LAMINAR BURNING VELOCITY OF MIXTURES OF AIR

WITH INDOLENE, ISOOCTANE, METHANOL AND PROPANE

by

Mohamad Metghalchi

B.S., Oklahoma University (1975)

M.S., Massachusetts Institute of Technology (1977)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1980

Signature of Author.. Department of Mechanical Engineering September 28, 1979

Certified by....James C. Keck

Thesis Supervisor

Accepted by......Warren M. Rohsenow

Chairman, Department Chairman

ARCHIVES MASSACHUGETTS INSTITUTE OF TECHNOLOGY

APR 1 8 1980

LIBRARIES

LAMINAR BURNING VELOCITY OF MIXTURES OF AIR

WITH INDOLENE, ISOOCTANE, METHANOL AND PROPANE

by

Mohamad Metghalchi

Submitted to the Department of Mechanical Engineering on October 1, 1979, in partial fulfillment of the requirements for the degree of Doctor of Science.

ABSTRACT

A facility for measuring the laminar burning velocity of fuel-airresidual gas mixtures has been constructed. It consists of a spherical combustion bomb in an oven which can be heated up to 500 K. The bomb is equipped with ionization probes to measure the arrival time of the flame at the wall and check the spherical symmetry of flame, a piezoelectric pressure transducer to measure pressure during the combustion process, and a balanced pressure indicator to calibrate the transducer. A laser shadowgraph system was used to measure the arrival time of the flame front at a known radius, and also to check the assumption of negligible pre-flame reaction.

A thermodynamic analysis was used to calculate laminar burning velocities from the pressure time history obtained during the combustion process. The burned gas properties were computed using an equilibrium assumption for the burned gas, and the unburned gas properties were computed using thermodynamic data from JANAF tables and assumption of frozen composition.

Laminar burning velocities of propane-air, isooctane-air, methanolair, and a multicomponent hydrocarbon fuel similar to commercial gasoline (indolene)-air mixtures were measured in the pressure range of 0.4 to 40 atm and temperature range 298 to 750 K for fuel-air equivalence ratios from 0.8 to 1.5. The results are presented graphically and fitted to power law and exponential relations.

In addition, the effects of residual gases on the laminar burning velocity of stoichiometric isooctane-air mixtures were studied. The residual gases were simulated by a mixture of carbon dioxide in nitrogen (15% V/V with residual fraction of 10 and 20 percent by mass were used). The autoignition of end gases for isooctane-air mixtures were observed, and corresponding thermodynamic states are reported.

Thesis Supervisor: James A. Keck Title: Ford Professor of Engineering

ACKNOWLEDGMENT

It is my extreme pleasure to thank Professor James C. Keck for his guidance, patience, encouragement and inspiration that he provided generously during the entire course of this work. It has been my great privilege to work with him.

Other members of the thesis committee, Professors John B. Heywood, James A. Fay, Adel F. Sarofim, and Dr. Dirk Appel are also sincerely thanked for their valuable help both in private consultation and in committee meetings.

The author would like to thank Mr. Bob Dezmelyk and Professor William Unkel for invaluable assistance with the construction and installation of the on-line computer used in this work.

Next, I must thank Mr. Fee Yee, our Assistant Engineer in the Energy and Chemical Dynamics Laboratory for his assistance with the bomb hardware and electronics.

My next thanks goes to Mr. Mark Sellnau for his assistance in setting up the experimental facility.

Appreciation is also expressed to Ms. Sandra Williams for her excellent effort in typing this thesis.

Particularly, I would like to thank my wife, Flora for her understanding, patience, and sacrifices during the past two years. Sincere thanks also to my parents, my sisters, and my brothers for their constant encouragement, and most importantly, their unfailing moral support. This research was supported by General Motors Corporation, the Army Research Office, and the National Science Foundation.

DEDICATED TO

MY WIFE, FLORA METGHALCHI,

and

KAZEM and KHORSHID METGHALCHI

TABLE OF CONTENTS

	Page
Abstract	2
Acknowledgements	3
Table of Contents	6
List of Tables	8
List of Figures	10
CHAPTER 1 - INTRODUCTION	14
CHAPTER 2 – LAMINAR FLAME PROPAGATION	17
2.1 Theoretical Approaches	17
2.2 Experimental Approaches	22
2.2.1 Tube Method	22
2.2.2 Bunsen Burner Method	23
2.2.3 Flat Flame Burner	23
2.2.4 Soap Bubble Method	24
2.2.5 Constant Volume Combustion Bomb	25
CHAPTER 3 – EXPERIMENTAL APPARATUS	27
3.1 Combustion Bomb	27
3.2 Gas and Fuel Manifold	27
3.3 Electrodes and Ignition System	28
3.4 Dynamic Pressure Measurement	28
3.5 Ionization Probes	29
3.6 Laser Shadowgraph	30
3.7 Data Recording Equipment	30
CHAPTER 4 - EXPERIMENTAL PROCEDURE	32
CHAPTER 5 - ANALYSIS OF DATA	35

7	DACE
	43
6] Miving Time	40
6.2 Decemptoria Fit of Massured Pumping Valacity	т. Т. ДД
6.2 Parametric rit or measured burning verocity	44
6.3 Propane-Air Mixtures	40
6.4 Isooctane-Air Mixtures	49
6.5 Methanol-Air Mixtures	55
6.6 RMFD 303-Air Mixtures	57
6.7 Comparison of Values of Burning Velocity for Different Fuel-Air Mixtures	60
CHAPTER 7 - CONCLUSIONS AND SUGGESTIONS	61
REFERENCES	63
APPENDIX A - LIQUID FUEL INJECTION	126
APPENDIX B - CONSERVATION EQUATIONS	130
APPENDIX C - DISPLACEMENT THICKNESS	135
APPENDIX D - THE FRACTION ERROR IN X INTRODUCED BY USING AVERAGE BURNED GAS TEMPERATURE TO CALCULATE BURNED GAS PROPERTIES	144
APPENDIX E - FUEL THERMODYNAMICS PROPERTIES	148
APPENDIX F - CONSTANT ENTHALPY COMBUSTION	152
APPENDIX G - DERIVATIVE OF X WITH RESPECT TO PRESSURE	154
APPENDIX H - RESIDUAL GASES SIMULATION	157
APPENDIX I – COMPUTER PROGRAMS	159

LIST OF TABLES

TABLES	TITLE	PAGE
I	The calculation procedure for laminar burning velocity from the pressure-time history obtained during the combustion process	67
2	Reproducibility of data	68
3	Parameters $S_{uo}^{}$, α , β , and $\delta_5^{}$ used in the power law relation for propane-air mixtures as a function of the equivalence ratio	69
4	Parameters A, β , E, and δ_5 used in the exponential relation for propane-air mixtures as a function of the equivalence ratio	70
5	Parameters A, β , and E used in the exponential relation for propane-air mixtures as a function of the equivalence ratio calculated by Lavoi [27]	71
6	Comparison of laminar burning velocity of propane-air mixtures at l atm pressure and 311 K temperature as a function of the equivalence ratio with Kuehl's measurements	72
7	Parameters $S_{uo}^{}$, α , β , and $\delta_5^{}$ used in the power law relation for isooctane-air mixtures as a function of the equivalence ratio	73
. 8	Parameters A, β , E, and δ_5 used in the exponential relation for isooctane-air mixtures as a function of the equivalence ratio	74
9	Parameters $S_{uo}^{}$, α , β , and $\delta_5^{}$ used in the power law relation for stoichiometric isooctane-air mixtures as a function of the residual fraction	75
10	Values of pressures and temperature for iso- octane-air mixtures at which autoignition occurred as a function of the equivalence ratio	76

TABLES	TITLE	PAGE
11	Pressure and temperature history of the combustion process of isooctane-air mixtures, $_{\phi}\text{=0.8}$, in which autoignition occurred	77
12	Pressure and temperature history of the combustion process of stoichiometric iso- octane-air mixture in which autoignition occurred	78
13	Pressure and temperature history of the combustion process of isooctane-air mixtures, $\phi=$ 1.2, in which autoignition occurred	79
14	Parameters $S_{\mu\rho}$, α , β , and δ_5 used in the	
	power law relation for methanol-air mixtures as a function of the equivalence ratio	80
15	Parameters A, β , E, and δ_5 used in the	
	exponential relation for methanol-air mixtures as a function of the equivalence ratio	81
16	Comparison of laminar burning velocity of methanol-air mixtures at l atm pressure and 375 K temperature as a function of the equivalence ratio with the measurements reported by Gibbs and Calcoate	82
17	Physical properties and chemical analysis of RMFD 303 (Indolene)	83
18	Parameters $S_{uo}^{}$, α , β , and $\delta_5^{}$ used in the power law relation for RMFD 303-air mixtures as a function of the equivalence ratio	84
19	Parameters A, β , E and δ_5 used in the exponen-	
	tial relation for RMFD 303-air mixtures as a function of the equivalence ratio	85
20	Parameters $S_{\mu\rho}^{}$, α , and β used in the power law	
	relation for mixtures of air with Indolene (RMFD 303), isooctane, methanol, and propane as a function of the equivalence ratio	86

LIST OF FIGURES

FIGURE	TITLE	PAGE
1	Schematic Diagram of the Combustion Bomb	87
2	Gas and Fuel Handling System	88
3	Fuel Injection System	89
.4	Schematic Diagram of the Spark Plug with its Extended Electrode	90
5	Electrical Circuit for Ignition System	91
6	Schematic Diagram of the Balanced-Pressure Indicator	92
7	Electrical Circuit Used with Balanced- Pressure Indicator and Tecktronic 565 Scope	93
8	Schematic Diagrams Showing Construction of Ionization Probes	94
9	Schematic Diagram of Ionization Probe Circuit	95
10	Schematic Diagram of Laser System	96
11	Schematic Diagram of Window	97
12	Data Handling and Processing Equipments	98
13	A Typical Oscillogram for Stoichiometric Propane-Air Mixture	99
14	The Relationship Between the Temperature Distributions in the Fuel Air Mixtures as a Function of Mass Fraction Burned	100
15	Displacement Thickness (δ) and $\gamma_b p \frac{d\delta}{dp}$ as a Func-	
	tion of Normalized Pressure for Stoichiometric Propane-Air Mixtures with Initial Atmospheric Pressure and Initial Temperature of 298 K	101

Т	T	т	Ŀ	F
	*		6	L.

FIGURE	TITLE	PAGE
16	Time Deviation of the Ionization Probe Pulses from the Mean Time (t _i - t) as a Function of Waiting Time	102
17a	Difference of the Time When Peak Pressure Occurred and the Mean Time of the Ionization Probe Pulses as a Function of Waiting Time	103
17Б	The Ratio of the Pressure Inside the Combustion Bomb at the Average Arrival Time of the Flame for Three Ionization Probes to the Maximum Pressure as a Function of the Waiting Time	103
18	Laminar Burning Velocity of Stoichiometric Propane-Air Mixture having Atmospheric Initial Condition for Four Identical Runs	104
19	Laminar Burning Velocity for Stoichiometric Propane-Air Mixtures	105
20	Laminar Burning Velocity of Propane-Air Mixtures at Equivalence Ratios of 0.8, 1.0, and 1.2	106
21	Laminar Burning Velocity of Propane-Air Mixtures at Atmospheric Condition as a Function of Equivalence Ratio	107
22	Comparison of Measured Laminar Burning Velocity for Propane-Air Mixtures with Those Reported by Kuehl [28]	108
23	Comparison of Measured Laminar Burning Velocity for Propane-Air Mixtures with Those Reported by Ryan and Lestz [22]	109
24	Laminar Burning Velocity of Isooctane-Air Mixtures at Equivalence Ratios of 0.8, 1.0, and 1.2	110
25	Laminar Burning Velocity of Isooctane-Air Mixtures at Atmospheric Condition as a Function of Equivalence Ratio	111
26	Laminar Burning Velocity of Stochiometric Isooctane-Air Mixtures with Three Different Residual Fractions of f=0, f=0.10, and f=0.20 as a Function of Unburned Gas Temperature	112

PAGE

FIGURE	TITLE	PAGE
27	Laminar Burning Velocity of Isooctane-Air Mixtures having Residual Fractions of f=0.10 and f=0.20 Normalized with Respect to the Burning Velocity with No Diluent as a Function of Unburned Gas Temperature	113
28	Oscillogram for Stoichiometric Isooctane- Air Mixtures with Initial Pressure of 15.1 atm and Initial Temperature of 500 K in which Autoignition Occurred.	114
29	Comparison of Measured Laminar Burning Velocity for Isooctane-Air Mixtures with Those Reported by Heimel and Weast [35] and Duggar and Graab [34]	115
30	Comparison of Measured Laminar Burning Velocity for Isooctane-Air Mixtures with Those Reported by Ryan and Lestz [22] and Babkin and Kozachenko [37]	116
31	Laminar Burning Velocity of Methanol-Air Mixtures at Equivalence Ratios of 0.8, 1.0, and 1.2	117
32	Laminar Burning Velocity of Methanol-Air Mixtures at Atmospheric Condition as a Function of Equivalence Ratio	118
33	Comparison of Measured Laminar Burning Velocity for Methanol-Air Mixtures with Those Reported by Ryan and Lestz [22]	119
34	Comparison of Measured Laminar Burning Velocity for Methanol-Air Mixtures with Those Reported by Gibbs and Calcoate [38] and Wiser and Hill [39]	120
35	Ratio of Measured Pressure to Calculated Pressure in the Manifold for RMFD 303 (Indolene) as a Function of Calculated Pressure for Two Temperatures of 300 K and 350 K	121
36	Laminar Burning Velocity of RMFD 303 (Indolene)- Air Mixtures at Atmospheric Condition as a Function of Equivalence Ratio	122

.

TITLE	PAGE
Laminar Burning Velocity of RMFD 303 (Indolene)- Air Mixtures at Equivalence Ratio of 0.8, 1.0, and 1.2	123
Laminar Burning Velocity of RMFD 303 (Indolene)- Air Mixtures at 1 atm Pressure and 350 K Tempera- ture as a Function of Equivalence Ratio	124
Parameters $S_{uo}^{}$, α , and β for Mixtures of Air with Indolene (RMFD 303), Isooctane, Methanol, and Propane as a Function of the Equivalence Ratio	125
Ratio of Measured Pressure to Calculated Pressure in the System for Isooctane, Toluene, and Benzene as a Function of Calculated Pressure at Room Temperature	128
Ratio of Measured Pressure to Calculated Pressure in the System Consisting of the Combustion Bomb and Mercury Manometer Beneath the Oven for RMFD 303 and Isooctane as a Function of Calculated Pressure at Room Temperature	129
Specific Heat at Constant Pressure for Residual Gases and Different Mixtures of Nitrogen and Carbon Dioxide as a Function of Temperature	158
A Typical Computer Result Showing Laminar Burning Velocity as a Function of Measured Pressure for Methanol-Air Mixture of Equivalence Ratio of 1.2 with Initial Pressure of 1 Atm and Initial Temperature of 298 K	183
	TITLE Laminar Burning Velocity of RMFD 303 (Indolene)-Air Mixtures at Equivalence Ratio of 0.8, 1.0, and 1.2 Laminar Burning Velocity of RMFD 303 (Indolene)-Air Mixtures at 1 atm Pressure and 350 K Temperature as a Function of Equivalence Ratio Parameters S _{uo} , α, and β for Mixtures of Air with Indolene (RMFD 303), Isooctane, Methanol, and Propane as a Function of the Equivalence Ratio Ratio of Measured Pressure to Calculated Pressure in the System for Isooctane, Toluene, and Benzene as a Function of Calculated Pressure at Room Temperature Ratio of Measured Pressure to Calculated Pressure in the System Consisting of the Combustion Bomb and Mercury Manometer Beneath the Oven for RMFD 303 and Isooctane as a Function of Calculated Pressure at Room Temperature Specific Heat at Constant Pressure for Residual Gases and Different Mixtures of Nitrogen and Carbon Dioxide as a Function of Temperature A Typical Computer Result Showing Laminar Burning Velocity as a Function of Measured Pressure of I Atm and Initial Temperature of 298 K

CHAPTER 1

INTRODUCTION

The laminar combustion properties of fuels at high pressures and temperatures are of fundamental importance for analyzing and predicting the performance of internal combustion engines and power plants. Of practical interest is the laminar burning velocity, which is also called normal combustion velocity, flame velocity, or laminar flame speed. The laminar burning velocity is a physicochemical constant for a given combustible mixture, and is defined as the velocity, relative to the unburned gas, at which a plane flame front propagates into the mixture.

As a result of recent analyses carried out in connection with efforts to improve the efficiency and reduce the pollutants of automotive engines and burners, the importance of laminar flame speed data has become more evident. Among the parameters related to laminar flame speed are:

The thickness of the wall quench layers that are a primary source of unburned hydrocarbons and carbon monoxide [1], [2].

The minimum ignition energy required to ignite the charge. This in turn affects the range of equivalence ratios over which an engine can be operated [3], [4].

In addition the laminar flame speed is an important parameter in various turbulent combustion models [5] - [7] and can be used in con-

junction with basic combustion models to deduce activation energies and reaction rates.

At the present time there is only limited information about the laminar burning velocities of different fuel-air mixtures; this information is mainly for gaseous fuel at low temperatures and pressures. There is very little information for liquid fuels at the high temperatures and pressures of importance for practical engines and burners.

This thesis is concerned with experimental and analytical work using a heated spherical constant-volume combustion bomb to measure the laminar burning velocities of several practical fuel-air mixtures at different equivalence ratios, temperatures, and pressures encountered in internal combustion engines and burners. The fuels studied were propane, isooctance, methanol and an unleaded multi-component hydrocarbon fuel similar to commercial gasoline.

In the approach taken here, the pressure record is the primary measurement. A thermodynamic analysis of the pressure-time data was performed to calculate laminar burning velocity as a function of temperature, pressure and equivalence ratio. The effect of residual gases on the flame speed for isooctance-air mixtures was also studied and the spontaneous ignition limits for isooctance-air mixtures was determined.

Chapter 2 discusses thermal, diffusion, and comprehensive theories for calculating laminar burning velocity as well as different types of experimental approaches to the problem. Chapters 3 and 4 describe the experimental apparatus used in this study and the experimental procedure

for laminar burning velocity measurement. Analysis of the data is discussed in Chapter 5. Chapter 6 contains the experimental results and the laminar burning velocities for different fuel-air mixtures. Conclusion and suggestions for further work are offered in Chapter 7.

CHAPTER 2

Laminar flame propagation has been the subject of interest of many scientists and has been studied for over a century. Some researchers have studied the subject from a theoretical point of view while others have tried to understand this phenomenon by using an experimental approach to the measurement of laminar flame speed.

2.1 Theoretical Approaches

There are three theoretical approaches to laminar flame propagation: a) thermal theories, b) diffusion theories, and c) comprehensive theories.

The problem of determining the propagation velocity of a deflagration wave was first studied by Mallard and LeChatelier [8], who employed the thermal theory. They assumed that the flame consists of a preheat zone and a reaction zone and that the heat conducted from the reaction zone is the amount necessary to bring the unburned gases to the ignition temperature. With this postulation the energy equation becomes

$$\hat{m} C_{p}(T_{i} - T_{u}) = k(T_{f} - T_{i})/\delta$$
(1)

where

k = thermal conductivity
C = specific heat at constant pressure
δ = thickness of the reaction zone

 \dot{m} = mass flow rate of combustible mixture into the flame T_u = unburned gas temperature T_i = ignition temperature T_f = flame temperature

By substituting $\rho_{u}S_{u}$, where ρ_{u} is the unburned gas density and S_{u} is the laminar burning velocity, for \mathring{m} for a unit area Mallard and LeChatelier derived the following relation for laminar burning velocity

$$S_{u} = \frac{k}{\rho_{u}C_{p}} \frac{T_{f} - T_{i}}{T_{i} - T_{u}} \frac{1}{\delta}$$
(2)

By relating the thickness of the reaction zone to reaction time and reaction rate they came to the conclusion that laminar flame speed is proportional to the square root of the reaction rate.

Zeldovich, Frank-Kamenetski, and Semenov later improved the thermal theory of laminar flame propagation [9]. They included the diffusion of molecules as well as of heat but not that of free radicals or atoms. They derived the following relation for laminar flame speed

$$S_{u} = \left[(2k/\rho_{u}C_{p})(1/(T_{f} - T_{u})) \right]^{1/2}$$
(3)

where

$$I = \frac{1}{a_0} \int_{T_u}^{t_0} \int_{\omega}^{t_0} dT$$
 (4)

 a_0 = number of mole of reactant per volume ω = reaction rate

$\omega = Z \exp(-E/RT)$

Z = pre-exponential term in the Arrhenius expression

(5)

E = activation energy

R = universal gas constant

In this theory it was assumed that the total number of moles of mixture did not vary during the reaction and that the Lewis number was 1. Later Zeldovich et al. removed those restrictions and derived the following relation for laminar flame speed for a first order reaction [10]

$$S_{u} = \left[\frac{2k_{f}C_{pf}Z}{\rho_{0}C_{p}} \left(\frac{T_{u}}{T_{f}}\right) \left(\frac{n_{r}}{n_{p}}\right) (Le) \left(\frac{R T_{f}^{2}}{E}\right) \frac{\exp(-E/RT_{f})}{(T_{f}-T_{u})}\right]$$
(6)

where

 k_f = thermal conductivity evaluated at T_f C_{pf} = specific heat evaluated at T_f \overline{C}_p = average specific heat between T_u and T_f n_r/n_p = ratio of the number of moles of reactants to products Le = Lewis number = $k/\rho DC_p$ D = diffusivity

VonKarman and Millan [11] also solved the mass, momentum, and energy equations neglecting diffusion and derived an integral relation for flame speed measurement.

The diffusion theory was used by Tanford and Pease [12]. They suggested that the diffusion of active particles from the flame front is the controlling factor in combustion, and they derived the following relation for laminar flame speed

$$S_{u} = \left[\sum_{i} \frac{k_{i} C_{x} C_{i} D_{i}}{Q_{B_{i}}}\right]^{1/2}$$
(7)

where

- k = rate constant appropriate to the ith active species
 C = concentration of combustible
- D_i = diffusion coefficient of the active particle into unburned gas
 - Q = mole fraction of potential combustion product
- B = a factor usually close to unity, which corrects for the loss of radicals due to chemical processes.
- x = calculated equilibrium mole fraction at the
 flame front

Many investigators have developed comprehensive theories of laminar flame propagation. The equations that describe a deflagration wave can be summarized as follows [8]:

Conservation of mass:

$$\rho \mathbf{v} = \mathbf{m} = \text{constant} \tag{8}$$

$$d \varepsilon_i / dx = \omega_i / m \tag{9}$$

Conservation of momentum

$$\rho v^2 + p - \left(\frac{4}{3}\mu + \kappa\right) dv/dx = \text{constant}$$
(10)

Diffusion equation

$$\frac{dX_{i}}{dx} = \left(\frac{m}{\rho}\right) \sum_{j=1}^{n} \frac{x_{i}x_{j}}{D_{ij}} \left(\frac{\varepsilon_{j}}{Y_{j}} - \frac{\varepsilon_{i}}{Y_{i}}\right)$$
(11)

Conservation of energy

$$m\left(\sum_{i=1}^{N} h_{i}\varepsilon_{i} + \frac{v^{2}}{2} - K \frac{dt}{dx} - \left(\frac{4}{3}\mu + \kappa\right)v \frac{dv}{dx}\right)$$
(12)

= constant

where:

v = velocity of gas mixture X_i = mole fraction of species i Y_i = mass fraction of species i ω_i = rate of production of species i by chemical reaction µ = coefficient of (shear) viscosity κ = bulk viscosity coefficient K = thermal conductivity ε_i = $\rho Y_i (v + V_i) / \rho v$ is the mass flux fraction of chemical species i V_i = diffusion velocity of species i D_{ij} = binary diffusion coefficient for species i and j. Hirschfelder et al. [13] were among the first investigators who tried to include both thermal and diffusion theories. In order to solve the set of nonlinear equations, Hirschfelder had to assume heat sink boundary conditions on the cold side. Von Karman and Penner [14] later simplified the governing equations (Eqs. (9) through (13)) by introducing the fact that the eigenvalue solution of the equations is the same for all ignition temperatures whether it be near T_f or not.

Since then many investigators have solved the governing equations for laminar flame propagation using various assumptions [8]. These solutions can not be used for complicated fuel where much essential information such as reaction rates, multicomponent diffusion coefficients, and diffusion velocity are not available to date. Because it is not yet possible to calculate the laminar flame speed of different fuel oxidant mixtures, it must be determined experimentally.

2.2 Experimental Approaches

2.2.1 Tube Method

In this method a tube is closed at one end and the gas is ignited at the open end. The combustion wave propagates from the open end to the closed end of the tube. Gerstein et al. [15] used the tube method to measure flame speed, and they used the following relation for determining laminar burning velocity

$$S_{u} = \frac{\pi R^{2}}{A} (S_{s} - S_{g})$$
(13)

where:

R = flame radius

A = tube area

 $S_s = flame$ front speed with respect to tube

 S_{g} = gas velocity in front of flame.

Gerstein et al. used photocells to measure the flame front speed S_s and measured the gas velocity S_g , from the growth of a soap bubble blown from a tube connected to the flame tube.

2.2.2 Bunsen Burner Method [16]

This method has been used by many investigators. In this method, premixed gases flow up a cylindrical tube that is long enough to ensure streamline flow at the mouth. The gas burns at the mouth of the tube and the shape of the Bunsen cone is recorded and measured by various means.

The laminar flame speed can be measured using the following relation

$$S_{\mu} = V_{0} \sin \alpha$$

(14)

where:

 V_0 = velocity of the unburned gas α = the cone apex angle

2.2.3 Flat Flame Burner

A flat flame can be created by placing a porous metal disk or a series of small tubes of lmm or less in diameter at the exit of a larger flow tube. At low velocities, a flat stationary flame can be obtained a short distance above the burner matrix, whereas at high gas velocities, a conical flame is produced. The burning velocity can then be calculated by dividing the gas volume flow rate by the flat flame area.

Since in this method there is an excessive heat loss from the flame to the burner matrix, the flame cannot be considered adiabatic. Botha and Spalding [17] utilized heat removal by the burner matrix, to stabilize the flat flame. They calculated the burning velocity for different flow rates by the area method. They plotted the burning velocity against the heat extraction rate, and then extrapolated back to zero heat extraction, to obtain the adiabatic burning velocity.

2.2.4 Soap Bubble Method

In this method the gas mixture is contained in a soap bubble and ignited at the center by a spark, and a spherical flame spreads outwards. The pressure remains constant in this experiment. Strauss and Edse [18] used the soap bubble method to measure the laminar burning velocity of methane-oxidant mixtures. They used the following relation for determining the flame

$$S_{u} = \frac{S_{s}}{E}$$
(15)

where S_s is spatial velocity which was determined photographically, and E is the expansion ratio, which represents the ratio of burned gas volume to unburned gas volume. The expansion ratio was determined from calculation of adiabatic flame temperature and combustion gas composition, assuming that complete chemical and thermodynamic equilibrium prevails in the burned gas.

2.2.5 Constant Volume Combustion Bomb

In this method the gas mixture is contained in a constant volume combustion bomb, and it is ignited centrally. This method measures the adiabatic flame speed, and one of its advantages is that the laminar burning velocity can be measured over a range of temperature and pressure in each experiment. Other advantages of this method are that the experimental facilities are easy to build and that experimentation is also easy.

Many investigators have tried to derive an explicit formula for the laminar burning velocity given the pressure history and the flamefront radius of the combustion process. Lewis and Von Elbe [19] assumed that the mass fraction burned is proportional to the pressure of the combustion process and derived the following relation

$$S_{u} = (1 - \frac{R^{3} - R_{f}^{3}}{3p\gamma_{u}R_{f}^{2}} \frac{dp}{dR_{f}}) \frac{dR_{f}}{dt}$$
 (16)

where:

- R = radius of the combustion bomb
- R_f = radius of flame front
- p = pressure inside the combustion bomb
- γ_{μ} = unburned gas specific heat ratio

Subsequent workers have developed improved expressions for laminar flame speed. Garforth and Rallis [20] have derived the following relation for flame speed calculation.

$$S_u = (\bar{\alpha}/\beta)[F^2 + (\bar{\epsilon}/\bar{\alpha})(1 - F^2)]S_s + (1/\beta)\{(r_f F^3/3)(d\bar{\alpha}/dt)\}$$

(17)

+
$$[r_{f}(1 - F^{3})/3] (d\bar{\epsilon}/dt) - (\bar{\alpha} - \bar{\epsilon})F^{2}(d\tau/dt)$$

where:

 $\bar{\alpha} = \bar{\rho}_{b}/\rho_{0}$ ratio of average burned gas density to initial density

 τ = flame front thickness

 $\bar{\epsilon} = \bar{\rho}_{f}/\rho_{0}$ ratio of average density of gas within the flame front to initial density

 $r_f = flame front radius$

1 - ĩ

 $\tilde{\tau} = \tau/r_{f}$

 $\beta = \rho_u / \rho_0$

F =

For a thin flame, Eq. (17) reduces to the following relation:

$$S_{u} = \frac{\bar{\rho}_{b}}{\rho_{u}}S_{s} + \frac{r_{f}}{3\rho_{u}}\frac{d\bar{\rho}_{b}}{dt}$$
(18)

which Garforth and Rallis [20] call the burnt gas equation for buning velocity. Equation (16) is referred to as the unburnt gas equation for burning velocity.

Other investigators such as Bradley and Mitcheson [21] and Ryand and Lestz [22] have recently measured the flame speed in a constant volume combustion bomb, and have reported measurements for different fuel-air mixtures which will be discussed in a later chapter.

CHAPTER 3

EXPERIMENTAL APPARATUS

3.1 Combustion Bomb

A schematic diagram of the combustion bomb used for the measurements reported in this thesis is shown in Fig. 1. The combustion bomb is spherical and has an inside diameter of 152.4 mm with a 19 mm wall thickness, and was designed to withstand a pressure of 700 atm. The combustion bomb material is 4150 FM alloy steel in the annealed condition. The two halves are held together by 6 clamp bolts and sealed by a fluorocarbon o-ring. The combustion bomb is located in a 400mm × 400mm × 460mm glass wool oven and can be heated electrically to a temperature \approx 700K. However, because of the temperature limitations of the Kistler pressure transducer and the o-ring, the maximum temperature at which measurements could be made was 500°K.

3.2 Gas and Fuel Manifold

The gas and fuel handling system is shown in Fig. 2. The bomb is located inside the oven. A thermocouple gauge is used to measure the vacuum pressure. Three bourdon tube gauges with different ranges are used to read the pressure of the system. An oil manometer and a dead weight tester are connected to the system in order to calibrate the pressure gauges. A mercury manometer is placed inside an oven directly beneath that containing the bomb. It can be heated up to 400°K and is used to measure the pressure of the fuel when the combustion bomb is at elevated temperatures. Liquid fuel is injected through a septum. A detail of the fuel injection system is shown in Fig. 3. The system consists of a high temperature silicone compound under compression. Liquid fuels are injected using syringes sized according to the amount of fuel injected.

3.3 Electrodes and Ignition System

Standard 14 mm spark plugs with extended stainless steel electrodes that were tapered to a point at their tips were used to form the spark gap at the center of the bomb. Figure 4 shows a spark plug with its extended electrode. The gap between two electrodes was set at 0.5 mm. A standard capacitive discharge ignition system in which the energy stored in the capacitors can be varied from a few millijoules to 2 joules was used for producing the spark. Figure 5 shows the electrical circuit for the ignition system.

3.4 Dynamic Pressure Measurement

The dynamic pressure inside the combustion bomb was measured with a piezoelectric Kistler pressure transducer, Model 603B1, coated with Dow Corning high-vacuum grease and calibrated against a balancedpressure indicator.

Figure 6 shows a schematic diagram of the balanced-pressure indicator that screws into the combustion bomb. At its inner end it carries a 0.001 inch steel diaphragm between two 0.002 inch steel rings, supported by two heavy disks. In operation, a steady gas pressure, called the "balancing pressure", is applied to the outer side of the diaphragm, whose inner side is exposed to combustion bomb pressure. As the pressure inside the combustion bomb passes through

equilibrium with the balancing pressure, the diaphragm is deflected one way or the other, and makes or breaks an electrical contact wita center conductor. This conductor is connected to the sensing circuit shown in Fig. 7 which produces an output pulse when the contact is made or is broken. This pulse is fed into the CRT cathode of an oscilloscope, and causes a bright spot to appear on the pressure trace at a point corresponding to the balancing pressure. This pulse also stops a counter, recording the precise time at which the pressure inside the combustion bomb equals the balancing pressure. This information is used to calibrate the Kistler transducer on each run and effectively minimizes errors due to the thermal sensitivity of the Kistler transducer.

3.5 Ionization Probes

The arrival time of the flame front at the wall was measured using ionization probes. There are three ionization probe positions on the perimeter of the combustion bomb, two of which are diametrically opposed. All are flush with the spherical inner surface of the combustion bomb. These probes are used to check for spherical symmetry of the flame propagation.

The details of the probes are given in Fig. 8. The insulation gap on the probe was 0.025 mm. This prevented significant penetration of the electric field beyond the interior wall and eliminated the problem of premature signals [23]. The electrical circuit which was used with the ionization probes is shown in Fig. 9. Three counters

were used to read the time at which each of the three ionization probe pulses occurred.

3.6 Laser Shadowgraph

The arrival time of the flame front at a known radius was measured using the laser shadowgraph system shown in Fig. 10. A 5 milliwatt He-Ne laser with a wavelength of 6328Å was used. The beam diameter was 1.8 mm and the intensity distribution inside the beam was Gaussian. The distance from the center of the combustion bomb to the laser beam was 64.64 mm. The window inserts were made of stainless steel and are shown in Fig. 11. Since the ports are used for fine optical measurements, guartz windows were used in the apparatus.

When the flame front passes through the laser beam a diffraction pattern similar to that produced by a knife edge is produced. Using this system the time when the flame front cuts the laser beam can be measured to \pm 0.1 msec and the radius of the flame front can be measured to \pm 0.15 mm. A comparison of this radius with the corresponding value from the pressure measurement is used to check the assumption of negligible preflame reactions.

3.7 Data Recording Equipment

Figure 12 shows the data handling and processing equipments used in the experiment. It consists of a two-channel 12-bit analogto-digital converter controlled by a microcomputer. The maximum number of digitized points per channel is 256 and the time increment between points is 0.25 msec. The instrumentation also includes four counters which are used to read the time at which the ionization probe pulses occur and that at which the balanced-pressure switch closes. An oscilloscope is used to monitor all inputs. The experimental procedure will be discussed in the next chapter.

CHAPTER 4

EXPERIMENTAL PROCEDURE

The bomb was first heated to the desired temperature which was monitored by four thermocouples. The first thermocouple was welded to a washer and a small socket screw was used to hold the washer on the top of the combustion bomb. The second thermocouple was welded to a washer placed under one of the clamp bolts that holds the two halves of the combustion bomb together. The third one was hung loose in the oven one inch above the combustion bomb, and the fourth one was located close to the injection septum. The accuracy of an individual measurement was \pm 3°C, and the maximum spread in temperature among four thermocouples was \pm 10°C. The time required for the temperature to stabilize under heated conditions was 45 minutes at most.

In order to prepare a fuel-air mixture, first the combustion bomb was pumped down to a pressure less than 30 millitorr. For gaseous fuel the bomb was filled to the desired pressure and 5 minutes settling time was allowed to elapse. Statistical studies described in Chapter 6 showed this time to be adequate. Then the plumbing lines were evacuated till pressure was less than 30 millitorr, and air was introduced into the bomb up to the desired pressure. A waiting time of 5 minutes permitted the fuel and air to mix completely and become quiescent.

For liquid fuels the amount of liquid necessary to make the desired fuel-air mixture was calculated and then injected through the septum in the manifold. It was noticed that the measured pressure of the fuel was not the same as the calculated pressure based on the ideal gas calculation of the fuel vapor and the assumption that all the fuel evaporates. This phenomenon was observed for all fuels and is discussed in Appendix A. In order to achieve the desired pressure, more fuel was injected into the manifold and the pressure was read with the mercury manometer. Again, the plumbing lines were pumped down, air was introduced into the combustion bomb, and 5 minutes waiting time was allotted to permit the fuel and air to mix completely.

Next the question of charge stratification was considered. The density ratio of two different heights was calculated by the following relation

$$\frac{\rho_2}{\rho_1} = \exp(\frac{-g(Z_2 - Z_1)}{RT})$$
(19)

where ρ_1 and ρ_2 are densities at two heights of Z_1 and Z_2 . The ratio of densities at the top and bottom of the combustion bomb was 0.99998 for air and 0.99993 for isooctane which was the heaviest fuel studied. The equivalence ratio variation in the combustion bomb is \leq .05%, which is negligible compared to measurement errors.

After the filling procedure was completed, the pressure transducer was zeroed and the mixture ignited. Figure 13 shows a typical oscillogram for a stochiometric propane-air mixture having initial conditions of 1 atm and 300K. The horizontal scale is 10 msec/div. for pressure and ionization probe-signals. The vertical scale for the pressure signal is 1.36 atm/div. The balancing time of the pressure inside the bomb with the pressure on the balancing side of the balanced-pressure indicator is represented by a dot before maximum pressure. The laser signal is delayed 22 msec and the sweep rate is 1 msec/div. It can be seen that the laser signal has the same characteristics of a signal produced by a sharp edge.

The analog signals from the pressure transducer and the laser were fed directly to the microcomputer and the digitized data were transferred automatically from the microcomputer to the host computer. Times from the ionization probe and balanced-pressure indicator were input manually to the host computer. The data could be processed immediately or stored in the memory for later analysis.

CHAPTER 5

ANALYSIS OF DATA

In the data reduction process the dynamic pressure record was first calibrated. This was necessary since the calibration curve of a piezoelectric transducer is temperature sensitive. There are three options available for calibration of a piezoelectric transducer. One method is to accept the piezoelectric pressure transducer signal and calculate flame speed based on that signal. A second method is to use the balanced-pressure indicator. For this method the following relation was used

$$p_i = p_0 + \frac{p_b - p_o}{p_{k,b} - p_o} (p_i - p_o)$$
 (20)

where:

p_j = pressure of the mixture
p_o = initial pressure of the mixture
p_b = balancing pressure
p_{k,b} = pressure of the mixture at the time when
balanced-pressure switch closes

The third method is to match the final mass fraction burned to the desired value. For this method the following relation was used:

$$p_{i} = p_{o} + \frac{x_{d}}{x_{f}} (p_{i} - p_{o})$$
 (21)

where p_i and p_o are the same as Eq. (21), x_d is the desired final mass fraction burned and x_f is the mass fraction burned

calculated at the maximum pressure measured by the Kistler pressure transducer.

In the analysis of the data it is assumed that for a flame radius greater than a centimeter or two it is a good approximation to assume that the thickness of the flame front is negligible and that the gas within the bomb consists of a burned fraction x at thermodynamic equilibrium and an unburned fraction 1-x frozen at its original composition. The unburned gas itself consists of two parts. The first part consists of the portion of unburned gas which is compressed isentropically, and the second part is the portion of the unburned gas contained in the thermal boundary layer at the combustion bomb wall, which conducts heat to the bomb wall. It is further assumed that the pressure p is uniform, there is no stratification of the charge and the flame front is smooth and spherical although cellular flames have been observed for rich fuel-air mixtures by Babkin et al. [37].

Under these conditions and using one-dimensional heat conduction from the unburned gas to the bomb wall it is shown in Appendix B that the equations for the conservation of volume and energy can be written as follows:

$$V/M + A_{\delta}/M = \int_{0}^{x} v_{b} dx^{2} + \int_{x}^{1} v_{u} dx^{2}$$
 (22)

$$E/M - (A/M) 0^{\int_{0}^{\delta} pd\delta} = 0^{\int_{0}^{X} e_{b} dx + \sqrt{e_{u}} dx$$
 (23)
where:

- V = combustion bomb volume
- M = mass of gas in the bomb
- E = total initial energy of gas in the bomb
- v = specific volume
- e = specific internal energy
- δ = displacement thickness
- A = combustion bomb wall area
- x = mass fraction burned
- x' = integration variable

and the subscripts b and u refer to burned and unburned gas respectively. The displacement thickness is defined as

(24)

(25)

$$S = (1/\rho_{\infty}) \int (\rho - \rho_{\infty}) dr$$

œ

where:

ρ

- = density of unburned gas within the thermal boundary layer
- ρ_{∞} = density of that portion of unburned gas that compresses isentropically

It is shown in Appendix C that

$$\delta(t) = \left(\frac{\mu_{0}}{\pi\rho_{0}}\right)^{1/2} \left(\frac{p_{0}}{p}\right)^{1/\gamma_{u}} \int_{0}^{t} \left[\left(\frac{p'}{p_{0}}\right)^{1/\gamma_{u}} - \left(\frac{p'}{p_{0}}\right)^{1/\gamma_{u}}\right) \left(\int_{t'}^{t} \frac{p''}{p_{0}} dt''\right)^{-1/2} dt'$$

where:

viscosity of unburned gas at the initial temperature and pressure μο = specific heat ratio of unburned gas Υ_{II} = t time = = initial pressure of gas mixture p_م initial density of gas mixture ρ₀ = t',t" = integration variables

For slowly varying specific heats of burned gas, $v_b(T_b,p)$ and $\rho_b(T_b,p)$ may be expanded in a Taylor series about the mean gas temperature:

$$\bar{T}_{b} = \frac{1}{x} \int_{0}^{x} T_{b}(x',x) dx'$$
 (26)

Neglecting terms of order $(T_b - \overline{T}_b)^2$ and higher, Eqs. (22) and (23) become

$$V/M + A\delta/M = xv_b(p, T_b) + (1-x) v_u(p, s_{uo})$$
 (27)

$$E/M - (A/M)_{0} \int_{0}^{\delta} pd\delta' = xe_{b}(p,\overline{T}_{b}) + (1-x)e_{u}(p,s_{u0})$$
 (28)

where s_{uo} is the initial entropy.

The fraction error in x introduced by this approximation is derived in Appendix D, and is

$$\frac{\delta x}{x} \approx \frac{(\delta T_b)^2}{24C_{vb}(\bar{T}_b - T_u)} \left(\frac{\partial C_{vb}}{\partial T}\right)$$

where C_{vb} is the equilibrium specific heat of the burned gas at constant volume and δT_b is the spread in burned gas temperature. For the range of conditions investigated, $\delta T \approx 500$ K and the corresponding value of $\delta x/x \leq 0.002$, which is negligible compared to measurement errors.

р

(29)

Equations (27) and (28) were solved for two unknowns T_b and x using the Newton-Raphson iteration method. The burned gas properties were computed using an approximation to equilibrium properties developed by Martin and Heywood [24] and the unburned gas properties were computed using thermodynamic data from JANAF tables [25] for the individual species in the mixture and the assumption of frozen composition. The calculation procedure is along the line suggested by Lorusso [26]. This procedure is outlined in Table 1 and fuel thermodynamic properties are described in Appendix E.

Figure 14 shows the relationship between the temperature distributions in the fuel-air mixtures as a function of mass fraction burned. It can be seen that first the unburned gas is compressed isentropically. It then burns at constant enthalpy, as shown in Appendix F, to reach the adiabatic flame temperature. Finally, the burned gas is compressed isentropically to the final state.

The following definitions result from the assumption of spherical symmetry and mass conservation.

$$V_{b} = x \bar{v}_{b} M = (4/3)\pi R_{f}^{3}$$
 (30)

$$R_{f} = [3V_{b}/4\pi]^{1/3}$$
(31)

$$A_{f} = 4\pi R_{f}^{2}$$
 (32)

$$S_{u} = M \dot{x}(t) / \rho_{u} A_{f}$$
(33)

$$S_{f} = \mathring{R}_{f}(t)$$
(34)

$$S_{g} = S_{f} - S_{u}$$
(35)

where:

Rf	=	radius of flame
A _f		area of flame
s _u	=	laminar burning velocity
×. X	=	rate of mass fraction burned
Sf	=	flame front velocity
Sg	=	unburned gas velocity

The following relation was used to calculate x:

$$= \frac{dx}{dp} \dot{p}$$

where:

p = rate of pressure rise

* X

(36)

It is shown in Appendix G that

$$\frac{dx}{dp} = \frac{v_o(1-(1-x)\frac{v_u}{v_o}(1-\frac{\gamma_b}{\gamma_u}) + \frac{A}{v_o}(\gamma_b p \frac{d\delta}{dp} + \delta))}{\gamma_b(R_b T_b^\circ - R_u T_u)}$$

where:

γ	=	specific heat ratio of gas
т° _b	=	adiabatic flame temperature
R	=	Ř∕ M
R	=	universal gas constant
M	=	mean molecular weight of gas mixture
vo	÷	specific volume of gas mixture at initial state

The two terms $\gamma_b p \frac{d\delta}{dp}$ and δ in Eq. (37) are the consequences of including the thermal boundary layer at the combustion bomb wall and are shown graphically in Fig. 15 as a function of normalized pressure for stochiometric propane-air mixtures having an initial pressure of 1 atm and an initial temperature of 296K. It can be seen that the values for both terms have the same order of magnitude and both should be considered in the calculation.

All parameters on the right hand side of Eq. (37) are known from the calculation outlined in Table 1. Thus dx/dp can be evaluated readily. The rate of pressure rise is obtained by numerical differentiation of the pressure data. Using this information, the adiabatic flame speed can be calculated from Eq. (33). A FORTRAN

(37)

computer program was used to calculate the laminar burning velocity (Appendix I).

CHAPTER 6

EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Mixing Time

Before undertaking extensive measurements, studies were made to check the reproducibility of the data. First, the effect of waiting time on the combustion process was studied. Tests were run involving waiting times of 2, 5, and 10 minutes with stoichiometric propane-air mixtures having initial conditions of 1 atm and 298 K temperature. Figure 16 shows the time deviation of the ionization probe pulses from the mean time $t_i - t$. Also shown is the distance the flame traveled in that time. Figure 16 shows no measurable bouyancy effect. Figure 17a shows the difference of the time when peak pressure occurred and the mean time of the ionization probe pulses as a function of waiting time. The distance which the flame had travelled at that time is also shown in this figure. Figure 17b shows the ratio of the pressure inside the combustion bomb at the average arrival time of the flame for three ionization probes to the maximum pressure as a function of waiting time. As a result of these studies it was concluded that 2 to 10 minutes of waiting time before combustion did not have any effect on the measurement. Five minutes was then chosen as a reasonable waiting time to allow for fuel and air to mix completely and become quiescent.

Using this five-minute waiting time tests were done to check the reproducibility of the data. Four identical runs were made for

stoichiometric propane-air mixtures at the initial temperature of 298 K and the initial pressure of 1 atm. and the laminar burning velocity was calculated along the isentropes for each. Figure 18 shows the results plotted as a function of temperature and pressure. It can be seen that the data are very reproducible.

Further evidence of this reproducibility is given in Table 2. The parameters shown are peak pressure p_p , time at which peak pressure occurs ${\ensuremath{t_p}}$, the time deviation of the ionization probe pulse from the mean time $t_i - E$, the standard deviation of flame radii deduced from the ionization probe pulses $~\delta R_{\textrm{rms}}$, the deviation of the calculated flame front radius from that given by the laser beam and the unburned mass fraction at the end of combustion $~\delta x_{\rm u}$. As can be seen, the maximum pressure and the time at which maximum pressure occurred are very close for all four runs. Although there is some evidence of a systematic variation in the arrival times of the flame front at the ionization probes, which might indicate a small asymmetry, it should be noted that since the flame speed is less than 100 cm/sec, the displacements involved are only fractions of a millimeter. This is smaller than the accuracy with which the probes could be positioned and is not considered to be significant. The other quantities in Table 2, δR_{rms} , δR_{laser} and δx_u , are all well within the accuracy of the measurements.

6.2 Parametric Fit of Measured Burning Velocity

The measured laminar burning velocities for different fuel-air mixtures have been fitted to two different functional forms. The

first is the simple power law relation

$$S_{u} = S_{uo} \left(\frac{T_{u}}{T_{uo}} \right)^{\alpha} \left(\frac{p}{p_{o}} \right)^{\beta}$$

where

S___ laminar burning velocity cm/sec = Suo laminar burning velocity at reference point cm/sec T_{II} temperature of unburned mixture K = reference temperature 298K Tuo = pressure of gas mixture atm р = reference pressure 1 atm p_o α,β constants =

The constants α and β as well as S_{uo} were determined by fitting the data to the power law expression using the least square method.

The second relation to which the data has been fitted is that used by Lavoie [29] to correlate data from previous experiments. It is

$$V_{\text{STP}} = \frac{\rho_u S_u}{\rho_{\text{STP}}} = A(\frac{p}{p_o})^{\beta} \exp(-E/2RT_b^{\circ})$$
(39)

where:

 V_{STP} = mass average burning velocity cm/sec ρ_u = density of gas mixture ρ_{STP} = density of gas mixture at standard temperature and pressure condition (T = 273 K, p = 1 atm) (38)

 T_b^o = adiabatic flame temperature K

R = gas constant 1.987 cal/(gm.mole.K)

A, B, and E are fitted constants

6.3 Propane-Air Mixtures

Systematic measurements of laminar burning velocities for propane-air mixtures were made at equivalence ratios of 0.8, 1.0 and 1.2. At each equivalence ratio, initial pressures of 0.4, 1.0 and 2.0 atm at room temperature were chosen. Measurements were first made along the isentropes starting with these initial conditions. Measurements at higher temperatures and pressures were made by heating the bomb to 400 K and 500 K and choosing initial pressures which lay on the same isentropes. Using this method laminar burning velocities were obtained for the pressure range 0.4 - 40 atm. and the temperature range 298 to 750 K.

Figure 19 shows the laminar burning velocity along one of these isentropes for a stoichiometric propane-air mixture having initial conditions of 296 K and 1 atm. Three overlapping runs are shown: the circle points indicate atmospheric initial conditions; the triangular points indicate initial conditions of 400 K and 3.13 atm, and the square points indicate initial conditions of 500 K and 7.6 atm. The scatter in the data is less than $\pm 2\%$ and can be attributed to round-off error in the analog-to-digital converter.

The temperatures at which ionization probe pulses occur are shown in the figure, and it can be seen that these probe pulses occur very close to each other. The laminar burning velocity increases along an isentrope, peaks a little before peak pressure and then falls off as the flame travels the last millimeter to the wall. The fall-off is most likely due to heat loss to the windows and the electrodes that protrude into the bomb. The solid and dashed curves are exponential and power law fits to the data.

Figure 20 shows data for 9 different isentropes. The top set is for propane-air mixtures with an equivalence ratio of 0.8, the second set is for stoichiometric mixtures and the bottom set is for an equivalence ratio of 1.2. These data show that laminar burning velocity decreases with increasing initial pressure at constant temperature and increases with the increasing initial temperature at constant temperature.

Figure 21 shows laminar burning velocity as a function of equivalence ratios for propane-air mixtures at a temperature of 298 K and pressure of 1 atm. The laminar burning velocity peaks for an equivalence ratio of 1.1 and falls off for both the rich and lean mixtures. The smooth curve is the best fit of the data to a second degree polynomial. The equation for this curve is

 $S_{uo} = 38.31 + 24.84(\phi - 1) - 153(\phi - 1)^2$ (40)

where ϕ is the fuel-air equivalence ratio.

The burning velocities obtained for propane-air mixtures were fitted to the power law relation (Eq. (38)). The values of S_{u0} , α , and β thus found are given in Table 3. In this table the percentage of data points falling within \pm 5% of the fitted curve is also given. Note that the values of S_{uo} given in Table 3 and by Eq. (40) differ about 9 to 16 percent.

The calculated burning velocity data were also fitted to the exponential form. The values of A, B, and E are given in Table 4 along with the percentage of data points falling within \pm 5% of the fitted curve.

The exponential fits (40) are shown graphically by the solid curves in Figures 19 and 20. It can be seen from these Figures and from the last columns in Tables 3 and 4 that the overall fit of the power law and exponential relations are equally good. The exponential relation appears to be slightly better at pressures below 2 atm but it is sensitive to the calculation of the adiabatic flame temperature and is less convenient to use than the power law relation. There has been a preference for the exponential relation on fundamental ground. However, in view of the strong variation of both the preexponential coefficient A and the apparent activation energy E with the equivalence ratio, the physical significance of these quantities is doubtful.

There have been previous measurements of laminar burning velocity for propane-air mixtures, but most of the data are for low temperatures and pressures [25 through 31]. Comparison of the data in Table 4 with the corresponding values obtained by Lavoie from previous data (Table 5) shows reasonable agreement for the pressure exponent but significant disagreement in the values of A and E. The most probable reason for this is the limited amount of high pressure and temperature data with which Lavoie had to work. Figure 22 shows laminar burning velocities measured in this study as a function of unburned gas temperature for stoichiometric propane-air mixtures at atmospheric condition compared with those measurements reported by Kuehl [28]. It can be seen that the differences are less than 8 percent. Table 6 shows laminar burning velocity at 1 atm pressure and 311 K temperature as a function of the equivalence ratio compared with Kuehl's measurements. The laminar burning velocity at 311 K is calculated using Eq. (40) and Table 3. It can be seen that the differences are less than 7 percent.

Recent measurements of the burning velocity of propane-air mixtures made in a spherical bomb similar to that used in this study have also been reported by Ryan and Lestz [22]. Their results agree with those measured in this study at a temperature of 500 K and a pressure of 6 atm, as shown in Fig. 23, but show a significantly steeper temperature dependence of the laminar burning velocity. One possible reason for this is the assumption made by Ryan and Lestz that the unburned mass consumed in each time step of their numerical integration burns at constant volume. Since the combustion actually occurs at constant pressure, this leads to an incorrect value of the entropy for the burned gas which could in turn affect the calculated flame speeds.

6.4 Isooctane-Air Mixtures

Laminar burning velocities of isooctane-air mixtures were measured for different equivalence ratios in the pressure range of 0.4 - 40 atm and the temperature range of 298 - 750 K. The same

procedure used for propane-air mixtures was employed here for setting the initial temperature and pressure of the mixtures. At some points autoignition was observed, as will be discussed later. As a result of this it was not possible to gather as much data as in the case of propane-air mixtures. The effects of residual gases on the laminar burning velocity of isooctane-air were also studied and will be discussed later.

The measured values of laminar flame speed for isooctane-air mixtures were fitted to both power law and exponential relations. Table 7 shows values for S_{uo} , α , β , and the percentage of data points falling within $\pm 5\%$ of the fitted curve as a function of the equivalence ratio. The power law fit is shown graphically by the dashed curves in Fig. 24. The power law fit is quite good except for low pressure and temperature data.

The values of A, β , and E for the exponential fit are given in Table 8 along with the percentage of data points falling within <u>+</u> 5% of the fitted curve. The exponential fits are shown graphically by the solid curves in Fig. 24. It can be seen from Fig. 24 and the last column of Tables 7 and 8 that the exponential fit is slightly better than the power law fit, but the power law relation is much easier to use.

The laminar burning velocities of isooctane-air mixtures were measured at room pressure and temperature for different equivalence ratios. These measurements are shown in Fig. 25. As in the case of propane-air mixtures it was observed that flame speed peaks for an

equivalence ratio of 1.1 and falls off for both rich and lean mixtures. The data are fitted to second and third degree polynomials. The equations for these polynomials are

$$S_{u_0} = 31.97 + 23.24(\phi - 1) - 91.46(\phi - 1)^2$$

$$\delta = 1.57$$
(41)

and

wł

$$S_{u_0} = 32.57 + 20.62(\phi - 1) - 139.12(\phi - 1)^2$$

$$+ 104.8(\phi - 1)^3 \qquad \delta = 1.28$$
(42)

nere			$(s - s)^2$
	δ	Ξ	$\frac{u_f}{N}$

and $S_{u_{f}}$, $S_{u_{m}}$, and N are fitted burning velocity, measured burning velocity, and number of data points respectively. The smooth curve in Fig. 25 is the second degree polynomial (Eq. 41).

The effects of residual gases on the flame speed were studied. A mixture of nitrogen and carbon dioxide, which is described in Appendix H, was used to simulate residual gases. The mixture was composed of 15% carbon dioxide and 85% nitrogen based on the volume and had a molecular weight of 30.4. The residual fraction was calculated as the ratio of mass of diluent to the total mass of gas mixture. Two different residual fractions of 10 and 20 percent were used. The effects of the residual fraction on flame speed were studied for stoichiometric mixtures having an initial temperature of 298 K and three different initial pressures of 1, 2, and 4 atm. These measured values were fitted into the power law relation (Eq. (38)). Table 9 gives the values of S_{uo} , α , and β , for stoichiometric mixtures as a function of the residual fraction along with the percentage of data points falling within + 5% of the fitted curve.

Figure 26 shows flame speed data for three different isentropes having the same initial conditions but with a varied percentage of diluent. The three different ratios used were 0, 10, and 20 percent. The points indicate the measured data and the solid curves indicate the corresponding power fits. Figure 27 shows flame speed normalized with respect to the flame speed with no diluent as a function of unburned gas temperature. It can be seen that flame speed decreases about 20% for each 10% of diluent.

Autoignitions occurred as the initial temperature and pressure of isooctane-air mixtures were increased, making it impossible to gather more flame speed data. Figure 28 shows the oscillogram for stoichiometric isooctane-air mixtures with initial conditions of 500 K temperature and 15.1 atm pressure. The ionization probe signals and the laser signal are also shown. The horizontal scale is 10 msec/div. and the vertical scale is 13.6 atm/div. for the pressure signal. It can be seen that autoignition occurred about 35 msec after the ignition, and that ionization probe pulses occurred at the same time as was expected.

The values of pressures and temperatures at which autoignition occurred as a function of the equivalence ratio are shown in Table 10.

The pressure and temperature history of the combustion process of isooctane-air mixtures in which autoignition occurred are shown in Tables 11, 12, and 13 for three different ratios of 0.8, 1.0, and 1.2.

Different authors have measured the laminar burning velocity of isooctane-air mixtures for a variety of conditions. Dugger and Graab [34] used a bunsen-burner for measuring flame speed at atmospheric pressure and at temperatures of 311 and 422 K. They varied the mole fraction of oxygen in an oxygen-nitrogen mixture from 0.21 to 0.50. Heimel and Weast [35] also used a bunsen burner to measure the laminar flame speed for stoichiometric isooctane-air mixtures at atmospheric pressure for temperatures from 298 K to 707 K. They fitted their flame speed data with the equation

$$S_u = 12.1 + 8.362 \times 10^{-5} T_u 2.15$$
 (43)

where T_u is in K. Figure 29 shows a comparison of the laminar burning velocities measured in this study with those measured by Dugger and Graab [34] and Heimel and Weast (Eq. (43)) for stoichiometric isooctane-air mixtures at atmospheric conditions. It can be seen that the agreement is quite close.

In an earlier work this author and Keck [36] suggested the following relation for laminar burning velocity of stoichiometric isooctane-air mixtures

$$S_u = 35.25 \left(\frac{T_u}{T_{uo}}\right)^{1.97} \left(\frac{p}{p_o}\right)^{-0.12}$$
 (44)

where T_{uo} and p_o are the same as in Eq. (38). Equation (44) predicts a value of flame speed about 10 - 15 percent higher than those predicted by this study. The reason for this is that in the earlier work [36] the measured pressures were read from oscillograms with a manual digitizer. In this study an analog-to-digital converter was used to digitize the pressure signals. The error in digitization has most likely propagated into flame speed measurement and has caused a 10 - 15 percent error.

For high pressure and temperature data Babkin et al. [37] fitted their data for stoichiometric isooctane-air mixtures with the equation

$$S_u = (404 \log T_u - 1008) p^{-0.39 + 0.40(T_u/1000)}$$
 (45)

where p, T_u and S_u are in atm., K, and cm/sec. Ryan and Lestz [22] fitted their data with the equation

$$S_u = 7,452 (p)^{-.25} exp(-2123.3/T_u)$$
 (46)

Figure 30 shows a comparison of the laminar burning velocities measured in this study with those measured by Babkin et al. (Eq. 45) and Ryan and Lestz (Eq. 46) for stoichiometric isooctane-air mixtures at 6 atm. pressure. It can be seen that, as in the case of propaneair mixtures, Ryan and Lestz found a significantly steeper temperature dependence for the laminar burning velocity (see explanation above). The values predicted by Babkin et al. differ by less than 8 percent from values predicted by this study.

6.5 Methanol-Air Mixtures

Laminar burning velocities for methanol-air mixtures at different equivalence ratios were measured and the results were fitted to power law and exponential relations. Because of low vapor pressure at room temperature it was not possible to measure flame speeds along an isentrope with the initial pressure of 2 atm. Therefore there are fewer data points than for propane-air mixtures. Figure 31 shows the measured burning velocities of methanol-air mixtures at the three different equivalence ratios of 0.8, 1.0, and 1.2 in the range of 298 - 750 K and 0.4 - 40 atm.

The values of $S_{uo}^{}$, α , β , and the percentage of $\delta_5^{}$ data points falling within <u>+</u> 5% of the fitted curves for the power law fit are given in Table 14 as a function of the equivalence ratio. The power law fit is shown by dashed curves in Figure 31.

The values of A, β , and E for the exponential fit are shown in Table 15 along with the percentage of data points falling within <u>+</u> 5% of the fitted curve as a function of equivalence ratio. The exponential fits are shown graphically by the solid curves in Fig. 31. Both fits are quite good but the exponential fit is better than the power law fit for low pressure and temperature data.

The laminar burning velocity of methanol-air mixtures was measured as a function of the equivalence ratio at room temperature and pressure. Because of the low vapor pressure of methanol at room temperature the maximum equivalence ratio was 1.2. These data are shown in Fig. 32, and have been fitted to second and third degree poly-

nomials. The equations for these polynomials are

$$S_u = 42.29 + 42.86(\phi - 1) - 107.14(\phi - 1)^2$$

 $\delta = 1.57$
(47)

$$S_{u} = 43.40 + 62.76(\phi - 1) - 176.59(\phi - 1)^{2}$$

$$- 462.96(\phi - 1)^{3}$$

$$\delta = 0.38$$
(48)

The third degree polynomial is shown in Fig. 32. It can be seen that the laminar burning velocity for a methanol-air mixture peaks at an equivalence ratio of 1.1 and falls off for both rich and lean mixtures.

Ryan and Lestz [22] fitted their measurements of the laminar burning velocity for stoichiometric methanol-air mixtures with the equation

$$S_u = 8517.6 \text{ p}^{-0.15} \exp(-2172.8/T_u)$$
 (49)

Figure 33 shows a comparison of the laminar burning velocities measured in this study with those measured by Ryan and Lestz (Eq. 49). As in the case of propane and isooctane Ryan and Lestz found a significantly steeper temperature dependence for the laminar burning velocity.

Gibbs and Calcoate [38] have measured the laminar burning velocities for methanol-air mixtures using a bunsen burner. Their data are for atmospheric pressure and temperatures of 298 K and 373 K. Wiser and Hill [39] have measured the flame speed using a horizontal tube. The measured velocities are for room temperature and 0.86 atmospheric pressure. Figure 34 shows a comparison of the values of flame speed measured by Gibbs and Calcoate [38] and Wiser and Hill [39] with those measured in this study. Considering the relatively weak pressure dependence found for laminar flame speed, it can be seen that the results of Wiser and Hill [39] are in excellent agreement with those of this study. The results of Gibbs and Calcoate are systematically higher, the difference increasing from 5% at $\phi = 1.2$ to 20% at $\phi = 0.8$. The reason for this difference could not be ascertained.

For high temperature data Table 16 shows a comparison of the values of laminar burning velocities measured by Gibbs and Calcoate [38] and the power law relation of this study for atmospheric pressure and a temperature of 375 K as a function of the equivalence ratio. It can be seen that the predicted values for the equivalence ratios of 1.0 and 1.2 are within 10% of each other, but that the values predicted for equivalence ratios of 0.8 deviate about 29%.

6.6 RMFD 303-Air Mixtures

RMFD 303 is a wide-boiling-range multicomponent hydrocarbon prepared by Howell Hydrocarbon. It is a standard gasoline used for knock rating. The average molecular formula of the fuel is $C_{7.8}H_{13.214}$. Table 17 shows the physical properties and chemical analysis of RMFD 303 [40].

RMFD 303 does not evaporate completely at room temperature. This can be seen in Fig. 35 where the ratio of measured pressure over calculated pressure in the manifold is shown as a function of calculated pressure at room temperature. Calculated pressure is based on the assumption of the ideal gas for the fuel vapor and the assumption that all the fuel evaporates. The circle points indicate 300 K temperature. It can be seen that the ratio decreases from 62% to 52%. The reason for this is that some components of the fuel have very low vapor pressure at room temperature, and as pressure increases they saturate. This problem is also encountered during an engine cold-starting where fuel does not evaporate because the engine is cold and a rich mixture is used to start the engine. This evaporation problem is discussed in Appendix A. In order to overcome the problem, initial temperatures were increased from 298 K to 350 K. The square points in Fig. 35 represent the corresponding pressure ratios at 350 K. It can be seen that as the temperature increased the ratio of measured pressure over calculated pressure increased. This is because at 350 K the saturation pressures of different components exceeded the pressure required to make the desired mixture.

Figure 26 shows laminar burning velocity measured at room temperature and pressure as a function of the equivalence ratio. There are two different scales for equivalence ratios. One is based on the vapor pressure of the fuel inside the combustion bomb and the other is based on the mass of fuel injected into the manifold. These measurements have been fitted to second and third degree polynomials and the corresponding δ are:

$$S_u = 31.83 + 28.87(\phi - 1) - 85.61(\phi - 1)^2$$
 (50)
 $\delta = 1.97$

$$S_u = 33.9 + 31.96(\phi - 1) - 193.75(\phi - 1)^2 + 174.48(\phi - 1)^3$$
 (51)
 $\delta = 0.74$

where ϕ is the equivalence ratio based on the vapor pressure of the fuel in the combustion bomb. The smooth curve in Fig. 36 represents the third degree polynomial.

Measurements of laminar burning velocities for RMFD 303-air mixtures were made at equivalence ratios of 0.8, 1.0 and 1.2. At each equivalence ratio, initial pressures of 0.4, 1.0 and 2.0 atm were used. Measurements then were made for higher temperatures and pressures. Using this method laminar burning velocities were obtained for the pressure range of 0.4 - 34 atm and the temperature range of 298 to 750 K.

The laminar burning velocities for RMFD 303-air mixtures are shown in Fig. 37. The dashed curves indicate the power law fit. Table 18 shows the values S_{uo} , α , and β as well as the percentage of data points falling within <u>+</u> 5% of the fitted curve as a function of the equivalence ratio.

The measured burning velocities for RMFD 303-air mixtures were also fitted to the exponential relation. The values for A, β , E, and the percentage of data points falling within <u>+</u> 5% of the fitted curve are shown as a function of the equivalence ratio in Table 19.

The laminar burning velocity of RMFD 303-air mixtures as a function of the equivalence ratio at 350 K and 1 atm were measured and are shown in Fig. 38. The laminar burning velocity peaks for an equivalence ratio of 1.1 and falls off for both rich and lean mixtures. The measured flame speeds have been fitted to both second and third

degree polynomials. The equations of these polynomials with corresponding δ are:

$$S_u = 39.76 + 27.58(\phi - 1) - 105.58(\phi - 1)^2$$
 (52)
 $\delta = 1.38$

and

$$S_u = 40.59 + 23.38(\phi - 1) - 124.48(\phi - 1)^2 + 42.47(\phi - 1)^3$$
 (53)
 $\delta = 1.18$

The smooth curve in Fig. 36 is Eq. (52).

6.7 Comparison of Values of Burning Velocity for Different

Fuel-Air Mixtures

The parameters S_{uo} , α , and β for the power law relation for different fuel-air mixtures are shown in Tables 20 and Fig. 39 as a function of equivalence ratios. Flame speed is a very weak function of pressure and at a given equivalence ratio the burning velocity does not vary much for the four fuel-air mixtures studied. The temperature exponent α varies only about 8% at a given equivalence ratio. The pressure exponent β increases as the equivalence ratio increases while α decreases as the equivalence ratio increases. The burning velocity is fastest for methanol-air mixtures and slowest for RMFD 303-air mixtures. This might suggest that as the complexity of fuel increases the burning velocity decreases.

CHAPTER 7

CONCLUSION AND SUGGESTIONS

A facility for measuring the laminar burning velocity of fuelair-residual gas mixtures was constructed. A thermodynamic analysis was used to calculate laminar burning velocities from the pressure time history obtained during the combustion process.

Laminar burning velocities for propane-air, isooctane-air, methanol-air and RMFD 303 (a primary reference gasoline)-air mixtures were measured in the pressure range of 0.4 to 40 atm and temperature range 298 to 750 K for fuel-air equivalence ratios from 0.8 to 1.5. The measured values of flame speed were fitted to both power law relation and to an exponential expression to provide correlations of the data for use in combustion models. The exponential expression was derived from Semenov's [9] theory. An apparent activation energy E was calculated from the exponential expression. Both the pre-exponential coefficient A and the apparant activation energy E was found to depend strongly on the equivalence ratio. Thus the physical significance of A and E is doubtful. The following conclusions can be drawn on the basis of the flame speed measurements:

 Methanol-air mixtures have the highest flame speed among the fuel-air mixtures studied, followed by propane-air, isooctane-air and RMFD 303-air mixtures.

2) The laminar burning velocitiy peaks at an equivalence ratio of about 1.1 and falls off for both rich and lean mixtures

3) The laminar burning velocity is a strong function of unburned gas temperature and increases as the unburned gas temperature increases.

4) The laminar burning velocity decreases as the pressure of the gas mixture increases.

On the basis of the results obtained it is concluded that the constant volume combustion bomb is a useful device for measuring adiabatic flame speed. In addition to the test performed the following studies could also be made without modification of the apparatus:

 Measure the laminar burning velocities of different multicomponent hydrocarbon fuels .

2) Investigate the effects of residual gases on laminar-burning velocities of different fuel-air mixtures at pressures and temperatures up to 40 atm and 750 K.

3) Analyze combustion products to check unburned mass fraction and measure the mass of hydrocarbon per unit area, as well as carbon monoxide and nitric oxides in the combustion product.

Suggestions for future experiments which would require modifications to the experimental facilities include:

 Use the shadowgraph technique to phtotgraph the flame to see if it is smooth or wrinkled.

2) Use laser scattering to measure flame thickness, especially for low burning velocity mixtures

3) Make heat transfer measurements to check the theory used, and study the quench layer structure.

REFERENCES

- [1] Ferguson, C.R. and Keck, J.C., "On Laminar Flame Quenching and Its Application to Engine Combustion", Combustion and Flame, <u>28</u>, 197-205 (1977).
- [2] Ferguson, C.R. and Keck, J.C., "Stand-Off Distance on a Flat Flame Burner", Combustion and Flame, <u>34</u>, 85-98 (1979).
- [3] DeSoete, G.G., "The Influence of Isotropic Turbulence on the Critical Ignition Energy", Thirteenth Symposium on Combustion, p. 735.
- [4] Van Tiggelen, A., and Deckers, J., "Chain Branching and Flame Propagation", Sixth Symposium on Combustion, p. 61.
- [5] Blizard, N.C. and Keck, J.C., "Experimental and Theoretical Investigation of Turbulent Burning Model for Internal Combustion Engines", SAE Paper 740191, February 1974.
- [6] Tabaczynski, R.J. et al., "A Turbulent Entrainment Model for Spark Ignition Engine Combustion", SAE Paper 770647, June 1977.
- [7] Groff, E.G., General Motors Research Center, Personal Communication, July 1979.
- [8] William, F.A., "Combustion Theory", (Addison-Wesley Publishing Company, Inc. 1965, p. 95).
- [9] Semenov, N.N., "Thermal Theory of Combustion and Explosion, III. Theory of Normal Flame Propagation", N.A.C.A. Tech. Memo No. 1026, 1942.
- [10] Glassman, Irvin, "Combustion" (Academic Press), 1977.
- [11] Von Karman, T. and Millan, G., "The Thermal Theory of Constant Pressure Deflagration," C.B. Biezeno, Anniversary Volume on Applied Mechanics, pp. 55-69; N.V. DeTechnische Uitgererij H. Stam. Haarlem, March 1953.
- [12] Tanford, C. and Pease, R.N., "Theory of Burning Velocity, II. The Square Root Law for Burning Velocity", Journal of Chemical Physics 15, p. 861 (1947).
- [13] Hirschfelder, J.O., Curtis, C.F., and Bud, R.B., "The Molecular Theory of Gases and Liquids", (Wiley, New York), 1954, Chapter 11.

- [14] Von Karman, T., and Penner, S.S., "Selected Combustion Problems", (AGARD Combust. Colloq.), pp. 5-40, Butterworths, London (1954).
- [15] Gerstein, M., Levine, O., and Wong, E.L., "Flame Propagation II. The Determination of Fundamental Burning Velocities of Hydrocarbons by a Revised Tube Method", Journal of American Chemical Society 73-418 (1951).
- [16] Andrews, G.E., and Bradley, D., "Determination of Burning Velocity: A Critical Review", Combustion and Flame 18, 113-153 (1972).
- [17] Botha, J.P., and Spalding, D.B., "The Laminar Flame Speed of Propane/Air Mixtures with Heat Extraction from the Flame", Proc. Roy. Soc. (London), Ser. A, 225-71 (1954).
- [18] Strauss, W.A. and Edse, R., "Burning Velocity Measurements by the Constant-Pressure Bomb Method", Seventh Symposium (International) on Combustion, pp 377-385 (1957).
- [19] Lewis, B. and von Elbe, G., "Combustion, Flames and Explosions of Gases", 2nd Edition, Academic Press, p. 396.
- [20] Garforth, A.M. and Rallis, C.J., "Laminar Burning Velocity of Stoichiometric Methane-Air Pressure and Temperature Dependence", Combustion and Flame 31, 53-68 (1978)
- [21] Bradley, D. and Mitcheson, A., "Mathematical Solution for Explosions in Spherical Vessels", Combustion and Flame 26, 201-217 (1976)
- [22] Ryan, T.W. and Lestz, S.S., "The Effects of Fuel Composition and Charge Dilution on the Laminar Burning Velocity as Determined in a Constant Volume Combustion Bomb", Technical Paper CSS/CI-79-02, Central State Section of the Combustion Institute, April 1979.
- [23] Metghalchi, M., "Laminar Burning Velocity of Isooctane-Air, Methane-Air, and Methanol-Air Mixtures at High Temperature and Pressure", S.M. Thesis, M.I.T., October 1976.
- [24] Martin, M.K., and Heywood, J.B., "Approximate Relationships for the Thermodynamic Properties of Hydrocarbon-Air Combustion Products", Combustion, Science and Technology, Vol. 15, pp. 1-10, 1977.
- [25] JANAF Thermochemical Tables, Dow Chemical Company, Clearinghouse, Springfield, Va.

- [26] LoRouso, J., "Combustion and Emissions Characteristics of Methanol, Methanol-Water, and Gasoline Blends in a Spark Ignition Engine", Masters Thesis, Dept. of Mechanical Engineering, M.I.T., May 1976.
- [27] Lavoie, G.A., Paper 780229, presented at Automotive Engineering Congress, Detroit, February-March, 1978.
- [28] Kuehl, D.K., "Laminar-Burning Velocities of Propane-Air Mixtures", Eighth Symposium on Combustion, 1960, p. 510.
- [29] Brokaw, R.S. and Gerstein, M., "Correlation of Burning Velocity, Quenching Distances, and Minimum Ignition Engines for Hydrocarbon-Oxygen-Nitrogen System", Sixth Symposium (International) on Combustion, 1956, p. 66.
- [30] Kaskan, W.E., "The Dependence of Flame Temperature on Mass Burning Velocity", Sixth Symposium (International) on Combustion, 1956, p. 134.
- [31] Agnew, J.T. and Gariff, L.B., "The Pressure Dependence of Laminar Burning Velocity by the Spherical Bomb Method", Combustion and Flame, Vol. 5, 209, 1961.
- [32] Chase, J.D. and Weinberg, F.J., "The Acetylen Decomposition Flame and the Deduction of Reaction Mechanism from 'Global' Flame Kinetics", Proc. Royal Soc. A275, 1963, p. 411.
- [33] Raezer, S.D. and Olsen, H.L., "Measurement of Laminar Flame Speeds of Ethylene-Air and Propane-Air Mixtures by the Double Kernel Method", Combustion and Flame, 6, 227, 1962.
- [34] Dugger, G.L. and Graab, D.D., "Flame Velocities of Hydrocarbon-Oxygen-Nitrogen Mixtures", Fourth Symposium (International) on Combustion, 1952, p. 302.
- [35] Hiemel, S. and Weast, R.C., "Effect of Initial Mixture Temperature on Burning Velocity of Benezene-Air, n-Heptane-Air, and Isooctane-Air Mixtures", Sixth Symposium (International) on Combustion, 1957, p. 37.
- [36] Metghalchi, M., and Keck, J.C., "Laminar Burning Velocity of Isooctane-Air, Methane-Air, and Methanol-Air Mixtures at High Temperature and Pressure", Presented at the Fall Meeting of the Eastern Section of the Combustion Institute, November 10-11, 1977, Hartford, Connecticut.

- [37] Babkin, V.S., V'yun, A.V., and Kozachenko, L.S., "Determination of Burning Velocity from the Pressure Record in a Constant Volume Vessel," Combustion, Explosion, and Shock Waves, Vol. 3, No. 3, pp. 362-370, 1967.
- [38] Gibbs, G.J. and Calcoate, H.F., "Effect of Molecular Structure on Burning Velocity", Journal of Chemical and Engineering Data, <u>4</u>, 226-237 (1957).
- [39] Wiser, W.H. and Hill, G.R., "A Kinetic Comparison of the Combustion of Methyl Alcohol and Methane", Fifth Symposium (International) on Combustion, 553-558, 1955.
- [40] By, A.B., "Spark Ignition Engine Knock as Related to End Gas Pressure-Temperature Histories", Master's Thesis, Department of Mechanical Engineering, M.I.T., May 1979.
- [41] Hildebrand, F.B., "Advanced Calculus for Application, (Prentice-Hall Inc., Englewood Cliffs, N.J.) 1976, Second Ed.

The Calculation Procedure for Laminar Burning Velocity from the Pressure-Time History Obtained During the Combustion Process

|--|

REPRODUCIBILITY OF DATA

Run No.	p _p (atm)	t _p (msec)	t _l - Ŧ (msec)	t ₂ - Ŧ (msec)	t ₃ – Ŧ (msec)	δR _{rms} (mm) ^{δR} Laser(mm)	δx _u
1	9.327	38.95	-0.32	0.68	-0.36	0.24	+0.004	0.001
2	9.135	39.21	-0.58	0.32	0.25	0.23	-0.069	0.025
3	9.210	39.21	-0.26	0.38	-0.11	0.15	-0.021	0.008
4	9.221	38.95	-0.49	0.45	0.04	0.21	+0.019	0.015
	₽ _р ∶	Max. Pressu	ire		3	SR _{rms} : S	TD Deviation of I.P.	
	t _p :	Time of p _p			۵R _L	.aser = R	Calc - 6 4. 64	
	ŧ =	$\frac{t_1 + t_2 + t_3}{3}$	3				•	

Parameters $S_{uo}^{}$, α , β , and $\delta_5^{}$ Used in the Power Law Relation for Propane-Air Mixtures as a Function of the Equivalence Ratio

$$(S_u = S_{uo}(\frac{T_u}{T_{uo}})^{\alpha}(\frac{p}{p_o})^{\beta}$$
, $T_{uo} = 298 K$, $p_o = 1 atm$)

 ·		·			
	Suo cm/sec	α	β.	% of the data within <u>+</u> 5%	
0.8	23.3	2.27	-0.23	63	
1.0	31.9	2.13	-0.17	74	
1.2	33.8	2.02	-0.17	76	

Parameters A, β , E, and δ_5 Used in the Exponential Relation for Propane-Air Mixtures as a Function of the Equivalence Ratio

$(V_{STP} = \frac{\rho_u S_u}{\rho_{STP}} = A ($	$\left(\frac{p}{p_0}\right)^{\beta} \exp(-E/2RT_b^{\circ})$	3	р _о	=	1	atm)
--	---	---	----------------	---	---	------

· · · · · · · · · · · · · · · · · · ·	A cm/sec	β	E (cal/gm. mole)	% of the Data Within <u>+</u> 5%	
0.8	17.1×10 ⁴	0.757	72,500	62	
1.0	136.8×10 ⁴	0.713	95,600	74	
1.2	6.98×10 ⁴	0.803	66,900	88	

Parameters A, β , and E Used in the Exponential Relation for Propane-Air Mixtures as a Function of the Equivalence Ratio Calculated by

Lavoi [27]

 			[.]	
•				
	A	· · · · · · · · · · · · · · · · · · ·	E	
	cm/sec	Ŕ	cal/gm. mole	
0.8	2.44×10 ⁴	0.8	54,348	
1.0	29.00×10 ⁴	0.8	80,566	1
1.2	4.10×10 ⁴	0.8	61,355	

Comparison of Laminar Burning Velocity of Propane-Air Mixtures at 1 Atm Pressure and 311 K Temperature as a Function of the Equivalence Ratio with Kuehl's Measurement

	S _u (cm/sec)	Sm(cm/sec)			
	Kueh1	This Study			
0.8	31.8	30			
0.9	38.5	37.7			
1.0	40	41.9			
1.1	42.86	42.9			
1.2	43	40.6			
Parameters $S_{uo}^{}$, α , β , and	δ_5 Used i	n the P	ower Law F	Rela	tion for
--	--------------------	---------	-------------------	------	----------
Isooctane-Air Mixtures as τ	a Function β	of the	Equivaler	ice	Ratio
$(S_u = S_{uo}(\frac{T_u}{T_{uo}}))$ ($\frac{p}{p_o}$) T _{uo}	= 298	к, р _о	=	l atm)

	C			
φ	^S uo cm/sec	α	β	% of the Data within \pm 5%
0.8	19.25	2.36	-0.22	63
1.0	27.00	2.26	-0.18	58
1.2	27.63	2.03	-0.11	75

Parameters A, β , E, and δ_5 Used in the Exponential Relation for Isooctane-Air Mixtures as a Function of the Equivalence Ratio

φ	A cm/sec	β	cal/gm. mole	% of the Data Within <u>+</u> 5%
0.8	36.2×10^4	0.745	. 79,700	71
1.0	454 × 10 ⁴	0.693	107,500	71
1.2	4.46×10^4	0.848	63.800	81

$$(V_{\text{STP}} = \frac{\rho_u}{\rho_{\text{STP}}}$$
 $S_u = A(\frac{p}{p_o})^{\beta} \exp(-E/2RT_b^{\circ})$, $p_o = 1$ atm)

Parameters $S_{u0}^{}$, α , β , and $\delta_5^{}$ Used in the Power Law Relation for Stoichiometric Isooctane-Air Mixtures as a Function of the Residual Friction

$$(S_u = S_{uo} (\frac{T_u}{T_{uo}})^{\alpha} (\frac{p}{p_o})^{\beta}$$
, $T_{uo} = 298K$, $p_o = 1$ atm)

Residual Fraction	S _{uo} cm/sec	α	β	% of the Data Within <u>+</u> 5%
0	27.00	2.26	-0.18	58
0.10	23.71	1.99	-0.23	71
0.20	18.50	2.39	-0.37	93

Values of Pressures and Temperatures for Isooctane-Air Mixtures at which Autoignition Occurred as a Function of the Equivalence Ratio

φ	p atm	T _u K	
0.8	73	738	
1.0	66	698	
1.2	47	645	

Pressure and Temperature History of the Combustion Process for Isooctane-Air Mixture ϕ = 0.8 , in which Autoignition Occurred (T_{i} = 500 K, p_{i} = 14.5 atm)

Pressure (atm)	Temperature (K)
15.33	507
17.15	521
19.05	535
21.11	549
23.39	563
25.86	577
28,526	591
31,437	605
34,60	619
38.03	633
41.74	647
45.68	661
49,94	675
54,57	689
59.46	703
64.89	717
70.73	731
73.00	738 autoignition

Pressure and Temperature History of Combustion Process for Stoichiometric Isooctane-Air Mixtures in Which Autoignition Occurred ($p_i = 15.1$ atm, $T_i = 500$ K)

ressure (atm)	Temperature (K)
16.00	507
17.94	521
19.98	535
22.17	549
24.72	563
27,42	577
30.28	591
33.484	605
36.92	619
40.70	633
44.78	647
49.13	661
53.85	675
59.01	689
66.00	698 autoignition

Pressure and Temperature History of Combustion Process for Isooctane-Air Mixture ϕ = 1.2, Which Autoignition Occurred (P_i = 6.26 atm, T_i = 400 K)

Pressure (atm)		Temperature	<u>(K)</u>
6.81		409	
7.85		423	
8.97		437	
10.20		451	
11.59		465	
13.12		479	
14.79		493	
16.66		507	
18.67		521	
20.89		535	
23.34		549	
25.99		563	
28.88		577	
32.07		591	
35,62		605	
39.37		619	
43.62	•	633	
47.00		645	autoignition

Parameters $S_{uo}^{}$, α , β and $\delta_5^{}$ Used in the Power Law Relation for Methanol-Air Mixtures as a Function of Equivalence Ratio

$$(S_u = S_{uo} (\frac{T_u}{T_{uo}})^{\alpha} (\frac{p}{p_o})^{\beta}$$
, $T_{uo} = 298 \text{ K}$, $p_o = 1 \text{ atm}$)

¢	Suo cm/sec	α	β	% of the Data Within <u>+</u> 5%
0.8	23.58	2.47	-0.21	60
1.0	32.69	2.11	-0.13	60
1.2	38.11	1.98	-0.11	76

Parameters A, β , E, and δ_5 Used in the Exponential Relation for Methanol-Air Mixtures as a Function of the Equivalence Ratio

$$(V_{\text{STP}} = \frac{\rho_u S_u}{\rho_{\text{STP}}} = A(\frac{p}{p_0})^{\beta} \exp(-E/2RT_b^{\circ}), p_0 = 1 \text{ atm})$$

Α		E	% of the Data	
φ.	cm/sec	β	cal/gm. mole	Within <u>+</u> 5%
0.8	55×10 ⁴	0.751	77 ,200	66
1.0	578×10 ⁴	0.732	105,900	74
1.2	1.05×10 ⁴	0.896	45,700	73

Comparison of Laminar Burning Velocity of Methanol-Air Mixtures of 1 atm Pressure and 311 K Temperature as a Function of the Equivalence Ratio with the Measurements Reported by Gibbs and Calcoate [38]

	S,,	S,
ф	Gibbs & Calcoate cm/sec	This Study cm/sec
0.8	58.5	41.05
1.0	71.2	63.16
1.2	66.4	59.44

Physical Properties and Chemical Analysis of RMFD 303 (Indolene)

Stoichiometric Fuel-Air Ratio	0.06988
Lower Heat of Combustion (Kcal/gm)	10.15
Motor Octane Rating	88.3
Research Octane Rating	101.4
Specific Gravity	0.765
Average Molecular Formula	C7.8 ^H 13.214
Component Weight Percent	
Aromatic	45.3%
Olefin	13.9%
Parafin	40.8%
Component Molecular Percents	
Aromatic	52.49%
Olefin	9.36%
Parafin	38.16%
Component Typical Hydrocarbon	
Aromatic	Toluene
Olefin	Undecene
Parafin	Isooctane

Parameters $S_{uo}^{}$, α , β , and $\delta_5^{}$ Used in the Power Law Relation for RMFD 303-Air Mixtures as a Function of the Equivalence Ratio

	(S _u = S _{uo} (Tuo α β Tuo (p/p ₀)	, T _{uo} = 298	K, p _o = 1 atm)
ф	S _{uo} cm/sec	α	β	% of the Data Within <u>+</u> 5%
0.8	19.15	2.27	-0.17	76
1.0	25.21	2.19	-0.13	74
1.2	28.14	2.02	-0.087	80

Parameters A, β , E, and δ_5 Used in the Exponential Relation for RMFD 303-Air Mixtures as a Function of the Equivalence Ratio for the Exponential Relation

$$(v_{STP} = \frac{\rho_u S_u}{\rho_{STP}} = A \left(\frac{p}{p_o}\right)^{\beta} \exp(-E/2RT_b^{\circ})$$
, $p_o = 1$ atm)

ф	A (cm/sec)	β	E cal/(gm.mole)	% of the Data Within <u>+</u> 5%
0.8	10.9×10^4	0.807	70,400	70
1.0	51.7 × 10^4	0.795	88,800	64
1.2	2.9 × 10^4	0.884	60,400	. 84

Parameters S_{u0}^{α} , α , and β for Mixtures of Air with Indolene (RMFD 303), Isooctane, Methanol, and Propane as a Function of the Equivalence Ratio for the Power Law Relation

$$(S_u = S_{uo}(\frac{T_u}{T_{uo}})^{\alpha}(\frac{p}{p_o})^{\beta}$$
, $T_{uo} = 298$ K, $p_o = 1$ atm)

Fuel	$\phi = 0.8$	$\phi = 1.0$	$\phi = 1.2$
		S _{uo}	
Methanol	23.58	32.69	38.11
Propane	23.20	31.90	33.80
Isooctane	19.25	27.00	27.63
RMFD 303	19.15	25.21	28.14
		α	
Methanol	2.47	2.11	1.98
Propane	2.27	2.13	2.06
Isooctane	2.36	2.26	2.03
RMFD 303	2.27	2.19	2.02
		β	
Methanol	-0.21	-0.13	-0.11
Propane	-0.23	-0.17	-0.17
Isooctane	-0.22	-0.18	-0.11
RMFD 303	-0.17	-0.13	-0.087
	-		

Ÿ.

FIG. 4 Schematic Diagram of the Spark Plug with its Extended Electrode

FIG. 6 Schematic Diagram of the Balanced-Pressure Indicator

FIG. 8 Schematic Diagrams Showing Construction of Ionization Probes

FIG. 11 Schematic Diagram of Window

 $P_{i} = 1 \text{ ATM}$ $T_{i} = 298 \text{ K}$ $\phi = 1.0$

10 msec/div. Laser trace delayed 22 msec, sweep rate 1 msec/div.

Traces No. 1,2 and 3: Ionization Probe Signals Trace No. 4: Laser Signal Trace No. 5: Pressure Transducer Signal

FIG. 13

A TYPICAL OSCILLOGRAM FOR STOICHIOMETRIC PROPANE - AIR MIXTURE

FIG. 14 The Relationship Between the Temperature Distributions in the Fuel Air Mixtures as a Function of Mass Fraction Burned

FIG. 15 Displacement Thickness (δ) and $\gamma_b p \frac{d\delta}{dp}$ as a Function of Normalized Pressure for Stoichiometric Propane-Air Mixtures with Initial Atmospheric Pressure and Initial Temperature of 298 K

FIG. 16 Time Deviation of the Ionization Probe Pulses from the Mean Time $(t_i - \bar{t})$ as a Function of Waiting Time

FIG. 17a Difference of the Time When Peak Pressure Occurred and the Mean Time of the Ionization Probe Pulses as a Function of Waiting Time

FIG. 17b The Ratio of the Pressure Inside the Combustion Bomb at the Average Arrival Time of the Flame for Three Ionization Probes to the Maximum Pressure as a Function of the Waiting Time

FIG. 20 Laminar Burning Velocity of Propane-Air Mixtures at Equivalence Ratios of 0.8, 1.0, and 1.2

FIG. 21 Laminar Burning Velocity of Propane-Air Mixtures at Atmospheric Condition as a Function of Equivalence Ratio

FIG. 22 Comparison of Measured Laminar Burning Velocity for Propane-Air Mixtures with Those Reported by Kuehl [28]

FIG. 23 Comparison of Measured Laminar Burning Velocity for Propane-Air Mixtures with Those Reported by Ryan and Lestz

FIG. 26 Laminar Burning Velocity of Stoichiometric Isooctane-Air Mixtures with Three Different Residual Fractions of f=0, f=0.10, and f=0.20 as a Function of Unburned Gas Temperature

FIG. 27 Laminar Burning Velocity of Isooctane-Air Mixtures having Residual Fractions of f=0.10 and f=0.20 Normalized with Respect to the Burning Velocity with No Diluent as a Function of Unburned Gas Temperature

FIG. 28 Oscillogram for Stoichiometric Isooctane-Air Mixtures with Initial Pressure of 15.1 atm and Initial Temperature of 500 K in which Autoignition Occurred

FIG. 29 Comparison of Measured Laminar Burning Velocity for Isooctane-Air Mixtures with Those Reported by Heimel and Weast [35] and Duggar and Graab [34]

FIG. 30 Comparison of Measured Laminar Burning Velocity for Isooctane-Air Mixtures with Those Reported by Ryan and Lestz [22] and Babkin and Kozachenko [37]

Laminar Burning Velocity of Methanol-Air Mixtures at Equivalence Ratios of 0.8, 1.0, and 1.2 FIG. 31

FIG. 32 Laminar Burning Velocity of Methanol-Air Mixtures at Atmospheric Condition as a Function of Equivalence Ratio

FIG. 33 Comparison of Measured Laminar Burning Velocity for Methanol-Air Mixtures with Those Reported by Ryan and Lestz [22]

FIG. 34 Comparison of Measured Laminar Burning Velocity for Methanol-Air Mixtures with Those Reported by Gibbs and Calcoate [38] and Wiser and Hill [39]

FIG. 35 Ratio of Measured Pressure to Calculated Pressure in the Manifold for RMFD 303 (Indolene) as a Function of Calculated Pressure for Two Temperatures of 300 K and 350 K

FIG. 37 Laminar Burning Velocity of RMFD 303 (Indolene)-Air Mixtures at Equivalence Ratio of 0.8, 1.0, and 1.2

FIG. 38 Laminar Burning Velocity of RMFD 303 (Indolene)-Air Mixtures at 1 atm Pressure and 350 K Temperature as a Function of Equivalence Ratio

Isooctane, Methanol, and Propane as a Function of the Equivalence Ratio Parameters S $_{\text{uo}},~\alpha,$ and β for Mixtures of Air with Indolene (RMFD 303), FIG. 39

125

APPENDIX A

LIQUID FUEL INJECTION

Liquid fuel was injected with a syringe through a system into the manifold. In order to make a mixture partial pressure of fuel was calculated, then mass and volume of fuel were calculated at room temperature based on the assumption of perfect gas for fuel vapor.

It was observed that the measured pressures were different from the calculated pressure. Figure A-1 shows the ratio of measured pressure to calculated pressure as a function of calculated pressure for isooctane, toluene, and benzene. The corresponding figure for RMFD 303 is shown in Chapter 6 of the text. It can be seen that even at very low pressure, much less than saturation pressure, the fuels do not evaporate completely. The volume of the bomb and manifold in these tests was 2300 cc including the combustion bomb, the plumbing lines, and the bourdon tube gauges. It was thought that some of the fuel was absorbed by the walls and in cracks. To check this idea tests were done with smaller total volume and with less area to volume ratio. In these tests the combustion bomb and the mercury manometer underneath the bomb (refer to Fig. 2) were used. The results for isooctane and RMFD 303 are shown in Fig. A.2. It can be seen that for isooctane the ratio of measured pressure to the calculated pressure is around 95% and as the area to volume ratio of the plumbing system is reduced, less fuel is absorbed by walls and in cracks. Although in the case of RMFD 303 the ratio of measured pressure to calculated pressure was increased from 55% (Fig. 35) to 70%, but this is

substantially less than the ratio for isooctane. The reason for this is that the saturation pressures for some constituents of RMFD 303 are very low and therefore the fuel does not evaporate completely at room temperature. For this reason the lowest initial temperature used for RMFD 303 was 350 K, so that the constituents of the fuel vapor would be the same as the liquid fuel. Ratio of Measured Pressure to Calculated Pressure in the System for Isooctane, Toluene, and Benezene as a Function of Calculated Pressure at Room Temperature FIG. A.1

FIG. A.2 Ratio of Measured Pressure to Calculated Pressure in the System Consisting of the Combustion Bomb and Mercury Manometer Beneath the Oven for RMFD 303 and Isooctane as a Function of Calculated Pressure at Room Temperature

129

APPENDIX B

CONSERVATION EQUATIONS

B.1 Conservation of Volume

The gas mixture within the combustion bomb consists of burned gases m_b and unburned gases $m_o - m_b$. The volume equation is as follows:

$$V_{o} = \int_{o}^{m_{b}} v_{b} dm + \int_{m_{b}}^{m_{o}} v_{u} dm \qquad (B-1)$$

The unburned gas itself consists of two parts. The first part is that portion of the unburned gas that is compressed isentropically. The second part is that portion of the unburned gas contained in the thermal boundary layer of the combustion bomb wall which conducts heat to the bomb wall. The volume of the unburned gas can be calculated as follows:

$$\int_{m_{b}}^{m_{o}} v_{u} dm = \frac{R}{p} \int_{m_{b}}^{m_{o}} (T-T_{\infty}) dm + \int_{m_{b}}^{m_{o}} v_{u\infty} dm$$
(B-2)

where $v_{u^{\infty}}$ and T_{∞} are specific volumes and temperatures of the portion of the unburned gas that compresses isentropically, and T is the temperature of the unburned gas within the thermal boundary layer. Defining a mass coordinate η where

$$\eta \equiv \int_{0}^{r} \rho dr' \qquad (B-3)$$

131

where the wall is at zero coordinate.

Then

$$dm = A d\eta$$
 (B-4)

where A is the inside area of the combustion bomb.

The first term on the right hand side of Eq. (B-2) will be

$$\frac{R}{p}\int (T-T_{\infty})dm = -\frac{R}{p}\frac{T_{\infty}}{p} A \int_{0}^{\infty} (1-\frac{T}{T_{\infty}})dn \qquad (B-5)$$

using the definition of displacement thickness (Appendix C)

$$\delta = \frac{1}{\rho_{\infty}} \int_{0}^{\infty} (1 - \frac{T}{T_{\infty}}) d\eta \qquad (B-6)$$

The equation (B-5) then becomes

$$\frac{R}{p} \int_{m_b}^{m_o} (T-T_{\infty}) dm = -\frac{R_{\infty}T_{\infty}}{p} A\delta = -A\delta$$
 (B-7)

and the conservation of volume will be

$$V_{o} + A_{\delta} = \int_{0}^{m_{b}} v_{b} dm + \int_{m_{b}}^{m_{o}} v_{u} dm$$
 (B-8)

or dividing by m_o

$$\frac{v_{o}}{m_{o}} + A \frac{\delta}{m_{o}} = \int_{0}^{X} v_{b} dx' + \int_{x}^{1} v_{u^{\infty}} dx'$$
(B-9)

.

B.2 Conservation of Energy

The energy equation for gases within the bomb is:

$$E_{o} - Q = \int_{0}^{m_{b}} e_{b} dm + \int_{m_{b}}^{m_{o}} e_{u} dm$$
 (B-10)

where E_0 is total energy, and Q is heat transferred to the combustion bomb wall. Again the unburned gas consists of two parts

$$\int_{m_{b}}^{m_{o}} e_{u} dm = C_{v} \int_{m_{b}}^{m_{o}} (T - T_{\infty}) dm + \int_{m_{b}}^{m_{o}} e_{u^{\infty}} dm$$
(B-11)

where C_V is the specific heat of unburned gas at constant pressure. The first term on the right hand side of the equation can be simplified as the following:

$$C_{V} = \int_{m_{b}}^{m_{o}} (T - T_{\infty}) dm = -A C_{V} T_{\infty} \int_{0}^{\infty} (1 - \frac{T}{T_{\infty}}) dn$$
 (B-12)

$$C_{v} \int_{m_{b}}^{m_{o}} (T-T_{\infty}) dm = -A C_{v} \rho_{\infty} T_{\infty} \delta$$
 (B-13)

One-dimensional heat conduction is used to calculate the heat transfer from the gass within the bomb to the bomb wall.

$$Q/A = \int k \frac{\partial T}{\partial r} \Big|_{R_B} d\tau$$
 (B-14)

where k is the thermal conductivity of the gas, and R_B is the radius of the combustion bomb. Substituting n for r :

$$Q/A = \int \rho k \frac{\partial T}{\partial \eta} \Big|_{0} dt \qquad (B-15)$$

The following assumptions are made:

$$P_r = \frac{\mu C_p}{k} = 1$$
 (B-16)

and heat transfer becomes

$$Q/A = \int C_p \rho \mu \frac{\partial T}{\partial \eta} \Big|_0 dt$$
 (B-18)

Equation (C-10) of Appendix C is integrated to calculate the integrand of Eq. (B-18). It follows that:

$$-\rho\mu \frac{\partial T}{\partial \eta}\Big|_{0} = \frac{\partial}{\partial t} \int_{0}^{\infty} (T-T_{\infty})d\eta - \frac{T_{\infty}}{T_{\infty}} \int_{0}^{\infty} (T-T_{\infty})d\eta \qquad (B-19)$$

$$= -\frac{\partial}{\partial \tau} \rho_{\infty} T_{\infty} \delta + \frac{T_{\infty}}{T_{\infty}} \rho_{\infty} T_{\infty} \delta \qquad (B-20)$$

Then

$$Q/A = C_p \rho_{\infty} T_{\infty} \delta - \int C_p \rho_{\infty} T_{\infty} \delta d \ln T_{\infty}$$
 (B-21)

using the isentropic relation between pressure and temperature

$$d \ln T_{\infty} = \frac{R}{C_{p}} d \ln p$$
 (B-22)

Then

$$Q/A = C_p \rho_{\infty} T_{\infty} \delta - \int \delta dp$$
 (B-23)

Substituting Eqs. (B-11), (B-13), and (B-23) into Eq. (B-10)

$$E_{o} - (C_{p}\rho_{\infty}T_{\infty}\delta A - A \int \delta dp) = \int e_{b}dm + \int e_{u^{\infty}}dm - A C_{v}\rho_{\infty}T_{\infty}\delta \qquad (B-24)$$

$$E_{o} - A(\rho_{\infty}T_{\infty}\delta(C_{p} - C_{v}) - \int \delta dp) = \int e_{b}dm + \int e_{u}dm \qquad (B-25)$$

$$E_{o} - A(p\delta - \int \delta dp) = \int e_{b} dm + \int e_{u^{\infty}} dm$$
 (B-26)

or

$$E_{o} - A = \int_{0}^{\delta} p \, d\delta' = \int_{0}^{m_{b}} e_{b} dm + \int_{m_{b}}^{m_{o}} e_{u^{\infty}} dm$$
 (B-27)

and, by dividing by m_0

$$E_{0}/m_{0} - (A/m_{0})_{0} \int_{0}^{\infty} p \, d\delta' = \int_{0}^{X} e_{b} dx' + \int_{x}^{1} e_{u} dx'$$
(B-28)

APPENDIX C

DISPLACEMENT THICKNESS

C.1 Temperature Distribution Within the Thermal Boundary Layer

The continuity and energy equations within the thermal boundary layer can be written as follows:

Continuity:

$$\frac{\partial \rho}{\partial t} + \frac{d}{dr} \rho u = 0 \qquad (C-1)$$

Energy:

$$\rho \frac{D}{Dt} C_{p}T = \rho C_{p} \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial r} \right) = \frac{dp}{dx}$$

$$+ \frac{\partial}{\partial r} k \frac{\partial}{\partial r}$$
(C-2)

С

Equation (C-1) can be intergrated

$$\frac{\partial}{\partial t} \int_{0}^{r} \rho dr' + \rho u = 0 \qquad (C-3)$$

Mass coordinate $\eta \equiv \int_{0}^{r} \rho dr'$ is used here, the equation (C-3) becomes

$$\frac{\partial \eta}{\partial t} = -\rho u$$
 (C-4)

Substituting the mass coordinate in Equation (C-2)

$$\rho \frac{D}{Dt} C_p T = \rho C_p \left(\frac{\partial T}{\partial t} + \rho u \frac{\partial T}{\partial \eta} \right) = \rho C_p \left(\frac{\partial T}{\partial t} - \frac{\partial \eta}{\partial t} \frac{\partial T}{\partial \eta} \right)$$
(C-5)

and finally

.7

$$\rho \frac{D}{Dt} C_{p} T = \rho C_{p} \frac{\partial T}{\partial t} \Big|_{\eta}$$
 (C-6)

Therefore the energy equation becomes

$$\rho C_{p} \frac{\partial T}{\partial t}\Big|_{\eta} = \frac{dp}{dt} + \rho \frac{\partial}{\partial \eta} \rho k \frac{\partial T}{\partial \eta}\Big|_{t}$$
(C-7)

Using Pr = 1 and adding and subtracting $\frac{\partial T_{\infty}}{\partial t}$ to Eq. (C-7) then

$$\frac{\partial}{\partial \tau}$$
 $(T-T_{\infty}) + \frac{\partial T_{\infty}}{\partial \tau} - \frac{RT}{C_{p}p} \frac{dp}{dt} = \rho \mu \frac{\partial^{2}T}{\partial \eta^{2}}$ (C-8)

Using the isentropic relationship between pressure and $~~\tau_{_{\infty}}$

$$\frac{d \ln T_{\infty}}{dt} = \frac{R}{C_{p}} \frac{d \ln p}{dt}$$
(C-9)

then

$$\frac{\partial}{\partial t}$$
 (T-T_w) + (T-T_w) $\frac{T_w}{T_w} = \rho \mu \frac{\partial^2 T}{\partial \eta^2}$ (C-10)

Multiplying Eq. (C-10) by $\frac{1}{T_{\infty}}$ and simplifying the equation results in

$$\frac{\partial}{\partial t} \left(\frac{T}{T_{\infty}} - 1 \right) = \rho \mu \frac{\partial^2}{\partial \eta^2} \left(\frac{T}{T_{\infty}} - 1 \right)$$
 (C-11)

Defining a new variable τ where

$$d\tau = \rho \mu dt \qquad (C-12)$$

and assuming that viscosity is proportional to temperature. Then

$$d_{\tau} = \frac{P}{R} \left(\frac{\mu}{T}\right) dt = \frac{P}{R} \left(\frac{\mu_0}{T_0}\right) dt \qquad (C-13)$$

$$d\tau = \frac{p}{p_0} (\rho_0 \mu_0) dt$$
 (C-14)

Defining another variable ϕ as

$$\phi = 1 - \frac{T}{T_{\infty}}$$
 (C-15)

and substituting Eqs. (C-12) and (C-15) into Eq. (C-11)

$$\frac{\partial \phi}{\partial \tau} = \frac{\partial^2 \phi}{\partial \eta^2}$$
 (C-16)

Equation (C-16) is one-dimensional heat conduction with the following boundary and initial conditions

$$\phi(0,\tau) = \phi_0(\tau) \qquad (C-17)$$

and

$$\phi(n,0) = 0$$
 . (C-18)

This problem is solved in Section C.3. The result is

$$\phi(\eta,\tau) = \frac{\eta}{2\sqrt{\pi}} \int_{0}^{\tau} \phi_{0}(s)(\tau-s)^{-3/2} e^{-\eta^{2}/4(\tau-s)} ds \qquad (C-19)$$

where

$$ds = \rho_0 \mu_0 \frac{p}{p_0} dt''$$
 (C-20)

٦

and

$$\tau - s = \rho_0 \mu_0 \int_{\tau}^{t''} \frac{p''}{p_0} dt''$$
 (C-21)

Substituting temperature for $\ \varphi$

$$1 - \frac{T}{T_{\infty}} = \frac{1}{2\sqrt{\pi}} \rho_0 \mu_0 \eta_0 \int_0^t (1 - \frac{T_0}{T_{\infty}}) \frac{p!}{p_0} (\tau - s)^{-3/2} e^{-\eta^2/4(\tau - s)} dt'$$
(C-22)

C.2 Displacement Thickness

Defining displacement thickness as the following

$$\delta = \frac{1}{\rho_{\infty}} \int_{0}^{\infty} (\rho - \rho_{\infty}) dr \qquad (C-23)$$

and using mass coordinate instead of distance

$$\delta = \frac{1}{\rho_{\infty}} \int_{0}^{\infty} (1 - \frac{\rho_{\infty}}{\rho}) d\eta = \frac{1}{\rho_{\infty}} \int_{0}^{\infty} (1 - \frac{T}{T_{\infty}}) d\eta \qquad (C-24)$$

Substituting Eq. (C-22) into Eq. (C-24)

$$\delta = \frac{1}{\rho_{\infty}} \int_{0}^{\infty} \int_{0}^{t} (1 - \frac{T_{0}}{T_{\infty}}) \frac{1}{2\sqrt{\pi}} e^{-\eta^{2}/4(\tau-s)} (\tau-s)^{-3/2} \eta \, dsd\eta \quad (C-15)$$

j.

or

- 3

$$\delta = \frac{1}{\rho_{\infty}} \int_{0}^{\tau} (1 - \frac{T_{0}}{T_{\infty}})(\tau - s)^{-1/2} \left(\frac{1}{\sqrt{\pi}} - 0\right)^{\infty} e^{-\eta^{2}/4(\tau - s)} - \frac{d\eta^{2}}{4(\tau - s)} ds \quad (C-26)$$

and

$$\delta = \frac{1}{\sqrt{\pi} \rho_{\infty}} \int_{0}^{\tau} (1 - \frac{T_{0}}{\overline{T}_{\infty}}) (\tau - s)^{-1/2} ds \qquad (C-27)$$

Using Eqn.(C-20) into Eq. (C-27)

$$\delta(t) = \frac{\rho_0 \mu_0}{\rho_{\infty} \sqrt{\pi}} \int_0^t \frac{p!}{p_0} \left(1 - \frac{T_0}{T_{\infty}}\right) (\tau - s)^{-1/2} dt'$$
 (C-28)

Using Eq. (C-21) into Eq. (C-28) and simplifying it

$$\delta(t) = \left(\frac{\mu_0}{\pi \rho_0}\right)^{1/2} \int_{0}^{t} \left(\frac{p'}{p}\right)^{\frac{1}{\gamma_u}} \left(\frac{p'}{p_0}\right)^{\frac{\gamma_u - 1}{\gamma_u}} - 1\right)$$

$$\left(\frac{1}{t'}\right)^{t} \left(\frac{p''}{p_0} dt''\right)^{-1/2} dt'$$

$$(C-29)$$

C.3 Solution to Heat Conduction Equation with Variable

Boundary Condition

The problem is a standard textbook problem which can be found on page 527 of reference [41]

Statement of problem:

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial T}{\partial t} \qquad 0 < x < \infty$$
 (C-30)

B.C.
$$T(0,t) = F(t)$$
 (C-31)

$$I.C. T(x,0) = 0$$
 (C-32)

Solution:

Let A(x,t) solve the problem with $F(\tau) = 1$, then

$$T(x,t) = \begin{cases} 0 & \tau < \tau_1 \\ A(x,t-\tau) & \tau > \tau_1 \end{cases}$$
(C-33)
solves the problem with $F(\tau) = \begin{cases} 0 & \tau < \tau_1 \\ 1 & \tau > \tau_1 \end{cases}$
(C-34)

Defining A(x,t- τ) to be zero for $\tau < \tau_1$. Then using Duhamel's principle [41]

$$T(x,t) = F(0)A(x,t)+[F(\tau_1)-F(0)] A(x,t-\tau_1)+[F(\tau_2)-F(\tau_1)]A(x,t-\tau_2) + \dots + [F(\tau_n)-F(\tau_{n-1})] A(x,t-\tau_n)$$
(C-35)

Solves the problem when the temperatute at x=0 is given by:

0	τ < 0
F(0)	$0 < \tau < \tau_1$
F(τ ₁)	^τ ι < ^τ < ^τ 2
•	•
•	•
•	•
F(t _i)	^τ i ^{< τ < τ} i+1
•	•
•	•
•	•
•	•
F(t _n)	τ <mark>n < τ</mark>

٧

The above solution approximates the solution to the present problem. In the limit, as $n \rightarrow \infty$ and $\tau - \tau \rightarrow 0$ for all i, this approximai+1 i tion converges to the exact solution. In reference [41] it is shown that the limit of approximation is:

$$T(x,t) = A(x,0) F(t) + \int_{0}^{t} F(\tau) \frac{\partial A(x,t,\tau)}{\partial \tau} d\tau \qquad (C-36)$$

but T(x,0) = 0 and A(x,0) = 0, therefore

$$T(x,t) = \int_{0}^{t} F(\tau) \frac{\partial A(x,t-\tau)}{\partial \tau} d\tau \qquad (C-37)$$

To find A(x,t) consider a solution of the form

$$A(x,t) = T_1(x,t) - T_2(x,t)$$
 (C-38)

where $T_1(x,t)$ solves the problem with boundary and initial conditions of

$$T(0,\tau) = 1$$
 (C-39)
 $T(x,0) = 1$

and $T_2(x,t)$ solves the problem with boundary and initial conditions of

$$T(0,\tau) = 0$$
 (C-40)
 $T(x,0) = 1$

(C-41)

then

A(0,t) = 1

and

A(x,0) = 0

It is obvious that T(x,t) = 1 is the solution for $T_1(x,t)$ and

$$T(x,t) = erf\left(\frac{x}{2\alpha\sqrt{t}}\right)$$
 (C-42)

is the solution for $T_2(x,t)$ (Section 9.14 of Reference [41]). Then

A(x,t) = 1 -
$$\frac{2}{\sqrt{\pi}} \int_{0}^{\frac{x}{2\alpha\sqrt{t}}} e^{-u^2} du$$
 (C-43)

Substituting Eq. (C-43) into Eq. (C-37)

$$T(x,t) = \int_{0}^{t} F(\tau) \frac{\partial}{\partial t} \left(1 - \frac{2}{\sqrt{\pi}} - 0\right)^{\frac{x}{2\alpha\sqrt{t-t^{*}}}} e^{-u^{2}} du d\tau \qquad (C-44)$$

$$T(x,t) = \int_{0}^{t} F(\tau) \left(-\frac{2}{\sqrt{\pi}} e^{\frac{-x^{2}}{4\alpha^{2}(t-\tau)}}\right) \frac{\partial}{\partial t} \left(\frac{x}{2\alpha\sqrt{t-\tau}}\right) d\tau \qquad (C-45)$$

$$T(x,t) = \frac{-2}{\sqrt{\pi}} \left(\frac{x}{2\alpha}\right) \int_{0}^{\tau} F(\tau) e^{\frac{-x^2}{4(t-\tau)}} \frac{\partial}{\partial t} (t-\tau)^{-1/2} d\tau \qquad (C-46)$$

and finally

$$T(x,t) = \frac{x}{2\alpha\sqrt{\pi}} \int_{0}^{\tau} F(\tau) e^{\frac{-x^2}{4\alpha^2(t-\tau)}} (t-\tau)^{-3/2} d\tau \qquad (C-47)$$

APPENDIX D

THE FRACTURE ERROR IN X INTRODUCED BY USING AVERAGE BURNED GAS TEMPERATURE TO CALCULATE BURNED GAS PROPERTIES

The volume and mass conservation equations are:

$$V/M + A \delta/M = \int_{0}^{X} v_b dx' + \int_{0}^{1} v_b dx'$$
 (D-1)

$$E/M - (A/M) \int_{0}^{\delta} pd\delta' = \int_{0}^{x} e_{b}dx + \int_{x}^{1} e_{u}dx'$$
 (D-2)

 $v_b(T_b,p)$ and $\rho_b(T_b,p)$ can be expanded in a Taylor series about the mean gas temperature

$$\bar{T}_{b} = \frac{1}{x} \int_{0}^{x} T_{b}(x',x) dx'$$
 (D-3)

which are

$$\mathbf{e}_{b}(\mathbf{T}_{b},\mathbf{p}) = \mathbf{e}_{b}(\mathbf{\overline{T}}_{b}) + \left(\frac{\partial \mathbf{e}_{b}}{\partial \mathbf{T}}\right) (\mathbf{T}_{b} - \mathbf{\overline{T}}_{b})$$

$$+ \frac{1}{2} \left(\left(\frac{\partial^{2} \mathbf{e}_{b}}{\partial \mathbf{T}^{2}}\right)\right) (\mathbf{T}_{b} - \mathbf{\overline{T}}_{b})^{2} + \dots \quad (D-4)$$

$$v_{b}(T_{b},p) = v_{b}(\overline{T}_{b}) + (\frac{\partial v_{b}}{\partial T})_{\overline{T}_{b}}(T_{b} - \overline{T}_{b}) + ((\frac{\partial^{2} v_{b}}{\partial T^{2}})_{p})_{\overline{T}_{b}}(T_{b} - \overline{T}_{b})^{2} + ...$$
(D-5)
Neglecting terms of order $(T_b - \overline{T}_b)^3$ and higher and substituting Eqs. (D-4) and (D-5) into Eqs. (D-1) and (D-2) will result in

$$V/M + A \delta/M = x v_b(p,\overline{T}_b) + (1-x) v_u + \frac{1}{2} \left(\left(\frac{\partial^2 v_b}{\partial T^2} \right) \right)_p \overline{T}_b 0 \int_{(D-6)}^{x} (T_b - \overline{T}_b)^2 dx'$$

$$E/M - (A/M) \int_{0}^{0} pd\delta' = x e_{b}(p,\overline{T}_{b}) + (1-x)e_{u} + \frac{1}{2} \left(\left(\frac{\partial^{2}e_{b}}{\partial T^{2}} \right)_{p} \int_{\overline{T}_{b}}^{x} \left(T_{b} - \overline{T}_{b} \right)^{2} dx' \right)$$
(D-7)

The burned gas temperature can be approximated as the following

$$T_{b}(x^{*},x) = \overline{T}_{b} + \Delta T(\frac{1}{2} - \frac{x^{*}}{x})$$
 (D-8)

where $T_b(x^i,x)$ is the temperature of the element burned at mass fraction burned x! when the mass fraction burned is x, and ΔT is the spread in burned gas temperature which is about 500°K.

Assuming that molecular weight does not change within the burned gas, and, substituting Eq. (D-8) into Eqs. (D-6) and (D-7) will result in:

$$V/M + A \delta/M = x v_b(p,\overline{T}_b) + (1-x)v_u \qquad (D-9)$$

$$E/M - (A/M) \int_{0}^{\delta} pd\delta' = x e_{b}(p,\overline{T}_{b}) + (1-x) e_{u} + (x/24)(\frac{\partial C_{vb}}{\partial T})(\Delta T)^{2} (D-10)$$

The following procedure is used to calculate the fractional error in x:

$$f_1 = V/M + A \delta/M - v_u - x(v_b(\overline{T}_b) - v_u)$$
 (D-11)

$$f_2 = E/M - (A/M) \int_0^{\delta} pd\delta' - x(e_b(\overline{T}_b) - e_u)$$
 (D-12)

$$df_{1} = (v_{b} - v_{u})dx - x \frac{\partial v_{b}}{\partial \overline{T}_{b}} | dT_{b} = 0$$
 (D-13)

$$df_2 = (e_b - e_u)dx - x \frac{\partial e_b}{\partial T} \Big|_p dT_b = x \triangle e_b$$
 (D-14)

where $\Delta e_b = \frac{1}{24} \left(\frac{\partial C_{vb}}{\partial T} \right) (\Delta T)^2$. Solving for $\frac{dx}{x}$ in Eqs. (D-13) and (D-14) results in:

$$\frac{dx}{x} = \frac{x \bigtriangleup e_b \left(\frac{\partial v_b}{\partial T_b}\right)}{\left(e_b - e_u\right)\left(\frac{\partial v_b}{\partial T}\right)_p - \left(v_b - v_u\right)\left(\frac{\partial e_b}{\partial T}\right)_p}$$
(D-15)

Using the following relations:

$$\left(\frac{\partial v_b}{\partial T_b}\right)_p = \frac{R_b}{p}$$
 (D-16)

$$e_{b}(\overline{T}_{b}) - e_{u} = h_{b}(\overline{T}_{b}) - h_{u} + R_{b}T_{b} - R_{u}T_{u}$$
(D-17)

$$h_b(\overline{T}_b) - h_u = C_p(\overline{T}_b - T_b^\circ) = C_p \Delta T$$
 (D-18)

Equation (D-15) becomes:

$$\frac{dx}{x} = \frac{(\Delta T^2) \left(\frac{\partial C_{vb}}{\partial T}\right)_p}{24(\overline{T}_b - T_u)(C_p \frac{\Delta T}{\overline{T}_b - T_u} - C_v + R)}$$
(D-19)

Considering $C_p \, \frac{\Delta T}{T_b - T_u}$ and R are much smaller than C_v Eq. (D-19) will be

$$\frac{dx}{x} \approx \frac{(\Delta T)^2}{24(\overline{T}_b - T_b)C_{vb}} \left(\frac{\partial C_{vb}}{\partial T}\right)_{p}$$
(D-20)

and $\frac{dx}{x}$ for the cases investigated is not more than 0.002. Therefore average burned gas temperature has been used to calculate the thermodynamic properties of burned gases.

APPENDIX E

FUEL THERMODYNAMIC PROPERTIES

In the thermodynamic analysis of the combustion process in the combustion bomb, specific enthalpy and specific heat values for different species are required. Specific enthalpy h and specific heat at constant pressure c_p can be expressed by the following relationships:

$$c_{pi} = a_{i1} + a_{i2}t + a_{i3}t^2 + a_{i4}t^3 + a_{i5}/t^2$$
 (E-1)

$$h_{i} = a_{i1}t + a_{i2}t^{2}/2 + a_{i3}t^{3}/3 + a_{i4}t^{4}/4$$
(E-2)
$$- a_{i5}/t + a_{i6} + a_{i8}$$

where

The coefficients a_{ij} are obtained by curve fitting JANAF [22] table data to the above functional form. The fitted constants for CO₂, H₂O, CO, H₂, O₂, N₂, C₈H₁₈, C₃H₈, and CH₃OH are given in Appendix A of LoRouso [23].

For multi-component fuels such as RMFD 303,thermodynamic properties are defined by summing mole-weighted contributions from its components. Hence specific heat and specific enthalpy for a fuel of average molecular weight \overline{M}_{f} are:

$$C_{p} = \frac{1}{\overline{M}_{f}} \sum_{k=1}^{n} y_{k} \left(\sum_{J=1}^{4} (a_{KJ} t^{J-1}) + \frac{a_{k5}}{t^{2}} \right) \quad (E-3)$$

and,

$$h = \frac{1}{\overline{M}_{f}} \sum_{k=1}^{n} y_{K} \left(\sum_{J=1}^{4} \left(\frac{a_{kJ}t^{J}}{J} \right) - \frac{a_{k5}}{t} + a_{k6} + a_{k8} \right)$$
(E-4)

where

$$y_{K}$$
 = mode fraction of component K in the fuel
 \overline{M}_{f} = average molecular weight gm/gm.mole
 a_{KJ} = same as a_{iJ} in Eqs. (E-1) and (E-2)

Table E-1 shows the coefficient a_{IJ} for different fuels. For more information references [23] and [36] should be consulted.

Т	AB	LE	ΞE	-1
	• • • •			

COEFFICIENTS FOR DETERMINING THERMODYNAMIC PROPERTIES OF VARIOUS FUELS 300 K < T < 1000 K

NAME	FORMULA	a _{il}	^a 12	^a i3	a ₁₄	ā ₁ 5	a _{†6}	a _{i8}
Propane	C_H_	- 1.4867	+ 74.339	- 39.0649	+ 8.05426	+ .0121948	-27.3111	+ 8.8500
Methane	38 CH,	291491	+ 26.3271	- 10.6096	+ 1.56557	+0.165726	-18.3313	+ 4.3000
Isooctane		-17,9283	+242.674	-172.904	+51.362	+0.418388	-56.1743	+20.225
Methanol	CH_OH	- 2.70585	+ 44.1677	- 27.5009	+ 7.21927	+0.20299	-48.3211	+ 5.37100
RMFD 302	ColoreHar 101	-23.70726	+258.678	-204.2074	+71.1899	+0.576267	-41.81371	+17.798
RMFD 303	C_{7} office on A	-22.5012	+227.9934	-177.258	+56.0 <u>4</u> 83	+0.484497	-29.7816	+15.235
Toluene	C-Ho	-19,5613	+176.392	-135.306	+41,5136	+0.237377	+11,8563	+ 9.856
Benezene	C _c H _c	-15.3997	+142.517	-111.628	+34.5597	+0.126649	+19.4247	+ 7.581
n-Heptane	Callac	-15,1162	+210,313	-147.158	+42.8266	+0.357146	-47.2987	+17.945
Ethyl- Benzene	^C 8 ^H 10	-18,7091	+198.583	-151,776	+46.4746	+0.217607	+ 6,44725	+12.132
Undecene	$C_{1,1}H_{2,2}$	-29,2788	+348.87	-276.331	+89.7694	+0.846336	-36,3036	+25.034
Nonene	C ₉ H ₁₈	-25.5929	+290.542	-233,238	+76.7157	+0.726636	-25.7007	+20.479

APPENDIX F

CONSTANT ENTHALPY COMBUSTION IN THE BOMB

To show the combustion process in the combustion bomb is isenthalpic the conservation equations of (B-9) and (B-18) are used:

$$\frac{V_0}{m_0} + \frac{A\delta}{m_0} = \int_0^X v_b(s_b, p) dx' + (1-x) v_u(s_u, p)$$
 (F-1)

$$\frac{F_0}{m_0} - \frac{A}{m_0} \int_0^{\delta} p \, d\delta' = \int_0^{X} e_b(s_b, p) dx' + (1-x) e_u(s_u, p) \quad (F-2)$$

Equation (F-1) is multiplied by p and added to Eq. (F-2)

$$e_{0} + pv_{0} + \frac{A}{m_{0}} (p\delta - \int_{0}^{\delta} pd\delta') = \int_{0}^{X} h_{b}(s_{b},p)dx' + (1-x) h_{u}(s_{u},p)$$
(F-3)

or

$$h_0 + \frac{A}{m_0} \int_0^p \delta dp' = \int_0^X h_b(s_b, p) dx' + (1-x) h_u(s_u, p)$$
 (F-4)

Differentiating Eq. (D-4) with respect to p and using de = dv = 0 will result in:

$$v_{0} + \frac{A\delta}{m_{0}} = (h_{b}(s_{b},p) - h_{u}(s_{u},p) \frac{dx}{dp} + \int_{0}^{X} (\frac{\partial h_{b}}{\partial p}) \Big|_{s_{b}} dx'$$

$$(1-x) (\frac{\partial h_{u}}{\partial p}) \Big|_{s_{u}}$$
(F-5)

Equation (F-1) can be used in Eq. (F-5)

$$h_b(s_b,p) - h_u(s_u,p) \frac{dx}{dp} + \int_0^x \left(\frac{\partial h_b}{\partial p}\right) \Big|_{s_b} dx^* +$$

+
$$(1-x)\left(\frac{\partial h_u}{\partial p}\right)\Big|_{s_u} = \int_0^x v_b(s_b,p)dx^*$$
 (F-6)

and consequently:

$$h_b(s_b,p) = h_u(s_u,p)$$
 (F-7)

That is the combustion process is isenthalpic.

APPENDIX G

The conservation equations are written as follows:

$$v_{0} + \frac{A\delta}{m_{0}} = \int_{0}^{X} v_{b}(s_{b},p)dx' + (1-x) v_{u}(s_{u},p)$$
 (G-1)

$$e_0 - \frac{A}{m_0} \int_0^{\delta} p d\delta' = \int_0^{X} e_b(s_b, p) dx' + (1-x) e_u(s_u, p)$$
 (G-2)

Equation (G-1) is differentiated with respect to p

$$\frac{A}{m_0} \frac{d\delta}{dp} = \left(v_b(s_b, p) - v_u(s_u, p) \frac{dx}{dp} + 0 \right)^X \left(\frac{\partial v_b}{\partial p} \right) \Big|_{s_b} dx'$$

$$+ (1-x) \left(\frac{\partial v_u}{\partial p} \right) \Big|_{s_u}$$
(G-3)

for semi-perfect gas

$$pv = RT$$
 (G-4)

and

$$\frac{dp}{p} + \frac{dv}{v} = \frac{dR}{R} + \frac{dT}{T}$$
 (G-5)

Using the first law of Thermodynamics

$$de = C_v dT = Tds - pdv \qquad (G-6)$$

Substituting Eq. (G-4) in Eq. (E-6)

$$ds = C_v \frac{dT}{T} + R \frac{dv}{v}$$
 (G-7)

Substituting Eq. (E-5) into Eq. (G-7)

$$ds = (C_v + R) \frac{dv}{v} + C_v \frac{dp}{p} - C_v \frac{dR}{R}$$
 (G-8)

Then

$$0 = \gamma \left(\frac{\partial V}{\partial p}\right) + \frac{V}{p} - \frac{V}{R} \left(\frac{\partial R}{\partial p}\right)_{S} \qquad (G-9)$$

or

$$\left(\frac{\partial \mathbf{v}}{\partial p}\right)_{s} = -\frac{1}{\gamma} \frac{\mathbf{v}}{p} \left(1 - \left(\frac{\partial \ln R}{\partial \ln p}\right)_{s}\right)$$
 (G-10)

Substituting Eq. (G-10) into Eq. (G-3) $(\mathbf{v}_{b} - \mathbf{v}_{u}) \frac{dx}{dp} = \frac{A}{m_{0}} \frac{d\delta}{dp} + \frac{1}{p} \int_{0}^{X} \frac{\mathbf{v}_{b}}{\mathbf{v}_{b}} (1 - (\frac{\partial \ln R_{b}}{\partial \ln p})_{s}) dx' + (1-x) \frac{\mathbf{v}_{u}}{p\mathbf{v}_{u}} (1 - (\frac{\partial \ln R_{u}}{\partial p})_{s})$ (G-11)

for slowly varying γ and R

$$(v_{b} - v_{u}) \frac{dx}{dp} = \frac{A}{m_{0}} \frac{d\delta}{dp} + \frac{1}{p\gamma_{b}} \int_{0}^{x} v_{b}(s_{b},p)dx'$$

$$+ (1-x) \frac{v_{u}}{p\gamma_{u}}$$
(G-12)

Substituting Eq. (G-1) into Eq. (G-12)

$$\gamma_{b}p(\mathbf{v}_{b} - \mathbf{v}_{u}) \quad \frac{dx}{dp} = \gamma_{b}p \frac{A}{m_{0}} \frac{d\delta}{dp} + \mathbf{v}_{0} + \frac{A\delta}{m_{0}}$$

$$+ (1-x) \mathbf{v}_{u} \left(\frac{\gamma_{b}}{\gamma_{u}} - 1 \right)$$
(G-13)

rearranging the terms in Eq. (G-13)

$$\frac{dx}{dp} = \frac{v_0}{\gamma_b (R_b T_b - R_u T_u)} (1 - (1 - x) \frac{v_u}{v_0} (1 - \frac{\gamma_b}{\gamma_u}) + \frac{A}{v_0} (\gamma_b p \frac{d\delta}{dp} + \delta))$$
(G-14)

APPENDIX H

RESIDUAL GASES SIMULATION

The combustion products of fuel-air mixtures primarily consist of nitrogen, carbon dioxide, and water vapor. Residual gases are used in combustors to reduce peak temperature, and consequently to reduce the formation of nitric oxides. The residual gases are simulated by a mixture of nitrogen and carbon dioxide. The specific heat of the mixture should be as close as possible to the specific heat of the combustion products. Figure H.1 shows the specific heats for the combustion products of stoichiometric isooctane-air mixtures, and for different mixtures of the nitrogencarbon dioxide mixture as a function of temperature. It can be seen that the specific heat of combustion products is lower than the specific heat of a mixture composed of 20% carbon dioxide (volume percent) and 80% nitrogen, and that it is higher than the specific heat of a mixture composed of 15% carbon dioxide and 85% nitrogen. It should be noticed that Figure H.1 does not include dissociation of molecules, which increases specific heat, but as dissociation occurs in mixtures of carbon dioxide and nitrogen as well as combustion products the relationship between specific heats for different mixtures in Fig. H.1 will not change a lot. For this study a mixture of 15% carbon dioxide and 85% nitrogen with a molecular weight of 30.4 was used.

APPENDIX I

COMPUTER PROGRAMS

This appendix contains some of the computer programs used in this study. The main program, called "FLAME", calculated the laminar burning velocity of a fuel-air-residual mixture given the initial conditions of the mixture and the pressure-time history of the combustion process. The pressure-time history was read from a raw data file and the results were saved in a reduced data file. There are 12 subroutines and subprograms used in the "FLAME" program. These are UPROP, CLDPRD, HPROD, TRANSP, PPDTCL, TRAP, TSUBU, TEMP, IDATE, TIME, SUFIT, HGASJO.

Subprograms UPROP, CLDPRD, HPROD, TSUBU, and TEMP calculated the unburned and burned gas properties and are described by Andre By [40]. Programs IDATE and TIME were used to register the date and time of the experiment and are standard subroutines in the PDP 11/60 computer. Program TRAP, another standard subroutine, was used for numerical integration using the trapezoidal rule. Program HGASJO was used to solve simultaneous linear algebraic equation. For each run program SUFIT fitted the calculated burning velocity in the form $S_u = S_{u0} (\frac{T}{T_{u0}})^{\epsilon}$. The values of ϵ from three measurements along an isentrope were compared to check the validity of the data.

Program TRANSP was used to calculate the transport properties of the fuel-air-residual mixture. Program PPDTCL was used to calculate the pressure for a constant increment of unburned gas temperature, and to calculate time rate of change of pressure of the combustion process.

The program FLAME and subprograms TRANSP and PPDTCL are listed at the end of the appendix. The comments within the programs should help to make the programs easily understood. A typical output of the program is shown in Fig. I-1. IAN IV-PLUS V02-51 15:53:08 20-SEP-79 PAGE 1 /TR:BLOCKS/WR E.FTN С C PROGRAM FLAME C C **PURPOSE**: С TO CALCULATE LAMINAR BURNING VELOCITY OF FUEL-AIR MIXTURE FROM Ć A PRESSURE TIME TRACE OF THE COMBUSTION PROCESS C C INPUTS: С NAME OF THE RAW DATA FILE C C INPUTS FROM RAW DATA FILE С FNAM -NAME OF FUEL PNOT -INITIAL PRESSURE (ATM) C C C -INITIAL TEMPERATURE (K) TNOT PHI -EQUIVALENCE RATIO č **RESFRK-RESIDUAL FRACTION** FN -THE FIRST FOR CHARACTERS OF CHEMICAL FORMULA OF FUEL PSPMVT-CALIBRATION CONSTANT OF CHARGE AMPLIFIER (PSIA/MVOLT) TDELY -DELAYTIME OF A/D CONVERTOR (MSEC) TOTIM -TOTAL TIME OF A/D CONVERTOR (MSEC) TIP -THREE IONIZATION PROBES TIME (MSEC) TBP -TIME OF BALANCING OF BALANCED-PRESSURE INDICATOR (MSEC) TBP -TIME OF BALANCING OF BALANCED-PRESSURE INDICATOR (MSEC) C Ĉ č C č С PBP -BALANCING PRESSURE(PSIA) Ĉ -256 POINTS OF PRESSURE DATA -256 POINTS OF LASER DATA NPN C NLAS C С NAME OF REDUCED DATA FILE Ċ OPTION-OPTION TO BE USED TO CALIBRATE PRESSURE DATA C Ċ RESULTS: ?RHONOT-DENSITY OF INITIAL GAS MIXTURE (GM/CC) PMAXK -MAXIMUM PRESSURE OF KISTLER PRESSURE TRANSDUCER (ATM) XFINLK-MAX. MASS FRACTION BURNED USING KISTLER TRANSDUCER C С С Ċ -INFLECTION POINT OF PRESSURE SIGNAL (ATM) PINE TIMIN -TIME AT WHICH INFLECTION POINT OF PRESSURE SIGNAL OCCURS EXPNT - EXPONENT OF PRESSURE CURVE FIT (SOUBROUTINE PPDTCL) CHMASS-MASS OF GAS MIXTURE (GM) С č Č -VECTOR OF TIME (MSEC) TH č -VECTOR OF PRESSURE (ATM) PR -VECTOR OF CUMULATIVE MASS FRACTION BURNED -VECTOR OF RATE OF MASS FRACTION BURNED С X Ċ XDOT -VECTOR OF NORMALIZED FLAME RADIUS W.R.T. BOMB RADIUS FRN Č C -VECTOR OF CUMULATIVE HEAT TRANSFER TO COMBUSTION BOMB QOUT WALL (CAL/GM) C SU -VECTOR OF LAMINAR BURNING VELOCITY (CM/SEC) DELTA -VECTOR OF DISPLACEMENT THICKNESS (CM) TU -VECTOR OF UNBURNED GAS MIXTURE TEMPERATURE (K) Ċ C Ċ C -VECTOR OF AVERAGE BURNED GAS TEMPERATURE (K) TBAV TBNO -VECTOR OF ADIABATIC FLAME TEMPERATURE (K) Ċ -VECTOR OF UNBURNED GAS MIXTURE DENSITY (KG/M3) RHOU -VECTOR OF BURNED GAS MIXTURE DENSITY (KG/M3) RHOB -VECTOR OF SPECIFIC ENERGY OF UNBURNED MIXTURE (CAL/GM) -VECTOR OF SPECIFIC ENERGY OF BURNED MIXTURE (CAL/GM) Ç EUAV С EBAV Ĉ GAMMAU-VECTOR OF SPECIFIC HEAT RATIO OF UNBURNED MIXTURE

IV-PLUS V02-51 15:45:27 20-SEP-79 PAGE 2 ΤN /TR:BLOCKS/WR IONP -THREE PRES. AT THE TIMES OF I.P. PUSES (ATM) IONRA -THREE FLAME RADIUS AT THE TIMES OF I.P. PULSES(CM) DFW -THREEDISTANCES FROM WALL AT THE TIMES OF I.P. PULSES (MM) C С С DF₩ -THREE MASS FRACTION BURNED AT THE TIMES OF I.P. PULSES -THREE UNBURNED GAS TEMP. AT THE TIMES OF I.P. PULSES С XION Č C TUL THMAX -TIME AT WHICH MAXIMUM PRESSURE OCCURS (MSEC) 000000000000 PMAX -MAXIMUM PRESSURE (ATM) TMAX -MAX. UNBURNED GAS TEMPERATURE (K) RMSIPR-RMS OF FLAME RADII WHEN IONIZATION PULSES OCCUR (MM) PBP -BALANCING PRESSURE (ATM) PTBP -KISTLER PRESSURE AT THE TIME OF EQUILIBRIUM (ATM) PTBPA -KISTLER PRESSURE INCLUDING CORRECTION (ATM) -PERCENTAGE DIFFERENCE OF B.P.I. & KISTLER GAUGE PTE FRPR -RADIUS OF FLAME FRONT WHEN IT CROSSES THE LASER BEAM (CM) RADER -VALUE OF (6.464-FRPR)/6.464 (6.464 CM IS THE DISTANCE FROM CENTER OF THE BOMB TO THE LASER BEAM C C C C C SUBROUTINES AND SUBPROGRAM REQUIRED: CLDPRD UPROP HPROD TRANSP PPDTCL TRAP TSUBU TEMP IDATE TIME SUFIT HGASJO Č C **REMARKS:** С IN CASE OF PROBLEM CONTACT MOHAMAD METGHALCHI AT 253-6647 Ċ DIMENSION PR(30), TH(30), X(30), XDOT(30), FNAM(20), RHOU(30), FR(30) &FA(30), SU(30), EUAVA(30), DELTAA(30), DDLTDP(30), TBAVA(30), TBNOA(30), &RHOBA (30) , EBAVA (30) , DISPLA (100) , PNEXT (2) , TN (256) , PN (256) , NPN (256) & , PCTDLT(100), ID(258,2), NLAS(256), XMOLE(7), FRN(30), NLAS1(256) DIMENSION ITIM(4), A1(24), AFUEL(5), AENTH(6,5), EMOL(4,5), PTDELT(30) DIMENSION TIP(3), PIP(3), RIP(3), TU(256), SUC(30), TUN(30), PDOT(30) DIMENSION DISPLT(260), TNEXT(2), RAW(4), TMFA(2), REDUC(4) &,QOUT(30),GAM(260),SIGMAA(5),EPORKA(5) BYTE NRAW(15), NREDUC(15) COMMON/FUEL/AF(6), ENW, CX, HY, OZ, QLOWER COMMON/CHARGE/PHI, DEL, PSI, RESFRK, CHMASS, TREF, CFUEL COMMON/A/A COMMON XINT(260), DELTDP(260) EQUIVALENCE (RAW(1), NRAW(1)), (AANONE, NRAW(5)); (REDUC(1), NREDUC(1)) DATA COMBV, NDD/1853.3333,256/ DATA NREAD, NRITE/5,5/ DATA PSCALE/2.42173E-2/ DATA TBNO/2000./,BAREA/724.0201/ DATA IDG/0/,TINC/14./,NDP/2/ DATA AFUEL/4HCH4 ,4HC3H8,4HC8H1,4HCH30,4HC7.8/ DATA AFUEL/4HCH4 ,4HC3H8,4HC8H1,4HCH30,4HC7.8/ DATA AENTH/-.291491,26.3271,-10.6096,1.56557,0.165726,-14.0313, -1.4867,74.339,-39.0649,8.05426,.0121948,-18.4611, -17.9283,242.674,-172.904,51.362,.418388,-35.9493, -2.70585,44.1677,-27.5009,7.21927,.20999,-42.9501, Ł å å -22.501,227.993,-177.258,56.048,.484498,-14.547/ 2 DATA EMOL/0.0,1.0,4.0,0.0, å 0.0,3.0,8.0,0.0 0.0,8.0,18.0,0.0, å å 0.0, 1.0, 4.0, 1.0,

AN IV-PLUS V02-51 20-SEP-79 15:45:27 PAGE 3 E.FTN. /TR:BLOCKS/WR 0.0,7.8,13.214,0.0/ DATA SIGMAA/3.796,5.061,7.451,3.584,6.6/ DATA EPORKA/144,254,320,507,360/ DATA RAW/4HDM1:,4H , 4H .R,4HAW /,REDUC/4HDM1:,4H ,4H .R, & 4HED /, IPR/2HPR/, ILA/2HLA/ DATA LRAW/2/, LREDUC/1/, NVERS/1/ DATA ERLIM/.001/,MAXITS/100/,RALAS/6.464/ С INPUT SECTION С C MAJORITY OF DATA READ FROM DISK FILE C C DISK FILE NAMES WRITE(5,6000) FORMAT(' INPUT: RAW DATA FILE NAME') 6000 READ(5,6001) (NRAW(1),1=5,10) 6001 FORMAT(6A1) WRITE(5,6002) 6002 FORMAT(' INPUT:REDUCED DATA FILE NAME (6CHAR)("NONE" MEANS' ,' NO REDUCED DATA STORED)') Ł NRAW(15)=0 NREDUC(15)=0 READ(5,6001)(NREDUC(1),1=5,10) C READ RAW DATA -OPEN (UNITELRAW, NAME=NRAW, TYPE='OLD', READONLY) READ(LRAW, 6003) |1, |2, |3, |T|M, |VRS FORMAT(8X, |2, 1X, |2, 1X, |2, 8X, 4A2, 12X, |2) 6003 READ(LRAW, 6004) FNAM FORMAT(3X,20A4) 6004 READ(LRAW, 6005) PNOT, TNOT, PHI, RESFRK, FN, PSPMVT & , TDELY, TOTIM, TIP, TBP, PBP FORMAT(4(1X, E10.3), 1X, A4/6(1X, E10.3)) 6005 C READ MICRO DATA DO 5000 I=1,2 ICHAN=I READ(LRAW, 6006, END=7000) (ID(J, I), J=1, 258) 6006 FORMAT(16(16(1X, 14), /), 1X, A2, 3X, 14) 5000 CONTINUE 7000 CONTINUE C END OF INPUT CLOSE (UNIT=LRAW) WRITE(NRITE,2210) 2210 FORMAT(5X, 'INPUT:OPTION TO BE USED 1(KISTLER), 2(MATCH X(MAX.)), 3(&BAL, PRES.)') READ (NREAD, *) OPTION IF (OPTION-2)2241,2242,2243 2241 WRITE (NRITE, 2212) 2212 FORMAT(5X, 'KISTLER SIGNAL IS USED FOR PRESSURE') GO TO 2231 2243 WRITE(NRITE, 2213) 2213 FORMAT(5X,'BAL. PRES. IS USED TO CALIBRATE KISTLER SIGNAL') GO TO 2231 2242 CONTINUE WRITE(NRITE, 2214) 2214 FORMAT(5X,'FORCING X(MAX) TO BE A DESIRED VALUE IS USED TO CALIBRAT &E THE KISTLER SIGNAL')

FORTRAN IV-PLUS V02-51 20-SEP-79 PAGE 4 15:45:27 FLAME.FTN /TR:BLOCKS/WR WRITE(NRITE,2230) 2230 FORMAT(5X,'INPUT: MAX. MASS FRACTION BURNED DESIRED') READ(5,*)XF 0060 0061 0062 0063 2231 CONTINUE C IDENTIFY CHANNEL WITH PRESSURE DATA AND CHANNEL WITH C LASER DATA 0064 NPR=0 0065 NLA=0 DO 5001 |=1,|CHAN |F(|D(257,|) .EQ. |PR) NPR=| 0066 0067 0068 IF(ID(257,I) .EQ. ILA) NLA=1 0069 5001 CONTINUE 0070 IF(NPR) 7001,7001,7002 DO 5002 1=1,256 0071 7002 0072 5002 NPN(I)=ID(I,NPR) IF (NLA)7003,7003,7004 0073 0074 7004 DO 5003 I=1,256 NLAS(I)=ID(I,NLA) 0075 5003 0076 GO TO 7005 WRITE(NRITE,6008) Format(' No pressure data PGM QUITS') 0077 7001 0078 6008 0079 STOP WRITE(NRITE,6009) Format(' no laser data PGM continues') 7003 0080 0081 6009 CONTINUE 0082 7005 C ACTUAL PROGRAM CONTINUES 0083 DELT=TOTIM/NDD С FIND THE ENTHALPY COEFFICIENTS AND FUEL CHARACTERISTICS С 0084 DO 61 1=1,5 0085 NF=1 0086 IF(FN.EQ.AFUEL(1)) GO TO 62 0087 61 CONTINUE 0088 62 DO 63 1=1,6 AF(I)=AENTH(I,NF) 0089 63 ENW=EMOL(1,NF) 0090 CX=EMOL(2,NF) 0091 0092 HY=EMOL(3,NF) 0093 OZ=EMOL(4,NF) 0094 SIGMA=SIGMAA(NF) 0095 EPOVRK=EPORKA(NF) C Ċ **READ IONIZATION PROBS TIMES** C 0096 DO 92 1=1,3 0097 92 TIP(I) = TIP(I) + TDELYC OUTPUT SECTION 0098 IF(IDG .EQ. 0) GO TO 7771 WRITE(NRITE, 100) (FNAM(1), 1=1,20) 0099 0100 100 FORMAT(20A4) 0101 WRITE(NRITE, 200) (AF(1), I=1,6) WRITE(NRITE,200) (AF(1),1=1,0) WRITE(NRITE,300) ENW,CX,HY,OZ WRITE(NRITE,400)PNOT,TNOT,PHI,RESFRK WRITE(NRITE,101)TOTIM,PSPMVT,DELP,TDELY WRITE(NRITE,98) (TIP(1),1=1,3) 0102 0103 0104 0105

```
IV-PLUS V02-51
                                                               PAGE 5
                           15:45:27
                                         20-SEP-79
         /TR:BLOCKS/WR
٢N
       WRITE (NRITE, 6698)
 98
       FORMAT(5X,3F10.0)
FORMAT(//' RAW
6698
                      RAW DATA'/)
       WRITE(NRITE,6669) NPN
6669
       FORMAT(16(1X, 14))
 506
       FORMAT(5X,'WAITING FOR PRES. DATA ')
7771
       PTRESH=2.0*PNOT
       DO 102 |=1,NDD
       PN(1)=(NPN(1))*2.44*PSPMVT/14.7+PNOT
       TN(I)=(I-1)*DELT+TDELY
IF(I.EQ.1) GO TO 102
       IF(PN(I).GT.PTRESH.AND.PN(I).LT.PN(I-1)) GO TO 104
 102
       CONTINUE
 104
       NOUT = 1 - 1
       THMAX=TN(NOUT)
C
С
       FIND THE TIME WHEN FLAME FRONT CROSSES LASER BEAM
C
       IF (NLA) 8800, 8800, 8801
 8801 NLAS1(1)=0
       DO 8802 1=2,NDD
  8802 NLAS1(|)=NLAS(|)-NLAS(|-1)
       DO 8803 1=2,NDD
       IF(NLAS1(I-1).GT.75.AND.NLAS1(I-1).GT.NLAS1(I)) GO TO 8804
  8803 CONTINUE
 8804 |=|-1
       TFLA=(TN(|)+TN(|-1))/2.
 8800 CONTINUE
C
Č
       CALL UPROP TO CALCULATE INITIAL MASS, INTERNAL ENEGY , AND INITIAL DENSITY
       CALL UPROP (PNOT, TNOT, PHI, DEL, PSI, RESFRK, ENTHLP, CSUBP, CSUBT, RHONOT,
       DRHODT, DRHODP, CHI, XMÓLE)
WRITE (NRITE, 7310) RHONOT
      å
  7310 FORMAT(5X,'RHONOT=',F10.6)
       ENOT=ENTHLP*1000. - PNOT*PSCALE/RHONOT
       VNOT=1./RHONOT
       CHMASS=RHONOT*COMBV
C
       WRITE(NRITE, 5537)PN(NOUT)
CALIBRATE PRASSURE DATA EITHER BY MATCHING THE BP OR THE FINAL
С
С
        MASS FRACTION BURNED
С
       PBP=PBP/14.7
  2222 CONTINUE
       DO 180 I=1,NOUT
        IF (TBP-TN(1))181,182,180
       PTBP=PN(1)
  182
        GO TO 183
  181
       DPTBP=(TBP-TN(1-1))*(PN(1)-PN(1-1))/DELT
        PTBP=DPTBP+PN(1-1)
       GO TO 183
       CONTINUE
  180
  183
       CONTINUE
        DPDTBA=(PN(|)-PN(|-1))/(TN(|)-TN(|-1))
```

0150 DELTAT=3.3668*(7.83*.005*.001/(DPDTBA))**(.333333) 0151 TBPA=TBP-DELTAT 0152 PTBPA=PN(I-1)*(TBPA-TN(I-1))*DPDTBA 0153 FACT=(PBP-PNOT)/(PTBPA-PNOT) 0154 PTE=(PTBPA-PBP)*100./PBP 0155 IF(OPTION .NE. 3)GO TO 2221 0156 D0 184 I=1,NOUT 0157 184 PN(I)=PNOT+FACT*(PN(I)-PNOT) 0158 2221 CONTINUE C CALIBRATE PRES. SIGNAL BY MATCHING THE FINAL MASS FRACTION	
0153 FACT=(PBP-PNOT)/(PTBPA-PNOT) 0154 PTE=(PTBPA-PBP)*100./PBP 0155 IF(OPTION .NE. 3)GO TO 2221 0156 DO 184 I=1,NOUT 0157 184 PN(I)=PNOT+FACT*(PN(I)-PNOT) 0158 2221 CONTINUE C CALIBRATE PRES. SIGNAL BY MATCHING THE FINAL MASS FRACTION	
0154 FIE=(FIBPA-PBP)#100.7PBP 0155 IF(OPTION .NE. 3)GO TO 2221 0156 DO 184 I=1,NOUT 0157 184 PN(I)=PNOT+FACT*(PN(I)-PNOT) 0158 2221 CONTINUE C C C C C C C C C C C C C	
0156 DO 184 I=1,NOUT 0157 184 PN(I)=PNOT+FACT*(PN(I)-PNOT) 0158 2221 CONTINUE C CALIBRATE PRES. SIGNAL BY MATCHING THE FINAL MASS FRACTION	
0158 2221 CONTINUE C C CALIBRATE PRES. SIGNAL BY MATCHING THE FINAL MASS FRACTION	
C CALIBRATE PRES. SIGNAL BY MATCHING THE FINAL MASS FRACTION	
A AVELDINGTE LIKEA, ALANKE DI MALANING SUE LINGE MAAA LIKALIAN	
C BURNED TO A DESIRED VALUE	
0159 DATA SFIN, TBFIN/0.95, 2500./	
C FIND PRESSURES CORRESPONDING TO IONIZATION PROBES	
0161 CALL UPROP (PN (NOUT), TUF IN, PHI, DEL, PSI, RESFRK, ENTHLP, CSUBP, C	SUBT,
0162 VUFIN=1./RHOUFI	
0163 EUFIN=ENTHLP#1000PSCALE*PN(NOUT)/RHOUFI	
0165 2223 J=J+1	
0166 IF (IDG.NE.0)	
0167 2224 FORMAT(5X,'NO. OF ITERATION IS', 13)	
0168 CALL HPROD (PN (NOUT), TBF IN, CHI, DÉL, PSI, H, CP, CT, RHO, DRHODT, DR	HODP)
0170 EBFIN=1.7RH0 0170 EBFIN=H*1000PSCALE*PN(NOUT)/RH0	
0171 F1=ENOT-EBFIN*SFIN-(1SFIN)*EUFIN	
0173 DF1DS=EUFIN-EBFIN	
0174 DF2DS=VUFIN-VBFIN	
0176 DF2DTB=SFIN*DRHODT/(RHO*RHO)	
0177 D1=DF1DS*DF2DTB-DF1DTB*DF2DS	
0179 D3=F1*DF2DS-F2*DF1DS	
0180 DELS=D2/D1	
0181 DELIBVED3/D1 0182 SRATIOEDELS/SFIN	
C183 TRATIC=DELTBV/TBFIN	
0184 IF (J=MAXIIS) 2225, 2226, 2225 0185 2225 IF (ABS (SRATIO).LT.ERLIM .AND. ABS (TRATIO).LT.ERLIM) GO TO 2	2226
0186 SFIN=SFIN+DELS	
0188 GO TO 2223	
0189 2226 WRITE(NRITE,2227)SFIN 0190 2227 FORMAT(5X 'MASS FRACTION BURNED AT MAX DRES #' FR 3)	
0191 IF (OPTION.NE.2) GO TO 2220	
0192 5537 FORMAT(5X,'MAX. PRES. OF THE KISTLER TRANSDUCER=', F6.2,' AT	FM?)
0194 5587 FORMAT(5X,'TIME AT WHICH MAX. PRES. OCCURS=',F7.2,'MSEC')	
0195 D0 2228 =1,260 0196 2228 PN(]=PNOT+(XE/SEIN)*(PN()=PNOT)	

```
IAN IV-PLUS V02-51
                                  15:45:27
                                                 20-SEP-79
                                                                          PAGE 7
              /TR:BLOCKS/WR
E.FTN
    2220 CONTINUE
            DO 5594 |=1,3
            DO 96 J=1, NOUT
            IF(TIP(I)-TN(J))95,94,93
     93
            IF (J.EQ.NOUT) PIP(I) = PN(NOUT)
            GO TO 96
            PIP(1)=PN(J)
     94
            GO TO 97
DPIP=(TIP(I)-TN(J-1))*(PN(J)-PN(J-1))/DELT
      95
            PIP(I) = PN(J-1) + DPIP
            GO TO 97
     96
            CONTINUE
             CONTINUE
      97
            IF(IDG.NE.0)
      &WRITE(NRITE, 5593)1, PIP(I)
5593 FORMAT(3X, I1, 'TH I.P. ', 'P=', F7.3, 'ATM')
      5594 CONTINUE
    C
    C
            CALCULATE UNBURNED GAS TEMPERATURE
    Ĉ
            DO 70 I=1,NOUT
            P=PN(1)
            TEMPU=TSUBU(P, PNOT, TNOT, ERLIM)
      70
            TU(1)=TEMPU
            PMAX=PN(NOUT)
            TMAX=TU(NOUT)
            DO 7301 1=1,7
      7301 XMOLE(1)=0.0
            CALL UPROP (PNOT, TNOT, PHI, DEL, PSI, RESFRK, ENTHLP, CSUBP, CSUBT, RHONOT,
           å
                  DRHODT, DRHODP, CHI, XMOLE)
     С
     C
            CALL TRANSP TO CALCULATE INITIAL VISCOSITY OF THE MIXTURE
     С
            CALL TRANSP(SIGMA, EPOVRK, XMOLE, TNOT, PNOT, VISC, THCOND, DIFFUS)
            DSFCTR=SQRT(VISC/(3141.593*RHONOT))
     C
            DSFCTR HAS THE DIMENSION OF CM/(MSEC)**.5
CALL XXDTCL TO CALCULATE P AND PDOT ARRAY OF CONSTANT INCREMENT OF
     С
     С
            UNBURNED GAS TEMPERATURE ALSO TO FIND INFLECTION POINT FOR PRESSURE
CURVE (POINT WITH MAX. PDOT) , AND THE EXPONENT N FOR FITING THE
     C C C C C
            CURVE(POINT WITH MAX. PDOT) , AND THE EX
PRESSURE DATA TO THE FOLLOWING RELATION:
                P=PNOT+(PINF-PNOT)*(TIME/TIMIN)**N
     C
            CALL XXDTCL(PN, TN, TH, TU, TINC, NOUT, NDP, PR, PDOT, TUN, NNPTS
            , PINF, TIMIN, EXPNT)
WRITE (NRITE, 7311) PINF, TIMIN, EXPNT
           &
      7311 FORMAT(5X,'PINF=', F6.3,' TIMIN=', F8.3,' EXPNT=', F6.3)
     C
     c
c
            CALL UPROP TO CALCULATE THE ARRAY OF UNBURNED SPECIFIC HEAT
             DO 7302 1=1.NOUT
             P = PN(1)
             TEMPU=TU(1)
             CALL UPROP(P, TEMPU, PHI, DEL, PSI, RESFRK, ENTHLP, CSUBP, CSUBT, RHO,
```

FORTRAN IV-PLUS V02-51 15:45:27 20-SEP-79 PAGE 8 FLAME.FTN /TR:BLOCKS/WR DRHODT, DRHODP, CHI, XMOLE) å 0231 R=PSCALE*P/(TEMPU*RHO) 0232 GAM(1)=CSUBP/(CSUBP-R) 0233 7302 CONTINUE DO 5453 |=1,260 0234 0235 XINT(1)=0.00236 5453 DELTDP(1)=0.0 С C THIS SEGMENT CALCULATES THE DISPLACEMENT THICKNESS BY PERFORMING С INTEGRATION С 0237 DISPLT(1)=0.00238 DO 7304 I=2, NOUT J=1-1 0239 0240 DO 7305 K=1,J 0241 DFCTR2=((PN(K)/PN(I))**(1,/GAM(K)))*((PN(K)/PNOT)**((GAM(K)-1)/ &GAM(K))-1.) 0242 DFCTR3=1./SQRT((TN(I)-TN(K))+(PINF-PNOT)*(TN(I)**(EXPNT+1.)-TN(K) &**(EXPNT+1.))/((EXPNT+1.)*PNOT*(TIMIN**EXPNT))) 0243 XINT(K)=DFCTR2*DFCTR3 7305 CONTINUE 0244 CALL TRAP(J, DELT, XINT, VALUE) 0245 EXTRA=2*((PN(1)/PNOT)**((GAM(1)-1)/GAM(1))-1.)*(SQRT(DELT*PNOT/ 0246 &PN(|))) 0247 DISPLT(1)=DSFCTR*(VALUE+EXTRA) 0248 7304 CONTINUE DO 7331 |=1,NOUT 0249 0250 7331 XINT(1)=0.0 DELTDP(1)=0.0 0251 0252 DO 7332 1=2, NOUT 0253 J=1-1 0254 DO 7333 K=1,J DFCTR4=((PN(K)/PNOT)**(1./GAM(K)-2.))*TN(K)**(EXPNT-1.) 0255 DFCTR5=1./SQRT(TN(I)-TN(K)+(PINF-PNOT)*(TN(I)**(EXPNT+1.)-TN(K)** 0256 &(EXPNT+1.))/((EXPNT+1.)*PNOT*TIMIN**EXPNT)) 0257 XINT(K)=DFCTR4+DFCTR5 0258 7333 CONTINUE 0259 CALL TRAP(J, DELT, XINT, VALUE) EXTRA=2*(PN(|)/PNOT)**(1./GAM(|)-2.5)*TN(|)**(EXPNT-1.)* 0260 &SQRT(DELT) 0261 DFCTR6=((GAM(I)-1,)/GAM(I))*DSFCTR*(TN(I)**(1.-EXPNT))*((PN(I)/ &PNOT) ** ((2.*GAM(|)-1.)/GAM(|)))/PN(|) 0262 DELTDP(1)=DFCTR6*(VALUE+EXTRA)-DISPLT(1)/(GAM(1)*PN(1)) 0263 7332 CONTINUE 0264 DO 7337 I=1,3 P=P|P(1)0265 IF(IDG.NE.0) &WRITE(NRITE,2256)|,P 0266 0267 2256 FORMAT(5X,11,'TH IONIZATION PROBE',3X,'P=',F8.3) TEMPU=TSUBU(P, PNOT, TNOT, ERLIM) 0268 0269 J=NNPTS+I 0270 PR(J) = P(P(I))0271 TUN(J)=TEMPU 0272 7337 TH(J)=TIP(1) 3273 NDPTS=NNPTS+3

FORTRAN FLAME.F1	IV-PLU 'N	S V02-51 /TR:BLOCKS/WR	15:45:27	20-SEP-79	PAGE 9
	с с с	CALCULATE D(DELTA) Temperature	/DP FOR CON	STANT INCREMENT OF	UNBURNED GAS
0274 0275 0276 0277 0278 0279 0280 0281 0282 0282 0283 0284 0285	7342 7341 7340 & a 7339 7338	DO 7338 =1,NDPTS DO 7339 J=1,NOUT IF(PR(I)-PN(J)) 73 GO TO 7339 DELTAA(I)=DISPLT(J DDLTDP(I)=DELTDP(J GO TO 7338 DELTAA(I)=DISPLT(. (PN(J)-PN(J-1)) DDLTDP(I)=DELTDP(. (PN(J)-PN(J-1)) GO TO 7338 CONTINUE CONTINUE	940,7341,734) -1)+(D SPLT -1)+(DELTDP	2 (J)-D(SPLT(J-1))*((J)-DELTDP(J-1))*(PR(1)-PN(J-1})/ PR(1)-PN(J-1))/
••••	C C C	CALCULATE THE INTI 100 POINTS WITH 99	EGRAL OF P W D CONSTANT I	V.R.T. DELTA.DELTA Ncrement in Betwee	IS DIVIDED TO N
0286 0287 0288 0289 0290 0291 0292 0293 0293 0295 0295 0296	7347 7346 7345	DELINC=(DISPLT(NO DISPLA(1)=DISPLT(PCTDLT(1)=PN(1) DO 7343 I=2,100 DISPLA(I)=DISPLA(DO 7344 J=1,NOUT IF(DISPLA(I)-DISP GO TO 7344 PCTDLT(I]=PN(J) GO TO 7343 PCTDLT(I)=PN(J-1) (DISPLT(I)=DISPLT	JT)-DISPLT(1 1) I-1)+DELINC LT(J)) 7345, +(PN(J)-PN(J))/99. 7346,7347 -1))*(D SPLA()-D	SPLT(J-1))/
0297 0298 0300 0301 0302 0303 0304	7344 7343 7348 7349	GO TO 7343 CONTINUE CONTINUE DO 7348 1=1,NOUT XINT(1)=0.0 DO 7349 1=1,100 CALL TRAP(1,DELIN XINT(1)=0.0242173	C,PCTDLT,VAI X VALUE	LUE)	
	000000	0.0242173 IS CON XINT IS THE VALUE CONVERT XINT TO A	VERSION FACT OF INTEGRAD RRAY HAVING	TOR FROM ATM-CM TO L OF P*D(DELTA) Constant tu increi	CAL/CM**2 Ment
0305 0306 0307 0308 0309 0310 0311	7354 7353 7352	DO 7350 =1,NDPTS DO 7351 J=1,100 IF(PR(1)-PCTDLT(J GO TO 7351 PTDELT(!)=XINT(J) GO TO 7350 PTDELT(I)=XINT(J-)	,7354 -XINT(J-1))*(PR(I)	-PCTDLT(J-1))/

FORTRAN Flame.f	IV-PL TN	US VO2 /Tr	-51 I:BLOCKS/WR	15:45:27	20-SEP-79	PAGE 10
0312 0313 0314 0315 0316 0317	7351 7350 7371	& (PCTD GO TO CONTI CONTI IF (ID WRITE FORMA	9LT(J)-PCTDLT 0 7350 NUE NUE 9G .EQ. 0) G0 10RITE,7371) 11(6X,'TIME',	(J-1))) TO 7370 5X,'PRESS',	.6X,'PDOT',5X,'D	ELTA',1X,'D(DELTA)/DP'
0318 0319 0320 0321 0322 0323	7372 7373 7370	& ,4X, DO 73 WRITE FORMA CONTI DO 73 GAM(1	P*D(DELTA)') 72 I=1,NDPTS (NRITE,7373) (T(2F10.3,4F1 NUE 55 I=1,NOUT)=0.0	TH(),PR() 0.6)	,PDOT(I),DELTAA	(),DDLTDP(),PTDELT()
	0000	ERLIN Maxit	IS MAXIMUM Sis Maximun	ALLOWABLE F I NUMBER OF	ELATIVE ERROR	
	00000	CALCU Speci Flame	JLATE THE ARR IFIC Energy, C E Temperature	AY OF UNBUI	RNED MIXTURE DEN I,SPECIFIC HEAT	SITY, TEMPERATURE, Ratio, and adiabatic
0324 0325 0326 0327 0328		DO 1 P=PR(TEMPL CALL &DRHOD B=PS(= 1, NDPTS) J=TUN () UPROP (P, TEMF)T, DRHODP, CH CAL F#P / (TUN ()	U, PHI, DEL, I , XMOLE)	PSI, RESFRK, ENTHL	P,CSUBP,CSUBT,RHO,
	C C C	CALCU	JLATE SPECIFI	C HEAT RAT	10	
0329 0330	c	GAM () Rhou)=CSUBP/(CSU ()=RHO	JBP-R)		
	0000	CALCU And S Burne	JLATE ADIABAT Setting the e Ed product	IC FLAME THE THE THE PARTY OF	EMPERATURE BY CA Unburned gas ec	LLING SUBROUTINE TEMP UAL TO ENTHALPY OF
0331 0332 0333		CALL TBNO/ Euav/	TEMP(P,TBNO, A(I)=TBNO A(I)=ENTHLP#1	PHI, DEL, PS	I,ENTHLP,TBNO,EF E#P/RHOU(1)	MAX,MAXITS,IER)
	0000	SOLVI USINC RAPH:	E FOR MASS FE 3 Mass and En 50n iteration	ACTION BURI Nergy Consei Method	NED AND TEMPERAT RVATION EQUATION	URE OF BURNED MIXTURE I AND USING NEWTON-
0334 0335 0336	-	DATA DO 5 IF(11	S,TBAV/0.008 I=1,NDPTS DGNE. 0)	5,2000.0/		
0337 0338 0339 0340	508	*WRITI FORM/ P=PR IF(P VUAV:	E(NRITE,508) AT(5X,'THE',1 (1) .EQ.PNOT) GO =1.0/RHOU(1)	I I5,'TH DATA TO 40	, POINT')	-

15:45:27 20-SEP-79 PAGE 11 RTRAN IV-PLUS V02-51 /TR:BLOCKS/WR .AME .FTN EUAV=EUAVA(1) 141 142 J=0 J = J + 1:43 2 IF(IDG .NE. 0) *WRITE(NRITE,509) J ;44 :45 509 FORMAT(5X, 'NO. OF ITERATION 18', 15) C C C C C C USING SUBROUTINE HPROD TO CALCULATE DENSITY AND INTERNAL ENERGY OF BURNED MIXTURE CALL HPROD (P, TBAV, CHI, DEL, PSI, H, CP, CT, RHO, DRHODT, DRHODP) 46 VBAV=1.0/RHO -47 :48 EBAV=H#1000.-PSCALE*P/RHO F1=ENOT-EBAV*S-(1.0-S)*EUAV-BAREA*PTDELT(1)/CHMASS 149 :50 F2=VNOT-VBAV*S-(1,0-S)*VUAV+BAREA*DELTAA(1)/CHMASS DF1DS=EUAV-EBAV 51 152 DF2DS=VUAV-VBAV DF1DTB=(-CP-P*PSCALE*DRHODT/(RHO*RHO))*S :53 ;54 DF2DTB=S*DRHODT/(RHO*RHO) :55 D1=DF1DS*DF2DTB-DF1DTB*DF2DS 156 D2=F2*DF1DTB-F1*DF2DTB D3=F1*DF2DS-F2*DF1DS :57 DELS=D2/D1 :58 DELTBV=D3/D1 :59 SRATIO=DELS/S -60 TRATIO=DELTBV/TBAV 61 IF (J-MAXITS)3,4,4 IF (ABS (SRATIO).LT.ERLIM.AND.ABS (TRATIO).LT.ERLIM) GO TO 4 62 .63 3 64 S=S+DELS TBAV=TBAV+DELTBV .65 GO TO 2 -66 .67 40 X(1)=0. TBAVA(1)=0. 68 69 RHOBA(1)=0.EBAVA(1)=0. -70 .71 XDOT(1)=0.0 .72 GO TO 5 .73 4 X())=S -74 RHOBA(I)=1./VBAV EBAVA(1)=H*1000.-PSCALE*P/RHOBA(1) 75 76 TBAVA(1)=TBAV RB=PSCALE*PR(1)/(TBAVA(1)*RHOBA(1)) -77 78 GAMB=CP/(CP-RB) RU=PSCALE*PR(1)/(TUN(1)*RHOU(1)) 79 CPU=RU*GAM(I)/(GAM(I)-1.) 80 QOUT(1)=(BAREA/CHMASS)*(CPU*RHOU(1)*TUN(1)*DELTAA(1)~PSCALE* 81 &DELTAA(I)*PR(I)+PTDELT(I)) 82 DXDP=(VNOT-(1,-X(1))*(1,-GAMB/GAM(1))/RHOU(1)+BAREA*DELTAA(1)* & (GAMB*PR(I)*DDLTDP(I)/DELTAA(I)+1.)/CHMASS)/(GAMB*(RB*TBNOA(I)-&RU*TUN(1)))*PSCALE 83 XDOT(I)=DXDP*PDOT(I) 84 IF(IDG .EQ. 0)GO TO 7383 85 WRITE(NRITE,7381) 7381 FORMAT(6X,'GAMB',5X,'GAMU',8X,'P',2X,'D(DELTA)/DP',5X,'DELTA',6X,' &DXDP',6X,'PDOT',6X,'XDOT') 86

				171	· ·		
RTRAN Ame.ft	IV-PLU 'N	IS V02-51 /tr:bl	OCK S/WR	15:45:27	20-SEP-79	PAGE 12	
87	_	WRITEINR	ITE,7382)G	AMB,GAM(I)	, PR(I), DDLTDP	(I), DELTAA(I), DXDP, PDOT	1
88 89 90	7382 7383 5	FORMAT(3 CONTINUE CONTINUE) F10.3,5F10	9.5)			
	č	CALCULAT	E FLAME RA	DIUS AND F	LAME AREA		
91 92 93 95 95 96 97 98	c 45 6	DO 6 =1 F(X(). FR()=(3 FA()=4. GO TO 6 FR()=0. FA()=0. CONTINUE	,NDPTS EQ.0.) GO .0*X(1)*CH 0*3.141593	TO 45 IMASS/(4.0* B*(FR(1)**2	3.141593*RHOB .0)	A()))**(1.0/3.0)	
	0000	FIND THE DATA	TIME WHEN	I FLAME FRO	NT CROSSES LA	SER BEAM USING PRESSURE	
99 00 01 02 03 04 05 06 07 08 09 10	C 8814 8812 8811 8810 8813 8815 C	IF (NLA)8 CONTINUE DO 8810 IF (TFLA- FRPR=FR(GO TO 88 FRPR=FR(GO TO 88 CONTINUE CONTINUE RADER=10 CONTINUE	815,8815,8 =1,NDPTS TH()]8811] 13 -1)+(FR() 13 0.0*(RALAS	3814 ,8812,8810)-FR(-1)) S-FRPR)/RAL	*(TFLA-TH(-1 AS))/(TH()-TH(-1))	
11 12 13 14 15 16 17 18 19 21 22	C C 151 152 7772 37 33 C	CALCULAT DO 33 1= IF(1DG . WRITE(NR FORMAT(5 WRITE(NR FORMAT(1 CONTINUE IF(FA(1)) SU(1)=10 GO TO 33 SU(1)=0. CONTINUE	E BURNING 1,NNPTS EQ. 0) GO ITE,151) X,'I',5X, ITE,152)I 6,4F9.4) .EQ.0.) G(000.*CHMAS	VELOCITY TO 7772 CHMASS',5X CHMASS,XDO C TO 37 S*XDOT(I)/(,'XDOT',5X,'R T(l),RHOU(l), RHOU(l)*FA(l)	HOU',5X,'FA') FA())	
23 24 25 26 27	C C 7006	PRINT GI WRITE(NF WRITE(NF WRITE(NF WRITE(NF WRITE(NF	IVEN DATA / NITE,600) NITE,700) NITE,200) NITE,900)C NITE,910)	AND RESULTS (FNAM(1),1= (AF(1),1=1, OMBV PNOT	6)		

ITRAN IME.FT	IV-"PLU N	IS VO2- /Tr	-51 :Blocks/wr	15	: 4	5 :	27		20) - SE	P - 7	9				PAG	E 13	3	
28 19 10 11 12 13		WRITE WRITE WRITE WRITE WRITE WRITE	(NR TE, 920) (NR TE, 930) (NR TE, 940) R (NR TE, 1200) (NR TE, 1300) (NR TE, 1400)	TNC Phi Esf Ch	RK IMA	SS	ł												
15 16 17 18	12	WRITE DO 12 FRN(I RHOU(RHOBA	(NR 1E,1500) (NR TE,1550) =1,NNPTS)=FR(]/7.59)=RHOU()#1 ()=RHOBA() (NP TE 1600)	05 000 *10			00				X D O	T (I)	ED	NT		001		1 611 (1 1
11	1700	UELTA BEBAVA WRITE	A(I), TUN(I), (I), GAM(I) (NRITE, 1700)	TBA	VA	íi	Pn },	TB			RHO	U()	, r n , RH	08/),E	UAV	A(1),	17, Noom
14	8	ALIZE	D DISTANCE	281	X	, '	6 X	, ' '	TU')	. "	1233	UKE	٢	7 "	18 7		KAU	105	NORM
4	1800	FORMA	T(3X, 'PROBE'	,7)	ι, '	MS	SEC	· , ·	4X,'	AT	A', 1	6X,'	СМ	, 8)	Κ,'	RAC	IUS	FRO	M WAL
15	8	L (MM) DO 13 J=I+N	',10X,'K') 2 =1,3 NPTS DB())(DMAX																
18		FRNP	FR(J)/7.62																
19	132	WRITE	0.0*(7.62-FF (NRITE,1900)	(J) ,1) H	J)	, P	R (J),F	RA	T,FR	(J),	FRN	IP,I	DFW	I,X (J),	TUN(J)
i1 i2	1900	FORMA	T(16,F14.3,F (NRITE.2000)	9.3 Th	3 , F 1 A X	8. . F	3, MA	F1 X	0.3 TMA)	, F1'	1.3,	F12	3,F	8.	3,F	7.1			
3	2000	FORMA	T(3X, MAX T	ME		F7	.2	<u>.</u>	M/	X I	PRES	. = ' 6 + 2 }	F6.	2,	,	MA)	(TU	=',F6	.2)
15		SUM= (FR(NNPTS+1)	RM	EAN	())	ŧ¥2	, +	(FR		PTS+	2)-F	IME A	(N)	××2	.+	(FR (NNPTS	+3)-
i6	, i	KRMEAN RMSIP] * * 2 . R = 10 . 0 * (SQR'	r (SI	JM /	13		/1	. 0										
17		WRITE	(NRITE, 2050)	R	AS	PF	1												
19		WRITE	(NRITE, 2200)	PT	3P														
i0 i1		WRITE	(NRITE, 2250)	PTE	3P/	١													
2	7359	CONTI	NUE		-														
13 14	8851	CONTI	AJ8850,8850 NUE	, 88;	51														
i5		WRITE	(NRITE, 2400	FR	PR	,													
i7	8850	CONTI	NUE	I RAI	VET	1													
i8 i9		IF (AN OPEN (IONE .EQ. AAI		E) UF:	G (= N I) []	.0 100	700	7									
0		WRITE	(LREDUC, 601)]	(NI		ŴĊĬ),	1=5	,10), (1,1	2,13	3, j	TIN	1			
'1 '2	6010	FORMA	T(' RAW DATA (NRITE 6011	AF INN	I L I R F I	E SIIA	',6 Cii		,3X	, 12 10	;' <i>'</i> '	, 12	,'/'	, E	2,6	βX,4	4A2)		
3	6011	FORMA	T(' REDUCED	DA	TĀ	Ť	D F	ίĹ	E	, 6 Å	í)								
'4 '5		CALL	IDATE(11,1: TIME (ITIM)	2,1	3)														
<u>`6</u>		WRITE	(LREDUC, 601	2)	11	, 1	2,1	3,	ETI	M					N /-		. .		
'7	6012	FORMA	T(' REDUCTI	DN	PEI	RF	ORN	AE D	· ' ,	12,	'/',	12'	/',I	12,	6X,	, 4A:	2)		

FORTRAN I FLAME.FTN	V-PLUS I	S VO2- /TR:	51 Blocks/Wr	15:45:27	20-SEP-79	PAGE 14
0478 7 0479 0480	007 (4000)	CONTIN WRITE(FORMAT	UE LREDUC,40((3x,2044)))FNAM		
0481 0482	4001	FORMAT	(4(1X,E10) 2 L=1.NNP	.3), 3) [S		
0483	4002	WRITE(Th(1),	LREDUC,400 Deltaa(1)	3) PR(1), TUN(, X(1), TBAVA(1	1),RHOU(1),SU(1)),XDOT(1)	, TBNOA(I), FRN(I),
0484 0485	4003	FORMA1 CLOSE	(11(1X,E1) UNIT=LREDU	(,4)) JC)		•
0485 0487		DO 532 F(X()	1 [=1,NNP]].GT. 0.8]	FS GO TO 5322		
0489	5321 5322	CONTIN NFIT=1	IUE 	1 100 100	· · ·	
0491	121	TMFA(1 TMFA(2)=450)=550	, 22, 22		
0493 0494	!	NCOR=2 TNEXT	1)=400.			
0495 0496	. I	TNEXT (2)=500. 2			
0497 0498	122	GO TO IF(TNO	125)T-450) 123	3,124,124		
0499 0500 0501	123	TMFA(2 NCOR=2]=450			
0502 0503	:	TNEXT (1)=500. 1		•	
0504 0505	124	GO TO TMFA(1	125)=550			
0506 0507	105	NNEXT: NCOR=1				2
0509 0510	123	TUNOT:	TMFA() SUFLT(SU.T	IN TUNOT SUO.	ALFA NEIT)	
0511 0512	126 2600	WRITE FORMA	NRITE,260	0) TUNOT, SUO, U=SUO#(T/TO)#	ALFA *ALFA',5X,'TO='	,F5.1,5X,'SUO=',F5.1,
0513	å	5X,'AI IF(NNE	FA=',F5.2 XT .EQ. 0) GO TO 7362		
0514 0515 0516		DO 730 DO 730	50 1=1,NNE 51 J=1,NOU 51 J=1,IOU	K1 T 1)} 7363 7364	7365	
0517 0518	7365 7364	GO TO PNEXT	7361 ()=PN(J)	.,, 4000,1004	, , , , , , , , , , , , , , , , , , , ,	
0519 0520	7363	GO TO PNEXT	7360 ()=PN(J-1)+(PN(J)-PN(J	~1))*(TNEXT()-	ru(J-1))/(TU(J)-TU(J-1
0521	a 7361	GO TO	7360 Nue			
0523 0524	7360	CONTI DO 73	NUE 36 1=1,NNE:	хт		
0525 0526	7366	WRITE FORMA	(NR TE , 270) [(5X , ' PRES	0)PNEXT(),TN S.=',F8.3,3X,	EXT() 'TEMP.=',F8.1)	
0527 0528 0529	101 103	FORMA FORMA	40E [(4F10.0) [(15(14,1)))		

.

RTRAN AME.F1	IV-PLU N	S V02-51 /TR:BLOCKS/W	15:45:27 /R	20-SEP-79	PAGE 15
30	200	FORMAT(6F10.4)			
31	300	FORMAT(4F10.0)			
32	400	FORMATIAF10 01			
33	600	FORMAT(1H1 //	2 2014 //)	•	· · · · · · · · · · · · · · · · · · ·
34	700	FORMATIINX	THAL BY COFFEICE	IENTS ARE . ')	
35	900	FORMAT(// 101	COMBUSTION BOL	AR VOLUME IS	F16 4 5X (CC))
36	910	EOPMAT (10X) 1	ITTAL DESCHDE	18 ' E22 A AY	/ A TM /)
37	920	FORMAT(10Y 'II	ITTIAL TEMPERATI	IRE 18.7 E10 A	6Y (K)
28	020	COMAT(10Y 'C	NIIVALENCE DATIO	3 IC. 7 E21 A)	VX, X)
20	940	EODWAT (10Y) DI	SIDUAL ERACTION	N 10. (201 0)	
40	1200	EODMAT(// KY	MARE OF MINTING	E LET E1E 2 JOH	
41	1200	FORMALL//,JA,	TIME AY DOC	E 13 (F13.3) GAM E) EV 1V1 EV 1V	DOTI IN INOBULLIZEI IN
41	1300	7 VRMAIL///,4A	, IIME ,4A, FRE Ibning, 17 /8E1	5 , U.A., A., J.A., A. Ta' ev 'til' av	JUL INI NURMALIZE INA
	a	Y DELOUD AY	SUCDI AV JEUAVI	AV 180AV1 AV 1	CANNA 113 1
40	1400	A, RHUU ,9A, I Cormationy (ANE AV LOOUT	AX IVELODITY	GAMMA U'J
42	1400	FURMAILSZA, FI	AME ,4A, QUUI	, ZA, 'VELUCIIT',	ZA, JA, IOA, 'FLAME')
43	1500	FURMAIL32A, 'KA	ADIUS', 42A, 'IEMI		
44	1000	FURMAILIX, MS	EC',4X,'AIM',12/	A, PER MS', IVA,	CAL/GM', 2X, CM/SEC', 3X,
	ä	- UM (48, 1	Υ΄, / Χ , ΄ Κ΄, ΌΧ, ΄ Κ	', 6X, 'KG/M3', 3X	, 'KG/M3', 2X, 'CAL/GM', 2X
	4 6 6 6 ^Q	, CAL/GM'J			
40	1600	FURMA 1 (2X, F5.)	1,277.3,278.3,7	8.3, F8.2, F9.5, 3	F8.0,2F9.3,2F8.1,F8.3]
40	2050	FORMA11//,3X,	RMS OF RADII W	HEN IONIZATION	PULSES OCCUR=', F8.5,'
	ă, a c	MM'J			A method
41	2100	FORMAT(//,3X,	BALANCING PRES	SURE=',F27.3,'	ATM'J
48	2200	FORMAT(3X, 'TR	ANSDUCER PRES.	WHEN SWITCH IS	CLOSED=', F7.3,' ATM']
49	2250	FORMAT(3X, 'TR	ANSDUCER PRES.	INCLUDING CORRE	CTION=', F8.3,' ATM')
50	2300	FORMAT(3X, 'PE	RCENTAGE ERROR=	',F9.2)	
51	2400	FORMAT(//,3X,	'RADIUS OF FLAM	E FRONTIUSING L	ASER)=',F7.3,' CM'}
52	2500	FORMAT(3X,'DE	LTA RADIUS/RADI	US OF LASER ='	,F14.3,' %')
53		END			-

RAN IV-PLUS V02-51 20-SEP-79 PAGE 1 15:43:56 /TR:BLOCKS/WR ISP. FTN Ç C SUBROUTINE TRANSP č **PURPOSE:** TO CALCULATE VISCOSITY, FROZEN THERMAL CONDUCTIVITY OF A Homogeneous Mixture of Carbon Dioxide, Water, Carbon Monoxide, Hydrogen, Oxygen, and fuel. And diffusivity coefficient of FUEL AND AIR. **USAGE:** CALL TRANSP (SIGMA, EPOVRK, X, T, P, VISC, THCOND, DIFFUS) **DESCRIPTION OF PARAMETERS:** GIVEN: SIGMA - MOLECULAR DIAMETER OF FUEL FOR A LENNARD-JONES (12-6) POTENTIAL (ANGSTROMS) EPOVRK- DEPTH OF POTENTIAL WELL DIVIDED BY BOLTZMAN, S CONSTANT FOR THE LENNARD-JONES (12-6) POTENTIAL OF THE FUEL (DEG K) - COMPOSITION VECTOR OF DIMENSION SEVEN - CARBON DIOXIDE MOLE FRACTION X X(1) WATER VAPOR MOLE FRACTION X(2) -X(3) . CARBON MONOXIDE MOLE FRACTION - HYDROGEN MOLE FRACTION - Oxygen Mole Fraction X(4) X(5) - NITROGEN MOLE FRACTION - FUEL MOLE FRACTION X(6) X(7) TEMPERATURE OF THE MIXTURE (DEG K) PRESSURE OF THE MIXTURE (ATM) T . P GIVEN IN COMMON AREA/FUEL/: 6 DIMENSIONAL VECTOR OF ENTHALPY COEFFICIENTS SUCH THAT THE ENTHALPY OF FUEL VAPOR AS A FUNCTION OF TEMPERATURE (T DEG K) IS GIVEN BY: AF(1) -H(T)=AF(1)*ST+(AF(2)*ST**2)/2+(AF(3)*ST**3)/3 Č C + (AF (4)*ST**4)/4-AF (5)/ST+AF (6) WHERE ST=T/1000 AND H(T)= <KCAL/MOLE> This program assumes that function H(T) is valid over The following temperature range: 300 < T < 1500 C С ENTHALPY DATUM STATE IS T=0 ABSOLUTE WITH 02,N2,AND H2 GASEOUS AND C GRAPHITE. - AVERAGE NUMBER OF NITROGEN ATOMS PER FUEL MOLECULE C C C ENW ČX HY - AVERAGE NUMBER OF CARBON ATOMS PER FUEL MOLECULE 00000 AVERAGE NUMBER OF HYDROGEN ATOMS PER FUEL MOLECULE Average number of oxygen atoms per fuel molecule 0Z QLOWER- LOWER HEATING VALUE (KCAL/G) č **RETURNS:** VISC - VISCOSITY OF THE MIXTURE (G/CM-SEC) OR (POISE) Č C THCOND- FROZEN THERMAL CONDUCTIVITY OF THE MIXTURE (CAL/CM-SEC-DEG K) Ċ C DIFFUS- BINARY DIFFUSION COEFFICIENT OF FUEL AND AIR(CM**2/SEC) Ĉ **REMARKS:** 1) POLAR MOLECULES WATER AND IN SOME CASES FUEL (E.G. CH30H)

RTRAN ANSP.I	1 V - P 7 N	LUS V	/02- / TR :	-51 BL() CK	s / y	VR	1	5:	43:	: 56	i		20	- 3	EP	-7	9						P A	GE	2				
	00000		2) 3)	ARI DII BII COI	FU FU NAR DED	REA SIC Y D Bi	NTER DN C DIFR (H/) T COE SUS ME	HE FF 101 ED	S/ ICI N C Me	AME I E N COE E T G	A IT FP	S OF IC LC	NO T HE	HE N1	P O M 5 3	LA X F -6	R TU FU 64	MO RE EL	LE I A (R	CU S ND OO	LE AP A M	S P R I R 3 -	0X 35	1 M 9	A TI M	ED (T)	AS		
	000000	MET	1)	DS / R.S VIS FOI	AND S.B SCO R N SA	RE ROM SIT ON- TR	EFEI (AW FY -PO R-1	REN :A ?,T LAR 31	CE LI HE G. 19	S: GNN RM/ ASI 61	MEN A L E S	IT GC AN	CH ND ID	IA R DUC GA	TS TI	S F VI MI	0 R T Y X T	IT ,A IUR	RA ND ES	N S D A	PO IF T	RT Fu Lo	P Si W	RO ON DE	PE C NS	RT OEI IT	IES FFI 7.	ĊIE	NTS	
	00000		2) 3)	R . I OF A . I PR COI	A,S GA A.W OPE MBU	VEI SES ES RT ST	ILA SA TENI IES ION	E E B E R A P	ST IG G FL FL	1 M/ H : P I 1 C / A MI	ATE TEN RES Abl	ID Ape Sen .e /01	VI RA IT TO	SC (TU ST) C 1	05 105 105 105 105 105 105 105 105 105 1	SIT IS. IUS Abu B 1	1 E N S T 9 5	ES 1A 5 0 F 1 1 (5 7	AN A IN P3	D TR FO Re 46	TH RM SE	ER -1 AT AR	MA 32 10 Ch	L N	C0 96 ON	ND 2 T	UCT RAN	1V1 15P0	TIES	
	C C C***	****	4) ***	DAI XXX	NON ×××	& **	ADI	4UR ***	, %*	1 **	J (₩¥≯)F •**	СН (нж	1EA (*)	4. (*)	PH (**)	Y S ()	5. (**	0V 899	₩.	5 :***	0 **	Р. ЖЖ	41 **	78 **		969 ***		***	
01 02 03		SUI REA DII	BRO ALX MEN	UT I 4 LI S I O	NE MMI NA	TR/ X1 (6	ANS , LMI , 7 ,	P (S W I X 2),	IG 2, A 1	MA LM (4	, E F B D A 2)	20\ \11 , A1	/RK (7) 2 (4	(,) (, l (2)	(, 1 	F, P Bda Eta	21	/15 (7) 7)	SC, ,M ,S1	11 1(7 GN	1C0	ND MJ (7	, D , N) ,	F , EP	FU MA S ((S) (R 7)	, CF)(7)	,	
04 05	•	EQ CO	U I V MMO	ALE N/F	NCÊ Uel	() /A	, A 1 (F 1 6	1),),É	A (NW	1, , ć	1,1 X,1	()) HY,), (, 02	(A2 Z,C	2L(2L(1), DWF	A R	(1,	1,	2))									
06	C	DA 1 2 3 4 5	TA 6 7 5 7 6	A1/ .13 .09 .55 .86 .80	11. 909 955 568 584 777	94 4, 6, 1, 1, 1, 1,	033 4.6 1.2 .78 .68 1.4	,2. 078 759 719 837 534	08 3, 57 1, 19	85 ,- ,- ,-	81 93 28 28 .0 .3	, ~(56(571 51(31(28)	0.4 009 74 342 944 98	47(9,6 57 2,1 4,.5) 2 ! 5 . (1 . ! - 2	9,, 669 022 951 .68 561	03 949 23 154 970	373 981 56 471 981 351	363 	12	5 . 0 . 9 8 . 1	89 33 69 61 20 11	44 58 6 18 13	7, 01 -2 28 87 40	-9 ,7 ,3,,	7. 56 73 76	141 .62 464 498 893 331	8, 588 , 455 835	, , ,	
07		0 7 8 9 & -	TA 6 6 7	A2/ 7.8 .97 .29 .29	4.7 096 393 187 571 219	37 72 73, - 78, 15, 99,	305 .82 .16 2.3 -1.	,16 202 381 170 883 295	.6 35 9, 44 87	52 19 2.	83 ,3 94 .2 .0 3.	.4 20 18 31 20	111 187 42 207 471 681	. 2 7 0 7 1 8 8 8 ,	32 8, 1, , - 1	49 -1 17(29(.3) .2(202	. 82 790 39 190 740 212	280 013 ,4, 7,- 33, 2,-)01 13 -1 4 -3	, 6 2 4 5 2 4 5	.7 36 99 52 92	67 29 3 5 5 5 8	02 0E- 0E- 0E- 0E-	E - 03	·03 -27 -1	,9 57 . 19 . 1 030 . 0	03.7 08(9597 1818 637 139(5793 04, 39, 57,	
08 09 10 11		DA DA DA DA	TA TA TA TA TA	SIG EPS M/4 MAI	MA1 /19 4,(R/2	/3 5. 1, 28.	.94 2,8 18. 97/	1,2 09. 02, ,S0	2 8 1 , 2 8 MA	41 91 .0	, 3 .7 1, /3	.6 ,5 2.	9,2 9.1 010 89,	2. 7, 6, /,	82 10 32 E P	7, 6, SÅ	3. 7, 28 1 R	46 71 .0: /8	7,3 .4, 2,0 4.,	3.1 ,0).1	798 .0/ 0/,	, c , R/).(/1)/ .98	872	2/				
	000		S 0	T A T Me g	EME A (2	ENT 2,2	FU)*,	NC1 PH		NS , J),	OR A N	C(DP:	0 L S I	L (S I (, J	DN)	l	NTI	10	RAI	.5	0	AEC	A l	(1,	1)	¥,		
12 13 14	C	OM OM PH &	EGA EGA I (E	1 (T 2 (T TA I	ST/ ST/ , E	AR) AR) TAJ	= AM = AM , M I	AX1 AX1 ,M	(1 (1) = /	.4	64 20 + .*	*T *T (E SQ	5 T. 5 T. T A R T 2	AR AR 1/ (2	** ** E.*	((AJ (1	0. .1 .*	49 60 ¥0 MI	3) 0) .5; /M,	,1 ,1 () () ()	.14 .61 MJ/))	15) 0) /M 1 /	(T) () () ()	ST/ ST/ ##(4R) 4R) 0.2	+⊁(+⊁(25) //⊔	0 0 **	. 173 . 450 2	7)) 0))	
	000	гJ	C C	ALC	UL/	ATE DUA	TH	E \ PE(/19	SCO ES)S I	ΤŸ	A	ND	T	HE	RM	AL	Ç(ON	DVO	CT	I V	1 T '	1) DF	TH	E		

TRAN NSP.F	IV-PL Tn	.US VO /T	2 - 5 R : B	1 Lock	S/WR	15	:43	:56		20-SEP	-79	PA	GE 3	
6 7 8 9 0 1 2 3 4 5 6	C 1	IR=1 IF(T ST=T DO 1 A1(I A2(I M(7) SIGN EPS(DO IF(X	.LT /10 = +36 +36 +36 +36 +36 +36 +36 +36 +36 +36	.500 00.6)=AFF)=XFEN 7)=SV =1,7 .EQ.7	.) F () () W + 1 IGMA RK 0.) (2.*C	X +	ΗY	+ 1	6. ¥ 0Z				
	00000		SI Fo Th	NCE R T < Iose	FOR N 1500 Cases	IOST We S Whe	FUE ASS RE	LS UME T>1	ГНЕ Ср (500.	ENTHAL 7)=CP(PY COEF 7) EVAL	FICIENTS UATED AT	ARE VA T=1500	LID ONLY FOR
7 B	0	IF(I CP(I	.EQ)=(1.7 . (A(4	AND.	ST.0 ()*ST	iΤ.1 [+Α(.5) 3,1	ST= , R)	∶1.5)#ST+Å	(2, , R))*ST+A(1	, , R)	
9 0 1 2 3	2 C	TSTA ETA (LMBC LMBC CONT	(R = T) =)A1()A2(NU	A (5, 7 EPS 26.6 1)=3 1)=0 E	() 93E-(.75 x F .88 x (06*50 *ETA 0.4*	RT (() ()	M() /M()/) X T)) R - 1 .	/SIGMA)*LMBD	1 () * *2 A1 ()	/OMEGA2(1	STAR)	
	č		CAL	CULA	TE V	scos	6 I T Y	ANI	D TH	IERMAL	CONDUCT	IVITY OF	THE MI	XTURE
453733212345		ETAN LMMI DO 4 IF() DEN1 DEN2 DO 3 IF(DUMA DEN1 DEN2	1 X= X1= X2== () =1.= J.= PE = PE = PE	0. 0. 1,7 .EQ. 0 1,7 Q. PHI(E N1+D N2+P	0.) .OR .TA(1)	GO] . X(. . ETA €X(J) JMMY	[0]4]).E \(J))/X(.M(]	Q.0 ,M()).M	.) (),N (J))	30 TO 3 4(J))	X(I)			
) 7 3	3	CONT ETAN LMM	NU X = X 1 =	E TAN	IIX+E X1+L	TA(I) ABDA)/DE	N1 /DE	N 2		,			
3 1 2	4	LMM CONT VISC THCC	1 X 2 = [NU] = E 1] ND =	LMMI JE AMIX LMMI	X2+LI X1+LI	ABDA2 Amix2	2(1)	/DE	N 1					
	C C	CALC	ULA	TE D	IFFU	SIVII	ry							
3 4 5 5	ι,	SIG: EPVI TST/ DIFF	= (\$0 {K = \$ \ R = 1 = U \$ =	MAIR SQRT(1/EPV 2.62 /(P	1+SIGI EPSA (RK 8E-0: *(SI)	MA1 (7 R*E 3 * (SC 3 * 2)	7))/ PS(7 QRT() X OM	2.)) (T* IEGA	×3)) 1 (T:	(M(7)+ STAR)))	MATR)7(2.¥M(7)%	MA (R))	

FORTRAN IV-PL TRANSP.FTN	US V02-51 /TR:BLOCKS/WR	15:43:56	20-SEP-79	PAGE 4
0057 0058	RETURN End			

```
N IV-PLUS V02-51
                                 15:44:39
                                                 20-SEP-79
                                                                           PAGE 1
.FTN
            /TR:BLOCKS/WR
  C*********************** VERSION 1.0 *** 4/23/79 ********************************
  C
  C
          SUBROUTINE PPDTCL
  Č
  C
          PURPOSE:
  Ċ
              TO CALCULATE PDOT AT CONSTANT INCREMENT OF UNBURNED
  С
                   GAS TEMPERATURE
  Č
  С
          USAGE:
  Ċ
              CALL PPDTCL(P, TH, THN, T, TINC, NPTS, NDP, PN, PDOT, TN, NNPTS, PINF,
                               ŤIMÍN,EXPŇT)
  Ċ
          DESCRIPTION OF PARAMETERS:
  č
           GIVEN :
  C
              P
                     -PRESSURE
  CCCCCCCC
              TH
                    -TIME (MSEC)
                     -UNBURNED GAS TEMPERATURE K
              T
              TINC -TEMPERATURE INCREMENT K
NPTS -NUMBER OF DATA POINTS
NDP -DEGREE OF POLYNOMIAL WHICH FITS THE PRESSURE DATA
           RETURNS:
              THN -TIME (MSEC)
  Ċ
C
              PN
                     -PRESSURE
              TN -UNBURNED GAS TEMPERATURE K
PDOT -TIME DERIVATIVE OF PRESSURE
NNPTS-NUMBER OF NEW ARRAYS OF DATA POINTS
  Ĉ
              PINF - PRESSURE AT INFLECTION POINT (ATM)
  C
C
C
              TIMIN-TIME AT INFLECTION POINT
              EXPNT-THE EXPONENT FOR THE FITTED CURVE FOR PRESSURE
(P/PNOT=1+((PINF-PNOT)/PNOT)*(T/TIMIN)**EXPNT
  Č
          SUBROUTINE REQUIRED:
  0000
              HGASJO
          METHOD:
              FIT THE PRESSURE DATA LOCALLY TO A POLYNOMIAL OF DEGREE NDP
WITH A WEIGHTING FUNCTION OF W=EXP(-(T(I)-TN)**2/2(TINC/2)**2)
WHERE TN(I)=T(1)+(N-.5)*TINC
   Ć
   č
c
  Č
          REMARKS:
  Ċ
              IN CASE OF PROBLEM CONTACT HAMEED METGHALCHI 3-359 M.I.T.
              AT 253-6647
  Ĉ
   C*****
                 SUBROUTINE PPDTCL(X, TH, THN, T, TINC, NPTS, NDP, XN, XDOT, TN, NNPTS,
                                PIŃF, ŤIMIŃ, ÉXPNTÍ
         å
          DIMENSION X (NPTS), T (NPTS), XDOT (30), C (3, 5), R (260), XN (30),
S (260), TH (NPTS), TN (30), THN (30)
         å
          COMMON XINT(260), DELTDP(260)
  C
C
C
C
          CALCULATE CONSTANT INCREMENT OF TEMPERATURE
          DO 1 I=1, NPTS
          F1=1
```

0006 TN(1)=T(1)+(FI5)#TINC IF(TN(1)-T(NPTS)) 1,2,3 0008 1 CONTINUE NNPTS=1 0010 GO TO 4 0011 3 NNPTS=1 0012 4 CONTINUE C FIND THE CORRESPONDING TIMES TO THE NEW TEMPERATURE ARRAY 0013 D0 17 I=1, NNPTS 0014 D0 14 J=1, NPTS 0015 IF(TN(1)-T(J)) 16, 15, 14 0016 15 THN(1)=TH(J) 16, 15, 14 0017 GO TO 17 GO TO 17 0018 16 THN(1)=TH(J) -1) + (TN(1) -T(J-1)) # (TH(J) -TH(J-1)) / (T(J) -T(J-1)) 0020 14 CONTINUE C FIT DATA TO POLYNOMIALS OF DEGREE NDP 0021 D0 5 I=1, NNPTS 00220 14 CONTINUE C FIT DATA TO POLYNOMIALS OF DEGREE NDP 0023 K1=2*MDP+1 0024 D0 5 I=1, NPTS 0025 D0 6 J=1, NPTS 0026 D0 17 J=2, T1828#W (-2*(TJ) -TN(I))#W2/(TINC##2)) 0027 XINT(J)=2, T1828#W (-2*(TJ) -TN(I))#W2/(TINC##2)) 0028 D0 7 J=1	FORTRA PPDTCL	N IV-PLU .FTN	JS V02-51 /TR:BLOCKS/WR	15:44:39	20-SEP-79	PAGE 2
C FIND THE CORRESPONDING TIMES TO THE NEW TEMPERATURE ARRAY 0013 0014 0014 0014 0015 1017 0015 1017 0015 1017 0017 0018 1017 0019 1017 0019 1017 0019 1020 117 0021 117 0021 117 0021 117 0021 117 0021 117 0022 005 121, NPTS 0022 005 121, NPTS 0023 005 121, NPTS 0024 025 121, NPTS 0025 121, NPTS 0026 121, NPTS 0027 121, NPTS 0026 121, NPTS 0027 121, NPTS 0028 121, NPTS 0029 121, NPTS 0029 121, NPTS 0029 121, NPTS 0029 121, NPTS 0029 121, NPTS 0029 121, NPTS 0029 121, NPTS 0029 121, NPTS 0031 120, NPTS 0031 120, NPTS 033 120, NPTS 033 120, NPTS 034 121, NPTS 035 121, NPTS 035 131, C(N, J) = S(N-1+J) 132, NPTS 132, NPTS 132, NPTS 134, NPTS 135, NPTS 13	0006 0007 0008 0009 0010 0011 0012	1 2 3 4	TN(1)=T(1)+(F1- IF(TN(1)-T(NPTS CONTINUE NNPTS=I GO TO 4 NNPTS=I-1 CONTINUE	.5)*TINC)) 1,2,3		
C D0 17 I=1,NNPTS 0014 D0 14 J=1,NPTS 0015 IF(TM(I)=T(J)) 16,15,14 0016 15 THN(I)=TH(J))(T(J)-T(J-1))*(TH(J)-TH(J-1))/(T(J)-T(J-1) 0017 G0 T0 17 0018 16 THN(I)=TH(J-1)*(TN(I)-T(J-1))*(TH(J)-TH(J-1))/(T(J)-T(J-1) 0019 G0 T0 17 0021 17 CONTINUE 0021 17 CONTINUE 0022 D0 5 I=1,NNPTS 0023 K1=2#NDP+1 0024 S(I)=0.0 0025 D0 6 J=1,NPTS 0026 DELTDP(J)=TH(J)-TN(I) 0027 X1NT(J)=2.71828#*(-2*(T(J)-TN(I))**2/(TINC**2)) 0028 6 S(I)=3(I)+X1NT(J) 0029 D0 7 K=2,K1 0030 S(K)=0.0 0031 D0 7 J=1,NPTS 0032 7 S(K)=SKK)*X1NT(J)*DELTDP(J)**(K-1) 0033 K2=NDP+1 0034 R(I)=0.0 0035 D0 8 J=1,NPTS 0036 8 R(I)=R(I)+X(I)XINT(J) 0037 D0 9 K=2,K2 0038 R(K)=C,C 0038 R(K)=C,C 0039 D0 9 J=1,NPTS 0039 D0 9 J=1,NPTS 0031 C0 7 J=1,NPTS 0032 7 S(K)=S(K)+X1NT(J) 0033 K2=NDP+1 0034 R(I)=C(I)XX1NT(J) 0035 D0 8 J=1,NPTS 0036 0 S(K)=C,K2 0046 11 C(N,X3)=R(N) C CALL SUBROUTINE HGASJO TO SOLVE NDP LINEAR EQUATIONS C CALL HGASJO(C,K2) 0048 XN(I)=C(1,1) 0059 5 CONTINUE		000	FIND THE CORRES	PONDING TIMES	TO THE NEW TEMP	PERATURE ARRAY
0020 14 CONTINUE 0021 17 CONTINUE C C C C D 0 5 [=1,NPTS 0023 K1=2xNDP+1 0024 S(1)=0.0 C 0025 D 0 6 J=1,NPTS 0026 D ELTDP(J)=TH(J)-TH(I) 0027 XINT(J)=2,71828**(-2*(T(J)-TN(I))**2/(TINC**2)) 0028 6 S(1)=S(1)+XINT(J) 0029 D 0 7 K=2,K1 0030 S(K)=0.0 0031 D 0 7 J=1,NPTS 0032 7 S(K)=S(K)+XINT(J)*DELTDP(J)**(K-1) 0033 K2=NDP+1 0034 R(1)=C0 0035 D 0 8 J=1,NPTS 0036 8 R(1)=R(I)+X(J)*XINT(J) 0037 D 0 9 K=2,K2 0038 R(K)=0.0 0039 D 0 9 J=1,NPTS 0040 9 R(K)=R(K)+(DELTDP(J)**(K-1))*XINT(J)*X(J) 0041 D 0 10 N=1,K2 0043 10 C C C C C C C C C C C C C C C C C C	0013 0014 0015 0016 0017 0018 0019	15	DO 17 I=1,NNPTS DO 14 J=1,NPTS IF(TN(I)-T(J)) THN(I)=TH(J) GO TO 17 THN(I)=TH(J-1)+ GO TO 17	; 16,15,14 ·(TN(I)-T(J-1))*(TH(J)-TH(J-1))/(T(J)-T(J-1))
C C FIT DATA TO POLYNOMIALS OF DEGREE NDP 0022 DO 5 I=1,NNPTS 0024 S(1)=0.0 0025 DO 6 J=1,NPTS 0026 DELTDP(J)=TH(J)-TN(I))**2/(TINC**2)) 0027 S(N)=S(1)+XINT(J) 0027 DO 7 K=2,K1 0030 S(K)=0.0 0031 DO 7 J=1,NPTS 0032 T S(K)=S(K)+XINT(J)*DELTDP(J)**(K-1) 0033 K2=NDP+1 0034 R(1)=R(1)+X(J)*XINT(J) 0035 DO 8 J=1,NPTS 0036 8 R(1)=R(1)+X(J)*XINT(J) 0037 DO 9 K=2,K2 0038 R(K)=0.0 0039 DO 9 J=1,NPTS 0040 9 R(K)=R(K)+(DELTDP(J)**(K-1))*XINT(J)*X(J) 0041 DO 10 N=1,K2 0042 DO 10 N=1,K2 0044 K3=NDP+2 0045 DO 11 N=1,K2 0046 C C C C C C C C C C C C C	0020 0021	14 17	CONTINUE			
C D0 5 i=1,NNPTS 0023 K1=2*NDP+1 0024 Si1)=0.0 0025 D0 6 j=1,NPTS 0026 DELTDP(J)=TH(J)-TN(I) 0027 X1NT(J)=2,71828**(-2*(T(J)-TN(I))**2/(T1NC**2)) 0028 6 S(1)=S(1)+X1NT(J) 0029 D0 7 K=2,K1 0030 S(K)=0.0 0031 D0 7 J=1,NPTS 0032 7 S(K)=S(K)+X1NT(J)*DELTDP(J)**(K-1) 0033 K2=NDP+1 0034 R11)=0.0 0035 D0 8 J=1,NPTS 0036 8 R(1)=R(1)+X(J)*XINT(J) 0037 D0 9 K=2,K2 0038 R(K)=0.0 0039 D0 9 J=1,NPTS 0040 9 R(K)=R(K)+(DELTDP(J)**(K-1))*X1NT(J)*X(J) 0041 D0 10 N=1,K2 0042 D0 10 J=1,K2 0043 10 C(N,J)=S(N-1+J) 0044 K3=NDP+2 0045 D0 11 N=1,K2 0046 11 C(N,K3)=R(N) C CALL SUBROUTINE HGASJO TO SOLVE NDP LINEAR EQUATIONS C 0047 CALL HGASJO(C,K2) XD07(I)=C(2,1) 0049 XD07(I)=C(2,1) 0049 XD07(I)=C(2,1)		C	FIT DATA TO PO	LYNOMIALS OF	DEGREE NDP	
0021 F(K)=(1)+(1) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0	0022 0023 0024 0025 0026		DO 5 I=1,NNPTS K1=2*NDP+1 S(1)=0.0 DO 6 J=1,NPTS DELTDP(J)=TH(J)	-THN(])	[N())**2/(T NC#	(21)
0032 7 \$(K) = \$(K) + XINT(J) *DELTDP(J) **(K-1) 0033 K2 = NDP +1 0034 R(1) = 0.0 0035 D0 8 J = 1, NPTS 0036 8 R(1) = R(1) + X(J) *XINT(J) 0037 D0 9 K = 2, K2 0038 R(K) = 0.0 0039 D0 9 J = 1, NPTS 0040 9 0041 D0 10 N = 1, K2 0042 D0 10 J = 1, K2 0043 10 0044 K3 = NDP + 2 0045 D0 11 N = 1, K2 0046 11 C C C C C C C C C C O048 XN(1) = C(1, 1) 0049 XDOT(1) = C(2, 1) 0049 XDOT(1) = C(2, 1) 0050 5 C C 0049 XDOT(1) = C(2, 1)	0028 0029 0030 0031	6	S(1)=S(1)+X NT DO 7 K=2,K1 S(K)=0.0 DO 7 J=1.NPTS	(J)	((())**2/() (()	· · · · · ·
0036 8 R(1)=R(1)+X(J)*XINT(J) 0037 D0 9 K=2,K2 0038 R(K)=0.0 0039 D0 9 J=1,NPTS 0040 9 R(K)=R(K)+(DELTDP(J)**(K-1))*XINT(J)*X(J) 0041 D0 10 N=1,K2 0042 D0 10 J=1,K2 0043 10 C(N,J)=S(N-1+J) 0044 K3=NDP+2 0045 D0 11 N=1,K2 0046 11 C(N,K3)=R(N) C C C C 0046 CALL SUBROUTINE HGASJO TO SOLVE NDP LINEAR EQUATIONS C 0047 CALL HGASJO(C,K2) 0048 XN(1)=C(1,1) 0049 XD0T(1)=C(2,1) 0050 5 CONTINUE	0032 0033 0034 0035	7	S(K)=S(K)+XINT K2=NDP+1 R(1)=0.0 D0 8 J=1,NPTS	(J)*DELTDP(J)	K₩(K-1)	
0040 9 R(K)=R(K)+(DELTDP(J)**(K-1))*X(NT(J)*X(J) 0041 D0 10 N=1,K2 0042 D0 10 J=1,K2 0043 10 C(N,J)=S(N-1+J) 0044 K3=NDP+2 0045 D0 11 N=1,K2 0046 11 C(N,K3)=R(N) C C C CALL SUBROUTINE HGASJO TO SOLVE NDP LINEAR EQUATIONS C C 0048 XN(I)=C(1,1) 0049 XDOT(I)=C(2,1) 0050 5 CONTINUE	0036 0037 0038 0039	8	R(1)=R(1)+X(J) DO 9 K=2,K2 R(K)=0.0 DO 9 J=1,NPTS	(XINT(J)		
0044 K3=NDP+2 0045 DO 11 N=1,K2 0046 11 C(N,K3)=R(N) C C C C C C C C C C C C C C C C C C C C C C O047 CALL HGASJO(C,K2) 0048 XN(I)=C(1,1) 0049 XDOT(I)=C(2,1) 0050 5 CONTINUE	0040 0041 0042 0043	9 10	R(K)=R(K)+(DEL DO 10 N=1,K2 DO 10 J=1,K2 C(N,J)=S(N-1+J	TDP (J) ** (K-1).))#XINT(J)#X(J)	
C CALL SUBROUTINE HGASJO TO SOLVE NDP LINEAR EQUATIONS C C C C CALL HGASJO(C,K2) 0048 XN(1)=C(1,1) 0049 XDOT(1)=C(2,1) 0050 5 CONTINUE	0044 0045 0046	11 c	K3=NDP+2 DO 11 N=1,K2 C(N,K3)=R(N)			·
0047 CALL HGASJO(C,K2) 0048 XN(1)=C(1,1) 0049 XDOT(1)=C(2,1) 0050 5 CONTINUE		Č	CALL SUBROUTIN	E HGASJO TO S	OLVE NDP LINEAR	EQUATIONS
	0047 0048 0049 0050	5	CALL HGASJO(C,1 XN(1)=C(1,1) XDOT(1)=C(2,1) CONTINUE	K2)		
FORTRAN PPDTCL.F	IV-PLU Tn	S V02-51 /TR:BLOCKS/WR	15:44:39	20-SEP-79	PAGE 3	
---------------------	--------------	---------------------------	---------------	-----------	--------	
0052		IF (XDOT(I).LT.XDO	DT([-1]) GO 1	ro 13		
0053	12	CONTINUE				
0054		GO TO 18				
0055	13	P NF = XN (-1)				
0056		TIMIN=THN(1-1)				
0057		PDTINF=XDOT(1-1)				
0058		EXPNT=TIMIN*PDTII	NF/PINF			
0059		GO TO 19				
0060	18	PINF=XN(NNPTS)				
0061		TIMIN=THN(NNPTS)				
0062		PDTINE=XDOT(NNPT)	\$1			
0063		FXPNT=TIMIN*PDTI	NE/PINE			
0064	19	CONTINUE				
0065		RETURN				
2200		END				
~~~~		P U P				

METHANOL 4:25 P.M. 8/3/29

ENTHALPY COEFFICIENTS ARE: -2.7058 44.1677 -27.5009 7.2193 0.2100 -42.9501

COMBUSTION BONB VOLUME IS:	1853.3333	00
INITIAL PRESSURE IS:	1.0000	ATM
INITIAL TEMPERATURE IS:	298.0000	ĸ
ERUIVALENCE RATID 15:	1.2000	
RESIDUAL FRACTION IS:	0.000	

MASS OF MIXTURE IS 2.2206M

TIME	PRES	X	XUOT	NORMALIZE Flame	CUM. Gout	BURNING	DEL LA T	TU	TBAV A	ADIABATIC FLAME	RHÚU	RHOB EU	IAV EI	AV GAMM	A U
				RADIUS						TEMP					
MSEC	ATM		PEK MS		CAL/GM	CM/SEC	٤M	ĸ	¥.	K	KG/M3	kG∕rt3	CAL/GH	CAL/GM	
9.24	1.088	0.009	0.003	0.411	0.011	47.57	0.00035	305.	2161	2. 2116	. 1.27	4 0.162	-168.	3 -310.7	1.360
13.76	1.293	0.031	0.007	0.585	0.053	45.45	0.00140	319.	2213	3. 2126	. :.44	7 0.1BE	-165.4	5 -293.4	1.357
16.54	1.526	0.056	0.012	0.679	0.105	48.63	0.00239	333.	2251	1. 2135	. 1.63	6 0.218	-163.	0 -280.7	1.355
18.60	1.783	0.085	0.017	0.742	0.103	51.03	0.00321	347.	2280	). 2145	. 1.33	4 0.252	-160.	3 -270.6	1.352
20.37	2.077	0.118	0.022	0.790	0.231	52.37	0.00394	301.	2310	0. 2154	. 2.05	4 0.289	-157.4	6 -260.3	1.349
21.96	2.408	ú.155	0.028	0.828	0.308	54.00	0.0045/	375.	2338	8. 2164	. 2.29	3 0.331	-154.	8 -250.5	1.346
23.38	2.781	0.198	0.035	0.858	0.392	55.28	0.00508	389.	2364	4. 2174	. 2.55	3 0.378	-152.	1 -241.1	1.343
24.69	3.191	0.245	0.041	0.884	0.485	56.65	0.00550	403.	2386	5. 2183	. 2.82	7 0.430	-149.	3 -232.6	1.340
25.93	3.650	0.298	0.049	0.905	0.587	58.41	0.00585	417.	2411	1. 2193	. 3.12	5 0.482	7 -146.	5 -224.4	1.337
27.13	4.170	0.359	0.059	0.924	0.703	89.90	0.00515	431.	243	3. 2203	. 3.45	4 0.551	-143.	7 -216.3	1.334
28.21	4.729	0.424	0.069	0.940	0.822	63.55	0.00631	445.	245-	4. 2213	. 3.79	4 0.619	7 -140.	8 -208.9	1.331
29.24	5.359	0.499	0.085	0.754	0.954	58.48	0.00655	459.	2474	4. 2223	. 4.16	9 0.590	5 -137.	9 -201.7	1.329
30.17	6.058	0.582	0.108	0.967	1.095	77.54	0.0066	473.	249	3. 2233	4.57	2 0.78	) -135.	0 -194.7	1.326
30.97	6.825	0.673	0.130	0.978	1.241	33.48	0.00673	497.	2513	2, 2242	. 5.00	3 0.87	2 -132.	: -188.0	1.323
31.73	7.691	0.777	0.143	0.988	1.395	81.84	0.00080	501.	253	0. 2252	. 5.48	0.97	5 -129.	4 -181.3	1.325
32.52	8.592	0.885	0.117	0.997	1.588	60.36	0.00690	515.	254	7. 2201	. 5.95	6 1.08	3 -126.	4 -175.3	1.321

IONIZATION	TIME	PRESSURE	P/PMAX	RADIUS N	ORMALIZEI	DISTAN	E X	TU
PROBE	MSEC	ATM		CH	RADIUS	FROM WAL	L(MM)	ĸ
1	32.670	8.730	0.960	7.577	0.994	0.	428 0.902	587.1
2	32.220	8.257	0.908	7.545	0.990	0.	'50 0.845	519.2
3	32.150	8.172	0.899	7.538	0.989	٥.	819 0.835	509.7
MAX TIME=	33.73	MAX PRES.=	9.09	MAX TU=522.0	3			

RMS OF RADII WHEN IDNIZATION PULSES OCCUR= 0.17022 MM

 BALANCING PRESSURE=
 2.705 Alm

 TRANSDUCER PRES. WHEN SWITCH IS CLOSED=
 8.098 Alm

 TRANSDUCER PRES. INCLUDING CORRECTION=
 2.98° Alm

 PERCENTAGE ERROR=
 2.74

RADIUS OF FLAME FRONT(USING LASER) = 5.443 CH Delta Radius/Radius of Laser = 0.326 % Reduced data to file metoo3

SU=SUO*(T/TO)**ALFA TO=450.0 SUO= 69.6 ALFA= 1.2% PRESS.= 3.098 TEMP.= 400.0 PRESS.= 7.603 TEMP.= 500.0

FIG. I.1 A Typical Computer Result Showing Laminar Burning Velocity as a Function of Measured Pressure for Methanol-Air Mixture of Equivalence Ratio of 1.2 with Initial Pressure of 1 Atm and Initial Temperature of 293 K