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Generalizations of the no-slip boundary condition to allow for slip at a patterned fluid-solid
boundary introduce a surface mobility tensor, which relates the shear traction vector tangent to the
mean surface to an apparent surface velocity vector. For steady, low-Reynolds-number fluid motions
over planar surfaces perturbed by arbitrary periodic height and Navier slip fluctuations, we prove
that the resulting mobility tensor is always symmetric, which had previously been conjectured. We
describe generalizations of the results to three other families of geometries, which typically have
unsteady flow. © 2011 American Institute of Physics. �doi:10.1063/1.3560320�

With recent advances in microfluidics, renewed interest
has emerged in quantifying the effects of surface texture
on fluid motion. When the scale of surface fluctuations is
small compared to the size of macroscopic flow variations,
it is advantageous to construct “effective boundary
conditions,”1–7 which mimic the far-field effects of a fluctu-
ating boundary surface, but are applied instead on a smooth,
mean surface. In three-dimensional flows, effective boundary
conditions are generally tensorial in order to relate the fluid
velocity to potentially misaligned applied stress tractions.8–14

In this letter, we study Stokes flow along arbitrarily corru-
gated, nonuniformly hydrophobic, periodic surfaces, and
present a proof of a previously posed conjecture regarding
the symmetric nature of tensorial effective boundary condi-
tions. Furthermore, we demonstrate symmetric properties in
several related geometries involving surface fluctuations.

The arguments in this work are rooted in the reciprocal
theorem of Lorentz,15 which has been useful in other dem-
onstrations of symmetric tensorial flow relations.16,17 The
theorem applies in Newtonian low-Reynolds-number flows
where

� · T = 0, � · u = 0, T = ���u + �uT� − p1 , �1�

where T is the Cauchy stress tensor, p is the pressure, u is
the velocity field, and � is the viscosity.

Consider two flows that satisfy the Stokes equations �1�
in some domain �; the flows differ due to different boundary
conditions along ��. Let the stress and velocity fields of the
first flow be designated as T1 and u1, respectively, and those
of the second be denoted by T2 and u2. The Lorentz recip-
rocal relation is

�
��

u1 · t2dS = �
��

u2 · t1dS , �2�

where t=n ·T denotes the traction vector at a surface with
outward unit normal n.

We focus on a flow geometry appropriate to the study of
effective boundary conditions.14,18 Suppose an infinite rigid
surface with arbitrary, periodic height fluctuations H�x ,y�,
i.e. a periodically perturbed plane, which is in contact with a
tall layer of fluid. Let the period in the x and y directions be
�x and �y, respectively �see Fig. 1�a��. A Navier slip relation
describes the interaction between the fluid and the rigid
surface,

u�x,y,H�x,y�� = b�x,y��1 − nn� · � �u

�n
�

�x,y,H�x,y��
. �3�

The projection tensor 1−nn enforces a purely tangential slip.
Hence, the slip rate and shear rate along H�x ,y� are propor-
tional. The proportionality scalar b�x ,y� is the Navier slip-
length, which is 0 for no-slip surfaces and � for perfect slip.
We presume that b�x ,y� has the same periodicity as H�x ,y�,
but is otherwise arbitrary. By permitting b to depend on x
and y, we allow the hydrophobicity of the surface to be spa-
tially nonuniform.

Sufficiently far above the surface, at a height z=zH, a
horizontal shear traction �= ��x ,�y ,0� is applied. The traction
induces a steady flow, which has some properties that can
be determined at the outset. Of primary importance, the
flow must approach a linear profile for sufficiently large val-
ues of z,

u�x,y,z � D� = �z/� + us, p�x,y,z � D� = P , �4�

for some surface length scale D and constant P. The flow is
akin to simple shear, but augmented by the possible addition
of a constant “effective slip” velocity us= �ux

s ,uy
s ,0�, which

arises due to the interaction of the flow with the textured
surface. It follows that us is uniquely defined up to the choice
of the origin of the coordinate system, i.e. if one redefines
z=0 to correspond to a new height, the same flow profile
would correspond to a different slip velocity. To avert this
issue, we define z=0 consistently at the peak height of the
surface fluctuations.a�Electronic mail: kkamrin@mit.edu.
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A basic linearity argument requires that us and � obey a
relationship,

�ux
s

uy
s 	 = M · ��x

�y
	 , �5�

for some 2�2 mobility tensor M, which depends on the
surface properties.

Is M always a symmetric tensor? This question is the
motivating factor for the work herein. In Ref. 18, it was
suggested without proof that M should be a symmetric ma-
trix, using arguments based on molecular statistics and the
commonly used Onsager–Casimir relations for linear ther-
modynamic response.12,19,20 In Ref. 14, the method of do-
main perturbations was used to compute M up to second
order, and the symmetry of M was verified assuming surface
fluctuations with small curvature and slope. In particular
cases such as parallel groove patterns, the symmetry of the
mobility matrix is obvious from geometric considerations.
However, when the surface shape and hydrophobicity are
both arbitrary, the answer has not been given.

We now prove that M is always symmetric. Define the
volume � as the prismatic shape depicted in Fig. 1�b�. Its
bottom surface is the rigid interface and its top surface a flat
rectangle at height zH. Other faces of � are vertical walls
parallel to the x or y direction, spaced in a multiple of the
corresponding periodicity.

Let T1 and u1 be the stress and velocity fields of the
Stokes flow induced by shearing from above �at zH� with
stress �1, and let T2 and u2 correspond to the flow induced
by shearing with an arbitrary traction �2. Applying Lorentz
reciprocity to these two flows and dividing the boundary, as
shown in Fig. 1�b�, we have



n=1

6 �
��n

u1 · t2dS = 

n=1

6 �
��n

u2 · t1dS . �6�

The periodicity of the flow requires that the integrals over
parallel walls be of opposite sign but equal in magnitude,

�
��1

ui · t jdS = − �
��3

ui · t jdS ,

�7�

�
��2

ui · t jdS = − �
��4

ui · t jdS ,

for i , j� �1,2� and i� j. Next, observe that at any point
�x ,y ,H�x ,y�� on ��6,

u1 · t2 = u1 · 
��1 − nn� ·
�u2

�n
− p2n� = �u1 · u2�

�

b
, �8�

where we have used the slip condition and orthogonality of
the fluid velocity and the rigid surface normal. Similarly,
u2 · t1= �u1 ·u2��� /b�, implying that

u1 · t2 = u2 · t1 �9�

at any point on ��6. Likewise, we have

�
��6

u1 · t2dS = �
��6

u2 · t1dS . �10�

Taking Eqs. �7� and �10� into account, Eq. �6� reduces to

�
��5

u1 · t2dS = �
��5

u2 · t1dS . �11�

At z=zH, Eq. �4� describes the flow, so the integral equality
can be written as

�
��5

��1zH/� + u1
s� · ��2 − P2ẑ�dS

= �
��5

��2zH/� + u2
s� · ��1 − P1ẑ�dS �12�

for constant pressures P1 and P2 and unit vector ẑ. Then, by
orthogonality,

�
��5

u1
s · �2dS = �

��5

u2
s · �1dS . �13�

Utilizing Eq. �5� and the fact that the flow and stress are
uniform on ��5, the last equation directly implies that

�2 · M · �1 = �1 · M · �2 �14�

for arbitrary choices of �1 and �2.
Consequently, the tensor M is always symmetric. This

result implies that regardless of the anisotropy of the surface
texturing, there must always exist two orthogonal in-plane
directions for which an applied shear stress aligns with the
induced effective slip. Also, a symmetric M means only
three scalar measurements are necessary to compute M,
which is advantageous for applications. Notice that the proof
was carried out for a surface with both height and Navier slip
fluctuations. Thus, it follows that M must be symmetric in
the case of a no-slip surface with arbitrary periodic height
fluctuations and the case of a flat surface with arbitrary pe-
riodic slip properties. We are not aware of a previous dem-
onstration of these results.

FIG. 1. �Color online� �a� Illustration of the setup and boundary conditions.
The surface shape is periodic, but is otherwise arbitrary. The surface also has
periodic Navier slip fluctuations. �b� The volume � is displayed with its six
boundary faces labeled.
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By modifying this derivation, we next proceed to prove
symmetry relations in a variety of related geometries, as pre-
sented in Fig. 2. First, as depicted in Fig. 2�a�, consider a
finite-height “sandwich” version of Fig. 1, with two surfaces
of equal periodicity in the x and y directions, each having
arbitrary shapes, hA�x ,y� and hB�x ,y�, and Navier slip prop-
erties, bA�x ,y� and bB�x ,y�, within a periodic cell. We sup-
pose that the surfaces are separated by a layer of viscous
fluid and that one surface is sheared with respect to the other.
One important difference from the first example is that the
current geometry does not generally support a steady flow.
This caveat is not a problem as long as we specify that the
quantities of interest are defined instantaneously.

Suppose for some particular relative positioning of the
surfaces, shearing motion is induced by an instantaneous
force applied to the periodic cell of the top surface. Let us
refer to F� = �Fx ,Fy� as the component of that force lying
parallel to the surface, and let the resulting top-surface mo-
tion be U= �Ux ,Uy�. Note that the surface velocity cannot
have a z-component by volume conservation and periodicity;
however, the applied force can have a nonzero z-component
that is ultimately unrelated to the flow. The in-plane force
and velocity must be related linearly through a 2�2 mobility
tensor M�a� defined by

U = M�a� · F� . �15�

We shall now prove that M�a� is symmetric.
Let F�1 and F�2 be two arbitrary forces, inducing flow

fields u1 and u2, respectively. We apply Lorentz reciprocity
in the fluid region between the rigid surfaces and which is
bounded laterally by a periodic cell, as pictured at the bottom
of Fig. 2�a�. Similar to the previous derivation, all integrals

over surfaces ��C through ��F cancel due to flow periodic-
ity, and integrals over ��B cancel due to the reasoning in
Eqs. �8� and �9�. Hence, we find an integral relationship over
the moving surface,

�
��A

u1 · t2dS = �
��A

u2 · t1dS . �16�

For the moving surface, the Navier slip condition at any
point on ��A is written as

u�x,y� − U = bA�x,y��1 − nn� ·
�u

�n
. �17�

Hence, we rewrite Eq. �16� as

�
��A


U1 · t2 + �bA
�u2

�n
· �1 − nn� ·

�u1

�n
�dS

= �
��A


U2 · t1 + �bA
�u1

�n
· �1 − nn� ·

�u2

�n
�dS .

Since the surface projection tensor 1−nn is symmetric, the
above reduces to

�
��A

U1 · t2dS = �
��A

U2 · t1dS . �18�

Finally, since U1 and U2 are constant vectors and the integral
of the traction on a surface gives the net force, it follows that

U1 · F�2 = U2 · F�1. �19�

Substituting U�1,2�=M�a� ·F��1,2� in the above proves that M�a�

is symmetric.

FIG. 2. �Color online� Representative geometries where, by reasoning analogous to Eqs. �6�–�14�, the matrix relating the generalized force to velocity can be
proven symmetric. In each case, all rigid surfaces are permitted an arbitrary Navier slip distribution of period equal to the period of the shape fluctuations.
From �a� to �b� to �c�, each successive case removes one periodicity requirement on the surface patterning.
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Since M�a� is symmetric for any instant and relative ori-
entation of the surfaces, similar conclusions can be drawn for
averaged quantities. For instance, for any given force F�, let
�U� represent the ensemble-averaged velocity induced by F,
over all relative orientations of the surfaces with mean sepa-
ration distance fixed. Since each realization possesses a sym-
metric mobility, we deduce that a symmetric tensor relates F�

to �U�. Or, if we instead fix U and ensemble-average over
force, the same argument switching M�a� with �M�a��−1 gives
that U and �F�� are also related by a symmetric tensor. Note
that if the top face is flat and has uniform Navier slip, the
induced flow profile is steady and all average quantities
equate to the instantaneous.

By identifying the faces ��E and ��F, we can wrap this
flow environment into a new topological family representing
flow between partially closed, z-periodic surfaces �see Fig.
2�b�� for the z-axis along the �B axial center-of-mass. The
derivation from the prior case carries over up to Eq. �18�,
with the modification that U→ �y ,−x ,0��z+U. Unlike the
prior case, this geometry places no volume conservation con-
straints on U so U can be any three-dimensional vector. De-
fining the per-length force and z-torque on the inner body by
F and Lz, we integrate Eq. �18� to show that the mobility
relation between the forces and velocities must be symmet-
ric, i.e.,

�U

�z
	 = M�b� · �F

Lz
	 �20�

must be characterized by a symmetric 4�4 tensor M�b�.
Lastly, we can remove all external periodicity require-

ments on the surface patterning by considering flows be-
tween two arbitrarily shaped, arbitrarily hydrophobic fully
closed surfaces �see Fig. 2�c��. This geometry eliminates sur-
faces ��C and ��D from the prior case and can be obtained
from Fig. 2�a� under a deformation that brings the edges of
each bumpy surface to a single point. The inner body is free
to rotate ��� and translate �U�. Letting the corresponding
force and torque vectors be F and L, respectively, the mo-
bility matrix M�c� for this problem is 6�6 and is defined by

�U

�
	 = M�c� · �F

L
	 . �21�

Following analogous steps from before, Eq. �18� can be ob-
tained for this geometry under the modification U→��r
+U �origin at the center-of-mass of �B�, and the symmetry
of M�c� is found upon integrating the relation.

This final result reveals a connection to a classical find-
ing of viscous flow theory—that the resistance tensor of an
arbitrary particle moving in a viscous fluid is necessarily
symmetric.15 Note, however, that we have added a new in-
gredient, allowing all surfaces to have arbitrary Navier slip
fluctuations. In fact, following similar lines, we can prove
that other known symmetry relations for no-slip particles in
viscous flow remain symmetric when the particle has non-
uniform surface hydrophobicity, as is the case for the sym-
metry noted in Ref. 17 of the fourth-rank tensor C relating a
particle’s stresslet S to a far-field pure strain rate E.

We also note that every result in this work could be
rephrased into an elasticity problem, arrived at by replacing
all velocities with displacements—the viscous stress law for
the bulk becomes a small-strain elasticity law, the Lorentz
reciprocal relation becomes the well-known Betti reciprocal
relation for elasticity, and the Navier slip condition becomes
an adhesion law �=	�x ,y�
 relating sliding displacement
along the surface to the local shear strain. Such an adhesion
law is essentially a traction-displacement relation, like those
used in fracture mechanics to model cohesive-zone crack
surfaces.21,22 Our above analyses would then show that the
corresponding elastic “mobility” tensors, which relate
vectors of generalized force and total displacement, are
necessarily symmetric.
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