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PERSPECTIVE

Robust templates for domain boundary engineering in ErMnO3
EkhardKHSalje
University of Cambridge, Downing Street, Cambridge CB2 3EQ,UK
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Abstract
Emerging properties of domain boundaries define the emerging field of domain boundary
engineering. Formany applications, the domain boundary acts as template ontowhich the desired
properties, such as (super-) conductivity, polarity, ferroelectricity,magnetism, are imposed. This
requires formost applications that the domain structures remain unchanged under appropriate
chemical doping.Hassanpour et al (2016New J. Phys. 18 043015) have now shown, for the first time,
that themagnetic and electric domain structures remain indeed robust against charge carrier doping
(Ca2+ andZr4+) of theworkbenchmulti-ferroic ErMnO3. This opens theway into novel
functionalities based on the nanostructure of ErMnO3.

Nano-scale devicematerials can be designed as emerging properties of domain boundaries as active elements.
Examples are twin boundaries, which are (super-)conducting [2, 3], polar [4], ferroelectric [5], or show
magnetotransport [6]while the bulk of the samematerial has none of these properties. Including even finer scale
structures, such as Blochwalls andwalls insidewalls [7], these developments lead to thin functional sheets or
lines insidematerials which have characteristic length scales of ca. 1nm. They represent some of themost
advanced design technologies in nano-science currently available [8]. Two approaches are typically taken: firstly
one uses the domain structure simply as a template to piggyback the desired properties onto the domain
boundaries. In this case, the key question is how to tune thematerial properties towards a technologically
feasible working range, without affecting the electric andmagnetic order that give rise to the functional behavior.

The second approach ismore demanding as it requires the domain structure itself to change under external
fields while thewall properties changewith them. This latter approach leads often to domain glass states, which
allows for extremely high time sequences for computational devices but complicates the design of single active
locations in devicematerials (see figure 1).

One of themost importantmultiferroic designmaterials is ErMnO3. The parent compound of the doping
series, ErMnO3, exhibits geometrically driven improper ferroelectricity belowTC near 1470 Kwith the
spontaneous polarization P oriented parallel to the hexagonal c-axis ( ∣∣ )P c . Its characteristic domain structure
includes lines and vortex structures andwas tacitly assumed to belong to the second class ofmaterials where even
small changes of the bulk propertiesmay drastically alter the domain pattern.Hassanpour et al [1] have shown
that this is not the case, however. They demonstrated that electronic properties of this semiconducting
multiferroic can bemodified by introducing impurities, analogous to conventional semiconductors, while
sustaining their intrinsic electric andmagnetic domain structures. Their procedure formodifying electronic
material properties is the introduction of n- or p-type properties to implanted defects. They showed that the
electronic conductance of ErMnO3 can be tunedwithin a range of about two orders ofmagnitude by
introducing either divalent (Ca2+) or tetravalent (Zr4+) ions into the system.Using piezoresponse force
microscopy (PFM) and optical second harmonic generation (SHG) they imaged the ferroelectric and
antiferromagnetic domain structures of doped ErMnO3 and found that the key parameters of themultiferroic
domain state, such as the formation of ferroelectric vortices and the pattern of antiferromagnetic domains, are
robust against the ionic alteration. This proves the usability of chemical doping for enhancing the functionality
of the geometricmultiferroic domain state in ErMnO3. The result gives great encouragement to other systematic
studies in thefield of domain boundary engineering andmaywell lead to the design of defect adjusted
multiferroics where the design functionalities lay in the domainwalls rather than in the bulk of thematerial.
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Figure 1.Domain glass state in LaAlO3. Local tweed structures are intermingledwith twin boundaries [9]. These structures are
generated at high temperatures when the domain structures are highlymobile and then quenched to room temperatures where they
remain frozen. The tweed structure is weakly polar.
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