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In this paper we study resource allocation problems that involve multiple self-interested parties or players,
and a central decision maker. We introduce and study the price of fairness, which is the relative system
efficiency loss under a “fair” allocation assuming that a fully efficient allocation is one that maximizes the sum
of player utilities. We focus on two well accepted, axiomatically justified notions of fairness, viz. proportional
fairness and max-min fairness. For these notions we provide a tight characterization of the price of fairness
for a broad family of problems.
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1. Introduction

In this paper we study the problem faced by a central decision maker of allocating a set of scarce
resources among multiple self-interested parties or players. A solution that maximizes the sum of
utilities of all the players might not be implementable, as some of the parties might consider it
“unfair” in the sense that such a solution is achieved at the expense of some players. In many
environments fairness might be more important than optimality. The overall objective of the paper
is to study what we call “the price of fairness”, that is the relative system efficiency loss under a
“fair” allocation compared to the one that maximizes the sum of player utilities.

To concretely motivate the need for our study, let us consider the U.S. Federal Aviation Admin-
istration (FAA). The FAA is responsible for an important scheduling problem: it must generate
precise schedules that determine not just when a particular flight might take off and land, but
also what regions of U.S. airspace it might occupy over any given interval during its duration.
The FAA must produce such a schedule for all flights and must dynamically adjust this schedule
over the course of a given day to respond to unpredictable events, e.g., inclement weather. Such
a schedule allocates scarce resources, such as take-off and landing “slots” at airports, in a manner
that respects flight plans. When a schedule must be recomputed due to an unforeseen event, this
translates to ground and air-holding delays for flights. Since the estimated cost of such delays is
very high (in the twelve-month period ending September 2008, 138 million system delay minutes
drove an estimated USD 10 billion in direct operating costs for scheduled U.S. passenger airlines,
see ATA (2008)), the importance of arriving at an effective schedule is apparent.

What do we mean by an effective schedule? Since delays (either on the ground or in the air)
have well accepted dollar values, one natural notion of “effective” is a schedule that minimizes
the total cost of delay to the airline industry. In fact, there is an extant body of research devoted
to formulating and solving precisely this problem (see Odoni and Bianco (1987), Bertsimas and
Stock-Patterson (1998), Bertsimas and Stock-Patterson (2000), Lulli and Odoni (2007)). While
this work points at the possibility of dramatically reducing delay costs to the airline industry vis-
a-vis current practice, the vast majority of these proposals remain un-implemented. The ostensible
reason for this is fairness: the notion of equity is absent from consideration in the aforementioned
proposals and while some of the stakeholders (namely, some airlines) clearly stand to gain from an
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implementation of these proposals, other airlines might actually lose relative to the status quo. This
apparent impasse, wherein a socially efficient solution, i.e., one that maximizes the sum of utilities
of individual players, is difficult to implement because it may be perceived as unfair to some of the
stake-holders involved, is hardly unique to the air-traffic scheduling problem above. Indeed, issues
of this sort arise in diverse scenarios ranging from the allocation of bandwidth in a communication
network (see Bertsekas and Gallager (1987)) to the allocation of transaction costs among portfolios
when a firm executes a large trade on behalf of multiple interested parties (see Fabozzi et al. (2007)).
A great deal of thought has been invested in understanding, and axiomatically characterizing, what
might constitute a “fair” allocation of resources. However, beyond qualitative economic analysis and
with the exception of a handful of very special problems, there has been little work to quantitatively
characterizing the tradeoffs inherent in employing these notions.

The present paper considers two axiomatically justified and well accepted notions of fairness
in the context of general resource allocation problems whose solutions impact multiple players.
We formulate the qualitative question on the price of fairness alluded to thus far, quantitatively:
We take as our notion of socially optimal or efficient, an allocation that maximizes the natural
utilitarian criterion (the sum of the utilities of individual players). We then define the price of
fairness as the performance loss incurred relative to this criterion, in making allocations under
either of the following fairness criteria: max-min fairness, and proportional fairness. We make
the following contributions in regard to characterizing the price of fairness for general resource
allocation problems:

1. We present bounds on the price of fairness for both max-min and proportional fairness that
depend on a single parameter – the number of players. Our bounds are otherwise uniform over a
broad class of resource allocation problems, namely, problems where the set of utilities individual
players can simultaneously achieve is convex and compact.

2. Our bounds illustrate that a) The price of fairness as a function of the number of players is
substantially smaller than a crude analysis might suggest, especially when the number of players is
small and b) The price of proportional fairness is substantially smaller than the price of max-min
fairness, especially when the number of players is large.

3. We show that our bounds on the price of fairness are tight ; we do so by evaluating the price of
fairness for examples of a well studied bandwidth allocation problem that arises in communication
networks. These examples are by no means pathological. Further, we show that the class of resource
allocation problems addressed by our bounds is, in a certain sense, the broadest class of problems
we may hope to consider; the price of fairness for problems outside this class can be arbitrarily
large.

To the best of our knowledge, the analysis undertaken here is the first of its kind. Our hope
is that this analysis contributes to elucidating the precise tradeoffs one must make in allocating
resources according to egalitarian criteria.

1.1. Relevant Literature

Applications: The importance of fairness issues in resource allocation problems has been rec-
ognized and well studied in a variety of settings. These range from engineering applications in
communication networks (Bertsekas and Gallager (1987), Kelly et al. (1997), Luo et al. (2004), Luss
(1999), Ogryczak et al. (2005), Radunovic and Boudec (2002), Radunovic and Boudec (2004)), the
Air Traffic Flow Management problem (Bertsimas and Gupta (2010), Bertsimas et al. (2009a), Rios
and Ross (2007), Soomer and Koole (2009), Vossen et al. (2003)), to financial applications and the
multi-account optimization problem (Bertsimas et al. (2009b), Khodadadi et al. (2006), O’Cinneide
et al. (2006)). In the communication network setting, where one must allocate bandwidth to flows
in a network, a scheme that chooses to maximize throughput without regard to treating individual
flows equitably is regarded as fully “efficient”, and several studies address the efficiency loss due
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to the incorporation of fairness considerations. These studies are typically numerical and focus
on providing qualitative insights via studies of specific network topologies. Bonald and Massoulié
(2001) introduce a number of network configurations where it is possible to derive performance
results for proportional fairness, yet use simulation to assess max-min fairness. Radunovic and
Boudec (2004) show that max-min fairness results in severe inefficiency for wireless networks in
a limiting regime, and use numerical studies to validate that observation for practical situations.
The impact of the fairness criteria utilized on the price of fairness has also received some attention:
Mo and Walrand (2000) deal with this issue by studying a one parameter family of objectives
that include both max-min fairness and proportional fairness as special cases. Our results imply
a tight theoretical analysis of the loss in efficiency inherent in fair allocations of bandwidth in a
communication network.
Worst Case Analysis & Approximation Algorithms: In recent work, Chakrabarty et al.
(2009) seek to characterize what we refer to as the price of fairness for a specific class of resource
allocation problems. In particular, that work shows that when the set of achievable “utilities” is
a polymatroid, all Pareto resource allocations are efficient. This is, unfortunately, a somewhat
restrictive condition and a general class of resource allocation problems that satisfy this condition
is not known. In a similar vain, Butler and Williams (2002) show that the price of fairness is zero
for a specialized facility location problem. Several pieces of work in the approximation algorithms
literature have considered computing “approximately” fair solutions. Such work is motivated either
by problems where fair solutions are difficult to compute, or else by the desire to simultaneously
optimize several different objectives. For instance, Kleinberg et al. (1999) focus on the problem of
approximating the max-min fair solution for routing and load balancing problems where the exact
fair solution is hard to calculate. On the simultaneous optimization front, Kumar and Kleinberg
(2000) discuss the existence of global c-approximation vectors (which are coordinate wise within
a multiplicative factor of c of every other allocation) for bandwidth allocation, scheduling and
facility location problems; the relevant value of c in each case is a function of problem primitives.
The results of Goel et al. (2000) and Goel and Meyerson (2006) establish the existence of resource
allocations that are simultaneously within a multiplicative factor of α for essentially all “fair”
allocation criteria for general resource allocation problems of the type studied here; the authors
show that α is logarithmic in the price of max-min fairness.

Commonly used notions of fairness, such as max-min fairness and proportional fairness arise
from an appealing (and long standing) axiomatic characterization of what it means to be fair and
an analogous characterization for “approximately” fair solutions is not available. It is thus difficult
to judge what fairness properties (if any) such approximately fair solutions inherit. As an example,
it is easily shown that by averaging the proportional fairness, max-min fairness, and utilitarian
solutions to a resource allocation problem, one arrives at an allocation that is simultaneously within
a multiplicative factor of 3 of the optimal solution for each those criteria for the class of resource
allocation problems we consider; such a solution would be considered approximately fair in the
aforementioned work but may not be Pareto. Seen in this light, our work studies the tradeoffs
inherent in choosing a fair allocation as opposed to an approximation thereof.
Price of Anarchy: While in this work we assume that the utilities of the players are known
and study the inefficiency that fairness constraints result in, another source of inefficiency could
be the selfish behavior of players who do not truthfully reveal their utilities. The effect of selfish
behavior has been studied as the price of anarchy in the literature. See Johari and Tsitsiklis (2004),
Koutsoupias and Papadimitriou (1999), Papadimitriou (2001), Perakis (2007), Roughgarden and
Tardos (2002) for more details.
Economic Theory: While we defer a thorough review of the literature in this area to Section 3,
we mention for now that the question of what it means to be fair has been addressed extensively in
the economics literature over the last century. In particular, see Young (1995) and Sen and Foster
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(1997) for a thorough overview of this work. Fairness also plays a critical role in the selection of an
appropriate social welfare function in welfare economics (see Mas-Colell et al. (1995)). The notions
of fairness we focus on in this work are perhaps among the most prominently studied notions of
fairness in the economics literature; for fundamental axiomatic characterizations of proportional
and max-min fairness see Nash (1950) and Kalai and Smorodinsky (1975) respectively.

The structure of this paper is as follows. In Section 2, we introduce notation, focus on the socially
optimal (taken as the sum of the utilities) and the fair allocations, and define the price of fairness.
A general discussion on fairness schemes is included in Section 3. The main results of the paper
are presented in Section 4, with illustrative examples given in Section 5. We conclude and point
out interesting directions of future work in Section 6.

2. Problem Formulation

Consider a resource allocation problem involving n players and a central decision maker (CDM).
There are some scarce resources that need to be allocated among the players by the CDM. Accord-
ing to her own preferences, each player derives a utility that depends on the allocation picked by
the CDM. The preferences of each player are described by a utility function, which maps a feasible
allocation into a utility level. We focus on problems where the CDM has complete knowledge of
the preferences and possible constraints of the players, and has absolute control of the allocation
decision.

To fix some notation, let X ⊂ R
m be the resource set, i.e., the set of all feasible allocations of

resources. An element x ∈ X specifies a feasible allocation of resources among the players (e.g., x
might be the concatenation of n k-dimensional vectors that describe the quantities of k different
resources allocated to each of n players; in this case m = nk). Note that the resource set also incor-
porates all constraints on allocations such as resource capacity constraints, individual limitations
of the players or the central decision maker, etc. With the jth player, we associate a utility function
fj : X →R+, for every j = 1, . . . , n. If the CDM picks allocation x, the jth player derives a utility
of fj(x). Finally, let U be the utility set, that is the set of all achievable utility allocations, or
distributions:

U =
{

u∈R
n
+

∣

∣∃x∈X : fj(x) = uj , ∀j = 1, . . . , n
}

.

Example 1. As a concrete example, consider two resources, denoted by A and B, being allocated
among two players, denoted by 1 and 2 (i.e., in this case n = 2). Let xA1 and xA2 be the fractions of
the available resource A allocated to players 1 and 2 respectively; xB1 and xB2 are defined similarly.
The resource set is then

X =
{

[

xA1 xB1 xA2 xB2

]T ∈R
4
+

∣

∣

∣
xA1 +xA2 ≤ 1, xB1 +xB2 ≤ 1

}

,

with m = 4. Assume that the utility derived by each player is equal to the square-root of the sum
of the fractions of each resource allocated to him (i.e., fj(x) =

√
xAj +xBj for j = 1,2). The utility

set in this case is thus

U =
{

[√
xA1 +xB1

√
xA2 +xB2

]T
∣

∣

∣
x∈X

}

=
{

[

u1 u2

]T ∈R
2
+

∣

∣

∣
u2

1 +u2
2 ≤ 2

}

.

Returning to our general formulation, the CDM’s problem is to decide on a utility allocation
among the players, u∈U . A good bit of research, notably in welfare economics, has dealt with the
identification of the appropriate criteria that the CDM needs to take into account in order to make
a decision (see Mas-Colell et al. (1995)). We next discuss the utilitarian criterion and fair criteria
for such allocations.
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2.1. Utilitarian solution

Under the classical utilitarian principle, the central decision maker picks an allocation that maxi-
mizes the sum of the utilities of the players. That is, the CDM decides on the allocation by solving
the problem

maximize eT u
subject to u∈U,

with variable u∈R
n, where e is the vector of all ones. We denote the optimal value of this problem

with SYSTEM(U), i.e.,
SYSTEM(U) = sup

{

eT u
∣

∣u∈U
}

.

The resulting allocation is then the utilitarian solution. It is referred to also as the Bentham-
Edgeworth solution in welfare economics, as the system optimum solution in engineering applica-
tions and as the best effort solution in telecommunications.

The utilitarian solution is a natural choice in applications where the sum of the utilities cor-
responds to some measure of system efficiency. For example, consider a communications network
where a service provider controls the transmission rates allocated to clients, subject to capacity
constraints. The service provider plays the role of the CDM, and the clients are the players in our
setting. In case the utility that each player derives is equal to his transmission rate, the sum of the
utilities corresponds to the total throughput of the network.

On the other hand, the sum of utilities is neutral towards potential inequalites in the utility
distribution among the players. It is therefore possible that the utilitarian solution is achieved at
the expense of some players.

2.2. Fair solutions

Alternatively to classical utilitarianism, the central decision maker might decide on the utility
allocation incorporating fairness considerations. Depending on the nature of the problem and her
own perception about fairness, the CDM picks a fairness scheme of her preference, that is, a set of
rules or properties (e.g., total equity, under which every player derives exactly the same utility).
The selected allocation then needs to be compatible with the fairness scheme.

To make this more precise, we model a fairness scheme as a set of rules and a corresponding set

function S : 2R
n

+ → R
n
+, that takes a utility set as an input, and maps it into an element of the

utility set. Given a utility set U , S(U) ∈ U is then an allocation that abides to the set of rules of
the fairness scheme in consideration.

By imposing a specific fairness scheme and deciding on a fair allocation, the sum of utilities in
the system might, and in most cases will, decrease compared to the utilitarian solution. In case
the sum of utilities corresponds to an efficiency measure of the system, fairness constraints might
impose then a performance or efficiency loss. Let FAIR(U ;S) denote the sum of utilities under the
fair allocation imposed by a fairness scheme S, i.e.,

FAIR(U ;S) = eTS(U).

We define the price of fairness, denoted by POF(U ;S), for the problem involving the utility set
U and the fairness scheme S, to be the relative reduction in the sum of utilities under the fair
solution S(U), compared to the utilitarian solution, i.e.,

POF(U ;S) =
SYSTEM(U)−FAIR(U ;S)

SYSTEM(U)
.

Note that the price of fairness is a number between zero and one, since the sum of utilities under the
utilitarian solution attains its maximum value. When the sum of utilities is an efficiency measure,
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values closer to zero are preferable for the price of fairness, since the CDM can then combine high
system efficiency and fairness.

The scope of this work is to quantify the price of fairness for a large family of problems. We first
discuss fairness schemes in the next section, review the two most prominent schemes, proportional
and max-min fairness, and then present our main results.

3. Fairness Schemes

Fairness in allocation problems has been extensively studied through the years in many areas,
notably in social sciences, welfare economics and engineering. A plethora of fairness criteria have
been proposed. Due to multiple (subjective) interpretations of the concepts of fairness, and the dif-
ferent characteristics of allocation problems, there is no single principle that is universally accepted.
Nevertheless, there are general theories of justice and equity that figure prominently in the litera-
ture, on which most fairness schemes are based. Moreover, there has been a body of literature that
deals with axiomatic foundations of the concepts of fairness. In this section, we briefly review the
most important theories and axioms, and then focus on proportional and max-min fairness, the
two criteria that emerge from the axiomatic foundations and are also widely used in practice. For
more details, see Young (1995) and Sen and Foster (1997).

Among the most prominent, the oldest theory of justice is Aristotle’s equity principle, according
to which, resources should be allocated in proportion to some pre-existing claims, or rights to the
resources that each player has. Another theory, widely considered in economics in the 19th century,
is classical utilitarianism, which dictates an allocation of resources that maximizes the sum of
utilities (see Section 2.1). A third approach is due to Rawls (1971). The key idea of Rawlsian justice
is to give priority to the players that are the least well off, so as to guarantee the highest minimum
utility level that every player derives. Finally, Nash introduced the Nash standard of comparison,
which is the percentage change in a player’s utility when he receives a small additional amount of
the resources. A transfer of resources between two players is then justified, if the gainer’s utility
increases by a larger percentage than the loser’s utility decreases.

Aristotle’s equity principle is used in the majority of cases where players have specific pre-existing
claims or rights to the resources (for example, split of profits among shareholders). In this work,
we do not deal with such cases, hence the Aristotelian principle does not apply. The utilitarian
principle has been criticized (see Young (1995)) since it is not clear that it is ethically sound: in
maximizing the sum of utilities, the utility of some players might be greatly reduced in order to
confer a benefit to the system. Finally, the two schemes that we will focus on are based on the
Rawlsian justice and the Nash standard, which are in line with the common perception of equity
and fairness.

In addition to using theories of justice and common perception, researchers have also established
sets of axioms that a fairness scheme should ideally satisfy. The main work in this area is within
the literature of fair bargains in economics (see Young (1995) and references therein). We now
briefly present the most well studied set of axioms in the case of a two-player problem (n = 2). In
the axioms that follow, we denote the utility set U and define the maximum achievable utility of
the jth player, u?

j , according to

u?
j = sup{uj |u∈U} .

We utilize the notation a≥ b for a, b∈R
n to denote ai ≥ bi, i = 1, . . . , n. Furthermore, if g : Rn →R

n

is an operator and A⊂R
n is a set, then g(A) = {g(x) |x∈A} ⊂R

n.

Axiom 1 (Pareto Optimality) The fair solution S(U) is Pareto optimal, that is, there does not
exist an allocation u∈U , such that u≥S(U) and u 6= S(U).
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Axiom 2 (Symmetry) If I : R2 →R
2 is a permutation operator defined by I ((u1, u2)) = (u2, u1),

then the fair allocation under the permuted system, S (I(U)), is equal to the permutation of the
fair allocation under the original system, I (S(U)). That is, S (I(U)) = I (S(U)).

Axiom 3 (Affine invariance) If A : R
2 → R

2 is an affine operator defined by A(u1, u2) =
(A1(u1),A2(u2)), with Ai(u) = ciu+di and ci > 0, then the fair allocation under the affinely trans-
formed system, S (A(U)), is equal to the affine transformation of the fair allocation under the
original system, A (S(U)). That is, S (A(U)) = A (S(U)).

Axiom 4 (Independence of irrelevant alternatives) If U and W are two utility sets such that
U ⊂W , and S(W )∈U , then S(U) = S(W ).

Axiom 5 (Monotonicity) Let U and W be two utility sets, under which the maximum achievable
utility of player 1 is equal, i.e., u?

1 = w?
1. If for every utility level that player 1 may demand, the

maximum achievable utility that player 2 can derive simultaneously, is bigger or equal under W ,
then the utility level of player 2 under the fair allocation should also be bigger or equal under W ,
i.e., S(U)2 ≤S(W )2.

Pareto optimality ensures that there is no wastage. By symmetry, the central decision maker
does not differentiate the players by their names. The affine invariance requirement means that
the scheme is invariant to a choice of numeraire. According to the independence of irrelevant
alternatives, preferring option A over option B is independent of other available options. Finally,
by monotonicity, if for every utility level that player 1 may demand, the maximum utility level that
player 2 can simultaneously derive is increased, then the utility level assigned to player 2 under
the fair scheme should also be increased. For a more detailed discussion about monotonicity, see
Kalai and Smorodinsky (1975).

The main result in this area is that, under mild assumptions on the utility set, there does not
exist a scheme that satisfies all axioms; see Nash (1950) and Kalai and Smorodinsky (1975) for
more details. Moreover, the unique scheme that satisfies Axioms 1-4 is the Nash solution; the
unique scheme that satisfies Axioms 1-3, and 5 is the Kalai-Smorodinsky solution. Proportional
and max-min fairness are direct generalizations of those schemes, and are studied next.

3.1. Proportional Fairness

Proportional fairness (PF) is the generalization of the Nash solution for a two-player problem. The
Nash solution is the unique scheme that satisfies Axioms 1-4, and is based on the Nash standard of
comparison. Under the Nash standard, a transfer of resources between two players is favorable and
fair if the percentage increase in the utility of one player is larger than the percentage decrease in
utility of the other player. Proportional fairness is the generalized Nash solution for multiple players.
In that setting, the fair allocation should be such that, if compared to any other feasible allocation
of utilities, the aggregate proportional change is less than or equal to zero. In mathematical terms,

n
∑

j=1

uj −SPF(U)j

SPF(U)j

≤ 0, ∀u∈U.

In case U is convex, the fair allocation under proportional fairness SPF(U) can be obtained as
the (unique) optimal solution of the problem

maximize
n
∑

j=1

loguj

subject to u∈U,
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since the necessary and sufficient first order optimality condition for this problem is exactly the
Nash standard of comparison principle for n players. Moreover, note that the proportionally fair
allocation SPF(U), can also be obtained by (equivalently) maximizing the product of the utilities
over U . This suggests that proportional fairness yields a Pareto optimal allocation and is also
scale-invariant. In particular, we use the notation Σ = diag(σ1, . . . , σn) to denote a diagonal matrix
with entries σ1, . . . , σn in the diagonal. We define the scaled utility set ΣU , with σj > 0 for all
j = 1, . . . , n, as

ΣU = {Σu |u∈U} .

Then,

SPF (ΣU) = ΣSPF(U), (1)

that is, the fair allocation under the scaled utility set, SPF (ΣU), is equal to the scaled fair allocation
under the original utility set, ΣSPF(U).

Proportional fairness has been extensively studied and used in the areas of telecommunications
and networks, especially after the paper of Kelly et al. (1997).

3.2. Max-Min Fairness

Max-min fairness (MMF) is a generalization of the Rawlsian justice and the Kalai-Smorodinsky
(KS) solution in the two-player problem. The KS solution is the unique solution that satisfies
Axioms 1-3, and 5. In settings where the maximum achievable utility levels of the two players
are equal, the KS solution corresponds to maximizing the minimum utility the players derive
simultaneously. Otherwise, the central decision maker decides on the allocation in the same way,
but by considering a scaled, normalized system, under which the players have equal maximum
achievable utility levels. In other words, under the KS solution the players simultaneously derive the
largest possible equal fraction of their respective maximum achievable utilities. For simplicity, for
the rest of this section, we deal with normalized problems where the players have equal maximum
achievable utilities.

In a setting that involves more than two players, such an allocation may not be Pareto optimal,
thus indicating a waste of resources. That can happen for instance in case there exist players that
can derive higher utility levels without affecting the others, and their allocated resources are not
optimized. Max-min fairness generalizes the above criteria to account for this potential loss of
efficiency, and always yields Pareto optimal allocations.

Under max-min fairness, the central decision maker tries at the first step to maximize the lowest
utility level among all the players. After ensuring that all players derive (at least) that level, the
second lowest utility level among the players is maximized, and so on. The resulting allocation yields
a distribution of utility levels among the players that has the following property: the distribution
of the utility levels of any other allocation that achieves a strictly higher utility for a specific level,
is such that there exists a lower level of utility that has been strictly decreased. In other words,
any other allocation can only benefit the rich at the expense of the poor (in terms of utility).

Intuitively, max-min fairness maximizes the minimum utility that all players derive. In situations
where an efficient allocation exists that results in equal utility for all players, MMF converges to
this equitable allocation. In cases where some players can achieve higher utility levels, without
depriving others of the minimum utility performance, MMF equitably and efficiently allows them
to increase their utility, in a similar fashion, by maximizing a new minimum utility level that all
improving players derive.

In mathematical terms, let T : Rn →R
n be the sorting operator, that is

T (y) =
(

y(1), . . . , y(n)

)

, y(1) ≤ . . .≤ y(n),
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where y(i) is the ith smallest element of y. We say that a ∈ R
n is lexicographically larger than

b∈R
n and write symbolically a�lex b, if there exists an index k ≤ n, such that ai = bi, ∀ i < k, and

ak > bk. Also, we write a�lex b if a�lex b or a = b. The max-min fairness scheme then corresponds
to lexicographically maximizing T (u) over U , that is, finding an allocation uMMF ∈ U such that
its resulting sorted utility distribution is lexicographically largest among all sorted feasible utility
distributions. We then have

T (uMMF)�lex T (u), ∀u∈U.

The existence of a max-min fair allocation is guaranteed under mild conditions (e.g., if U is
compact), and the Pareto optimality of the allocation follows by its construction, see Radunovic
and Boudec (2002) for more details. Efficient algorithms for computing an MMF allocation have
also been developed and studied in the literature. The computations involve a sequential optimiza-
tion procedure, that identifies the corresponding utility levels at each step. For more details, see
Ogryczak et al. (2005).

Since the max-min fairness scheme deals with normalized utilities, it is also scale-invariant, hence
if Σ = diag(σ1, . . . , σn), with σj > 0 for all j = 1, . . . , n, then

SMMF (ΣU) = ΣSMMF(U), (2)

that is, the fair allocation under the scaled system, SMMF (ΣU), is equal to the scaled fair allocation
under the original system, ΣSMMF(U).

Max-min fairness was first implemented in networking and telecommunications applications and
has also initiated a lot of research in this area (see Bertsekas and Gallager (1987), Bonald and
Massoulié (2001), Luss (1999)). It has many applications in bandwidth allocation, routing and
load balancing problems, as well as in general resource allocation or multiobjective optimization
problems.

4. The Price of Fairness

In this section, we present the main results of this paper, namely upper bounds for the price of
fairness, under the proportional and the max-min fairness schemes, which depend only on the
number of players, and their maximum achievable utilities (in case they are not equal).

Consider a resource allocation problem faced by a central decision maker as described in Section
2. We make the following assumption:

Assumption 1. The utility set is compact and convex.

Assumption 1 is very common in the literature of fair bargains. Compactness follows from bounded
and continuous utility functions and a compact resource set. Convexity arises in cases of a random-
ization mechanism that may be employed, especially if the resources are indivisible, with the utility
levels then corresponding to the expected utilities levels derived (see Young (1995)). Furthermore,
convexity also follows in many cases where the utility functions are concave and non-decreasing.
The following proposition suggests a rich family of problems that fits into this framework.

Proposition 1. Let the resource set X ⊂ R
m
+ be compact, convex and monotone (a set A ⊂ R

m
+

is called monotone if {b∈R
m |0≤ b≤ a} ⊂A, ∀a∈A). Suppose that the utility function of the jth

player is such that fj(x) = f̄j(xj), for all x ∈ X, with f̄j : Rmj → R, and xT =
[

xT
1 xT

2 . . . xT
n

]

,
where m1 + . . . + mn = m. Moreover, f̄j is non-decreasing in each argument, concave, bounded
and continuous over X, and f̄j(0) = 0. Then, the resulting utility set U is compact, convex and
monotone.
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Proof. Let f : X →R
n
+ be the vector of utility functions, i.e.,

f(x) =
[

f̄1(x1) f̄2(x2) . . . f̄n(xn)
]T

, ∀x∈X.

Since X is compact, f is continuous and bounded over X, it follows that U is compact.
To show monotonicity, let u ∈ U . Then, ∃x ∈ X, such that f(x) = u. Consider now an alloca-

tion u′, such that 0 ≤ u′ ≤ u. For any j, let gj(λ) = f̄j(λxj), for 0 ≤ λ ≤ 1. Since f̄j is continuous
and non-decreasing, so is gj. Given also that gj(0) = 0, gj(1) = uj, and that 0 ≤ u′

j ≤ uj, it fol-
lows that ∃λj ∈ [0,1], such that gj(λj) = f̄j(λjxj) = u′

j. Note that by monotonicity of X, z =
[

λ1x
T
1 λ2x

T
2 . . . λnxT

n

]T ∈X. But, f(z) = u′, which shows that u′ ∈U and U is monotone.
To show convexity, let ũ ∈ U ; then, ∃ x̃ ∈ X, such that f(x̃) = ũ. Let θ ∈ [0,1]. By convexity of

X, θx+(1− θ)x̃∈X. By concavity of f̄j,

f(θx+(1− θ)x̃)≥ θf(x) + (1− θ)f(x̃) = θu+(1− θ)ũ≥ 0.

Since U is monotone, it follows that θu+(1− θ)ũ∈U , and U is convex. �

Note that, although not exhaustive, Proposition 1 shows that a general class of problems satisfy
Assumption 1. The compactness and convexity requirements on the resource set X are common
and support a broad family of problems. The monotonicity requirement is satisfied in case of freely
disposable physical resources, i.e., when an allotted resource can be reduced or nullified, without
necessarily affecting the rest of the allocation. Finally, the requirements on the utility function
depending only on the allocation of each player, being concave and non-decreasing are also well
studied in the literature (see Mas-Colell et al. (1995), Young (1995)).

Examples in the next section indicate that in the absense of the convexity assumption, the worst
case price of fairness can get arbitrarily close to 1, even for a two-player problem.

We now provide the main results of this paper, for the case where the maximum achievable
utilities of the players are equal and for the case they are not.

4.1. Equal maximum achievable utilities

The following Theorem provides upper bounds for the price of fairness, in case of equal maximum
achievable utilities.

Theorem 1. Consider a resource allocation problem with n players, with n≥ 2. Let the utility set,
denoted by U ⊂R

n
+, satisfy Assumption 1. If all players have equal maximum achievable utilities,

which are greater than zero,
(a) the price of proportional fairness is bounded by

POF(U ;SPF)≤ 1− 2
√

n− 1

n
,

(b) the price of max-min fairness is bounded by

POF(U ;SMMF)≤ 1− 4n

(n+1)2
.

Moreover, the bound under proportional fairness is tight if
√

n∈N, and the bound under max-min
fairness is tight for all n.

Proof. By assumption, the players have equal maximum achievable utilities. We assume further
that they are equal to 1, i.e.,

u?
j = max{uj |u∈U}= 1, ∀j = 1, . . . , n. (3)
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Figure 1 An example of a two-dimensional utility set, with the points of interest and the associated supporting
hyperplanes used in the proof of Theorem 1.
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This is without loss of generality, and can be achieved simply by scaling. As a result,

0≤ u≤ e, ∀u∈U. (4)

Without loss of generality, we assume that U is monotone. This is because all schemes we
consider, namely utilitarian, proportional and max-min fairness yield Pareto optimal allocations. In
particular, suppose there exist allocations a∈U and b /∈U , with allocation a dominating allocation
b, i.e., 0≤ b≤ a. Note that allocation b can thus not be Pareto optimal. Then, we can equivalently
assume that b∈U , since b cannot be selected by any of the schemes.

Note that the monotonicity assumption and (3) also imply that 0 ∈ U and ej ∈ U for all j =
1, . . . , n. By Assumption 1, we also have 1

n
e∈U (by convexity).

(a) Proportional fairness. Let uPF ∈ U be the utility distribution under the proportionally fair
solution. By definition, we have

FAIR(U ;SPF) = eTSPF(U) = eTuPF. (5)

By the first order optimality condition (see Section 3.1), we have

n
∑

j=1

uj −uPF
j

uPF
j

≤ 0, ∀u∈U.

Equivalently,
(

γPF
)T

u≤ 1, ∀u∈U, (6)

where

γPF
j =

1

nuPF
j

. (7)

This defines a hyperplane that supports U at uPF. Figure 1 illustrates uPF and the hyperplane in
the case of a two-dimensional example.
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Since uPF ∈U , using (4) we have that uPF
j ≤ 1⇒ γPF

j ≥ 1
n
, for all j. Moreover, since ej ∈U for all

j, using (6) we have (γPF)
T

ej ≤ 1⇒ γPF
j ≤ 1. Without loss of generality, we also assume that the

elements of γPF are ordered. To summarize, we have

1

n
≤ γPF

1 ≤ . . .≤ γPF
n ≤ 1. (8)

The supporting hyperplane we identified can now be used to bound the sum of utilities under
the utilitarian solution. In particular, using (4) and (6) we get that

SYSTEM(U) = max
{

eTu
∣

∣u∈U
}

≤max
{

eT u
∣

∣

∣
0≤ u≤ e,

(

γPF
)T

u≤ 1
}

, (9)

where the right hand side is the optimal value of the linear relaxation of the well-studied knapsack
problem, a version of which we review next.

Let w ∈R
n and B ∈R be such that 0 ≤w1 ≤ . . . ≤wn ≤B, eT w ≥ 1, 1

n
≤ B ≤ 1. Then, one can

show (see Bertsimas and Tsitsiklis (1997)) that the linear program

maximize eT y
subject to wT y ≤B

0≤ y ≤ e,
(10)

has an optimal value equal to `(w,B) + δ(w,B), where

`(w,B) = max

{

i

∣

∣

∣

∣

∣

i
∑

j=1

wj ≤B, i≤ n− 1

}

∈ {1, . . . , n− 1} (11)

δ(w,B) =
B −∑`(w,B)

j=1 wj

w`(w,B)+1

∈ [0,1]. (12)

Using this observation, we can rewrite (9) as

SYSTEM(U)≤ `(γPF,1) + δ(γPF,1). (13)

We can now provide an upper bound to the price of fairness:

POF(U ;SPF) =
SYSTEM(U)−FAIR(U ;SPF)

SYSTEM(U)

= 1− FAIR(U ;SPF)

SYSTEM(U)

= 1−
∑n

j=1 zPF
j

SYSTEM(U)
(from (5))

= 1−

∑n

j=1
1

nγPF
j

SYSTEM(U)
(from (7))

≤ 1−

∑n

j=1
1

nγPF
j

`(γPF,1) + δ(γPF,1)
. (from (13))

Let g : Rn →R be defined as

g(γ) =

∑n

j=1
1

nγj

`(γ,1) + δ(γ,1)
.
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Using this definition and (8), the bound can now be rewritten as

POF(U ;SPF)≤ 1− g
(

γPF
)

≤ 1− inf
1
n≤γ1≤...≤γn≤1

g(γ),

and it suffices to show that

F1 = inf
1
n≤γ1≤...≤γn≤1

g(γ)≥ 2
√

n− 1

n
.

Let p : R2 →R be defined as

p(y) =

y1
y2

+n− y1

ny1

,

and

F2 = inf
y1y2≤1
1≤y1≤n
1
n≤y2≤1

p(y).

We will first show that F1 ≥ F2. To do that, it is sufficient to show that for any γ such that 1
n
≤

γ1 ≤ . . .≤ γn ≤ 1, there exists a y ∈R
2, such that y1y2 ≤ 1, 1≤ y1 ≤ n, 1

n
≤ y2 ≤ 1, and g(γ)≥ p(y).

Let y1 = `(γ,1) + δ(γ,1). By the ranges of `(γ,1) and δ(γ,1), it follows that 1≤ y1 ≤ n. Moreover,
let

y2 =
y1

1
γ1

+ . . . + 1
γ`(γ,1)

+ δ(γ,1)

γ`(γ,1)+1

.

Since γj ≥ 1
n
, we get

y2 =
y1

1
γ1

+ . . . + 1
γ`(γ,1)

+ δ(γ,1)

γ`(γ,1)+1

≥ y1

n(`(γ,1) + δ(γ,1))
=

1

n
.

A similar argument utilizing that γj ≤ 1 shows that y2 ≤ 1. To show that y1y2 ≤ 1, consider the
following convex optimization problem:

minimize 1
v1

+ . . . + 1
v`(γ,1)

+ δ(γ,1)

v`(γ,1)+1

subject to v1 + . . .+ v`(γ,1) + δ(γ,1)v`(γ,1)+1 = 1
v ≥ 0,

with variable v ∈R
`(γ,1)+1. Note that γ is feasible for this problem, since by (12) we have

γ1 + . . . + γ`(γ,1) + δ(γ,1)γ`(γ,1)+1 = 1.

We will show that

v̄ =
1

`(γ,1) + δ(γ,1)
e

is an optimal solution. Feasibility is immediate, and the necessary and sufficient first order opti-
maltiy conditions are also satisfied: Noting that v̄1 = v̄j for all j = 1, . . . , `(γ,1) + 1, we have that
for any v ≥ 0, with v1 + . . . + v`(γ,1) + δ(γ,1)v`(γ,1)+1 = 1,

`(γ,1)
∑

j=1

(v̄j − vj)

v̄2
j

+
δ(γ,1)

(

v̄`(γ,1)+1 − v`(γ,1)+1

)

v̄2
`(γ,1)+1

=

1

v̄2
1

((

v̄1 + . . . + v̄`(γ,1) + δ(γ,1)v̄`(γ,1)+1

)

−
(

v1 + . . . + v`(γ,1) + δ(γ,1)v`(γ,1)+1

))

= 0.
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Since γ is feasible and v̄ optimal, it follows that

y1

y2

=
1

γ1

+ . . . +
1

γ`(γ,1)

+
δ(γ,1)

γ`(γ,1)+1

≥ 1

v̄1

+ . . . +
1

v̄`(γ,1)

+
δ(γ,1)

v̄`(γ,1)+1

=
`(γ,1) + δ(γ,1)

v̄1

= (`(γ,1) + δ(γ,1))
2
= y2

1.

Finally,

g(γ) =

∑n

j=1
1

nγj

`(γ,1) + δ(γ,1)

=

1
γ1

+ . . . + 1
γ`(γ,1)

+ δ(γ,1)

γ`(γ,1)+1
+ 1−δ(γ,1)

γ`(γ,1)+1
+ 1

γ`(γ,1)+2
+ . . . + 1

γn

n (`(γ,1) + δ(γ,1))

=

y1
y2

+ 1−δ(γ,1)

γ`(γ,1)+1
+ 1

γ`(γ,1)+2
+ . . . + 1

γn

ny1

≥
y1
y2

+n− `(γ,1)− δ(γ,1)

ny1

(from (8))

≥
y1
y2

+n− y1

ny1

= p(y).

We now evaluate F2:

F2 = inf
y1y2≤1
1≤y1≤n
1
n≤y2≤1

y1
y2

+n− y1

ny1

= inf
y1y2≤1
1≤y1≤n
1
n≤y2≤1

(

1

ny2

+
1

y1

− 1

n

)

.

Clearly, the infimum is attained, and at the optimum y1y2 = 1, i.e., 1
y2

= y1, and

F2 = inf
1≤y1≤n

(

y1

n
+

1

y1

− 1

n

)

=
2
√

n− 1

n
.

The proof is complete by noting that F1 ≥ F2. Section 5 includes examples that show that the
bound is tight in case

√
n∈N.

(b) Max-min fairness. Consider the ray re, r ≥ 0. Since 0 ∈ U and 1
n
e ∈ U , by convexity of U

we have that re ∈ U , for 0 ≤ r ≤ 1
n
. Since U ⊂ [0,1]n is compact, there exists a φ ∈

[

1
n
,1
]

such
that φe ∈ bd(U), the boundary of the set U . Note that φ corresponds to the maximum minimum
achievable utility level that all players can derive simultaneously. Under max-min fairness, the
utility derived by all players is at least φ, as discussed in Section 3.2, that is,

SMMF(U)≥ φe. (14)

We can thus use φ to bound the sum of utilities under the max-min fair allocation,

FAIR(U ;SMMF) = eTSMMF(U)≥ eT (φe) = nφ. (15)

Similarly to the derivation for proportional fairness, we will identify a hyperplane that supports
U at φe. In particular, since U is convex and φe ∈bd(U), by the supporting hyperplane theorem,
∃γMMF ∈R

n \ {0} such that

(

γMMF
)T

u≤
(

γMMF
)T

(φe), ∀u∈U. (16)
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Applying the above equation to 0∈U ,

0∈U ⇒
(

γMMF
)T

0≤
(

γMMF
)T

(φe)⇒ eT γMMF ≥ 0.

Suppose that eT γMMF = 0. Combining this fact with (16) for every ej ∈U , we get

ej ∈U ⇒
(

γMMF
)T

ej ≤
(

γMMF
)T

(φe)⇒ γMMF
j ≤ 0.

Together with the assumption eT γMMF = 0, that leads to γMMF = 0, a contradiction. Hence,
eT γMMF > 0, and we can assume without loss that

eT γMMF = 1.

The equation that defines the supporting hyperplane to U , (16), can now be rewritten as

(

γMMF
)T

u≤ φ, ∀u∈U. (17)

Figure 1 again illustrates the point φe and the supporting hyperplane in the case of a two-
dimensional example.

We will now show that γMMF ≥ 0. Suppose that γMMF
j < 0, and let y = φe− φ

2
ej. Since 0≤ y ≤ φe,

we have y ∈U , by monotonicity of U . But,

(

γMMF
)T

y =
(

γMMF
)T
(

φe− φ

2
ej

)

= φ− φ

2
γMMF

j > φ,

a contradiction to (17), since y ∈U . Hence, γMMF ≥ 0.
Furthermore, since ej ∈U for all j, using (17) we have

(

γMMF
)T

ej ≤ φ⇒ γMMF
j ≤ φ.

Without loss, we can assume similarly to the proportional fairness case, that the elements of γMMF

are ordered. To summarize, if we let

C =

{

(y,B)∈R
n ×R

∣

∣

∣

∣

0≤ y1 ≤ . . .≤ yn ≤B, eT y = 1,
1

n
≤B ≤ 1

}

,

then (γMMF, φ) ∈C.
Similar to the analysis for the case of proportional fairness, using (4), (17) and the analysis of

(10) we get

SYSTEM(U)≤max
{

eT u
∣

∣

∣
0≤ u≤ e,

(

γMMF
)T

u≤ φ
}

= `(γMMF, φ) + δ(γMMF, φ). (18)

It follows that

POF(U ;SMMF) = 1− FAIR(U ;SMMF)

SYSTEM(U)

≤ 1− nφ

SYSTEM(U)
(from (15))

≤ 1− nφ

`(γMMF, φ) + δ(γMMF, φ)
(from (18))

≤ 1− inf
(γ,φ)∈C

nφ

`(γ,φ) + δ(γ,φ)
.
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We will show that

`(γ,φ) + δ(γ,φ)≤ n+1− 1

φ
, ∀ (γ,φ) ∈C.

That will imply that for any such γ and φ,

nφ

`(γ,φ) + δ(γ,φ)
≥ nφ

n+1− 1
φ

≥ 4n

(n+1)
2 ,

and the proof will be complete. Note that the last inequality follows by simply minimizing over
φ∈

[

1
n
,1
]

. Moreover, that will also demonstrate that

FAIR(U ;SMMF)

SYSTEM(U)
≥ nφ

SYSTEM(U)
≥ 4n

(n+1)2
. (19)

Fix any (γ,φ) ∈C. If `(γ,φ) + δ(γ,φ) < n, let

y =
(1− δ(γ,φ))γ`(γ,φ)+1 + γ`(γ,φ)+2 + . . . + γn

n− `(γ,φ)− δ(γ,φ)
.

Note that since γj ≤ φ, we get y ≤ φ. Then,

1 = eT γ

= γ1 + . . . + γ`(γ,φ) + δ(γ,φ)γ`(γ,φ)+1 +(1− δ(γ,φ))γ`(γ,φ)+1 + γ`(γ,φ)+2 + . . . + γn

= φ+(1− δ(γ,φ))γ`(γ,φ)+1 + γ`(γ,φ)+2 + . . .+ γn

= φ+(n− `(γ,φ)− δ(γ,φ))y

≤ φ+(n− `(γ,φ)− δ(γ,φ))φ,

which demonstrates that `(γ,φ) + δ(γ,φ) ≤ n + 1− 1
φ
. If `(γ,φ) + δ(γ,φ) = n, we get 1 = eT γ = φ,

and hence `(γ,φ) + δ(γ,φ) = n = n+1− 1
φ
, and the proof is complete.

Section 5 includes examples that show that the bound is tight for all n≥ 2. �

Table 1 Bounds on the price of fairness, under
Assumption 1 and equal maximum achievable

utilities for all players, for the proportional and
max-min fairness schemes, for a small number of

players n.

Proportional Fairness Max-min Fairness

n = 2 0.086 0.111
n = 3 0.179 0.25
n = 4 0.25 0.36
n = 5 0.306 0.444

At this point, it serves us to pause and remark on the result we have established:
• The bounds we have established depend only on the number of players involved in the resource

allocation; they are independent of the shape of the utility set, as long as it is compact and
convex, and the players have equal maximum achievable utilities. Note that the assumption of
equal maximum achievable utilities is not overly restrictive: the utility levels of the players are
commonly normalized in a variety of settings, so that the comparison between them is meaningful.
Under normalization, the maximum achievable utility of each player is typically equal to 1.
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Figure 2 Bounds on the price of fairness, under Assumption 1 and equal maximum achievable utilities for all
players, for the proportional (PF) and max-min fairness (MMF) schemes, against the number of players.
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• Our results show that for a small number of players, the price of fairness stays relatively low. In
particular, these results establish that for Nash’s original two player bargaining game (i.e., n = 2),
the price of fairness is at most 8.6% for proportional fairness and 11.1% for max-min fairness! For
n = 5, these numbers are 30.6% and 44.4% respectively. This suggests that in cases with a relatively
small number of players, the central decision maker can achieve fair allocations, without incurring
a high reduction in the sum of utilities. For illustration purposes, Table 1 lists the values for the
worst case bounds under the two schemes, for a small number of players.

• Figure 2 depicts the bounds as a function of the number of players. Note that the worst case
price of fairness strictly increases with the number of players, under both schemes, and approaches
1 asymptotically. However, proportional fairness bears a significantly lower price compared to max-
min fairness in the worst case; this is especially so for large numbers of players. Those observations
are in line with intuition and provide a sound theoretical basis to prior empirical work in the
literature (see Radunovic and Boudec (2004) and Tang et al. (2004)).

4.2. Unequal maximum achievable utilities

We now generalize the result of the previous section for the case where the players potentially have
unequal maximum achievable utilities. The following Theorem provides upper bounds for the price
of fairness. Recall that the maximum achievable utility of the jth player is defined as

u?
j = sup{uj |u∈U} .

Theorem 2. Consider a resource allocation problem with n players; n ≥ 2. Let the utility set,
denoted by U ⊂R

n
+, satisfy Assumption 1. If all players have maximum achievable utilities greater

than zero,
(a) the price of proportional fairness is bounded by

POF(U ;SPF)≤ 1− 2
√

n− 1

n

minj∈{1,...,n} u?
j

maxj∈{1,...,n} u?
j

− 1

n
+

minj∈{1,...,n} u?
j

∑n

j=1 u?
j

,
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(b) the price of max-min fairness is bounded by

POF(U ;SMMF)≤ 1− 4n

(n+1)2

1
n

∑n

j=1 u?
j

maxj∈{1,...,n} u?
j

.

Proof. To ease notation, define

u?
max = max

j∈{1,...,n}
u?

j , u?
min = min

j∈{1,...,n}
u?

j .

Let
Σ = diag(u?

1, . . . , u
?
n)

be a diagonal scaling matrix. Consider the normalized problem, with utility set

U = Σ−1U.

Note that U satisfies Assumption 1, and has also the property that the maximum achievable utilities
for all players are equal to one.

For all u∈U , and the corresponding ū = Σ−1u∈U , we have

eT u = eT Σū≤ u?
maxe

T ū≤ u?
maxSYSTEM(U).

As a result,
SYSTEM(U)≤ u?

maxSYSTEM(U). (20)

Moreover,

SYSTEM(U)≤
n
∑

j=1

u?
j = eT Σe. (21)

(a) Proportional fairness. Using Theorem 1,

FAIR(U ;SPF)

SYSTEM(U)
=

eTSPF(U)

SYSTEM(U)
≥ 2

√
n− 1

n
. (22)

Moreover, by (7) and (8), we have that SPF(U)≥ 1
n
e. Hence,

SPF(U) =
1

n
e + q, (23)

for some q ≥ 0. By utilizing this expression and (22) we get

eTSPF(U)

SYSTEM(U)
=

1 + eTq

SYSTEM(U)
≥ 2

√
n− 1

n
. (24)

We can now bound the sum of utilities under the proportionally fair allocation for the problem
involving U :

FAIR(U ;SPF) = eTSPF(U)

= eTSPF(ΣU)

= eT ΣSPF(U) (from (1))

= eT Σ

(

1

n
e + q

)

(from (23))

=
1

n
eT Σe + eT Σq

≥ 1

n
eT Σe +u?

mine
T q. (since q ≥ 0) (25)



Bertsimas, Farias, and Trichakis: The Price of Fairness

Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 19

We then have

FAIR(U ;SPF)

SYSTEM(U)
≥

1
n
eT Σe +u?

mine
T q

SYSTEM(U)
(from (25))

=
1
n
eT Σe−u?

min

SYSTEM(U)
+

u?
min(1 + eT q)

SYSTEM(U)

≥
1
n
eT Σe−u?

min

SYSTEM(U)
+

u?
min(1 + eTq)

u?
maxSYSTEM(U)

(from (20))

≥
1
n
eT Σe−u?

min

eT Σe
+

u?
min(1 + eTq)

u?
maxSYSTEM(U)

(from (21))

≥ 1

n
− u?

min
∑n

j=1 u?
j

+
2
√

n− 1

n

u?
min

u?
max

. (from (24))

(b) Max-min fairness. We apply Theorem 1 for the normalized problem that involves U . Let φ
be the maximum minimum utility for U . Then,

FAIR(U ;SMMF) = eTSMMF(U)

= eTSMMF(ΣU)

= eT ΣSMMF(U) (from (2))

≥ eTΣ(φe) (from (14))

=

(

1

n

n
∑

j=1

u?
j

)

nφ. (26)

We therefore have,

FAIR(U ;SMMF)

SYSTEM(U)
≥

(

1

n

n
∑

j=1

u?
j

)

nφ

SYSTEM(U)
(from (26))

≥

1

n

n
∑

j=1

u?
j

u?
max

nφ

SYSTEM(U)
(from (20))

≥

1

n

n
∑

j=1

u?
j

u?
max

4n

(n+1)2
. (from (19)) �

Theorem 2 extends the results of Theorem 1 in case of a problem where players have unequal max-
imum achievable utilities. In general, assymetric maximum achievable utilities may result (although
not necessarily) in higher price of fairness. Theorem 2 characterizes the way in which the worst
case bounds are affected. In the next section we address a natural question that arises in response
to the results of our Theorems, namely, how loose are our bounds? The surprising answer, is that
our bounds are in fact tight; they are achieved by several realistic examples.

5. Examples

This section addresses two natural questions that arise in the context of our analysis of the price
of fairness. The first concerns the tightness of our bounds. To that end we will study a problem
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Figure 3 The network flow topology in case of k = 3, for the example in Section 5.1.

of bandwidth allocation for a communication network wherein our bounds on the price of fairness
are, in fact, achieved. The next question one may ask regards our assumptions on the structure
of the utility set, namely Assumption 1. Here we show via an example, that if Assumption 1 is
violated, the price of fairness can be arbitrarily large, even for a small number of players.

5.1. A communication network

We illustrate the tightness of our bounds for a problem of bandwidth allocation on a communication
network. The network consists of hubs (nodes) that are connected via capacitated links (edges).
Clients, or flows, wish to establish transmission from one hub to another over the network, via a
pre-specified and fixed route. The network administrator needs to decide on the transmission rate
assigned to each flow, subject to capacity constraints. The resources to be allocated in this case are
the available capacities of the links, the players are the flows, and the central decision maker is the
network administrator. We now fix some notation, and specify the problem data more precisely.

We have a network with k links of unit capacity. There are in total n = 2k − 1 flows in the
network, each of which is associated with a fixed route, i.e., some subset of the k links. The network
is assumed to be a line-graph with k links. The routes of the first k flows are disjoint and they
all occupy a single (distinct) link. The remaining k − 1 flows have routes that utilize all k links.
The described network topology is shown in Figure 3, for k = 3. Each flow has a nonnegative rate,
which we denote x1, . . . , xn. The first k flows derive M units of utility for every unit rate they are
assigned (i.e., fj(x) = Mxj, for j = 1, . . . , k), with M ≥ 1. The remaining k− 1 flows derive utility
equal to their rates (i.e., fj(x) = xj, for j = k +1, . . . , n).

The routing matrix R ∈R
k×n, defined as

Rij =

{

1, flow j’s route passes over link i,
0, otherwise,

is then such that, its ith row is of the form
[

eT
i eT

]

, where ei is the unit vector in R
k, with the

ith component equal to 1. The resource set can be expressed as

X = {x∈R
n |Rx≤ e, x≥ 0} .

For the case of k = 3 (depicted in Figure 3), we have

X =











x∈R
5

∣

∣

∣

∣

∣

∣

∣





1 0 0 1 1
0 1 0 1 1
0 0 1 1 1











x1

...
x5






≤ e, x≥ 0











.

Accordingly, the utility set is

U =
{

[

Mx1 . . . Mxk xk+1 . . . xn

]T ∈R
n
∣

∣

∣
Rx≤ e, x≥ 0

}

.

Note that the utility set is convex and compact. In particular, Assumption 1 is satisfied.
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Furthermore, since all links have unit capacity, all flows can be assigned a maximum rate of 1.
As a result, the maximum achievable utility for each of the first k flows is u?

j = M , j = 1, . . . , k, and
for each of the remaining flows is u?

j = 1, j = k + 1, . . . , n. Theorem 1 then applies, only in case of
M = 1. If we apply Theorem 2, we get

POF(U ;SMMF)≤ 1− 4n

(n+1)2

1
n

∑n

j=1 u?
j

maxj∈{1,...,n} u?
j

= 1− 4

(n+1)2

kM + k− 1

M
.

For the utilitarian solution, the central decision maker assigns unit rate to the first k flows, and
achieves a throughput of kM , i.e.,

SYSTEM(U) = kM.

Under the max-min fairness allocation, a rate of 1
k

is assigned to each flow, hence

FAIR(U ;SMMF) =
kM + k− 1

k
.

Thus, by substituting for the above expressions and for k = n+1
2

,

POF(U ;SMMF) = 1− FAIR(U ;SMMF)

SYSTEM(U)

= 1− kM + k− 1

Mk2

= 1− 1
(

n+1
2

)2

kM + k− 1

M

= 1− 4

(n+1)2

kM + k− 1

M
,

which is exactly the upper bound we derived from Theorem 2. In case M = 1, we get

POF(U ;SMMF) = 1− 4n

(n+1)2
,

which is the upper bound from Theorem 1.
This example illustrates the tightness of our bounds for the max-min fairness scheme for an odd

number of players. Similar tight bounds can be derived for an even number of players, by studying
the utility set

W =

{

u∈R
n
+

∣

∣

∣

∣

1

n
u1 + . . . +

1

n
un/2 +un/2+1 + . . . +un ≤ 1, u≤ e

}

.

In order to obtain a tight upper bound for the case of proportional fairness, we study a similar
setup, but with additional long flows. In particular, let the number of long flows be equal to k2−k
(instead of k− 1). Thus, there are now n = k2 flows. Let also M = 1.

The utilitarian solution remains unchanged in this case, with the central decision maker allocating
unit rate to the first k flows.

Under proportional fairness, we have uPF
j = xPF

j = 1
k

for j = 1, . . . , k, and uPF
j = xPF

j = 1
k2 for the

remaining long flows j = k + 1, . . . , n, since this point satisfies the first order optimality condition
(see Section 3.1). In particular, for any u∈U ,

n
∑

j=1

uj −uPF
j

uPF
j

=
k
∑

j=1

uj − 1
k

1
k

+
n
∑

j=k+1

uj − 1
k2

1
k2
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= k
k
∑

j=1

uj + k2

n
∑

j=k+1

uj − k2

= k
(

eT Ru− k
)

≤ k
(

eT e− k
)

= 0.

Thus,

FAIR(U ;SPF) = k
1

k
+
(

k2 − k
) 1

k2
= 2− 1

k
,

and

POF(U ;SPF) = 1− 2− 1
k

k
= 1− 2

√
n− 1

n
,

which is again exactly the upper bound from Theorem 1. We are unable to establish that our
bound on the price of proportional fairness is tight in the event that maximum achievable utilities
are unequal (i.e., M > 1 for the communication network example).

5.2. Non convex utility set

Here we consider what happens if one were to relax the requirements of Assumption 1. Consider a
setup with two players (i.e., n = 2), in which the central decision maker has the option of allocating
all resources to one of the players, or splitting them equally among them. In the case one player
receives all resources, she derives a utility of 1, while the other player derives a utility of 0. If the
resources are split, both players derive a utility of ε. The utility set is thus

U = {e1, e2, εe} .

Note that U is discrete, in particular non convex. As a result, Assumption 1 is violated.
It is easy to check that for ε� 1, the utilitarian solution corresponds to one player receiving all

resources, and the corresponding sum of utilities is equal to 1. Under the max-min fairness scheme,
the CDM splits the resources among the players, thus resulting in aggregate utility of 2ε and price
of fairness of 1−2ε. We can thus see that for non convex utility sets, the price of max-min fairness
can get arbitrarily close to 1, even for two players.

Note that in this case there does not exist a feasible allocation that satisfies the Nash standard
(see Section 3.1). If we allow the PF allocation to be the one that maximizes the sum of logarithms
of the utilities (see Section 3.1), then the CDM again splits the resources among the players, and
similar obervations to MMF apply for PF.

A practical situation under which we might obtain non convex utility sets, is the power control
problem in a wireless cellular system under severe interference effects (see Goldsmith (2005)).

6. Conclusions

This paper has attempted to quantify the “price” one has to pay in demanding that an allocation of
resources is fair. In particular, we presented results on the relative efficiency loss incurred in using
either of two widely accepted and axiomatically justified notions of fairness – max-min fairness
and proportional fairness. It is our belief that the “price” of fairness is effectively inescapable if
the allocations prescribed by a given scheme are to be ethically acceptable and implementable.
Our analysis has yielded two primary insights. First, it has given us an understanding of when this
“price” is likely to be small; this will be the case when the number of players is small. Second,
we have presented a quantitive distinction between max-min fairness and proportional fairness,
showing that the latter is a substantially cheaper notion than the former, especially when the
number of players is large. Our analysis is tight and addresses a vast swath of resource allocation
problems.
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Moving forward, we believe that one fruitful direction for future research is identifying specialized
families of utility sets (within the family considered here) that admit smaller prices of fairness.
Good work in this direction will yield a succinct characterization of resource allocation problems
for which fair allocations are close to efficient. It is of course important that the classes of problems
so identified be relevant; for instance, a condition that guaranteed that all Pareto solutions are
equally efficient (which is true if the utility set is a poly-matroid) while interesting is perhaps too
narrow to be relevant to practice.

On the practical front, there are a number of important (and real) resource allocation problems
wherein it is highly desirable that allocations are fair, for example the air traffic flow management
problem, alluded to in the Introduction. We are currently evaluating the performance of “fair”
allocation schemes for real world instances of such problems (see Bertsimas et al. (2009a)).
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