studies from [50] suggest a plain connection 
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between the Jerk motion scores and autism. This may be related with the live test - experiment 

described, where endogenous motion being related with attention, maybe playing a role in the 

autism spectrum as well. Designing appropriate experimental schemes related to these problems

is one of our priorities.

  Our so called Visually Grounded Virtual Accelerometer interface, was designed with the 

possibility to become fully automated in the future. The modular architecture of this sensory 

platform allows us to transform the interface and become fully automated. This could enable

automatic analysis in a longitudinal video producing possible longitudinal trends.

 The three features that we chose to perform motion analysis along with the optical flow 

swarm, are directly  related with the idea of flow dynamics. We are very interested to explore this 

space and attempt to assign meaning on other kinds of properties of a vector field such as 

vorticity, divergence while at the same time attempt to augment  more complex dynamical 

system representations taylored to our needs. Possibilities of vector field ‘grammars’ can now be 

imagined.

 On figure 3.20, if we look at the interaction profiles After AOA, for each word, we have 

observed a discontinuity in the rate of decorrelation curve upon or near to the  delivery of word

stimulus. This phenomenology was very salient especially after a word was learned. This kind of

discontinuity maybe similar with Kidron’s approach in ‘Pixles that sound’ [2005][34]  

and can afford serious investigation effort since it maybe relating with speech detection. We aim 

to proceed with more extensive analysis of this form and investigate what happens on the micro-

scale on the caregiver-child correlation rate  during delivery of a word stimulus. 
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