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Abstract

In this paper, we propose a semidefinite optimization (SDP) based model for the class of minimax

two-stage stochastic linear optimization problems with risk aversion. The distribution of the second-

stage random variables is assumed to be chosen from a set of multivariate distributions with known

mean and second moment matrix. For the minimax stochastic problem with random objective, we

provide a tight polynomial time solvable SDP formulation. For the minimax stochastic problem

with random right-hand side, the problem is shown to be NP-hard in general. When the number of

extreme points in the dual polytope of the second-stage stochastic problem is bounded by a function

which is polynomial in the dimension, the problem can be solved in polynomial time. Explicit

constructions of the worst case distributions for the minimax problems are provided. Applications in

a production-transportation problem and a single facility minimax distance problem are provided to

demonstrate our approach. In our computational experiments, the performance of minimax solutions

is close to that of data-driven solutions under the multivariate normal distribution and is better

under extremal distributions. The minimax solutions thus guarantee to hedge against these worst

possible distributions while also providing a natural distribution to stress test stochastic optimization

problems under distributional ambiguity.
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1 Introduction

Consider a two-stage stochastic linear optimization problem with recourse:

minx c′x + EP

[

Q(ξ̃,x)
]

s.t. Ax = b, x ≥ 0,

where the recourse function is given as:

Q(ξ̃,x) = minw q̃′w

s.t. Ww = h̃ − Tx, w ≥ 0.

The first-stage decision x is chosen from the set X := {x ∈ R
n : Ax = b,x ≥ 0} before the exact value

of the random parameters ξ̃ = (q̃, h̃) are known. After the random parameters are realized, the second-

stage (or recourse) decision w is chosen from the set X(x) := {w ∈ R
p : Ww = h̃ − Tx,w ≥ 0}. The

goal is to minimize the sum of the first-stage cost c′x and the expected second-stage cost EP

[

Q(ξ̃,x)
]

when the random parameters are sampled from the probability distribution P .

The traditional model for stochastic optimization considers complete knowledge of the probability

distribution of the random parameters. Using a scenario-based formulation; say (q1,h1), . . . , (qN ,hN )

occurs with probabilities p1, . . . , pN , the stochastic optimization problem is solved as

minx,wt c′x +
N

∑

t=1

ptq
′
twt

s.t. Ax = b, x ≥ 0,

Wwt = ht − Tx, wt ≥ 0.

This linear optimization problem forms the basis of sampling based methods for stochastic optimization.

The reader is referred to Shapiro and Homem-de-Mello [20] and Kleygweyt et al. [14] for convergence

results on sampling methods for stochastic optimization problems. One difficulty with using a scenario-

based formulation is that one needs to estimate the probabilities for the finitely many different scenarios.

Secondly, the solution can be sensitive to the choice of the probability distribution P . To stress test the

solution, Dupacova [9] suggests using a contaminated distribution Pλ = (1−λ)P +λQ for λ ∈ [0, 1] where

Q is an alternate distribution that carries out-of-sample scenarios. Minimax stochastic optimization

provides an approach to address this issue of ambiguity in distributions. Instead of assuming a single

distribution, one hedges against an entire class of probability distributions. The minimax stochastic

optimization problem is formulated as:

min
x∈X

(

c′x + max
P∈P

EP

[

Q(ξ̃,x)
]

)

,
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where the decision x is chosen to minimize the first-stage cost and the worst case expected second-stage

cost calculated over all the distributions P ∈ P. This approach has been analyzed by Žáčková [24],

Dupačová [8] and more recently by Shapiro and Kleywegt [21] and Shapiro and Ahmed [19]. Among oth-

ers, algorithms for minimax stochastic optimization include the sample-average approximation method

(see Shapiro and Kleywegt [21] and Shapiro and Ahmed [19]), subgradient-based methods (see Breton

and El Hachem [4]) and cutting plane algorithms (see Riis and Anderson [17]). The set P is typically

described by a set of known moments. Bounds on the expected second-stage cost using first moment

information include the Jensen bound and the Edmunson-Madansky bound. For extensions to second

moment bounds in stochastic optimization, the reader is referred to Kall and Wallace [13] and Dokov

and Morton [7].

In addition to modeling ambiguity in distributions, one is often interested in incorporating risk

considerations into stochastic optimzation. An approach to model the risk in the second-stage cost is

to use a convex nondecreasing disutility function U(·):

min
x∈X

(

c′x + EP

[

U

(

Q(ξ̃,x)
)])

.

Special instances for this problem include:

(1) Using a weighted combination of the expected mean and expected excess beyond a target T :

min
x∈X

(

c′x + EP

[

Q(ξ̃,x)
]

+ αEP

[

(

Q(ξ̃,x) − T
)+

])

,

where the weighting factor α ≥ 0. This formulation is convexity preserving in the first-stage

variables (see Ahmed [1] and Eichorn and Römisch [10]).

(2) Using the optimized certainty equivalent (OCE) risk measure (see Ben-Tal and Teboulle [2], [3]):

min
x∈X,v∈ℜ

(

c′x + v + EP

[

U

(

Q(ξ̃,x) − v
)])

,

with the disutility function normalized to satisfy U (0) = 0 and 1 ∈ ∂U (0) with ∂U(·) denotes

the subdifferential map of U. For particular choices of utility functions, Ben-Tal and Teboulle

[2], [3] show that the OCE risk measure can be reduced to the mean-variance formulation and

the mean-Conditional Value-at-Risk formulation. Ahmed [1] shows that using the mean-variance

criterion in stochastic optimization leads to NP-hard problems. This arises from the observation

that the second-stage cost Q(ξ̃,x) is nonlinear (but convex) in x while the variance operator is

convex (but non-monotone). On the other hand, the mean-Conditional Value-at-Risk formulation

is convexity preserving.
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Contributions and Paper Outline

In this paper, we analyze two-stage minimax stochastic linear optimization problems with the class of

probability distributions described by first and second moments. We consider separate models to incor-

porate the randomness in the objective and right-hand side respectively. The probability distribution P

is assumed to belong to the class of distributions P specified by the mean vector µ and second moment

matrix Q. In addition to ambiguity in distributions, we incorporate risk considerations into the model

by using a nondecreasing piecewise linear convex disutility function U on the second-stage costs. The

central problem we will study is

Z = min
x∈X

(

c′x + max
P∈P

EP

[

U

(

Q(ξ̃,x)
)]

)

, (1)

where the disutility function is defined as:

U

(

Q(ξ̃,x)
)

:= max
k=1,...,K

(

αkQ(ξ̃,x) + βk

)

, (2)

with the coefficients αk ≥ 0 for all k. A related minimax problem discussed in Rutenberg [18] is to

incorporate the first-stage costs into the utility function

min
x∈X

(

max
P∈P

EP

[

U

(

c′x + Q(ξ̃,x)
)]

)

,

This formulation can be handled in our model by defining βk(x) = αkc
′x + βk and solving

min
x∈X

max
P∈P

EP

[

max
k=1,...,K

(

αkQ(ξ̃,x) + βk(x)
)

]

.

For K = 1 with αK = 1 and βK = 0, problem (1)-(2) reduces to the traditional risk-neutral minimax

stochastic optimization problem. Throughout the paper, we make the following assumptions:

(A1) The first-stage feasible region X := {x ∈ R
n : Ax = b,x ≥ 0} is bounded and non-empty.

(A2) The recourse matrix W satisfies the complete fixed recourse condition {z ∈ R
r : Ww = z,w ≥

0} = ℜr.

(A3) The recourse matrix W together with q̃ satisfies the condition {p ∈ R
r : W ′p ≤ q} 6= ∅ for all q.

(A4) The first and second moments (µ,Q) of the random vector ξ̃ are finite and satisfy Q ≻ µµ′.

Assumptions (A1)-(A4) guarantee that the expected second-stage costs EP

[

U

(

Q(ξ̃,x)
)]

is finite for

all P ∈ P and the minimax risk-averse stochastic optimization problem is well-defined.

The contributions and structure of the paper are as follows:
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(1) In Section 2, we propose a tight polynomial time solvable semidefinite optimization formulation for

the risk-averse and risk-neutral minimax stochastic optimization model when the uncertainty is in

the objective coefficients of the second-stage linear optimization problem. We provide an explicit

construction for the worst case distribution of the second-stage problem. For the risk-neutral case,

the second-stage bound reduces to the simple Jensen bound while for the risk-averse case it is a

convex combination of Jensen bounds.

(2) In Section 3, we prove the NP-hardness of the risk-averse and risk-neutral minimax stochastic

optimization model with random right-hand side of the second-stage linear optimization problem.

We consider a special case in which the problem can be solved by a polynomial sized semidefinite

optimization problem. We provide an explicit construction for the worst case distribution of the

second-stage problem in this case.

(3) In Section 4, we report computational results for a production-transportation problem (random

objective) and a single facility minimax distance problem (random right-hand side) respectively.

These results show that the performance of minimax solutions is close to that of data-driven

solutions under the multivariate normal distribution and it is better under extremal distributions.

The construction of the worst case distribution also provides a natural distribution to stress test

the solution of stochastic optimization problems.

2 Uncertainty in Objective

Consider the minimax stochastic problem (1) with random objective q̃ and constant right-hand side h.

The distribution class P is specified by the first and second moments:

P =
{

P : P[q̃ ∈ ℜp] = 1, EP [q̃] = µ, EP [q̃q̃′] = Q
}

. (3)

The second-stage cost with risk aversion and objective uncertainty is then given as

U (Q(q̃,x)) := max
k=1,...,K

(αkQ(q̃,x) + βk) ,

where

Q(q̃,x) = minw q̃′w

s.t. Ww = h − Tx, w ≥ 0.

The second-stage cost U (Q(q̃,x)) is a quasi-concave function in q̃ and a convex function in x. This

follows from observing that it is the composition of a nondecreasing convex function U(·), and a function
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Q(·, ·) that is concave in q̃ and convex in x. A semidefinite formulation for identifying the optimal first-

stage decision is developed in Section 2.1 while the extremal distribution for the second-stage problem

is constructed in Section 2.2.

2.1 Semidefinite Optimization Formulation

The second-stage problem maxP∈P EP [U (Q(q̃,x))] in this case, is an infinite-dimensional linear opti-

mization problem with the probability distribution P or its corresponding probability density function

f as the decision variable:

Z(x) = maxf

∫

Rp U (Q(q,x)) f(q)dq

s.t.
∫

Rp qiqjf(q)dq = Qij , ∀ i, j = 1, . . . , p,
∫

Rp qif(q)dq = µi, ∀ i = 1, . . . , p,
∫

Rp f(q)dq = 1,

f(q) ≥ 0, ∀ q ∈ R
p.

(4)

Associating dual variables Y ∈ S
p×p where S

p×p is the set of symmetric matrices of dimension p and

vector y ∈ R
p, and scalar y0 ∈ R with the constraints of the primal problem (4), we obtain the dual

problem:

ZD(x) = minY ,y,y0
Q · Y + µ′y + y0

s.t. q′Y q + q′y + y0 ≥ U (Q(q,x)) , ∀ q ∈ R
p.

(5)

It is easy to verify that weak duality holds, namely Z(x) ≤ ZD(x). Furthermore, if the moment

vector lies in the interior of the set of feasible moment vectors, then we have strong duality, namely

Z(x) = ZD(x). The reader is referred to Isii [12] for strong duality results in the moment problem.

Assumption (A4) guarantees that the covariance matrix Q − µµ′ is strictly positive definite and the

strong duality condition is satisfied. This result motivates us to replace the second-stage problem by its

corresponding dual and attempt to solve this model. The risk-averse minimax stochastic optimization

problem is then reformulated as a semidefinite optimization problem as shown in the following theorem:

Theorem 1 The risk-averse minimax stochastic optimization problem (1) with random objective q̃ and
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constant right-hand side h is equivalent to the semidefinite optimization problem:

ZSDP = minx,Y ,y,y0,wk
c′x + Q · Y + µ′y + y0

s.t.





Y y−αkwk

2

(y−αkwk)
2

′
y0 − βk



 � 0, ∀ k = 1, . . . ,K,

Wwk + Tx = h, ∀ k = 1, . . . ,K,

wk ≥ 0, ∀ k = 1, . . . ,K,

Ax = b, x ≥ 0.

(6)

Proof. The constraints of the dual problem (5) can be written as follows:

(Ck) : q′Y q + q′y + y0 ≥ αkQ(q,x) + βk ∀ q ∈ R
p, k = 1, . . . ,K.

We first claim that Y � 0. Suppose Y 6� 0. Consider the eigenvector q0 of Y corresponding to

the most negative eigenvalue λ0. Define Fk(q,x) := q′Y q + q′y + y0 − αkQ(q,x) − βk and let w0 ∈
arg minw∈X(x) q′

0w. The function f(t) = Fk(tq0,x) is then a quadratic concave function in t ∈ [0,+∞):

f(t) = λ0q
′
0q0t

2 + (y − αkw0)
′q0t + y0 − βk.

Therefore, there exists tk such that for all t ≥ tk, Fk(tq0,x) < 0. The constraint (Ck) is then violated

(contradiction). Thus Y � 0.

Since we have Q(q,x) = minw∈X(x) q′w and αk ≥ 0, the constraint (Ck) can be rewritten as follows:

∀ q ∈ R
p,∃wk ∈ X(x) : q′Y q + q′y + y0 − αkq

′wk − βk ≥ 0,

or equivalently

inf
q∈Rp

sup
wk∈X(x)

q′Y q + q′y + y0 − αkq
′wk − βk ≥ 0.

Since Y � 0, the continuous function q′Y q +q′y +y0−αkq
′wk −βk is convex in q and affine (concave)

in wk. In addition, the set X(x) is a bounded convex set; then, according to Sion’s minimax theorem

[22], we obtain the following result:

inf
q∈Rp

sup
wk∈X(x)

q′Y q + q′y + y0 − αkq
′wk − βk = sup

wk∈X(x)
inf

q∈Rp
q′Y q + q′y + y0 − αkq

′wk − βk.

Thus the constraint (Ck) is equivalent to the following constraint:

∃wk ∈ X(x),∀ q ∈ R
p : q′Y q + q′y + y0 − αkq

′wk − βk ≥ 0.
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The equivalent matrix linear inequality constraint is

∃wk ∈ X(x) :





Y y−αkwk

2

(y−αkwk)
2

′
y0 − βk



 � 0.

The dual problem of the minimax second-stage optimization problem can be reformulated as follows:

ZD(x) = minY ,y,y0,wk
Q · Y + µ′y + y0

s.t.





Y y−αkwk

2

(y−αkwk)
2

′
y0 − βk



 � 0, ∀ k = 1, . . . ,K,

Wwk + Tx = h, ∀ k = 1, . . . ,K,

wk ≥ 0, ∀ k = 1, . . . ,K.

(7)

By optimizing over the first-stage variables, we obtain the semidefinite optimization reformulation for

our risk-averse minimax stochastic optimization problem:

ZSDP = minx,Y ,y,y0,wk
c′x + Q · Y + µ′y + y0

s.t.





Y y−αkwk

2

(y−αkwk)
2

′
y0 − βk



 � 0, ∀ k = 1, . . . ,K,

Wwk + Tx = h, ∀ k = 1, . . . ,K,

wk ≥ 0, ∀ k = 1, . . . ,K,

Ax = b, x ≥ 0.

With the strong duality assumption, ZD(x) = Z(x) for all x ∈ X. Thus Z = ZSDP or (6) is the

equivalent semidefinite optimization formulation of our risk-averse minimax stochastic optimization

problem (1) with random objective q̃ and constant right-hand side h. �

In related recent work, Delage and Ye [6] use an ellipsoidal algorithm to show that the minimax

stochastic optimization problem

min
x∈X

max
P∈P̂

EP

[

max
k=1,...,K

fk

(

ξ̃,x
)

]

.

is polynomial time solvable under the assumptions:

(i) The set X is convex and equipped with an oracle that confirms the feasibility of x or provides a

separating hyperplane in polynomial time in the dimension of the problem.

(ii) For each k, the function fk (ξ,x) is concave in ξ and convex in x. In addition, one can in

polynomial time find the value fk (ξ,x), a subgradient of fk (ξ,x) in x and a subgradient of

−fk (ξ,x) in ξ.
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(iii) The class of distributions P̂ is defined as

P̂ =
{

P : P[q̃ ∈ S] = 1, (EP [q̃] − µ)Σ−1 (EP [q̃] − µ) ≤ γ1, EP [(q̃ − µ) (q̃ − µ)′ � γ2Σ

}

,

where the constants γ1, γ2 ≥ 0, µ ∈ int(S), Σ ≻ 0 and support S is a convex set for which there

exists an oracle that can confirm feasibility or provide a separating hyperplane in polynomial time.

Our risk-averse two-stage stochastic linear optimization problem with objective uncertainty satisfies

assumptions (i) and (ii). Furthermore, for S = ℜp, γ1 = 0, γ2 = 1 and Σ = Q + µµ′, the distribution

class P is a subset of P̂:

P ⊆ P̂ =
{

P : P[q̃ ∈ ℜp] = 1, EP [q̃] = µ, EP [q̃q̃′] � Q
}

.

In contrast to using an ellipsoidal algorithm, our formulation in Theorem 1 is based on solving a compact

semidefinite optimization problem. In the next section, we generate the extremal distribution for the

second-stage problem and show the connection of our results with the Jensen bound.

2.2 Extremal Distribution

Taking the dual of the semidefinite optimization problem in (7), we obtain:

ZDD(x) = maxV k,vk,vk0,pk

K
∑

k=1

(h − Tx)′pk + βkvk0

s.t.

K
∑

k=1





V k vk

v′
k vk0



 =





Q µ

µ′ 1



 ,





V k vk

v′
k vk0



 � 0, ∀ k = 1, . . . ,K,

W ′pk ≤ αkvk, ∀ k = 1, . . . ,K.

(8)

The interpretation of these dual variables as a set of (scaled) conditional moments allows us to construct

extremal distributions that attain the second-stage optimal value Z(x).

Theorem 2 For an arbitrary x ∈ X, there exists a sequence of distributions in P that asymptotically

achieves the optimal value Z(x) = ZD(x) = ZDD(x).

Proof. Using weak duality for semidefinite optimization problems, we have ZDD(x) ≤ ZD(x). We

first argue that ZDD(x) is also an upper bound of Z(x) = maxP∈P EP [U (Q(q̃,x))].
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Since Q(q,x) is a linear optimization problem; for each objective vector q̃, we define the primal and

dual optimal solutions as w(q̃) and p(q̃). For an arbitrary distribution P ∈ P, we define

vk0 = P (k ∈ arg maxl (αlQ(q̃,x) + βl)) ,

vk = vk0EP

[

q̃

∣

∣

∣ k ∈ arg maxl (αlQ(q̃,x) + βl)
]

,

V k = vk0EP

[

q̃q̃′
∣

∣

∣
k ∈ arg maxl (αlQ(q̃,x) + βl)

]

,

pk = αkvk0EP

[

p(q̃)
∣

∣

∣
k ∈ arg maxl (αlQ(q̃,x) + βl)

]

.

From the definition of the variables, we have:

K
∑

k=1





V k vk

v′
k vk0



 =





Q µ

µ′ 1



 ,

with the moment feasibility conditions given as




V k vk

v′
k vk0



 � 0, ∀ k = 1, . . . ,K.

For ease of exposition, we implicitly assume that the set of q̃, such that arg maxl αlQ(q̃,x) + βl has

multiple optimal solutions has a support with measure zero. For distributions with multiple optimal

solutions, one can perturb the values of the variables to satisfy the moment equality constraints while

maintaining the same objective. This arises due to the continuity of the objective function at break-

points.

Since p(q̃) is the dual optimal solution of the second-stage linear optimization problem, from dual

feasibility we have W ′p(q̃) ≤ q̃. Taking expectations and multiplying by αkvk0, we obtain the inequality

αkvk0W
′
EP

[

p(q̃)
∣

∣

∣
k ∈ arg max

l
(αlQ(q̃,x) + βl)

]

≤ αkvk0EP

[

q̃
∣

∣

∣
k ∈ arg max

l
(αlQ(q̃,x) + βl)

]

,

or W ′pk ≤ αkvk. Thus all the constraints are satisfied and we have a feasible solution of the semidefinite

optimization problem defined in (8). The objective function is expressed as

EP [U(Q(q̃,x))] =
K

∑

k=1

EP

[

(αkQ(q̃,x) + βk)
∣

∣

∣
k ∈ arg max

l
(αlQ(q̃,x) + βl)

]

vk0,

or equivalently

EP [U(Q(q̃,x))] =
K

∑

k=1

(h − Tx)′pk + βkvk0,

since Q(q̃,x) = (h − Tx)′p(q̃). This implies that EP [U(Q(q̃,x))] ≤ ZDD(x) for all P ∈ P. Thus

Z(x) = max
P∈P

EP [U(Q(q̃,x))] ≤ ZDD(x).
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We now construct a sequence of extremal distributions that attains the bound asymptotically. Consider

the dual problem defined in (8) and its optimal solution (V k,vk, vk0,pk)k. We start by assuming that

vk0 > 0 for all k = 1, . . . ,K (note vk0 ≥ 0 due to feasibility). This assumption can be relaxed as we will

see later. Consider the following random vectors:

q̃k :=
vk

vk0
+

b̃kr̃k√
ǫ

, ∀ k = 1, . . . ,K,

where b̃k is a Bernoulli random variable with distribution

b̃k =







0, with probability 1 − ǫ,

1, with probability ǫ,

and r̃k is a multivariate normal random vector, independent of b̃k with mean and covariance matrix

r̃k = N

(

0,
V kvk0 − vkv

′
k

v2
k0

)

.

We construct the mixed distribution Pm(x) of q̃ as:

q̃ := q̃k with probability vk0, ∀ k = 1, . . . ,K.

Under this mixed distribution, we have:

EPm(x) [q̃k] =
vk

vk0
+

EPm[b̃k]EPm [r̃k]√
ǫ

=
vk

vk0
,

and

EPm(x)

[

q̃kq̃
′
k

]

=
vkv

′
k

v2
k0

+ 2
vkEPm(x)[b̃k]EPm(x)

[

r̃′
k

]

vk0
√

ǫ
+

EPm(x)[b̃
2
k]EPm(x)

[

r̃kr̃
′
k

]

ǫ
=

V k

vk0
.

Thus EPm(x)[q̃] = µ and EPm(x)[q̃q̃′] = Q from the feasibility conditions.

Considering the expected value ZPm(x)(x) = EPm(x) [U (Q(q̃,x))], we have:

ZPm(x)(x) ≥
K

∑

k=1

vk0EPm(x) [αkQ(q̃k,x) + βk] .

Conditioning based on the value of b̃k, the inequality can be rewritten as follows:

ZPm(x)(x) ≥
K

∑

k=1

(

vk0ǫEPm(x)

[

αkQ
(

vk

vk0
+

r̃k√
ǫ
,x

)

+ βk

]

+ vk0(1 − ǫ)EPm(x)

[

αkQ
(

vk

vk0
,x

)

+ βk

])

.

Since Q(q,x) is a minimization linear optimization problem with the objective coefficient vector q;

therefore, Q(tq,x) = tQ(q,x) for all t > 0 and

Q
(

vk

vk0
+

rk√
ǫ
,x

)

≥ Q
(

vk

vk0
,x

)

+ Q
(

rk√
ǫ
,x

)

.

11



In addition, αk ≥ 0 and vk0 > 0 imply

ZPm(x)(x) ≥
K

∑

k=1

vk0EPm(x)

[

αkQ
(

vk

vk0
,x

)

+ βk

]

+
√

ǫ

K
∑

k=1

vk0αkEPm(x) [Q (r̃k,x)] ,

or

ZPm(x)(x) ≥
K

∑

k=1

(αkQ (vk,x) + vk0βk) +
√

ǫ

K
∑

k=1

vk0αkEPm(x) [Q (r̃k,x)] .

Since pk is a dual feasible solution to the problem Q (αkvk,x), thus αkQ (vk,x) ≥ (h − Tx)′pk. From

Jensen’s inequality, we obtain EPm(x) [Q (r̃k,x)] ≤ Q
(

EPm(x) [r̃k] ,x
)

= 0. In addition, Assumptions

(A1)-(A4) implies that EPm(x) [Q (r̃k,x)] > −∞. Therefore,

−∞ <

K
∑

k=1

(

(h − Tx)′pk + βkvk0

)

+
√

ǫ

K
∑

k=1

vk0αkEPm(x) [Q (r̃k,x)] ≤ ZPm(x)(x) ≤ Z(x).

We then have:

−∞ < ZDD(x) +
√

ǫ

K
∑

k=1

vk0αkEPm(x) [Q (r̃k,x)] ≤ ZPm(x)(x) ≤ Z(x) = ZD(x) ≤ ZDD(x).

Taking limit as ǫ ↓ 0, we have limǫ↓0 ZPm(x)(x) = Z(x) = ZD(x) = ZDD(x).

Consider the case where there exists a nonempty set L ⊂ {1, . . . ,K} such that vk0 = 0 for all k ∈ L. Due

to feasibility of a positive semidefinite matrix, we have vk = 0 for all k ∈ L (note that |Aij | ≤
√

AiiAjj

if A � 0), which means Q(vk,x) = 0. We claim that there is an optimal solution of the dual problem

formulated in (8) such that

∑

k 6∈L





V k vk

v′
k vk0



 =





Q µ

µ′ 1



 .

Indeed, if V L =
∑

k∈L V k 6= 0, construct another optimal solution with V k := 0 for all k ∈ L and

V k := V k + V L/(K − |L|) for all k 6∈ L. All feasibility constraints are still satisfied as V L � 0 and

vk = 0, vk0 = 0 for all k ∈ L. The objective value remains the same. Thus we obtain an optimal

solution that satisfies the above condition. Since (h − Tx)′pk + vk0βk = 0 for all k ∈ L; therefore, we

can then construct the sequence of extremal distributions as in the previous case. �

In the risk-neutral setting with U(x) = x, the dual problem (8) has trivial solution V 1 = Q, v1 = µ,

and v10 = 1. The second-stage bound then simplifies to

max
p:W ′p≤µ

(h − Tx)′ p,

12



or equivalently

min
w∈X(x)

µ′w.

The second-stage bound thus just reduces to Jensen’s bound where the uncertain objective q̃ is replaced

its mean µ. For the risk-averse case with K > 1, the second-stage cost is no longer concave but quasi-

concave in q̃. The second-stage bound then reduces to a convex combination of Jensen bounds for

appropriately choosen means and probabilities:

maxV k,vk,vk0

K
∑

k=1

(

αk min
wk∈X(x)

v′
kwk + βkvk0

)

s.t.
K

∑

k=1





V k vk

v′
k vk0



 =





Q µ

µ′ 1



 ,





V k vk

v′
k vk0



 � 0, ∀ k = 1, . . . ,K.

The variable wk can be then interpreted as the optimal second-stage solution in the extremal distribution

at which the kth piece of the utility function attains the maximum.

3 Uncertainty in Right-Hand Side

Consider the minimax stochastic problem (1) with random right-hand side h̃ and constant objective q.

The distribution class P is specified by the first and second moments:

P =
{

P : P[h̃ ∈ ℜr] = 1, EP [h̃] = µ, EP [h̃h̃
′
] = Q

}

. (9)

The second-stage cost with risk aversion and right-hand side uncertainty is then given as

U

(

Q(h̃,x)
)

:= max
k=1,...,K

(

αkQ(h̃,x) + βk

)

,

where

Q(h̃,x) = maxp (h̃ − Tx)′p

s.t. W ′p ≤ q.

In this case, the second-stage cost U

(

Q(h̃,x)
)

is a convex function in h̃ and x. We prove the NP-

hardness of the general problem in Section 3.1, while proposing a semidefinite optimization formulation

for a special class of problems in Section 3.2.

13



3.1 Complexity of the General Problem

The second-stage problem maxP∈P EP

[

U

(

Q(h̃,x)
)]

of the risk-averse minimax stochastic optimiza-

tion problem is an infinite-dimensional linear optimization problem with the probability distribution P

or its corresponding probability density function f as the problem variable:

Ẑ(x) = maxf

∫

Rr U (Q(h,x)) f(h)dh

s.t.
∫

Rp hihjf(h)dq = Qij , ∀ i, j = 1, . . . , r,
∫

Rp hif(h)dq = µi, ∀ i = 1, . . . , r,
∫

Rp f(h)dq = 1,

f(h) ≥ 0, ∀h ∈ R
r.

(10)

Under the strong duality condition, the equivalent dual problem is:

ẐD(x) = minY ,y,y0
Q · Y + µ′y + y0

s.t. h′Y h + y′h + y0 ≥ U (Q(h,x)) , ∀h ∈ R
r.

(11)

The minimax stochastic problem is equivalent to the following problem:

min
x∈X

(

c′x + ẐD(x)
)

.

The constraints of the dual problem defined in (11) can be rewritten as follows:

h′Y h + y′h + y0 ≥ αkQ(h,x) + βk ∀h ∈ R
r, k = 1, . . . ,K.

As αk ≥ 0, these constraints are equivalent to:

h′Y h + (y − αkp)′h + y0 + αkp
′Tx − βk ≥ 0, ∀h ∈ R

r,p : W ′p ≤ q, k = 1, . . . ,K.

The dual matrix Y � 0, else using an argument in Theorem 1, we can scale h and find a violated

constraint. Converting to a minimization problem, the dual feasibility constraints can be expressed as:

min
h,p:W ′p≤q

h′Y h + (y − αkp)′h + y0 + αkp
′Tx − βk ≥ 0, ∀ k = 1, . . . ,K. (12)

We will show that the separation version of this problem is NP-hard.

Separation problem (S): Given {αk, βk}k, Tx, W , q, Y � 0, y and y0, check if the dual

feasibility constraints in (12) are satisfied? If not, find a k ∈ {1, . . . ,K}, h ∈ R
r and p

satisfying W ′p ≤ q such that:

h′Y h + (y − αkp)′h + y0 + αkp
′Tx − βk < 0.
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The equivalence of separation and optimization (see Grötschel [11]) then implies that dual feasibility

problem and the minimax stochastic optimization problem are NP-hard.

Theorem 3 The risk-averse minimax stochastic optimization problem (1) with random right-hand side

h̃ and constant objective q is NP-hard.

Proof. We provide a reduction from the decision version of the 2-norm maximization problem over a

bounded polyhedral set:

(S1): Given A, b with rational entries and a nonzero rational number s, is there a vector

p ∈ R
r such that:

Ap ≤ b,
√

p′p ≥ s ?

The 2-norm maximization problem and its related decision problem (S1) are shown to be NP-complete

in Mangasarian and Shiau [16]. Define the parameters of (S) as

K := 1, βK := −s2/4, W ′ := A and q := b,

Y := I, y := 0, y0 := 0, αK := 1 and Tx := 0,

where I is the identity matrix. The problem (S1) can then be answered by the question:

Is max
p:W ′p≤q

p′p ≥ −4βK ?

or equivalently:

Is min
h,p:W ′p≤q

h′h − p′h − βK ≤ 0 ?

since the optimal value of h is p/2. Thus (S1) reduces to an instance of (S):

Is min
h,p:W ′p≤q

h′Y h + (y − αKp)′h + y0 + αKp′Tx − βK ≤ 0 ?

Since (S1) is NP-complete, (S) and the corresponding minimax stochastic optimization problem are

NP-hard. �
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3.2 Explicitly Known Dual Extreme Points

The NP-hardness result in the previous section is due to the non-convexity of the objective function

in (12) in the joint decision variables (h,p). In this section, we consider the case where the extreme

points of the dual problem of the second-stage linear optimization problem are known and bounded by

a function which is polynomial in the dimension of the problem. We make the following assumption:

(A5) The N extreme points {p1, . . . ,pN} of the dual feasible region {p ∈ R
r : W ′p ≤ q} are explicitly

known.

We will provide the semidefinite optimization reformulation of our minimax stochastic optimization

problem in the following theorem:

Theorem 4 Under the additional Assumption (A5), the risk-averse minimax stochastic optimization

problem (1) with random right-hand side h̃ and constant objective q is equivalent to the following

semidefinite optimization problem:

ẐSDP = minx,Y ,y,y0
c′x + Q · Y + µ′y + y0

s.t.





Y
y−αkpi

2

(y−αkpi)
2

′
y0 + αkp

′
iTx − βk



 � 0, ∀ k = 1, . . . ,K, i = 1, . . . , N,

Ax = b, x ≥ 0.

(13)

Proof. Under Assumption (A5), we have:

Q(h̃,x) = max
i=1,...,N

(h̃ − Tx)′pi.

The dual constraints can be explicitly written as follows:

h′Y h + (y − αkpi)
′h + y0 + αkp

′
iTx − βk ≥ 0, ∀h ∈ R

r, k = 1, . . . ,K, i = 1, . . . , N.

These constraints can be formulated as the linear matrix inequalities:





Y
y−αkpi

2

(y−αkpi)
2

′
y0 + αkp

′
iTx − βk



 � 0, ∀ k = 1, . . . ,K, i = 1, . . . , N.

Thus the dual problem of the second-stage optimization problem is rewritten as follows:

ẐD(x) = minY ,y,y0
Q · Y + µ′y + y0

s.t.





Y
y−αkpi

2

(y−αkpi)
2

′
y0 + αkp

′
iTx − βk



 � 0, ∀ k = 1, . . . ,K, i = 1, . . . , N,
(14)
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which provides the semidefinite formulation for the risk-averse minimax stochastic optimization problem.

ẐSDP = minx,Y ,y,y0
c′x + Q · Y + µ′y + y0

s.t.





Y
y−αkpi

2

(y−αkpi)
2

′
y0 + αkp

′
iTx − βk



 � 0, ∀ k = 1, . . . ,K, i = 1, . . . , N,

Ax = b, x ≥ 0.

From the strong duality assumption, we have ẐD(x) = Ẑ(x). Thus Z = ẐSDP or (13) is the equivalent

semidefinite optimization formulation of the minimax stochastic optimization problem (1) with random

right-hand side h̃ and constant objective q. �

To construct the extremal distribution, we again take dual of the problem defined in (14)

ẐDD(x) = max
K

∑

k=1

N
∑

i=1

(

αkp
′
iv

i
k + vi

k0(βk − αkp
′
iTx)

)

s.t.

K
∑

k=1

N
∑

i=1





V i
k vi

k

(vi
k)

′ vi
k0



 =





Q µ

µ′ 1



 ,





V i
k vi

k

(vi
k)

′ vi
k0



 � 0, ∀ k = 1, . . . ,K, i = 1, . . . , N.

(15)

We construct an extremal distribution for the second-stage problem using the following theorem:

Theorem 5 For an arbitrary x ∈ X, there exists an extremal distribution in P that achieves the

optimal value Ẑ(x).

Proof. As αk ≥ 0, we have

U(Q(h̃,x)) = max
k=1,...,K

(

αkQ(h̃,x) + βk

)

= max
k,i

(

αk(h − Tx)′pi + βk

)

.

Using weak duality for semidefinite optimization problems, we have ẐDD(x) ≤ ẐD(x). We show next

that ẐDD(x) is an upper bound of Ẑ(x) = maxP∈P EP [U(Q(h̃,x))]. For any distribution P ∈ P, we

define:

vi
k0 = P

(

(k, i) ∈ arg maxl,j

(

αl(h̃ − Tx)′pj + βl

))

,

vi
k = vi

k0EP

[

h̃
∣

∣

∣
(k, i) ∈ arg maxl,j

(

αl(h̃ − Tx)′pj + βl

)]

,

V i
k = vi

k0EP

[

h̃h̃
′
∣

∣

∣ (k, i) ∈ arg maxl,j

(

αl(h̃ − Tx)′pj + βl

)]

.

The vector (vi
k0,v

i
k,V

i
k)k,i is a feasible solution to the dual problem defined in (15) and the value

EP [U(Q(h̃,x))] is calculated as follows.

EP [U(Q(h̃,x))] =
K

∑

k=1

N
∑

i=1

vi
k0EP

[

(

αk(h̃ − Tx)′pi + βk

) ∣

∣

∣
(k, i) ∈ arg max

l,j

(

αl(h̃ − Tx)′pj + βl

)

]

,
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or

EP [U(Q(h̃,x))] =

K
∑

k=1

N
∑

i=1

(

αkp
′
iv

i
k + vi

k0(βk − αkp
′
iTx)

)

.

Therefore, we have: EP [U(Q(h̃,x))] ≤ ẐDD(x) for all P ∈ P. Thus

Ẑ(x) = max
P∈P

EP [U(Q(h̃,x))] ≤ ẐDD(x).

We now construct the extremal distribution that achieves the optimal value Ẑ(x). Consider the optimal

solution (vi
k0,v

i
k,V

i
k)k,i of the dual problem defined in (15). Without loss of generality, we can again

assume that vi
k0 > 0 for all k = 1, . . . ,K and i = 1, . . . , N (see Theorem 2). We then construct NK

multivariate normal random vectors h̃
i

k with mean and covariance matrix:

h̃
i

k := N

(

vi
k

vi
k0

,
V i

kvk0 − vi
k(v

i
k)

′

v2
k0

)

.

We construct a mixed distribution Pm(x) of h̃:

h̃ := h̃
i

k with probability vk0, ∀ k = 1, . . . ,K, i = 1, . . . , N.

Clearly, EPm(x)[h̃] = µ and EPm(x)[h̃h̃
′
] = Q. Thus

EPm(x)[U(Q(h̃,x))] =

K
∑

k=1

N
∑

i=1

vi
k0EPm(x)

[

max
k′,i′

(

αk′(h̃ − Tx)′pi′ + βk′

) ∣

∣

∣ h̃ = h̃
i

k

]

.

We then have:

EPm(x)[U(Q(h̃,x))] ≥
K

∑

k=1

N
∑

i=1

vi
k0EPm(x)

[

αk(h̃
i

k − Tx)′pi + βk

]

.

By substituting the mean vectors, we obtain:

EPm(x)[U(Q(h̃,x))] ≥
K

∑

k=1

N
∑

i=1

vi
k0

[

αk

(

vi
k

vi
k0

− Tx

)′

pi + βk

]

.

Finally we have:

EPm(x)[U(Q(h̃,x))] ≥
K

∑

k=1

N
∑

i=1

(

αkp
′
iv

i
k + vi

k0(βk − αkp
′
iTx)

)

= ẐDD(x).

Thus ẐDD(x) ≤ EPm(x)[U(Q(h̃,x))] ≤ Ẑ(x) ≤ ẐDD(x) or EPm(x)[U(Q(h̃,x))] = Ẑ(x) = ẐDD(x). It

means the constructed distribution Pm(x) is the extremal distribution. �
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4 Computational Results

To illustrate our approach, we consider two following problems: the production-transportation problem

with random transportation costs and the single facility minimax distance problem with random cus-

tomer locations. These two problems fit into the framework of two-stage stochastic linear optimization

with random objective and random right-hand side respectively.

4.1 Production and Transportation Problem

Suppose there are m facilities and n customer locations. Assume that each facility has a normalized

production capacity of 1. The production cost per unit at each facility i is ci. The demand from each

customer location j is hj and known beforehand. We assume that
∑

j hj < m. The transportation

cost between facility i and customer location j is qij. The goal is to minimize the total production and

transportation cost while satisfying all the customer orders. If we define xi ≥ 0 to be the amount to be

produced at facility i and wij to be the amount transported from i to j, the deterministic production-

transportation problem is formulated as follows

min
m

∑

i=1

cixi +
m

∑

i=1

n
∑

j=1

qijwij

s.t.

m
∑

i=1

wij = hj , ∀ j,

n
∑

j=1

wij = xi, ∀ i,

0 ≤ xi ≤ 1, wij ≥ 0, ∀ i, j.

The two-stage version of this problem is to make the production decisions now while the transportation

decision will be made once the random costs q̃ij are realized. The minimax stochastic problem with risk

aversion can then be formulated as follows

Z = min

(

c′x + max
P∈P

EP [U(Q(q̃,x))]

)

s.t. 0 ≤ xi ≤ 1, ∀ i,

(16)
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where the second-stage cost Q(q̃,x) is given as

Q(q̃,x) = min
m

∑

i=1

n
∑

j=1

q̃ijwij

s.t.

m
∑

i=1

wij = hj , ∀ j,

n
∑

j=1

wij = xi, ∀ i,

wij ≥ 0, ∀ i, j.

For transportation costs with known mean and second moment matrix, the risk-averse minimax stochas-

tic optimization problem is solved as:

ZSDP = minx,Y ,y,y0,wk
c′x + Q · Y + µ′y + y0

s.t.





Y y−αkwk

2

(y−αkwk)
2

′
y0 − βk



 � 0, ∀ k = 1, . . . ,K,

m
∑

i=1

wijk = hj , ∀ j, k,

n
∑

j=1

wijk = xi, ∀ i, k,

0 ≤ xi ≤ 1, wijk ≥ 0, ∀ i, j, k.

(17)

The code for this problem is developed using Matlab 7.4 with SeDuMi solver (see [23]) and YALMIP

interface (Löfberg [15]).

An alternative approach using the data-driven or sample approach is to solve the linear optimization

problem:

ZD = min
n

∑

i=1

cixi +
1

N

N
∑

t=1

U(Q(qt,x))

s.t. 0 ≤ xi ≤ 1, ∀ i,

(18)

where qt ∈ R
mn, t = 1, . . . , N are sample cost data from a given distribution. We can rewrite this as a
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large linear optimization problem as follows:

ZS = min

n
∑

i=1

cixi +
1

N

N
∑

t=1

zt

s.t. zt ≥ αk





m
∑

i=1

n
∑

j=1

qijtwijt



 + βk, ∀ k, t,

m
∑

i=1

wijt = hj , ∀ j, t,

n
∑

j=1

wijt = xi, ∀ i, t,

0 ≤ xi ≤ 1, wijt ≥ 0, ∀ i, j, t.

The code for this data-driven model is developed in C with CPLEX 9.1 solver.

Numerical Example

We generate randomly m = 5 facilities and n = 20 customer locations within the unit square. The

distance q̄ij from facility i to customer location j is calculated. The first and second moments µ

and Q of the random distances q̃ are generated by constructing 1, 000 uniform cost vectors qt from

independent uniform distributions on intervals [0.5q̄ij , 1.5q̄ij ] for all i, j. The production cost ci is

randomly generated from a uniform distribution on the interval [0.5c̄, 1.5c̄], where c̄ is the average

transportation cost. Similarly, the demand hj is randomly generated from the uniform distribution on

the interval [0.5m
n

, m
n

] so that the constraint
∑

j hj < m is satisfied. Customer locations and warehouse

sites for this instance are shown in Figure 1.

We consider two different disutility functions - the risk-neutral one, U(x) = x, and the piecewise

linear approximation of the exponential risk-averse disutility function Ue(x) = γ(eδx−1), where γ, δ > 0.

For this problem instance, we set γ = 0.25 and δ = 2 and use an equidistant linear approximation with

K = 5 for Ue(x), x ∈ [0, 1]. Both disutility functions are plotted in Figure 2.

The data-driven model is solved with 10, 000 samples qt generated from the normal distribution Pd

with the given first and second moment µ and Q. Optimal solutions and total costs of this problem

instance obtained from the two models are shown in Table 1. The total cost obtained from the minimax

model is indeed higher than that from the data-driven model. This can be explained by the fact that

the former model hedges against the worst possible distributions. We also calculate production costs

and expected risk-averse transportation costs for these two models and the results are reported in Table

2. The production costs are higher under risk-averse consideration. This indeed justifies the change
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Figure 1: Customer locations (circles) and facility locations (squares)
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Figure 2: Approximate exponential risk-averse disutility function and risk-neutral one
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in optimal first-stage solutions, which aims at reducing risk effects in the second stage (with smaller

transportation cost in this case). Changes in the minimax solution are more significant than those in

the data-driven one with higher relative change in the production cost.

Disutility Function Model Optimal Solution Total Cost

U(x) = x Minimax xm = (0.1347; 0.6700; 0.8491; 1.0000; 1.0000) 1.6089

Data-Driven xd = (0.2239; 0.5808; 0.8491; 1.0000; 1.0000) 1.5668

U(x) ≈ 0.25(e2x − 1) Minimax xm = (0.5938; 0.2109; 0.8491; 1.0000; 1.0000) 1.6308

Data-Driven xd = (0.3606; 0.4409; 0.8523; 1.0000; 1.0000) 1.5533

Table 1: Optimal solutions and total costs obtained from two models under different disutility functions

Disutility Function Model Production Cost Transportation Cost Total Cost

U(x) = x Minimax 0.9605 0.6484 1.6089

Data-Driven 0.9676 0.5992 1.5668

U(x) ≈ 0.25(e2x − 1) Minimax 0.9968 0.6340 1.6308

Data-Driven 0.9785 0.5747 1.5533

Table 2: Production and risk-averse transportation costs obtained from two models under different

disutility functions

Using Theorem 2, the optimal dual variables are used to construct the limiting extremal distribution

Pm(xm) for the solution xm. For the risk-neutral problem, this worst-case distribution simply reduces

to a limiting one-point distribution. The Jensen’s bound is obtained and with the mean transportation

costs, the solution xm performs better than the solution xd obtained from the data-driven approach.

The total cost increases from 1.6089 to 1.6101. For the risk-averse problem, the limiting extremal

distribution is a discrete distribution with two positive probabilities of 0.2689 and 0.7311 for two pieces

of the approximating piecewise linear risk function, k = 3 and k = 4 respectively. The total cost

of 1.6308 is obtained under this distribution with the solution xm, which is indeed the maximal cost

obtained from the minimax model. We can also obtain the limiting extremal distribution Pm(xd) for

the solution xd, which is again a discrete distribution. Two pieces k = 3 and k = 4 have the positive

probability of 0.1939 and 0.8061 respectively while two additional pieces k = 1 and k = 5 are assigned

a very small positive probability of 3.4 × 10−5 and 2.1 × 10−5. Under this extremal distribution, the
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data-driven solution xd yields the total cost of 1.6347, which is higher than the maximal cost obtained

from the minimax model.

We next stress test the quality of the stochastic optimization solution by contaminating the original

probability distribution Pd used in the data-driven model. We use the approach proposed in Dupacova

[9] to test the quality of the solutions on the contaminated distribution

Pλ = (1 − λ)Pd + λQ,

for λ varying between [0, 1]. The distribution Q is a probability distribution different from Pd that one

wants to test their first-stage solution against. Unfortunately, no prescription on a good choice of Q is

provided in Dupacova [9]. We now propose a general approach to stress-test the quality of stochastic

optimization solutions:

(1) Solve the data-driven linear optimization problem arising from the distribution Pd to find the

optimal first-stage solution xd.

(2) Generate the extremal distribution Pm(xd) that provides the worst case expected cost for the

solution xd.

(3) Test the quality of the data-driven solution xd on the distribution Pλ = (1 − λ)Pd + λPm(xd) as

λ is varied between [0, 1].

In our experiment, we compare the data-driven solution xd and the minimax solution xm on the

contaminated distribution Pλ = (1 − λ)Pd + λPm(xd) for the risk-averse problem. For a given solution

x, let z1(x), z2(x) denote the production cost and the random transportation cost with respect to

random cost vector q̃. The total cost is z(x) = z1(x)+zr
2(x), where zr

2(x) = U (z2(x)) is the risk-averse

transportation cost. For each λ ∈ [0, 1], we compare the minimax solution relative to the data-driven

solution using the following three quantities

(1) Expectation of total cost (in %):
(

EPλ
[z(xm)]

EPλ
[z(xd)]

− 1

)

× 100%,

(2) Standard deviation of total cost (in %)









√

EPλ

[

z(xm) − EPλ
[z(xm)]

]2

√

EPλ

[

z(xd) − EPλ
[z(xd)]

]2
− 1









× 100%,
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(3) Quadratic semi-deviation of total cost (in %)









√

EPλ

[

max(0, z(xm) − EPλ
[z(xm)])

]

√

EPλ

[

max(0, z(xd) − EPλ
[z(xd)])

]

− 1









× 100%.

These measures are also applied for z2(x), the transportation cost without risk-averse consideration.

When these quantities are below 0, it indicates that the minimax solution is outperforming the data-

driven solution whereas when it is greater than 0, the data-driven is outperforming the minimax solution.

The standard deviation is symmetric about the mean, penalizing both the upside and the downside.

On the other hand, the quadratic semi-deviation penalizes only when the cost is larger than the mean

value.
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Figure 3: Relative difference in expectation of total cost of minimax and data-driven model

Figure 3 shows that the minimax solution is better than the data-driven solution in terms of total cost

when λ is large enough (λ > 0.75 in this example). If we only consider the second-stage transportation

cost, the minimax solution results in smaller expected costs for all λ and the relative differences are

increased when λ increases. This again shows that the minimax solution incurs higher production cost

while maintaining smaller transportation cost to reduce the risk effects in the second stage. Figure 4

also shows that the risk-averse cost changes faster than the risk-neutral cost. The production cost z1(x)
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Figure 4: Relative difference in expectation of transportation costs of minimax and data-driven model
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Figure 5: Relative difference in standard deviation of transportation costs of minimax and data-driven

model
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Figure 6: Relative difference in quadratic semi-deviation of transportation costs of minimax and data-

driven model

is fixed for each solution x; therefore, the last two measures of total cost z(x) are exactly the same

for those of risk-averse transportation cost zr
2(x). Figure 5 and 6 illustrates these two measures for

risk-averse transportation cost and its risk-neutral counterpart. The minimax solution is clearly better

than the data-driven solution in terms of standard deviation and quadratic semi-deviation for all values

of λ and the differences are more significant in the case of risk-averse cost.

4.2 Single Facility Minimax Distance Problem

Let (x1, y1), . . . , (xn, yn) denote n customer locations on a plane. The single facility minimax distance

problem is to identify a facility location (x, y) that minimizes the maximum distance from the facility

to the customers. Assuming a rectilinear or Manhattan distance metric, the problem is formulated as:

min
x,y

(

max
i=1,...,n

|xi − x| + |yi − y|
)

.
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This can be solved as a linear optimization problem:

minx,y,z z

s.t. z + x + y ≥ xi + yi, ∀ i,

z − x − y ≥ −xi − yi, ∀ i,

z + x − y ≥ xi − yi, ∀ i,

z − x + y ≥ −xi + yi, ∀ i.

Carbone and Mehrez [5] studied this problem under the following stochastic model for customer loca-

tions: The coordinates x̃1, ỹ1, . . . , x̃n, ỹn are assumed to be identical, pairwise independent and normally

distributed random variables with mean 0 and variance 1. Under this distribution, the optimal solution

to the stochastic problem:

min
x,y

E

(

max
i=1,...,n

|x̃i − x| + |ỹi − y|
)

,

is just (x, y) = (0, 0).

We now solve the minimax version of this problem under weaker distributional assumptions using only

first and second moment information. This fits the model proposed in Section 3.2 with random right

hand side. The stochastic problem for the minimax single facility distance problem can be written as

follows:

Z = min
x,y

max
P∈P

EP

[

U

(

max
i=1,...,n

|x̃i − x| + |ỹi − y|
)]

,

where the random vector (x̃, ỹ) = (x̃1, ỹ1, . . . , x̃n, ỹn) has mean µ and second moment matrix Q and U

is the disutility function defined in (2). The equivalent semidefinite optimization problem is given as

ZSDP = min Q · Y + µ′y + y0

s.t.





Y
y−αk(e2i−1+e2i)

2

(y−αk(e2i−1+e2i))
2

′
y0 + αk(x + y) − βk



 � 0, ∀ i, k,





Y
y+αk(e2i−1+e2i)

2

(y+αk(e2i−1+e2i))
2

′
y0 − αk(x + y) − βk



 � 0, ∀ i, k,





Y
y−αk(e2i−1−e2i)

2

(y−αk(e2i−1−e2i))
2

′
y0 + αk(x − y) − βk



 � 0, ∀ i, k,





Y
y+αk(e2i−1−e2i)

2

(y+αk(e2i−1−e2i))
2

′
y0 − αk(x − y) − βk



 � 0, ∀ i, k,

(19)

where ei ∈ R
2n denote the unit vector in R

2n with the ith entry having a 1 and all other entries having

0. This semidefinite optimization problem is obtained from Theorem 4 and using the fact that the set
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of extreme points for the dual feasible region consist of the 4n solutions:

{e2i−1 + e2i,−e2i−1 − e2i,e2i−1 − e2i,−e2i−1 + e2i}i=1,...,n .

The data-driven approach for this problem is solved using the formulation:

ZD = min
x,y

1

N

N
∑

t=1

U

(

max
i=1,...,n

|xit − x| + |yit − y|
)

,

where (x1t, y1t), . . . , (xnt, ynt) are location data for the samples t = 1, . . . , N . This problem can be

solved as the large scale linear optimization problem

ZD = minx,y,zt

1

N

N
∑

t=1

zt

s.t. zt + αk(x + y) ≥ αk(xit + yit) + βk ∀ i, k, t,

zt − αk(x + y) ≥ −αk(xit + yit) − βk ∀ i, k, t,

zt + αk(x − y) ≥ αk(xit − yit) + βk ∀ i, k, t,

zt − αk(x − y) ≥ −αk(xit − yit) + βk ∀ i, k, t.

Numerical Example

In this example, we generate n = 20 customer locations by randomly generating clusters within the

unit square. Each customer location is perturbed from its original position by a random distance in

a random direction. The first and second moments µ and Q are estimated by performing 1, 000 such

random perturbations. We first solve both the minimax and data-driven model to find the optimal

facility locations (xm, ym) and (xd, yd) respectively. The data-driven model is solved using 10, 000

samples drawn from the normal distribution with given first and second moments. In this example, we

focus on the risk-neutral case with U(x) = x.

The optimal facility location and the expected costs are shown in Table 3. As should be, the expected

maximum distance between a customer and the optimal facility is larger under the minimax model as

compared to the data-driven approach. The (expected) customer locations and the optimal facility

locations are plotted in Figure 7.

To compare the quality of the solutions, we plot the probability that a customer is furthest away

from the optimal facility for the minimax and data-driven approach (see Figure 8). For the minimax

problem, these probabilities were obtained from the optimal dual variables to the semidefinite optimiza-

tion problem (19). For the data-driven approach, the probabilities were obtained through an extensive

simulation using 100, 000 samples from the normal distribution. Qualitatively, these two plots look fairly
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Disutility Function Model Optimal Solution Expected Maximum Distance

U(x) = x Minimax (xm, ym) = (0.5975, 0.6130) 0.9796

Data-Driven (xd, yd) = (0.6295, 0.5952) 0.6020

Table 3: Optimal solutions and total costs obtained from two models for the risk-neutral case

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2
3

4

5

6

7

8

9

11
12

13

14

15

16

17

18

19

20

10

d
m

Figure 7: Facility location solutions (square) and expected customer locations (circles)
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similar. In both solutions, the facilities 17, 20 and 1 (in decreasing order) have the most significant

probabilities of being furthest away from the optimal facility. The worst case distribution tends to even

out the probabilities that the different customers are far away from the facilities as compared to the

normal distribution. For instance, the minimax solution predicts larger probabilities for facilities 5 to

16 as compared to the data-driven solution. The optimal minimax facility location thus seems to be

hedging against the possibility of each customer facility moving far away from the center (extreme case).

The optimal data-driven facility on the other hand seems to be hedging more against the customers

that are far away from the center in an expected sense (average case). The probability distribution for

the maximum distance in the two cases are provided in Figures 9 and 10. The larger distances and the

discrete nature of the extremal distribution are evident as compared to the smooth normal distribution.
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Figure 8: Probability of customers being at the maximum distance from (xm, ym) and (xd, yd)

We next stress test the quality of the stochastic optimization solution by contaminating the original

probability distribution Pd used in the data-driven model. In our experiment, we compare the data-

driven solution (xd, yd) and the minimax solution (xm, ym) on the contaminated distribution Pλ =

(1 − λ)Pd + λPm(xd, yd). For a given facility location (x, y), let z(x, y) denote the (random) maximum
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distance between the facility and customer locations:

z(x, y) = max
i=1,...,n

|x̃i − x| + |ỹi − y|.

For each λ ∈ [0, 1], we again compare the minimax solution relative to the data-driven solution using

the three quantities: expectation, standard deviation and quadratic semi-deviation of max distance.

The results for different λ are displayed in Figures 11, 12 and 13. From Figure 11, we see that

for λ closer to 0, the minimax solution has larger expected distances as compared to the data-driven

solution. This should be expected, since the data-driven solution is trying to optimize the exact distri-

bution. However as the contamination factor λ increases (in this case beyond 0.5), the minimax solution

performs better than the data-driven solution. This suggests that if there is significant uncertainty in

the knowledge of the exact distribution, the minimax solution would be a better choice. The average

maximum distance from the two solutions is within 2% of each other. Interestingly, again from Figures

12 and 13 it is clear that the standard deviation and the quadratic semi-deviation from the minimax

solution is generally lesser than that for the data-driven solution. In our experiments this is true for

all λ ≥ 0.05. This is a significant benefit that the minimax solution provides as compared to the data-

driven solution under contamination.
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Figure 11: Relative difference in expectation of maximum distance obtained from minimax and data-

driven solution
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Figure 12: Relative difference in standard deviation of maximum distance obtained from minimax and

data-driven solution
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Figure 13: Relative difference in quadratic semi-deviation of maximum distance obtained from minimax

and data-driven solution
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