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Recently we developed a nonlocal van der Waals density functional (VV09) that has

a simple and well-behaved analytic form. In this article, we report a self-consistent

implementation of VV09 with an atom-centered basis set. We compute binding

energies for a diverse benchmark set and find that VV09 performs well in combination

with Hartree-Fock exchange. We compare VV09 with its precursor, discuss likely

sources of inaccuracies in both models, and identify some aspects of the methodology

where further refinements are desirable.
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I. INTRODUCTION

Applications of the Kohn–Sham density functional theory (DFT)1 rely on approximations

to the exchange-correlation (xc) energy.2 Local and semilocal xc functionals dominate com-

putational materials science. For molecules, the most successful and popular xc models are

the so-called ‘hybrids’, where a fraction of exact (Hartree–Fock-like) exchange is admixed to a

semilocal xc functional.2 Despite the impressive performance for many physical and chemical

properties of molecules and dense materials, common xc functionals share some well-known

deficiencies, such as inability to properly describe dispersion interactions.3 Long-range cor-

relation effects that give rise to van der Waals attraction cannot in principle be captured

by semilocal correlation functionals. Reliable treatment of dispersion interactions requires

fully nonlocal correlation models. Nonlocality can be introduced via explicit dependence

on Kohn–Sham orbitals (both occupied and virtual), as exemplified by the random phase

approximation (RPA) and related methods.4–9 Recently, it has been demonstrated that it is

possible to describe the entire range of van der Waals interactions in a general and seam-

less fashion by a nonlocal correlation functional that depends only on the electron density

and includes no explicit orbital dependence.10–12 Van der Waals functionals of Refs. 10–12

allow for a self-consistent treatment13–16 of dispersion interactions. By contrast, practical

applications of RPA methods4–9 or force-field-like dispersion corrections17–20 are typically

performed in a post-self-consistent fashion, using electron densities produced by a semilocal

or a hybrid functional. Empirical dispersion-corrected atom-centered pseudopotentials21,22

produce some changes in electron densities, but it is unclear whether these changes have the

correct physical origin. Unlike most dispersion-corrected DFT techniques, RPA methods4–9

and nonlocal van der Waals functionals10–12 are truly seamless: they require neither splitting

the system into interacting fragments nor any kind of atomic partitioning. The nonlocal van

der Waals density functional of Ref. 12, denoted VV09, has a particularly simple analytic

form. In this article we explain how VV09 is implemented self-consistently with a Gaussian

basis set and show how the forces on nuclei are computed. We assess the performance of

VV09 in combination with several exchange functionals on a diverse test set. For the sake

of comparison, we also present the results obtained with another nonlocal van der Waals

density functional, vdW-DF-04 of Ref. 10, for the same test set.
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II. IMPLEMENTATION

Both vdW-DF-04 and VV09 were implemented self-consistently into the Q-Chem soft-

ware package.23 Our implementation of vdW-DF-04 was reported in Ref. 14. One important

improvement has been made since Ref. 14 was published: our code can now use different

numerical quadrature grids for the (semi)local and nonlocal parts of the xc functional. This

enables us to use a coarser grid for evaluating the nonlocal correlation component, thus

drastically reducing the computational cost without an appreciable loss in accuracy. Below

we describe our implementation of VV09.

Using atomic units (h̄ = e = m = 1), we rewrite Enl
c in a different (as compared to

Ref. 12) form that is more convenient for self-consistent implementation:

Enl
c =

1

2

∫
drW (r)

∫
dr′ W (r′)

D(K)Q6

ω0(r) + ω0(r′)
, (1)

with W = n/ω0, where n is the total electron density and ω0 =
√

ω2
p/3 + ω2

g . In the

latter expression we used the local plasma frequency, given by ω2
p = 4πn, and the local

band gap, defined as ω2
g = C|∇n/n|4, with C = 0.0089. Other quantities in Eq. (1) are

K = |r− r′|Q(r, r′) and

Q =
1

2

[
κ(r)κ(r′)

κ(r) + κ(r′)

]1/2
, (2)

where κ = 4(3n/π)1/3φ2, with the spin-scaling factor φ(ζ) = [(1 + ζ)2/3 + (1 − ζ)2/3]/2 for

the relative spin polarization ζ = (nα − nβ)/n. The function D(K) in Eq. (1) is defined as

D = B
(
2A− 3

2
B
)
, (3)

with A =
2√
π
e−K2

, and B =
erf(K)

K3
− A

K2
.

For small K, B can be replaced by its truncated Taylor series expansion. For large K,

D(K) → −3/(2K6) and thus D(K)Q6 → −3/(2|r − r′|6). Note that D(K) of Eq. (3) is

different from D(K) used in Ref. 12, hence the different typeface.

In terms of an atom-centered basis set {χµ(r)}, the electron spin-density is expressed as

nσ(r) =
∑
µν

P σ
µν χµ(r)χν(r), (4)

where P σ
µν are the density matrix elements and σ ∈ {α, β} labels the spin. For a self-

consistent implementation, we need to find the derivatives of Enl
c with respect to P σ

µν :

dEnl
c

dP σ
µν

=

∫
drχµ(r)

δEnl
c

δnσ(r)
χν(r). (5)
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To that end, we employ the standard formalism24 developed for semilocal xc functionals:

dEnl
c

dP σ
µν

=

∫
dr

[
F σ
nχµχν + 2Fγ∇n · ∇(

χµχν

)]
. (6)

The variable γ = |∇n|2 is used for convenience of implementation. Note that Enl
c depends

only on ∇n, but not on ∇nα and ∇nβ. F
σ
n and Fγ in Eq. (6) are computed as

Fγ(r) = −∂ω0

∂γ
(r)W (r)

[
1

ω0(r)

∫
dr′ U(r, r′)D(K) +

∫
dr′

U(r, r′)D(K)

ω0(r) + ω0(r′)

]
, (7)

and

F σ
n (r) =

1

ω0(r)

[
1− ∂ω0

∂n
(r)W (r)

]∫
dr′ U(r, r′)D(K)

− ∂ω0

∂n
(r)W (r)

∫
dr′

U(r, r′)D(K)

ω0(r) + ω0(r′)

+
∂κ

∂nσ

(r)
W (r)

κ2(r)

∫
dr′ U(r, r′)G(K)Q2. (8)

In Eqs. (7) and (8) we introduced two new quantities:

U(r, r′) =
W (r′)Q6

ω0(r) + ω0(r′)
, (9)

and

G = 8A(A−K2B). (10)

To within the numerical precision, G = 0 for K > 5.

Within a Gaussian basis set implementation, the gradient of Enl
c with respect to nuclear

displacements has three contributions:

∇AE
nl
c = gA

GBF + gA
weights + gA

grid. (11)

gA
GBF refers to the contribution of the Gaussian basis functions. This term can be evalu-

ated by plugging F σ
n and Fγ into Eq. (9) of Ref. 24 instead of ∂f/∂nσ and ∂f/∂γ.

The last two terms in Eq. (11) are due to the specifics of our numerical quadrature

integration technique. We use the atomic partitioning scheme developed by Becke,25 which

separates the molecular integral into atomic contributions:

Enl
c =

1

2

∑
A

∑
i∈A

wAiW (rAi)
∑
B

∑
j∈B

wBjU(rAi, rBj)D(K), (12)

where wAi and wBj are the quadrature weights, and the grid points rAi are given by rAi =

RA+ ri, where RA is the position of nucleus A, with the ri defining a one-center integration

4



grid. The quadrature weights depend on the nuclear configuration and hence have a nonzero

gradient with respect to nuclear displacements:

gA
weights =

∑
B

∑
i∈B

[∇AwBi

]
W (rBi)

∑
C

∑
j∈C

wCjU(rBi, rCj)D(K). (13)

The weight derivatives ∇AwBi can be found in Ref. 24.

The last term in Eq. (11) arises because each one-center quadrature grid moves together

with its parent nucleus and D(K) in Eq. (1) depends explicitly on the distance between the

grid points rij = |rAi − rBj|. The gA
grid term can be computed as:

gA
grid =

∑
i∈A

wAiW (rAi)
∑

B 6=A

∑
j∈B

wBjU(rAi, rBj)Q
2H(K)

(
rAi − rBj

)
, (14)

where

H =
G − 12D
2K2

. (15)

In Eq. (14), H and Q are implied to depend on both rAi and rBj. For small K, H can be

replaced by its truncated Taylor series expansion. For large K, H(K)Q8 → 9|r− r′|−8.

Availability of analytic forces enables us to perform structural optimizations efficiently.

We reported a few geometry optimization results in Ref. 12.

III. COMPUTATIONAL DETAILS

In VV09 as well as in vdW-DF-04, the total correlation energy is defined as ELDA
c +Enl

c ,

where LDA denotes the local density approximation of the correlation energy, for which we

use the parameterization of Perdew and Wang.26 There is some freedom in the choice of

the exchange component. However, those exchange functionals that predict binding in van

der Waals complexes are obviously unsuitable. vdW-DF-04 has been used predominantly

with revPBE exchange,27 although other choices of exchange components have recently been

explored.28 The Perdew–Wang 86 (PW86) exchange functional29 has been shown to describe

the repulsive parts of van der Waals potentials rather well,30,31 and a refit version of PW86

was recently proposed.31 We denote this ‘refit PW86’ simply as rPW86 here.

Unless otherwise noted, all reported calculations were performed self-consistently with

the aug-cc-pVTZ basis set. All interaction energies are counterpoise-corrected. We use

the unpruned Euler–Maclaurin–Lebedev (75,302) quadrature grid to evaluate ELDA
c and
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semilocal exchange, but we use a coarser SG-1 grid32 for Enl
c . This is well-justified because

Enl
c is much less sensitive to the fineness of the grid as compared to (semi)local functionals.

For the S22 test set, we use the geometries from Ref. 33 and the recently updated reference

values of binding energies from Ref. 34. The deviations of the computed binding energies

from the reference values34 are analyzed with the help of mean errors (ME), mean absolute

errors (MAE), and mean absolute percentage errors (MAPE). In all tables, binding energies

are reported as positive values. Hence a negative ME indicates underbinding while a positive

ME means overbinding. For the interaction energy curves of the methane dimer and the

benzene–methane complex, we use the same monomer geometries as in Ref. 35.

IV. TEST RESULTS

A. The S22 benchmark set

Binding energies for the S22 test set, computed with vdW-DF-04 and VV09 at the ge-

ometries of Ref. 33, are given in Table I. We tested vdW-DF-04 in combination with three

different exchange models — Hartree-Fock (HF), revPBE, and rPW86. VV09 was paired

with either HF or rPW86. The error statistics are summarized in Table II. Our revPBE-

vdW-DF-04 results are in good agreement with the ones reported in Ref. 28 for the same

test set. A number of other exchange functionals were tested in Ref. 28 for their suitability

to be paired with vdW-DF-04. Although revPBE is not the best performer in this regard,28

it has become the standard choice.36

For all the subsets in the S22 set, the largest errors by far are given by HF-vdW-DF-04.

This is consistent with previous observations that vdW-DF-04 is incompatible with exact

exchange.14,37 VV09 performs much better with HF exchange. In fact, as Table II shows,

HF-VV09 gives the smallest overall mean error for the entire S22 set among the tested

methods.

As the error statistics in Table II shows, HF-VV09 tends to overbind, while rPW86-VV09

tends to underbind. vdW-DF-04 overbinds all the systems in the S22 test set when paired

with HF or rPW86 exchange, but underbinds on average when paired with revPBE.

The subset of eight complexes with predominant dispersion contribution in Tables I and

II provides the most relevant benchmark, since vdW-DF-04 and VV09 are presented as van
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TABLE I. Counterpoise-corrected binding energies (in kcal/mol) for the S22 test set computed using

two van der Waals functionals combined with several exchange approximations. All calculations

were performed self-consistently with the aug-cc-pVTZ basis set. Molecular structures are from

Ref. 33 and reference binding energies are from Ref. 34.

vdW-DF-04 with VV09 with

Complex (symmetry) Ref. HF revPBE rPW86 HF rPW86

Complexes with predominant dispersion contribution (8)

CH4 dimer (D3d) 0.53 1.19 0.80 1.19 0.55 0.46

C2H4 dimer (D2d) 1.50 2.92 1.20 2.45 1.31 0.72

Benzene–CH4 (C3) 1.45 3.04 1.43 2.59 1.53 1.00

Benzene dimer (C2h)
a 2.62 5.42 2.09 4.80 3.52 2.73

Pyrazine dimer (Cs) 4.20 7.23 3.13 6.10 5.10 3.74

Uracil dimer (C2)b 9.74 15.70 8.51 12.76 13.02 9.68

Indole–Benzene (C1)b 4.59 8.16 3.08 6.95 6.11 4.66

Adenine–Thymine (C1)b 11.66 18.74 8.67 14.59 15.90 11.33

Mixed complexes (7)

C2H4–C2H2 (C2v) 1.51 2.38 1.49 2.10 1.60 1.25

Benzene–H2O (Cs) 3.29 4.91 2.59 3.89 3.44 2.24

Benzene–NH3 (Cs) 2.32 3.79 1.91 3.12 2.40 1.58

Benzene–HCN (Cs) 4.55 7.14 3.37 4.83 5.22 2.85

Benzene dimer (C2v)c 2.71 4.75 2.04 3.71 3.17 2.01

Indole–Benzene (C1)c 5.62 8.32 4.21 6.42 6.25 4.16

Phenol dimer (C1) 7.09 9.80 5.23 8.07 7.69 5.66

Hydrogen bonded complexes (7)

NH3 dimer (C2h) 3.17 3.84 2.42 3.63 2.65 2.29

H2O dimer (Cs) 5.02 6.08 3.97 5.44 4.84 3.98

Formic acid dimer (C2h) 18.80 24.09 15.28 18.85 20.71 14.99

Formamide dimer (C2h) 16.12 19.87 12.95 16.30 17.01 13.09

Uracil dimer (C2h)
d 20.69 25.26 17.44 20.95 22.43 17.77

2-Pyridoxine–2-Aminopyridine (C1) 17.00 19.83 14.35 17.67 17.08 14.58

Adenine–Thymine WC (C1)d 16.74 19.96 13.62 17.18 17.28 14.13

a ‘Parallel-displaced’ configuration.
b Stacked configuration.
c T-shaped configuration.
d Planar configuration.

der Waals density functionals. For this subset, rPW86-VV09 yields the lowest mean errors.

vdW-DF-04 gives unacceptably large errors (MAPE higher than 60%) for this subset if used

with HF or rPW86. At equilibrium intermonomer separations (sampled by the S22 set),

revPBE exchange is on average more repulsive than HF or rPW86. For that reason, revPBE

is a fairly good match for vdW-DF-04, as far as dispersion-bound systems are concerned.
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TABLE II. Summary of deviations from the reference values of the binding energies reported in

Table I. ME and MAE are in kcal/mol, MAPE is in percents.

vdW-DF-04 with VV09 with

HF revPBE rPW86 HF rPW86

Complexes with predominant dispersion contribution (8)

ME 3.26 −0.92 1.89 1.34 −0.25

MAE 3.26 0.99 1.89 1.39 0.29

MAPE 88.5 23.5 62.9 22.6 14.6

Mixed complexes (7)

ME 2.00 −0.89 0.72 0.38 −1.05

MAE 2.00 0.89 0.72 0.38 1.05

MAPE 55.6 20.3 23.3 9.3 27.2

Hydrogen bonded complexes (7)

ME 3.06 −2.50 0.35 0.64 −2.39

MAE 3.06 2.50 0.35 0.84 2.39

MAPE 21.7 19.0 4.6 6.8 18.8

Total (22)

ME 2.80 −1.41 1.03 0.81 −1.18

MAE 2.80 1.44 1.03 0.89 1.20

MAPE 56.7 21.1 31.8 13.4 20.0

For molecular complexes bound exclusively by van der Waals interactions, HF exchange

should provide an adequate representation of the repulsive wall (‘Pauli repulsion’). In-

teraction energies should therefore be reasonably well represented by the combination of

Hartree-Fock with a dispersion energy model. As we pointed out above, HF-vdW-DF-04

severely overestimates binding energies. Although HF-VV09 is a big improvement, it still

tends to overbind van der Waals complexes. These observations call for an explanation. The

total correlation energy in both models is expressed as ELDA
c + Enl

c . Could the inclusion of

ELDA
c be the reason for overbinding? In Table III we show the results for the subset of eight

dispersion-bound complexes obtained using HF paired with Enl
c and omitting ELDA

c . We see
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TABLE III. Binding energies (in kcal/mol) for the dispersion-bound subset of the S22 set computed

using Hartree-Fock paired with nonlocal parts of two van der Waals functionals. LDA contributions

were subtracted from the values given in Table I, keeping the electron densities unchanged.

Complex (symmetry) Ref. HF-vdW-DF(nl) HF-VV09(nl)

CH4 dimer (D3d) 0.53 1.04 0.36

C2H4 dimer (D2d) 1.50 2.37 0.70

Benzene–CH4 (C3) 1.45 2.50 0.93

Benzene dimer (C2h) 2.62 4.15 2.14

Pyrazine dimer (Cs) 4.20 5.75 3.50

Uracil dimer (C2) 9.74 13.89 11.09

Indole–Benzene (C1) 4.59 6.40 4.24

Adenine–Thymine (C1) 11.66 16.16 13.21

ME 2.00 −0.01

MAE 2.00 0.74

MAPE (%) 55.3 23.8

that removal of LDA correlation significantly decreases binding energies. In other words,

ELDA
c contributes a sizable portion of attractive interactions at equilibrium intermonomer

separations. As Table III shows, even with LDA contributions excluded, HF-vdW-DF-04

still strongly overbinds in every case. This indicates that the nonlocal vdW-DF-04 func-

tional overestimates dispersion interactions at equilibrium distances. By contrast, Table III

shows that removing ELDA
c from HF-VV09 reduces MAE by the factor of two and brings

ME close to zero.

B. Interaction energy curves

The binding energies for the S22 set, reported above, were computed at the accurate equi-

librium geometries33 of the complexes to facilitate direct comparisons to other benchmark

calculations in the literature, performed at the same geometries. For two systems in the

S22 set — the methane dimer and the benzene–methane complex — we also computed the

interaction energies for a range of intermonomer separations and compared these interaction
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FIG. 1. Interaction energy curves for the methane dimer. R denotes the C–C distance. Accurate

results from Ref. 35 compared to (a) VV09 and (b) vdW-DF-04 with two different exchange models.
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FIG. 2. Interaction energy curves for the benzene–methane complex. R is the distance between

the centers of mass of the monomers. Accurate results from Ref. 35 compared to (a) VV09 and

(b) vdW-DF-04 with two different exchange models.

energy curves to the accurate reference data from Ref. 35. We used the same fixed monomer

geometries as in Ref. 35 and applied counterpoise corrections at every point.
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For the methane dimer (Fig. 1) as well as for the benzene–methane complex (Fig. 2),

both HF-VV09 and rPW86-VV09 give reasonable well-depth energies (De) but somewhat

overestimated equilibrium intermonomer separations. vdW-DF-04 strongly overbinds both

of these systems at all separations whether used with HF or with rPW86. The interaction

energy curve for the benzene–methane complex computed with revPBE-vdW-DF-04 can be

found in Ref. 38.

When the separation R is so large that the density overlap is negligible, the contribution

of ELDA
c is very small and nearly all of the interaction energy is due to Enl

c . As Figures 1

and 2 show, both VV09 and vdW-DF-04 overestimate the interaction strength at large R in

both of the systems, but the overestimation is more severe in vdW-DF-04. For instance, in

the methane dimer at R = 5.8 Å, the accurate35 binding energy is 0.050 kcal/mol, HF-VV09

gives 0.064, while HF-vdW-DF-04 yields 0.109 kcal/mol.

V. CONCLUSIONS

The nonlocal van der Waals functional VV09 has been implemented self-consistently and

benchmarked, in comparison to vdW-DF-04, on the popular S22 test set of weakly bound

complexes. Using several exchange models, we computed the binding energies for the S22

set at the reference geometries33 and also calculated full interaction energy curves for two

complexes. We find that VV09 performs reasonably well with HF exchange: among the

methods considered in this study, HF-VV09 yields the smallest overall mean error for the

entire S22 set. For the subset of dispersion-bound complexes, rPW86-VV09 is the best-

performing combination. We confirm that vdW-DF-04 is incompatible with HF exchange:

this combination severely overestimates the interaction energies for all the systems consid-

ered in this study. The standard choice of pairing vdW-DF-04 with revPBE yields more

reasonable accuracy. As shown in Ref. 28, the performance can be further improved by

tailoring an exchange functional specially fitted to be used alongside vdW-DF-04. In this

work, we tested only pre-existing exchange functionals that were not adjusted for our specific

purpose.

Fine-tuning the exchange component may not resolve all the imperfections of our method-

ology. The correlation energy functional itself may require further refinement. In the de-

velopment of nonlocal van der Waals functionals, insufficient attention has been paid to the
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balance of attractive contributions from the local and nonlocal correlation components at

short range. The requirement that Enl
c vanish in the uniform density limit prevents double

counting, but does not guarantee good performance when Enl
c is paired with ELDA

c . LDA cor-

relation contributes significantly to binding energies of van der Waals complexes. At present,

it is not clear whether (and to what degree) these contributions are valid or spurious.
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