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ABSTRACT

The author presents a concept for a vertical axis wind turbine that utilizes each blade’s
entire rotational cycle for power generation. Each blade has its own vertical axis of rotation
and is constrained to rotate at the rate of one half of a revolution per full revolution of
the rotor. For a rotor of radius r and blades of width b, a technical analysis predicts a
theoretical maximum power coefficient of CP = b

2r+b , neglecting wind flow interference by
upwind blades. This theoretical power coefficient is generally greater than the efficiency of
a typical Savonius wind turbine (CP ≈ 0.15), and it reaches CP = 0.5 at the limiting blade
width, b = 2r. The analysis also predicts a static torque and optimal tip-speed ratio that
are both greater than those of a Savonius wind turbine with similar blade dimensions.

Design considerations for implementing the kinematic constraint and for blade adjustment to
account for changes in wind direction are discussed, and the author’s prototype is presented.
Testing of the prototype demonstrated that implementation of the kinematic constraint
is feasible, and that efficiencies greater than those achievable by a Savonius turbine are
plausible. In 4 m

s wind conditions, the prototype yielded an estimated CP of 0.15, with much
room for improvement through design changes and blade optimization in future iterations
of this style of turbine.

Thesis Supervisor: Sanjay E. Sarma
Title: Associate Professor of Mechanical Engineering.
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1 Introduction

Wind turbines and windmills have been in use for centuries for a variety of applications, and

there is a constant effort to modify and improve their design. This paper presents a concept,

analysis, and design of the authors idea for a drag-based vertical axis wind turbine that

utilizes each blade’s entire rotational cycle for power generation. This paper supplements

a mechanical prototype intended to demonstrate the kinematic constraints and mechanical

mechanisms required by this design.

1.1 Types of Wind Turbines

Most wind turbines can be classified according to two main attributes. The first is the method

of power generation; turbines are called lift-based or drag-based depending on their primary

source of propulsion. The second is the orientation of the axis of rotation of the turbine,

which can be horizontal (almost always parallel rather than transverse to the wind flow)

or vertical (transverse to the wind flow). Each combination of axis orientation and power

generation method has its own advantages and disadvantages, which are briefly discussed

here.

Lift-based wind turbines (especially horizontal turbines) are the most common turbine used

for large-scale power generation. They tend to have much-higher rotational speeds, which

reduces power loss when connecting a turbine to a generator. The relatively small surface

area of their narrow blades also gives lift-based turbines a fairly high power-to-weight ratio.

Drawbacks of lift-based turbines include the requirement of precise blade shaping and bal-

ancing, as well as (in the case of horizontal turbines) inefficiencies at small scale. Drag-based

turbines, on the other hand, are often preferred for applications that require direct applica-

tion of mechanical work (e.g. milling corn, for a windmill) because of the high rotor torque,

or for fulfilling small-scale power requirements. [7]

Horizontal axis turbines are often easier and more efficient to scale (by extending a tall,

vertical tower) than their vertical counterparts. Horizontal axis turbines also experience

little variable interference of the wind flow between blades, whereas with a vertical axis

turbine there is direct and unavoidable interference. Vertical turbines, however, are often

more easy to install and repair since their machinery for power generation is usually located
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at ground level, whereas horizontal axis turbines’ machinery is high off the ground at the

rotor’s center. [7]

Examples of these types of turbines include modern power-generating wind turbines (hori-

zontal, lift-based), 12th century European windmills (horizontal, drag-based), Darrieus wind

turbines (vertical, lift-based), and Savonius turbines (vertical, drag-based). A wealth of in-

formation is available for each of these types of turbines, but we will focus on discussing

some details of the vertical, drag-based, Savonius turbine as it relates most closely to the

wind turbine concept presented in this paper.

1.2 The Savonius Wind Turbine

wind flow

�F−
D

�F+
D

Figure 1: An S-shaped,
Savonius turbine. Positively
contributing drag forces
(F+

D ) outweigh negatively
contributing drag forces (F−

D )
to create a net positive torque
about the rotor center.

Perhaps the most prevalent vertical axis wind turbine is the

S-shaped, Savonius wind turbine. The Savonius turbine con-

sists of cupped blades that catch the wind to generate power

(see Fig. 1). Power generation is possible because of blade

geometry — the cupped blades have a higher drag coefficient

when moving with the wind than when moving against the

wind. The difference between the torque on the blades trav-

eling downwind and the blades traveling upwind gives the net

torque about the generator.

There are several important parameters that we will use to

characterize the ability of the Savonius turbine to generate

power (these will also be used to compare the new design to

the Savonius turbine). The first is tip speed ratio, λ, which is

defined as the ratio between a blade’s speed at its tip and the

faraway wind velocity. For a turbine of radius R, spinning at

angular rate ω, in a wind with faraway velocity v0, we have

λ =
Rω

v0
. (1)

We can also define a turbine’s efficiency, also known as its power coefficient, CP , as the

ratio between the power produced by the turbine and the power contained in the wind that

passes through the reaches of the turbine blades. If we define the swept area, AS as the
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cross-sectional area of the wind flow that the turbine blades pass through, then a turbine

that produces power P has efficiency

CP =
P

1
2ρASv30

, (2)

where ρ is the air density. A typical Savonius turbine achieves an efficiency of CP = 0.12

to 0.15 at a tip speed ratio of about λ = 0.7, [6, 9] but an optimized Savonius turbine,

studied both theoretically and empirically by Modi and Fernando, can reach a peak efficiency

of CP = 0.32 at a tip speed ratio of λ = 0.8. [6]

A turbine’s start-up wind velocity and static torque can also be important parameters. The

start-up wind speed is the lowest wind speed at which the turbine spins (if it is self-starting,

at all). This is typically on the order of a few meters per second, but depends heavily on

turbine design and construction. The static torque is the torque that the wind applies about

the rotor center when the rotor is fixed. The static torque is often a function of rotor angle,

and a high static torque often indicates a low start-up wind speed.

2 Literature Review

Many other variations of drag-based vertical axis turbines have been designed, prototyped,

and implemented for power generation. Documented in this section is prior research on

the two types of turbines that provided the main inspiration behind the author’s own de-

sign. Other vertical axis turbines that are similar in concept to the author’s design are also

discussed.

2.1 Swinging Blade Design

Several turbine designs have sought to eliminate the negative drag that acts on the blades

traveling upwind in a Savonius turbine. Many of these employ slatted, or “swinging” blades

that are constrained to trap wind during their downwind travel, but swing freely (and thereby

reduce or eliminate drag) during their upwind travel (see Fig. 2).
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wind flow

Figure 2: A modified depic-
tion of Reupke and Probert’s
slatted blade design. Blade
segments are free to swing
to reduce drag during upwind
travel. [8]

Tabassum and Probert investigated a slatted design and found

that the design increased startup torque by as much as 35 per-

cent over a standard Savonius wind turbine, and confirmed that

the net static torque on the rotor was positive for every rotor

orientation. [10]

Further investigation into the slatted design by Reupke and

Probert confirmed that this style turbine was self-starting, and

that it had a slightly higher optimal tip speed ratio (approx-

imately 0.8) than a typical Savonius turbine (approximately

0.7). This slatted design yielded a slightly greater torque than

a Savonius turbine at low speeds, but the centrifugal forces of

the swinging blades severely hurt the turbine’s efficiency at high

speeds. As a result, it’s peak power coefficient only reached

0.05, compared to 0.18 for a similarly constructed Savonius

turbine. [8]

2.2 Pitch Angle Adjusting Turbines

Hwang et. al. discuss a modification of a lift-based vertical turbine that varies the pitch of

its blades slightly as the turbine rotates. By optimizing the pitch angle based on the blade’s

position, the lift force is increased, and power generation increased by 30 percent over a

turbine with fixed pitch angles. [4]

2.3 Similar Concepts

The author has found that other individuals have attempted their own implementations of a

concept similar to his own. Unfortunately, the author did not identify these similar vertical

axis wind turbines until very late in the course of his research, largely due to their foreign

origin. Descriptions based on the author’s understanding of the projects is included for

completeness, and it is likely that the author’s own design could be improved upon through

feedback from these other attempts.
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A similar turbine created by French inventor Pierre Dieudonne consists of two levels of blades

with a similar kinematic constraint, but with the two levels rotating in opposite directions.

His website and videos are in French, and so the author’s understanding is almost entirely

from the images that Dieudonne provides. [2]

The author has also found limited information on a turbine recently produced by a Chinese

company, Jiangsu Wynch Corp., Ltd., that appears to employ a similar kinematic constraint.

This turbine is supported by a tall stand to reach a higher altitude, and has much narrower

blades than the author’s prototype. [5]

3 Concept

The purpose of the author’s drag-based vertical axis turbine design is to utilize the entire

rotational cycle of each blade for positive power contribution. Typical Savonius wind turbine

blades detract from the net torque on the rotor as they rotate into the wind; net positive

power generation is possible only because the drag coefficient of the blades in their downwind

orientation exceeds that of the blades in their upwind orientation. While other designs, such

as those that employ blade flaps, seek to essentially eliminate all forces on the turbine blades

during their upwind travel, the author’s design is more ambitious in that it seeks to utilize

this regime for positive power generation. The potential applications of this new design

are expected to be similar to that of Savonius turbines — small scale power and direct

mechanical work — but with several advantages as discussed in Section 3.3.

3.1 Blade Movement

To create positively contributing torque on each blade at every point throughout the tur-

bine’s rotation, the angle of each blade is continuously adjusted to attain a near-optimal

combination of drag and lift. The blade passes through four main phases as the turbine

rotates (see Fig. 3):

1. Blade moving parallel to wind — the blade face is roughly perpendicular to the wind

flow, and drag forces on the blade dominate.
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2. Blade moving perpendicular to wind, behind turbine axis — here, the blade is oriented

so that both lift and drag forces contribute positively to power generation.

3. Blade moving into wind — in this regime the blade is oriented to minimize drag, and

lift forces dominate and contribute positively to power generation.

4. Blade moving perpendicular to wind, in front of turbine axis — as in Phase 2, both

lift and drag forces act on the blade and contribute positively to power generation.

In the course of this movement, each turbine blade performs one half-rotation per full revo-

lution of the turbine. The key to this turbine design is this kinematic constraint: relative to

the inertial reference frame, each blade is constrained to rotate at a 1:2 ratio with respect

to the rotor.

Phase 1

Phase 2
Phase 3

Phase 4

wind flow

Figure 3: Depiction of several blade orientations as the turbine rotates. Drag forces (vertical force
vectors) on the blades contribute more heavily when the blade is moving with the wind, and lift
forces (horizontal force vectors) dominate when the blade is moving into the wind. The orientation
of the blade at each point results in a positively contributing torque on the rotor. (Note that small
frictional drag forces are neglected.)
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The implementation of this kinematic constraint is discussed in Section 5, and an analysis

of the drag and lift forces on the turbine blades is presented in Section 4.

3.2 Blade Angle Control

Because of the 1:2 ratio of blade to turbine rotation, the blade orientation is not independent

of wind direction. An integrated mechanism is required to either actively or passively orient

the blades, or the entire turbine, to account for a shift in wind direction. The design

of the prototype turbine incorporates a mechanical system that adjusts all blade angles

simultaneously so that each blade continues to square up as it is moving parallel to the wind

flow (see Section 5.3). Such a mechanical system could be either passively controlled (by a

weather vane, for instance) or actively controlled (by a sensor and actuator).

3.3 Advantages

The primary advantage of this design over most drag-based vertical axis wind turbines, like

the Savonius turbine and its variants, is that, through the harvesting of both lift and drag

forces, power is generated by every blade throughout the turbine’s entire rotation. This

design, therefore, is expected to be more efficient than a standard Savonius turbine or its

variants, as discussed in Section 4.3.

This type of turbine also decreases the horizontal reaction force required to support the tur-

bine when compared to a Savonius turbine. For a vertical axis wind turbine, the supporting

force is approximately equal to the sum of the lift and drag force vectors on the blades. Since

a Savonius turbine incurs both positive and negatively contributing drag forces on its blades,

a portion of these forces cancel each other out with respect to power generation, but combine

to increase the required reaction force. The new design, however, eliminates negative drag

forces, and thus reduces the required reaction force to support a turbine generating the same

amount of power.

There are several other advantages that this turbine design could have over typical vertical

axis wind turbines. While some vertical turbines are either not self-starting, or can only

self-start from certain rotational positions, a turbine of this design will be able to start from
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any position since every blade is always contributing positive torque. For the same reason,

this style of turbine is expected to have a higher static torque than a Savonius turbine (see

Section 4.2).

One drawback of most drag-based turbines is a low tip-speed. While this design does not

solve that issue by any means, this turbine’s theoretical optimal tip speed is slightly greater

than that of a Savonius turbine with similarly-dimensioned blades because, in this new

design, blades traveling into the wind are also generating power.

3.4 Disadvantages

As with most design alternatives, this vertical axis turbine design has drawbacks that need

to be weighed against its advantages. The most severe drawback is the added complexity

of the new design. The kinematic constraint requires more moving parts — the blades are

no longer fixed rigidly to the rotor — and this change eliminates much of the simplicity of

a Savonius turbine. This complexity will likely add to construction and maintenance costs,

and this tradeoff needs to be weighed against any gain in power-generation.

The kinematic constraint also requires a specific blade orientation at each rotational position,

meaning that, unlike a Savonius turbine, an adjustment needs to be made to account for

a change in wind direction. As previously mentioned, this is a solvable problem, but it is

another issue that increases the complexity of this style of turbine.

A danger of the added complexity is that it could actually hurt the overall performance of

this turbine relative to other vertical axis wind turbines. Additional moving parts create

additional friction surfaces that detract from power generation. The added weight from the

mechanical systems used to orient the blade could also decrease turbine efficiency.

Furthermore, since each blade rotates only one half of a revolution per full revolution of

the rotor, there is less freedom in blade design and optimization than with other vertical

axis wind turbines. Each blade must be 180◦ rotationally symmetric so that there is no

difference in drag or lift forces between consecutive rotations. If blades are rigid, then they

likely cannot be scooped as in an S-shaped Savonius turbine. This issue and alternative

blade designs are discussed further in Section 5.4.

13



And finally, this turbine is still a drag-based vertical axis turbine. While it may generate

more power than a Savonius turbine, it is still limited in its tip speed and power generation

when compared to lift-based, horizontal turbines. As with a Savonius turbine or any variant,

it’s applications are likely restricted to small-scale electric power generation or the direct

production of mechanical power.

4 Theoretical Analysis

The analysis performed in this section will assume thin, flat, and rigid turbine blades. Each

blade is assumed to pivot about a point that is a distance r from the center of the rotor,

and is kinematically constrained as discussed in Section 3.1 — each blade performs one half

of a rotation per full revolution of the rotor. For a given rotational position of the rotor, θ,

the flat blade makes an angle α with respect to its initial position (or more specifically, with

respect to a vector perpendicular to the wind flow vector, �v0). Because of the kinematic

constraint imposed on the blades, we necessarily have α = θ
2 . The majority of our analysis

will consider the blade that begins perpendicular to the wind when the rotor is at position

θ = 0 (see Fig. 4).

4.1 Lift and Drag Forces

Each blade has acting on it a lift force and a drag force, �FL and �FD , respectively, which

sum to a net force �Fnet = �FL + �FD (for this analysis we will neglect the smaller frictional

drag forces on the blades). We can define lift and drag coefficients, CL and CD, as

CL =
FL

1
2ρv

2
0A

and CD =
FD

1
2ρv

2
0A

, (3)

where ρ is the air density, v0 the faraway fluid velocity, and A the area of the blade face.

There exist numerous complex approximating curves for these drag and lift coefficients. For

this analysis, we will use a fairly simple approximation for the lift and drag coefficients on a

flat plate presented by Caplan and Gardner [1] due to its ease of manipulation. It is reason-

ably close enough to approximations presented by Hoerner and others for this analysis. [3]
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θ

�FD

�FL

r

�Fnet

θr

θ
2

�vb

�v0�v0

x̂

ŷ

α = θ
2

Figure 4: Lift and drag forces
acting on a blade yield a net
force approximately normal to
the blade face. The blade an-
gle, α is constrained to be half
the rotor angle θ.

Caplan and Gardner find that, for a flat plate,

CL = CLmax sin(2α) and CD = 2CLmax cos
2(α), (4)

with CLmax in the approximate range of 1.0 to 1.2 (we will

use CLmax = 1 in any calculations). These approximations,

and hence the majority of this analysis, ignore any flow-path

interference between blades. Section 4.4 briefly discusses this

assumption, but an actual dynamic flow path analysis is out-

side of the scope of this report. Note that with these approx-

imations for the lift and drag coefficients, we have

FL

FD
=

CL

CD
=

CLmax sin(2α)

2CLmax cos2(α)
= tanα. (5)

This result (typically expressed as FD
FL

= tan(π2 − α) for our definition of α) implies that the

net force on the blade, �Fnet , is approximately normal to the blade face.

4.2 Static Torque

When the turbine is stationary, each blade provides a net torque on the rotor equal to

Γ = FLr sin θ + FDr cos θ. (6)

Substituting in the expressions for the lift and drag forces from Equation (3), as well as for

the lift and drag coefficients of Equation (4) gives

Γ =
1

2
ρv20ArCLmax

�
sin(2α) sin(θ) + 2 cos2 α cos θ

�
. (7)

Substituting α = θ
2 into Equation (7) and simplifying gives

Γ =
1

2
ρv20ArCLmax (1 + cosθ) , (8)

which is an elegant approximation for the static torque generated by each blade at rotor

position θ. Noting that
�n−1

j=0 1+cos
�
θ + 2πj

n

�
= n for all θ, for n ≥ 2 , it follows that the ap-

proximate net torque on the rotor from any number of evenly-spaced blades, N ≥ 2, is
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Γ = N · 1
2
ρv20ArCLmax. (9)

Without flow interference from the upwind blades, static torque would increase linearly with

the number of blades, as well as with blade area and rotor radius, and would be independent

of rotor orientation (implying that the turbine should indeed be self-starting from any rotor

orientation).

4.3 Dynamic Analysis

When the turbine is in motion, we must take into account the effects of the rotor movement

on the lift and drag coefficients, as well as on the relative wind speed for each blade. As-

suming that the turbine is spinning an angular rate of θ̇ = ω, the center of each blade

is traveling at a speed vb = rω (see Fig 5). The velocity vector of the blade center

is �vb = −vb sin θx̂ + vb cos θŷ, and the relative wind velocity at the blade center, �vr, is

θ

�FD

�FL

r

�Fnet

θr

θ
2

�vb

�v0�v0

x̂

ŷ

α = θ
2

Figure 5: Blade movement
and coordinate system for dy-
namic analysis. The wind ve-
locity relative to the blade is
�vr = �v0 − �vb.

�vr = �v0 − �vb = vb sin θx̂+ (v0 − yb cos θ)ŷ. (10)

We will assume that this is the relative wind speed across

the whole blade — i.e. we will neglect the fact that the blade

is also rotating at a rate of ω
2 with respect to an inertial

reference frame. Although an imperfect assumption, it is

a more accurate than it would be in the case of a typical

Savonius turbine, where each blade is rotating at a rate of ω

with respect to an inertial reference frame.

This relative wind velocity gives both a new effective wind

speed and a new effective wind direction (and thus a new

effective α for calculating the lift and drag coefficients in

Equation 4). These are:

veff = |�vr| (11)

and

αeff =
θ

2
− (∠�vr − ∠�v0) , (12)

where we know ∠�v0 = π
2 .
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Figure 6: Torque on each
of four blades during rota-
tion, neglecting flow interfer-
ence, with a rotor-tip speed
ratio of k = 0.3. The first
blade, which is perpendicular
to the wind flow when θ = 0,
is highlighted for clarity.

At this point a symbolic analysis ceases to provide much insight, but plots generated by a

numerical analysis demonstrate the trends that we might expect. The torque on each of four

blades as a function of the rotor angle, θ, is plotted in Fig. 6 for a rotor-tip speed ratio of

k = 0.3 (explained in the next paragraph).

For this style of turbine, we can define a rotor-tip speed ratio, k, as

k =
vb
v0

=
rω

v0
. (13)

The rotor-tip speed ratio differs from the more traditional tip speed ratio, λ (defined in

Equation 1), in that the radius used is based on the blade’s center, and not on the blade’s

tip. The rotor-tip speed ratio can be related to the tip speed ratio by determining what the

tip speed of the rotor would be if it were extended to the tip of the blade at position θ = 0.

For a blade width b and rotor radius r, we have

λ = k ·
�
1 +

b

2r

�
= k · c (14)

where the constant c can range from 1 to 2, depending on the blade width. An intermediate

value of c = 1.5 (when b = r) is assumed for the torque and power calculations graphed

later. While λ is a more useful quantity for comparing this turbine’s tip speed ratio with

that of other turbines, k better allows us to plot torque and power curves not dependent on

blade width (when neglecting flow interference).
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The static torque on each blade (i.e. the torque when k = 0) as well as dynamic torque on

each blade (for k = 0.3 and 0.5) are plotted as functions of rotor angle, θ, in Figure 7a. Figure

7b shows turbine power as a function of rotor-tip speed, k. Given our initial assumptions,

we find that the turbine has a peak power output at k = 0.5, which corresponds to a tip

speed of λ = 0.75 when b = r (although this could be as large as λ = 1.0 for a turbine with

blades just wide enough to just reach the turbine center, b = 2r).
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(a) Torque vs. Rotor Angle
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(b) Power vs. Rotor-Tip Speed Ratio

Figure 7: (a) Torque as a function of rotor angle, θ, for several rotor-tip speed ratios, k. k = 0
represents the static torque on the rotor from each blade, and k = 0.5 is the case of optimal power
generation. (b) Power vs. rotor-tip speed ratio, with a clear peak at a rotor-tip speed ratio of
approximately k = 0.5. The relationship between k and tip speed ratio, λ, is given in Equation (14).

Given the assumptions above (e.g. no flow interference, and ignoring blade rotation), we can

evaluate the power coefficient, CP (defined in Equation 2), at the optimal rotor-tip speed

ratio. For a rotor radius r and a blade width b and height h, the swept area is conservatively

given as

AS = (2r + b)h. (15)

(This value for AS assumes that the turbine width is equal to the rotor diameter plus the

blade width, even though the blade tip never actually reaches a point r + b
2 away from the

turbine’s center during upwind travel.) Since the torque on each blade is proportional to its
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area, A = bh, we expect the power coefficient to be proportional to A
AS

= b
2r+b . Numerically

calculating the power produced given the dynamic movement of the blade shows that the

missing constant of proportionality happens to be 1.00, so we have

CP =
b

2r + b
=

b
r

2 + b
r

. (16)

The theoretical power coefficient, therefore, depends only on the ratio of blade width to

rotor radius. This ratio ranges from 0 (b = 0) to 2 (b = 2r), and so CP can range from 0 to

0.50, although for values of b
r close to 2, flow interference will likely have a significant effect,

and would reduce CP from this theoretical value. For b = r, the turbine still achieves a

theoretical efficiency of 0.33, on par with the most optimized Savonius turbines (see Section

1.2).

4.4 Flow Interference

It is beyond the scope of this analysis to attempt to accurately predict the dynamic inter-

ference that the blades effect on the wind flow. It is probably possible to approximate the

effect of the interference on the forces on each blade as a function of θ, v0, and k, as well as

blade geometry, and then modify the torque and power outputs accordingly. At this point,

however, any selection of such a function would be arbitrary and would lend no additional

insight.

A rudimentary 2-dimensional flow analysis in the static case at rotor position θ = 0 was

performed for v0 = 4 m
s and b = r = 0.5 m, and is shown in Fig. 8. The flow paths

qualitatively suggest that, while the wind energy is certainly reduced by the time it hits the

rear blade, it is not by any means eliminated. Interference effects might be further mitigated

when the rotor is spinning, since the relative wind speed, |�vr|, tends to be less than v0 for

the interfering blades.
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Figure 8: Qualitative flow analysis for a static rotor at position θ = 0, with a wind speed of
v0 = 4 m

s and turbine geometry b = r = 0.5 m. Thick lines indicate flow paths, and blank voids
indicate blade wakes. While some flow interference does occur, significant drag and lift forces will
still be applied to the rear blade.

5 Design and Prototype

A large component of this project was the design and construction of a prototype version of

this wind turbine. The primary purpose of the prototype was to demonstrate viable imple-

mentations of the kinematic constraint on the blade rotation and blade angle adjustment.

Future goals include optimizing the turbine design, more precisely measuring its performance,

and comparing its performance to that of a Savonius turbine.

This section explains the key design elements of the prototype, discusses challenges relating to

any implementation of this turbine concept, and gives results from preliminary testing.
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5.1 Machine Design

The prototype design (Fig. 9a) consists of three main assemblies (Fig. 9c): a central shaft

that is used to constrain blade angles (Section 5.2); a rotor assembly that supports the central

shaft through angular contact bearings and also supports the blades; and a base assembly

that supports the rotor and that would hold the machinery and electronics required for power

generation and blade control (Section 5.3).

The prototype turbine had a rotor radius of r = 0.38 m, a blade width of b = 0.30 m, and a

blade height of h = 0.48 m.

5.2 Kinematic Constraint Implementation

Elegantly implementing the required kinematic constraint between the blade and rotor rota-

tion was the most difficult task from a design standpoint. The prototype uses a chain-driven

system, in which gears on a central shaft (concentric and interior to the rotor) are linked to

larger gears on the blade axles (see Fig. 9b). A gear ratio between the central and satellite

gears of 1:2 creates the required kinematic constraint. During normal operation, the cen-

tral shaft is held fixed (relative to the ground). Each rotation of the rotor results in a half

rotation of each satellite gear, and thus a half rotation of each blade, as required.

5.3 Blade Angle Control

The 1:2 gear ratio between the central gear and satellite gears, described above, greatly

simplifies the issue of adjusting the angles of the blades to account for a change in wind

direction. In fact, if the wind direction shifts by an angle β, then the central gears need only

be rotated by the same angle β and in the same direction as the wind change. Due to the

wind shift, the new rotor angle is

θ� = θ − β, (17)

and due to the central gear adjustment the new blade angle is

α� = α− β

2
=

θ�

2
. (18)
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(a) Isometric View (b) Top View

Rotor Assembly

Base Assembly

Central Shaft

Chains, to Blades

(c) Cross Section

Figure 9: (a) An isometric view of the turbine solid model. (b) A top view demonstrates the
1:2 gear ratio between the central and satellite gears. (c) The three main assemblies — the central
shaft (dark green), rotor (tan), and base (red) — are shown in cross-section.
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Because the new blade angle, α�, is still half the new rotor angle, θ�, with respect to the new

wind direction, the kinematic constraint is maintained.

Control of the central shaft for adjusting the blade angle can be passive or active. In a passive

system, the central shaft could be directly driven by a wind vane. In an active system, a

sensor would detect a change in wind direction and a control system would drive a motor

to adjust the central shaft orientation. The passive system provides simplicity, while the

active system could protect against the central shaft being back driven by the geared system

(through the introduction of a worm gear or otherwise). In the author’s prototype, a manual

adjustment system sufficed, since a fan was the only tested wind source. The prototype has

the capability to be upgraded to an actively controlled system.

5.4 Blade Design

Because each blade makes only one half of a rotation per full revolution of the rotor, there

exists an additional constraint that blades need to be symmetric about their axis under

180-degree rotation. For a rigid blade, this effectively eliminates the option of a “scooped”

blade design found on most Savonius turbines. Blades can be aerodynamically formed to

minimize form drag during upwind travel, as long as they maintain the required rotational

symmetry. For the author’s prototype, flat, reinforced, foam blades were used due to their

ease of construction.

Alternatively, blades could employ a fabric that acts as a sail, creating a shallow bucket

during downwind travel and falling slack during a portion of the upwind travel (and gener-

ating no power during this interval). Advantages of this blade type would include a reduced

blade weight and a potentially larger downwind drag coefficient. If pursuing this design, care

would have to be taken to not suffer the same pitfalls as slatted blade designs discussed in

Section 2.1, namely, loss of efficiency due to centrifugal forces on under-constrained blade

elements.

The prototype was designed so that blades can be switched out easily for future testing

of different designs for blade optimization (see Section 6.1). The author was only able to

construct one set of blades during the course of this project, and was therefore unable to

test different blade designs.
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5.5 Testing

Initial (and hardly comprehensive) testing was performed by placing the prototype turbine

downwind of a large fan in a hallway (Fig. 10). The turbine had a start-up wind speed of

below 1.5 m
s . At an approximate wind speed of 4 m

s , and with a rotor position of θ = 0, the

rotor provided a static torque of approximately 0.8 Nm. With no load, the turbine reached

a rotational rate of ω = 70 rpm.

No machinery for power generation was set up, but interpolating from static torque and

no-load speed gives a theoretical power of about 2.9 W, or an efficiency of CP = 0.15, before

any losses due to power conversion (this is about half of the theoretical efficiency of 0.29,

calculated as in Equation 16). While these measurements are very approximate (accurate

to at best 30 percent), they indicate the feasibility of achieving high performance with this

style turbine. More extensive testing remains to be performed to refine these measurements,

and design optimization performed to improve efficiency.

During testing, at 70 rpm the turbine experienced no noticeable wobbling, but the blades

leaned backwards significantly during transverse and downwind travel due to drag forces. A

combination of stiffer blades and a constraint on the tops of the blades is likely required to

remedy this issue.

(a) Stationary prototype turbine (b) Turbine during testing

Figure 10: Prototype turbine, stationary and during testing. In a wind speed of 4 m
s , the static

torque was about 0.8 Nm and the no-load speed 70 rpm. At this speed, drag forces on the blades
caused them to lean backwards significantly.
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6 Conclusions

The technical analysis of Section 4 demonstrated that this type of turbine is capable of higher

efficiencies (Equation 16), slightly higher optimal tip speed ratios (Equation 14), and high

static torque (Equation 9) than a typical Savonius Turbine. These increases in performance

come at an increase in mechanical complexity, as discussed in Section 5. These tradeoffs,

therefore, need to be weighed, and it is likely that this style turbine is most applicable for

small scale power generation or mechanical work production, where a small turbine footprint

(high efficiency) is required.

Initial testing demonstrated that achieving an efficiency relatively close to the theoretical

target presented in Section 4.3 is plausible, and extensive testing should be performed on this

prototype to verify the preliminary results presented in Section 5.5. To achieve efficiencies

closer to the theoretical values, there remains much optimization to be performed on this

prototype, discussed in the next section.

6.1 Optimization

There is plenty of room for improvement through future optimization of this design. The

size and weight of the prototype rotor assembly were largely driven by economical bearing

selection, and so a second generation prototype could significantly reduce rotor inertia and

bearing friction. Stiffening and constraining the tops of the turbine blades is also expected

to improve efficiency significantly.

Blade style, shape, and dimensions should also undergo extensive testing and optimization.

Different blade concepts (e.g. rigid or sail-like, as discussed in Section 5.4) can be considered,

and the parameters for each design should be optimized (blade width vs. rotor radius, blade

height, etc.).
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