
	
   1	
  

Quantifying the nanomachinery of the nanoparticle-biomolecule interface  

 

1,4,*Helena de Puig Guixé, 3,*Stefania Federici, 1Salmaan H. Baxamusa, 3,#Paolo Bergese, and 

1,2,#Kimberly Hamad-Schifferli 

 

1Department of Biological Engineering, 2Department of Mechanical Engineering, Massachusetts 

Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, US 

3Chemistry for Technologies Laboratory and INSTM, University of Brescia, Via Branze, 38, 

25123 Brescia, Italy  

4Institut Quimic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain 

*These authors equally contributed to the work. 

#Corresponding authors 

 

Keywords: nanorod, nanomachinery, surface work, self-assembly, thrombin, nanoparticle-
biomolecule interface	
  
	
  
	
  
	
  
Abstract 

We present a study of the nanomechanical phenomena experienced by nanoparticle-conjugated 

biomolecules. We develop a thermodynamic framework to describe binding of thrombin binding 

aptamer (TBA) to thrombin when the TBA is conjugated to nanorods. Binding results in nanorod 

aggregation (viz. directed self-assembly) which is detectable by absorption spectroscopy. The 

analysis introduces the energy of aggregation, separating it into TBA-thrombin recognition and 

surface work contributions. Consequently, we demonstrate that self-assembly is driven by the 

interplay of surface work and thrombin-TBA recognition. We show that surface work is ~ −10 
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kJ/mol and results from accumulation of in-plane molecular forces of pN magnitude and lifetime 

< 1 second, which arise from TBA nanoscale rearrangements fuelled by thrombin-directed NR 

aggregation. The obtained surface work can map aggregation regimes as a function of different 

nanoparticle surface conditions. Also, the thermodynamic treatment can be used to obtain 

quantitative information on surface effects impacting biomolecules on nanoparticle surfaces.  

 

1. Introduction 

Biomolecular machines have inspired engineers for their ability to perform mechanical work 

in a way that is rapid, specific, and with efficiencies that surpass artificial systems. Many have 

sought to exploit DNA-protein binding for nanomachines, particularly thrombin binding 

aptamers (TBA). Due to the high specificity and reversibility of binding, TBA and thrombin 

have been attractive for nanomachines that cycle through states by addition of DNA[1, 2]. 

However, for biomolecular machines to be ultimately useful, they must be interfaced to synthetic 

surfaces to harness cumulative molecular-level changes and generate useful work as macroscopic 

motion, triggered assembly, or reporting a change[3-11].  

Unfortunately, control over the nanoscale biomolecular interface is severely lacking. 

“Wiring” biomolecules onto surfaces without hindering the designed behavior is challenging. 

DNA and proteins have strong tendencies to denature on surfaces due to the numerous non-

covalent interactions between the biomolecule and the surface and coating molecules, and 

denaturation is influenced by a myriad of parameters including surface material, coating 

chemistry, and curvature [12-16]. Such interactions can accumulate and result in drastic deviations 

from solution behavior, affecting binding affinity, kinetics and yield, [12, 13, 17] sometimes 

resulting in unexpectedly improved situations[4, 18].  Approaches to remove interface effects have 
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met limited success[19, 20], where ligands thought to be inert exhibit unexpected stickiness. These 

issues present a huge challenge for not only nanobiomachines, but nearly every application with 

surface immobilized biomolecules[21, 22].  

Despite broad interest in using NPs coupled to biomolecules, systematic characterization of 

interface biomolecular nanomachinery has been lacking. For example, it is known that TBA 

binding to thrombin is influenced by the properties of the surface it is on as well as its molecular 

neighbors, which can give rise to intermolecular repulsion that hinder its ability to fold and bind. 

However, these effects have been described only qualitatively, as there are no direct probes. A 

parameter describing these interface interactions would not only yield a deeper understanding of 

surface effects but also enable prediction of molecular behavior. Furthermore, it would allow 

comparison, which would be beneficial especially for surface chemistry modification strategies, 

which can drastically affect biomolecular behavior and are notorious for being difficult to 

control. Most investigations to date have not been quantitative, but instead phenomenological, 

probing only whether or not biomolecules adsorb. Unfortunately, these empirical observations 

cannot capture quantitative information, and therefore are insufficient. Thus, a map of TBA 

binding regimes as a function of surface properties would greatly enhance the ability to construct 

interfaces to biomolecules. A few such studies on planar surfaces exist[3, 4, 23] but to the best of 

our knowledge, quantitative studies for NPs are few[24], despite the fact that the surface 

dominates on the nanoscale. 

Here we develop a new thermodynamic treatment for quantifying TBA nanomachinery on 

gold nanorods (NRs) interacting with thrombin. This thermodynamic treatment allows for 

quantitative description of the interface effects. We systematically probe how the interactions 

vary with TBA coverage, sequence, surface chemistry, and blocking proteins. We show that the 
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term describing surface work is key for quantifying interface effects on TBA behavior. This 

treatment is a promising framework to describe directed self-assembly of NPs[8, 25], and could be 

used to advance the state-of-the-art in organizing nanoscale ‘building blocks’ into assemblies, 

which have lagged behind advances in synthesis and characterization of NPs and 

macromolecules[26]. 

	
  

2. Results and Discussion 

2.1 Theoretical 

Consider the interaction of thrombin with TBA immobilized on NRs (Figure 1). Because 

thrombin binds specifically to TBA at exosite I (green) and exosite II (purple), binding results in 

aggregation of TBA decorated NRs (NR-TBA). From a thermodynamic perspective this can be 

represented as the equilibrium between a free (state I) and an aggregated state (state IV).  

To describe this equilibrium system, we introduce the concept of unit block of aggregation, 

defined as an arbitrary fundamental complex from which the entire aggregate may be constructed 

by purely translational additions.  For a NR-TBA-thrombin aggregate, several thrombins are 

bound to each NR-TBA. Thus, it is convenient to identify a NR-TBA bound to a convenient 

number n of thrombins as the unit block. Consequently, equilibrium between states I and IV can 

be described as the binding equilibrium of n thrombin molecules to a single NR-TBA, where 

NR-TBA acts as a receptor displaying n binding sites with invariant identical affinities (e.g. a n-

valent uniform receptor [27]). Within this scheme, state IV represents the particular case of the 

smallest aggregate with n = 1 (Figure 1). 

Therefore, aggregation can be described in terms of the binding efficiency for one TBA, 

θ [27]: 
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                                                            (1) 

where Θ is the binding efficiency of the NR-TBA receptor as a whole, Kσ  is the equilibrium 

association constant of the TBA-thrombin binding confined at the NR surface and [Th] is the 

equilibrium concentration of thrombin in solution. 

 TBA-thrombin binding is confined on the NR surface, so the overall Gibbs free energy of 

the reaction is comprised of both chemical and surface contributions. The chemical contribution 

is related to TBA-thrombin binding, whereas the surface contribution describes the work spent in 

accommodating the thrombin on the surface and the concomitant nanoscale rearrangement of 

bound and adjacent TBA molecules[4, 5]. The overall surface effect on aggregation can be 

understood if we construct a thermodynamic cycle that goes from the free state (state I) to the 

aggregated state (state IV), broken down into three hypothetical steps (Figure 1). The first step 

describes release of TBA from the NR to the solution (I to II), the second step TBA-thrombin 

recognition in solution (II to III), and the third conjugation of the TBA-thrombin complexes to 

the NR (III to IV).  

Each step is characterized by a standard molar Gibbs free energy: release of TBA from the 

NR, ΔrG0
rel, binding of TBA to thrombin, ΔrG0

bind and re-conjugation of TBA-thrombin to the 

NR, ΔrG0
conj. It follows that the standard molar Gibbs free energy of aggregation, ΔrG0

agg, is 

given by 

ΔrG0
agg = ΔrG0

rel + ΔrG0
bind + ΔrG0

conj                                         (2) 

The surface work, Wσ, can be defined by gathering the non-recognition contributions, or Wσ = 

ΔrG0
rel + ΔrG0

conj. Thus ΔrG0
agg can be rewritten as  

ΔrG0
agg = Wσ + ΔrG0

bind                                                          (3) 
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which elucidates the energy of NR aggregation directed by molecular recognition confined 

on NR surfaces. In particular, it is not equal to the energy of molecular recognition free in 

solution, as it is usually assumed. The difference relies in the surface work component, Wσ. Wσ
 

can be positive or negative, and therefore obscure or promote aggregation. For example, a 

positive Wσ exceeding ΔrG0
bind fully inhibits aggregation (ΔrG0

agg > 0). The free energy of 

aggregation equals that of binding (ΔrG0
agg ≅ ΔrG0

bind) only if Wσ ≅ 0, which occurs when the 

release and conjugation energies are similar or insignificant. These two cases can be described as 

“mild” surface conditions, possibly resulting from weak or negligible lateral interactions between 

surface confined species.  

From the molecular machine standpoint, Wσ is co-operatively triggered by molecule-surface 

and molecule-molecule lateral interactions, such as hydration and thermal fluctuation forces, 

originating from nanoscale molecular motions fuelled by the interplay of surface molecular 

recognition, electrolyte surface density variation and “squeezing” between the NP surfaces [4, 28].  

Equation (3) can be used to evaluate Wσ from dose-response data for the binding variables θ 

and [Th]. If we express ΔrG0
agg as −RTln Kσ and ΔrG0

bind as −RTln Kb, where Kb is the equilibrium 

association constant of TBA-thrombin in solution, we can rearrange Equation (3): 
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where Kd
b is the TBA-thrombin dissociation constant in solution. Substituting Equation (4) 

into Equation (1) yields an expression that can quantify Wσ : 
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Equation (5) can be interpreted as a Langmuir isotherm that specifically describes self-

assembly of NPs directed by molecular interactions. It is related to the Stern equation (for 

describing electrolyte adsorption at a charged surface) and the modified Langmuir by Fowler and 

Guggenheim, implemented to take into account lateral interactions in adsorption of gases on 

solids.[29] Here we ascribe a physical meaning to the modification via the thermodynamic cycle, 

i.e. by describing the energy of aggregation as a sum of surface and molecular recognition 

contributions. Note that when Wσ = 0, Eqn. 5 reduces to the Langmuir isotherm, which does not 

account for intermolecular interactions.  

2.2 Synthesis and characterization of TBA decorated NRs  

We deployed this thermodynamic framework on NR-TBA with different surface treatments 

(Figure 2a).  NRs were monodisperse in size, as confirmed by TEM (Figure 2b), with a length of 

35 ± 5 nm and width of 10 ± 1 nm (aspect ratio = 3.6 ± 0.7).  TBAs used were terminated with a 

5’SH that allowed conjugation to the gold NRs. A 15 thymine (T15) spacer was either present 

(T15-TBA) or not (TBA). TBA surface density for NR-T15-TBA was varied by tuning the 

NR:TBA incubation ratio during conjugation, resulting in coverages of 5.6 ± 1.1 ×1012 TBA/cm2 

(low coverage) vs. 12.3 ± 2.5 × 1012 TBA/cm2 (high coverage). The NR surface chemistries were 

also varied. NR-T15-TBA were “backfilled” with ligands of thiolated polyethylene glycol 

(mPEG), which is used extensively as a surface coating ligand for NPs to prevent fouling and 

non-specific adsorption. Since PEGylation of NP surfaces sometimes does not remove non-

specific adsorption[30, 31], we probed PEGylation under both strong and mild conditions, with 

incubation ratios of 5:1 and 0.5:1 mPEG: T15-TBA, respectively. Finally, the effect of “blocking” 

the surface was investigated with human serum albumin (HSA, 0.3 w/v%), a protein widely used 
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to prevent aggregation and non-specific adsorption for both NP and planar surfaces (For details, 

see Experimental Section).  

Gel electrophoresis was used to probe the effect of the different surface conditions on the 

NRs (Figure 2c). Conjugation of the NRs to the T15-TBA (Lane 3) and to TBA (Lane 2) was 

confirmed by a shift to lower mobility relative to MHA coated NRs (Lane 5). Decreasing the 

DNA:NR incubation ratio resulted in a smaller mobility shift (Lane 4), confirming the lower 

coverage of the T15-TBA on the NR surface. This was independently confirmed by quantifying 

the DNA on the NR surface by chemical displacement (see Experimental Section) [32, 33]. 

Incubating the NR- T15-TBA with HSA also resulted in a shift to lower mobility (Lane 1), due to 

the increase in NR- T15-TBA size upon adsorption of the HSA, confirming successful blocking. 

Incubation of NR- T15-TBA (high coverage) with mPEG (MW  = 5000) at a 5:1 ratio resulted in 

further shifts to lower mobility (Lane 7) relative to NR- T15-TBA high coverage (Lane 6), 

indicating that some of the neutral mPEG was put onto the surface of the NR- T15-TBA. 

However, under mild PEGylation conditions (0.5:1, Lane 9), no mobility shift was observed 

relative to NR- T15-TBA high coverage (Lane 8).  

2.3 Probing thrombin directed self-assembly  

The TBA studied was a single-stranded DNA 15mer 5’-GGTTGGTGTGGTTGG-3’ [34]. 

When folded into a structure stabilized by two G-quartets (Figure 1) [35], it binds strongly to 

thrombin at either exosite I or exosite II in a manner that is highly specific and reversible, with a 

binding constant KD that ranges from 1-100’s of nM. Because thrombin can bind to two 

TBAs[35], NR-TBA will self-assemble upon binding to thrombin (Figure 1). This results in a red 

shift and broadening of the NR surface plasmon resonance (SPR) peak. Figure 3a shows the 

absorption spectrum of NR functionalized with T15-TBA incubated with 121 nM of thrombin as 
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a function of time. The longitudinal SPR red shifts and broadens with time, suggesting 

aggregation. To quantify aggregation, the ratio of extinctions at 400nm and 800nm (A400/A800) is 

plotted, which increases as a function of time in the presence of thrombin (Figure 3b). A400/A800 

time courses are collected for several thrombin concentrations (0-121 nM, Figure 3b). The 

A400/A800 endpoint at t = 1 hr is used to define when equilibrium is attained, and is plotted as a 

function of thrombin concentration (Figure 3c) to construct an aggregation dose-response curve, 

or isotherm. The aggregation isotherm exhibits Langmuir-like behavior, where after a threshold 

it increases with increasing thrombin concentration, eventually saturating.   

In order to prove that the self-assembly is primarily due to the specific interaction between 

thrombin and the TBA on the NR, we performed a competitive inhibition. Already formed NR- 

T15-TBA -thrombin aggregates were incubated with a DNA strand complementary to the TBA. 

Because TBA must maintain a G-quartet structure for binding, hybridization to a complement 

will not permit it to self-fold and bind to thrombin. Upon addition of an excess of the TBA 

complement (4340:1 complement: TBA on the NR surface) to the 38.4nM thrombin-aggregated 

sample (Figure 3d, gray), A400/A800 decreases to 1.0, indicating that the aggregate was disrupted, 

thus confirming that self-assembly is due to the specific TBA-thrombin interaction. In addition, 

disruption of the aggregate by heat was also probed. Already formed aggregates with a thrombin 

concentration of 121 nM were exposed to a heating-cooling cycle and monitored by tracking 

A400/A800 (Figure 3f). As the temperature was increased, A400/A800 decreased with a sigmoidal 

drop centered at ~42 °C, suggesting that the aggregate was melted by denaturation of the TBA or 

the thrombin. Decreasing the temperature from 80 °C down to 25 °C did not result in a change in 

A400/A800, suggesting that the aggregate could not form again. This could be due to the fact that 



	
   10	
  

the thrombin was irreversibly denatured[36]. These experiments further confirm that the 

aggregation is due to the specific interaction of thrombin with the TBA on the NR surface. 

2.4 Nanomachinery of TBA on NRs  

Aggregation isotherms were analyzed using a modified Langmuir based on Equation 5, 

assuming that A400/A800 was a measure of the number of aggregated NR-TBA [37], and thus of the 

TBA-thrombin surface binding efficiency θ. Data points from three experimental replicates were 

fitted by a best-fit procedure to obtain θ and Wσ, with associated errors evaluated.  

Aggregation as a function of [Th] and fits are reported (Figures 4a-4g). The fits are compared 

in Figure 4d. High and low coverage NR-T15-TBA display isotherms that differ in two ways 

(Figures 4a and b). First, the aggregation onset, or the threshold thrombin concentration, [Th]T, 

for the high coverage sample is ~30 nM, while it is ~15 nM for low coverage. Also, the rise in 

the curve is steeper for high coverage NR-T15-TBA. This indicates that changing TBA surface 

coverage affects thrombin binding to NR-T15-TBA. Treating high coverage NR-T15-TBA surface 

with mild mPEG conditions also affected the isotherm, resulting in a steeper curve rise and 

highest [Th]T at ~35 nM (Figure 4c). On the contrary, no isotherm was registered for NR-T15-

TBA exposed to stronger PEGylation (Figure 4g), showing that aggregation varies with surface 

modification conditions. NRs coated with TBA lacking T15 exhibited no aggregation (Figure 4e), 

suggesting that TBA on the NR was unable to bind thrombin. TBA coverage was 28.6 ± 5.8 × 

1012 TBA/cm2 as determined by chemical displacement, which exceeds a monolayer and is likely 

due to formation of intermolecular G-quartets [38] that would disrupt the ability to bind thrombin. 

Incubation of high coverage NR-T15-TBA with HSA prevented thrombin binding and thus 

aggregation, as indicated by negligible change in A400/A800 (Figure 4f).  
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The thermodynamic model was used to map how Wσ
  changes as a function of θ and [Th]T for 

the samples that aggregate, as a function of TBA coverage and surface chemistry (Figure 5). 

First, values for Wσ are all negative and ~ −10 kJ/mol, indicating that Wσ significantly participates 

along with TBA-thrombin recognition in driving aggregation. From Eq. (3) and taking into 

account that thrombin-TBA recognition energy is ΔrG0
bind ~ −37 kJ/mol [39], it follows that nearly 

30% of the aggregation energy, ΔrG0
agg, that results ~ −50 kJ/mol, comes from Wσ.  This shows 

that aggregation is not due solely to TBA-thrombin binding, as it is predominantly assumed. 

From the same calculation we learn that ΔrG0
agg corresponds to ~20 kBT, confirming that NR-

TBA aggregation is long-lived, on the timescale of hours or days[28]. Conversely, Wσ values in 

kBT units are 3.2 ± 0.5 kBT, 4.3 ± 0.6 kBT and 5.0 ± 1.1 kBT for low and high coverage NR-TBA 

and mPEG backfilled NR-TBA, respectively (Figure 5a, top axis). These values are high enough 

to say that the in-plane intermolecular interactions underpinning Wσ are significantly larger than 

thermal vibrational energy kBT. This suggests that the in-plane interaction lifetime is < 1 sec 

[28]and that the timescale of TBA motion is well below the timescale of NR-TBA aggregation. 

Obtained θ for NR- T15-TBA high and low coverage and mPEG-backfill are identical within 

experimental errors and close to 100% (Figure 5a). This means that aggregation was nearly 

complete for all samples. However, the Wσ values differ, where low coverage has the lowest 

absolute value, −8.0 ± 1.3 kJ/mol (triangle), higher coverage is higher, −10.7 ± 1.5 kJ/mol 

(square), and mPEG under mild conditions results in the highest value, −12.4 ± 2.8 kJ/mol 

(circle). Evidently, increasing TBA surface density increases its absolute Wσ, |Wσ|. This could be 

due to the fact that for aggregation, more |Wσ| is done to accommodate thrombin on crowded 

surfaces. Furthermore, introduction of small amounts of mPEG, a bulky molecule, increases |Wσ|.  
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This difference in energy is taken from thrombin in solution, which gives rise to differences 

in [Th]T (i.e. the thrombin chemical potential). [Th]T required for the aggregation onset increases 

with increasing |Wσ|, showing that samples with lower |Wσ| and thus smaller interface effects do 

not need as much thrombin to aggregate (Figure 5b). 

These results show that TBA behavior can vary with varying coverage on the NR or NR 

surface chemistry, and in a way that does not affect its aggregation efficiency θ. Conversely, this 

means that simply probing NR aggregation yields incomplete information on biomolecular 

behavior on the NR surface. Surprisingly, in view of Wσ data and Eq. (3) the NR- T15-TBA 

sample with mild PEGylation has the highest energy of aggregation, ΔrG0
agg, and thus forms the 

most stable aggregate. Even though the surface treatment does not yield a detectable amount of 

PEG on the NR by electrophoresis, its Wσ is distinct from high coverage NR-T15-TBA. This 

shows that mild surface treatments that are difficult to detect can still result in significant Wσ 

changes. It also shows that PEGylation does not always result in inert surfaces that do not foul or 

experience non-specific adsorption, and highlights the variability and complexity of the 

interface.  

Wσ can be expressed in mN/m for comparison to Wσ of biomolecular transformations such as 

DNA hybridization, molecular recognition interactions[7], and pH or electrolyte driven 

conformational changes confined to planar surfaces[3, 4, 23]. To the best of our knowledge, this is 

the first time analogous studies are reported for NPs. Wσ from MC experiments range from 1 to 

10’s of mN/m, where an aptamer-protein study reports Wσ = 9.6 mN/m[40]. By dividing obtained 

Wσ for low and high coverage NR-T15-TBA for the respective TBA surface coverage (see [4] for a 

justification) we obtain Wσ = -0.74 ± 0.26 mN/m and Wσ = -2.18 ± 0.76 mN/m, respectively, 

which are consistent with reported ranges. This suggests that Wσ involved in transformations of 
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NP conjugated biomolecules is comparable to Wσ of biomolecules on planar surfaces. 

Furthermore, for an average coverage of 1013 TBA/cm2, 1 TBA molecule occupies ~10 nm2, 

corresponding to an area ~3.5 nm diameter. By taking into account that a folded TBA molecule 

has an average size of 2.5 nm, the average distance between TBAs is ~1 nm, which multiplied to 

Wσ gives a force on the order of pN. Remarkably, these values are consistent with unfolding 

forces from single-molecule experiments[41].  

 

3. Conclusions  

We have introduced a thermodynamic framework that describes and quantifies interactions 

of TBA on NR surfaces with thrombin. The model relies on separating TBA-thrombin 

recognition energy from surface work, Wσ, unique to confinement of the recognition event within 

NR surfaces. Wσ enables quantitative understanding of interfacial nanoscale phenomena “fuelled” 

by thrombin directed TBA-NR aggregation, and thus has significant ramifications for 

nanomachines which rely on extracting work from molecular movements.  

In particular, Wσ results from accumulation of in-plane molecular forces of pN magnitude and 

lifetime < 1 second. In the studied system Wσ is ~ −10 kJ/mol and substantially promotes 

aggregation. However, this is not a general rule, as Wσ may turn out to be positive, which could 

potentially work against desired effects in some applications. Finally, Wσ is effective in mapping 

aggregation regimes as a function of different nanoparticle surface conditions. 

The presented approach is broadly applicable to behavior of any NP confined ligand-receptor 

recognition and could significantly contribute to understanding surface confined biomolecular 

transformations, as it extends to nanoparticles quantitative information that currently could be 

accessed only for planar surfaces.  



	
   14	
  

Experimental Section 

Synthesis and characterization of the TBA decorated gold NRs 

Gold nanorods (NRs) were synthesized using a single surfactant non-seed-mediated growth 

method in 200mL batches [42-44]. Briefly, gold chloride trihydrate (HAuCl4), silver nitrate 

(AgNO3), ascorbic acid (AA) and sodium borohydride (NaBH4) were added to a mixture of  

cetyltrimethylammonium bromide (CTAB) and  sodium chloride (NaCl). The solution sat on the 

bench undisturbed overnight, during which time it turned reddish brown, indicating the presence 

of NRs. TEM analysis showed that the NRs had dimensions of 35 ± 5 nm × 10 ± 1 nm. All the 

reagents were purchased from Sigma Aldrich, except for NaCl, that was from Mallinckrodt. 

The CTAB surfactant on the NR surface was exchanged with mercaptohexanoic acid (MHA) 

by a round-trip ligand exchange [45]; this method involves transferring the NR to an organic 

phase and then back to an aqueous phase with mercaptohexanoic acid (MHA) as the ligand.  

In order to conjugate the NR-MHA with DNA, 6nM NR were incubated with DNA in 10 

mM phosphate buffer through a salt aging process[46, 47]. The DNA oligonucleotides were 

purchased from Integrated DNA Technologies fluorescently labeled at the 3’ ends with 

tetramethylrhodamine (TMR), and thiolated in the 5’ ends. The sequences used were 5’-SH-

TTTTTTTTTTTTTTTGGTTGGTGTGGTTGG-TMR-3’ (T15-TBA) and 5’-SH-

GGTTGGTGTGGTTGG-TMR 3’ (TBA). The DNA:NR ratios were 1000:1 DNA/NR for the 

high coverage particles and 200:1 DNA/NR for the low coverage particles.  

DNA conjugation to the NR was confirmed by mobility changes of the NR-DNA in gel 

electrophoresis with 0.5% agarose gels in 0.5× TBE. DNA per NR was quantified by chemical 

displacement [32] with 1mM mercaptohexanol (MCH). Free DNA was quantified via fluorescence 
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spectroscopy. High coverage yielded 12.3 ± 2.5 × 1012 T15-TBA /cm2, and low coverage yielded 

5.6 ± 1.1 × 1012 T15-TBA /cm2. TBA coverage was 28.6 ± 5.8 ×1012 TBA/cm2. 

Further surface modifications were performed on the NR-T15-TBA. HSA block was achieved 

after incubating a 0.17 nM solution of the NR-T15-TBA in 0.3% (w/v) HSA. Also, NR-T15-TBA 

were mPEG backfilled by overnight incubation of the with mPEG at a ratio of 5:1 and 0.5:1 

mPEG:TBA on the NR surface. mPEG backfill was monitored by electrophoretic mobility 

changes of the NR-T15-TBA-mPEG, where the 5:1 mPEG;DNA backfill showed a mobility shift, 

but the 0.5:1 did not.    

Monitoring the NR-thrombin interaction by optical absorption  

100µl of 0.17nM DNA conjugated NR were mixed with 50 µl of thrombin in a PBS solution 

with 0.1% BSA. After the addition of thrombin, the extinction of the NR was monitored for an 

hour. Aggregation of the NR was calculated by dividing the 400nm extinction (A400) by the 

800nm extinction (A800) at each time point. The aggregation was normalized by dividing every 

value by the aggregation without thrombin addition.  

In order to ensure that the interaction between the TBA and the thrombin was reversible, we 

heated the aggregated sample from 25 to 80ºC and measured its absorbance. Moreover, we tested 

that the interaction was reversible by adding the complementary DNA; purchased from 

Integrated DNA technologies with a sequence 5’-CCAACCACACCAACC-3’, to 150µL of the 

aggregated sample, and monitoring the absorbance for four hours. 

Fitting of aggregation isotherms 

The first step to exploit Equation (5) to fit the experimental curves consists in expressing the 

binding efficiency, θ, in terms of the signal intensity, I. Since θ and I are proportional, we can set 

θ = I ⋅ β-1, in which β is the proportional constant. We obtain 
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                                                                    (6) 

However, this Langmuir equation fails to fit the experimental data and it needs to be further 

optimized. By using the mathematical principle of translation, we applied a rigid shift of the 

Equation (6) with respect to the x and y axes in order to take into account the onset of 

aggregation. These shifts were subtracted from the equilibrium concentration and from the signal 

intensity to give the following equation 

 

                                                           (7) 

In which IT and ThT refer to the values of signal intensity and equilibrium concentration at the 

threshold. Kd
b is the TBA-thrombin dissociation constant in homogeneous solution fixed at 3.3 ± 

1.1 ×10-7 M [39]. b and Ws are the free parameters of the fitting. 

Data are fitted using Equation (6) over three repetitions of the same experiments and the 

errors on the free parameters are assigned as a result of the fitting algorithm (with 95% 

confidence bounds). 

Finally, we described the NR aggregation process through a single binding of NR confined 

TBA and thrombin (Equation 1). Since aggregation was conducted in excess of thrombin with 

respect to NR concentration (about 6 nM), we may assume in first approximation that the 

concentration of thrombin not involved in that binding event (i.e. formally in solution), Th, does 

not change significantly before and after aggregation ([Th] ≡ Th). 
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Figure Captions 

Figure 1. Thermodynamic cycle describing the aggregation of NR-TBA in the presence of 

thrombin.   

Figure 2. a) NR samples probed, b) TEM image of NRs, c) gel electrophoresis of NR 

samples probed. Lane 1: NRs conjugated to T15-TBA with high coverage exposed to HSA, Lane 

2: NRs conjugated to TBA, Lane 3: NRs conjugated to T15-TBA with high coverage, Lane 4: 

NRs conjugated to T15-TBA with low coverage, Lane 5: MHA coated NRs before conjugation to 

DNA. Lane 6: NRs conjugated to T15-TBA with high coverage, Lane 7: NRs conjugated to T15-

TBA with high coverage and exposed to mPEG (MW 5000) at 5:1 mPEG:TBA, Lane 8: NRs 

conjugated to T15-TBA with high coverage, Lane 9: NRs conjugated to T15-TBA with high 

coverage and exposed to mPEG (MW 5000) at 0.5:1 mPEG:TBA. 

Figure 3. a) Change in absorption spectra of NR-T15-TBA high coverage as a function of 

time upon incubation with 121 nM of thrombin (arrow indicates increasing time), b) A400/A800 as 

a function of time for NR-T15-TBA high coverage for different thrombin concentrations, c) 

aggregation isotherm for NR-T15-TBA high coverage, d) A400/A800 as a function of time upon 

incubation with thrombin (t = 0 sec) and complementary DNA strand (gray area, 50 s), e) 
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A400/A800 of already formed NR-T15-TBA -thrombin aggregates as a function of changing the 

temperature from 25°C to 80°C and back down to 25°C (arrows indicate direction). 

Figure 4. Modified Langmuir aggregation isotherms for a) NR-T15-TBA high coverage, b) 

NR-T15-TBA low coverage, c) NR-T15-TBA mPEG backfill 0.5:1 mPEG:TBA, d) fits for plots a-

c , e) NR-TBA without poly T spacer (the dashed line is the average value), f) NR-T15-TBA 

HSA block (the dashed line is the average value), g) NR- T15-TBA high coverage mPEG backfill 

5:1 mPEG:TBA. 

Figure 5. a) θ vs. -Wσ for NR-T15-TBA high coverage (square), NR-T15-TBA low coverage 

(triangle), and NR-T15-TBA -PEG backfill 0.5:1 (circle), b) ThT vs. -Wσ for NR-T15-TBA high 

coverage (square), NR-T15-TBA low coverage (triangle), and NR- T15-TBA -mPEG backfill 

0.5:1 (circle). 
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