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Abstract: This paper examines when information asymmetry among investors affects the cost of 
capital in excess of standard risk factors. When equity markets are perfectly competitive, 
information asymmetry has no separate effect on the cost of capital. When markets are imperfect, 
information asymmetry can have a separate effect on firms’ cost of capital. Consistent with our 
prediction, we find that information asymmetry has a positive relation with firms’ cost of capital 
in excess of standard risk factors when markets are imperfect and no relation when markets 
approximate perfect competition. Overall, our results show that the degree of market competition 
is an important conditioning variable to consider when examining the relation between 
information asymmetry and cost of capital. 
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1. Introduction 

The purpose of this paper is to design an empirical test, and then to provide evidence 

consistent with this test, that enhances discussions as to when information asymmetry among 

investors affects the cost of capital in excess of standard risk factors. Recent literature 

emphasizes that information is not a separate factor in determining the cost of capital in perfect 

competition settings (e.g., Hughes, Liu, and Liu, 2007; Lambert, Leuz, and Verrecchia, 2007). 

Further, other work shows that once one controls for average precision, information asymmetry 

has no effect on the cost of capital in perfect competition settings (Lambert, Leuz, and 

Verrecchia, 2010). What these papers leave unexamined, however, is whether information 

asymmetry has a separate effect on the cost of capital in settings that are less than perfectly 

competitive. To study this question, we examine expected returns in a setting where information 

asymmetry is most likely in evidence, in combination with a circumstance where information 

asymmetry is likely to exhibit the greatest effect on expected returns, as proxied by the level of 

competition for a firm’s shares.  

Perfect competition in a securities market refers to situations in which investors are price 

takers or, equivalently, when there are “horizontal demand curves for stocks” (Shleifer, 1986). A 

body of literature beginning with Hellwig (1980, p. 478) points out that the assumption that 

traders do not affect price implicitly relies on the assumption that the number of traders is very 

large (countably infinite). When demand curves are flat, demand has no effect on price. Each 

investor anticipates that neither his or her own trade, nor the trades of others, will have any effect 

on price. This assumption of flat demand curves implies that investors with any degree of 

knowledge about firms can trade as much as they wish without affecting prices.  
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When equity markets are imperfectly competitive, however, information asymmetry can 

have a separate effect on firms’ cost of capital. Imperfect competition is typically characterized 

as each investor’s self-sustaining belief that he or she faces a downward-sloping demand curve 

or an upward-sloping price curve for firm shares (see, e.g., Kyle, 1989; Lambert and Verrecchia, 

2010), and this scenario occurs when the number of traders is finite.1 When the number of traders 

is finite, each investor recognizes the effect he or she has on price, and therefore price curves are 

upwardly sloping in demand. When price curves are upwardly sloping in demand, the curve for 

investors who are better informed is likely to be steeper than the curve for investors who are less 

well informed (in equilibrium). This results from the fact that the trades of better informed 

investors have a greater impact on price because of their superior knowledge. When investors 

with different levels of knowledge face different price curves, it is likely that information 

asymmetry, as a reflection of these different levels of knowledge, will manifest in price.2 

Perhaps consistent with this observation, Easley, Hvidkjaer, and O’Hara (2002), Francis, 

LaFond, Olsson, and Schipper (2005), Leuz and Verrecchia (2000), and Hail and Leuz (2006), 

among others, show strong negative relations between proxies for information quality and 

proxies for the cost of capital. Thus, one way to reconcile the findings of these papers with those 

of Core, Guay, and Verdi (2008) and Mohanram and Rajgopal (2009) is to suggest that the 

former speaks to imperfect competition settings while the latter concerns primarily perfect 

competition settings. Our results provide evidence that the degree of market competition is an 

important conditioning variable that these and other empirical studies have not considered. 

                                                 
1 Prices are upward-sloping when the demand curve is downward-sloping because an increase in investor demand 
shifts the demand curve outward, with the result that price increases. While upward-sloping prices may seem 
counterintuitive, they manifest in posted bid-ask spreads and depths for a given stock. A buy order for more shares 
than are offered at the quoted depth will increase the price above the quoted ask (i.e., the greater the demand, the 
higher the trade price rises in expectation). Shleifer (1986) shows that prices can be upward-sloping in extreme cases 
even for very large firms: prices increase when firms are first included in the S&P 500 index. 
2 See, for example, the discussion in Lambert and Verrecchia (2010). 
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In this paper we explore further this possibility by introducing a proxy for the level of 

competition in a firm’s shares. While financial market competition is a well accepted economic 

concept, it has no natural proxy in market data. This problem notwithstanding, we use the 

number of investors in a firm as our proxy for the level of competition for a firm’s shares. Our 

rationale for this choice is that empirically we observe a wide range in the number of investors in 

U.S. firms, with some in the hundreds of thousands, thereby seemingly consistent with 

assumptions about perfect competition and price-taking behavior, but others in the hundreds, 

thereby less plausibly associated with perfect competition and price taking. When the number of 

investors in a firm is small, it is unreasonable for these investors to assume that their demand has 

no effect on price. Instead, here an investor anticipates that his or her demand will have an 

unfavorable impact on the prices at which his or her trades are executed. To the extent that 

better- (worse-) informed investors have a more (less) unfavorable impact on prices because of 

their superior (inferior) knowledge, levels of information asymmetry should manifest in prices.  

To find evidence of whether information asymmetry manifests in expected returns, our 

research design examines future returns in a setting where information asymmetry is most likely 

in evidence, in combination with a circumstance where information asymmetry is likely to have 

the greatest effect. Specifically, we sort firms based on their number of shareholders, as a proxy 

for the level of competition in their shares, and also sort on a proxy for information asymmetry. 

We find that when the number of shareholders is low, firms with high information asymmetry 

earn significantly higher excess returns than do firms with low information asymmetry. We also 

find that when the number of shareholders is high, there is no difference in returns for firms with 

high information asymmetry over firms with low information asymmetry. Finally, we present 

evidence that these findings are robust to different proxies for information asymmetry, different 
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ways of sorting, different proxies for the level of competition, different samples, and different 

models of expected returns. 

The remainder of the paper proceeds as follows. The next section reviews the relevant 

prior literature. Section 3 describes how we measure key variables and the research design for 

our empirical tests. Section 4 describes our sample. Section 5 presents our findings and 

robustness tests, and Section 6 concludes the paper and offers caveats to our conclusions. 

 

2. Summary of Hypothesis and Review of Related Literature 

In summary of the foregoing, we expect information asymmetry to affect firms’ cost of 

capital when equity markets are imperfectly competitive. We summarize these predictions in 

Figure 1. When a firm has high (low) information asymmetry and when markets are imperfect, 

we predict that this firm has a relatively high (low) cost of capital. We therefore expect positive 

differences in the cost of capital between high and low information asymmetry firms in imperfect 

markets. On the other hand, when markets are perfect, regardless of the level of information 

asymmetry, no market participant affects price when he or she trades. Because no individual 

investor can affect price, differences in information across investors do not affect the cost of 

capital. In other words, under perfect competition (bottom row of Figure 1), market risk 

completely explains the cost of capital both when information asymmetry is low (column 2) and 

when it is high (column 3), so there is no difference (column 4).  
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Figure 1 

Predicted Excess Cost of Capital by Information Environment and Market Setting 

(Cost of Capital in Excess of That Expected, Given Market Risk) 

 

 Information Environment  

 
Market setting 

Low 
Information 
Asymmetry 

High 
Information 
Asymmetry 

Predicted 
COC difference 

(1) (2) (3) (4) 

 
Imperfect competition  

 
Low  High Positive 

 
Perfect competition  

 
Zero Zero None 

 

A body of literature beginning with Hellwig (1980, p. 478) points out that the assumption 

that traders do not affect price implicitly relies on the assumption that the number of traders is 

very large (countably infinite). When the number of traders is finite, each investor knows that he 

or she and every other investor pushes the price upward (downward) when buying (selling). 

When each investor has a self-sustaining belief that he or she faces an upwardly sloping price 

curve for shares of a firm, the market is imperfectly competitive (Kyle, 1989; Lambert and 

Verrecchia, 2010). The upwardly sloping nature of price reduces an investor’s willingness to 

trade and increases the cost of capital.3 If, in addition, there is information asymmetry, it 

increases the upward slope in price, resulting in adverse selection and a higher cost of capital. 

Adverse selection is a consequence of the fact that when price is upward-sloping, differences in 

the quality of information across investors affect the price at which trades are executed. In other 

words, here an individual investor presumes that when he or she trades in a firm’s shares, there is 

                                                 
3 This cost of capital increase occurs even when there are no information differences (Kyle, 1989, and Lambert and 
Verrecchia, 2009), although the exact magnitude is an empirical matter. 
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an additional upward slope in price because others will presume that he or she has superior 

information. We summarize these predictions in the top row of Figure 1. When markets are 

imperfect, the cost of capital in excess of market risk factors is low when information asymmetry 

is low (column 2) and high when it is high (column 3), so that we predict a positive difference 

(column 4).  

As noted above, broadly speaking, a large prior body of literature in accounting and 

finance examines the unconditional relation between information asymmetry and the cost of 

capital (e.g., Amihud and Mendelson, 1986; Brennan and Subrahmanyam, 1996; Easley et al., 

2002; Francis et al., 2005; Leuz and Verrecchia, 2000; Hail and Leuz, 2006; Ogneva, 2008). Our 

study is most closely related to that of Brennan and Subrahmanyam (1996), who show an 

unconditional relation between the adverse selection component of the bid-ask spread and 

realized returns. Like them, we use the adverse component of the bid-ask spread as one of our 

measures of information asymmetry. The innovation of our paper is that we predict and find that 

the relation between information asymmetry and cost of capital is conditional on the level of 

market competition, and we demonstrate this relation with a variety of proxies for information 

asymmetry. In other words, we predict and document that when equity markets are imperfectly 

competitive, information asymmetry can have a separate effect on firms’ cost of capital.4  

When price is upwardly sloping in demand, a stock is less liquid. Our study is therefore 

also related the recent empirical literature on liquidity risk, although our assumption for why 

liquidity effects occur is very different. For example, Acharya and Pedersen (2005) assume 

perfect competition and predict that liquidity risk arises as the result of the correlation between a 

firm’s liquidity and overall market liquidity. Similarly, Pastor and Stambaugh (2003) define 

                                                 
4 To the best of our knowledge, ours is the first paper to predict and find this relation. A contemporaneous working 
paper by Akins, Ng, and Verdi (2010) also predicts and finds an interaction between proxies for market competition 
and proxies for information asymmetry.  
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liquidity risk as the covariation between a stock’s return and market liquidity. Their predictions 

are derived in part from Campbell, Grossman, and Wang’s (1993) perfect competition model in 

which time-varying risk aversion by a subset of traders implies that current order flow predicts 

future return reversals. In contrast to Campbell et al. (1993), we allow for imperfect competition 

so that a stock price’s sensitivity to order flow occurs because of upwardly sloping price curves.  

Finally, there is also a smaller body of literature on the unconditional relation between 

the number of shareholders in the firm and cost of capital (e.g., Merton, 1987).5 Similar to the 

theory discussed above, Merton also predicts that a lower number of shareholders is associated 

with higher expected returns. Merton’s intuition is similar to the notion in Kyle (1989) and 

Lambert and Verrecchia (2010) that as the number of shareholders increases, the impact of 

demand on price decreases, and the cost of capital declines. Merton’s model, however, is 

“unusual” in that it assumes that price curves are flat (and therefore it assumes that the number of 

investors is countably infinite), yet it still generates a prediction as to how a decrease in the 

number of shareholders increases expected returns.6  

  

3. Research Design 

In this section, we first provide an overview of our research design, then provide details 

of our hypothesis test, and finally describe how we measure variables.  

3.1. Overview of Research Design 

To test our hypothesis of a positive (no) relation between information asymmetry and the 

cost of capital when markets are imperfectly (perfectly) competitive, we first sort firms into five 

                                                 
5 Bodnaruk and Ostberg (2009) test and find evidence for Merton’s (1987) predictions using a sample of Swedish 
firms. 
6 Hellwig (1980) refers to a circumstance in which investors who are finite in number behave as if they have no 
effect on prices as the “schizophrenia” problem. 
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quintiles based on a proxy for the level of market competition. We expect the quintile with the 

lowest (highest) values of the proxy to most resemble imperfect (perfect) competition. Then we 

sort firms into five quintiles based on a proxy for the degree of information asymmetry. 

Although it is difficult to directly observe the level of information asymmetry, we expect the 

quintile with the lowest (highest) values of the proxy to have the least (most) information 

asymmetry. As illustrated above in Figure 1, in the quintile that is closest to imperfect 

competition, we predict that firms with a relatively high degree of information asymmetry have a 

higher risk-adjusted cost of capital than do firms with a low degree of information asymmetry. In 

the quintile that is closest to perfect competition, we predict that firms with a relatively high 

degree of information asymmetry have a risk-adjusted cost of capital that is no different from 

firms with a low degree of information asymmetry.    

As we will discuss in more detail in Section 3.2.3, we use both dependent sorts (in which 

we rank firms within a market competition quintile into information asymmetry quintiles) and 

independent sorts (in which we rank firms independently into market competition and 

information asymmetry quintiles and then take the intersection).  

After we sort firms into 25 (=5x5) portfolios each year, for each market competition 

quintile, we compute future monthly returns to the hedge portfolio that takes a long position in 

firms with the highest level of information asymmetry, and a short position in firms with the 

lowest level of information asymmetry. We use the three Fama and French (1993) factors to 

control for market risk and to describe the behavior of expected returns under the null hypothesis 

that information asymmetry has no effect on expected returns. This three-factor model of 

expected returns is widely used in the literature in both finance and accounting (e.g., Pastor and 

Stambaugh, 2003; Aboody, Hughes, and Liu 2005; Francis et al., 2005; Petkova, 2006). 
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Specifically, for each market competition quintile, we estimate time-series regressions of the 

information asymmetry hedge portfolio returns on the three Fama-French factors: 

RH,t = aH + bH MKTRF + sH SMBt + hH HMLt + εp,t.     (1)  

where MKTRF, SMB, and HML are the Fama and French (1993) factors and RH is the return on 

the information asymmetry hedge portfolio for a given market competition quintile. The variable 

of interest is the estimated intercept aH. If aH is significantly greater than zero, firms with high 

information asymmetry earn higher risk-adjusted returns than do firms with low information 

asymmetry.  

3.2. Details of research design  

In this section, we detail our research design outlined in the previous subsection, 

introduce our proxies and discuss concerns about them, and discuss how we address these 

concerns in our tests.  

3.2.1. Specification of cost of capital tests 

We test our hypotheses about cost of capital by using future excess returns as a proxy for 

cost of capital. The main alternative to using future returns as a proxy for expected returns is to 

use an implied cost of capital measure, and we acknowledge that there is an ongoing debate in 

the literature on the relative merits of future returns versus implied cost of capital as a proxy for 

expected returns (e.g., Easton and Monahan, 2005; Guay, Kothari, and Shu, 2006; McInnis, 

2010). A chief interest of our study, however, is firms with low market competition. Because 

low-competition firms tend to have little to no analyst following, implied cost of capital 

estimates (for which analyst forecasts are required) cannot be calculated for most of these firms.7 

One of the drawbacks to using a firm’s realized returns to proxy for its expected return is that 

                                                 
7 Panel C of Table 1 shows that few analysts follow firms in the lowest market competition quintile. 
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realized returns measure expected returns with noise. However, we attempt to mitigate concerns 

about noise in future returns by grouping firms into portfolios. 

In our tests, we form portfolios by sorting based on the variable(s) of interest and 

evaluate future excess returns to the portfolio using time-series regressions similar to Equation 

(1). This “calendar time portfolio” approach is used extensively in the finance literature to test 

asset pricing models (e.g., Black, Jensen, and Scholes, 1972; Fama and French, 1993; Fama and 

French, 2008). The primary advantages of this approach are that it does not assume that returns 

are linear in the variable of interest (i.e., the sort variable) and that it collapses the cross-section 

of returns (on a given date) into a single time-series observation, thereby alleviating concerns 

about cross-sectional dependence. This approach stands in contrast to traditional return 

regressions, where returns are regressed on firm characteristics. Such regressions assume 

linearity in the underlying firm characteristic, require standard error corrections for cross-

sectional dependence, and are known to be prone to outlier problems (e.g., Kraft, Leone, and 

Wasley, 2006; Fama and French, 2008). The one modification we make, however, to the 

standard calendar time portfolio approach is to compute the standard error for time-series 

regressions using heteroskedasticity-robust standard errors, which allow for time-varying 

volatility.8 

In work closely related to ours, Brennan and Subrahmanyam (1996) use portfolios sorted 

on the adverse selection component of the bid-ask spread to examine whether information 

asymmetry is associated with an increase in expected returns. Similarly, Pastor and Stambaugh 

(2003) use portfolios sorted on firms’ exposure to a liquidity factor as evidence to support their 

hypothesis that expected returns are higher when liquidity risk is higher. We acknowledge, 

however, that a significant hedge return in portfolio sorts may also be interpreted as evidence of 

                                                 
8 We check the residuals of the regression for autocorrelation but find none. 
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mispricing, as in Sloan (1996) and Daniel, Hirshleifer, and Subrahmanyam (2001). We try to 

mitigate this alternative interpretation by using the widely used Fama-French model in our 

primary tests and by showing that our results are robust to a number of alternative specifications 

of expected returns. To ensure that our results are distinct from findings that liquidity risk may 

be a priced factor, in sensitivity tests that we describe in Section 5.5, we add Pastor and 

Stambaugh’s (2003) liquidity factor and Sadka’s (2006) liquidity factor to the Fama-French 

factors. Similarly, to ensure that our results are distinct from short-term momentum, we add 

Carhart’s (1997) momentum factor. Nevertheless, as with all asset pricing tests, our tests are 

joint tests of our hypotheses and of a correctly specified asset pricing model. 

A final issue is how to weight firms within each portfolio to calculate a monthly portfolio 

return. Following prior literature (e.g., Brennan and Subrahmanyam, 1996), we use equal 

weights because our hypotheses are about the expected returns for a typical or average stock. If 

we instead used value-weighting, our return results would reflect expected returns for a large 

stock, not for a typical or average stock. Equal-weighted monthly returns are usually calculated 

by purchasing an equal-weighted portfolio, holding it for one month, and then rebalancing this 

portfolio so that it has equal weights at the start of the next month. The concern with this equal-

weighted returns calculation, however, is that frequent rebalancing can produce biased estimates 

of realized returns because of the bid-ask bounce (Blume and Stambaugh, 1983). To ensure that 

our results are conservative and not subject to this bias, we follow Blume and Stambaugh (1983) 

and compute returns to an equal-weighted portfolio that is rebalanced annually, or a “buy-and-

hold” portfolio. The portfolio is formed on June 30 based on an initial equal weighting, and the 

monthly “buy-and-hold” return is the portfolio’s percentage change in value, with dividends, for 

the month. This procedure yields monthly returns to an equal-weighted portfolio that is 
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rebalanced once at the beginning of each year.9 Note that annual rebalancing means that the 

transaction costs necessary to earn the reported abnormal return are paid only once a year 

because the portfolio turns over only once a year. 

3.2.2. Measures of market competition 

We use the number of shareholders as our primary measure of market competition. 

Specifically, we use the number of shareholders of record as of the fiscal year end, as firms 

report in their annual 10-K filings (Compustat Data #100). This annual measure is available for a 

large number of firms beginning in 1975. Among the limitations of this measure are that it is 

available only once per year and that it may be noisy because the SEC requires firms to “give the 

approximate number of shareholders of record,” a figure that may not include individual 

shareholders when shares are held in street name (Dyl and Elliott, 2006). 

The literature on imperfect competition implicitly assumes that the number of 

shareholders in a firm is given and that there are economic frictions or restrictions associated 

with a firm’s expansion of its shareholder base. Our theory predicts that if the number of 

shareholders increases, the slope of the price curve caused by any information asymmetry 

decreases, and the cost of capital decreases. This is the message that underlies Merton (1987): 

Firms can reduce their cost of capital by expanding their shareholder base and so have an 

incentive to do so. Thus, if one assumes that there are no restrictions to expanding the 

shareholder base, then presumably a firm will increase its shareholder base to the point that it 

becomes large. So as a practical matter, but consistent with the theory on imperfect competition, 

we (like Merton, 1987) also assume that there are unstated and/or unspecified reasons that some 

firms have a small shareholder base despite the benefits of expanding this base. In descriptive 

                                                 
9 The coefficient on the low competition hedge portfolio is larger if we rebalance our portfolios at the monthly level 
rather than the annual level. For example, the abnormal returns to the ASC_spread hedge portfolio in the low market 
competition in Panel A of Table 3 (Table 4) increase from 1.04% (0.88%) per month to 1.16% (0.97%) per month.  
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analysis in Section 5.4, we will attempt to shed light on this issue by comparing characteristics of 

firms with low and high numbers of shareholders, and with low and high information 

asymmetry.  

The fact that we observe variation in the number of shareholders supports the assumption 

that there are costs to increasing ownership. Absent such costs, we would expect to observe all 

firms having similar numbers of shareholders. As Grullon, Kanatas, and Weston (2004) and 

Bushee and Miller (2007) point out, increasing firm visibility and ownership requires a costly 

and complex strategy of changes in disclosure, advertising, and media coverage. The tendency of 

individual investors to suffer from an attention effect, which results in their holding only a few 

firms in an undiversified portfolio, probably compounds such costs. From the shareholder’s 

perspective, the benefits to the increased share ownership primarily accrue to existing 

shareholders (in terms of higher prices), whereas new shareholders would bear the costs (e.g., 

transaction costs of taking a position and costs of being informed about the stock). Accordingly, 

while we do not seek to explain why some firms have more shareholders than others, variation in 

the number of shareholders does not seem to be out-of-equilibrium behavior. We take variation 

in share ownership as a given and examine whether this variation explains the relationship 

between information asymmetry and cost of capital. 

 Notwithstanding the foregoing, a potential concern is that the number of shareholders and 

expected returns may be simultaneously determined. To see this concern, note that we can re-

express our hypothesis as the following: We expect information asymmetry to matter in 

imperfect markets (proxied by a small number of shareholders) because the demand impact on 

price is larger in these markets. Simultaneity can occur not only if a large number of 

shareholders cause a lower demand impact, but also if a higher demand impact of price causes a 
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lower number of shareholders (if certain investors are attracted to, say, more liquid stocks). A 

body of literature that includes Grullon et al. (2004) examines the determinants of the size of the 

firm’s shareholder base. Among other things, Grullon et al. (2004) find that measures of firm 

size and investor recognition (e.g., advertising expense, market value, and firm age) are 

positively associated with the number of shareholders, and a proxy for transactions costs (the 

reciprocal of price) is negatively associated with the number of shareholders. It is not clear 

whether this potential endogeneity affects our tests, since we are sorting firms into a relatively 

small number of groups and are primarily interested in the extreme groups. Second, any 

endogenous relation between the number of shareholders and expected returns will affect our 

future returns tests only if we have omitted a (correlated) variable from our expected returns 

model. As we discuss above, we use a number of asset pricing models to ensure that we have not 

omitted any factor relevant to future returns. In addition, we find that the size of the shareholder 

base is relatively time invariant. Firms in the lowest quintile in one year remain in the lowest 

quintile the next year. This finding suggests that a firm’s shareholder base is stable over time 

and, therefore, that firms are not altering their shareholder base in response to variations in the 

firm’s expected return.10  

Note that the number of shareholders can be a noisy proxy for the degree of market 

competition, because shares can be dispersed evenly among shareholders or concentrated so that 

one shareholder holds most of the shares. We acknowledge this limitation, but we note that if 

shareholders are more concentrated, one would expect more adverse selection if there is 

information asymmetry. Our information asymmetry proxies should capture this additional 

adverse selection. Since our hypothesis is related to the interaction between the degree of market 

                                                 
10 When we use the lagged number of shareholders as an instrument for market competition, across all measures of 
information asymmetry, we find inferences that are identical to what we find below for both independent and 
dependent sorts.  
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competition and information asymmetry, the structure of our research design (i.e., dual portfolio 

sorts) should mitigate this concern. As another way of addressing concerns about noise in the 

number of shareholders, we report results below in which we refine our measure of market 

competition using high (low) trading volume as an additional means of identifying high (low) 

competition.  

3.2.3. Measures of information asymmetry 

 We use five measures of information asymmetry: two that are market-based and two that 

are accounting-based, in addition to analyst coverage.  

  Our market-based measures are (1) the adverse selection component of the bid-ask 

spread (ASC_spread), and (2) the bid-ask spread itself (Spread). Previous studies have used both 

measures to proxy for the degree of information asymmetry (e.g., Brennan and Subrahmanyam, 

1996). ASC_spread measures the extent to which unexpected order flow affects prices and is 

increasing in information asymmetry. We estimate ASC_spread following Madhavan, 

Richardson, and Roomans (1997) (described in detail in the Appendix). Because the algorithm is 

very time-consuming to run, we measure ASC_spread for each firm once a year in June, using all 

intra-day data for that month. Similarly, we measure Spread for the month of June as the average 

bid-ask spread scaled by trade price and weighted by order size. ASC_spread is a component of 

the bid-ask spread. Thus, if ASC_spread is estimated accurately (inaccurately), Spread will be a 

more (less) noisy measure of information asymmetry.  

The advantage of ASC_spread and, to some extent, the Spread itself, is that it is a precise 

measure of the outcome of information asymmetry. In other words, if there is information 

asymmetry, it manifests as an increase in ASC_spread. As mentioned above, a concern with 

ASC_spread is that we expect it to be a function of both market competition (the number of 
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shareholders) and information asymmetry. Our dual sort research design addresses this concern 

in two ways. First, we use the lag values of ASC_spread and Spread as instruments for 

information asymmetry in our analyses. Second, we sort firms on both the number of 

shareholders and on ASC_spread. If ASC_spread is a function of both the number of 

shareholders and information asymmetry, then holding constant the number of shareholders, 

which is roughly the case within quintiles sorted first on the number of shareholders, any 

variation in the adverse selection component should be the result of variation in information 

asymmetry.  

A second concern with ASC_spread is that our hypothesis predicts that the slope of the 

price curve, and the effects of information asymmetry, diminish when market competition is 

high. We therefore expect that ASC_spread becomes small as the level of market competition 

increases. (As discussed below, our descriptive evidence in Table 1, Panel C is consistent with 

this expectation.) Thus, while we expect ASC_spread to have high power to detect information 

asymmetry when competition is low, it may have low power when competition is high. We 

address this concern in two ways. First, we use two measures (accrual quality and research and 

development expense) that capture the potential for information asymmetry but have a low 

correlation with our measure of market competition (Table 1 Panel B). Table 1, Panel C also 

shows that these measures retain more of their variation in the high market competition quintile, 

indicating that they have the potential to be powerful in detecting information asymmetry.  

Second, we use dual independent sorts, which assign firms to information asymmetry 

portfolios independent of their level of market competition. The benefit of independent sorts is 

that they tend to result in similar variation in information asymmetry across the market 
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competition portfolios. The cost is a reduction in power (because of sparsely populated cells) to 

the extent that the two sorting variables are correlated. 

 As discussed above, we use two accounting-based measures that capture the potential for 

information asymmetry. First, R&D is the ratio of annual research and development expense to 

sales. Prior research uses R&D expense to proxy for the presence of intangible assets, which are 

associated with higher information asymmetry (e.g. Barth and Kasznik, 1999; Barth, Kasznik, 

and McNichols, 2001). Second, we use scaled accruals quality (SAQ) to measure information 

asymmetry.11 Ogneva (2008) finds this measure to be superior to unscaled accruals quality in 

predicting future returns. Accruals quality and scaled accrual quality are both increasing in the 

unexplained variance of accruals, and prior research (e.g., Aboody et al., 2005; Francis et al., 

2005) suggests that when this variance is higher, earnings quality is lower and information 

asymmetry is higher. 

Finally, Analyst Coverage is the number of sell-side analysts issuing one-year-ahead 

earnings-per-share forecasts for the firm during the year according to the I/B/E/S Summary file. 

Prior research suggests that greater analyst coverage improves the information environment and 

therefore is associated with lower information asymmetry (e.g., Brennan and Subramanyam, 

1995). 

3.3. Timing of variable measurement  

The timing of our variable measurement is the same as that of Fama and French (1993), 

who rank firms into portfolios based on market value of equity and the book-to-market ratio. 

Fama and French (1993) form portfolios once a year at the end of June, compute future returns 

                                                 
11 Ogneva (2008) estimates accruals quality as the standard deviation of residuals from the regression of total current 
accruals on lagged, current, and future cash flows plus the change in revenue and property, plant, and equipment. 
(See Francis et al., 2005, p. 302.) Ogneva (2008) lags this variable one period, to avoid look-ahead bias. SAQ is 
obtained by scaling AQ by the average of the absolute value of total accruals over the previous five years.  
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for the next 12 months, and then re-form portfolios at the end of the following June. They 

measure the market value of equity at the end of June of year t and compute book value (and all 

financial statement variables) as of the last fiscal year end in year t-1.  

Similarly, we form portfolios once a year at the end of June and compute future returns 

for the next 12 months. Because the number of shareholders, R&D, and SAQ are calculated from 

data reported in firms’ 10-K filings, we calculate these variables using data as of the last fiscal 

year end in year t-1. The market value of equity, the bid-ask spread (Spread), and its adverse 

selection component (ASC_spread) can be observed from market data, and we measure these 

variables each June. Recall that we use the lagged values of ASC_spread and Spread in our 

analyses. Finally, we measure Analyst Coverage as the number of sell-side analysts issuing a 

one-year-ahead earnings forecast during June of year t. 

 

4. Sample Selection and Descriptive Statistics 

We construct our sample using data from Compustat, CRSP, ISSM, TAQ, and I/B/E/S. 

To be included in the sample, a firm must trade on a U.S. exchange (CRSP share codes 10, 11, 

and 12) and must have a non-missing return and market value on the CRSP monthly file in June 

of year t. We begin the sample in June 1976, when the number of shareholders becomes 

available on Compustat, and conclude in June 2005.12 This time frame allows for the inclusion of 

return data from CRSP from June 1976 to June 2006. The first and last columns of Panel A of 

Table 1 show the number of observations available each year for the number of shareholders 

from Compustat and for market value from CRSP.  

                                                 
12 If a firm delists in a given month during the sample period, we follow Beaver, McNichols, and Price (2007) and 
compute the return by compounding the monthly return and the delisting return. Since we compute delisting returns, 
we have return observations for all firms in our sample as of June of year t. 
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The remaining columns of Panel A of Table 1 show the number of observations available 

for the remaining variables. We begin measuring the adverse selection component of the bid-ask 

spread (ASC_spread) and the bid-ask spread (Spread) in 1988, which is when intraday data for 

the NYSE, AMEX, and Nasdaq becomes available from ISSM.13 ASC_spread is available for a 

smaller number of firms than is the bid-ask spread, because we require signed order flow from 

the Lee and Ready (1991) algorithm to estimate ASC_spread. The TAQ data is available only for 

firms traded on the NYSE, AMEX, and Nasdaq, so we cannot compute ASC_spread for all firms 

for which we have the number of shareholders.  

To have a sample that covers a reasonable number of years and firms, for a given test, we 

require availability of only the test variables. For example, when we test our hypothesis about 

market competition and information asymmetry using Number of Shareholders and ASC_spread, 

we use all available firm-years for which we have estimates of both the Number of Shareholders 

and ASC_spread (i.e., from 1988 to 2005), but when we test the same hypothesis using number 

of analysts, we extend the sample period to 1976 to 2005 (i.e., we use all available firm-years for 

which we have estimates of both the Number of Shareholders and Analyst Coverage). 

Panel B of Table 1 presents descriptive statistics and a correlation matrix for our 

variables. The top half of Panel B presents descriptive statistics for all firm-years in the sample, 

and the bottom half presents a correlation matrix. We report Spearman (Pearson) correlations 

above (below) the diagonal. We focus on Spearman correlations because many of our variables 

are highly skewed and because our portfolios use ranked values. Because of our interest in cross-

sectional correlations between variables (e.g., market competition and information asymmetry), 

we compute annual correlations and report the mean of the annual correlations in the table. We 

                                                 
13 NYSE and AMEX firms are available starting in 1984, but because these firms are typically much larger in terms 
of number of shareholders, we could not find a reasonable way to include them in the full time-series. 
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compute standard errors using the time-series standard deviation of the annual correlations, and 

we denote significant (at the 5% level, two-sided) correlations in bold.  

There is a positive correlation between ASC_spread and Spread, our two market-based 

proxies for information asymmetry. This large, positive correlation suggests that the variables 

capture a similar construct. Consistent with prior research that finds that Analyst Coverage is 

associated with lower information asymmetry, there is a large negative correlation between 

Analyst Coverage and both ASC_spread and Spread. The correlations between R&D and SAQ 

and the two market-based measures of information asymmetry are small, suggesting that the 

measures may be capturing different aspects of information asymmetry. Also note the negative 

correlation between the Number of Shareholders and ASC_spread. This finding is consistent 

with the predictions of models such as those from Kyle (1989) and Lambert and Verrecchia 

(2010), which show that as market competition increases, the slope of the demand curve (as 

proxied by ASC_spread) decreases. Finally, it is important to note the large positive correlation 

(0.54) between market value and the number of shareholders. While this correlation suggests a 

potential size effect, recall that we control for size by including the SMB factor in the factor 

regressions in all of our tests. We will also describe in sensitivity tests in Section 5.5.1 additional 

ways in which we ensure that our results are not simply capturing differences in returns that 

result from differences in firm size. 

In the final panel of Table 1, Panel C, we present descriptive statistics for the extreme 

quintiles (i.e., one and five) for each of the information asymmetry proxies for the extreme 

quintiles of market competition. In the left-hand columns, we show statistics where the portfolios 

have been formed by sorting first based on the number of shareholders (“dependent sorts”), and 

in the right-hand columns we show statistics where the portfolios have been formed by sorting 
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independently on the number of shareholders and on the information asymmetry variable, and 

intersecting the resulting quintile sorts (“independent sorts”). We sort each information 

asymmetry variable into five quintiles and report the median of the top and bottom quintiles. We 

compute these medians each year and then take the time-series average of these medians. The 

number of observations shown is the average annual number of observations in that portfolio. 

 Panel C reveals several patterns in the data. First, consistent with our prediction, and with 

the negative correlation shown in Panel B, we find that as market competition increases, the 

slope of the demand curve (as proxied by ASC_spread) decreases. There is a large and 

economically significant decrease in the median ASC_spread in both the low and high 

information asymmetry quintile when moving from the low competition to the high competition 

quintile. At the same time, we find that the variation in ASC_spread is decreasing in market 

competition. This decrease can be seen from the decrease in the Q5 - Q1 difference in median 

ASC_spread from 0.0102 in the low competition quintile to 0.0013 in the high competition 

quintile. Spread exhibits similar declines, but of a smaller magnitude. 

Although these declines are consistent with our hypothesis that the effects of information 

asymmetry on demand curves diminish as markets approach perfect competition, they suggest a 

possible alternative explanation for why we might find that information asymmetry is unrelated 

to expected returns when market competition is high. It is possible that information asymmetry 

affects returns when market competition is high, but that our market-based proxies cannot detect 

this effect because they exhibit little variation when market competition is high. As noted above, 

we address this concern in two ways. First, we also examine two accounting-based measures of 

the potential for information asymmetry (R&D and SAQ) and Analyst Coverage. In the case of 

SAQ, Panel C shows that there is more variation in SAQ when market competition is high. In 
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particular, the Q5 - Q1 difference in median SAQ increases from 1.001 in the low competition 

quintile to 1.258 in the high competition quintile. Second, we repeat our tests using independent 

sorts. Since ASC_spread is correlated with our proxy for market competition, independently 

sorting firms into portfolios holds constant the variation in information asymmetry within each 

market competition quintile. Consistent with this approach, Panel C shows that the Q5 - Q1 

difference in ASC_spread decreases by only 0.0007 when moving from the low competition 

quintile (0.0075) to the high competition quintile (0.0068). 

    

5. Results 

5.1. Information asymmetry and expected returns  

 In Table 2, we present excess returns for quintile portfolios sorted on each of our 

information asymmetry proxies. Although our hypothesis predicts a relation conditional on the 

level of market competition, we provide unconditional results in Table 2 as a benchmark for our 

later tests, and also to benchmark against prior work such as that of Brennan and Subramanyam 

(1996) and Ogneva (2008), which predict and find unconditional relations between information 

asymmetry proxies and expected returns.  

 Panel A on the left of Table 2 shows results for our market-based measures, and Panel B 

on the right shows results for our other measures. For each measure, we report excess monthly 

buy-and-hold returns (ap) for each quintile of the information asymmetry measure after 

controlling for market risk using the three Fama and French (1993) factors. We present the 

estimate of ap and the associated t-statistic. We also show the coefficient on each of the Fama-

French factors, but to conserve space, we do not report t-statistics but instead indicate 
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significance with asterisks. The column marked “hedge” indicates the portfolio difference 

between the high and low information asymmetry quintiles.  

 Of note are the results for ASC_spread and SAQ. For ASC_spread, the hedge portfolio 

difference between the fifth and first quintiles is positive and significant, and the coefficient 

indicates that this portfolio earns excess returns of 0.50% per month. The magnitude of this 

0.50% information asymmetry hedge portfolio return for our sample of NYSE, AMEX, and 

Nasdaq stocks from 1988 to 2006 is very similar to the 0.55% return reported in Brennan and 

Subramanyam (Table 4, 1996) for their sample of NYSE stocks from 1984 to 1991. 

 Second, when we use SAQ as the measure of information asymmetry, the 0.12% hedge 

portfolio difference between the fifth and first quintiles is not significant. This result stands in 

contrast to Ogneva’s (2008) finding of a significant return of 0.19% per month on an equal-

weighted SAQ hedge portfolio. However, we can replicate her results on our data if we employ 

equal weights and use the less conservative portfolio formation rule of rebalancing the portfolio 

each month. 

 Finally, the bottom right of the table shows that R&D Expense to Sales produces a 

positive and marginally significant (t-stat = 1.77; two-sided p-value = 0.08) hedge portfolio 

return. Spread and Analyst Coverage do not exhibit significant hedge portfolio returns. These 

results serve as a benchmark for the information asymmetry hedge portfolios partitioned on 

market competition in Panel B. 

 Also noteworthy in this table is that the Fama-French factors are significant in every 

portfolio. The R2s decrease across the information asymmetry portfolios, a finding consistent 

with the returns to high information asymmetry portfolios not being solely explained by the 

market factor, or size and book-to-market. Also of note, the SMB factor loadings display a nearly 
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monotonic increase in the level of information asymmetry. Since the SMB factor is constructed 

using a hedge portfolio that captures the return differential between small and large firms, this 

pattern in the factor loadings is consistent with our finding in Table 1, Panel B that information 

asymmetry is correlated with firm size.14 Moreover, to the extent that the SMB factor captures 

differences in returns of small versus large firms, allowing the SMB factor loadings to vary 

across information asymmetry portfolios ensures that our tests are not simply capturing 

differences in firm size.  

5.2. Relation between market competition, information asymmetry, and cost of capital 

In Tables 3 and 4, we present results of our portfolio tests of our predictions summarized 

in Figure 1. Tables 3 and 4 present the results when portfolios are formed using dependent and 

independent sorts, respectively. In each table, we show results for each of five alternative proxies 

for the degree of information asymmetry.  

To conduct the dependent sorts in Table 3, we first sort firm-years into five groups based 

on the number of shareholders, as a proxy for market competition, and then we further subdivide 

each of these groups into five groups by sorting on the given proxy for information asymmetry. 

The resulting 25 market competition-information asymmetry portfolios are approximately equal-

sized. The number of observations in the high and low portfolios for each proxy is shown in the 

left-hand side of Panel C of Table 1, as are the median values for the proxy.  

Table 3 shows the results of the information asymmetry hedge portfolio for each 

information asymmetry proxy. Recall that we expect a positive hedge return for the low 

competition portfolio. Consistent with this prediction, the hedge portfolio return for the lowest 

                                                 
14 Note that this finding is consistent with, and similar to, the one that Aboody, Hughes, and Liu (2005) report in 
their Table 2. In particular, they find that hedge portfolios that take a long (short) position in firms with low (high) 
earnings quality have significantly positive SMB factor and R2s as low as 5%. 
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market competition quintile is positive and significant for ASC_spread, Spread, SAQ, R&D, and 

Number of Analysts.  

Of the significant coefficients for the low competition portfolios, the magnitude ranges 

from 0.42% per month (5.08% per year) for SAQ to 1.04% per month (12.48% per year) for 

ASC_spread. While the magnitude of the ASC_spread coefficient in particular appears large, we 

note that Brennan and Subramanyam (1996) use essentially the same method and report a similar 

magnitude in their Table 3. For the smallest firms, they report a difference in monthly risk-

adjusted returns between firms with the highest and lowest adverse selection component of the 

bid-ask spread of 1.65%, which amounts to 19.80% on an annual basis. Because their focus is 

different from ours, Brennan and Subramanyam provide no formal test of this difference.  

Further, we address the robustness of the ASC_spread findings in sensitivity tests below.15 

Turning to the information asymmetry hedge portfolio in the high market competition 

quintile, we find that none of the hedge portfolios earn abnormal returns. In other words, there is 

no difference in risk-adjusted returns between firms with high and low information asymmetry 

when markets approximate perfect competition. Also of note, the factor loadings vary 

significantly between extreme portfolios, a finding that emphasizes the importance of computing 

risk-adjusting hedge portfolio returns.  

To conduct the independent sorts in Table 4, we independently sort firm-years into five 

groups based on the number of shareholders, as a proxy for market competition, and into five 

groups by sorting on the given proxy for information asymmetry. As shown in the right-hand 

columns of Table 1, Panel C, the resulting 25 market competition-information asymmetry 

portfolios differ in size. The number of observations in the high and low portfolios for each 

                                                 
15 The SAS portfolio sort code that we used to generate the results in Tables 3 and 4 is available from the authors 
upon request. 
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proxy is shown in the right-hand side of Panel C of Table 1, as are the median values for the 

proxy. 

Results of the independent sorts in Table 4 are in general similar to those in Table 3. Of 

the significant coefficients for the low competition portfolios, the magnitude ranges from 0.43% 

per month (5.12% per year) for SAQ to 0.88% per month (10.56% per year) for ASC_spread. The 

one difference is the Analyst Coverage hedge portfolio, which does not earn positive risk-

adjusted returns, regardless of the level of market competition. Further, note that the factor 

loadings for proxies in Table 4, Panel B are similar to the corresponding loadings in Table 3, 

Panel B. For example, in the low competition portfolios formed on SAQ, because the factor 

loadings are similar for the high and low information asymmetry portfolios, they have very little 

explanatory power for the hedge portfolio.  

Collectively, the results in Tables 3 and 4 strongly support our hypothesis that 

information asymmetry affects (does not affect) the cost of capital in the least (most) competitive 

markets.  

5.3 Refinement of proxy for market competition 

 Although the number of shareholders is the measure of market competition identified in 

theoretical market microstructure models such as those from Kyle (1989) and Lambert and 

Verrecchia (2010), an empirical concern is that this proxy does not distinguish between investors 

who actively trade in the stock, and thus supply liquidity to the market, and passive investors 

who buy and hold. To address this concern, we refine our market competition proxy to account 

not only for differences in the number of shareholders, but also for differences in the level of 

trading activity in firms’ shares. We measure trading activity as share turnover, calculated as 

annual volume in year t divided by average shares outstanding. If greater turnover is associated 



- 27 - 

with a more competitive market, then firms that have a high (low) number of shareholders and 

high (low) turnover are relatively the most (least) competitive. To capture this idea, we adapt our 

portfolio sort procedure by introducing an additional sort based on turnover. As before, we first 

sort firm-years into five quintiles based on the number of shareholders, but now within each 

market competition quintile, we sort firms into two groups based on turnover.16 This process 

produces 10 market competition quintiles, which we then sort into five information asymmetry 

portfolios, for a total of 50 (= 5 x 2 x 5) portfolios.  

 Table 5 presents the results of the information asymmetry hedge portfolio according to 

whether the number of shareholders and trading volume are low and high. For parsimony, we 

show only the lowest and highest shareholder quintiles. To indicate the lower (higher) 

competition portfolios, we shade the low shareholder, low turnover (high shareholder, high 

turnover) portfolios. For all five proxies for information asymmetry, the dependent sort results in 

Panel A show significant excess returns for the information asymmetry hedge portfolio when 

both the number of shareholders is low and trading volume is low. The magnitude of these 

returns ranges from 0.57% for SAQ to 1.01% for Analyst Coverage. In contrast, when the 

number of shareholders is low but trading volume is high, only the two accounting-based proxies 

for information asymmetry (SAQ and R&D) produce significant abnormal returns. We find 

similar results when we independently sort firms into market competition and information 

asymmetry portfolios in Panel B of Table 5. 

 As in our previous tests, the information asymmetry hedge portfolios generally do not 

produce significant abnormal returns when the level of market competition is high, regardless of 

the level of trading in the firm’s shares. The one exception is R&D, which produces a positive 

information asymmetry hedge portfolio when both the number of shareholders and trading 

                                                 
16 We thank the referee for suggesting this test. 
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volume are high. The significant hedge portfolio return for R&D in the highest competition 

portfolio (i.e., the high shareholder, high turnover portfolio) is the one piece of evidence we find 

that is inconsistent with the hypothesis that information asymmetry does not manifest in high 

competition settings.  

5.4. Comparison of high and low information asymmetry firms 

 The results so far support our prediction that when market competition is low, firms with 

high information asymmetry have a higher cost of capital – in fact, roughly 12.5% higher when 

information asymmetry is measured using a dependent sort on ASC_spread as shown in Table 3. 

Although we predict that these firms will have a higher cost of capital, it is natural to wonder 

whether the behavior of these firms is consistent with their higher cost of capital. To shed light 

on this question, in Table 6 we compare proxies for these firms’ size and risk, valuation, trading 

costs, uses of capital, sources of capital, and disclosure/visibility. As we do this, however, we 

emphasize that the theory we test in this paper takes information asymmetry and market 

competition as a given and is not a corporate finance or disclosure theory that predicts how firms 

optimize their investments and capital costs. Therefore, our analysis in Table 6 should be viewed 

as descriptive.  

 Since both our theory and our evidence suggest that differences in cost of capital manifest 

when market competition is low, in Table 6 we focus on the low and high information 

asymmetry portfolios within the low market competition quintile (first three columns). For 

parsimony, and because the magnitude of the hedge portfolio return for this proxy is largest, we 

focus on portfolios formed using dependent sorts on ASC_spread (Table 3).17 As a benchmark, 

we also show the high market competition quintile (last three columns). For each competition 

quintile, the first column shows values for the low information asymmetry (“LIA”) quintile and 

                                                 
17 We obtain consistent results with the other information asymmetry measures and when we use independent sorts. 
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the second column for the high information asymmetry (“HIA”) quintile, while the third column 

shows the difference and significance level. We present in the table a mixture of ex ante (i.e., for 

the year ended June 30 of year t) and ex post (i.e., for the year ended June 30 of year t+1) results. 

As in prior tables, for the variables shown, we compute the quintile median for each variable for 

each year and then compute the average annual median.  

 The first row reports the excess return from Panel B of Table 3 and annualizes it as a 

reminder that the HIA firms have a 12.5% excess cost of capital. The next three rows compare 

size and risk. Consistent with the factor loadings in Table 3, Panel B, firms in the HIA quintile 

are smaller and have lower beta and higher book-to-market. Consistent with the evidence that 

these firms face a higher cost of capital, the next row shows that HIA stocks have a significantly 

lower valuation than LIA stocks when the market is least competitive. The market-to-book asset 

ratio, a common proxy for the valuation measure Tobin’s Q (e.g., Gompers, Ishii, and Metrick, 

2003), is 33% lower for the HIA group. By contrast, there is no difference in valuation when the 

market is most competitive. The following rows show that investors who buy or sell HIA stocks 

pay much higher trading costs as proxied by the ASC_spread and bid-ask spread. Indeed, simply 

paying the round-trip spread costs 4% of the 12.5% excess return associated with the firms in the 

low competition quintile.  

 The higher book-to-market ratio and lower Tobin’s Q of HIA firms suggest lower growth 

opportunities for the HIA firms (e.g., Smith and Watts, 1992). Consistent with lower growth 

opportunities and higher capital costs, the HIA firms undertake significantly less new investment 

and pay lower dividends (as proxied by Dividend Yield) than do their low market competition 

counterparts with low levels of information asymmetry. Consistent with differences in 

information asymmetry affecting capital costs only in low competition stocks, we find that HIA 
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firms spend significantly less on new investment than LIA firms do when the market is least 

competitive, and we find no difference in new investment when the market is most competitive.  

We also find that when the market is least competitive, HIA firms issue significantly less debt 

and equity in than LIA firms do, but that when the market is most competitive, HIA firms issue 

significantly more equity than LIA firms do.18 Collectively, these differences suggest that in 

imperfect markets, high information asymmetry firms face higher costs of capital and scarcer 

financing.  

 The bottom rows of Table 6 show that the HIA firms issue significantly fewer 

management forecasts both contemporaneously and during the next year. At first, it seems 

puzzling that managers would not seek to minimize their cost of capital by providing more 

information in the form of earnings forecasts. But perhaps it should not be viewed as such: 

Disclosure is costly, and firms with low growth options may rationally choose not to incur the 

costs associated with reducing information asymmetry. In other words, this finding may suggest 

that the difference in cost of capital across high and low information asymmetry firms when 

market competition is low is, in fact, an equilibrium result: Firms may choose to have high 

information asymmetry because the costs of reducing this asymmetry are greater than the 

benefits in terms of reducing the cost of capital.  

5.5. Sensitivity analysis 

 In this section we describe sensitivity analyses. Here as well for parsimony, and because 

the magnitude of the result is largest, we focus on portfolios formed using dependent and 

                                                 
18 Following Chen and Zhang (2010), we measure equity offerings as the percentage change in split-adjusted shares 
outstanding over the next fiscal year. Similarly, we measure debt offerings as the percentage change in long-term 
debt over the next fiscal year. 
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independent sorts on ASC_spread. We emphasize, however, that all of the results for our other 

proxies are robust to these sensitivity tests.19 

5.5.1. Alternative samples 

Panels A and B of Table 7 present sensitivity analyses of our primary results where we 

calculate the returns to dual dependent and independent sorts. The first column of each panel 

replicates the information asymmetry hedge on ASC_spread from Tables 3 and 4 for comparison. 

The second column presents portfolio returns excluding all stocks with a price of less than $5. 

This is another way, in addition to our use of buy-and-hold returns, of ensuring that 

microstructure effects of thinly traded firms do not drive our results, and it provides some 

comfort that microcap firms that are not representative of the population of investable shares also 

do not drive our results. Results in both Panels A and B are consistent: The hedge portfolio 

return for the lowest market competition quintile is positive and significant, and the hedge 

portfolio return for the highest quintile of market competition is not significantly greater than 

zero. The third column shows hedge portfolio returns when we restrict the sample to the period 

after June 2001, when the decimalization of share prices was instituted on the NYSE. We again 

find that the hedge portfolio return for the low market competition quintile is positive and 

significant, and that the hedge portfolio return in the high market competition quintile is 

indistinguishable from zero. Both findings are consistent with our predictions. Moreover, these 

results are important because this more recent period, during which bid-ask spreads fell and 

trading practices changed greatly, is likely to be more similar to U.S. capital markets going 

forward, and shows that our results are not an artifact of the pre-decimalization period.   

                                                 
19 The one exception is the post-decimalization tests below, which are not applicable to SAQ, R&D, and Analyst 

Coverage. 
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In the final two columns of both panels of Table 7, we attempt to address the potential 

concern that computing portfolio returns relative to the Fama-French factors does not adequately 

control for the size effect. Our primary proxy for market competition (i.e., number of 

shareholders) is strongly positively correlated with market value, and some of our proxies for 

information asymmetry (e.g., ASC_spread) are strongly negatively correlated with market value. 

A potential concern is that sorting firms according to the number of shareholders is simply 

capturing a size effect. As a first approach, we begin with the same sort of firms on number of 

shareholders and ASC_spread as shown in the first column. Then we sort firms on market value 

and delete the smallest and largest 20% of firms in the sample (i.e., the top and bottom quintile 

when ranked on market value). If the market competition hedge portfolio returns are induced by 

an implicit sort on size, removing the extreme size portfolios should eliminate the excess returns 

between the quintile portfolios with the largest and the smallest number of shareholders. The 

fourth column shows that the information asymmetry hedge portfolio in the low market 

competition quintile remains significant. In the high market competition quintile, we find that the 

information asymmetry hedge portfolio is not different from zero. Both results are consistent 

with our predictions and suggest that our dual sort procedure is not simply capturing a size 

effect.20 

A related concern is that our dual sorts on ASC_spread may effectively sort firms within 

a given market competition quintile by size. To address this concern, in the fifth column we 

                                                 
20 As another way of controlling for a potential omitted size effect, we measure the excess return on a stock by 
subtracting the return of a matching portfolio formed on size and book-to-market equity. The matching portfolios are 
the updated 25 VW size-B/M portfolios of Fama and French (1993). Using the size and book-to-market matching 
technique is potentially more robust to nonlinearities in the relation between size and book-to-market and returns 
(Daniel, Grinblatt, Titman, and Wermers, 1997). However, a weakness of the approach is that it does not control for 
the exposure to the market factor, which is significant in explaining the low competition information asymmetry 
hedge portfolios as shown in Panel B of Tables 3 and 4. We therefore use the matched excess returns and also 
control for the three Fama-French factors. Using this method, we find that information asymmetry hedge portfolio 
returns remain positive and significant in the low market competition quintile and are not different from zero in the 
high market competition quintile. 
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follow a similar approach as we did in the fourth column. We again begin with the same sort of 

firms on number of shareholders and ASC_spread as shown in the first column. Then within each 

market competition quintile, we sort firms on market value and delete the smallest and largest 

firms in each market competition quintile. If the adverse-selection hedge portfolios returns are 

induced by an implicit sort on size within market competition quintile, removing the extreme-

size portfolios should eliminate the excess returns. But Column 5 shows that the results are 

consistent in the low market competition quintile (as compared with Column 1) when we make 

this change. In addition, the information asymmetry hedge portfolio is again indistinguishable 

from zero in the high market competition quintile. Overall, the results in Table 7 show that our 

results are robust to a number of alternative samples. 

5.5.2. Alternative models of expected returns 

Although the Fama and French (1993) model is widely used as a model of expected 

returns, recent research has uncovered a number of other potential risk factors that appear to be 

useful in explaining the cross-section of stock returns. Table 8 presents the results from using 

three augmented versions of the Fama and French (1993) model, where each of the three 

columns augment the three-factor Fama and French (1993) model with either the Pastor and 

Stambaugh (2003) liquidity factor, the Sadka (2006) liquidity factor, or Carhart’s (1997) 

momentum factor. The results are all similar to those in the first column, in which we replicate 

the information asymmetry hedge on ASC_spread from Tables 3 and 4 for comparison. In 

particular, for all three expected return models, we find that the information asymmetry hedge in 

the lowest market competition quintile is positive and significant and that the information 

asymmetry hedge in the highest market competition quintile is not significantly different from 

zero. All three columns are thus consistent with our predictions. The fact that our results are 
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robust to the inclusion of two alternative liquidity factors in the third and fourth columns 

suggests that our results are not due to the omission of known liquidity risk factors. 

5.5.3. Is idiosyncratic risk an alternative explanation? 

 In this paper, we focus on how information asymmetry affects the cost of capital in 

imperfect markets. Theory also suggests that as the number of shareholders becomes small, 

idiosyncratic risk can also affect the cost of capital, because idiosyncratic risk is not diversified 

away when there are small numbers of shareholders (e.g., Hughes et al., 2007; Lambert et al, 

2007). Lambert and Verrecchia (2010) show that the effects of idiosyncratic risk are not linear 

and are bundled together with those of adverse selection; hence, it may be difficult to empirically 

separate the two effects.  

We conduct two sensitivity analyses to ensure that the fact that we do not control for 

idiosyncratic risk in our main tests does not affect our findings on information asymmetry. We 

first conduct tests analogous to our Table 3 and 4 sorts on information asymmetry. We form five 

quintiles based on the level of market competition and then sort into five quintiles based on 

idiosyncratic risk, where idiosyncratic risk is computed as in Ang et al. (2006). The returns to the 

idiosyncratic risk hedge portfolio for the low market competition quintile are not significantly 

different from zero. These results are inconsistent with idiosyncratic risk being an explanation 

for our information asymmetry results. Second, we take a similar approach as in the fifth column 

of Table 7. We again sort firms on the level of market competition and ASC_spread as shown in 

the first column of Table 7. Then within each market competition quintile, we sort firms on 

idiosyncratic risk and delete the 20% of firms with the smallest and largest values of 

idiosyncratic risk in each market competition quintile. If the information asymmetry hedge 

portfolio’s returns are induced by an implicit sort on idiosyncratic risk, removing the extreme 
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idiosyncratic risk portfolios should eliminate the excess returns. But we find that the risk-

adjusted returns to the information asymmetry hedge portfolio continue to be significant and 

consistent with our hypothesis. Overall, these sensitivity tests show no evidence that 

idiosyncratic risk is an explanation for our results on the relation between imperfect competition 

and information asymmetry. 

Collectively, the results in Tables 7 and 8 show that the results in Tables 3 and 4 are 

robust to alternative samples, restricted time periods, and alternative ways of calculating 

abnormal returns. 

 

6. Conclusion 

This paper examines when information asymmetry among investors affects the cost of 

capital. When markets are characterized by perfect competition, information asymmetry has no 

separate effect on the cost of capital. When markets are less than perfectly competitive, however, 

as in Kyle (1989) and Lambert and Verrecchia (2010), market competition and information 

asymmetry affect the cost of capital beyond their effect on market risk. We test these predictions 

and find evidence supporting our predictions. In particular, we find an incremental effect of 

information asymmetry (beyond market risk) on the cost of capital when the degree of market 

competition is low and no effect of information asymmetry on the cost of capital when the 

degree of market competition is high. Collectively, our results suggest that future studies 

investigating the role of information asymmetry on the cost of capital should include the degree 

of market competition, which we show is an important conditioning variable in the relationship.  

 We caveat our results as follows. As to some extent illustrated by our study, at present 

our empirical and theoretical understanding of the cost of capital is still early. Our empirical tests 
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are based on realized returns. We calculate expected returns using the widely used Fama-French 

model in our primary tests and show that our results are robust to a number of alternative 

specifications of expected returns. Nevertheless, as with all asset-pricing tests, our tests are joint 

tests of our hypotheses and of a correctly specified asset pricing model. Implied cost of capital 

measures are an alternative proxy for expected returns, and there is an ongoing debate in the 

literature about the use of future returns versus implied cost of capital as a proxy for expected 

returns (e.g., Easton and Monahan, 2005; Guay, Kothari, and Shu, 2006; McInnis, 2010). A chief 

interest of our study, however, is firms with low market competition. Because low-competition 

firms tend to have little to no analyst following, implied cost of capital estimates (for which 

analyst forecasts are required) cannot be calculated for most of these firms. Finally, we find that 

when market competition is low, firms with high information asymmetry have a cost of capital 

that is from 5.08% to 12.48% higher than firms with low information asymmetry. Although we 

predict that these firms will have a higher cost of capital, this is an economically large difference 

in the cost of capital. We suggest that firms may choose to have high information asymmetry 

because the costs of reducing this asymmetry are greater than the benefits in terms of reducing 

their cost of capital. Understanding the magnitude and determinants of this trade-off is an 

important topic for future research. 
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Appendix 

Estimation of the adverse selection component of the bid-ask spread 

We estimate the adverse selection component of the bid-ask spread, ASC_spread, 

following Madhavan, Richardson, and Roomans (1997). Prior literature (e.g., Greene and Smart, 

1999) uses this method to estimate the adverse selection component of the bid-ask spread. To 

estimate ASC_spread, we gather trade-by-trade and quote data from the Institute for the Study of 

Security Markets (ISSM) and the Trades and Automated Quotes (TAQ) database provided by the 

NYSE. We match trades and quotes using the Lee and Ready (1991) algorithm with a five-

second lag to determine the direction of the trade (i.e., buy or sell). We clean trades and quotes 

using the algorithm described in Appendix B of Ng, Rusticus, and Verdi (2008). Once trades are 

classified as either buyer- or seller-initiated, we estimate the following firm-specific regression: 

∆pt/pt-1 = ψ ∆Dt + λ (Dt – ρDt-1) + ut ,      (1) 

 

where pt is the transaction price, Dt is the sign of trade (+1 if buy and -1 if sell), and ρ is the 

AR(1) coefficient for Dt. The fitted λ in the above is ASC_spread. The advantage of the 

Madhavan et al. (1997) model is that it does not assume that price changes are monotonically 

increasing in signed transaction size, as do other models such as Glosten and Harris (1988). We 

are reluctant to make this assumption, because prior empirical work generally finds that the 

assumption is violated (e.g., Barclay and Warner, 1993; Chakravarty, 2001).21 Note that the only 

difference between the estimation procedure shown in Equation (1) and the one described in 

Madhavan et al. (1997) is that we have deflated the dependent variable by lagged price to allow 

                                                 
21 Nevertheless, we also estimate the Glosten and Harris (1988) measure of the adverse selection component of the 
bid-ask spread. This measure has a 0.77 (Spearman) correlation with the Madhavan et al. (1997) measure and 
produces similar inferences. For example, the abnormal returns to the ASC_spread hedge portfolio in the low market 
competition in Panel A of Table 3 are 0.61% per month (t-stat of 2.25). 
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for cross-sectional comparability.22 Because the Madhavan et al. (1997) model describes the 

evolution of transaction prices in a single firm, it was not intended to directly apply to a cross-

sectional setting where the price level varies across firms.23 

                                                 
22 Absent this scaling, λ would depend on ∆pt, the change in price, and, hence, the price level of the firm. As a 
simple example, consider two firms, both with unexpected order flow (Dt – ρDt-1) equal to c (ignoring for the 
moment ∆Dt). In the first firm, price moves from 10 to 11, and in the second from 100 to 110. Despite identical 
changes in order flow, λ for the first firm is 1/c and λ for the second firm is 10/c. This example illustrates that, 
ceteris paribus, estimates of λ will differ by a factor of 10 because the price levels of the firms differ by a factor of 
10.  
23 This concern about scaling also applies to other microstructure models and measures of ASC_spread (e.g., Glosten 
and Harris, 1988).  
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Table 1. Descriptive Statistics 

 
This table presents descriptive statistics for measures of market competition and information asymmetry. Panel A 
reports the annual number of observations available for each variable. Panel B reports the distribution of the 
variables used in the analysis, and their correlations. Bold indicates statistical significance at the 5% level (or lower). 
Panel C presents descriptive statistics for the extreme quintiles (i.e., one and five) for each of the information 
asymmetry proxies for the extreme quintiles of market competition. In the left-hand columns, we show statistics 
where the portfolios have been formed by sorting first based on the number of shareholders (“dependent sorts”), and 
in the right-hand columns we show statistics where the portfolios have been formed by sorting independently on the 
number of shareholders and on the information asymmetry variable, and intersecting the resulting quintile sorts 
(“independent sorts”). We sort each information asymmetry variable into five quintiles and report the median of the 
top and bottom quintiles. We compute these medians each year and then take the time-series average of these 
medians. The number of observations shown is the average annual number of observations in that portfolio. Year is 
the year of portfolio formation. Number of Shareholders (data #100) is the number of shareholders of record 
measured as of the firm’s fiscal year end. ASC_spread is the modified Madhavan, Richardson, and Roomans (1997) 
measure of the information asymmetry component of the bid-ask spread, estimated over the month of June.  Spread 
is the average bid-ask spread scaled by trade price, quoted on TAQ or ISSM and weighted by order size for the 
month of June. We use the lagged values of ASC_spread and Spread in our analyses. Analyst Coverage is the 
number of analysts issuing one-year-ahead earnings forecasts for the firm during the year according to the I/B/E/S 
Summary file. SAQ is scaled accruals quality calculated as the Dechow and Dichev (2002) measure of accruals 
quality scaled by the average of the absolute value of total accruals over the previous five years. R&D is the ratio of 
research and development expense (data #46) to sales (data #12).  Market Value is the market capitalization (in 
millions of dollars) measured at the end of June. 
 

Panel A. Number of Observations by Year 

 

Year 

Number of  

Shareholders ASC_spread Spread 

Analyst 

Coverage SAQ R&D 

Market 

Value 
1976 3,239 - - 4,103 2,081 4,056 4,103 
1977 4,018 - - 4,177 2,177 4,120 4,177 
1978 3,959 - - 4,098 2,136 4,046 4,098 
1979 3,988 - - 4,106 2,139 4,041 4,106 
1980 3,972 - - 4,105 2,192 4,017 4,105 
1981 4,037 - - 4,356 2,320 4,236 4,356 
1982 4,229 - - 4,574 2,773 4,436 4,574 
1983 4,364 - - 4,822 2,730 4,592 4,822 
1984 4,646 - - 5,337 2,632 4,986 5,337 
1985 4,811 - - 5,418 2,489 5,050 5,418 
1986 4,806 - - 5,568 2,358 5,077 5,568 
1987 5,041 - - 6,060 2,251 5,439 6,060 
1988 5,214 3,451 4,006 6,239 2,204 5,485 6,239 
1989 5,139 3,258 3,950 6,172 2,178 5,333 6,172 
1990 5,080 3,231 3,911 6,190 2,251 5,299 6,190 
1991 5,038 3,200 3,926 6,202 2,374 5,296 6,202 
1992 5,102 1,748 1,912 6,507 2,448 5,522 6,507 
1993 5,307 3,992 4,964 6,928 2,627 5,777 6,928 
1994 5,850 1,958 2,054 7,785 2,881 7,026 7,785 
1995 6,076 5,012 5,912 7,936 2,933 7,234 7,936 
1996 6,208 5,220 6,016 8,352 2,954 7,609 8,352 
1997 6,670 5,760 6,496 8,631 2,914 7,924 8,631 
1998 6,623 5,914 6,558 8,522 2,868 7,838 8,522 
1999 6,177 6,121 6,490 8,111 2,791 7,396 8,111 
2000 5,986 5,847 6,149 8,054 2,802 7,411 8,054 
2001 5,560 5,582 5,891 7,505 2,765 6,901 7,505 
2002 5,092 5,262 5,536 7,023 2,845 6,377 7,023 
2003 4,665 4,926 5,119 6,563 3,040 5,901 6,563 
2004 4,528 4,760 4,846 6,469 3,118 5,719 6,469 
2005 4,528 4,713 4,781 6,511 3,043 5,693 6,511 
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Table 1. Descriptive Statistics (Cont’d) 

 

Panel B. Distribution of Variables and Correlation Matrix 

 

Statistic Mean Std. Dev. P10 Median P90 

Number of Shareholders 17.54 1,274.36 0.238 1.651 17.869 

ASC_spread 0.004 0.089 0.000 0.001 0.007 

Spread 0.024 0.022 0.005 0.016 0.053 

Analyst Coverage 3.777 5.974 0.000 1.000 11.000 

SAQ 0.925 1.261 0.313 0.776 1.610 

R&D 0.765 33.477 0.000 0.000 0.128 

Market Value 1,058.510 7,419.770 6.504 80.400 1,425.570 

 
  Spearman Correlations 

         

 
 

Number of 

Shareholders ASC_spread Spread 

Analyst 

Coverage SAQ R&D 

Market 

Value 

Number of 

Shareholders 
 –0.48 –0.31 0.47 0.07 –0.07 0.54 

ASC_spread –0.17  0.66 –0.67 –0.03 0.00 –0.76 

Spread –0.20 0.51  –0.60 0.01 –0.01 –0.66 

Analyst 

Coverage 
0.49 –0.36 –0.43  –0.03 0.04 0.70 

SAQ 0.07 –0.01 0.03 0.00  –0.05 0.01 

R&D  –0.03 –0.01 0.03 –0.04 0.02  0.00 

P
ea

rs
o

n
 C

o
rr

el
at

io
n

s 

Market Value 0.62 –0.21 –0.27 0.70 0.04 –0.02  
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Table 1. Descriptive Statistics (Cont’d) 

 

Panel C. Distribution of Information Asymmetry Variables by Market Competition Quintile 
 

ASC_spread Dependent Sort  ASC_spread Independent Sort 

Quintile 1 Quintile 5 Diff.  Quintile 1 Quintile 5 Diff. 
Quintile of 
Number of 
Shareholders 

Correlation 
With 
Number of 
Shareholders 

 

N Median N Median Q5–Q1 
 

N Median N Median Q5–Q1 

1 –0.03  156 0.0007 156 0.0109 0.0102  44 0.0003 227 0.0078 0.0075 

5 –0.57  156 0.0002 156 0.0015 0.0013  444 0.0003 21 0.0071 0.0068 
 

Spread Dependent Sort  Spread Independent Sort 

Quintile 1 Quintile 5 Diff.  Quintile 1 Quintile 5 Diff. 
Quintile of 
Number of 
Shareholders 

Correlation 
With 
Number of 
Shareholders 

 

N Median N Median Q5–Q1  N Median N Median Q5–Q1 

1 0.00  169 0.0078 169 0.0586 0.0508  101 0.0058 209 0.0537 0.0479 
5 –0.36  169 0.0044 169 0.0266 0.0222  362 0.0057 49 0.0562 0.0505 

 

SAQ Dependent Sort  SAQ Independent Sort 

Quintile 1 Quintile 5 Diff.  Quintile 1 Quintile 5 Diff. 
Quintile of 
Number of 
Shareholders 

Correlation 
With 
Number of 
Shareholders 

 

N Median N Median Q5–Q1  N Median N Median Q5–Q1 

1 0.00  98 0.356 98 1.357 1.001  104 0.364 82 1.442 1.079 
5 0.08  98 0.384 98 1.642 1.258  86 0.363 118 1.524 1.161 

 

R&D Dependent Sort  R&D Independent Sort 

Quintile 1 Quintile 3 Diff.  Quintile 1 Quintile 3 Diff. 
Quintile of 
Number of 
Shareholders 

Correlation 
With 
Number of 
Shareholders 

 

N Median N Median Q3–Q1  N Median N Median Q3–Q1 

1 0.07  573 0.000 328 0.131 0.131  573 0.000 369 0.103 0.103 
5 0.05  608 0.000 328 0.038 0.038  608 0.000 297 0.051 0.051 

 

Analyst Coverage Dependent Sort  Analyst Coverage Independent Sort 

Quintile 1 Quintile 3 Diff.  Quintile 1 Quintile 3 Diff. 
Quintile of 
Number of 
Shareholders 

Correlation 
With 
Number of 
Shareholders 

 

N Median N Median Q3–Q1  N Median N Median Q3–Q1 

1 0.03  552 0.000 283 3.917 3.917  552 0.000 143 6.233 6.233 
5 0.41  328 1.967 335 19.700 17.733  122 0.000 723 12.517 12.517 
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Table 2. Information Asymmetry Portfolios 
 
We form five equal-weighted portfolios at the end of June of year t and compute monthly buy-and-hold returns for each portfolio. We rank firms into quintiles in 
June of year t based on one of five measures of information asymmetry: ASC_spread, Spread, SAQ, R&D, and Analyst Coverage. All variables are as defined in 
Table 1. Because of the large number of zero values for Analyst Coverage and R&D, these measures are ranked into terciles. To be included in a portfolio, the 
firm must have a non-missing return and market value on the CRSP monthly file in June of year t. α is the intercept from a Fama-French three-factor model 
estimated on monthly portfolio returns, and βMKTRF

, β
SMB

, and βHML are the coefficients on the respective Fama-French factors. The ASC_spread and Spread 
portfolios span July 1988-June 2006 and contain, on average, 841 and 930 firms per portfolio per month, respectively. The Analyst Coverage, SAQ, and R&D 
portfolios span July 1976-June 2006 and contain, on average, 1,970, 503, and 1,792 firms per portfolio per month, respectively. *, **, and *** denote the 
significance of the factor loadings at the 10%, 5%, and 1% levels (two-tailed), respectively. 

 

Panel A. Market-Based Measures 

 Quintile of Information Asymmetry  
 1 2 3 4 5 Hedge 

 

ASC_spread 
α –0.09 –0.13 0.01 0.16 0.41 0.50 
t(α) (–1.33) (–1.96) (0.07) (1.11) (1.98) (2.29) 
β

MKTRF 1.07*** 1.10*** 1.02*** 0.95*** 0.81*** –0.26*** 
β

SMB
 0.34*** 0.82*** 1.13*** 1.19*** 1.20*** 0.86*** 

β
HML

 0.31*** 0.30*** 0.15*** 0.20*** 0.21** –0.10 
R2 95.0% 97.07% 95.56% 90.46% 78.82% 51.10% 

 

Spread 
α –0.07 0.00 0.13 0.26 0.24 0.31 
t(α) (–0.72) (0.03) (1.35) (1.64) (1.04) (1.17) 
β

MKTRF 1.08*** 0.99*** 0.94*** 0.90*** 0.85*** –0.23*** 
β

SMB
 0.47*** 0.76*** 1.03*** 1.23*** 1.21*** 0.74*** 

β
HML

 0.29*** 0.29*** 0.22*** 0.17** 0.28** –0.01 
R2 91.11% 97.24% 94.59% 88.91% 74.80% 33.92%  

Panel B. Other Measures 
 Quintile of Information Asymmetry  
 1 2 3 4 5 Hedge 

 

SAQ 
α 0.04 0.03 0.09 0.04 0.16 0.12 
t(α) (0.55) (0.40) (1.24) (0.55) (1.60) (1.37) 
β

MKTF 0.94*** 0.97*** 0.95*** 0.96*** 0.92*** –0.02 
β

SMB
 0.87*** 0.75*** 0.87*** 0.90*** 0.94*** 0.07 

β
HML

 0.21*** 0.32*** 0.26*** 0.26*** 0.20*** –0.01 
R2 95.02% 92.98% 93.74% 93.27% 91.06% 2.25% 

 

R&D 
α –0.11 –0.05 0.13 . . 0.24 
t(α) (–1.45) (–0.33) (1.16) . . (1.77) 
β

MKTRF 0.92*** 1.02*** 1.01*** . . 0.09** 
β

SMB
 0.69*** 0.76*** 1.22*** . . 0.53*** 

β
HML

 0.45*** 0.42*** –0.26*** . . –0.71*** 
R2 91.80% 79.17% 91.65% . . 67.08% 

 

Analyst Coverage 
α 0.03 –0.01 –0.09 . . –0.12 
t(α) (0.21) (–0.11) (–2.41) . . (–0.86) 
β

MKTRF 0.79*** 0.96*** 1.07*** . . 0.28*** 
β

SMB
 1.01*** 1.02*** 0.63*** . . –0.38*** 

β
HML

 0.20*** 0.16*** 0.22*** . . 0.02 
R2 82.49% 95.21% 98.06% . . 26.63%  
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Table 3. Information Asymmetry Portfolios Partitioned by Market Competition — 

Dependent Sorts 
 

We form 25 equal-weighted portfolios at the end of June of year t based on two-dimensional dependent sorts and 
compute monthly buy-and-hold returns for each portfolio. Firms are first ranked into quintiles based on Number of 

Shareholders (data #100), which is the number of shareholders of record measured as of the firm’s fiscal year end. 
Then, within each number of shareholder quintile, firms are ranked into five portfolios based on one of five 
measures of information asymmetry: ASC_spread, Spread, SAQ, R&D, and Analyst Coverage. Because of the large 
number of zero values for Analyst Coverage and R&D, these measures are ranked into terciles. All variables are as 
defined in Table 1. To be included in a portfolio, the firm must have a non-missing return and market value on the 
CRSP monthly file in June of year t. Panel A reports the Fama-French α for the information asymmetry hedge 
portfolio for each market competition quintile. Panel B reports Fama-French α and factor loadings for the extreme 
portfolios. α is the intercept from a Fama-French three-factor model estimated on monthly portfolio returns, and 
β

MKTRF
, β

SMB
, and βHML

 are the coefficients on the respective Fama-French factors. The ASC_spread and Spread 
portfolios span July 1988-June 2006 and contain, on average, 128 and 160 firms per portfolio per month, 
respectively. The Analyst Coverage, SAQ, and R&D portfolios span July 1976-June 2006 and contain, on average, 
336, 96, and 326 firms per portfolio per month, respectively. *, **, and *** denote the significance of the factor 
loadings at the 10%, 5%, and 1% levels (two-tailed), respectively. 
 
 

Panel A. Information Asymmetry Hedge Portfolios Partitioned by Market Competition 

 

 Measure of Information Asymmetry (hedge α) 

 
ASC_spread 

(Q5-Q1) 
Spread 

(Q5 – Q1) 
SAQ 

(Q5 – Q1) 
R&D 

(Q3 – Q1) 

Analyst 

Coverage 

(Q1 – Q3) 

1.04 0.65 0.42 0.51 0.38 
1 

(2.83) (1.93) (2.88) (2.85) (1.94) 

0.49 0.29 0.06 0.29 0.17 
2 

(1.96) (0.98) (0.39) (1.55) (1.09) 

0.53 0.41 –0.01 0.24 0.03 
3 

(1.89) (1.37) (–0.07) (1.68) (0.17) 

0.23 0.00 0.17 0.34 –0.05 
4 

(0.79) (0.01) (0.98) (2.48) (–0.25) 

0.03 –0.19 0.11 0.08 –0.09 M
ar

k
et

 C
o

m
p

et
it

io
n

 
Q

u
in

ti
le

 

5 
(0.13) (–0.82) (0.89) (0.58) (–0.84) 
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Table 3. Information Asymmetry Portfolios Partitioned by Market Competition (Cont’d) 

 

Panel B. Detailed Estimates of Extreme Portfolio Returns 

 

 
   ASC_spread   
   Q1 Q5 Hedge 

α –0.36 0.68 1.04 
t(α) (–2.51) (2.00) (2.83) 
β

MKTRF
 1.26*** 0.80*** -0.46*** 

β
SMB

 0.87*** 1.53*** 0.66*** 
β

HML
 –0.04 –0.08 -0.04 

1 

R2 91.13% 71.13% 23.19% 

α –0.06 –0.03 0.03 

t(α) (–0.83) (–0.16) (0.13) 

β
MKTRF

 0.99*** 1.04*** 0.05 

β
SMB

 –0.06*** 1.24*** 1.31*** 

β
HML

 0.29*** 0.15* -0.13 M
ar

k
et

 C
o

m
p

et
it
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n

 Q
u
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le
 

5 

R2 92.17% 82.36% 72.82% 

 
   Spread  
   Q1 Q5 Hedge 

α –0.22 0.43 0.65 
t(α) (–1.34) (1.43) (1.93) 
β

MKTRF
 1.20*** 0.85*** –0.36*** 

β
SMB

 0.86*** 1.40*** 0.54*** 
β

HML
 –0.03 0.08 0.11 

1 

R2 88.20% 70.16% 17.37% 

α –0.08 –0.27 –0.19 

t(α) (–0.78) (–1.42) (–0.82) 

β
MKTRF

 1.08*** 1.09*** 0.01 

β
SMB

 0.04 1.19*** 1.15*** 

β
HML

 0.35*** 0.34*** –0.01 M
ar

k
et

 C
o

m
p
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it
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n

 Q
u
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le
 

5 

R2 86.87% 83.86% 62.94% 

 

 

 
   SAQ   
   Q1 Q5 Hedge 

α 0.04 0.47 0.42 
t(α) (0.39) (3.09) (2.88) 
β

MKTRF
 0.82*** 0.85*** 0.03 

β
SMB

 1.10*** 1.25*** 0.15* 
β

HML
 0.18*** 0.09 –0.10 

1 

R2 86.84% 82.35% 5.82% 

α –0.06 –0.16 –0.11 

t(α) (–0.67) (–1.74) (–0.89) 

β
MKTRF

 0.95*** 1.03*** 0.08* 

β
SMB

 0.37*** 0.30*** –0.07 

β
HML

 0.24*** 0.41*** 0.17*** M
ar

k
et

 C
o

m
p
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it
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n

 Q
u
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5 

R2 89.81% 86.97% 6.49% 

 
   R&D  
   Q1 Q3 Hedge 

α –0.12 0.39 0.51 
t(α) (–1.04) (2.07) (2.85) 
β

MKTRF
 0.89*** 0.98*** 0.09 

β
SMB

 0.97*** 1.54*** 0.57*** 
β

HML
 0.26*** –0.61*** –0.87*** 

1 

R2 86.19% 86.26% 61.82% 

α –0.16 –0.08 0.08 

t(α) –2.86 –0.76 0.58 

β
MKTRF

 0.97*** 1.06*** 0.09* 

β
SMB

 0.28*** 0.67*** 0.39*** 

β
HML

 0.57*** –0.05 –0.62*** M
ar

k
et

 C
o

m
p
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n

 Q
u
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5 

R2 93.75% 89.60% 58.81% 

 
   Analyst Coverage  
   Q1 Q3 Hedge 

α 0.28 –0.10 0.38 
t(α) (1.46) (–1.10) (1.94) 
β

MKTRF
 0.76*** 1.07*** –0.31*** 

β
SMB

 1.39*** 1.08*** 0.31** 
β

HML
 –0.11 –0.16*** 0.05 

1 

R2 76.82% 94.59% 14.87% 

α –0.18 –0.09 –0.09 

t(α) (–1.83) (–1.56) (–0.84) 

β
MKTRF

 0.89*** 1.03*** –0.14*** 

β
SMB

 0.94*** 0.00 0.94*** 

β
HML

 0.29*** 0.35*** –0.06 M
ar

k
et
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o

m
p

et
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io
n
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5 

R2 88.95% 94.32% 68.18%  
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Table 4. Information Asymmetry Portfolios Partitioned by Market Competition —  

Independent Sorts 
 

We form 25 equal-weighted portfolios at the end of June of year t based on two-dimensional dependent sorts and 
compute monthly buy-and-hold returns for each portfolio. Firms are first ranked into quintiles based on Number of 

Shareholders (data #100), which is the number of shareholders of record measured as of the firm’s fiscal year end.  
Then, independent of this ranking, firms are ranked into five portfolios based on one of six measures of information 
asymmetry: ASC_spread, Spread, SAQ, R&D, and Analyst Coverage. Because of the large number of zero values for 
Analyst Coverage and R&D, these measures are ranked into terciles. All variables are as defined in Table 1. To be 
included in a portfolio, the firm must have a non-missing return and market value on the CRSP monthly file in June 
of year t. Panel A reports the Fama-French α for the information asymmetry hedge portfolio for each market 
competition quintile. Panel B reports Fama-French α and factor loadings for the extreme portfolios. α is the intercept 
from a Fama-French three-factor model estimated on monthly portfolio returns, and βMKTRF

, β
SMB

, and βHML
 are the 

coefficients on the respective Fama-French factors. *, **, and *** denote the significance of the factor loadings at the 
10%, 5%, and 1% levels (two-tailed), respectively. 
 

 

Panel A. Information Asymmetry Hedge Portfolios Partitioned by Market Competition 

 

 Measure of Information Asymmetry (hedge α) 

 
ASC_spread 

(Q5-Q1) 
Spread 

(Q5 – Q1) 
SAQ 

(Q5 – Q1) 
R&D 

(Q3 – Q1) 

Analyst 

Coverage 

(Q1 – Q3) 

0.88 0.74 0.43 0.51 0.24 
1 

(2.31) (2.06) (2.93) (3.15) (1.06) 

0.46 0.21 0.09 0.28 0.13 
2 

(1.70) (0.65) (0.55) (1.64) (0.70) 

0.49 0.46 0.03 0.25 0.06 
3 

(1.71) (1.50) (0.18) (1.51) (0.31) 

0.37 –0.11 0.21 0.33 –0.10 
4 

(1.12) (–0.36) (1.24) (2.31) (–0.54) 

–0.10 –0.48 –0.16 0.13 –0.18 M
ar

k
et

 C
o

m
p
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n

 
Q
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5 
(–0.24) (–1.33) (–1.33) (0.81) (–1.18) 
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Table 4. Information Asymmetry Portfolios Partitioned by Market Competition (Cont’d) 

 

Panel B. Detailed Estimates of Extreme Portfolio Returns 

 

 
   ASC_spread   
   1 5 Hedge 

α –0.22 0.66 0.88 
t(α) (–0.86) (2.21) (2.31) 
β

MKTRF
 1.14*** 0.82*** –0.32*** 

β
SMB

 0.92*** 1.51*** 0.59*** 
β

HML
 0.04 –0.11 –0.15 

1 

R2 72.59 76.05 16.23 

α –0.06 –0.16 0.10 

t(α) (–1.06) (–0.40) (0.24) 

β
MKTRF

 1.01*** 0.97*** –0.04 

β
SMB

 0.10*** 1.26*** 1.16*** 

β
HML

 0.43*** 0.35** –0.08 M
ar
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 C
o
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5 

R2 94.39% 47.14% 29.91% 

 
   Spread Quintile  
   1 5 Hedge 

α –0.26 0.48 0.74 
t(α) (–1.32) (1.62) (2.06) 
β

MKTRF
 1.20*** 0.84*** –0.36*** 

β
SMB

 0.85*** 1.46*** 0.61*** 
β

HML
 –0.06 0.02 0.08 

1 

R2 84.20 73.51 18.87 

α –0.11 –0.59 –0.48 

t(α) (–1.36) (–1.76) (–1.33) 

β
MKTRF

 1.07*** 1.11*** 0.04 

β
SMB

 0.12*** 1.29*** 1.17*** 

β
HML

 0.43*** 0.46*** 0.03 M
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k
et

 C
o

m
p

et
it

io
n

 Q
u

in
ti

le
 

5 

R2 90.87% 62.39% 38.38% 

 

 

 
   SAQ Quintile  
   1 5 Hedge 

α 0.08 0.51 0.43 
t(α) (0.73) (3.25) (2.93) 
β

MKTRF
 0.80*** 0.85*** 0.05 

β
SMB

 1.20*** 1.23*** 0.03 
β

HML
 0.09 0.08 –0.01 

1 

R2 87.52% 80.53% 0.20% 

α –0.01 –0.17 –0.06 

t(α) (–0.06) (–1.87) (–1.33) 

β
MKTRF

 0.94*** 1.04*** 0.10** 

β
SMB

 0.41*** 0.30*** –0.11** 

β
HML

 0.21*** 0.41*** 0.20*** M
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o

m
p
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n
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5 

R2 88.30% 88.49% 11.21% 

 
   R&D Quintile  
   1 5 Hedge 

α –0.11 0.40 0.51 
t(α) (–1.04) (2.31) (3.16) 
β

MKTRF
 0.89*** 0.95*** 0.06 

β
SMB

 0.97*** 1.50*** 0.53*** 
β

HML
 0.26*** –0.54*** –0.80*** 

1 

R2 86.19% 87.54% 62.04% 

α –0.16 –0.03 0.13 

t(α) (–2.86) (–0.26) (0.81) 

β
MKTRF

 0.97*** 1.07*** 0.10** 

β
SMB

 0.28*** 0.74*** 0.46*** 

β
HML

 0.57*** –0.16** –0.73*** M
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et
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n

 Q
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5 

R2 93.75% 87.27% 58.96% 

 

 
 

 
Analyst Coverage 

Quintile  
   1 5 Hedge 

α 0.29 0.05 0.24 
t(α) (1.46) (0.36) (1.06) 
β

MKTRF
 0.75*** 1.07*** –0.32*** 

β
SMB

 1.39*** 0.95*** 0.44*** 
β

HML
 –0.11 –0.17*** 0.06 

1 

R2 76.82% 89.40% 15.10% 

α –0.30 –0.12 0.18 

t(α) (–2.08) (–2.77) (1.19) 

β
MKTRF

 0.87*** 1.05*** 0.18*** 

β
SMB

 0.95*** 0.22*** –0.73*** 

β
HML

 0.31*** 0.40*** 0.09 M
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o
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R2 76.42% 96.17% 29.91%  
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Table 5. Turnover-Based Refinement of Market Competition Measure 

 
This table presents results from using a turnover-base refinement of the market competition measure. We form 50 equal-weighted portfolios at the end of June of 
year t based on three-dimensional sorts (5 x 2 x 5) and compute monthly buy-and-hold returns for each portfolio. In Panel A, firms are first ranked into quintiles 
based on Number of Shareholders. Then, within each quintile, firms are ranked into two groups based on average share turnover over the 12 months ended June 
of year t, and five groups based on each of the five proxies for information asymmetry: ASC_spread, Spread, SAQ, R&D, and Analyst Coverage. Because of the 
large number of zero values for Analyst Coverage and R&D, these measures are ranked into terciles. All variables are as defined in Table 1. As indicated by the 
shaded cells, firms that have a high (low) number of shareholders and high (low) turnover are relatively most (least) competitive. We compute the Fama-French 

α for the information asymmetry hedge portfolio for the extreme number of shareholder and turnover portfolios. Panel A (Panel B) presents results from 
dependent (independent) sorts on the five information asymmetry proxies. Fama-French α is the intercept from a Fama-French three-factor model estimated on 
monthly portfolio returns. 

 

Panel A. Turnover-Based Refinement — Dependent Sorts 

 

  

ASC_spread 

(Q5 – Q1)  
Spread 

 (Q5 – Q1)  
SAQ 

(Q5 – Q1)  
R&D 

(Q3-Q1)  

Analyst 

Coverage 

 (Q1 – Q3) 
  

Turnover  Turnover  Turnover  Turnover  Turnover 
  High Low  High Low  High Low  High Low  High Low 

0.93 0.77  0.19 0.67  0.43 0.57  0.75 0.97  0.20 1.01 
Low  

(1.61) (2.33)  (0.45) (1.71)  (1.70) (2.09)  (3.35) (2.61)  (0.50) (3.58) 
               

0.02 –0.13  –0.33 –0.21  –0.19 –0.13  0.51 0.02  –0.27 –0.03 

N
u
m

b
er

 o
f 

S
h
ar

eh
o
ld

er
s 

High 
(0.05) (–0.69)  (–1.01) (–1.07)  (–1.11) (–0.94)  (2.33) (0.10)  (–1.31) (–0.22) 
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Table 5. Alternative Measures of Market Competition (Cont’d) 

 

Panel B. Turnover-Based Refinement — Independent Sorts 

 

  

ASC_spread 

(Q5 – Q1)  
Spread 

 (Q5 – Q1)  
SAQ 

(Q5 – Q1)  
R&D 

(Q3-Q1)  

Analyst 

Coverage 

 (Q1 – Q3) 
  

Turnover  Turnover  Turnover  Turnover  Turnover 
  High Low  High Low  High Low  High Low  High Low 

0.72 0.92  0.39 0.93  0.39 0.44  0.73 0.88  0.10 0.88 
Low  

(1.35) (2.17)  (0.88) (2.17)  (1.43) (1.71)  (3.39) (2.76)  (0.26) (2.72) 
               

–0.32 –0.02  –1.09 –0.21  –0.26 –0.12  0.55 0.09  –0.45 0.01 

N
u
m

b
er

 o
f 

S
h
ar

eh
o
ld

er
s 

High 
(–0.37) (–0.05)  (–1.87) (–0.56)  (–1.40) (–0.93)  (2.40) (0.51)  (–1.32) (0.07) 
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Table 6. Comparison of Proxies for Size and Risk, Valuation, Trading Costs, Uses of 

Capital, Sources of Capital, and Disclosure for High and Low Information Asymmetry 

Portfolios 

 
This table presents firm characteristics of the extreme portfolios formed using dependent sorts on ASC_spread 
partitioned by market competition. We show both the low market competition quintile (first and second columns) 
and the high competition quintile (fourth and fifth columns). We also present the differences between the 
ASC_spread quintiles (columns three and six) and denote the significance of the difference at the 10%, 5%, and 1% 
levels (two-tailed) with *, **, and ***, respectively. Portfolio level characteristics are computed as the mean of the 
annual median values for each portfolio (except for the variables Market Competition Portfoliot+1 and Adverse 

Selection Portfoliot+1). Annualized excess returnt is the annualized abnormal return (or alpha) from a regression of 
monthly portfolio returns in excess of the market on the three Fama-French factors. Beta is the slope coefficient 
from a market model of monthly returns estimated over the previous 60 months. MVE is the market value of equity. 
B/M is the book-to-market ratio. The market-to-book assets ratio is the ratio of the market value of assets to book 
value of assets. ASC_spread is the modified Madhavan, Richardson, and Roomans (1997) measure of the 
information asymmetry component of the bid-ask spread, estimated over the month of June. Spread is the average 
bid-ask spread scaled by trade price, quoted on TAQ or ISSM and weighted by order size for the month of June. 
Dividend Yield is annual dividends scaled by market value of equity. New Investment is the Richardson (2006) 
measure of new investment. %Change in Debt is the percentage change in long-term debt over the next fiscal year. 
%Change in Equity is calculated following Chen and Zhang (2010) as the percentage change in split-adjusted shares 
outstanding over the next fiscal year. %Issued Management Forecastt is the percentage of firms for which 
management issues an earnings forecast or earnings guidance according to First Call over the fiscal year. %Issued 

Management Forecastt+1 is the percentage of firms at which management issues an earnings forecast or earnings 
guidance according to First Call during the next fiscal year.  

 

 

Market Competition 
Quintile 1 

 
Market Competition 

Quintile 5 

 
ASC_spread 

Quintile 1 
ASC_spread 

Quintile 5 
 

Diff. 

 ASC_spread 

Quintile 1 
ASC_spread 

Quintile 5 Diff. 
    

 
   

Cost of capital:        
Annualized excess return –4.32% 8.16% 12.48%***  –0.72% –0.36% 0.36% 
        
Size and Risk:        
Betat 1.19 0.91 -0.28***  0.77 1.10 0.33*** 
MVEt 343 19 -324***  11658 373 -11285*** 
B/Mt 0.45 0.91 0.46***  0.63 0.77 0.14* 
        

Valuation:        
Market-to-book assets 
ratio t 1.74 1.16 -0.58***  1.38 1.24 -0.14 
        

Trading costs:        
ASC_spreadt 0.001 0.011 0.010***  0.000 0.001 0.001*** 
Spreadt 0.012 0.040 0.028***  0.010 0.018 0.008*** 
        
Uses of Capital:        
Dividend Yieldt+1 0.20% 0.00% -0.20%*  3.00% 1.40% -1.60%*** 
New Investment t+1 0.08 0.01 -0.07***  0.040 0.043 0.003 
        
Sources of Capital:        
% Change in Debtt+1  4.00% –5.16% -9.16%***  4.00% –0.20% -4.20%*** 
% Change in Equityt+1  1.40% 0.67% -0.73%***  0.00% 1.10% 1.10%*** 
        
Disclosure:        
%Issue Mgt. Forecastt 23.90% 5.76% -18.14%**  28.00% 11.90% -16.10%* 
%Issue Mgt. Forecastt+1 24.50% 5.84% -18.66%***  30.00% 13.00% -17.00%** 
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Table 7. Robustness to Alternative Samples 

 
This table reports sensitivity analyses of the results presented in Panel A of Tables 3 and 4. We form 25 equal-
weighted portfolios at the end of June of year t based on two-dimensional sorts on Number of Shareholders and 
ASC_spread and compute monthly buy-and-hold returns for each portfolio. Firms are first ranked into quintiles 
based on Number of Shareholders (data #100) and then into quintiles based on ASC_spread. All variables are as 
defined in Table 1. Panel A (Panel B) presents results from dependent (independent sorts) on ASC_spread. We 
present the Fama-French α for the ASC_spread hedge portfolio for the extreme market competition quintiles. The 
first column in Panel A (Panel B) replicates the ASC_spread hedge portfolio results presented in Table 3 (Table 4). 
The second column presents results excluding those stocks with price less than $5 per share at the end of June of 
year t. The third column presents alphas for the period following the decimalization of stock prices by the NYSE 
(i.e., after June of 2001). In the fourth column, we delete the smallest and largest 20% of firms in the sample (i.e., 
the top and bottom quintile when ranked on market value). In the fifth column, within each market competition 

quintile, we delete the smallest and largest 20% of firms.  

 

Panel A. Hedge Portfolio Returns — Dependent Sorts 

 

 

(1) 
 
 
 

Table 3 
Panel A  

ASC_spread 
hedge α 

(2) 
 
 
 

Excluding  
Stocks 

With Price 
< $5 

(3) 
 
 
 
 

Post-
Decimalization 

(6/2001) 

(4) 
 
 
 

 
Excluding 

Q1 and 
Q5 MV 

(5) 
 

Excluding 
Q1 and Q5 

MV by 
Num. of 

Sh. 
Quintile 

1.04 1.05 1.55 1.34 1.17 
1 

(2.83) (2.50) (2.86) (3.01) (2.66) 

0.03 -0.34 0.02 0.36 -0.28 

Market 
Competition 

Quintile 5 
(0.13) (-2.60) (0.05) (0.70) (-1.46) 

 
 

Panel B. Hedge Portfolio Returns — Independent Sorts 

 

 

(1) 
 
 
 

Table 3 
Panel A  

ASC_spread 
hedge α 

(2) 
 
 
 

Excluding  
Stocks 

With Price 
< $5 

(3) 
 
 
 
 

Post-
Decimalization 

(6/2001) 

(4) 
 
 

 
 
Excluding 

Q1 and 
Q5 MV 

(5) 
 
Excluding 
Q1 and Q5 

MV by 
Num. of 

Sh. 
Quintile 

0.88 1.05 1.16 1.30 1.03 
1 

(2.31) (2.72) (1.91) (2.62) (1.80) 

–0.10 -0.50 -0.20 0.47 0.34 

Market 
Competition 

Quintile 5 
(–0.24) (-0.97) (-0.21) (1.00) (0.42) 
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Table 8. Robustness to Alternative Measures of Expected Returns 

 
This table reports sensitivity analyses of the results presented in Panel A of Tables 3 and 4. We form 25 equal-
weighted portfolios at the end of June of year t based on two-dimensional sorts on Number of Shareholders and 
ASC_spread and compute monthly buy-and-hold returns for each portfolio. Firms are first ranked into quintiles 
based on Number of Shareholders (data #100) and then into quintiles based on ASC_spread. All variables are as 
defined in Table 1. Panel A (Panel B) presents results from dependent (independent sorts) on ASC_spread. We 
present the Fama-French α for the ASC_spread hedge portfolio for the extreme market competition quintiles. The 
first column in Panel A (Panel B) replicates the ASC_spread hedge portfolio α using the Fama-French three-factor 
model presented in Table 3 (Table 4). The second, third, and fourth columns present α from the Fama-French three-
factor model augmented with the Pastor and Stambaugh (2003) liquidity factor, the Sadka (2006) liquidity factor, 
and the Carhart (1997) momentum factor, respectively. 

 

Panel A. Hedge Portfolio Returns — Dependent Sorts 

 

 

(1) 
 
Three Factor  

α 
 
 

Table 3  
Panel A  

(2) 
 

Four Factor  
α 
 

Liquidity 
Pastor- 

Stambaugh 

(3) 
 

Four Factor 
α 
 
 

Liquidity 
Sadka 

(4) 
 

Four Factor 
α 
 
 
 

Momentum 

1.04 1.02 1.00 0.93 
1 

(2.83) (2.78) (2.65) (2.69) 

0.03 0.001 0.03 0.02 

Market 
Competition 

Quintile 5 
(0.13) (0.00) (0.15) (0.05) 

 

Panel B. Hedge Portfolio Returns — Independent Sorts 

 

 

(1) 
 
Three Factor  

α 
 
 

Table 4  
Panel A 

(2) 
 

Four Factor  
α 
 

Liquidity 
Pastor- 

Stambaugh 

(3) 
 

Four Factor 
α 
 
 

Liquidity 
Sadka 

(4) 
 

Four Factor 
α 
 
 
 

Momentum 

0.88 0.87 0.83 0.67 
1 

(2.31) (2.27) (2.12) (1.83) 

–0.10 –0.02 –0.11 –0.06 

Market 
Competition 

Quintile 5 
(–0.24) (–0.04) (–0.26) (–0.14) 

 
 


